xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision af128791464810123bcd60a6d9d0902b5c550aef)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ProfileSummary.h"
61 #include "llvm/ProfileData/InstrProfReader.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/Support/CRC.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ConvertUTF.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/TimeProfiler.h"
69 #include "llvm/Support/xxhash.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include "llvm/TargetParser/X86TargetParser.h"
72 #include <optional>
73 
74 using namespace clang;
75 using namespace CodeGen;
76 
77 static llvm::cl::opt<bool> LimitedCoverage(
78     "limited-coverage-experimental", llvm::cl::Hidden,
79     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
80 
81 static const char AnnotationSection[] = "llvm.metadata";
82 
83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
84   switch (CGM.getContext().getCXXABIKind()) {
85   case TargetCXXABI::AppleARM64:
86   case TargetCXXABI::Fuchsia:
87   case TargetCXXABI::GenericAArch64:
88   case TargetCXXABI::GenericARM:
89   case TargetCXXABI::iOS:
90   case TargetCXXABI::WatchOS:
91   case TargetCXXABI::GenericMIPS:
92   case TargetCXXABI::GenericItanium:
93   case TargetCXXABI::WebAssembly:
94   case TargetCXXABI::XL:
95     return CreateItaniumCXXABI(CGM);
96   case TargetCXXABI::Microsoft:
97     return CreateMicrosoftCXXABI(CGM);
98   }
99 
100   llvm_unreachable("invalid C++ ABI kind");
101 }
102 
103 CodeGenModule::CodeGenModule(ASTContext &C,
104                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
105                              const HeaderSearchOptions &HSO,
106                              const PreprocessorOptions &PPO,
107                              const CodeGenOptions &CGO, llvm::Module &M,
108                              DiagnosticsEngine &diags,
109                              CoverageSourceInfo *CoverageInfo)
110     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
111       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
112       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
113       VMContext(M.getContext()), Types(*this), VTables(*this),
114       SanitizerMD(new SanitizerMetadata(*this)) {
115 
116   // Initialize the type cache.
117   llvm::LLVMContext &LLVMContext = M.getContext();
118   VoidTy = llvm::Type::getVoidTy(LLVMContext);
119   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
120   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
121   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
122   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
123   HalfTy = llvm::Type::getHalfTy(LLVMContext);
124   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
125   FloatTy = llvm::Type::getFloatTy(LLVMContext);
126   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
127   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
128   PointerAlignInBytes =
129       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
130           .getQuantity();
131   SizeSizeInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
133   IntAlignInBytes =
134     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
135   CharTy =
136     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
137   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
138   IntPtrTy = llvm::IntegerType::get(LLVMContext,
139     C.getTargetInfo().getMaxPointerWidth());
140   Int8PtrTy = Int8Ty->getPointerTo(0);
141   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
142   const llvm::DataLayout &DL = M.getDataLayout();
143   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
144   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
145   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
146       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
147   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
148 
149   // Build C++20 Module initializers.
150   // TODO: Add Microsoft here once we know the mangling required for the
151   // initializers.
152   CXX20ModuleInits =
153       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
154                                        ItaniumMangleContext::MK_Itanium;
155 
156   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
157 
158   if (LangOpts.ObjC)
159     createObjCRuntime();
160   if (LangOpts.OpenCL)
161     createOpenCLRuntime();
162   if (LangOpts.OpenMP)
163     createOpenMPRuntime();
164   if (LangOpts.CUDA)
165     createCUDARuntime();
166   if (LangOpts.HLSL)
167     createHLSLRuntime();
168 
169   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
170   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
171       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
172     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
173                                getCXXABI().getMangleContext()));
174 
175   // If debug info or coverage generation is enabled, create the CGDebugInfo
176   // object.
177   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
178       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
179     DebugInfo.reset(new CGDebugInfo(*this));
180 
181   Block.GlobalUniqueCount = 0;
182 
183   if (C.getLangOpts().ObjC)
184     ObjCData.reset(new ObjCEntrypoints());
185 
186   if (CodeGenOpts.hasProfileClangUse()) {
187     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
188         CodeGenOpts.ProfileInstrumentUsePath, *FS,
189         CodeGenOpts.ProfileRemappingFile);
190     // We're checking for profile read errors in CompilerInvocation, so if
191     // there was an error it should've already been caught. If it hasn't been
192     // somehow, trip an assertion.
193     assert(ReaderOrErr);
194     PGOReader = std::move(ReaderOrErr.get());
195   }
196 
197   // If coverage mapping generation is enabled, create the
198   // CoverageMappingModuleGen object.
199   if (CodeGenOpts.CoverageMapping)
200     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
201 
202   // Generate the module name hash here if needed.
203   if (CodeGenOpts.UniqueInternalLinkageNames &&
204       !getModule().getSourceFileName().empty()) {
205     std::string Path = getModule().getSourceFileName();
206     // Check if a path substitution is needed from the MacroPrefixMap.
207     for (const auto &Entry : LangOpts.MacroPrefixMap)
208       if (Path.rfind(Entry.first, 0) != std::string::npos) {
209         Path = Entry.second + Path.substr(Entry.first.size());
210         break;
211       }
212     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
213   }
214 }
215 
216 CodeGenModule::~CodeGenModule() {}
217 
218 void CodeGenModule::createObjCRuntime() {
219   // This is just isGNUFamily(), but we want to force implementors of
220   // new ABIs to decide how best to do this.
221   switch (LangOpts.ObjCRuntime.getKind()) {
222   case ObjCRuntime::GNUstep:
223   case ObjCRuntime::GCC:
224   case ObjCRuntime::ObjFW:
225     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
226     return;
227 
228   case ObjCRuntime::FragileMacOSX:
229   case ObjCRuntime::MacOSX:
230   case ObjCRuntime::iOS:
231   case ObjCRuntime::WatchOS:
232     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
233     return;
234   }
235   llvm_unreachable("bad runtime kind");
236 }
237 
238 void CodeGenModule::createOpenCLRuntime() {
239   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
240 }
241 
242 void CodeGenModule::createOpenMPRuntime() {
243   // Select a specialized code generation class based on the target, if any.
244   // If it does not exist use the default implementation.
245   switch (getTriple().getArch()) {
246   case llvm::Triple::nvptx:
247   case llvm::Triple::nvptx64:
248   case llvm::Triple::amdgcn:
249     assert(getLangOpts().OpenMPIsDevice &&
250            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
251     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
252     break;
253   default:
254     if (LangOpts.OpenMPSimd)
255       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
256     else
257       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
258     break;
259   }
260 }
261 
262 void CodeGenModule::createCUDARuntime() {
263   CUDARuntime.reset(CreateNVCUDARuntime(*this));
264 }
265 
266 void CodeGenModule::createHLSLRuntime() {
267   HLSLRuntime.reset(new CGHLSLRuntime(*this));
268 }
269 
270 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
271   Replacements[Name] = C;
272 }
273 
274 void CodeGenModule::applyReplacements() {
275   for (auto &I : Replacements) {
276     StringRef MangledName = I.first();
277     llvm::Constant *Replacement = I.second;
278     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
279     if (!Entry)
280       continue;
281     auto *OldF = cast<llvm::Function>(Entry);
282     auto *NewF = dyn_cast<llvm::Function>(Replacement);
283     if (!NewF) {
284       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
285         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
286       } else {
287         auto *CE = cast<llvm::ConstantExpr>(Replacement);
288         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
289                CE->getOpcode() == llvm::Instruction::GetElementPtr);
290         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
291       }
292     }
293 
294     // Replace old with new, but keep the old order.
295     OldF->replaceAllUsesWith(Replacement);
296     if (NewF) {
297       NewF->removeFromParent();
298       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
299                                                        NewF);
300     }
301     OldF->eraseFromParent();
302   }
303 }
304 
305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
306   GlobalValReplacements.push_back(std::make_pair(GV, C));
307 }
308 
309 void CodeGenModule::applyGlobalValReplacements() {
310   for (auto &I : GlobalValReplacements) {
311     llvm::GlobalValue *GV = I.first;
312     llvm::Constant *C = I.second;
313 
314     GV->replaceAllUsesWith(C);
315     GV->eraseFromParent();
316   }
317 }
318 
319 // This is only used in aliases that we created and we know they have a
320 // linear structure.
321 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
322   const llvm::Constant *C;
323   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
324     C = GA->getAliasee();
325   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
326     C = GI->getResolver();
327   else
328     return GV;
329 
330   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
331   if (!AliaseeGV)
332     return nullptr;
333 
334   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
335   if (FinalGV == GV)
336     return nullptr;
337 
338   return FinalGV;
339 }
340 
341 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
342                                SourceLocation Location, bool IsIFunc,
343                                const llvm::GlobalValue *Alias,
344                                const llvm::GlobalValue *&GV) {
345   GV = getAliasedGlobal(Alias);
346   if (!GV) {
347     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
348     return false;
349   }
350 
351   if (GV->isDeclaration()) {
352     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
353     return false;
354   }
355 
356   if (IsIFunc) {
357     // Check resolver function type.
358     const auto *F = dyn_cast<llvm::Function>(GV);
359     if (!F) {
360       Diags.Report(Location, diag::err_alias_to_undefined)
361           << IsIFunc << IsIFunc;
362       return false;
363     }
364 
365     llvm::FunctionType *FTy = F->getFunctionType();
366     if (!FTy->getReturnType()->isPointerTy()) {
367       Diags.Report(Location, diag::err_ifunc_resolver_return);
368       return false;
369     }
370   }
371 
372   return true;
373 }
374 
375 void CodeGenModule::checkAliases() {
376   // Check if the constructed aliases are well formed. It is really unfortunate
377   // that we have to do this in CodeGen, but we only construct mangled names
378   // and aliases during codegen.
379   bool Error = false;
380   DiagnosticsEngine &Diags = getDiags();
381   for (const GlobalDecl &GD : Aliases) {
382     const auto *D = cast<ValueDecl>(GD.getDecl());
383     SourceLocation Location;
384     bool IsIFunc = D->hasAttr<IFuncAttr>();
385     if (const Attr *A = D->getDefiningAttr())
386       Location = A->getLocation();
387     else
388       llvm_unreachable("Not an alias or ifunc?");
389 
390     StringRef MangledName = getMangledName(GD);
391     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
392     const llvm::GlobalValue *GV = nullptr;
393     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
394       Error = true;
395       continue;
396     }
397 
398     llvm::Constant *Aliasee =
399         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
400                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
401 
402     llvm::GlobalValue *AliaseeGV;
403     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
404       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
405     else
406       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
407 
408     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
409       StringRef AliasSection = SA->getName();
410       if (AliasSection != AliaseeGV->getSection())
411         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
412             << AliasSection << IsIFunc << IsIFunc;
413     }
414 
415     // We have to handle alias to weak aliases in here. LLVM itself disallows
416     // this since the object semantics would not match the IL one. For
417     // compatibility with gcc we implement it by just pointing the alias
418     // to its aliasee's aliasee. We also warn, since the user is probably
419     // expecting the link to be weak.
420     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
421       if (GA->isInterposable()) {
422         Diags.Report(Location, diag::warn_alias_to_weak_alias)
423             << GV->getName() << GA->getName() << IsIFunc;
424         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
425             GA->getAliasee(), Alias->getType());
426 
427         if (IsIFunc)
428           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
429         else
430           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
431       }
432     }
433   }
434   if (!Error)
435     return;
436 
437   for (const GlobalDecl &GD : Aliases) {
438     StringRef MangledName = getMangledName(GD);
439     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
440     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
441     Alias->eraseFromParent();
442   }
443 }
444 
445 void CodeGenModule::clear() {
446   DeferredDeclsToEmit.clear();
447   EmittedDeferredDecls.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   Module *Primary = getContext().getModuleForCodeGen();
513   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
514     EmitModuleInitializers(Primary);
515   EmitDeferred();
516   DeferredDecls.insert(EmittedDeferredDecls.begin(),
517                        EmittedDeferredDecls.end());
518   EmittedDeferredDecls.clear();
519   EmitVTablesOpportunistically();
520   applyGlobalValReplacements();
521   applyReplacements();
522   emitMultiVersionFunctions();
523 
524   if (Context.getLangOpts().IncrementalExtensions &&
525       GlobalTopLevelStmtBlockInFlight.first) {
526     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
527     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
528     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
529   }
530 
531   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
532     EmitCXXModuleInitFunc(Primary);
533   else
534     EmitCXXGlobalInitFunc();
535   EmitCXXGlobalCleanUpFunc();
536   registerGlobalDtorsWithAtExit();
537   EmitCXXThreadLocalInitFunc();
538   if (ObjCRuntime)
539     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
540       AddGlobalCtor(ObjCInitFunction);
541   if (Context.getLangOpts().CUDA && CUDARuntime) {
542     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
543       AddGlobalCtor(CudaCtorFunction);
544   }
545   if (OpenMPRuntime) {
546     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
547             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
548       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
549     }
550     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
551     OpenMPRuntime->clear();
552   }
553   if (PGOReader) {
554     getModule().setProfileSummary(
555         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
556         llvm::ProfileSummary::PSK_Instr);
557     if (PGOStats.hasDiagnostics())
558       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
559   }
560   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
561     return L.LexOrder < R.LexOrder;
562   });
563   EmitCtorList(GlobalCtors, "llvm.global_ctors");
564   EmitCtorList(GlobalDtors, "llvm.global_dtors");
565   EmitGlobalAnnotations();
566   EmitStaticExternCAliases();
567   checkAliases();
568   EmitDeferredUnusedCoverageMappings();
569   CodeGenPGO(*this).setValueProfilingFlag(getModule());
570   if (CoverageMapping)
571     CoverageMapping->emit();
572   if (CodeGenOpts.SanitizeCfiCrossDso) {
573     CodeGenFunction(*this).EmitCfiCheckFail();
574     CodeGenFunction(*this).EmitCfiCheckStub();
575   }
576   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
577     finalizeKCFITypes();
578   emitAtAvailableLinkGuard();
579   if (Context.getTargetInfo().getTriple().isWasm())
580     EmitMainVoidAlias();
581 
582   if (getTriple().isAMDGPU()) {
583     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
584     // preserve ASAN functions in bitcode libraries.
585     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
586       auto *FT = llvm::FunctionType::get(VoidTy, {});
587       auto *F = llvm::Function::Create(
588           FT, llvm::GlobalValue::ExternalLinkage,
589           "__amdgpu_device_library_preserve_asan_functions", &getModule());
590       auto *Var = new llvm::GlobalVariable(
591           getModule(), FT->getPointerTo(),
592           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
593           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
594           llvm::GlobalVariable::NotThreadLocal);
595       addCompilerUsedGlobal(Var);
596     }
597     // Emit amdgpu_code_object_version module flag, which is code object version
598     // times 100.
599     if (getTarget().getTargetOpts().CodeObjectVersion !=
600         TargetOptions::COV_None) {
601       getModule().addModuleFlag(llvm::Module::Error,
602                                 "amdgpu_code_object_version",
603                                 getTarget().getTargetOpts().CodeObjectVersion);
604     }
605   }
606 
607   // Emit a global array containing all external kernels or device variables
608   // used by host functions and mark it as used for CUDA/HIP. This is necessary
609   // to get kernels or device variables in archives linked in even if these
610   // kernels or device variables are only used in host functions.
611   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
612     SmallVector<llvm::Constant *, 8> UsedArray;
613     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
614       GlobalDecl GD;
615       if (auto *FD = dyn_cast<FunctionDecl>(D))
616         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
617       else
618         GD = GlobalDecl(D);
619       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
620           GetAddrOfGlobal(GD), Int8PtrTy));
621     }
622 
623     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
624 
625     auto *GV = new llvm::GlobalVariable(
626         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
627         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
628     addCompilerUsedGlobal(GV);
629   }
630 
631   emitLLVMUsed();
632   if (SanStats)
633     SanStats->finish();
634 
635   if (CodeGenOpts.Autolink &&
636       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
637     EmitModuleLinkOptions();
638   }
639 
640   // On ELF we pass the dependent library specifiers directly to the linker
641   // without manipulating them. This is in contrast to other platforms where
642   // they are mapped to a specific linker option by the compiler. This
643   // difference is a result of the greater variety of ELF linkers and the fact
644   // that ELF linkers tend to handle libraries in a more complicated fashion
645   // than on other platforms. This forces us to defer handling the dependent
646   // libs to the linker.
647   //
648   // CUDA/HIP device and host libraries are different. Currently there is no
649   // way to differentiate dependent libraries for host or device. Existing
650   // usage of #pragma comment(lib, *) is intended for host libraries on
651   // Windows. Therefore emit llvm.dependent-libraries only for host.
652   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
653     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
654     for (auto *MD : ELFDependentLibraries)
655       NMD->addOperand(MD);
656   }
657 
658   // Record mregparm value now so it is visible through rest of codegen.
659   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
660     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
661                               CodeGenOpts.NumRegisterParameters);
662 
663   if (CodeGenOpts.DwarfVersion) {
664     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
665                               CodeGenOpts.DwarfVersion);
666   }
667 
668   if (CodeGenOpts.Dwarf64)
669     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
670 
671   if (Context.getLangOpts().SemanticInterposition)
672     // Require various optimization to respect semantic interposition.
673     getModule().setSemanticInterposition(true);
674 
675   if (CodeGenOpts.EmitCodeView) {
676     // Indicate that we want CodeView in the metadata.
677     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
678   }
679   if (CodeGenOpts.CodeViewGHash) {
680     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
681   }
682   if (CodeGenOpts.ControlFlowGuard) {
683     // Function ID tables and checks for Control Flow Guard (cfguard=2).
684     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
685   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
686     // Function ID tables for Control Flow Guard (cfguard=1).
687     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
688   }
689   if (CodeGenOpts.EHContGuard) {
690     // Function ID tables for EH Continuation Guard.
691     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
692   }
693   if (Context.getLangOpts().Kernel) {
694     // Note if we are compiling with /kernel.
695     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
696   }
697   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
698     // We don't support LTO with 2 with different StrictVTablePointers
699     // FIXME: we could support it by stripping all the information introduced
700     // by StrictVTablePointers.
701 
702     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
703 
704     llvm::Metadata *Ops[2] = {
705               llvm::MDString::get(VMContext, "StrictVTablePointers"),
706               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
707                   llvm::Type::getInt32Ty(VMContext), 1))};
708 
709     getModule().addModuleFlag(llvm::Module::Require,
710                               "StrictVTablePointersRequirement",
711                               llvm::MDNode::get(VMContext, Ops));
712   }
713   if (getModuleDebugInfo())
714     // We support a single version in the linked module. The LLVM
715     // parser will drop debug info with a different version number
716     // (and warn about it, too).
717     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
718                               llvm::DEBUG_METADATA_VERSION);
719 
720   // We need to record the widths of enums and wchar_t, so that we can generate
721   // the correct build attributes in the ARM backend. wchar_size is also used by
722   // TargetLibraryInfo.
723   uint64_t WCharWidth =
724       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
725   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
726 
727   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
728   if (   Arch == llvm::Triple::arm
729       || Arch == llvm::Triple::armeb
730       || Arch == llvm::Triple::thumb
731       || Arch == llvm::Triple::thumbeb) {
732     // The minimum width of an enum in bytes
733     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
734     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
735   }
736 
737   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
738     StringRef ABIStr = Target.getABI();
739     llvm::LLVMContext &Ctx = TheModule.getContext();
740     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
741                               llvm::MDString::get(Ctx, ABIStr));
742   }
743 
744   if (CodeGenOpts.SanitizeCfiCrossDso) {
745     // Indicate that we want cross-DSO control flow integrity checks.
746     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
747   }
748 
749   if (CodeGenOpts.WholeProgramVTables) {
750     // Indicate whether VFE was enabled for this module, so that the
751     // vcall_visibility metadata added under whole program vtables is handled
752     // appropriately in the optimizer.
753     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
754                               CodeGenOpts.VirtualFunctionElimination);
755   }
756 
757   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
758     getModule().addModuleFlag(llvm::Module::Override,
759                               "CFI Canonical Jump Tables",
760                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
761   }
762 
763   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
764     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
765     // KCFI assumes patchable-function-prefix is the same for all indirectly
766     // called functions. Store the expected offset for code generation.
767     if (CodeGenOpts.PatchableFunctionEntryOffset)
768       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
769                                 CodeGenOpts.PatchableFunctionEntryOffset);
770   }
771 
772   if (CodeGenOpts.CFProtectionReturn &&
773       Target.checkCFProtectionReturnSupported(getDiags())) {
774     // Indicate that we want to instrument return control flow protection.
775     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
776                               1);
777   }
778 
779   if (CodeGenOpts.CFProtectionBranch &&
780       Target.checkCFProtectionBranchSupported(getDiags())) {
781     // Indicate that we want to instrument branch control flow protection.
782     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
783                               1);
784   }
785 
786   if (CodeGenOpts.FunctionReturnThunks)
787     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
788 
789   if (CodeGenOpts.IndirectBranchCSPrefix)
790     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
791 
792   // Add module metadata for return address signing (ignoring
793   // non-leaf/all) and stack tagging. These are actually turned on by function
794   // attributes, but we use module metadata to emit build attributes. This is
795   // needed for LTO, where the function attributes are inside bitcode
796   // serialised into a global variable by the time build attributes are
797   // emitted, so we can't access them. LTO objects could be compiled with
798   // different flags therefore module flags are set to "Min" behavior to achieve
799   // the same end result of the normal build where e.g BTI is off if any object
800   // doesn't support it.
801   if (Context.getTargetInfo().hasFeature("ptrauth") &&
802       LangOpts.getSignReturnAddressScope() !=
803           LangOptions::SignReturnAddressScopeKind::None)
804     getModule().addModuleFlag(llvm::Module::Override,
805                               "sign-return-address-buildattr", 1);
806   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
807     getModule().addModuleFlag(llvm::Module::Override,
808                               "tag-stack-memory-buildattr", 1);
809 
810   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
811       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
812       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
813       Arch == llvm::Triple::aarch64_be) {
814     if (LangOpts.BranchTargetEnforcement)
815       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
816                                 1);
817     if (LangOpts.hasSignReturnAddress())
818       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
819     if (LangOpts.isSignReturnAddressScopeAll())
820       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
821                                 1);
822     if (!LangOpts.isSignReturnAddressWithAKey())
823       getModule().addModuleFlag(llvm::Module::Min,
824                                 "sign-return-address-with-bkey", 1);
825   }
826 
827   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
828     llvm::LLVMContext &Ctx = TheModule.getContext();
829     getModule().addModuleFlag(
830         llvm::Module::Error, "MemProfProfileFilename",
831         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
832   }
833 
834   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
835     // Indicate whether __nvvm_reflect should be configured to flush denormal
836     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
837     // property.)
838     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
839                               CodeGenOpts.FP32DenormalMode.Output !=
840                                   llvm::DenormalMode::IEEE);
841   }
842 
843   if (LangOpts.EHAsynch)
844     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
845 
846   // Indicate whether this Module was compiled with -fopenmp
847   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
848     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
849   if (getLangOpts().OpenMPIsDevice)
850     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
851                               LangOpts.OpenMP);
852 
853   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
854   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
855     EmitOpenCLMetadata();
856     // Emit SPIR version.
857     if (getTriple().isSPIR()) {
858       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
859       // opencl.spir.version named metadata.
860       // C++ for OpenCL has a distinct mapping for version compatibility with
861       // OpenCL.
862       auto Version = LangOpts.getOpenCLCompatibleVersion();
863       llvm::Metadata *SPIRVerElts[] = {
864           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
865               Int32Ty, Version / 100)),
866           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
867               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
868       llvm::NamedMDNode *SPIRVerMD =
869           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
870       llvm::LLVMContext &Ctx = TheModule.getContext();
871       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
872     }
873   }
874 
875   // HLSL related end of code gen work items.
876   if (LangOpts.HLSL)
877     getHLSLRuntime().finishCodeGen();
878 
879   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
880     assert(PLevel < 3 && "Invalid PIC Level");
881     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
882     if (Context.getLangOpts().PIE)
883       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
884   }
885 
886   if (getCodeGenOpts().CodeModel.size() > 0) {
887     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
888                   .Case("tiny", llvm::CodeModel::Tiny)
889                   .Case("small", llvm::CodeModel::Small)
890                   .Case("kernel", llvm::CodeModel::Kernel)
891                   .Case("medium", llvm::CodeModel::Medium)
892                   .Case("large", llvm::CodeModel::Large)
893                   .Default(~0u);
894     if (CM != ~0u) {
895       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
896       getModule().setCodeModel(codeModel);
897     }
898   }
899 
900   if (CodeGenOpts.NoPLT)
901     getModule().setRtLibUseGOT();
902   if (CodeGenOpts.UnwindTables)
903     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
904 
905   switch (CodeGenOpts.getFramePointer()) {
906   case CodeGenOptions::FramePointerKind::None:
907     // 0 ("none") is the default.
908     break;
909   case CodeGenOptions::FramePointerKind::NonLeaf:
910     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
911     break;
912   case CodeGenOptions::FramePointerKind::All:
913     getModule().setFramePointer(llvm::FramePointerKind::All);
914     break;
915   }
916 
917   SimplifyPersonality();
918 
919   if (getCodeGenOpts().EmitDeclMetadata)
920     EmitDeclMetadata();
921 
922   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
923     EmitCoverageFile();
924 
925   if (CGDebugInfo *DI = getModuleDebugInfo())
926     DI->finalize();
927 
928   if (getCodeGenOpts().EmitVersionIdentMetadata)
929     EmitVersionIdentMetadata();
930 
931   if (!getCodeGenOpts().RecordCommandLine.empty())
932     EmitCommandLineMetadata();
933 
934   if (!getCodeGenOpts().StackProtectorGuard.empty())
935     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
936   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
937     getModule().setStackProtectorGuardReg(
938         getCodeGenOpts().StackProtectorGuardReg);
939   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
940     getModule().setStackProtectorGuardSymbol(
941         getCodeGenOpts().StackProtectorGuardSymbol);
942   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
943     getModule().setStackProtectorGuardOffset(
944         getCodeGenOpts().StackProtectorGuardOffset);
945   if (getCodeGenOpts().StackAlignment)
946     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
947   if (getCodeGenOpts().SkipRaxSetup)
948     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
949 
950   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
951 
952   EmitBackendOptionsMetadata(getCodeGenOpts());
953 
954   // If there is device offloading code embed it in the host now.
955   EmbedObject(&getModule(), CodeGenOpts, getDiags());
956 
957   // Set visibility from DLL storage class
958   // We do this at the end of LLVM IR generation; after any operation
959   // that might affect the DLL storage class or the visibility, and
960   // before anything that might act on these.
961   setVisibilityFromDLLStorageClass(LangOpts, getModule());
962 }
963 
964 void CodeGenModule::EmitOpenCLMetadata() {
965   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
966   // opencl.ocl.version named metadata node.
967   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
968   auto Version = LangOpts.getOpenCLCompatibleVersion();
969   llvm::Metadata *OCLVerElts[] = {
970       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
971           Int32Ty, Version / 100)),
972       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
973           Int32Ty, (Version % 100) / 10))};
974   llvm::NamedMDNode *OCLVerMD =
975       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
976   llvm::LLVMContext &Ctx = TheModule.getContext();
977   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
978 }
979 
980 void CodeGenModule::EmitBackendOptionsMetadata(
981     const CodeGenOptions CodeGenOpts) {
982   if (getTriple().isRISCV()) {
983     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
984                               CodeGenOpts.SmallDataLimit);
985   }
986 }
987 
988 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
989   // Make sure that this type is translated.
990   Types.UpdateCompletedType(TD);
991 }
992 
993 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
994   // Make sure that this type is translated.
995   Types.RefreshTypeCacheForClass(RD);
996 }
997 
998 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
999   if (!TBAA)
1000     return nullptr;
1001   return TBAA->getTypeInfo(QTy);
1002 }
1003 
1004 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1005   if (!TBAA)
1006     return TBAAAccessInfo();
1007   if (getLangOpts().CUDAIsDevice) {
1008     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1009     // access info.
1010     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1011       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1012           nullptr)
1013         return TBAAAccessInfo();
1014     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1015       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1016           nullptr)
1017         return TBAAAccessInfo();
1018     }
1019   }
1020   return TBAA->getAccessInfo(AccessType);
1021 }
1022 
1023 TBAAAccessInfo
1024 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1025   if (!TBAA)
1026     return TBAAAccessInfo();
1027   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1028 }
1029 
1030 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1031   if (!TBAA)
1032     return nullptr;
1033   return TBAA->getTBAAStructInfo(QTy);
1034 }
1035 
1036 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1037   if (!TBAA)
1038     return nullptr;
1039   return TBAA->getBaseTypeInfo(QTy);
1040 }
1041 
1042 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1043   if (!TBAA)
1044     return nullptr;
1045   return TBAA->getAccessTagInfo(Info);
1046 }
1047 
1048 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1049                                                    TBAAAccessInfo TargetInfo) {
1050   if (!TBAA)
1051     return TBAAAccessInfo();
1052   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1053 }
1054 
1055 TBAAAccessInfo
1056 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1057                                                    TBAAAccessInfo InfoB) {
1058   if (!TBAA)
1059     return TBAAAccessInfo();
1060   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1061 }
1062 
1063 TBAAAccessInfo
1064 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1065                                               TBAAAccessInfo SrcInfo) {
1066   if (!TBAA)
1067     return TBAAAccessInfo();
1068   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1069 }
1070 
1071 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1072                                                 TBAAAccessInfo TBAAInfo) {
1073   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1074     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1075 }
1076 
1077 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1078     llvm::Instruction *I, const CXXRecordDecl *RD) {
1079   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1080                  llvm::MDNode::get(getLLVMContext(), {}));
1081 }
1082 
1083 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1084   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1085   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1086 }
1087 
1088 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1089 /// specified stmt yet.
1090 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1091   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1092                                                "cannot compile this %0 yet");
1093   std::string Msg = Type;
1094   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1095       << Msg << S->getSourceRange();
1096 }
1097 
1098 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1099 /// specified decl yet.
1100 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1101   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1102                                                "cannot compile this %0 yet");
1103   std::string Msg = Type;
1104   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1105 }
1106 
1107 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1108   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1109 }
1110 
1111 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1112                                         const NamedDecl *D) const {
1113   // Internal definitions always have default visibility.
1114   if (GV->hasLocalLinkage()) {
1115     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1116     return;
1117   }
1118   if (!D)
1119     return;
1120   // Set visibility for definitions, and for declarations if requested globally
1121   // or set explicitly.
1122   LinkageInfo LV = D->getLinkageAndVisibility();
1123   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1124     // Reject incompatible dlllstorage and visibility annotations.
1125     if (!LV.isVisibilityExplicit())
1126       return;
1127     if (GV->hasDLLExportStorageClass()) {
1128       if (LV.getVisibility() == HiddenVisibility)
1129         getDiags().Report(D->getLocation(),
1130                           diag::err_hidden_visibility_dllexport);
1131     } else if (LV.getVisibility() != DefaultVisibility) {
1132       getDiags().Report(D->getLocation(),
1133                         diag::err_non_default_visibility_dllimport);
1134     }
1135     return;
1136   }
1137 
1138   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1139       !GV->isDeclarationForLinker())
1140     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1141 }
1142 
1143 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1144                                  llvm::GlobalValue *GV) {
1145   if (GV->hasLocalLinkage())
1146     return true;
1147 
1148   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1149     return true;
1150 
1151   // DLLImport explicitly marks the GV as external.
1152   if (GV->hasDLLImportStorageClass())
1153     return false;
1154 
1155   const llvm::Triple &TT = CGM.getTriple();
1156   if (TT.isWindowsGNUEnvironment()) {
1157     // In MinGW, variables without DLLImport can still be automatically
1158     // imported from a DLL by the linker; don't mark variables that
1159     // potentially could come from another DLL as DSO local.
1160 
1161     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1162     // (and this actually happens in the public interface of libstdc++), so
1163     // such variables can't be marked as DSO local. (Native TLS variables
1164     // can't be dllimported at all, though.)
1165     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1166         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1167       return false;
1168   }
1169 
1170   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1171   // remain unresolved in the link, they can be resolved to zero, which is
1172   // outside the current DSO.
1173   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1174     return false;
1175 
1176   // Every other GV is local on COFF.
1177   // Make an exception for windows OS in the triple: Some firmware builds use
1178   // *-win32-macho triples. This (accidentally?) produced windows relocations
1179   // without GOT tables in older clang versions; Keep this behaviour.
1180   // FIXME: even thread local variables?
1181   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1182     return true;
1183 
1184   // Only handle COFF and ELF for now.
1185   if (!TT.isOSBinFormatELF())
1186     return false;
1187 
1188   // If this is not an executable, don't assume anything is local.
1189   const auto &CGOpts = CGM.getCodeGenOpts();
1190   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1191   const auto &LOpts = CGM.getLangOpts();
1192   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1193     // On ELF, if -fno-semantic-interposition is specified and the target
1194     // supports local aliases, there will be neither CC1
1195     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1196     // dso_local on the function if using a local alias is preferable (can avoid
1197     // PLT indirection).
1198     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1199       return false;
1200     return !(CGM.getLangOpts().SemanticInterposition ||
1201              CGM.getLangOpts().HalfNoSemanticInterposition);
1202   }
1203 
1204   // A definition cannot be preempted from an executable.
1205   if (!GV->isDeclarationForLinker())
1206     return true;
1207 
1208   // Most PIC code sequences that assume that a symbol is local cannot produce a
1209   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1210   // depended, it seems worth it to handle it here.
1211   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1212     return false;
1213 
1214   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1215   if (TT.isPPC64())
1216     return false;
1217 
1218   if (CGOpts.DirectAccessExternalData) {
1219     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1220     // for non-thread-local variables. If the symbol is not defined in the
1221     // executable, a copy relocation will be needed at link time. dso_local is
1222     // excluded for thread-local variables because they generally don't support
1223     // copy relocations.
1224     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1225       if (!Var->isThreadLocal())
1226         return true;
1227 
1228     // -fno-pic sets dso_local on a function declaration to allow direct
1229     // accesses when taking its address (similar to a data symbol). If the
1230     // function is not defined in the executable, a canonical PLT entry will be
1231     // needed at link time. -fno-direct-access-external-data can avoid the
1232     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1233     // it could just cause trouble without providing perceptible benefits.
1234     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1235       return true;
1236   }
1237 
1238   // If we can use copy relocations we can assume it is local.
1239 
1240   // Otherwise don't assume it is local.
1241   return false;
1242 }
1243 
1244 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1245   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1246 }
1247 
1248 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1249                                           GlobalDecl GD) const {
1250   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1251   // C++ destructors have a few C++ ABI specific special cases.
1252   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1253     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1254     return;
1255   }
1256   setDLLImportDLLExport(GV, D);
1257 }
1258 
1259 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1260                                           const NamedDecl *D) const {
1261   if (D && D->isExternallyVisible()) {
1262     if (D->hasAttr<DLLImportAttr>())
1263       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1264     else if ((D->hasAttr<DLLExportAttr>() ||
1265               shouldMapVisibilityToDLLExport(D)) &&
1266              !GV->isDeclarationForLinker())
1267       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1268   }
1269 }
1270 
1271 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1272                                     GlobalDecl GD) const {
1273   setDLLImportDLLExport(GV, GD);
1274   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1275 }
1276 
1277 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1278                                     const NamedDecl *D) const {
1279   setDLLImportDLLExport(GV, D);
1280   setGVPropertiesAux(GV, D);
1281 }
1282 
1283 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1284                                        const NamedDecl *D) const {
1285   setGlobalVisibility(GV, D);
1286   setDSOLocal(GV);
1287   GV->setPartition(CodeGenOpts.SymbolPartition);
1288 }
1289 
1290 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1291   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1292       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1293       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1294       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1295       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1296 }
1297 
1298 llvm::GlobalVariable::ThreadLocalMode
1299 CodeGenModule::GetDefaultLLVMTLSModel() const {
1300   switch (CodeGenOpts.getDefaultTLSModel()) {
1301   case CodeGenOptions::GeneralDynamicTLSModel:
1302     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1303   case CodeGenOptions::LocalDynamicTLSModel:
1304     return llvm::GlobalVariable::LocalDynamicTLSModel;
1305   case CodeGenOptions::InitialExecTLSModel:
1306     return llvm::GlobalVariable::InitialExecTLSModel;
1307   case CodeGenOptions::LocalExecTLSModel:
1308     return llvm::GlobalVariable::LocalExecTLSModel;
1309   }
1310   llvm_unreachable("Invalid TLS model!");
1311 }
1312 
1313 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1314   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1315 
1316   llvm::GlobalValue::ThreadLocalMode TLM;
1317   TLM = GetDefaultLLVMTLSModel();
1318 
1319   // Override the TLS model if it is explicitly specified.
1320   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1321     TLM = GetLLVMTLSModel(Attr->getModel());
1322   }
1323 
1324   GV->setThreadLocalMode(TLM);
1325 }
1326 
1327 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1328                                           StringRef Name) {
1329   const TargetInfo &Target = CGM.getTarget();
1330   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1331 }
1332 
1333 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1334                                                  const CPUSpecificAttr *Attr,
1335                                                  unsigned CPUIndex,
1336                                                  raw_ostream &Out) {
1337   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1338   // supported.
1339   if (Attr)
1340     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1341   else if (CGM.getTarget().supportsIFunc())
1342     Out << ".resolver";
1343 }
1344 
1345 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1346                                         const TargetVersionAttr *Attr,
1347                                         raw_ostream &Out) {
1348   if (Attr->isDefaultVersion())
1349     return;
1350   Out << "._";
1351   llvm::SmallVector<StringRef, 8> Feats;
1352   Attr->getFeatures(Feats);
1353   for (const auto &Feat : Feats) {
1354     Out << 'M';
1355     Out << Feat;
1356   }
1357 }
1358 
1359 static void AppendTargetMangling(const CodeGenModule &CGM,
1360                                  const TargetAttr *Attr, raw_ostream &Out) {
1361   if (Attr->isDefaultVersion())
1362     return;
1363 
1364   Out << '.';
1365   const TargetInfo &Target = CGM.getTarget();
1366   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1367   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1368     // Multiversioning doesn't allow "no-${feature}", so we can
1369     // only have "+" prefixes here.
1370     assert(LHS.startswith("+") && RHS.startswith("+") &&
1371            "Features should always have a prefix.");
1372     return Target.multiVersionSortPriority(LHS.substr(1)) >
1373            Target.multiVersionSortPriority(RHS.substr(1));
1374   });
1375 
1376   bool IsFirst = true;
1377 
1378   if (!Info.CPU.empty()) {
1379     IsFirst = false;
1380     Out << "arch_" << Info.CPU;
1381   }
1382 
1383   for (StringRef Feat : Info.Features) {
1384     if (!IsFirst)
1385       Out << '_';
1386     IsFirst = false;
1387     Out << Feat.substr(1);
1388   }
1389 }
1390 
1391 // Returns true if GD is a function decl with internal linkage and
1392 // needs a unique suffix after the mangled name.
1393 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1394                                         CodeGenModule &CGM) {
1395   const Decl *D = GD.getDecl();
1396   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1397          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1398 }
1399 
1400 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1401                                        const TargetClonesAttr *Attr,
1402                                        unsigned VersionIndex,
1403                                        raw_ostream &Out) {
1404   if (CGM.getTarget().getTriple().isAArch64()) {
1405     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1406     if (FeatureStr == "default")
1407       return;
1408     Out << "._";
1409     SmallVector<StringRef, 8> Features;
1410     FeatureStr.split(Features, "+");
1411     for (auto &Feat : Features) {
1412       Out << 'M';
1413       Out << Feat;
1414     }
1415   } else {
1416     Out << '.';
1417     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1418     if (FeatureStr.startswith("arch="))
1419       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1420     else
1421       Out << FeatureStr;
1422 
1423     Out << '.' << Attr->getMangledIndex(VersionIndex);
1424   }
1425 }
1426 
1427 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1428                                       const NamedDecl *ND,
1429                                       bool OmitMultiVersionMangling = false) {
1430   SmallString<256> Buffer;
1431   llvm::raw_svector_ostream Out(Buffer);
1432   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1433   if (!CGM.getModuleNameHash().empty())
1434     MC.needsUniqueInternalLinkageNames();
1435   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1436   if (ShouldMangle)
1437     MC.mangleName(GD.getWithDecl(ND), Out);
1438   else {
1439     IdentifierInfo *II = ND->getIdentifier();
1440     assert(II && "Attempt to mangle unnamed decl.");
1441     const auto *FD = dyn_cast<FunctionDecl>(ND);
1442 
1443     if (FD &&
1444         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1445       Out << "__regcall3__" << II->getName();
1446     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1447                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1448       Out << "__device_stub__" << II->getName();
1449     } else {
1450       Out << II->getName();
1451     }
1452   }
1453 
1454   // Check if the module name hash should be appended for internal linkage
1455   // symbols.   This should come before multi-version target suffixes are
1456   // appended. This is to keep the name and module hash suffix of the
1457   // internal linkage function together.  The unique suffix should only be
1458   // added when name mangling is done to make sure that the final name can
1459   // be properly demangled.  For example, for C functions without prototypes,
1460   // name mangling is not done and the unique suffix should not be appeneded
1461   // then.
1462   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1463     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1464            "Hash computed when not explicitly requested");
1465     Out << CGM.getModuleNameHash();
1466   }
1467 
1468   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1469     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1470       switch (FD->getMultiVersionKind()) {
1471       case MultiVersionKind::CPUDispatch:
1472       case MultiVersionKind::CPUSpecific:
1473         AppendCPUSpecificCPUDispatchMangling(CGM,
1474                                              FD->getAttr<CPUSpecificAttr>(),
1475                                              GD.getMultiVersionIndex(), Out);
1476         break;
1477       case MultiVersionKind::Target:
1478         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1479         break;
1480       case MultiVersionKind::TargetVersion:
1481         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1482         break;
1483       case MultiVersionKind::TargetClones:
1484         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1485                                    GD.getMultiVersionIndex(), Out);
1486         break;
1487       case MultiVersionKind::None:
1488         llvm_unreachable("None multiversion type isn't valid here");
1489       }
1490     }
1491 
1492   // Make unique name for device side static file-scope variable for HIP.
1493   if (CGM.getContext().shouldExternalize(ND) &&
1494       CGM.getLangOpts().GPURelocatableDeviceCode &&
1495       CGM.getLangOpts().CUDAIsDevice)
1496     CGM.printPostfixForExternalizedDecl(Out, ND);
1497 
1498   return std::string(Out.str());
1499 }
1500 
1501 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1502                                             const FunctionDecl *FD,
1503                                             StringRef &CurName) {
1504   if (!FD->isMultiVersion())
1505     return;
1506 
1507   // Get the name of what this would be without the 'target' attribute.  This
1508   // allows us to lookup the version that was emitted when this wasn't a
1509   // multiversion function.
1510   std::string NonTargetName =
1511       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1512   GlobalDecl OtherGD;
1513   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1514     assert(OtherGD.getCanonicalDecl()
1515                .getDecl()
1516                ->getAsFunction()
1517                ->isMultiVersion() &&
1518            "Other GD should now be a multiversioned function");
1519     // OtherFD is the version of this function that was mangled BEFORE
1520     // becoming a MultiVersion function.  It potentially needs to be updated.
1521     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1522                                       .getDecl()
1523                                       ->getAsFunction()
1524                                       ->getMostRecentDecl();
1525     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1526     // This is so that if the initial version was already the 'default'
1527     // version, we don't try to update it.
1528     if (OtherName != NonTargetName) {
1529       // Remove instead of erase, since others may have stored the StringRef
1530       // to this.
1531       const auto ExistingRecord = Manglings.find(NonTargetName);
1532       if (ExistingRecord != std::end(Manglings))
1533         Manglings.remove(&(*ExistingRecord));
1534       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1535       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1536           Result.first->first();
1537       // If this is the current decl is being created, make sure we update the name.
1538       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1539         CurName = OtherNameRef;
1540       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1541         Entry->setName(OtherName);
1542     }
1543   }
1544 }
1545 
1546 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1547   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1548 
1549   // Some ABIs don't have constructor variants.  Make sure that base and
1550   // complete constructors get mangled the same.
1551   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1552     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1553       CXXCtorType OrigCtorType = GD.getCtorType();
1554       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1555       if (OrigCtorType == Ctor_Base)
1556         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1557     }
1558   }
1559 
1560   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1561   // static device variable depends on whether the variable is referenced by
1562   // a host or device host function. Therefore the mangled name cannot be
1563   // cached.
1564   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1565     auto FoundName = MangledDeclNames.find(CanonicalGD);
1566     if (FoundName != MangledDeclNames.end())
1567       return FoundName->second;
1568   }
1569 
1570   // Keep the first result in the case of a mangling collision.
1571   const auto *ND = cast<NamedDecl>(GD.getDecl());
1572   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1573 
1574   // Ensure either we have different ABIs between host and device compilations,
1575   // says host compilation following MSVC ABI but device compilation follows
1576   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1577   // mangling should be the same after name stubbing. The later checking is
1578   // very important as the device kernel name being mangled in host-compilation
1579   // is used to resolve the device binaries to be executed. Inconsistent naming
1580   // result in undefined behavior. Even though we cannot check that naming
1581   // directly between host- and device-compilations, the host- and
1582   // device-mangling in host compilation could help catching certain ones.
1583   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1584          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1585          (getContext().getAuxTargetInfo() &&
1586           (getContext().getAuxTargetInfo()->getCXXABI() !=
1587            getContext().getTargetInfo().getCXXABI())) ||
1588          getCUDARuntime().getDeviceSideName(ND) ==
1589              getMangledNameImpl(
1590                  *this,
1591                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1592                  ND));
1593 
1594   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1595   return MangledDeclNames[CanonicalGD] = Result.first->first();
1596 }
1597 
1598 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1599                                              const BlockDecl *BD) {
1600   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1601   const Decl *D = GD.getDecl();
1602 
1603   SmallString<256> Buffer;
1604   llvm::raw_svector_ostream Out(Buffer);
1605   if (!D)
1606     MangleCtx.mangleGlobalBlock(BD,
1607       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1608   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1609     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1610   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1611     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1612   else
1613     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1614 
1615   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1616   return Result.first->first();
1617 }
1618 
1619 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1620   auto it = MangledDeclNames.begin();
1621   while (it != MangledDeclNames.end()) {
1622     if (it->second == Name)
1623       return it->first;
1624     it++;
1625   }
1626   return GlobalDecl();
1627 }
1628 
1629 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1630   return getModule().getNamedValue(Name);
1631 }
1632 
1633 /// AddGlobalCtor - Add a function to the list that will be called before
1634 /// main() runs.
1635 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1636                                   unsigned LexOrder,
1637                                   llvm::Constant *AssociatedData) {
1638   // FIXME: Type coercion of void()* types.
1639   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1640 }
1641 
1642 /// AddGlobalDtor - Add a function to the list that will be called
1643 /// when the module is unloaded.
1644 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1645                                   bool IsDtorAttrFunc) {
1646   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1647       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1648     DtorsUsingAtExit[Priority].push_back(Dtor);
1649     return;
1650   }
1651 
1652   // FIXME: Type coercion of void()* types.
1653   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1654 }
1655 
1656 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1657   if (Fns.empty()) return;
1658 
1659   // Ctor function type is void()*.
1660   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1661   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1662       TheModule.getDataLayout().getProgramAddressSpace());
1663 
1664   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1665   llvm::StructType *CtorStructTy = llvm::StructType::get(
1666       Int32Ty, CtorPFTy, VoidPtrTy);
1667 
1668   // Construct the constructor and destructor arrays.
1669   ConstantInitBuilder builder(*this);
1670   auto ctors = builder.beginArray(CtorStructTy);
1671   for (const auto &I : Fns) {
1672     auto ctor = ctors.beginStruct(CtorStructTy);
1673     ctor.addInt(Int32Ty, I.Priority);
1674     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1675     if (I.AssociatedData)
1676       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1677     else
1678       ctor.addNullPointer(VoidPtrTy);
1679     ctor.finishAndAddTo(ctors);
1680   }
1681 
1682   auto list =
1683     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1684                                 /*constant*/ false,
1685                                 llvm::GlobalValue::AppendingLinkage);
1686 
1687   // The LTO linker doesn't seem to like it when we set an alignment
1688   // on appending variables.  Take it off as a workaround.
1689   list->setAlignment(std::nullopt);
1690 
1691   Fns.clear();
1692 }
1693 
1694 llvm::GlobalValue::LinkageTypes
1695 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1696   const auto *D = cast<FunctionDecl>(GD.getDecl());
1697 
1698   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1699 
1700   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1701     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1702 
1703   if (isa<CXXConstructorDecl>(D) &&
1704       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1705       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1706     // Our approach to inheriting constructors is fundamentally different from
1707     // that used by the MS ABI, so keep our inheriting constructor thunks
1708     // internal rather than trying to pick an unambiguous mangling for them.
1709     return llvm::GlobalValue::InternalLinkage;
1710   }
1711 
1712   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1713 }
1714 
1715 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1716   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1717   if (!MDS) return nullptr;
1718 
1719   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1720 }
1721 
1722 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1723   if (auto *FnType = T->getAs<FunctionProtoType>())
1724     T = getContext().getFunctionType(
1725         FnType->getReturnType(), FnType->getParamTypes(),
1726         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1727 
1728   std::string OutName;
1729   llvm::raw_string_ostream Out(OutName);
1730   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1731 
1732   return llvm::ConstantInt::get(Int32Ty,
1733                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1734 }
1735 
1736 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1737                                               const CGFunctionInfo &Info,
1738                                               llvm::Function *F, bool IsThunk) {
1739   unsigned CallingConv;
1740   llvm::AttributeList PAL;
1741   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1742                          /*AttrOnCallSite=*/false, IsThunk);
1743   F->setAttributes(PAL);
1744   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1745 }
1746 
1747 static void removeImageAccessQualifier(std::string& TyName) {
1748   std::string ReadOnlyQual("__read_only");
1749   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1750   if (ReadOnlyPos != std::string::npos)
1751     // "+ 1" for the space after access qualifier.
1752     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1753   else {
1754     std::string WriteOnlyQual("__write_only");
1755     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1756     if (WriteOnlyPos != std::string::npos)
1757       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1758     else {
1759       std::string ReadWriteQual("__read_write");
1760       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1761       if (ReadWritePos != std::string::npos)
1762         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1763     }
1764   }
1765 }
1766 
1767 // Returns the address space id that should be produced to the
1768 // kernel_arg_addr_space metadata. This is always fixed to the ids
1769 // as specified in the SPIR 2.0 specification in order to differentiate
1770 // for example in clGetKernelArgInfo() implementation between the address
1771 // spaces with targets without unique mapping to the OpenCL address spaces
1772 // (basically all single AS CPUs).
1773 static unsigned ArgInfoAddressSpace(LangAS AS) {
1774   switch (AS) {
1775   case LangAS::opencl_global:
1776     return 1;
1777   case LangAS::opencl_constant:
1778     return 2;
1779   case LangAS::opencl_local:
1780     return 3;
1781   case LangAS::opencl_generic:
1782     return 4; // Not in SPIR 2.0 specs.
1783   case LangAS::opencl_global_device:
1784     return 5;
1785   case LangAS::opencl_global_host:
1786     return 6;
1787   default:
1788     return 0; // Assume private.
1789   }
1790 }
1791 
1792 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1793                                          const FunctionDecl *FD,
1794                                          CodeGenFunction *CGF) {
1795   assert(((FD && CGF) || (!FD && !CGF)) &&
1796          "Incorrect use - FD and CGF should either be both null or not!");
1797   // Create MDNodes that represent the kernel arg metadata.
1798   // Each MDNode is a list in the form of "key", N number of values which is
1799   // the same number of values as their are kernel arguments.
1800 
1801   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1802 
1803   // MDNode for the kernel argument address space qualifiers.
1804   SmallVector<llvm::Metadata *, 8> addressQuals;
1805 
1806   // MDNode for the kernel argument access qualifiers (images only).
1807   SmallVector<llvm::Metadata *, 8> accessQuals;
1808 
1809   // MDNode for the kernel argument type names.
1810   SmallVector<llvm::Metadata *, 8> argTypeNames;
1811 
1812   // MDNode for the kernel argument base type names.
1813   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1814 
1815   // MDNode for the kernel argument type qualifiers.
1816   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1817 
1818   // MDNode for the kernel argument names.
1819   SmallVector<llvm::Metadata *, 8> argNames;
1820 
1821   if (FD && CGF)
1822     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1823       const ParmVarDecl *parm = FD->getParamDecl(i);
1824       // Get argument name.
1825       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1826 
1827       if (!getLangOpts().OpenCL)
1828         continue;
1829       QualType ty = parm->getType();
1830       std::string typeQuals;
1831 
1832       // Get image and pipe access qualifier:
1833       if (ty->isImageType() || ty->isPipeType()) {
1834         const Decl *PDecl = parm;
1835         if (const auto *TD = ty->getAs<TypedefType>())
1836           PDecl = TD->getDecl();
1837         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1838         if (A && A->isWriteOnly())
1839           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1840         else if (A && A->isReadWrite())
1841           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1842         else
1843           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1844       } else
1845         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1846 
1847       auto getTypeSpelling = [&](QualType Ty) {
1848         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1849 
1850         if (Ty.isCanonical()) {
1851           StringRef typeNameRef = typeName;
1852           // Turn "unsigned type" to "utype"
1853           if (typeNameRef.consume_front("unsigned "))
1854             return std::string("u") + typeNameRef.str();
1855           if (typeNameRef.consume_front("signed "))
1856             return typeNameRef.str();
1857         }
1858 
1859         return typeName;
1860       };
1861 
1862       if (ty->isPointerType()) {
1863         QualType pointeeTy = ty->getPointeeType();
1864 
1865         // Get address qualifier.
1866         addressQuals.push_back(
1867             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1868                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1869 
1870         // Get argument type name.
1871         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1872         std::string baseTypeName =
1873             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1874         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1875         argBaseTypeNames.push_back(
1876             llvm::MDString::get(VMContext, baseTypeName));
1877 
1878         // Get argument type qualifiers:
1879         if (ty.isRestrictQualified())
1880           typeQuals = "restrict";
1881         if (pointeeTy.isConstQualified() ||
1882             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1883           typeQuals += typeQuals.empty() ? "const" : " const";
1884         if (pointeeTy.isVolatileQualified())
1885           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1886       } else {
1887         uint32_t AddrSpc = 0;
1888         bool isPipe = ty->isPipeType();
1889         if (ty->isImageType() || isPipe)
1890           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1891 
1892         addressQuals.push_back(
1893             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1894 
1895         // Get argument type name.
1896         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1897         std::string typeName = getTypeSpelling(ty);
1898         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1899 
1900         // Remove access qualifiers on images
1901         // (as they are inseparable from type in clang implementation,
1902         // but OpenCL spec provides a special query to get access qualifier
1903         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1904         if (ty->isImageType()) {
1905           removeImageAccessQualifier(typeName);
1906           removeImageAccessQualifier(baseTypeName);
1907         }
1908 
1909         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1910         argBaseTypeNames.push_back(
1911             llvm::MDString::get(VMContext, baseTypeName));
1912 
1913         if (isPipe)
1914           typeQuals = "pipe";
1915       }
1916       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1917     }
1918 
1919   if (getLangOpts().OpenCL) {
1920     Fn->setMetadata("kernel_arg_addr_space",
1921                     llvm::MDNode::get(VMContext, addressQuals));
1922     Fn->setMetadata("kernel_arg_access_qual",
1923                     llvm::MDNode::get(VMContext, accessQuals));
1924     Fn->setMetadata("kernel_arg_type",
1925                     llvm::MDNode::get(VMContext, argTypeNames));
1926     Fn->setMetadata("kernel_arg_base_type",
1927                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1928     Fn->setMetadata("kernel_arg_type_qual",
1929                     llvm::MDNode::get(VMContext, argTypeQuals));
1930   }
1931   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1932       getCodeGenOpts().HIPSaveKernelArgName)
1933     Fn->setMetadata("kernel_arg_name",
1934                     llvm::MDNode::get(VMContext, argNames));
1935 }
1936 
1937 /// Determines whether the language options require us to model
1938 /// unwind exceptions.  We treat -fexceptions as mandating this
1939 /// except under the fragile ObjC ABI with only ObjC exceptions
1940 /// enabled.  This means, for example, that C with -fexceptions
1941 /// enables this.
1942 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1943   // If exceptions are completely disabled, obviously this is false.
1944   if (!LangOpts.Exceptions) return false;
1945 
1946   // If C++ exceptions are enabled, this is true.
1947   if (LangOpts.CXXExceptions) return true;
1948 
1949   // If ObjC exceptions are enabled, this depends on the ABI.
1950   if (LangOpts.ObjCExceptions) {
1951     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1952   }
1953 
1954   return true;
1955 }
1956 
1957 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1958                                                       const CXXMethodDecl *MD) {
1959   // Check that the type metadata can ever actually be used by a call.
1960   if (!CGM.getCodeGenOpts().LTOUnit ||
1961       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1962     return false;
1963 
1964   // Only functions whose address can be taken with a member function pointer
1965   // need this sort of type metadata.
1966   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1967          !isa<CXXDestructorDecl>(MD);
1968 }
1969 
1970 std::vector<const CXXRecordDecl *>
1971 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1972   llvm::SetVector<const CXXRecordDecl *> MostBases;
1973 
1974   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1975   CollectMostBases = [&](const CXXRecordDecl *RD) {
1976     if (RD->getNumBases() == 0)
1977       MostBases.insert(RD);
1978     for (const CXXBaseSpecifier &B : RD->bases())
1979       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1980   };
1981   CollectMostBases(RD);
1982   return MostBases.takeVector();
1983 }
1984 
1985 llvm::GlobalVariable *
1986 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1987   auto It = RTTIProxyMap.find(Addr);
1988   if (It != RTTIProxyMap.end())
1989     return It->second;
1990 
1991   auto *FTRTTIProxy = new llvm::GlobalVariable(
1992       TheModule, Addr->getType(),
1993       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1994       "__llvm_rtti_proxy");
1995   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1996 
1997   RTTIProxyMap[Addr] = FTRTTIProxy;
1998   return FTRTTIProxy;
1999 }
2000 
2001 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2002                                                            llvm::Function *F) {
2003   llvm::AttrBuilder B(F->getContext());
2004 
2005   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2006     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2007 
2008   if (CodeGenOpts.StackClashProtector)
2009     B.addAttribute("probe-stack", "inline-asm");
2010 
2011   if (!hasUnwindExceptions(LangOpts))
2012     B.addAttribute(llvm::Attribute::NoUnwind);
2013 
2014   if (D && D->hasAttr<NoStackProtectorAttr>())
2015     ; // Do nothing.
2016   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2017            LangOpts.getStackProtector() == LangOptions::SSPOn)
2018     B.addAttribute(llvm::Attribute::StackProtectStrong);
2019   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2020     B.addAttribute(llvm::Attribute::StackProtect);
2021   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2022     B.addAttribute(llvm::Attribute::StackProtectStrong);
2023   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2024     B.addAttribute(llvm::Attribute::StackProtectReq);
2025 
2026   if (!D) {
2027     // If we don't have a declaration to control inlining, the function isn't
2028     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2029     // disabled, mark the function as noinline.
2030     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2031         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2032       B.addAttribute(llvm::Attribute::NoInline);
2033 
2034     F->addFnAttrs(B);
2035     return;
2036   }
2037 
2038   // Track whether we need to add the optnone LLVM attribute,
2039   // starting with the default for this optimization level.
2040   bool ShouldAddOptNone =
2041       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2042   // We can't add optnone in the following cases, it won't pass the verifier.
2043   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2044   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2045 
2046   // Add optnone, but do so only if the function isn't always_inline.
2047   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2048       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2049     B.addAttribute(llvm::Attribute::OptimizeNone);
2050 
2051     // OptimizeNone implies noinline; we should not be inlining such functions.
2052     B.addAttribute(llvm::Attribute::NoInline);
2053 
2054     // We still need to handle naked functions even though optnone subsumes
2055     // much of their semantics.
2056     if (D->hasAttr<NakedAttr>())
2057       B.addAttribute(llvm::Attribute::Naked);
2058 
2059     // OptimizeNone wins over OptimizeForSize and MinSize.
2060     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2061     F->removeFnAttr(llvm::Attribute::MinSize);
2062   } else if (D->hasAttr<NakedAttr>()) {
2063     // Naked implies noinline: we should not be inlining such functions.
2064     B.addAttribute(llvm::Attribute::Naked);
2065     B.addAttribute(llvm::Attribute::NoInline);
2066   } else if (D->hasAttr<NoDuplicateAttr>()) {
2067     B.addAttribute(llvm::Attribute::NoDuplicate);
2068   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2069     // Add noinline if the function isn't always_inline.
2070     B.addAttribute(llvm::Attribute::NoInline);
2071   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2072              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2073     // (noinline wins over always_inline, and we can't specify both in IR)
2074     B.addAttribute(llvm::Attribute::AlwaysInline);
2075   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2076     // If we're not inlining, then force everything that isn't always_inline to
2077     // carry an explicit noinline attribute.
2078     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2079       B.addAttribute(llvm::Attribute::NoInline);
2080   } else {
2081     // Otherwise, propagate the inline hint attribute and potentially use its
2082     // absence to mark things as noinline.
2083     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2084       // Search function and template pattern redeclarations for inline.
2085       auto CheckForInline = [](const FunctionDecl *FD) {
2086         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2087           return Redecl->isInlineSpecified();
2088         };
2089         if (any_of(FD->redecls(), CheckRedeclForInline))
2090           return true;
2091         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2092         if (!Pattern)
2093           return false;
2094         return any_of(Pattern->redecls(), CheckRedeclForInline);
2095       };
2096       if (CheckForInline(FD)) {
2097         B.addAttribute(llvm::Attribute::InlineHint);
2098       } else if (CodeGenOpts.getInlining() ==
2099                      CodeGenOptions::OnlyHintInlining &&
2100                  !FD->isInlined() &&
2101                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2102         B.addAttribute(llvm::Attribute::NoInline);
2103       }
2104     }
2105   }
2106 
2107   // Add other optimization related attributes if we are optimizing this
2108   // function.
2109   if (!D->hasAttr<OptimizeNoneAttr>()) {
2110     if (D->hasAttr<ColdAttr>()) {
2111       if (!ShouldAddOptNone)
2112         B.addAttribute(llvm::Attribute::OptimizeForSize);
2113       B.addAttribute(llvm::Attribute::Cold);
2114     }
2115     if (D->hasAttr<HotAttr>())
2116       B.addAttribute(llvm::Attribute::Hot);
2117     if (D->hasAttr<MinSizeAttr>())
2118       B.addAttribute(llvm::Attribute::MinSize);
2119   }
2120 
2121   F->addFnAttrs(B);
2122 
2123   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2124   if (alignment)
2125     F->setAlignment(llvm::Align(alignment));
2126 
2127   if (!D->hasAttr<AlignedAttr>())
2128     if (LangOpts.FunctionAlignment)
2129       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2130 
2131   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2132   // reserve a bit for differentiating between virtual and non-virtual member
2133   // functions. If the current target's C++ ABI requires this and this is a
2134   // member function, set its alignment accordingly.
2135   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2136     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2137       F->setAlignment(llvm::Align(2));
2138   }
2139 
2140   // In the cross-dso CFI mode with canonical jump tables, we want !type
2141   // attributes on definitions only.
2142   if (CodeGenOpts.SanitizeCfiCrossDso &&
2143       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2144     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2145       // Skip available_externally functions. They won't be codegen'ed in the
2146       // current module anyway.
2147       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2148         CreateFunctionTypeMetadataForIcall(FD, F);
2149     }
2150   }
2151 
2152   // Emit type metadata on member functions for member function pointer checks.
2153   // These are only ever necessary on definitions; we're guaranteed that the
2154   // definition will be present in the LTO unit as a result of LTO visibility.
2155   auto *MD = dyn_cast<CXXMethodDecl>(D);
2156   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2157     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2158       llvm::Metadata *Id =
2159           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2160               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2161       F->addTypeMetadata(0, Id);
2162     }
2163   }
2164 }
2165 
2166 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2167                                                   llvm::Function *F) {
2168   if (D->hasAttr<StrictFPAttr>()) {
2169     llvm::AttrBuilder FuncAttrs(F->getContext());
2170     FuncAttrs.addAttribute("strictfp");
2171     F->addFnAttrs(FuncAttrs);
2172   }
2173 }
2174 
2175 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2176   const Decl *D = GD.getDecl();
2177   if (isa_and_nonnull<NamedDecl>(D))
2178     setGVProperties(GV, GD);
2179   else
2180     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2181 
2182   if (D && D->hasAttr<UsedAttr>())
2183     addUsedOrCompilerUsedGlobal(GV);
2184 
2185   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2186     const auto *VD = cast<VarDecl>(D);
2187     if (VD->getType().isConstQualified() &&
2188         VD->getStorageDuration() == SD_Static)
2189       addUsedOrCompilerUsedGlobal(GV);
2190   }
2191 }
2192 
2193 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2194                                                 llvm::AttrBuilder &Attrs) {
2195   // Add target-cpu and target-features attributes to functions. If
2196   // we have a decl for the function and it has a target attribute then
2197   // parse that and add it to the feature set.
2198   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2199   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2200   std::vector<std::string> Features;
2201   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2202   FD = FD ? FD->getMostRecentDecl() : FD;
2203   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2204   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2205   assert((!TD || !TV) && "both target_version and target specified");
2206   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2207   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2208   bool AddedAttr = false;
2209   if (TD || TV || SD || TC) {
2210     llvm::StringMap<bool> FeatureMap;
2211     getContext().getFunctionFeatureMap(FeatureMap, GD);
2212 
2213     // Produce the canonical string for this set of features.
2214     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2215       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2216 
2217     // Now add the target-cpu and target-features to the function.
2218     // While we populated the feature map above, we still need to
2219     // get and parse the target attribute so we can get the cpu for
2220     // the function.
2221     if (TD) {
2222       ParsedTargetAttr ParsedAttr =
2223           Target.parseTargetAttr(TD->getFeaturesStr());
2224       if (!ParsedAttr.CPU.empty() &&
2225           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2226         TargetCPU = ParsedAttr.CPU;
2227         TuneCPU = ""; // Clear the tune CPU.
2228       }
2229       if (!ParsedAttr.Tune.empty() &&
2230           getTarget().isValidCPUName(ParsedAttr.Tune))
2231         TuneCPU = ParsedAttr.Tune;
2232     }
2233 
2234     if (SD) {
2235       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2236       // favor this processor.
2237       TuneCPU = getTarget().getCPUSpecificTuneName(
2238           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2239     }
2240   } else {
2241     // Otherwise just add the existing target cpu and target features to the
2242     // function.
2243     Features = getTarget().getTargetOpts().Features;
2244   }
2245 
2246   if (!TargetCPU.empty()) {
2247     Attrs.addAttribute("target-cpu", TargetCPU);
2248     AddedAttr = true;
2249   }
2250   if (!TuneCPU.empty()) {
2251     Attrs.addAttribute("tune-cpu", TuneCPU);
2252     AddedAttr = true;
2253   }
2254   if (!Features.empty()) {
2255     llvm::sort(Features);
2256     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2257     AddedAttr = true;
2258   }
2259 
2260   return AddedAttr;
2261 }
2262 
2263 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2264                                           llvm::GlobalObject *GO) {
2265   const Decl *D = GD.getDecl();
2266   SetCommonAttributes(GD, GO);
2267 
2268   if (D) {
2269     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2270       if (D->hasAttr<RetainAttr>())
2271         addUsedGlobal(GV);
2272       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2273         GV->addAttribute("bss-section", SA->getName());
2274       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2275         GV->addAttribute("data-section", SA->getName());
2276       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2277         GV->addAttribute("rodata-section", SA->getName());
2278       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2279         GV->addAttribute("relro-section", SA->getName());
2280     }
2281 
2282     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2283       if (D->hasAttr<RetainAttr>())
2284         addUsedGlobal(F);
2285       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2286         if (!D->getAttr<SectionAttr>())
2287           F->addFnAttr("implicit-section-name", SA->getName());
2288 
2289       llvm::AttrBuilder Attrs(F->getContext());
2290       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2291         // We know that GetCPUAndFeaturesAttributes will always have the
2292         // newest set, since it has the newest possible FunctionDecl, so the
2293         // new ones should replace the old.
2294         llvm::AttributeMask RemoveAttrs;
2295         RemoveAttrs.addAttribute("target-cpu");
2296         RemoveAttrs.addAttribute("target-features");
2297         RemoveAttrs.addAttribute("tune-cpu");
2298         F->removeFnAttrs(RemoveAttrs);
2299         F->addFnAttrs(Attrs);
2300       }
2301     }
2302 
2303     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2304       GO->setSection(CSA->getName());
2305     else if (const auto *SA = D->getAttr<SectionAttr>())
2306       GO->setSection(SA->getName());
2307   }
2308 
2309   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2310 }
2311 
2312 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2313                                                   llvm::Function *F,
2314                                                   const CGFunctionInfo &FI) {
2315   const Decl *D = GD.getDecl();
2316   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2317   SetLLVMFunctionAttributesForDefinition(D, F);
2318 
2319   F->setLinkage(llvm::Function::InternalLinkage);
2320 
2321   setNonAliasAttributes(GD, F);
2322 }
2323 
2324 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2325   // Set linkage and visibility in case we never see a definition.
2326   LinkageInfo LV = ND->getLinkageAndVisibility();
2327   // Don't set internal linkage on declarations.
2328   // "extern_weak" is overloaded in LLVM; we probably should have
2329   // separate linkage types for this.
2330   if (isExternallyVisible(LV.getLinkage()) &&
2331       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2332     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2333 }
2334 
2335 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2336                                                        llvm::Function *F) {
2337   // Only if we are checking indirect calls.
2338   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2339     return;
2340 
2341   // Non-static class methods are handled via vtable or member function pointer
2342   // checks elsewhere.
2343   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2344     return;
2345 
2346   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2347   F->addTypeMetadata(0, MD);
2348   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2349 
2350   // Emit a hash-based bit set entry for cross-DSO calls.
2351   if (CodeGenOpts.SanitizeCfiCrossDso)
2352     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2353       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2354 }
2355 
2356 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2357   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2358     return;
2359 
2360   llvm::LLVMContext &Ctx = F->getContext();
2361   llvm::MDBuilder MDB(Ctx);
2362   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2363                  llvm::MDNode::get(
2364                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2365 }
2366 
2367 static bool allowKCFIIdentifier(StringRef Name) {
2368   // KCFI type identifier constants are only necessary for external assembly
2369   // functions, which means it's safe to skip unusual names. Subset of
2370   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2371   return llvm::all_of(Name, [](const char &C) {
2372     return llvm::isAlnum(C) || C == '_' || C == '.';
2373   });
2374 }
2375 
2376 void CodeGenModule::finalizeKCFITypes() {
2377   llvm::Module &M = getModule();
2378   for (auto &F : M.functions()) {
2379     // Remove KCFI type metadata from non-address-taken local functions.
2380     bool AddressTaken = F.hasAddressTaken();
2381     if (!AddressTaken && F.hasLocalLinkage())
2382       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2383 
2384     // Generate a constant with the expected KCFI type identifier for all
2385     // address-taken function declarations to support annotating indirectly
2386     // called assembly functions.
2387     if (!AddressTaken || !F.isDeclaration())
2388       continue;
2389 
2390     const llvm::ConstantInt *Type;
2391     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2392       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2393     else
2394       continue;
2395 
2396     StringRef Name = F.getName();
2397     if (!allowKCFIIdentifier(Name))
2398       continue;
2399 
2400     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2401                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2402                           .str();
2403     M.appendModuleInlineAsm(Asm);
2404   }
2405 }
2406 
2407 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2408                                           bool IsIncompleteFunction,
2409                                           bool IsThunk) {
2410 
2411   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2412     // If this is an intrinsic function, set the function's attributes
2413     // to the intrinsic's attributes.
2414     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2415     return;
2416   }
2417 
2418   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2419 
2420   if (!IsIncompleteFunction)
2421     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2422                               IsThunk);
2423 
2424   // Add the Returned attribute for "this", except for iOS 5 and earlier
2425   // where substantial code, including the libstdc++ dylib, was compiled with
2426   // GCC and does not actually return "this".
2427   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2428       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2429     assert(!F->arg_empty() &&
2430            F->arg_begin()->getType()
2431              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2432            "unexpected this return");
2433     F->addParamAttr(0, llvm::Attribute::Returned);
2434   }
2435 
2436   // Only a few attributes are set on declarations; these may later be
2437   // overridden by a definition.
2438 
2439   setLinkageForGV(F, FD);
2440   setGVProperties(F, FD);
2441 
2442   // Setup target-specific attributes.
2443   if (!IsIncompleteFunction && F->isDeclaration())
2444     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2445 
2446   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2447     F->setSection(CSA->getName());
2448   else if (const auto *SA = FD->getAttr<SectionAttr>())
2449      F->setSection(SA->getName());
2450 
2451   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2452     if (EA->isError())
2453       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2454     else if (EA->isWarning())
2455       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2456   }
2457 
2458   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2459   if (FD->isInlineBuiltinDeclaration()) {
2460     const FunctionDecl *FDBody;
2461     bool HasBody = FD->hasBody(FDBody);
2462     (void)HasBody;
2463     assert(HasBody && "Inline builtin declarations should always have an "
2464                       "available body!");
2465     if (shouldEmitFunction(FDBody))
2466       F->addFnAttr(llvm::Attribute::NoBuiltin);
2467   }
2468 
2469   if (FD->isReplaceableGlobalAllocationFunction()) {
2470     // A replaceable global allocation function does not act like a builtin by
2471     // default, only if it is invoked by a new-expression or delete-expression.
2472     F->addFnAttr(llvm::Attribute::NoBuiltin);
2473   }
2474 
2475   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2476     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2477   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2478     if (MD->isVirtual())
2479       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2480 
2481   // Don't emit entries for function declarations in the cross-DSO mode. This
2482   // is handled with better precision by the receiving DSO. But if jump tables
2483   // are non-canonical then we need type metadata in order to produce the local
2484   // jump table.
2485   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2486       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2487     CreateFunctionTypeMetadataForIcall(FD, F);
2488 
2489   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2490     setKCFIType(FD, F);
2491 
2492   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2493     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2494 
2495   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2496     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2497 
2498   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2499     // Annotate the callback behavior as metadata:
2500     //  - The callback callee (as argument number).
2501     //  - The callback payloads (as argument numbers).
2502     llvm::LLVMContext &Ctx = F->getContext();
2503     llvm::MDBuilder MDB(Ctx);
2504 
2505     // The payload indices are all but the first one in the encoding. The first
2506     // identifies the callback callee.
2507     int CalleeIdx = *CB->encoding_begin();
2508     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2509     F->addMetadata(llvm::LLVMContext::MD_callback,
2510                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2511                                                CalleeIdx, PayloadIndices,
2512                                                /* VarArgsArePassed */ false)}));
2513   }
2514 }
2515 
2516 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2517   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2518          "Only globals with definition can force usage.");
2519   LLVMUsed.emplace_back(GV);
2520 }
2521 
2522 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2523   assert(!GV->isDeclaration() &&
2524          "Only globals with definition can force usage.");
2525   LLVMCompilerUsed.emplace_back(GV);
2526 }
2527 
2528 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2529   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2530          "Only globals with definition can force usage.");
2531   if (getTriple().isOSBinFormatELF())
2532     LLVMCompilerUsed.emplace_back(GV);
2533   else
2534     LLVMUsed.emplace_back(GV);
2535 }
2536 
2537 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2538                      std::vector<llvm::WeakTrackingVH> &List) {
2539   // Don't create llvm.used if there is no need.
2540   if (List.empty())
2541     return;
2542 
2543   // Convert List to what ConstantArray needs.
2544   SmallVector<llvm::Constant*, 8> UsedArray;
2545   UsedArray.resize(List.size());
2546   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2547     UsedArray[i] =
2548         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2549             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2550   }
2551 
2552   if (UsedArray.empty())
2553     return;
2554   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2555 
2556   auto *GV = new llvm::GlobalVariable(
2557       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2558       llvm::ConstantArray::get(ATy, UsedArray), Name);
2559 
2560   GV->setSection("llvm.metadata");
2561 }
2562 
2563 void CodeGenModule::emitLLVMUsed() {
2564   emitUsed(*this, "llvm.used", LLVMUsed);
2565   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2566 }
2567 
2568 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2569   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2570   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2571 }
2572 
2573 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2574   llvm::SmallString<32> Opt;
2575   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2576   if (Opt.empty())
2577     return;
2578   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2579   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2580 }
2581 
2582 void CodeGenModule::AddDependentLib(StringRef Lib) {
2583   auto &C = getLLVMContext();
2584   if (getTarget().getTriple().isOSBinFormatELF()) {
2585       ELFDependentLibraries.push_back(
2586         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2587     return;
2588   }
2589 
2590   llvm::SmallString<24> Opt;
2591   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2592   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2593   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2594 }
2595 
2596 /// Add link options implied by the given module, including modules
2597 /// it depends on, using a postorder walk.
2598 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2599                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2600                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2601   // Import this module's parent.
2602   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2603     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2604   }
2605 
2606   // Import this module's dependencies.
2607   for (Module *Import : llvm::reverse(Mod->Imports)) {
2608     if (Visited.insert(Import).second)
2609       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2610   }
2611 
2612   // Add linker options to link against the libraries/frameworks
2613   // described by this module.
2614   llvm::LLVMContext &Context = CGM.getLLVMContext();
2615   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2616 
2617   // For modules that use export_as for linking, use that module
2618   // name instead.
2619   if (Mod->UseExportAsModuleLinkName)
2620     return;
2621 
2622   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2623     // Link against a framework.  Frameworks are currently Darwin only, so we
2624     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2625     if (LL.IsFramework) {
2626       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2627                                  llvm::MDString::get(Context, LL.Library)};
2628 
2629       Metadata.push_back(llvm::MDNode::get(Context, Args));
2630       continue;
2631     }
2632 
2633     // Link against a library.
2634     if (IsELF) {
2635       llvm::Metadata *Args[2] = {
2636           llvm::MDString::get(Context, "lib"),
2637           llvm::MDString::get(Context, LL.Library),
2638       };
2639       Metadata.push_back(llvm::MDNode::get(Context, Args));
2640     } else {
2641       llvm::SmallString<24> Opt;
2642       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2643       auto *OptString = llvm::MDString::get(Context, Opt);
2644       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2645     }
2646   }
2647 }
2648 
2649 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2650   // Emit the initializers in the order that sub-modules appear in the
2651   // source, first Global Module Fragments, if present.
2652   if (auto GMF = Primary->getGlobalModuleFragment()) {
2653     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2654       if (isa<ImportDecl>(D))
2655         continue;
2656       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2657       EmitTopLevelDecl(D);
2658     }
2659   }
2660   // Second any associated with the module, itself.
2661   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2662     // Skip import decls, the inits for those are called explicitly.
2663     if (isa<ImportDecl>(D))
2664       continue;
2665     EmitTopLevelDecl(D);
2666   }
2667   // Third any associated with the Privat eMOdule Fragment, if present.
2668   if (auto PMF = Primary->getPrivateModuleFragment()) {
2669     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2670       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2671       EmitTopLevelDecl(D);
2672     }
2673   }
2674 }
2675 
2676 void CodeGenModule::EmitModuleLinkOptions() {
2677   // Collect the set of all of the modules we want to visit to emit link
2678   // options, which is essentially the imported modules and all of their
2679   // non-explicit child modules.
2680   llvm::SetVector<clang::Module *> LinkModules;
2681   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2682   SmallVector<clang::Module *, 16> Stack;
2683 
2684   // Seed the stack with imported modules.
2685   for (Module *M : ImportedModules) {
2686     // Do not add any link flags when an implementation TU of a module imports
2687     // a header of that same module.
2688     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2689         !getLangOpts().isCompilingModule())
2690       continue;
2691     if (Visited.insert(M).second)
2692       Stack.push_back(M);
2693   }
2694 
2695   // Find all of the modules to import, making a little effort to prune
2696   // non-leaf modules.
2697   while (!Stack.empty()) {
2698     clang::Module *Mod = Stack.pop_back_val();
2699 
2700     bool AnyChildren = false;
2701 
2702     // Visit the submodules of this module.
2703     for (const auto &SM : Mod->submodules()) {
2704       // Skip explicit children; they need to be explicitly imported to be
2705       // linked against.
2706       if (SM->IsExplicit)
2707         continue;
2708 
2709       if (Visited.insert(SM).second) {
2710         Stack.push_back(SM);
2711         AnyChildren = true;
2712       }
2713     }
2714 
2715     // We didn't find any children, so add this module to the list of
2716     // modules to link against.
2717     if (!AnyChildren) {
2718       LinkModules.insert(Mod);
2719     }
2720   }
2721 
2722   // Add link options for all of the imported modules in reverse topological
2723   // order.  We don't do anything to try to order import link flags with respect
2724   // to linker options inserted by things like #pragma comment().
2725   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2726   Visited.clear();
2727   for (Module *M : LinkModules)
2728     if (Visited.insert(M).second)
2729       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2730   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2731   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2732 
2733   // Add the linker options metadata flag.
2734   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2735   for (auto *MD : LinkerOptionsMetadata)
2736     NMD->addOperand(MD);
2737 }
2738 
2739 void CodeGenModule::EmitDeferred() {
2740   // Emit deferred declare target declarations.
2741   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2742     getOpenMPRuntime().emitDeferredTargetDecls();
2743 
2744   // Emit code for any potentially referenced deferred decls.  Since a
2745   // previously unused static decl may become used during the generation of code
2746   // for a static function, iterate until no changes are made.
2747 
2748   if (!DeferredVTables.empty()) {
2749     EmitDeferredVTables();
2750 
2751     // Emitting a vtable doesn't directly cause more vtables to
2752     // become deferred, although it can cause functions to be
2753     // emitted that then need those vtables.
2754     assert(DeferredVTables.empty());
2755   }
2756 
2757   // Emit CUDA/HIP static device variables referenced by host code only.
2758   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2759   // needed for further handling.
2760   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2761     llvm::append_range(DeferredDeclsToEmit,
2762                        getContext().CUDADeviceVarODRUsedByHost);
2763 
2764   // Stop if we're out of both deferred vtables and deferred declarations.
2765   if (DeferredDeclsToEmit.empty())
2766     return;
2767 
2768   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2769   // work, it will not interfere with this.
2770   std::vector<GlobalDecl> CurDeclsToEmit;
2771   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2772 
2773   for (GlobalDecl &D : CurDeclsToEmit) {
2774     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2775     // to get GlobalValue with exactly the type we need, not something that
2776     // might had been created for another decl with the same mangled name but
2777     // different type.
2778     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2779         GetAddrOfGlobal(D, ForDefinition));
2780 
2781     // In case of different address spaces, we may still get a cast, even with
2782     // IsForDefinition equal to true. Query mangled names table to get
2783     // GlobalValue.
2784     if (!GV)
2785       GV = GetGlobalValue(getMangledName(D));
2786 
2787     // Make sure GetGlobalValue returned non-null.
2788     assert(GV);
2789 
2790     // Check to see if we've already emitted this.  This is necessary
2791     // for a couple of reasons: first, decls can end up in the
2792     // deferred-decls queue multiple times, and second, decls can end
2793     // up with definitions in unusual ways (e.g. by an extern inline
2794     // function acquiring a strong function redefinition).  Just
2795     // ignore these cases.
2796     if (!GV->isDeclaration())
2797       continue;
2798 
2799     // If this is OpenMP, check if it is legal to emit this global normally.
2800     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2801       continue;
2802 
2803     // Otherwise, emit the definition and move on to the next one.
2804     EmitGlobalDefinition(D, GV);
2805 
2806     // If we found out that we need to emit more decls, do that recursively.
2807     // This has the advantage that the decls are emitted in a DFS and related
2808     // ones are close together, which is convenient for testing.
2809     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2810       EmitDeferred();
2811       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2812     }
2813   }
2814 }
2815 
2816 void CodeGenModule::EmitVTablesOpportunistically() {
2817   // Try to emit external vtables as available_externally if they have emitted
2818   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2819   // is not allowed to create new references to things that need to be emitted
2820   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2821 
2822   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2823          && "Only emit opportunistic vtables with optimizations");
2824 
2825   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2826     assert(getVTables().isVTableExternal(RD) &&
2827            "This queue should only contain external vtables");
2828     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2829       VTables.GenerateClassData(RD);
2830   }
2831   OpportunisticVTables.clear();
2832 }
2833 
2834 void CodeGenModule::EmitGlobalAnnotations() {
2835   if (Annotations.empty())
2836     return;
2837 
2838   // Create a new global variable for the ConstantStruct in the Module.
2839   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2840     Annotations[0]->getType(), Annotations.size()), Annotations);
2841   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2842                                       llvm::GlobalValue::AppendingLinkage,
2843                                       Array, "llvm.global.annotations");
2844   gv->setSection(AnnotationSection);
2845 }
2846 
2847 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2848   llvm::Constant *&AStr = AnnotationStrings[Str];
2849   if (AStr)
2850     return AStr;
2851 
2852   // Not found yet, create a new global.
2853   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2854   auto *gv = new llvm::GlobalVariable(
2855       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
2856       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
2857       ConstGlobalsPtrTy->getAddressSpace());
2858   gv->setSection(AnnotationSection);
2859   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2860   AStr = gv;
2861   return gv;
2862 }
2863 
2864 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2865   SourceManager &SM = getContext().getSourceManager();
2866   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2867   if (PLoc.isValid())
2868     return EmitAnnotationString(PLoc.getFilename());
2869   return EmitAnnotationString(SM.getBufferName(Loc));
2870 }
2871 
2872 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2873   SourceManager &SM = getContext().getSourceManager();
2874   PresumedLoc PLoc = SM.getPresumedLoc(L);
2875   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2876     SM.getExpansionLineNumber(L);
2877   return llvm::ConstantInt::get(Int32Ty, LineNo);
2878 }
2879 
2880 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2881   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2882   if (Exprs.empty())
2883     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
2884 
2885   llvm::FoldingSetNodeID ID;
2886   for (Expr *E : Exprs) {
2887     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2888   }
2889   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2890   if (Lookup)
2891     return Lookup;
2892 
2893   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2894   LLVMArgs.reserve(Exprs.size());
2895   ConstantEmitter ConstEmiter(*this);
2896   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2897     const auto *CE = cast<clang::ConstantExpr>(E);
2898     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2899                                     CE->getType());
2900   });
2901   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2902   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2903                                       llvm::GlobalValue::PrivateLinkage, Struct,
2904                                       ".args");
2905   GV->setSection(AnnotationSection);
2906   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2907   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2908 
2909   Lookup = Bitcasted;
2910   return Bitcasted;
2911 }
2912 
2913 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2914                                                 const AnnotateAttr *AA,
2915                                                 SourceLocation L) {
2916   // Get the globals for file name, annotation, and the line number.
2917   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2918                  *UnitGV = EmitAnnotationUnit(L),
2919                  *LineNoCst = EmitAnnotationLineNo(L),
2920                  *Args = EmitAnnotationArgs(AA);
2921 
2922   llvm::Constant *GVInGlobalsAS = GV;
2923   if (GV->getAddressSpace() !=
2924       getDataLayout().getDefaultGlobalsAddressSpace()) {
2925     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2926         GV, GV->getValueType()->getPointerTo(
2927                 getDataLayout().getDefaultGlobalsAddressSpace()));
2928   }
2929 
2930   // Create the ConstantStruct for the global annotation.
2931   llvm::Constant *Fields[] = {
2932       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2933       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
2934       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
2935       LineNoCst,
2936       Args,
2937   };
2938   return llvm::ConstantStruct::getAnon(Fields);
2939 }
2940 
2941 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2942                                          llvm::GlobalValue *GV) {
2943   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2944   // Get the struct elements for these annotations.
2945   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2946     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2947 }
2948 
2949 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2950                                        SourceLocation Loc) const {
2951   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2952   // NoSanitize by function name.
2953   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2954     return true;
2955   // NoSanitize by location. Check "mainfile" prefix.
2956   auto &SM = Context.getSourceManager();
2957   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2958   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2959     return true;
2960 
2961   // Check "src" prefix.
2962   if (Loc.isValid())
2963     return NoSanitizeL.containsLocation(Kind, Loc);
2964   // If location is unknown, this may be a compiler-generated function. Assume
2965   // it's located in the main file.
2966   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2967 }
2968 
2969 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2970                                        llvm::GlobalVariable *GV,
2971                                        SourceLocation Loc, QualType Ty,
2972                                        StringRef Category) const {
2973   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2974   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2975     return true;
2976   auto &SM = Context.getSourceManager();
2977   if (NoSanitizeL.containsMainFile(
2978           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2979     return true;
2980   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2981     return true;
2982 
2983   // Check global type.
2984   if (!Ty.isNull()) {
2985     // Drill down the array types: if global variable of a fixed type is
2986     // not sanitized, we also don't instrument arrays of them.
2987     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2988       Ty = AT->getElementType();
2989     Ty = Ty.getCanonicalType().getUnqualifiedType();
2990     // Only record types (classes, structs etc.) are ignored.
2991     if (Ty->isRecordType()) {
2992       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2993       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2994         return true;
2995     }
2996   }
2997   return false;
2998 }
2999 
3000 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3001                                    StringRef Category) const {
3002   const auto &XRayFilter = getContext().getXRayFilter();
3003   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3004   auto Attr = ImbueAttr::NONE;
3005   if (Loc.isValid())
3006     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3007   if (Attr == ImbueAttr::NONE)
3008     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3009   switch (Attr) {
3010   case ImbueAttr::NONE:
3011     return false;
3012   case ImbueAttr::ALWAYS:
3013     Fn->addFnAttr("function-instrument", "xray-always");
3014     break;
3015   case ImbueAttr::ALWAYS_ARG1:
3016     Fn->addFnAttr("function-instrument", "xray-always");
3017     Fn->addFnAttr("xray-log-args", "1");
3018     break;
3019   case ImbueAttr::NEVER:
3020     Fn->addFnAttr("function-instrument", "xray-never");
3021     break;
3022   }
3023   return true;
3024 }
3025 
3026 ProfileList::ExclusionType
3027 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3028                                               SourceLocation Loc) const {
3029   const auto &ProfileList = getContext().getProfileList();
3030   // If the profile list is empty, then instrument everything.
3031   if (ProfileList.isEmpty())
3032     return ProfileList::Allow;
3033   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3034   // First, check the function name.
3035   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3036     return *V;
3037   // Next, check the source location.
3038   if (Loc.isValid())
3039     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3040       return *V;
3041   // If location is unknown, this may be a compiler-generated function. Assume
3042   // it's located in the main file.
3043   auto &SM = Context.getSourceManager();
3044   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3045     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3046       return *V;
3047   return ProfileList.getDefault(Kind);
3048 }
3049 
3050 ProfileList::ExclusionType
3051 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3052                                                  SourceLocation Loc) const {
3053   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3054   if (V != ProfileList::Allow)
3055     return V;
3056 
3057   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3058   if (NumGroups > 1) {
3059     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3060     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3061       return ProfileList::Skip;
3062   }
3063   return ProfileList::Allow;
3064 }
3065 
3066 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3067   // Never defer when EmitAllDecls is specified.
3068   if (LangOpts.EmitAllDecls)
3069     return true;
3070 
3071   if (CodeGenOpts.KeepStaticConsts) {
3072     const auto *VD = dyn_cast<VarDecl>(Global);
3073     if (VD && VD->getType().isConstQualified() &&
3074         VD->getStorageDuration() == SD_Static)
3075       return true;
3076   }
3077 
3078   return getContext().DeclMustBeEmitted(Global);
3079 }
3080 
3081 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3082   // In OpenMP 5.0 variables and function may be marked as
3083   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3084   // that they must be emitted on the host/device. To be sure we need to have
3085   // seen a declare target with an explicit mentioning of the function, we know
3086   // we have if the level of the declare target attribute is -1. Note that we
3087   // check somewhere else if we should emit this at all.
3088   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3089     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3090         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3091     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3092       return false;
3093   }
3094 
3095   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3096     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3097       // Implicit template instantiations may change linkage if they are later
3098       // explicitly instantiated, so they should not be emitted eagerly.
3099       return false;
3100   }
3101   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3102     if (Context.getInlineVariableDefinitionKind(VD) ==
3103         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3104       // A definition of an inline constexpr static data member may change
3105       // linkage later if it's redeclared outside the class.
3106       return false;
3107     if (CXX20ModuleInits && VD->getOwningModule() &&
3108         !VD->getOwningModule()->isModuleMapModule()) {
3109       // For CXX20, module-owned initializers need to be deferred, since it is
3110       // not known at this point if they will be run for the current module or
3111       // as part of the initializer for an imported one.
3112       return false;
3113     }
3114   }
3115   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3116   // codegen for global variables, because they may be marked as threadprivate.
3117   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3118       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3119       !isTypeConstant(Global->getType(), false) &&
3120       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3121     return false;
3122 
3123   return true;
3124 }
3125 
3126 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3127   StringRef Name = getMangledName(GD);
3128 
3129   // The UUID descriptor should be pointer aligned.
3130   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3131 
3132   // Look for an existing global.
3133   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3134     return ConstantAddress(GV, GV->getValueType(), Alignment);
3135 
3136   ConstantEmitter Emitter(*this);
3137   llvm::Constant *Init;
3138 
3139   APValue &V = GD->getAsAPValue();
3140   if (!V.isAbsent()) {
3141     // If possible, emit the APValue version of the initializer. In particular,
3142     // this gets the type of the constant right.
3143     Init = Emitter.emitForInitializer(
3144         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3145   } else {
3146     // As a fallback, directly construct the constant.
3147     // FIXME: This may get padding wrong under esoteric struct layout rules.
3148     // MSVC appears to create a complete type 'struct __s_GUID' that it
3149     // presumably uses to represent these constants.
3150     MSGuidDecl::Parts Parts = GD->getParts();
3151     llvm::Constant *Fields[4] = {
3152         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3153         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3154         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3155         llvm::ConstantDataArray::getRaw(
3156             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3157             Int8Ty)};
3158     Init = llvm::ConstantStruct::getAnon(Fields);
3159   }
3160 
3161   auto *GV = new llvm::GlobalVariable(
3162       getModule(), Init->getType(),
3163       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3164   if (supportsCOMDAT())
3165     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3166   setDSOLocal(GV);
3167 
3168   if (!V.isAbsent()) {
3169     Emitter.finalize(GV);
3170     return ConstantAddress(GV, GV->getValueType(), Alignment);
3171   }
3172 
3173   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3174   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3175       GV, Ty->getPointerTo(GV->getAddressSpace()));
3176   return ConstantAddress(Addr, Ty, Alignment);
3177 }
3178 
3179 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3180     const UnnamedGlobalConstantDecl *GCD) {
3181   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3182 
3183   llvm::GlobalVariable **Entry = nullptr;
3184   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3185   if (*Entry)
3186     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3187 
3188   ConstantEmitter Emitter(*this);
3189   llvm::Constant *Init;
3190 
3191   const APValue &V = GCD->getValue();
3192 
3193   assert(!V.isAbsent());
3194   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3195                                     GCD->getType());
3196 
3197   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3198                                       /*isConstant=*/true,
3199                                       llvm::GlobalValue::PrivateLinkage, Init,
3200                                       ".constant");
3201   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3202   GV->setAlignment(Alignment.getAsAlign());
3203 
3204   Emitter.finalize(GV);
3205 
3206   *Entry = GV;
3207   return ConstantAddress(GV, GV->getValueType(), Alignment);
3208 }
3209 
3210 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3211     const TemplateParamObjectDecl *TPO) {
3212   StringRef Name = getMangledName(TPO);
3213   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3214 
3215   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3216     return ConstantAddress(GV, GV->getValueType(), Alignment);
3217 
3218   ConstantEmitter Emitter(*this);
3219   llvm::Constant *Init = Emitter.emitForInitializer(
3220         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3221 
3222   if (!Init) {
3223     ErrorUnsupported(TPO, "template parameter object");
3224     return ConstantAddress::invalid();
3225   }
3226 
3227   auto *GV = new llvm::GlobalVariable(
3228       getModule(), Init->getType(),
3229       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3230   if (supportsCOMDAT())
3231     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3232   Emitter.finalize(GV);
3233 
3234   return ConstantAddress(GV, GV->getValueType(), Alignment);
3235 }
3236 
3237 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3238   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3239   assert(AA && "No alias?");
3240 
3241   CharUnits Alignment = getContext().getDeclAlign(VD);
3242   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3243 
3244   // See if there is already something with the target's name in the module.
3245   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3246   if (Entry) {
3247     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3248     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3249     return ConstantAddress(Ptr, DeclTy, Alignment);
3250   }
3251 
3252   llvm::Constant *Aliasee;
3253   if (isa<llvm::FunctionType>(DeclTy))
3254     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3255                                       GlobalDecl(cast<FunctionDecl>(VD)),
3256                                       /*ForVTable=*/false);
3257   else
3258     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3259                                     nullptr);
3260 
3261   auto *F = cast<llvm::GlobalValue>(Aliasee);
3262   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3263   WeakRefReferences.insert(F);
3264 
3265   return ConstantAddress(Aliasee, DeclTy, Alignment);
3266 }
3267 
3268 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3269   const auto *Global = cast<ValueDecl>(GD.getDecl());
3270 
3271   // Weak references don't produce any output by themselves.
3272   if (Global->hasAttr<WeakRefAttr>())
3273     return;
3274 
3275   // If this is an alias definition (which otherwise looks like a declaration)
3276   // emit it now.
3277   if (Global->hasAttr<AliasAttr>())
3278     return EmitAliasDefinition(GD);
3279 
3280   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3281   if (Global->hasAttr<IFuncAttr>())
3282     return emitIFuncDefinition(GD);
3283 
3284   // If this is a cpu_dispatch multiversion function, emit the resolver.
3285   if (Global->hasAttr<CPUDispatchAttr>())
3286     return emitCPUDispatchDefinition(GD);
3287 
3288   // If this is CUDA, be selective about which declarations we emit.
3289   if (LangOpts.CUDA) {
3290     if (LangOpts.CUDAIsDevice) {
3291       if (!Global->hasAttr<CUDADeviceAttr>() &&
3292           !Global->hasAttr<CUDAGlobalAttr>() &&
3293           !Global->hasAttr<CUDAConstantAttr>() &&
3294           !Global->hasAttr<CUDASharedAttr>() &&
3295           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3296           !Global->getType()->isCUDADeviceBuiltinTextureType())
3297         return;
3298     } else {
3299       // We need to emit host-side 'shadows' for all global
3300       // device-side variables because the CUDA runtime needs their
3301       // size and host-side address in order to provide access to
3302       // their device-side incarnations.
3303 
3304       // So device-only functions are the only things we skip.
3305       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3306           Global->hasAttr<CUDADeviceAttr>())
3307         return;
3308 
3309       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3310              "Expected Variable or Function");
3311     }
3312   }
3313 
3314   if (LangOpts.OpenMP) {
3315     // If this is OpenMP, check if it is legal to emit this global normally.
3316     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3317       return;
3318     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3319       if (MustBeEmitted(Global))
3320         EmitOMPDeclareReduction(DRD);
3321       return;
3322     }
3323     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3324       if (MustBeEmitted(Global))
3325         EmitOMPDeclareMapper(DMD);
3326       return;
3327     }
3328   }
3329 
3330   // Ignore declarations, they will be emitted on their first use.
3331   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3332     // Forward declarations are emitted lazily on first use.
3333     if (!FD->doesThisDeclarationHaveABody()) {
3334       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3335         return;
3336 
3337       StringRef MangledName = getMangledName(GD);
3338 
3339       // Compute the function info and LLVM type.
3340       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3341       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3342 
3343       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3344                               /*DontDefer=*/false);
3345       return;
3346     }
3347   } else {
3348     const auto *VD = cast<VarDecl>(Global);
3349     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3350     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3351         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3352       if (LangOpts.OpenMP) {
3353         // Emit declaration of the must-be-emitted declare target variable.
3354         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3355                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3356           bool UnifiedMemoryEnabled =
3357               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3358           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3359                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3360               !UnifiedMemoryEnabled) {
3361             (void)GetAddrOfGlobalVar(VD);
3362           } else {
3363             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3364                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3365                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3366                      UnifiedMemoryEnabled)) &&
3367                    "Link clause or to clause with unified memory expected.");
3368             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3369           }
3370 
3371           return;
3372         }
3373       }
3374       // If this declaration may have caused an inline variable definition to
3375       // change linkage, make sure that it's emitted.
3376       if (Context.getInlineVariableDefinitionKind(VD) ==
3377           ASTContext::InlineVariableDefinitionKind::Strong)
3378         GetAddrOfGlobalVar(VD);
3379       return;
3380     }
3381   }
3382 
3383   // Defer code generation to first use when possible, e.g. if this is an inline
3384   // function. If the global must always be emitted, do it eagerly if possible
3385   // to benefit from cache locality.
3386   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3387     // Emit the definition if it can't be deferred.
3388     EmitGlobalDefinition(GD);
3389     return;
3390   }
3391 
3392   // If we're deferring emission of a C++ variable with an
3393   // initializer, remember the order in which it appeared in the file.
3394   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3395       cast<VarDecl>(Global)->hasInit()) {
3396     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3397     CXXGlobalInits.push_back(nullptr);
3398   }
3399 
3400   StringRef MangledName = getMangledName(GD);
3401   if (GetGlobalValue(MangledName) != nullptr) {
3402     // The value has already been used and should therefore be emitted.
3403     addDeferredDeclToEmit(GD);
3404   } else if (MustBeEmitted(Global)) {
3405     // The value must be emitted, but cannot be emitted eagerly.
3406     assert(!MayBeEmittedEagerly(Global));
3407     addDeferredDeclToEmit(GD);
3408     EmittedDeferredDecls[MangledName] = GD;
3409   } else {
3410     // Otherwise, remember that we saw a deferred decl with this name.  The
3411     // first use of the mangled name will cause it to move into
3412     // DeferredDeclsToEmit.
3413     DeferredDecls[MangledName] = GD;
3414   }
3415 }
3416 
3417 // Check if T is a class type with a destructor that's not dllimport.
3418 static bool HasNonDllImportDtor(QualType T) {
3419   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3420     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3421       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3422         return true;
3423 
3424   return false;
3425 }
3426 
3427 namespace {
3428   struct FunctionIsDirectlyRecursive
3429       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3430     const StringRef Name;
3431     const Builtin::Context &BI;
3432     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3433         : Name(N), BI(C) {}
3434 
3435     bool VisitCallExpr(const CallExpr *E) {
3436       const FunctionDecl *FD = E->getDirectCallee();
3437       if (!FD)
3438         return false;
3439       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3440       if (Attr && Name == Attr->getLabel())
3441         return true;
3442       unsigned BuiltinID = FD->getBuiltinID();
3443       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3444         return false;
3445       StringRef BuiltinName = BI.getName(BuiltinID);
3446       if (BuiltinName.startswith("__builtin_") &&
3447           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3448         return true;
3449       }
3450       return false;
3451     }
3452 
3453     bool VisitStmt(const Stmt *S) {
3454       for (const Stmt *Child : S->children())
3455         if (Child && this->Visit(Child))
3456           return true;
3457       return false;
3458     }
3459   };
3460 
3461   // Make sure we're not referencing non-imported vars or functions.
3462   struct DLLImportFunctionVisitor
3463       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3464     bool SafeToInline = true;
3465 
3466     bool shouldVisitImplicitCode() const { return true; }
3467 
3468     bool VisitVarDecl(VarDecl *VD) {
3469       if (VD->getTLSKind()) {
3470         // A thread-local variable cannot be imported.
3471         SafeToInline = false;
3472         return SafeToInline;
3473       }
3474 
3475       // A variable definition might imply a destructor call.
3476       if (VD->isThisDeclarationADefinition())
3477         SafeToInline = !HasNonDllImportDtor(VD->getType());
3478 
3479       return SafeToInline;
3480     }
3481 
3482     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3483       if (const auto *D = E->getTemporary()->getDestructor())
3484         SafeToInline = D->hasAttr<DLLImportAttr>();
3485       return SafeToInline;
3486     }
3487 
3488     bool VisitDeclRefExpr(DeclRefExpr *E) {
3489       ValueDecl *VD = E->getDecl();
3490       if (isa<FunctionDecl>(VD))
3491         SafeToInline = VD->hasAttr<DLLImportAttr>();
3492       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3493         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3494       return SafeToInline;
3495     }
3496 
3497     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3498       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3499       return SafeToInline;
3500     }
3501 
3502     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3503       CXXMethodDecl *M = E->getMethodDecl();
3504       if (!M) {
3505         // Call through a pointer to member function. This is safe to inline.
3506         SafeToInline = true;
3507       } else {
3508         SafeToInline = M->hasAttr<DLLImportAttr>();
3509       }
3510       return SafeToInline;
3511     }
3512 
3513     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3514       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3515       return SafeToInline;
3516     }
3517 
3518     bool VisitCXXNewExpr(CXXNewExpr *E) {
3519       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3520       return SafeToInline;
3521     }
3522   };
3523 }
3524 
3525 // isTriviallyRecursive - Check if this function calls another
3526 // decl that, because of the asm attribute or the other decl being a builtin,
3527 // ends up pointing to itself.
3528 bool
3529 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3530   StringRef Name;
3531   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3532     // asm labels are a special kind of mangling we have to support.
3533     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3534     if (!Attr)
3535       return false;
3536     Name = Attr->getLabel();
3537   } else {
3538     Name = FD->getName();
3539   }
3540 
3541   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3542   const Stmt *Body = FD->getBody();
3543   return Body ? Walker.Visit(Body) : false;
3544 }
3545 
3546 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3547   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3548     return true;
3549   const auto *F = cast<FunctionDecl>(GD.getDecl());
3550   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3551     return false;
3552 
3553   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3554     // Check whether it would be safe to inline this dllimport function.
3555     DLLImportFunctionVisitor Visitor;
3556     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3557     if (!Visitor.SafeToInline)
3558       return false;
3559 
3560     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3561       // Implicit destructor invocations aren't captured in the AST, so the
3562       // check above can't see them. Check for them manually here.
3563       for (const Decl *Member : Dtor->getParent()->decls())
3564         if (isa<FieldDecl>(Member))
3565           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3566             return false;
3567       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3568         if (HasNonDllImportDtor(B.getType()))
3569           return false;
3570     }
3571   }
3572 
3573   // Inline builtins declaration must be emitted. They often are fortified
3574   // functions.
3575   if (F->isInlineBuiltinDeclaration())
3576     return true;
3577 
3578   // PR9614. Avoid cases where the source code is lying to us. An available
3579   // externally function should have an equivalent function somewhere else,
3580   // but a function that calls itself through asm label/`__builtin_` trickery is
3581   // clearly not equivalent to the real implementation.
3582   // This happens in glibc's btowc and in some configure checks.
3583   return !isTriviallyRecursive(F);
3584 }
3585 
3586 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3587   return CodeGenOpts.OptimizationLevel > 0;
3588 }
3589 
3590 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3591                                                        llvm::GlobalValue *GV) {
3592   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3593 
3594   if (FD->isCPUSpecificMultiVersion()) {
3595     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3596     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3597       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3598   } else if (FD->isTargetClonesMultiVersion()) {
3599     auto *Clone = FD->getAttr<TargetClonesAttr>();
3600     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3601       if (Clone->isFirstOfVersion(I))
3602         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3603     // Ensure that the resolver function is also emitted.
3604     GetOrCreateMultiVersionResolver(GD);
3605   } else
3606     EmitGlobalFunctionDefinition(GD, GV);
3607 }
3608 
3609 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3610   const auto *D = cast<ValueDecl>(GD.getDecl());
3611 
3612   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3613                                  Context.getSourceManager(),
3614                                  "Generating code for declaration");
3615 
3616   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3617     // At -O0, don't generate IR for functions with available_externally
3618     // linkage.
3619     if (!shouldEmitFunction(GD))
3620       return;
3621 
3622     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3623       std::string Name;
3624       llvm::raw_string_ostream OS(Name);
3625       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3626                                /*Qualified=*/true);
3627       return Name;
3628     });
3629 
3630     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3631       // Make sure to emit the definition(s) before we emit the thunks.
3632       // This is necessary for the generation of certain thunks.
3633       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3634         ABI->emitCXXStructor(GD);
3635       else if (FD->isMultiVersion())
3636         EmitMultiVersionFunctionDefinition(GD, GV);
3637       else
3638         EmitGlobalFunctionDefinition(GD, GV);
3639 
3640       if (Method->isVirtual())
3641         getVTables().EmitThunks(GD);
3642 
3643       return;
3644     }
3645 
3646     if (FD->isMultiVersion())
3647       return EmitMultiVersionFunctionDefinition(GD, GV);
3648     return EmitGlobalFunctionDefinition(GD, GV);
3649   }
3650 
3651   if (const auto *VD = dyn_cast<VarDecl>(D))
3652     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3653 
3654   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3655 }
3656 
3657 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3658                                                       llvm::Function *NewFn);
3659 
3660 static unsigned
3661 TargetMVPriority(const TargetInfo &TI,
3662                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3663   unsigned Priority = 0;
3664   unsigned NumFeatures = 0;
3665   for (StringRef Feat : RO.Conditions.Features) {
3666     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3667     NumFeatures++;
3668   }
3669 
3670   if (!RO.Conditions.Architecture.empty())
3671     Priority = std::max(
3672         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3673 
3674   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3675 
3676   return Priority;
3677 }
3678 
3679 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3680 // TU can forward declare the function without causing problems.  Particularly
3681 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3682 // work with internal linkage functions, so that the same function name can be
3683 // used with internal linkage in multiple TUs.
3684 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3685                                                        GlobalDecl GD) {
3686   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3687   if (FD->getFormalLinkage() == InternalLinkage)
3688     return llvm::GlobalValue::InternalLinkage;
3689   return llvm::GlobalValue::WeakODRLinkage;
3690 }
3691 
3692 void CodeGenModule::emitMultiVersionFunctions() {
3693   std::vector<GlobalDecl> MVFuncsToEmit;
3694   MultiVersionFuncs.swap(MVFuncsToEmit);
3695   for (GlobalDecl GD : MVFuncsToEmit) {
3696     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3697     assert(FD && "Expected a FunctionDecl");
3698 
3699     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3700     if (FD->isTargetMultiVersion()) {
3701       getContext().forEachMultiversionedFunctionVersion(
3702           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3703             GlobalDecl CurGD{
3704                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3705             StringRef MangledName = getMangledName(CurGD);
3706             llvm::Constant *Func = GetGlobalValue(MangledName);
3707             if (!Func) {
3708               if (CurFD->isDefined()) {
3709                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3710                 Func = GetGlobalValue(MangledName);
3711               } else {
3712                 const CGFunctionInfo &FI =
3713                     getTypes().arrangeGlobalDeclaration(GD);
3714                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3715                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3716                                          /*DontDefer=*/false, ForDefinition);
3717               }
3718               assert(Func && "This should have just been created");
3719             }
3720             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3721               const auto *TA = CurFD->getAttr<TargetAttr>();
3722               llvm::SmallVector<StringRef, 8> Feats;
3723               TA->getAddedFeatures(Feats);
3724               Options.emplace_back(cast<llvm::Function>(Func),
3725                                    TA->getArchitecture(), Feats);
3726             } else {
3727               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3728               llvm::SmallVector<StringRef, 8> Feats;
3729               TVA->getFeatures(Feats);
3730               Options.emplace_back(cast<llvm::Function>(Func),
3731                                    /*Architecture*/ "", Feats);
3732             }
3733           });
3734     } else if (FD->isTargetClonesMultiVersion()) {
3735       const auto *TC = FD->getAttr<TargetClonesAttr>();
3736       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3737            ++VersionIndex) {
3738         if (!TC->isFirstOfVersion(VersionIndex))
3739           continue;
3740         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3741                          VersionIndex};
3742         StringRef Version = TC->getFeatureStr(VersionIndex);
3743         StringRef MangledName = getMangledName(CurGD);
3744         llvm::Constant *Func = GetGlobalValue(MangledName);
3745         if (!Func) {
3746           if (FD->isDefined()) {
3747             EmitGlobalFunctionDefinition(CurGD, nullptr);
3748             Func = GetGlobalValue(MangledName);
3749           } else {
3750             const CGFunctionInfo &FI =
3751                 getTypes().arrangeGlobalDeclaration(CurGD);
3752             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3753             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3754                                      /*DontDefer=*/false, ForDefinition);
3755           }
3756           assert(Func && "This should have just been created");
3757         }
3758 
3759         StringRef Architecture;
3760         llvm::SmallVector<StringRef, 1> Feature;
3761 
3762         if (getTarget().getTriple().isAArch64()) {
3763           if (Version != "default") {
3764             llvm::SmallVector<StringRef, 8> VerFeats;
3765             Version.split(VerFeats, "+");
3766             for (auto &CurFeat : VerFeats)
3767               Feature.push_back(CurFeat.trim());
3768           }
3769         } else {
3770           if (Version.startswith("arch="))
3771             Architecture = Version.drop_front(sizeof("arch=") - 1);
3772           else if (Version != "default")
3773             Feature.push_back(Version);
3774         }
3775 
3776         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3777       }
3778     } else {
3779       assert(0 && "Expected a target or target_clones multiversion function");
3780       continue;
3781     }
3782 
3783     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3784     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3785       ResolverConstant = IFunc->getResolver();
3786     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3787 
3788     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3789 
3790     if (supportsCOMDAT())
3791       ResolverFunc->setComdat(
3792           getModule().getOrInsertComdat(ResolverFunc->getName()));
3793 
3794     const TargetInfo &TI = getTarget();
3795     llvm::stable_sort(
3796         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3797                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3798           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3799         });
3800     CodeGenFunction CGF(*this);
3801     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3802   }
3803 
3804   // Ensure that any additions to the deferred decls list caused by emitting a
3805   // variant are emitted.  This can happen when the variant itself is inline and
3806   // calls a function without linkage.
3807   if (!MVFuncsToEmit.empty())
3808     EmitDeferred();
3809 
3810   // Ensure that any additions to the multiversion funcs list from either the
3811   // deferred decls or the multiversion functions themselves are emitted.
3812   if (!MultiVersionFuncs.empty())
3813     emitMultiVersionFunctions();
3814 }
3815 
3816 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3817   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3818   assert(FD && "Not a FunctionDecl?");
3819   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3820   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3821   assert(DD && "Not a cpu_dispatch Function?");
3822 
3823   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3824   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3825 
3826   StringRef ResolverName = getMangledName(GD);
3827   UpdateMultiVersionNames(GD, FD, ResolverName);
3828 
3829   llvm::Type *ResolverType;
3830   GlobalDecl ResolverGD;
3831   if (getTarget().supportsIFunc()) {
3832     ResolverType = llvm::FunctionType::get(
3833         llvm::PointerType::get(DeclTy,
3834                                getTypes().getTargetAddressSpace(FD->getType())),
3835         false);
3836   }
3837   else {
3838     ResolverType = DeclTy;
3839     ResolverGD = GD;
3840   }
3841 
3842   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3843       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3844   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3845   if (supportsCOMDAT())
3846     ResolverFunc->setComdat(
3847         getModule().getOrInsertComdat(ResolverFunc->getName()));
3848 
3849   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3850   const TargetInfo &Target = getTarget();
3851   unsigned Index = 0;
3852   for (const IdentifierInfo *II : DD->cpus()) {
3853     // Get the name of the target function so we can look it up/create it.
3854     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3855                               getCPUSpecificMangling(*this, II->getName());
3856 
3857     llvm::Constant *Func = GetGlobalValue(MangledName);
3858 
3859     if (!Func) {
3860       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3861       if (ExistingDecl.getDecl() &&
3862           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3863         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3864         Func = GetGlobalValue(MangledName);
3865       } else {
3866         if (!ExistingDecl.getDecl())
3867           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3868 
3869       Func = GetOrCreateLLVMFunction(
3870           MangledName, DeclTy, ExistingDecl,
3871           /*ForVTable=*/false, /*DontDefer=*/true,
3872           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3873       }
3874     }
3875 
3876     llvm::SmallVector<StringRef, 32> Features;
3877     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3878     llvm::transform(Features, Features.begin(),
3879                     [](StringRef Str) { return Str.substr(1); });
3880     llvm::erase_if(Features, [&Target](StringRef Feat) {
3881       return !Target.validateCpuSupports(Feat);
3882     });
3883     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3884     ++Index;
3885   }
3886 
3887   llvm::stable_sort(
3888       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3889                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3890         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3891                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3892       });
3893 
3894   // If the list contains multiple 'default' versions, such as when it contains
3895   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3896   // always run on at least a 'pentium'). We do this by deleting the 'least
3897   // advanced' (read, lowest mangling letter).
3898   while (Options.size() > 1 &&
3899          llvm::X86::getCpuSupportsMask(
3900              (Options.end() - 2)->Conditions.Features) == 0) {
3901     StringRef LHSName = (Options.end() - 2)->Function->getName();
3902     StringRef RHSName = (Options.end() - 1)->Function->getName();
3903     if (LHSName.compare(RHSName) < 0)
3904       Options.erase(Options.end() - 2);
3905     else
3906       Options.erase(Options.end() - 1);
3907   }
3908 
3909   CodeGenFunction CGF(*this);
3910   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3911 
3912   if (getTarget().supportsIFunc()) {
3913     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3914     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3915 
3916     // Fix up function declarations that were created for cpu_specific before
3917     // cpu_dispatch was known
3918     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3919       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3920       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3921                                            &getModule());
3922       GI->takeName(IFunc);
3923       IFunc->replaceAllUsesWith(GI);
3924       IFunc->eraseFromParent();
3925       IFunc = GI;
3926     }
3927 
3928     std::string AliasName = getMangledNameImpl(
3929         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3930     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3931     if (!AliasFunc) {
3932       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3933                                            &getModule());
3934       SetCommonAttributes(GD, GA);
3935     }
3936   }
3937 }
3938 
3939 /// If a dispatcher for the specified mangled name is not in the module, create
3940 /// and return an llvm Function with the specified type.
3941 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3942   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3943   assert(FD && "Not a FunctionDecl?");
3944 
3945   std::string MangledName =
3946       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3947 
3948   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3949   // a separate resolver).
3950   std::string ResolverName = MangledName;
3951   if (getTarget().supportsIFunc())
3952     ResolverName += ".ifunc";
3953   else if (FD->isTargetMultiVersion())
3954     ResolverName += ".resolver";
3955 
3956   // If the resolver has already been created, just return it.
3957   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3958     return ResolverGV;
3959 
3960   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3961   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3962 
3963   // The resolver needs to be created. For target and target_clones, defer
3964   // creation until the end of the TU.
3965   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3966     MultiVersionFuncs.push_back(GD);
3967 
3968   // For cpu_specific, don't create an ifunc yet because we don't know if the
3969   // cpu_dispatch will be emitted in this translation unit.
3970   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3971     llvm::Type *ResolverType = llvm::FunctionType::get(
3972         llvm::PointerType::get(DeclTy,
3973                                getTypes().getTargetAddressSpace(FD->getType())),
3974         false);
3975     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3976         MangledName + ".resolver", ResolverType, GlobalDecl{},
3977         /*ForVTable=*/false);
3978     llvm::GlobalIFunc *GIF =
3979         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3980                                   "", Resolver, &getModule());
3981     GIF->setName(ResolverName);
3982     SetCommonAttributes(FD, GIF);
3983 
3984     return GIF;
3985   }
3986 
3987   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3988       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3989   assert(isa<llvm::GlobalValue>(Resolver) &&
3990          "Resolver should be created for the first time");
3991   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3992   return Resolver;
3993 }
3994 
3995 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3996 /// module, create and return an llvm Function with the specified type. If there
3997 /// is something in the module with the specified name, return it potentially
3998 /// bitcasted to the right type.
3999 ///
4000 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4001 /// to set the attributes on the function when it is first created.
4002 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4003     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4004     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4005     ForDefinition_t IsForDefinition) {
4006   const Decl *D = GD.getDecl();
4007 
4008   // Any attempts to use a MultiVersion function should result in retrieving
4009   // the iFunc instead. Name Mangling will handle the rest of the changes.
4010   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4011     // For the device mark the function as one that should be emitted.
4012     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4013         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4014         !DontDefer && !IsForDefinition) {
4015       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4016         GlobalDecl GDDef;
4017         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4018           GDDef = GlobalDecl(CD, GD.getCtorType());
4019         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4020           GDDef = GlobalDecl(DD, GD.getDtorType());
4021         else
4022           GDDef = GlobalDecl(FDDef);
4023         EmitGlobal(GDDef);
4024       }
4025     }
4026 
4027     if (FD->isMultiVersion()) {
4028       UpdateMultiVersionNames(GD, FD, MangledName);
4029       if (!IsForDefinition)
4030         return GetOrCreateMultiVersionResolver(GD);
4031     }
4032   }
4033 
4034   // Lookup the entry, lazily creating it if necessary.
4035   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4036   if (Entry) {
4037     if (WeakRefReferences.erase(Entry)) {
4038       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4039       if (FD && !FD->hasAttr<WeakAttr>())
4040         Entry->setLinkage(llvm::Function::ExternalLinkage);
4041     }
4042 
4043     // Handle dropped DLL attributes.
4044     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4045         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4046       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4047       setDSOLocal(Entry);
4048     }
4049 
4050     // If there are two attempts to define the same mangled name, issue an
4051     // error.
4052     if (IsForDefinition && !Entry->isDeclaration()) {
4053       GlobalDecl OtherGD;
4054       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4055       // to make sure that we issue an error only once.
4056       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4057           (GD.getCanonicalDecl().getDecl() !=
4058            OtherGD.getCanonicalDecl().getDecl()) &&
4059           DiagnosedConflictingDefinitions.insert(GD).second) {
4060         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4061             << MangledName;
4062         getDiags().Report(OtherGD.getDecl()->getLocation(),
4063                           diag::note_previous_definition);
4064       }
4065     }
4066 
4067     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4068         (Entry->getValueType() == Ty)) {
4069       return Entry;
4070     }
4071 
4072     // Make sure the result is of the correct type.
4073     // (If function is requested for a definition, we always need to create a new
4074     // function, not just return a bitcast.)
4075     if (!IsForDefinition)
4076       return llvm::ConstantExpr::getBitCast(
4077           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4078   }
4079 
4080   // This function doesn't have a complete type (for example, the return
4081   // type is an incomplete struct). Use a fake type instead, and make
4082   // sure not to try to set attributes.
4083   bool IsIncompleteFunction = false;
4084 
4085   llvm::FunctionType *FTy;
4086   if (isa<llvm::FunctionType>(Ty)) {
4087     FTy = cast<llvm::FunctionType>(Ty);
4088   } else {
4089     FTy = llvm::FunctionType::get(VoidTy, false);
4090     IsIncompleteFunction = true;
4091   }
4092 
4093   llvm::Function *F =
4094       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4095                              Entry ? StringRef() : MangledName, &getModule());
4096 
4097   // If we already created a function with the same mangled name (but different
4098   // type) before, take its name and add it to the list of functions to be
4099   // replaced with F at the end of CodeGen.
4100   //
4101   // This happens if there is a prototype for a function (e.g. "int f()") and
4102   // then a definition of a different type (e.g. "int f(int x)").
4103   if (Entry) {
4104     F->takeName(Entry);
4105 
4106     // This might be an implementation of a function without a prototype, in
4107     // which case, try to do special replacement of calls which match the new
4108     // prototype.  The really key thing here is that we also potentially drop
4109     // arguments from the call site so as to make a direct call, which makes the
4110     // inliner happier and suppresses a number of optimizer warnings (!) about
4111     // dropping arguments.
4112     if (!Entry->use_empty()) {
4113       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4114       Entry->removeDeadConstantUsers();
4115     }
4116 
4117     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4118         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4119     addGlobalValReplacement(Entry, BC);
4120   }
4121 
4122   assert(F->getName() == MangledName && "name was uniqued!");
4123   if (D)
4124     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4125   if (ExtraAttrs.hasFnAttrs()) {
4126     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4127     F->addFnAttrs(B);
4128   }
4129 
4130   if (!DontDefer) {
4131     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4132     // each other bottoming out with the base dtor.  Therefore we emit non-base
4133     // dtors on usage, even if there is no dtor definition in the TU.
4134     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4135         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4136                                            GD.getDtorType()))
4137       addDeferredDeclToEmit(GD);
4138 
4139     // This is the first use or definition of a mangled name.  If there is a
4140     // deferred decl with this name, remember that we need to emit it at the end
4141     // of the file.
4142     auto DDI = DeferredDecls.find(MangledName);
4143     if (DDI != DeferredDecls.end()) {
4144       // Move the potentially referenced deferred decl to the
4145       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4146       // don't need it anymore).
4147       addDeferredDeclToEmit(DDI->second);
4148       EmittedDeferredDecls[DDI->first] = DDI->second;
4149       DeferredDecls.erase(DDI);
4150 
4151       // Otherwise, there are cases we have to worry about where we're
4152       // using a declaration for which we must emit a definition but where
4153       // we might not find a top-level definition:
4154       //   - member functions defined inline in their classes
4155       //   - friend functions defined inline in some class
4156       //   - special member functions with implicit definitions
4157       // If we ever change our AST traversal to walk into class methods,
4158       // this will be unnecessary.
4159       //
4160       // We also don't emit a definition for a function if it's going to be an
4161       // entry in a vtable, unless it's already marked as used.
4162     } else if (getLangOpts().CPlusPlus && D) {
4163       // Look for a declaration that's lexically in a record.
4164       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4165            FD = FD->getPreviousDecl()) {
4166         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4167           if (FD->doesThisDeclarationHaveABody()) {
4168             addDeferredDeclToEmit(GD.getWithDecl(FD));
4169             break;
4170           }
4171         }
4172       }
4173     }
4174   }
4175 
4176   // Make sure the result is of the requested type.
4177   if (!IsIncompleteFunction) {
4178     assert(F->getFunctionType() == Ty);
4179     return F;
4180   }
4181 
4182   return llvm::ConstantExpr::getBitCast(F,
4183                                         Ty->getPointerTo(F->getAddressSpace()));
4184 }
4185 
4186 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4187 /// non-null, then this function will use the specified type if it has to
4188 /// create it (this occurs when we see a definition of the function).
4189 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4190                                                  llvm::Type *Ty,
4191                                                  bool ForVTable,
4192                                                  bool DontDefer,
4193                                               ForDefinition_t IsForDefinition) {
4194   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4195          "consteval function should never be emitted");
4196   // If there was no specific requested type, just convert it now.
4197   if (!Ty) {
4198     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4199     Ty = getTypes().ConvertType(FD->getType());
4200   }
4201 
4202   // Devirtualized destructor calls may come through here instead of via
4203   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4204   // of the complete destructor when necessary.
4205   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4206     if (getTarget().getCXXABI().isMicrosoft() &&
4207         GD.getDtorType() == Dtor_Complete &&
4208         DD->getParent()->getNumVBases() == 0)
4209       GD = GlobalDecl(DD, Dtor_Base);
4210   }
4211 
4212   StringRef MangledName = getMangledName(GD);
4213   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4214                                     /*IsThunk=*/false, llvm::AttributeList(),
4215                                     IsForDefinition);
4216   // Returns kernel handle for HIP kernel stub function.
4217   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4218       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4219     auto *Handle = getCUDARuntime().getKernelHandle(
4220         cast<llvm::Function>(F->stripPointerCasts()), GD);
4221     if (IsForDefinition)
4222       return F;
4223     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4224   }
4225   return F;
4226 }
4227 
4228 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4229   llvm::GlobalValue *F =
4230       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4231 
4232   return llvm::ConstantExpr::getBitCast(
4233       llvm::NoCFIValue::get(F),
4234       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4235 }
4236 
4237 static const FunctionDecl *
4238 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4239   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4240   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4241 
4242   IdentifierInfo &CII = C.Idents.get(Name);
4243   for (const auto *Result : DC->lookup(&CII))
4244     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4245       return FD;
4246 
4247   if (!C.getLangOpts().CPlusPlus)
4248     return nullptr;
4249 
4250   // Demangle the premangled name from getTerminateFn()
4251   IdentifierInfo &CXXII =
4252       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4253           ? C.Idents.get("terminate")
4254           : C.Idents.get(Name);
4255 
4256   for (const auto &N : {"__cxxabiv1", "std"}) {
4257     IdentifierInfo &NS = C.Idents.get(N);
4258     for (const auto *Result : DC->lookup(&NS)) {
4259       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4260       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4261         for (const auto *Result : LSD->lookup(&NS))
4262           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4263             break;
4264 
4265       if (ND)
4266         for (const auto *Result : ND->lookup(&CXXII))
4267           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4268             return FD;
4269     }
4270   }
4271 
4272   return nullptr;
4273 }
4274 
4275 /// CreateRuntimeFunction - Create a new runtime function with the specified
4276 /// type and name.
4277 llvm::FunctionCallee
4278 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4279                                      llvm::AttributeList ExtraAttrs, bool Local,
4280                                      bool AssumeConvergent) {
4281   if (AssumeConvergent) {
4282     ExtraAttrs =
4283         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4284   }
4285 
4286   llvm::Constant *C =
4287       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4288                               /*DontDefer=*/false, /*IsThunk=*/false,
4289                               ExtraAttrs);
4290 
4291   if (auto *F = dyn_cast<llvm::Function>(C)) {
4292     if (F->empty()) {
4293       F->setCallingConv(getRuntimeCC());
4294 
4295       // In Windows Itanium environments, try to mark runtime functions
4296       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4297       // will link their standard library statically or dynamically. Marking
4298       // functions imported when they are not imported can cause linker errors
4299       // and warnings.
4300       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4301           !getCodeGenOpts().LTOVisibilityPublicStd) {
4302         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4303         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4304           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4305           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4306         }
4307       }
4308       setDSOLocal(F);
4309     }
4310   }
4311 
4312   return {FTy, C};
4313 }
4314 
4315 /// isTypeConstant - Determine whether an object of this type can be emitted
4316 /// as a constant.
4317 ///
4318 /// If ExcludeCtor is true, the duration when the object's constructor runs
4319 /// will not be considered. The caller will need to verify that the object is
4320 /// not written to during its construction.
4321 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4322   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4323     return false;
4324 
4325   if (Context.getLangOpts().CPlusPlus) {
4326     if (const CXXRecordDecl *Record
4327           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4328       return ExcludeCtor && !Record->hasMutableFields() &&
4329              Record->hasTrivialDestructor();
4330   }
4331 
4332   return true;
4333 }
4334 
4335 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4336 /// create and return an llvm GlobalVariable with the specified type and address
4337 /// space. If there is something in the module with the specified name, return
4338 /// it potentially bitcasted to the right type.
4339 ///
4340 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4341 /// to set the attributes on the global when it is first created.
4342 ///
4343 /// If IsForDefinition is true, it is guaranteed that an actual global with
4344 /// type Ty will be returned, not conversion of a variable with the same
4345 /// mangled name but some other type.
4346 llvm::Constant *
4347 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4348                                      LangAS AddrSpace, const VarDecl *D,
4349                                      ForDefinition_t IsForDefinition) {
4350   // Lookup the entry, lazily creating it if necessary.
4351   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4352   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4353   if (Entry) {
4354     if (WeakRefReferences.erase(Entry)) {
4355       if (D && !D->hasAttr<WeakAttr>())
4356         Entry->setLinkage(llvm::Function::ExternalLinkage);
4357     }
4358 
4359     // Handle dropped DLL attributes.
4360     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4361         !shouldMapVisibilityToDLLExport(D))
4362       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4363 
4364     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4365       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4366 
4367     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4368       return Entry;
4369 
4370     // If there are two attempts to define the same mangled name, issue an
4371     // error.
4372     if (IsForDefinition && !Entry->isDeclaration()) {
4373       GlobalDecl OtherGD;
4374       const VarDecl *OtherD;
4375 
4376       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4377       // to make sure that we issue an error only once.
4378       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4379           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4380           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4381           OtherD->hasInit() &&
4382           DiagnosedConflictingDefinitions.insert(D).second) {
4383         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4384             << MangledName;
4385         getDiags().Report(OtherGD.getDecl()->getLocation(),
4386                           diag::note_previous_definition);
4387       }
4388     }
4389 
4390     // Make sure the result is of the correct type.
4391     if (Entry->getType()->getAddressSpace() != TargetAS) {
4392       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4393                                                   Ty->getPointerTo(TargetAS));
4394     }
4395 
4396     // (If global is requested for a definition, we always need to create a new
4397     // global, not just return a bitcast.)
4398     if (!IsForDefinition)
4399       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4400   }
4401 
4402   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4403 
4404   auto *GV = new llvm::GlobalVariable(
4405       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4406       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4407       getContext().getTargetAddressSpace(DAddrSpace));
4408 
4409   // If we already created a global with the same mangled name (but different
4410   // type) before, take its name and remove it from its parent.
4411   if (Entry) {
4412     GV->takeName(Entry);
4413 
4414     if (!Entry->use_empty()) {
4415       llvm::Constant *NewPtrForOldDecl =
4416           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4417       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4418     }
4419 
4420     Entry->eraseFromParent();
4421   }
4422 
4423   // This is the first use or definition of a mangled name.  If there is a
4424   // deferred decl with this name, remember that we need to emit it at the end
4425   // of the file.
4426   auto DDI = DeferredDecls.find(MangledName);
4427   if (DDI != DeferredDecls.end()) {
4428     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4429     // list, and remove it from DeferredDecls (since we don't need it anymore).
4430     addDeferredDeclToEmit(DDI->second);
4431     EmittedDeferredDecls[DDI->first] = DDI->second;
4432     DeferredDecls.erase(DDI);
4433   }
4434 
4435   // Handle things which are present even on external declarations.
4436   if (D) {
4437     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4438       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4439 
4440     // FIXME: This code is overly simple and should be merged with other global
4441     // handling.
4442     GV->setConstant(isTypeConstant(D->getType(), false));
4443 
4444     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4445 
4446     setLinkageForGV(GV, D);
4447 
4448     if (D->getTLSKind()) {
4449       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4450         CXXThreadLocals.push_back(D);
4451       setTLSMode(GV, *D);
4452     }
4453 
4454     setGVProperties(GV, D);
4455 
4456     // If required by the ABI, treat declarations of static data members with
4457     // inline initializers as definitions.
4458     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4459       EmitGlobalVarDefinition(D);
4460     }
4461 
4462     // Emit section information for extern variables.
4463     if (D->hasExternalStorage()) {
4464       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4465         GV->setSection(SA->getName());
4466     }
4467 
4468     // Handle XCore specific ABI requirements.
4469     if (getTriple().getArch() == llvm::Triple::xcore &&
4470         D->getLanguageLinkage() == CLanguageLinkage &&
4471         D->getType().isConstant(Context) &&
4472         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4473       GV->setSection(".cp.rodata");
4474 
4475     // Check if we a have a const declaration with an initializer, we may be
4476     // able to emit it as available_externally to expose it's value to the
4477     // optimizer.
4478     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4479         D->getType().isConstQualified() && !GV->hasInitializer() &&
4480         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4481       const auto *Record =
4482           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4483       bool HasMutableFields = Record && Record->hasMutableFields();
4484       if (!HasMutableFields) {
4485         const VarDecl *InitDecl;
4486         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4487         if (InitExpr) {
4488           ConstantEmitter emitter(*this);
4489           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4490           if (Init) {
4491             auto *InitType = Init->getType();
4492             if (GV->getValueType() != InitType) {
4493               // The type of the initializer does not match the definition.
4494               // This happens when an initializer has a different type from
4495               // the type of the global (because of padding at the end of a
4496               // structure for instance).
4497               GV->setName(StringRef());
4498               // Make a new global with the correct type, this is now guaranteed
4499               // to work.
4500               auto *NewGV = cast<llvm::GlobalVariable>(
4501                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4502                       ->stripPointerCasts());
4503 
4504               // Erase the old global, since it is no longer used.
4505               GV->eraseFromParent();
4506               GV = NewGV;
4507             } else {
4508               GV->setInitializer(Init);
4509               GV->setConstant(true);
4510               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4511             }
4512             emitter.finalize(GV);
4513           }
4514         }
4515       }
4516     }
4517   }
4518 
4519   if (GV->isDeclaration()) {
4520     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4521     // External HIP managed variables needed to be recorded for transformation
4522     // in both device and host compilations.
4523     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4524         D->hasExternalStorage())
4525       getCUDARuntime().handleVarRegistration(D, *GV);
4526   }
4527 
4528   if (D)
4529     SanitizerMD->reportGlobal(GV, *D);
4530 
4531   LangAS ExpectedAS =
4532       D ? D->getType().getAddressSpace()
4533         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4534   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4535   if (DAddrSpace != ExpectedAS) {
4536     return getTargetCodeGenInfo().performAddrSpaceCast(
4537         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4538   }
4539 
4540   return GV;
4541 }
4542 
4543 llvm::Constant *
4544 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4545   const Decl *D = GD.getDecl();
4546 
4547   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4548     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4549                                 /*DontDefer=*/false, IsForDefinition);
4550 
4551   if (isa<CXXMethodDecl>(D)) {
4552     auto FInfo =
4553         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4554     auto Ty = getTypes().GetFunctionType(*FInfo);
4555     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4556                              IsForDefinition);
4557   }
4558 
4559   if (isa<FunctionDecl>(D)) {
4560     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4561     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4562     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4563                              IsForDefinition);
4564   }
4565 
4566   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4567 }
4568 
4569 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4570     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4571     llvm::Align Alignment) {
4572   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4573   llvm::GlobalVariable *OldGV = nullptr;
4574 
4575   if (GV) {
4576     // Check if the variable has the right type.
4577     if (GV->getValueType() == Ty)
4578       return GV;
4579 
4580     // Because C++ name mangling, the only way we can end up with an already
4581     // existing global with the same name is if it has been declared extern "C".
4582     assert(GV->isDeclaration() && "Declaration has wrong type!");
4583     OldGV = GV;
4584   }
4585 
4586   // Create a new variable.
4587   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4588                                 Linkage, nullptr, Name);
4589 
4590   if (OldGV) {
4591     // Replace occurrences of the old variable if needed.
4592     GV->takeName(OldGV);
4593 
4594     if (!OldGV->use_empty()) {
4595       llvm::Constant *NewPtrForOldDecl =
4596       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4597       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4598     }
4599 
4600     OldGV->eraseFromParent();
4601   }
4602 
4603   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4604       !GV->hasAvailableExternallyLinkage())
4605     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4606 
4607   GV->setAlignment(Alignment);
4608 
4609   return GV;
4610 }
4611 
4612 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4613 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4614 /// then it will be created with the specified type instead of whatever the
4615 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4616 /// that an actual global with type Ty will be returned, not conversion of a
4617 /// variable with the same mangled name but some other type.
4618 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4619                                                   llvm::Type *Ty,
4620                                            ForDefinition_t IsForDefinition) {
4621   assert(D->hasGlobalStorage() && "Not a global variable");
4622   QualType ASTTy = D->getType();
4623   if (!Ty)
4624     Ty = getTypes().ConvertTypeForMem(ASTTy);
4625 
4626   StringRef MangledName = getMangledName(D);
4627   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4628                                IsForDefinition);
4629 }
4630 
4631 /// CreateRuntimeVariable - Create a new runtime global variable with the
4632 /// specified type and name.
4633 llvm::Constant *
4634 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4635                                      StringRef Name) {
4636   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4637                                                        : LangAS::Default;
4638   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4639   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4640   return Ret;
4641 }
4642 
4643 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4644   assert(!D->getInit() && "Cannot emit definite definitions here!");
4645 
4646   StringRef MangledName = getMangledName(D);
4647   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4648 
4649   // We already have a definition, not declaration, with the same mangled name.
4650   // Emitting of declaration is not required (and actually overwrites emitted
4651   // definition).
4652   if (GV && !GV->isDeclaration())
4653     return;
4654 
4655   // If we have not seen a reference to this variable yet, place it into the
4656   // deferred declarations table to be emitted if needed later.
4657   if (!MustBeEmitted(D) && !GV) {
4658       DeferredDecls[MangledName] = D;
4659       return;
4660   }
4661 
4662   // The tentative definition is the only definition.
4663   EmitGlobalVarDefinition(D);
4664 }
4665 
4666 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4667   EmitExternalVarDeclaration(D);
4668 }
4669 
4670 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4671   return Context.toCharUnitsFromBits(
4672       getDataLayout().getTypeStoreSizeInBits(Ty));
4673 }
4674 
4675 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4676   if (LangOpts.OpenCL) {
4677     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4678     assert(AS == LangAS::opencl_global ||
4679            AS == LangAS::opencl_global_device ||
4680            AS == LangAS::opencl_global_host ||
4681            AS == LangAS::opencl_constant ||
4682            AS == LangAS::opencl_local ||
4683            AS >= LangAS::FirstTargetAddressSpace);
4684     return AS;
4685   }
4686 
4687   if (LangOpts.SYCLIsDevice &&
4688       (!D || D->getType().getAddressSpace() == LangAS::Default))
4689     return LangAS::sycl_global;
4690 
4691   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4692     if (D) {
4693       if (D->hasAttr<CUDAConstantAttr>())
4694         return LangAS::cuda_constant;
4695       if (D->hasAttr<CUDASharedAttr>())
4696         return LangAS::cuda_shared;
4697       if (D->hasAttr<CUDADeviceAttr>())
4698         return LangAS::cuda_device;
4699       if (D->getType().isConstQualified())
4700         return LangAS::cuda_constant;
4701     }
4702     return LangAS::cuda_device;
4703   }
4704 
4705   if (LangOpts.OpenMP) {
4706     LangAS AS;
4707     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4708       return AS;
4709   }
4710   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4711 }
4712 
4713 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4714   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4715   if (LangOpts.OpenCL)
4716     return LangAS::opencl_constant;
4717   if (LangOpts.SYCLIsDevice)
4718     return LangAS::sycl_global;
4719   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4720     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4721     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4722     // with OpVariable instructions with Generic storage class which is not
4723     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4724     // UniformConstant storage class is not viable as pointers to it may not be
4725     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4726     return LangAS::cuda_device;
4727   if (auto AS = getTarget().getConstantAddressSpace())
4728     return *AS;
4729   return LangAS::Default;
4730 }
4731 
4732 // In address space agnostic languages, string literals are in default address
4733 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4734 // emitted in constant address space in LLVM IR. To be consistent with other
4735 // parts of AST, string literal global variables in constant address space
4736 // need to be casted to default address space before being put into address
4737 // map and referenced by other part of CodeGen.
4738 // In OpenCL, string literals are in constant address space in AST, therefore
4739 // they should not be casted to default address space.
4740 static llvm::Constant *
4741 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4742                                        llvm::GlobalVariable *GV) {
4743   llvm::Constant *Cast = GV;
4744   if (!CGM.getLangOpts().OpenCL) {
4745     auto AS = CGM.GetGlobalConstantAddressSpace();
4746     if (AS != LangAS::Default)
4747       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4748           CGM, GV, AS, LangAS::Default,
4749           GV->getValueType()->getPointerTo(
4750               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4751   }
4752   return Cast;
4753 }
4754 
4755 template<typename SomeDecl>
4756 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4757                                                llvm::GlobalValue *GV) {
4758   if (!getLangOpts().CPlusPlus)
4759     return;
4760 
4761   // Must have 'used' attribute, or else inline assembly can't rely on
4762   // the name existing.
4763   if (!D->template hasAttr<UsedAttr>())
4764     return;
4765 
4766   // Must have internal linkage and an ordinary name.
4767   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4768     return;
4769 
4770   // Must be in an extern "C" context. Entities declared directly within
4771   // a record are not extern "C" even if the record is in such a context.
4772   const SomeDecl *First = D->getFirstDecl();
4773   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4774     return;
4775 
4776   // OK, this is an internal linkage entity inside an extern "C" linkage
4777   // specification. Make a note of that so we can give it the "expected"
4778   // mangled name if nothing else is using that name.
4779   std::pair<StaticExternCMap::iterator, bool> R =
4780       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4781 
4782   // If we have multiple internal linkage entities with the same name
4783   // in extern "C" regions, none of them gets that name.
4784   if (!R.second)
4785     R.first->second = nullptr;
4786 }
4787 
4788 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4789   if (!CGM.supportsCOMDAT())
4790     return false;
4791 
4792   if (D.hasAttr<SelectAnyAttr>())
4793     return true;
4794 
4795   GVALinkage Linkage;
4796   if (auto *VD = dyn_cast<VarDecl>(&D))
4797     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4798   else
4799     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4800 
4801   switch (Linkage) {
4802   case GVA_Internal:
4803   case GVA_AvailableExternally:
4804   case GVA_StrongExternal:
4805     return false;
4806   case GVA_DiscardableODR:
4807   case GVA_StrongODR:
4808     return true;
4809   }
4810   llvm_unreachable("No such linkage");
4811 }
4812 
4813 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4814                                           llvm::GlobalObject &GO) {
4815   if (!shouldBeInCOMDAT(*this, D))
4816     return;
4817   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4818 }
4819 
4820 /// Pass IsTentative as true if you want to create a tentative definition.
4821 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4822                                             bool IsTentative) {
4823   // OpenCL global variables of sampler type are translated to function calls,
4824   // therefore no need to be translated.
4825   QualType ASTTy = D->getType();
4826   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4827     return;
4828 
4829   // If this is OpenMP device, check if it is legal to emit this global
4830   // normally.
4831   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4832       OpenMPRuntime->emitTargetGlobalVariable(D))
4833     return;
4834 
4835   llvm::TrackingVH<llvm::Constant> Init;
4836   bool NeedsGlobalCtor = false;
4837   // Whether the definition of the variable is available externally.
4838   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
4839   // since this is the job for its original source.
4840   bool IsDefinitionAvailableExternally =
4841       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
4842   bool NeedsGlobalDtor =
4843       !IsDefinitionAvailableExternally &&
4844       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4845 
4846   const VarDecl *InitDecl;
4847   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4848 
4849   std::optional<ConstantEmitter> emitter;
4850 
4851   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4852   // as part of their declaration."  Sema has already checked for
4853   // error cases, so we just need to set Init to UndefValue.
4854   bool IsCUDASharedVar =
4855       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4856   // Shadows of initialized device-side global variables are also left
4857   // undefined.
4858   // Managed Variables should be initialized on both host side and device side.
4859   bool IsCUDAShadowVar =
4860       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4861       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4862        D->hasAttr<CUDASharedAttr>());
4863   bool IsCUDADeviceShadowVar =
4864       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4865       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4866        D->getType()->isCUDADeviceBuiltinTextureType());
4867   if (getLangOpts().CUDA &&
4868       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4869     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4870   else if (D->hasAttr<LoaderUninitializedAttr>())
4871     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4872   else if (!InitExpr) {
4873     // This is a tentative definition; tentative definitions are
4874     // implicitly initialized with { 0 }.
4875     //
4876     // Note that tentative definitions are only emitted at the end of
4877     // a translation unit, so they should never have incomplete
4878     // type. In addition, EmitTentativeDefinition makes sure that we
4879     // never attempt to emit a tentative definition if a real one
4880     // exists. A use may still exists, however, so we still may need
4881     // to do a RAUW.
4882     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4883     Init = EmitNullConstant(D->getType());
4884   } else {
4885     initializedGlobalDecl = GlobalDecl(D);
4886     emitter.emplace(*this);
4887     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4888     if (!Initializer) {
4889       QualType T = InitExpr->getType();
4890       if (D->getType()->isReferenceType())
4891         T = D->getType();
4892 
4893       if (getLangOpts().CPlusPlus) {
4894         if (InitDecl->hasFlexibleArrayInit(getContext()))
4895           ErrorUnsupported(D, "flexible array initializer");
4896         Init = EmitNullConstant(T);
4897 
4898         if (!IsDefinitionAvailableExternally)
4899           NeedsGlobalCtor = true;
4900       } else {
4901         ErrorUnsupported(D, "static initializer");
4902         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4903       }
4904     } else {
4905       Init = Initializer;
4906       // We don't need an initializer, so remove the entry for the delayed
4907       // initializer position (just in case this entry was delayed) if we
4908       // also don't need to register a destructor.
4909       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4910         DelayedCXXInitPosition.erase(D);
4911 
4912 #ifndef NDEBUG
4913       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4914                           InitDecl->getFlexibleArrayInitChars(getContext());
4915       CharUnits CstSize = CharUnits::fromQuantity(
4916           getDataLayout().getTypeAllocSize(Init->getType()));
4917       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4918 #endif
4919     }
4920   }
4921 
4922   llvm::Type* InitType = Init->getType();
4923   llvm::Constant *Entry =
4924       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4925 
4926   // Strip off pointer casts if we got them.
4927   Entry = Entry->stripPointerCasts();
4928 
4929   // Entry is now either a Function or GlobalVariable.
4930   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4931 
4932   // We have a definition after a declaration with the wrong type.
4933   // We must make a new GlobalVariable* and update everything that used OldGV
4934   // (a declaration or tentative definition) with the new GlobalVariable*
4935   // (which will be a definition).
4936   //
4937   // This happens if there is a prototype for a global (e.g.
4938   // "extern int x[];") and then a definition of a different type (e.g.
4939   // "int x[10];"). This also happens when an initializer has a different type
4940   // from the type of the global (this happens with unions).
4941   if (!GV || GV->getValueType() != InitType ||
4942       GV->getType()->getAddressSpace() !=
4943           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4944 
4945     // Move the old entry aside so that we'll create a new one.
4946     Entry->setName(StringRef());
4947 
4948     // Make a new global with the correct type, this is now guaranteed to work.
4949     GV = cast<llvm::GlobalVariable>(
4950         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4951             ->stripPointerCasts());
4952 
4953     // Replace all uses of the old global with the new global
4954     llvm::Constant *NewPtrForOldDecl =
4955         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4956                                                              Entry->getType());
4957     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4958 
4959     // Erase the old global, since it is no longer used.
4960     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4961   }
4962 
4963   MaybeHandleStaticInExternC(D, GV);
4964 
4965   if (D->hasAttr<AnnotateAttr>())
4966     AddGlobalAnnotations(D, GV);
4967 
4968   // Set the llvm linkage type as appropriate.
4969   llvm::GlobalValue::LinkageTypes Linkage =
4970       getLLVMLinkageVarDefinition(D, GV->isConstant());
4971 
4972   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4973   // the device. [...]"
4974   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4975   // __device__, declares a variable that: [...]
4976   // Is accessible from all the threads within the grid and from the host
4977   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4978   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4979   if (GV && LangOpts.CUDA) {
4980     if (LangOpts.CUDAIsDevice) {
4981       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4982           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4983            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4984            D->getType()->isCUDADeviceBuiltinTextureType()))
4985         GV->setExternallyInitialized(true);
4986     } else {
4987       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4988     }
4989     getCUDARuntime().handleVarRegistration(D, *GV);
4990   }
4991 
4992   GV->setInitializer(Init);
4993   if (emitter)
4994     emitter->finalize(GV);
4995 
4996   // If it is safe to mark the global 'constant', do so now.
4997   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4998                   isTypeConstant(D->getType(), true));
4999 
5000   // If it is in a read-only section, mark it 'constant'.
5001   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5002     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5003     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5004       GV->setConstant(true);
5005   }
5006 
5007   CharUnits AlignVal = getContext().getDeclAlign(D);
5008   // Check for alignment specifed in an 'omp allocate' directive.
5009   if (std::optional<CharUnits> AlignValFromAllocate =
5010           getOMPAllocateAlignment(D))
5011     AlignVal = *AlignValFromAllocate;
5012   GV->setAlignment(AlignVal.getAsAlign());
5013 
5014   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5015   // function is only defined alongside the variable, not also alongside
5016   // callers. Normally, all accesses to a thread_local go through the
5017   // thread-wrapper in order to ensure initialization has occurred, underlying
5018   // variable will never be used other than the thread-wrapper, so it can be
5019   // converted to internal linkage.
5020   //
5021   // However, if the variable has the 'constinit' attribute, it _can_ be
5022   // referenced directly, without calling the thread-wrapper, so the linkage
5023   // must not be changed.
5024   //
5025   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5026   // weak or linkonce, the de-duplication semantics are important to preserve,
5027   // so we don't change the linkage.
5028   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5029       Linkage == llvm::GlobalValue::ExternalLinkage &&
5030       Context.getTargetInfo().getTriple().isOSDarwin() &&
5031       !D->hasAttr<ConstInitAttr>())
5032     Linkage = llvm::GlobalValue::InternalLinkage;
5033 
5034   GV->setLinkage(Linkage);
5035   if (D->hasAttr<DLLImportAttr>())
5036     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5037   else if (D->hasAttr<DLLExportAttr>())
5038     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5039   else
5040     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5041 
5042   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5043     // common vars aren't constant even if declared const.
5044     GV->setConstant(false);
5045     // Tentative definition of global variables may be initialized with
5046     // non-zero null pointers. In this case they should have weak linkage
5047     // since common linkage must have zero initializer and must not have
5048     // explicit section therefore cannot have non-zero initial value.
5049     if (!GV->getInitializer()->isNullValue())
5050       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5051   }
5052 
5053   setNonAliasAttributes(D, GV);
5054 
5055   if (D->getTLSKind() && !GV->isThreadLocal()) {
5056     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5057       CXXThreadLocals.push_back(D);
5058     setTLSMode(GV, *D);
5059   }
5060 
5061   maybeSetTrivialComdat(*D, *GV);
5062 
5063   // Emit the initializer function if necessary.
5064   if (NeedsGlobalCtor || NeedsGlobalDtor)
5065     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5066 
5067   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5068 
5069   // Emit global variable debug information.
5070   if (CGDebugInfo *DI = getModuleDebugInfo())
5071     if (getCodeGenOpts().hasReducedDebugInfo())
5072       DI->EmitGlobalVariable(GV, D);
5073 }
5074 
5075 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5076   if (CGDebugInfo *DI = getModuleDebugInfo())
5077     if (getCodeGenOpts().hasReducedDebugInfo()) {
5078       QualType ASTTy = D->getType();
5079       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5080       llvm::Constant *GV =
5081           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5082       DI->EmitExternalVariable(
5083           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5084     }
5085 }
5086 
5087 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5088                                       CodeGenModule &CGM, const VarDecl *D,
5089                                       bool NoCommon) {
5090   // Don't give variables common linkage if -fno-common was specified unless it
5091   // was overridden by a NoCommon attribute.
5092   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5093     return true;
5094 
5095   // C11 6.9.2/2:
5096   //   A declaration of an identifier for an object that has file scope without
5097   //   an initializer, and without a storage-class specifier or with the
5098   //   storage-class specifier static, constitutes a tentative definition.
5099   if (D->getInit() || D->hasExternalStorage())
5100     return true;
5101 
5102   // A variable cannot be both common and exist in a section.
5103   if (D->hasAttr<SectionAttr>())
5104     return true;
5105 
5106   // A variable cannot be both common and exist in a section.
5107   // We don't try to determine which is the right section in the front-end.
5108   // If no specialized section name is applicable, it will resort to default.
5109   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5110       D->hasAttr<PragmaClangDataSectionAttr>() ||
5111       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5112       D->hasAttr<PragmaClangRodataSectionAttr>())
5113     return true;
5114 
5115   // Thread local vars aren't considered common linkage.
5116   if (D->getTLSKind())
5117     return true;
5118 
5119   // Tentative definitions marked with WeakImportAttr are true definitions.
5120   if (D->hasAttr<WeakImportAttr>())
5121     return true;
5122 
5123   // A variable cannot be both common and exist in a comdat.
5124   if (shouldBeInCOMDAT(CGM, *D))
5125     return true;
5126 
5127   // Declarations with a required alignment do not have common linkage in MSVC
5128   // mode.
5129   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5130     if (D->hasAttr<AlignedAttr>())
5131       return true;
5132     QualType VarType = D->getType();
5133     if (Context.isAlignmentRequired(VarType))
5134       return true;
5135 
5136     if (const auto *RT = VarType->getAs<RecordType>()) {
5137       const RecordDecl *RD = RT->getDecl();
5138       for (const FieldDecl *FD : RD->fields()) {
5139         if (FD->isBitField())
5140           continue;
5141         if (FD->hasAttr<AlignedAttr>())
5142           return true;
5143         if (Context.isAlignmentRequired(FD->getType()))
5144           return true;
5145       }
5146     }
5147   }
5148 
5149   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5150   // common symbols, so symbols with greater alignment requirements cannot be
5151   // common.
5152   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5153   // alignments for common symbols via the aligncomm directive, so this
5154   // restriction only applies to MSVC environments.
5155   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5156       Context.getTypeAlignIfKnown(D->getType()) >
5157           Context.toBits(CharUnits::fromQuantity(32)))
5158     return true;
5159 
5160   return false;
5161 }
5162 
5163 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5164     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5165   if (Linkage == GVA_Internal)
5166     return llvm::Function::InternalLinkage;
5167 
5168   if (D->hasAttr<WeakAttr>())
5169     return llvm::GlobalVariable::WeakAnyLinkage;
5170 
5171   if (const auto *FD = D->getAsFunction())
5172     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5173       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5174 
5175   // We are guaranteed to have a strong definition somewhere else,
5176   // so we can use available_externally linkage.
5177   if (Linkage == GVA_AvailableExternally)
5178     return llvm::GlobalValue::AvailableExternallyLinkage;
5179 
5180   // Note that Apple's kernel linker doesn't support symbol
5181   // coalescing, so we need to avoid linkonce and weak linkages there.
5182   // Normally, this means we just map to internal, but for explicit
5183   // instantiations we'll map to external.
5184 
5185   // In C++, the compiler has to emit a definition in every translation unit
5186   // that references the function.  We should use linkonce_odr because
5187   // a) if all references in this translation unit are optimized away, we
5188   // don't need to codegen it.  b) if the function persists, it needs to be
5189   // merged with other definitions. c) C++ has the ODR, so we know the
5190   // definition is dependable.
5191   if (Linkage == GVA_DiscardableODR)
5192     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5193                                             : llvm::Function::InternalLinkage;
5194 
5195   // An explicit instantiation of a template has weak linkage, since
5196   // explicit instantiations can occur in multiple translation units
5197   // and must all be equivalent. However, we are not allowed to
5198   // throw away these explicit instantiations.
5199   //
5200   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5201   // so say that CUDA templates are either external (for kernels) or internal.
5202   // This lets llvm perform aggressive inter-procedural optimizations. For
5203   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5204   // therefore we need to follow the normal linkage paradigm.
5205   if (Linkage == GVA_StrongODR) {
5206     if (getLangOpts().AppleKext)
5207       return llvm::Function::ExternalLinkage;
5208     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5209         !getLangOpts().GPURelocatableDeviceCode)
5210       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5211                                           : llvm::Function::InternalLinkage;
5212     return llvm::Function::WeakODRLinkage;
5213   }
5214 
5215   // C++ doesn't have tentative definitions and thus cannot have common
5216   // linkage.
5217   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5218       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5219                                  CodeGenOpts.NoCommon))
5220     return llvm::GlobalVariable::CommonLinkage;
5221 
5222   // selectany symbols are externally visible, so use weak instead of
5223   // linkonce.  MSVC optimizes away references to const selectany globals, so
5224   // all definitions should be the same and ODR linkage should be used.
5225   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5226   if (D->hasAttr<SelectAnyAttr>())
5227     return llvm::GlobalVariable::WeakODRLinkage;
5228 
5229   // Otherwise, we have strong external linkage.
5230   assert(Linkage == GVA_StrongExternal);
5231   return llvm::GlobalVariable::ExternalLinkage;
5232 }
5233 
5234 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5235     const VarDecl *VD, bool IsConstant) {
5236   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5237   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5238 }
5239 
5240 /// Replace the uses of a function that was declared with a non-proto type.
5241 /// We want to silently drop extra arguments from call sites
5242 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5243                                           llvm::Function *newFn) {
5244   // Fast path.
5245   if (old->use_empty()) return;
5246 
5247   llvm::Type *newRetTy = newFn->getReturnType();
5248   SmallVector<llvm::Value*, 4> newArgs;
5249 
5250   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5251          ui != ue; ) {
5252     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5253     llvm::User *user = use->getUser();
5254 
5255     // Recognize and replace uses of bitcasts.  Most calls to
5256     // unprototyped functions will use bitcasts.
5257     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5258       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5259         replaceUsesOfNonProtoConstant(bitcast, newFn);
5260       continue;
5261     }
5262 
5263     // Recognize calls to the function.
5264     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5265     if (!callSite) continue;
5266     if (!callSite->isCallee(&*use))
5267       continue;
5268 
5269     // If the return types don't match exactly, then we can't
5270     // transform this call unless it's dead.
5271     if (callSite->getType() != newRetTy && !callSite->use_empty())
5272       continue;
5273 
5274     // Get the call site's attribute list.
5275     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5276     llvm::AttributeList oldAttrs = callSite->getAttributes();
5277 
5278     // If the function was passed too few arguments, don't transform.
5279     unsigned newNumArgs = newFn->arg_size();
5280     if (callSite->arg_size() < newNumArgs)
5281       continue;
5282 
5283     // If extra arguments were passed, we silently drop them.
5284     // If any of the types mismatch, we don't transform.
5285     unsigned argNo = 0;
5286     bool dontTransform = false;
5287     for (llvm::Argument &A : newFn->args()) {
5288       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5289         dontTransform = true;
5290         break;
5291       }
5292 
5293       // Add any parameter attributes.
5294       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5295       argNo++;
5296     }
5297     if (dontTransform)
5298       continue;
5299 
5300     // Okay, we can transform this.  Create the new call instruction and copy
5301     // over the required information.
5302     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5303 
5304     // Copy over any operand bundles.
5305     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5306     callSite->getOperandBundlesAsDefs(newBundles);
5307 
5308     llvm::CallBase *newCall;
5309     if (isa<llvm::CallInst>(callSite)) {
5310       newCall =
5311           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5312     } else {
5313       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5314       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5315                                          oldInvoke->getUnwindDest(), newArgs,
5316                                          newBundles, "", callSite);
5317     }
5318     newArgs.clear(); // for the next iteration
5319 
5320     if (!newCall->getType()->isVoidTy())
5321       newCall->takeName(callSite);
5322     newCall->setAttributes(
5323         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5324                                  oldAttrs.getRetAttrs(), newArgAttrs));
5325     newCall->setCallingConv(callSite->getCallingConv());
5326 
5327     // Finally, remove the old call, replacing any uses with the new one.
5328     if (!callSite->use_empty())
5329       callSite->replaceAllUsesWith(newCall);
5330 
5331     // Copy debug location attached to CI.
5332     if (callSite->getDebugLoc())
5333       newCall->setDebugLoc(callSite->getDebugLoc());
5334 
5335     callSite->eraseFromParent();
5336   }
5337 }
5338 
5339 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5340 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5341 /// existing call uses of the old function in the module, this adjusts them to
5342 /// call the new function directly.
5343 ///
5344 /// This is not just a cleanup: the always_inline pass requires direct calls to
5345 /// functions to be able to inline them.  If there is a bitcast in the way, it
5346 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5347 /// run at -O0.
5348 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5349                                                       llvm::Function *NewFn) {
5350   // If we're redefining a global as a function, don't transform it.
5351   if (!isa<llvm::Function>(Old)) return;
5352 
5353   replaceUsesOfNonProtoConstant(Old, NewFn);
5354 }
5355 
5356 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5357   auto DK = VD->isThisDeclarationADefinition();
5358   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5359     return;
5360 
5361   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5362   // If we have a definition, this might be a deferred decl. If the
5363   // instantiation is explicit, make sure we emit it at the end.
5364   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5365     GetAddrOfGlobalVar(VD);
5366 
5367   EmitTopLevelDecl(VD);
5368 }
5369 
5370 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5371                                                  llvm::GlobalValue *GV) {
5372   const auto *D = cast<FunctionDecl>(GD.getDecl());
5373 
5374   // Compute the function info and LLVM type.
5375   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5376   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5377 
5378   // Get or create the prototype for the function.
5379   if (!GV || (GV->getValueType() != Ty))
5380     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5381                                                    /*DontDefer=*/true,
5382                                                    ForDefinition));
5383 
5384   // Already emitted.
5385   if (!GV->isDeclaration())
5386     return;
5387 
5388   // We need to set linkage and visibility on the function before
5389   // generating code for it because various parts of IR generation
5390   // want to propagate this information down (e.g. to local static
5391   // declarations).
5392   auto *Fn = cast<llvm::Function>(GV);
5393   setFunctionLinkage(GD, Fn);
5394 
5395   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5396   setGVProperties(Fn, GD);
5397 
5398   MaybeHandleStaticInExternC(D, Fn);
5399 
5400   maybeSetTrivialComdat(*D, *Fn);
5401 
5402   // Set CodeGen attributes that represent floating point environment.
5403   setLLVMFunctionFEnvAttributes(D, Fn);
5404 
5405   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5406 
5407   setNonAliasAttributes(GD, Fn);
5408   SetLLVMFunctionAttributesForDefinition(D, Fn);
5409 
5410   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5411     AddGlobalCtor(Fn, CA->getPriority());
5412   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5413     AddGlobalDtor(Fn, DA->getPriority(), true);
5414   if (D->hasAttr<AnnotateAttr>())
5415     AddGlobalAnnotations(D, Fn);
5416 }
5417 
5418 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5419   const auto *D = cast<ValueDecl>(GD.getDecl());
5420   const AliasAttr *AA = D->getAttr<AliasAttr>();
5421   assert(AA && "Not an alias?");
5422 
5423   StringRef MangledName = getMangledName(GD);
5424 
5425   if (AA->getAliasee() == MangledName) {
5426     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5427     return;
5428   }
5429 
5430   // If there is a definition in the module, then it wins over the alias.
5431   // This is dubious, but allow it to be safe.  Just ignore the alias.
5432   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5433   if (Entry && !Entry->isDeclaration())
5434     return;
5435 
5436   Aliases.push_back(GD);
5437 
5438   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5439 
5440   // Create a reference to the named value.  This ensures that it is emitted
5441   // if a deferred decl.
5442   llvm::Constant *Aliasee;
5443   llvm::GlobalValue::LinkageTypes LT;
5444   if (isa<llvm::FunctionType>(DeclTy)) {
5445     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5446                                       /*ForVTable=*/false);
5447     LT = getFunctionLinkage(GD);
5448   } else {
5449     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5450                                     /*D=*/nullptr);
5451     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5452       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5453     else
5454       LT = getFunctionLinkage(GD);
5455   }
5456 
5457   // Create the new alias itself, but don't set a name yet.
5458   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5459   auto *GA =
5460       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5461 
5462   if (Entry) {
5463     if (GA->getAliasee() == Entry) {
5464       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5465       return;
5466     }
5467 
5468     assert(Entry->isDeclaration());
5469 
5470     // If there is a declaration in the module, then we had an extern followed
5471     // by the alias, as in:
5472     //   extern int test6();
5473     //   ...
5474     //   int test6() __attribute__((alias("test7")));
5475     //
5476     // Remove it and replace uses of it with the alias.
5477     GA->takeName(Entry);
5478 
5479     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5480                                                           Entry->getType()));
5481     Entry->eraseFromParent();
5482   } else {
5483     GA->setName(MangledName);
5484   }
5485 
5486   // Set attributes which are particular to an alias; this is a
5487   // specialization of the attributes which may be set on a global
5488   // variable/function.
5489   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5490       D->isWeakImported()) {
5491     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5492   }
5493 
5494   if (const auto *VD = dyn_cast<VarDecl>(D))
5495     if (VD->getTLSKind())
5496       setTLSMode(GA, *VD);
5497 
5498   SetCommonAttributes(GD, GA);
5499 
5500   // Emit global alias debug information.
5501   if (isa<VarDecl>(D))
5502     if (CGDebugInfo *DI = getModuleDebugInfo())
5503       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5504 }
5505 
5506 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5507   const auto *D = cast<ValueDecl>(GD.getDecl());
5508   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5509   assert(IFA && "Not an ifunc?");
5510 
5511   StringRef MangledName = getMangledName(GD);
5512 
5513   if (IFA->getResolver() == MangledName) {
5514     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5515     return;
5516   }
5517 
5518   // Report an error if some definition overrides ifunc.
5519   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5520   if (Entry && !Entry->isDeclaration()) {
5521     GlobalDecl OtherGD;
5522     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5523         DiagnosedConflictingDefinitions.insert(GD).second) {
5524       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5525           << MangledName;
5526       Diags.Report(OtherGD.getDecl()->getLocation(),
5527                    diag::note_previous_definition);
5528     }
5529     return;
5530   }
5531 
5532   Aliases.push_back(GD);
5533 
5534   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5535   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5536   llvm::Constant *Resolver =
5537       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5538                               /*ForVTable=*/false);
5539   llvm::GlobalIFunc *GIF =
5540       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5541                                 "", Resolver, &getModule());
5542   if (Entry) {
5543     if (GIF->getResolver() == Entry) {
5544       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5545       return;
5546     }
5547     assert(Entry->isDeclaration());
5548 
5549     // If there is a declaration in the module, then we had an extern followed
5550     // by the ifunc, as in:
5551     //   extern int test();
5552     //   ...
5553     //   int test() __attribute__((ifunc("resolver")));
5554     //
5555     // Remove it and replace uses of it with the ifunc.
5556     GIF->takeName(Entry);
5557 
5558     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5559                                                           Entry->getType()));
5560     Entry->eraseFromParent();
5561   } else
5562     GIF->setName(MangledName);
5563 
5564   SetCommonAttributes(GD, GIF);
5565 }
5566 
5567 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5568                                             ArrayRef<llvm::Type*> Tys) {
5569   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5570                                          Tys);
5571 }
5572 
5573 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5574 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5575                          const StringLiteral *Literal, bool TargetIsLSB,
5576                          bool &IsUTF16, unsigned &StringLength) {
5577   StringRef String = Literal->getString();
5578   unsigned NumBytes = String.size();
5579 
5580   // Check for simple case.
5581   if (!Literal->containsNonAsciiOrNull()) {
5582     StringLength = NumBytes;
5583     return *Map.insert(std::make_pair(String, nullptr)).first;
5584   }
5585 
5586   // Otherwise, convert the UTF8 literals into a string of shorts.
5587   IsUTF16 = true;
5588 
5589   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5590   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5591   llvm::UTF16 *ToPtr = &ToBuf[0];
5592 
5593   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5594                                  ToPtr + NumBytes, llvm::strictConversion);
5595 
5596   // ConvertUTF8toUTF16 returns the length in ToPtr.
5597   StringLength = ToPtr - &ToBuf[0];
5598 
5599   // Add an explicit null.
5600   *ToPtr = 0;
5601   return *Map.insert(std::make_pair(
5602                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5603                                    (StringLength + 1) * 2),
5604                          nullptr)).first;
5605 }
5606 
5607 ConstantAddress
5608 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5609   unsigned StringLength = 0;
5610   bool isUTF16 = false;
5611   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5612       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5613                                getDataLayout().isLittleEndian(), isUTF16,
5614                                StringLength);
5615 
5616   if (auto *C = Entry.second)
5617     return ConstantAddress(
5618         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5619 
5620   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5621   llvm::Constant *Zeros[] = { Zero, Zero };
5622 
5623   const ASTContext &Context = getContext();
5624   const llvm::Triple &Triple = getTriple();
5625 
5626   const auto CFRuntime = getLangOpts().CFRuntime;
5627   const bool IsSwiftABI =
5628       static_cast<unsigned>(CFRuntime) >=
5629       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5630   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5631 
5632   // If we don't already have it, get __CFConstantStringClassReference.
5633   if (!CFConstantStringClassRef) {
5634     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5635     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5636     Ty = llvm::ArrayType::get(Ty, 0);
5637 
5638     switch (CFRuntime) {
5639     default: break;
5640     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5641     case LangOptions::CoreFoundationABI::Swift5_0:
5642       CFConstantStringClassName =
5643           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5644                               : "$s10Foundation19_NSCFConstantStringCN";
5645       Ty = IntPtrTy;
5646       break;
5647     case LangOptions::CoreFoundationABI::Swift4_2:
5648       CFConstantStringClassName =
5649           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5650                               : "$S10Foundation19_NSCFConstantStringCN";
5651       Ty = IntPtrTy;
5652       break;
5653     case LangOptions::CoreFoundationABI::Swift4_1:
5654       CFConstantStringClassName =
5655           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5656                               : "__T010Foundation19_NSCFConstantStringCN";
5657       Ty = IntPtrTy;
5658       break;
5659     }
5660 
5661     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5662 
5663     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5664       llvm::GlobalValue *GV = nullptr;
5665 
5666       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5667         IdentifierInfo &II = Context.Idents.get(GV->getName());
5668         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5669         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5670 
5671         const VarDecl *VD = nullptr;
5672         for (const auto *Result : DC->lookup(&II))
5673           if ((VD = dyn_cast<VarDecl>(Result)))
5674             break;
5675 
5676         if (Triple.isOSBinFormatELF()) {
5677           if (!VD)
5678             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5679         } else {
5680           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5681           if (!VD || !VD->hasAttr<DLLExportAttr>())
5682             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5683           else
5684             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5685         }
5686 
5687         setDSOLocal(GV);
5688       }
5689     }
5690 
5691     // Decay array -> ptr
5692     CFConstantStringClassRef =
5693         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5694                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5695   }
5696 
5697   QualType CFTy = Context.getCFConstantStringType();
5698 
5699   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5700 
5701   ConstantInitBuilder Builder(*this);
5702   auto Fields = Builder.beginStruct(STy);
5703 
5704   // Class pointer.
5705   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5706 
5707   // Flags.
5708   if (IsSwiftABI) {
5709     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5710     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5711   } else {
5712     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5713   }
5714 
5715   // String pointer.
5716   llvm::Constant *C = nullptr;
5717   if (isUTF16) {
5718     auto Arr = llvm::ArrayRef(
5719         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5720         Entry.first().size() / 2);
5721     C = llvm::ConstantDataArray::get(VMContext, Arr);
5722   } else {
5723     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5724   }
5725 
5726   // Note: -fwritable-strings doesn't make the backing store strings of
5727   // CFStrings writable. (See <rdar://problem/10657500>)
5728   auto *GV =
5729       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5730                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5731   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5732   // Don't enforce the target's minimum global alignment, since the only use
5733   // of the string is via this class initializer.
5734   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5735                             : Context.getTypeAlignInChars(Context.CharTy);
5736   GV->setAlignment(Align.getAsAlign());
5737 
5738   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5739   // Without it LLVM can merge the string with a non unnamed_addr one during
5740   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5741   if (Triple.isOSBinFormatMachO())
5742     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5743                            : "__TEXT,__cstring,cstring_literals");
5744   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5745   // the static linker to adjust permissions to read-only later on.
5746   else if (Triple.isOSBinFormatELF())
5747     GV->setSection(".rodata");
5748 
5749   // String.
5750   llvm::Constant *Str =
5751       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5752 
5753   if (isUTF16)
5754     // Cast the UTF16 string to the correct type.
5755     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5756   Fields.add(Str);
5757 
5758   // String length.
5759   llvm::IntegerType *LengthTy =
5760       llvm::IntegerType::get(getModule().getContext(),
5761                              Context.getTargetInfo().getLongWidth());
5762   if (IsSwiftABI) {
5763     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5764         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5765       LengthTy = Int32Ty;
5766     else
5767       LengthTy = IntPtrTy;
5768   }
5769   Fields.addInt(LengthTy, StringLength);
5770 
5771   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5772   // properly aligned on 32-bit platforms.
5773   CharUnits Alignment =
5774       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5775 
5776   // The struct.
5777   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5778                                     /*isConstant=*/false,
5779                                     llvm::GlobalVariable::PrivateLinkage);
5780   GV->addAttribute("objc_arc_inert");
5781   switch (Triple.getObjectFormat()) {
5782   case llvm::Triple::UnknownObjectFormat:
5783     llvm_unreachable("unknown file format");
5784   case llvm::Triple::DXContainer:
5785   case llvm::Triple::GOFF:
5786   case llvm::Triple::SPIRV:
5787   case llvm::Triple::XCOFF:
5788     llvm_unreachable("unimplemented");
5789   case llvm::Triple::COFF:
5790   case llvm::Triple::ELF:
5791   case llvm::Triple::Wasm:
5792     GV->setSection("cfstring");
5793     break;
5794   case llvm::Triple::MachO:
5795     GV->setSection("__DATA,__cfstring");
5796     break;
5797   }
5798   Entry.second = GV;
5799 
5800   return ConstantAddress(GV, GV->getValueType(), Alignment);
5801 }
5802 
5803 bool CodeGenModule::getExpressionLocationsEnabled() const {
5804   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5805 }
5806 
5807 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5808   if (ObjCFastEnumerationStateType.isNull()) {
5809     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5810     D->startDefinition();
5811 
5812     QualType FieldTypes[] = {
5813       Context.UnsignedLongTy,
5814       Context.getPointerType(Context.getObjCIdType()),
5815       Context.getPointerType(Context.UnsignedLongTy),
5816       Context.getConstantArrayType(Context.UnsignedLongTy,
5817                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5818     };
5819 
5820     for (size_t i = 0; i < 4; ++i) {
5821       FieldDecl *Field = FieldDecl::Create(Context,
5822                                            D,
5823                                            SourceLocation(),
5824                                            SourceLocation(), nullptr,
5825                                            FieldTypes[i], /*TInfo=*/nullptr,
5826                                            /*BitWidth=*/nullptr,
5827                                            /*Mutable=*/false,
5828                                            ICIS_NoInit);
5829       Field->setAccess(AS_public);
5830       D->addDecl(Field);
5831     }
5832 
5833     D->completeDefinition();
5834     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5835   }
5836 
5837   return ObjCFastEnumerationStateType;
5838 }
5839 
5840 llvm::Constant *
5841 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5842   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5843 
5844   // Don't emit it as the address of the string, emit the string data itself
5845   // as an inline array.
5846   if (E->getCharByteWidth() == 1) {
5847     SmallString<64> Str(E->getString());
5848 
5849     // Resize the string to the right size, which is indicated by its type.
5850     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5851     Str.resize(CAT->getSize().getZExtValue());
5852     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5853   }
5854 
5855   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5856   llvm::Type *ElemTy = AType->getElementType();
5857   unsigned NumElements = AType->getNumElements();
5858 
5859   // Wide strings have either 2-byte or 4-byte elements.
5860   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5861     SmallVector<uint16_t, 32> Elements;
5862     Elements.reserve(NumElements);
5863 
5864     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5865       Elements.push_back(E->getCodeUnit(i));
5866     Elements.resize(NumElements);
5867     return llvm::ConstantDataArray::get(VMContext, Elements);
5868   }
5869 
5870   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5871   SmallVector<uint32_t, 32> Elements;
5872   Elements.reserve(NumElements);
5873 
5874   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5875     Elements.push_back(E->getCodeUnit(i));
5876   Elements.resize(NumElements);
5877   return llvm::ConstantDataArray::get(VMContext, Elements);
5878 }
5879 
5880 static llvm::GlobalVariable *
5881 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5882                       CodeGenModule &CGM, StringRef GlobalName,
5883                       CharUnits Alignment) {
5884   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5885       CGM.GetGlobalConstantAddressSpace());
5886 
5887   llvm::Module &M = CGM.getModule();
5888   // Create a global variable for this string
5889   auto *GV = new llvm::GlobalVariable(
5890       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5891       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5892   GV->setAlignment(Alignment.getAsAlign());
5893   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5894   if (GV->isWeakForLinker()) {
5895     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5896     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5897   }
5898   CGM.setDSOLocal(GV);
5899 
5900   return GV;
5901 }
5902 
5903 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5904 /// constant array for the given string literal.
5905 ConstantAddress
5906 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5907                                                   StringRef Name) {
5908   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5909 
5910   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5911   llvm::GlobalVariable **Entry = nullptr;
5912   if (!LangOpts.WritableStrings) {
5913     Entry = &ConstantStringMap[C];
5914     if (auto GV = *Entry) {
5915       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5916         GV->setAlignment(Alignment.getAsAlign());
5917       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5918                              GV->getValueType(), Alignment);
5919     }
5920   }
5921 
5922   SmallString<256> MangledNameBuffer;
5923   StringRef GlobalVariableName;
5924   llvm::GlobalValue::LinkageTypes LT;
5925 
5926   // Mangle the string literal if that's how the ABI merges duplicate strings.
5927   // Don't do it if they are writable, since we don't want writes in one TU to
5928   // affect strings in another.
5929   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5930       !LangOpts.WritableStrings) {
5931     llvm::raw_svector_ostream Out(MangledNameBuffer);
5932     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5933     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5934     GlobalVariableName = MangledNameBuffer;
5935   } else {
5936     LT = llvm::GlobalValue::PrivateLinkage;
5937     GlobalVariableName = Name;
5938   }
5939 
5940   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5941 
5942   CGDebugInfo *DI = getModuleDebugInfo();
5943   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5944     DI->AddStringLiteralDebugInfo(GV, S);
5945 
5946   if (Entry)
5947     *Entry = GV;
5948 
5949   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5950 
5951   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5952                          GV->getValueType(), Alignment);
5953 }
5954 
5955 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5956 /// array for the given ObjCEncodeExpr node.
5957 ConstantAddress
5958 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5959   std::string Str;
5960   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5961 
5962   return GetAddrOfConstantCString(Str);
5963 }
5964 
5965 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5966 /// the literal and a terminating '\0' character.
5967 /// The result has pointer to array type.
5968 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5969     const std::string &Str, const char *GlobalName) {
5970   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5971   CharUnits Alignment =
5972     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5973 
5974   llvm::Constant *C =
5975       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5976 
5977   // Don't share any string literals if strings aren't constant.
5978   llvm::GlobalVariable **Entry = nullptr;
5979   if (!LangOpts.WritableStrings) {
5980     Entry = &ConstantStringMap[C];
5981     if (auto GV = *Entry) {
5982       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5983         GV->setAlignment(Alignment.getAsAlign());
5984       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5985                              GV->getValueType(), Alignment);
5986     }
5987   }
5988 
5989   // Get the default prefix if a name wasn't specified.
5990   if (!GlobalName)
5991     GlobalName = ".str";
5992   // Create a global variable for this.
5993   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5994                                   GlobalName, Alignment);
5995   if (Entry)
5996     *Entry = GV;
5997 
5998   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5999                          GV->getValueType(), Alignment);
6000 }
6001 
6002 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6003     const MaterializeTemporaryExpr *E, const Expr *Init) {
6004   assert((E->getStorageDuration() == SD_Static ||
6005           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6006   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6007 
6008   // If we're not materializing a subobject of the temporary, keep the
6009   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6010   QualType MaterializedType = Init->getType();
6011   if (Init == E->getSubExpr())
6012     MaterializedType = E->getType();
6013 
6014   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6015 
6016   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6017   if (!InsertResult.second) {
6018     // We've seen this before: either we already created it or we're in the
6019     // process of doing so.
6020     if (!InsertResult.first->second) {
6021       // We recursively re-entered this function, probably during emission of
6022       // the initializer. Create a placeholder. We'll clean this up in the
6023       // outer call, at the end of this function.
6024       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6025       InsertResult.first->second = new llvm::GlobalVariable(
6026           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6027           nullptr);
6028     }
6029     return ConstantAddress(InsertResult.first->second,
6030                            llvm::cast<llvm::GlobalVariable>(
6031                                InsertResult.first->second->stripPointerCasts())
6032                                ->getValueType(),
6033                            Align);
6034   }
6035 
6036   // FIXME: If an externally-visible declaration extends multiple temporaries,
6037   // we need to give each temporary the same name in every translation unit (and
6038   // we also need to make the temporaries externally-visible).
6039   SmallString<256> Name;
6040   llvm::raw_svector_ostream Out(Name);
6041   getCXXABI().getMangleContext().mangleReferenceTemporary(
6042       VD, E->getManglingNumber(), Out);
6043 
6044   APValue *Value = nullptr;
6045   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6046     // If the initializer of the extending declaration is a constant
6047     // initializer, we should have a cached constant initializer for this
6048     // temporary. Note that this might have a different value from the value
6049     // computed by evaluating the initializer if the surrounding constant
6050     // expression modifies the temporary.
6051     Value = E->getOrCreateValue(false);
6052   }
6053 
6054   // Try evaluating it now, it might have a constant initializer.
6055   Expr::EvalResult EvalResult;
6056   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6057       !EvalResult.hasSideEffects())
6058     Value = &EvalResult.Val;
6059 
6060   LangAS AddrSpace =
6061       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6062 
6063   std::optional<ConstantEmitter> emitter;
6064   llvm::Constant *InitialValue = nullptr;
6065   bool Constant = false;
6066   llvm::Type *Type;
6067   if (Value) {
6068     // The temporary has a constant initializer, use it.
6069     emitter.emplace(*this);
6070     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6071                                                MaterializedType);
6072     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
6073     Type = InitialValue->getType();
6074   } else {
6075     // No initializer, the initialization will be provided when we
6076     // initialize the declaration which performed lifetime extension.
6077     Type = getTypes().ConvertTypeForMem(MaterializedType);
6078   }
6079 
6080   // Create a global variable for this lifetime-extended temporary.
6081   llvm::GlobalValue::LinkageTypes Linkage =
6082       getLLVMLinkageVarDefinition(VD, Constant);
6083   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6084     const VarDecl *InitVD;
6085     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6086         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6087       // Temporaries defined inside a class get linkonce_odr linkage because the
6088       // class can be defined in multiple translation units.
6089       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6090     } else {
6091       // There is no need for this temporary to have external linkage if the
6092       // VarDecl has external linkage.
6093       Linkage = llvm::GlobalVariable::InternalLinkage;
6094     }
6095   }
6096   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6097   auto *GV = new llvm::GlobalVariable(
6098       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6099       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6100   if (emitter) emitter->finalize(GV);
6101   // Don't assign dllimport or dllexport to local linkage globals.
6102   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6103     setGVProperties(GV, VD);
6104     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6105       // The reference temporary should never be dllexport.
6106       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6107   }
6108   GV->setAlignment(Align.getAsAlign());
6109   if (supportsCOMDAT() && GV->isWeakForLinker())
6110     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6111   if (VD->getTLSKind())
6112     setTLSMode(GV, *VD);
6113   llvm::Constant *CV = GV;
6114   if (AddrSpace != LangAS::Default)
6115     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6116         *this, GV, AddrSpace, LangAS::Default,
6117         Type->getPointerTo(
6118             getContext().getTargetAddressSpace(LangAS::Default)));
6119 
6120   // Update the map with the new temporary. If we created a placeholder above,
6121   // replace it with the new global now.
6122   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6123   if (Entry) {
6124     Entry->replaceAllUsesWith(
6125         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6126     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6127   }
6128   Entry = CV;
6129 
6130   return ConstantAddress(CV, Type, Align);
6131 }
6132 
6133 /// EmitObjCPropertyImplementations - Emit information for synthesized
6134 /// properties for an implementation.
6135 void CodeGenModule::EmitObjCPropertyImplementations(const
6136                                                     ObjCImplementationDecl *D) {
6137   for (const auto *PID : D->property_impls()) {
6138     // Dynamic is just for type-checking.
6139     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6140       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6141 
6142       // Determine which methods need to be implemented, some may have
6143       // been overridden. Note that ::isPropertyAccessor is not the method
6144       // we want, that just indicates if the decl came from a
6145       // property. What we want to know is if the method is defined in
6146       // this implementation.
6147       auto *Getter = PID->getGetterMethodDecl();
6148       if (!Getter || Getter->isSynthesizedAccessorStub())
6149         CodeGenFunction(*this).GenerateObjCGetter(
6150             const_cast<ObjCImplementationDecl *>(D), PID);
6151       auto *Setter = PID->getSetterMethodDecl();
6152       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6153         CodeGenFunction(*this).GenerateObjCSetter(
6154                                  const_cast<ObjCImplementationDecl *>(D), PID);
6155     }
6156   }
6157 }
6158 
6159 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6160   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6161   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6162        ivar; ivar = ivar->getNextIvar())
6163     if (ivar->getType().isDestructedType())
6164       return true;
6165 
6166   return false;
6167 }
6168 
6169 static bool AllTrivialInitializers(CodeGenModule &CGM,
6170                                    ObjCImplementationDecl *D) {
6171   CodeGenFunction CGF(CGM);
6172   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6173        E = D->init_end(); B != E; ++B) {
6174     CXXCtorInitializer *CtorInitExp = *B;
6175     Expr *Init = CtorInitExp->getInit();
6176     if (!CGF.isTrivialInitializer(Init))
6177       return false;
6178   }
6179   return true;
6180 }
6181 
6182 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6183 /// for an implementation.
6184 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6185   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6186   if (needsDestructMethod(D)) {
6187     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6188     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6189     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6190         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6191         getContext().VoidTy, nullptr, D,
6192         /*isInstance=*/true, /*isVariadic=*/false,
6193         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6194         /*isImplicitlyDeclared=*/true,
6195         /*isDefined=*/false, ObjCMethodDecl::Required);
6196     D->addInstanceMethod(DTORMethod);
6197     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6198     D->setHasDestructors(true);
6199   }
6200 
6201   // If the implementation doesn't have any ivar initializers, we don't need
6202   // a .cxx_construct.
6203   if (D->getNumIvarInitializers() == 0 ||
6204       AllTrivialInitializers(*this, D))
6205     return;
6206 
6207   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6208   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6209   // The constructor returns 'self'.
6210   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6211       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6212       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6213       /*isVariadic=*/false,
6214       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6215       /*isImplicitlyDeclared=*/true,
6216       /*isDefined=*/false, ObjCMethodDecl::Required);
6217   D->addInstanceMethod(CTORMethod);
6218   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6219   D->setHasNonZeroConstructors(true);
6220 }
6221 
6222 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6223 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6224   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6225       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6226     ErrorUnsupported(LSD, "linkage spec");
6227     return;
6228   }
6229 
6230   EmitDeclContext(LSD);
6231 }
6232 
6233 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6234   std::unique_ptr<CodeGenFunction> &CurCGF =
6235       GlobalTopLevelStmtBlockInFlight.first;
6236 
6237   // We emitted a top-level stmt but after it there is initialization.
6238   // Stop squashing the top-level stmts into a single function.
6239   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6240     CurCGF->FinishFunction(D->getEndLoc());
6241     CurCGF = nullptr;
6242   }
6243 
6244   if (!CurCGF) {
6245     // void __stmts__N(void)
6246     // FIXME: Ask the ABI name mangler to pick a name.
6247     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6248     FunctionArgList Args;
6249     QualType RetTy = getContext().VoidTy;
6250     const CGFunctionInfo &FnInfo =
6251         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6252     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6253     llvm::Function *Fn = llvm::Function::Create(
6254         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6255 
6256     CurCGF.reset(new CodeGenFunction(*this));
6257     GlobalTopLevelStmtBlockInFlight.second = D;
6258     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6259                           D->getBeginLoc(), D->getBeginLoc());
6260     CXXGlobalInits.push_back(Fn);
6261   }
6262 
6263   CurCGF->EmitStmt(D->getStmt());
6264 }
6265 
6266 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6267   for (auto *I : DC->decls()) {
6268     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6269     // are themselves considered "top-level", so EmitTopLevelDecl on an
6270     // ObjCImplDecl does not recursively visit them. We need to do that in
6271     // case they're nested inside another construct (LinkageSpecDecl /
6272     // ExportDecl) that does stop them from being considered "top-level".
6273     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6274       for (auto *M : OID->methods())
6275         EmitTopLevelDecl(M);
6276     }
6277 
6278     EmitTopLevelDecl(I);
6279   }
6280 }
6281 
6282 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6283 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6284   // Ignore dependent declarations.
6285   if (D->isTemplated())
6286     return;
6287 
6288   // Consteval function shouldn't be emitted.
6289   if (auto *FD = dyn_cast<FunctionDecl>(D))
6290     if (FD->isConsteval())
6291       return;
6292 
6293   switch (D->getKind()) {
6294   case Decl::CXXConversion:
6295   case Decl::CXXMethod:
6296   case Decl::Function:
6297     EmitGlobal(cast<FunctionDecl>(D));
6298     // Always provide some coverage mapping
6299     // even for the functions that aren't emitted.
6300     AddDeferredUnusedCoverageMapping(D);
6301     break;
6302 
6303   case Decl::CXXDeductionGuide:
6304     // Function-like, but does not result in code emission.
6305     break;
6306 
6307   case Decl::Var:
6308   case Decl::Decomposition:
6309   case Decl::VarTemplateSpecialization:
6310     EmitGlobal(cast<VarDecl>(D));
6311     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6312       for (auto *B : DD->bindings())
6313         if (auto *HD = B->getHoldingVar())
6314           EmitGlobal(HD);
6315     break;
6316 
6317   // Indirect fields from global anonymous structs and unions can be
6318   // ignored; only the actual variable requires IR gen support.
6319   case Decl::IndirectField:
6320     break;
6321 
6322   // C++ Decls
6323   case Decl::Namespace:
6324     EmitDeclContext(cast<NamespaceDecl>(D));
6325     break;
6326   case Decl::ClassTemplateSpecialization: {
6327     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6328     if (CGDebugInfo *DI = getModuleDebugInfo())
6329       if (Spec->getSpecializationKind() ==
6330               TSK_ExplicitInstantiationDefinition &&
6331           Spec->hasDefinition())
6332         DI->completeTemplateDefinition(*Spec);
6333   } [[fallthrough]];
6334   case Decl::CXXRecord: {
6335     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6336     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6337       if (CRD->hasDefinition())
6338         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6339       if (auto *ES = D->getASTContext().getExternalSource())
6340         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6341           DI->completeUnusedClass(*CRD);
6342     }
6343     // Emit any static data members, they may be definitions.
6344     for (auto *I : CRD->decls())
6345       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6346         EmitTopLevelDecl(I);
6347     break;
6348   }
6349     // No code generation needed.
6350   case Decl::UsingShadow:
6351   case Decl::ClassTemplate:
6352   case Decl::VarTemplate:
6353   case Decl::Concept:
6354   case Decl::VarTemplatePartialSpecialization:
6355   case Decl::FunctionTemplate:
6356   case Decl::TypeAliasTemplate:
6357   case Decl::Block:
6358   case Decl::Empty:
6359   case Decl::Binding:
6360     break;
6361   case Decl::Using:          // using X; [C++]
6362     if (CGDebugInfo *DI = getModuleDebugInfo())
6363         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6364     break;
6365   case Decl::UsingEnum: // using enum X; [C++]
6366     if (CGDebugInfo *DI = getModuleDebugInfo())
6367       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6368     break;
6369   case Decl::NamespaceAlias:
6370     if (CGDebugInfo *DI = getModuleDebugInfo())
6371         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6372     break;
6373   case Decl::UsingDirective: // using namespace X; [C++]
6374     if (CGDebugInfo *DI = getModuleDebugInfo())
6375       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6376     break;
6377   case Decl::CXXConstructor:
6378     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6379     break;
6380   case Decl::CXXDestructor:
6381     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6382     break;
6383 
6384   case Decl::StaticAssert:
6385     // Nothing to do.
6386     break;
6387 
6388   // Objective-C Decls
6389 
6390   // Forward declarations, no (immediate) code generation.
6391   case Decl::ObjCInterface:
6392   case Decl::ObjCCategory:
6393     break;
6394 
6395   case Decl::ObjCProtocol: {
6396     auto *Proto = cast<ObjCProtocolDecl>(D);
6397     if (Proto->isThisDeclarationADefinition())
6398       ObjCRuntime->GenerateProtocol(Proto);
6399     break;
6400   }
6401 
6402   case Decl::ObjCCategoryImpl:
6403     // Categories have properties but don't support synthesize so we
6404     // can ignore them here.
6405     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6406     break;
6407 
6408   case Decl::ObjCImplementation: {
6409     auto *OMD = cast<ObjCImplementationDecl>(D);
6410     EmitObjCPropertyImplementations(OMD);
6411     EmitObjCIvarInitializations(OMD);
6412     ObjCRuntime->GenerateClass(OMD);
6413     // Emit global variable debug information.
6414     if (CGDebugInfo *DI = getModuleDebugInfo())
6415       if (getCodeGenOpts().hasReducedDebugInfo())
6416         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6417             OMD->getClassInterface()), OMD->getLocation());
6418     break;
6419   }
6420   case Decl::ObjCMethod: {
6421     auto *OMD = cast<ObjCMethodDecl>(D);
6422     // If this is not a prototype, emit the body.
6423     if (OMD->getBody())
6424       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6425     break;
6426   }
6427   case Decl::ObjCCompatibleAlias:
6428     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6429     break;
6430 
6431   case Decl::PragmaComment: {
6432     const auto *PCD = cast<PragmaCommentDecl>(D);
6433     switch (PCD->getCommentKind()) {
6434     case PCK_Unknown:
6435       llvm_unreachable("unexpected pragma comment kind");
6436     case PCK_Linker:
6437       AppendLinkerOptions(PCD->getArg());
6438       break;
6439     case PCK_Lib:
6440         AddDependentLib(PCD->getArg());
6441       break;
6442     case PCK_Compiler:
6443     case PCK_ExeStr:
6444     case PCK_User:
6445       break; // We ignore all of these.
6446     }
6447     break;
6448   }
6449 
6450   case Decl::PragmaDetectMismatch: {
6451     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6452     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6453     break;
6454   }
6455 
6456   case Decl::LinkageSpec:
6457     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6458     break;
6459 
6460   case Decl::FileScopeAsm: {
6461     // File-scope asm is ignored during device-side CUDA compilation.
6462     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6463       break;
6464     // File-scope asm is ignored during device-side OpenMP compilation.
6465     if (LangOpts.OpenMPIsDevice)
6466       break;
6467     // File-scope asm is ignored during device-side SYCL compilation.
6468     if (LangOpts.SYCLIsDevice)
6469       break;
6470     auto *AD = cast<FileScopeAsmDecl>(D);
6471     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6472     break;
6473   }
6474 
6475   case Decl::TopLevelStmt:
6476     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6477     break;
6478 
6479   case Decl::Import: {
6480     auto *Import = cast<ImportDecl>(D);
6481 
6482     // If we've already imported this module, we're done.
6483     if (!ImportedModules.insert(Import->getImportedModule()))
6484       break;
6485 
6486     // Emit debug information for direct imports.
6487     if (!Import->getImportedOwningModule()) {
6488       if (CGDebugInfo *DI = getModuleDebugInfo())
6489         DI->EmitImportDecl(*Import);
6490     }
6491 
6492     // For C++ standard modules we are done - we will call the module
6493     // initializer for imported modules, and that will likewise call those for
6494     // any imports it has.
6495     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6496         !Import->getImportedOwningModule()->isModuleMapModule())
6497       break;
6498 
6499     // For clang C++ module map modules the initializers for sub-modules are
6500     // emitted here.
6501 
6502     // Find all of the submodules and emit the module initializers.
6503     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6504     SmallVector<clang::Module *, 16> Stack;
6505     Visited.insert(Import->getImportedModule());
6506     Stack.push_back(Import->getImportedModule());
6507 
6508     while (!Stack.empty()) {
6509       clang::Module *Mod = Stack.pop_back_val();
6510       if (!EmittedModuleInitializers.insert(Mod).second)
6511         continue;
6512 
6513       for (auto *D : Context.getModuleInitializers(Mod))
6514         EmitTopLevelDecl(D);
6515 
6516       // Visit the submodules of this module.
6517       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6518                                              SubEnd = Mod->submodule_end();
6519            Sub != SubEnd; ++Sub) {
6520         // Skip explicit children; they need to be explicitly imported to emit
6521         // the initializers.
6522         if ((*Sub)->IsExplicit)
6523           continue;
6524 
6525         if (Visited.insert(*Sub).second)
6526           Stack.push_back(*Sub);
6527       }
6528     }
6529     break;
6530   }
6531 
6532   case Decl::Export:
6533     EmitDeclContext(cast<ExportDecl>(D));
6534     break;
6535 
6536   case Decl::OMPThreadPrivate:
6537     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6538     break;
6539 
6540   case Decl::OMPAllocate:
6541     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6542     break;
6543 
6544   case Decl::OMPDeclareReduction:
6545     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6546     break;
6547 
6548   case Decl::OMPDeclareMapper:
6549     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6550     break;
6551 
6552   case Decl::OMPRequires:
6553     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6554     break;
6555 
6556   case Decl::Typedef:
6557   case Decl::TypeAlias: // using foo = bar; [C++11]
6558     if (CGDebugInfo *DI = getModuleDebugInfo())
6559       DI->EmitAndRetainType(
6560           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6561     break;
6562 
6563   case Decl::Record:
6564     if (CGDebugInfo *DI = getModuleDebugInfo())
6565       if (cast<RecordDecl>(D)->getDefinition())
6566         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6567     break;
6568 
6569   case Decl::Enum:
6570     if (CGDebugInfo *DI = getModuleDebugInfo())
6571       if (cast<EnumDecl>(D)->getDefinition())
6572         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6573     break;
6574 
6575   case Decl::HLSLBuffer:
6576     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6577     break;
6578 
6579   default:
6580     // Make sure we handled everything we should, every other kind is a
6581     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6582     // function. Need to recode Decl::Kind to do that easily.
6583     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6584     break;
6585   }
6586 }
6587 
6588 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6589   // Do we need to generate coverage mapping?
6590   if (!CodeGenOpts.CoverageMapping)
6591     return;
6592   switch (D->getKind()) {
6593   case Decl::CXXConversion:
6594   case Decl::CXXMethod:
6595   case Decl::Function:
6596   case Decl::ObjCMethod:
6597   case Decl::CXXConstructor:
6598   case Decl::CXXDestructor: {
6599     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6600       break;
6601     SourceManager &SM = getContext().getSourceManager();
6602     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6603       break;
6604     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6605     if (I == DeferredEmptyCoverageMappingDecls.end())
6606       DeferredEmptyCoverageMappingDecls[D] = true;
6607     break;
6608   }
6609   default:
6610     break;
6611   };
6612 }
6613 
6614 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6615   // Do we need to generate coverage mapping?
6616   if (!CodeGenOpts.CoverageMapping)
6617     return;
6618   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6619     if (Fn->isTemplateInstantiation())
6620       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6621   }
6622   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6623   if (I == DeferredEmptyCoverageMappingDecls.end())
6624     DeferredEmptyCoverageMappingDecls[D] = false;
6625   else
6626     I->second = false;
6627 }
6628 
6629 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6630   // We call takeVector() here to avoid use-after-free.
6631   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6632   // we deserialize function bodies to emit coverage info for them, and that
6633   // deserializes more declarations. How should we handle that case?
6634   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6635     if (!Entry.second)
6636       continue;
6637     const Decl *D = Entry.first;
6638     switch (D->getKind()) {
6639     case Decl::CXXConversion:
6640     case Decl::CXXMethod:
6641     case Decl::Function:
6642     case Decl::ObjCMethod: {
6643       CodeGenPGO PGO(*this);
6644       GlobalDecl GD(cast<FunctionDecl>(D));
6645       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6646                                   getFunctionLinkage(GD));
6647       break;
6648     }
6649     case Decl::CXXConstructor: {
6650       CodeGenPGO PGO(*this);
6651       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6652       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6653                                   getFunctionLinkage(GD));
6654       break;
6655     }
6656     case Decl::CXXDestructor: {
6657       CodeGenPGO PGO(*this);
6658       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6659       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6660                                   getFunctionLinkage(GD));
6661       break;
6662     }
6663     default:
6664       break;
6665     };
6666   }
6667 }
6668 
6669 void CodeGenModule::EmitMainVoidAlias() {
6670   // In order to transition away from "__original_main" gracefully, emit an
6671   // alias for "main" in the no-argument case so that libc can detect when
6672   // new-style no-argument main is in used.
6673   if (llvm::Function *F = getModule().getFunction("main")) {
6674     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6675         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6676       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6677       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6678     }
6679   }
6680 }
6681 
6682 /// Turns the given pointer into a constant.
6683 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6684                                           const void *Ptr) {
6685   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6686   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6687   return llvm::ConstantInt::get(i64, PtrInt);
6688 }
6689 
6690 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6691                                    llvm::NamedMDNode *&GlobalMetadata,
6692                                    GlobalDecl D,
6693                                    llvm::GlobalValue *Addr) {
6694   if (!GlobalMetadata)
6695     GlobalMetadata =
6696       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6697 
6698   // TODO: should we report variant information for ctors/dtors?
6699   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6700                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6701                                CGM.getLLVMContext(), D.getDecl()))};
6702   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6703 }
6704 
6705 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6706                                                  llvm::GlobalValue *CppFunc) {
6707   // Store the list of ifuncs we need to replace uses in.
6708   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6709   // List of ConstantExprs that we should be able to delete when we're done
6710   // here.
6711   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6712 
6713   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6714   if (Elem == CppFunc)
6715     return false;
6716 
6717   // First make sure that all users of this are ifuncs (or ifuncs via a
6718   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6719   // later.
6720   for (llvm::User *User : Elem->users()) {
6721     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6722     // ifunc directly. In any other case, just give up, as we don't know what we
6723     // could break by changing those.
6724     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6725       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6726         return false;
6727 
6728       for (llvm::User *CEUser : ConstExpr->users()) {
6729         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6730           IFuncs.push_back(IFunc);
6731         } else {
6732           return false;
6733         }
6734       }
6735       CEs.push_back(ConstExpr);
6736     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6737       IFuncs.push_back(IFunc);
6738     } else {
6739       // This user is one we don't know how to handle, so fail redirection. This
6740       // will result in an ifunc retaining a resolver name that will ultimately
6741       // fail to be resolved to a defined function.
6742       return false;
6743     }
6744   }
6745 
6746   // Now we know this is a valid case where we can do this alias replacement, we
6747   // need to remove all of the references to Elem (and the bitcasts!) so we can
6748   // delete it.
6749   for (llvm::GlobalIFunc *IFunc : IFuncs)
6750     IFunc->setResolver(nullptr);
6751   for (llvm::ConstantExpr *ConstExpr : CEs)
6752     ConstExpr->destroyConstant();
6753 
6754   // We should now be out of uses for the 'old' version of this function, so we
6755   // can erase it as well.
6756   Elem->eraseFromParent();
6757 
6758   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6759     // The type of the resolver is always just a function-type that returns the
6760     // type of the IFunc, so create that here. If the type of the actual
6761     // resolver doesn't match, it just gets bitcast to the right thing.
6762     auto *ResolverTy =
6763         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6764     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6765         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6766     IFunc->setResolver(Resolver);
6767   }
6768   return true;
6769 }
6770 
6771 /// For each function which is declared within an extern "C" region and marked
6772 /// as 'used', but has internal linkage, create an alias from the unmangled
6773 /// name to the mangled name if possible. People expect to be able to refer
6774 /// to such functions with an unmangled name from inline assembly within the
6775 /// same translation unit.
6776 void CodeGenModule::EmitStaticExternCAliases() {
6777   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6778     return;
6779   for (auto &I : StaticExternCValues) {
6780     IdentifierInfo *Name = I.first;
6781     llvm::GlobalValue *Val = I.second;
6782 
6783     // If Val is null, that implies there were multiple declarations that each
6784     // had a claim to the unmangled name. In this case, generation of the alias
6785     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6786     if (!Val)
6787       break;
6788 
6789     llvm::GlobalValue *ExistingElem =
6790         getModule().getNamedValue(Name->getName());
6791 
6792     // If there is either not something already by this name, or we were able to
6793     // replace all uses from IFuncs, create the alias.
6794     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6795       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6796   }
6797 }
6798 
6799 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6800                                              GlobalDecl &Result) const {
6801   auto Res = Manglings.find(MangledName);
6802   if (Res == Manglings.end())
6803     return false;
6804   Result = Res->getValue();
6805   return true;
6806 }
6807 
6808 /// Emits metadata nodes associating all the global values in the
6809 /// current module with the Decls they came from.  This is useful for
6810 /// projects using IR gen as a subroutine.
6811 ///
6812 /// Since there's currently no way to associate an MDNode directly
6813 /// with an llvm::GlobalValue, we create a global named metadata
6814 /// with the name 'clang.global.decl.ptrs'.
6815 void CodeGenModule::EmitDeclMetadata() {
6816   llvm::NamedMDNode *GlobalMetadata = nullptr;
6817 
6818   for (auto &I : MangledDeclNames) {
6819     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6820     // Some mangled names don't necessarily have an associated GlobalValue
6821     // in this module, e.g. if we mangled it for DebugInfo.
6822     if (Addr)
6823       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6824   }
6825 }
6826 
6827 /// Emits metadata nodes for all the local variables in the current
6828 /// function.
6829 void CodeGenFunction::EmitDeclMetadata() {
6830   if (LocalDeclMap.empty()) return;
6831 
6832   llvm::LLVMContext &Context = getLLVMContext();
6833 
6834   // Find the unique metadata ID for this name.
6835   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6836 
6837   llvm::NamedMDNode *GlobalMetadata = nullptr;
6838 
6839   for (auto &I : LocalDeclMap) {
6840     const Decl *D = I.first;
6841     llvm::Value *Addr = I.second.getPointer();
6842     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6843       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6844       Alloca->setMetadata(
6845           DeclPtrKind, llvm::MDNode::get(
6846                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6847     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6848       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6849       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6850     }
6851   }
6852 }
6853 
6854 void CodeGenModule::EmitVersionIdentMetadata() {
6855   llvm::NamedMDNode *IdentMetadata =
6856     TheModule.getOrInsertNamedMetadata("llvm.ident");
6857   std::string Version = getClangFullVersion();
6858   llvm::LLVMContext &Ctx = TheModule.getContext();
6859 
6860   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6861   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6862 }
6863 
6864 void CodeGenModule::EmitCommandLineMetadata() {
6865   llvm::NamedMDNode *CommandLineMetadata =
6866     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6867   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6868   llvm::LLVMContext &Ctx = TheModule.getContext();
6869 
6870   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6871   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6872 }
6873 
6874 void CodeGenModule::EmitCoverageFile() {
6875   if (getCodeGenOpts().CoverageDataFile.empty() &&
6876       getCodeGenOpts().CoverageNotesFile.empty())
6877     return;
6878 
6879   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6880   if (!CUNode)
6881     return;
6882 
6883   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6884   llvm::LLVMContext &Ctx = TheModule.getContext();
6885   auto *CoverageDataFile =
6886       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6887   auto *CoverageNotesFile =
6888       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6889   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6890     llvm::MDNode *CU = CUNode->getOperand(i);
6891     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6892     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6893   }
6894 }
6895 
6896 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6897                                                        bool ForEH) {
6898   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6899   // FIXME: should we even be calling this method if RTTI is disabled
6900   // and it's not for EH?
6901   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6902       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6903        getTriple().isNVPTX()))
6904     return llvm::Constant::getNullValue(Int8PtrTy);
6905 
6906   if (ForEH && Ty->isObjCObjectPointerType() &&
6907       LangOpts.ObjCRuntime.isGNUFamily())
6908     return ObjCRuntime->GetEHType(Ty);
6909 
6910   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6911 }
6912 
6913 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6914   // Do not emit threadprivates in simd-only mode.
6915   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6916     return;
6917   for (auto RefExpr : D->varlists()) {
6918     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6919     bool PerformInit =
6920         VD->getAnyInitializer() &&
6921         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6922                                                         /*ForRef=*/false);
6923 
6924     Address Addr(GetAddrOfGlobalVar(VD),
6925                  getTypes().ConvertTypeForMem(VD->getType()),
6926                  getContext().getDeclAlign(VD));
6927     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6928             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6929       CXXGlobalInits.push_back(InitFunction);
6930   }
6931 }
6932 
6933 llvm::Metadata *
6934 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6935                                             StringRef Suffix) {
6936   if (auto *FnType = T->getAs<FunctionProtoType>())
6937     T = getContext().getFunctionType(
6938         FnType->getReturnType(), FnType->getParamTypes(),
6939         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6940 
6941   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6942   if (InternalId)
6943     return InternalId;
6944 
6945   if (isExternallyVisible(T->getLinkage())) {
6946     std::string OutName;
6947     llvm::raw_string_ostream Out(OutName);
6948     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6949     Out << Suffix;
6950 
6951     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6952   } else {
6953     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6954                                            llvm::ArrayRef<llvm::Metadata *>());
6955   }
6956 
6957   return InternalId;
6958 }
6959 
6960 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6961   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6962 }
6963 
6964 llvm::Metadata *
6965 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6966   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6967 }
6968 
6969 // Generalize pointer types to a void pointer with the qualifiers of the
6970 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6971 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6972 // 'void *'.
6973 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6974   if (!Ty->isPointerType())
6975     return Ty;
6976 
6977   return Ctx.getPointerType(
6978       QualType(Ctx.VoidTy).withCVRQualifiers(
6979           Ty->getPointeeType().getCVRQualifiers()));
6980 }
6981 
6982 // Apply type generalization to a FunctionType's return and argument types
6983 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6984   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6985     SmallVector<QualType, 8> GeneralizedParams;
6986     for (auto &Param : FnType->param_types())
6987       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6988 
6989     return Ctx.getFunctionType(
6990         GeneralizeType(Ctx, FnType->getReturnType()),
6991         GeneralizedParams, FnType->getExtProtoInfo());
6992   }
6993 
6994   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6995     return Ctx.getFunctionNoProtoType(
6996         GeneralizeType(Ctx, FnType->getReturnType()));
6997 
6998   llvm_unreachable("Encountered unknown FunctionType");
6999 }
7000 
7001 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7002   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7003                                       GeneralizedMetadataIdMap, ".generalized");
7004 }
7005 
7006 /// Returns whether this module needs the "all-vtables" type identifier.
7007 bool CodeGenModule::NeedAllVtablesTypeId() const {
7008   // Returns true if at least one of vtable-based CFI checkers is enabled and
7009   // is not in the trapping mode.
7010   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7011            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7012           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7013            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7014           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7015            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7016           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7017            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7018 }
7019 
7020 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7021                                           CharUnits Offset,
7022                                           const CXXRecordDecl *RD) {
7023   llvm::Metadata *MD =
7024       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7025   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7026 
7027   if (CodeGenOpts.SanitizeCfiCrossDso)
7028     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7029       VTable->addTypeMetadata(Offset.getQuantity(),
7030                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7031 
7032   if (NeedAllVtablesTypeId()) {
7033     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7034     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7035   }
7036 }
7037 
7038 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7039   if (!SanStats)
7040     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7041 
7042   return *SanStats;
7043 }
7044 
7045 llvm::Value *
7046 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7047                                                   CodeGenFunction &CGF) {
7048   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7049   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7050   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7051   auto *Call = CGF.EmitRuntimeCall(
7052       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7053   return Call;
7054 }
7055 
7056 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7057     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7058   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7059                                  /* forPointeeType= */ true);
7060 }
7061 
7062 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7063                                                  LValueBaseInfo *BaseInfo,
7064                                                  TBAAAccessInfo *TBAAInfo,
7065                                                  bool forPointeeType) {
7066   if (TBAAInfo)
7067     *TBAAInfo = getTBAAAccessInfo(T);
7068 
7069   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7070   // that doesn't return the information we need to compute BaseInfo.
7071 
7072   // Honor alignment typedef attributes even on incomplete types.
7073   // We also honor them straight for C++ class types, even as pointees;
7074   // there's an expressivity gap here.
7075   if (auto TT = T->getAs<TypedefType>()) {
7076     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7077       if (BaseInfo)
7078         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7079       return getContext().toCharUnitsFromBits(Align);
7080     }
7081   }
7082 
7083   bool AlignForArray = T->isArrayType();
7084 
7085   // Analyze the base element type, so we don't get confused by incomplete
7086   // array types.
7087   T = getContext().getBaseElementType(T);
7088 
7089   if (T->isIncompleteType()) {
7090     // We could try to replicate the logic from
7091     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7092     // type is incomplete, so it's impossible to test. We could try to reuse
7093     // getTypeAlignIfKnown, but that doesn't return the information we need
7094     // to set BaseInfo.  So just ignore the possibility that the alignment is
7095     // greater than one.
7096     if (BaseInfo)
7097       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7098     return CharUnits::One();
7099   }
7100 
7101   if (BaseInfo)
7102     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7103 
7104   CharUnits Alignment;
7105   const CXXRecordDecl *RD;
7106   if (T.getQualifiers().hasUnaligned()) {
7107     Alignment = CharUnits::One();
7108   } else if (forPointeeType && !AlignForArray &&
7109              (RD = T->getAsCXXRecordDecl())) {
7110     // For C++ class pointees, we don't know whether we're pointing at a
7111     // base or a complete object, so we generally need to use the
7112     // non-virtual alignment.
7113     Alignment = getClassPointerAlignment(RD);
7114   } else {
7115     Alignment = getContext().getTypeAlignInChars(T);
7116   }
7117 
7118   // Cap to the global maximum type alignment unless the alignment
7119   // was somehow explicit on the type.
7120   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7121     if (Alignment.getQuantity() > MaxAlign &&
7122         !getContext().isAlignmentRequired(T))
7123       Alignment = CharUnits::fromQuantity(MaxAlign);
7124   }
7125   return Alignment;
7126 }
7127 
7128 bool CodeGenModule::stopAutoInit() {
7129   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7130   if (StopAfter) {
7131     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7132     // used
7133     if (NumAutoVarInit >= StopAfter) {
7134       return true;
7135     }
7136     if (!NumAutoVarInit) {
7137       unsigned DiagID = getDiags().getCustomDiagID(
7138           DiagnosticsEngine::Warning,
7139           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7140           "number of times ftrivial-auto-var-init=%1 gets applied.");
7141       getDiags().Report(DiagID)
7142           << StopAfter
7143           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7144                       LangOptions::TrivialAutoVarInitKind::Zero
7145                   ? "zero"
7146                   : "pattern");
7147     }
7148     ++NumAutoVarInit;
7149   }
7150   return false;
7151 }
7152 
7153 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7154                                                     const Decl *D) const {
7155   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7156   // postfix beginning with '.' since the symbol name can be demangled.
7157   if (LangOpts.HIP)
7158     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7159   else
7160     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7161 
7162   // If the CUID is not specified we try to generate a unique postfix.
7163   if (getLangOpts().CUID.empty()) {
7164     SourceManager &SM = getContext().getSourceManager();
7165     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7166     assert(PLoc.isValid() && "Source location is expected to be valid.");
7167 
7168     // Get the hash of the user defined macros.
7169     llvm::MD5 Hash;
7170     llvm::MD5::MD5Result Result;
7171     for (const auto &Arg : PreprocessorOpts.Macros)
7172       Hash.update(Arg.first);
7173     Hash.final(Result);
7174 
7175     // Get the UniqueID for the file containing the decl.
7176     llvm::sys::fs::UniqueID ID;
7177     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7178       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7179       assert(PLoc.isValid() && "Source location is expected to be valid.");
7180       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7181         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7182             << PLoc.getFilename() << EC.message();
7183     }
7184     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7185        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7186   } else {
7187     OS << getContext().getCUIDHash();
7188   }
7189 }
7190 
7191 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7192   assert(DeferredDeclsToEmit.empty() &&
7193          "Should have emitted all decls deferred to emit.");
7194   assert(NewBuilder->DeferredDecls.empty() &&
7195          "Newly created module should not have deferred decls");
7196   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7197 
7198   assert(NewBuilder->DeferredVTables.empty() &&
7199          "Newly created module should not have deferred vtables");
7200   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7201 
7202   assert(NewBuilder->MangledDeclNames.empty() &&
7203          "Newly created module should not have mangled decl names");
7204   assert(NewBuilder->Manglings.empty() &&
7205          "Newly created module should not have manglings");
7206   NewBuilder->Manglings = std::move(Manglings);
7207 
7208   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7209   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7210 
7211   NewBuilder->TBAA = std::move(TBAA);
7212 
7213   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7214          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7215 
7216   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7217 
7218   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7219 }
7220