1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 402 // We don't support LTO with 2 with different StrictVTablePointers 403 // FIXME: we could support it by stripping all the information introduced 404 // by StrictVTablePointers. 405 406 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 407 408 llvm::Metadata *Ops[2] = { 409 llvm::MDString::get(VMContext, "StrictVTablePointers"), 410 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 411 llvm::Type::getInt32Ty(VMContext), 1))}; 412 413 getModule().addModuleFlag(llvm::Module::Require, 414 "StrictVTablePointersRequirement", 415 llvm::MDNode::get(VMContext, Ops)); 416 } 417 if (DebugInfo) 418 // We support a single version in the linked module. The LLVM 419 // parser will drop debug info with a different version number 420 // (and warn about it, too). 421 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 422 llvm::DEBUG_METADATA_VERSION); 423 424 // We need to record the widths of enums and wchar_t, so that we can generate 425 // the correct build attributes in the ARM backend. 426 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 427 if ( Arch == llvm::Triple::arm 428 || Arch == llvm::Triple::armeb 429 || Arch == llvm::Triple::thumb 430 || Arch == llvm::Triple::thumbeb) { 431 // Width of wchar_t in bytes 432 uint64_t WCharWidth = 433 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 434 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 435 436 // The minimum width of an enum in bytes 437 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 438 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 439 } 440 441 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 442 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 443 switch (PLevel) { 444 case 0: break; 445 case 1: PL = llvm::PICLevel::Small; break; 446 case 2: PL = llvm::PICLevel::Large; break; 447 default: llvm_unreachable("Invalid PIC Level"); 448 } 449 450 getModule().setPICLevel(PL); 451 } 452 453 SimplifyPersonality(); 454 455 if (getCodeGenOpts().EmitDeclMetadata) 456 EmitDeclMetadata(); 457 458 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 459 EmitCoverageFile(); 460 461 if (DebugInfo) 462 DebugInfo->finalize(); 463 464 EmitVersionIdentMetadata(); 465 466 EmitTargetMetadata(); 467 } 468 469 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 470 // Make sure that this type is translated. 471 Types.UpdateCompletedType(TD); 472 } 473 474 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 475 if (!TBAA) 476 return nullptr; 477 return TBAA->getTBAAInfo(QTy); 478 } 479 480 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 481 if (!TBAA) 482 return nullptr; 483 return TBAA->getTBAAInfoForVTablePtr(); 484 } 485 486 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 487 if (!TBAA) 488 return nullptr; 489 return TBAA->getTBAAStructInfo(QTy); 490 } 491 492 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 493 if (!TBAA) 494 return nullptr; 495 return TBAA->getTBAAStructTypeInfo(QTy); 496 } 497 498 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 499 llvm::MDNode *AccessN, 500 uint64_t O) { 501 if (!TBAA) 502 return nullptr; 503 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 504 } 505 506 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 507 /// and struct-path aware TBAA, the tag has the same format: 508 /// base type, access type and offset. 509 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 510 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 511 llvm::MDNode *TBAAInfo, 512 bool ConvertTypeToTag) { 513 if (ConvertTypeToTag && TBAA) 514 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 515 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 516 else 517 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 518 } 519 520 void CodeGenModule::DecorateInstructionWithInvariantGroup( 521 llvm::Instruction *I, const CXXRecordDecl *RD) { 522 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 523 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 524 // Check if we have to wrap MDString in MDNode. 525 if (!MetaDataNode) 526 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 527 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 528 } 529 530 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 531 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 532 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 533 } 534 535 /// ErrorUnsupported - Print out an error that codegen doesn't support the 536 /// specified stmt yet. 537 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 538 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 539 "cannot compile this %0 yet"); 540 std::string Msg = Type; 541 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 542 << Msg << S->getSourceRange(); 543 } 544 545 /// ErrorUnsupported - Print out an error that codegen doesn't support the 546 /// specified decl yet. 547 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 548 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 549 "cannot compile this %0 yet"); 550 std::string Msg = Type; 551 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 552 } 553 554 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 555 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 556 } 557 558 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 559 const NamedDecl *D) const { 560 // Internal definitions always have default visibility. 561 if (GV->hasLocalLinkage()) { 562 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 563 return; 564 } 565 566 // Set visibility for definitions. 567 LinkageInfo LV = D->getLinkageAndVisibility(); 568 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 569 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 570 } 571 572 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 573 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 574 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 575 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 576 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 577 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 578 } 579 580 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 581 CodeGenOptions::TLSModel M) { 582 switch (M) { 583 case CodeGenOptions::GeneralDynamicTLSModel: 584 return llvm::GlobalVariable::GeneralDynamicTLSModel; 585 case CodeGenOptions::LocalDynamicTLSModel: 586 return llvm::GlobalVariable::LocalDynamicTLSModel; 587 case CodeGenOptions::InitialExecTLSModel: 588 return llvm::GlobalVariable::InitialExecTLSModel; 589 case CodeGenOptions::LocalExecTLSModel: 590 return llvm::GlobalVariable::LocalExecTLSModel; 591 } 592 llvm_unreachable("Invalid TLS model!"); 593 } 594 595 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 596 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 597 598 llvm::GlobalValue::ThreadLocalMode TLM; 599 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 600 601 // Override the TLS model if it is explicitly specified. 602 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 603 TLM = GetLLVMTLSModel(Attr->getModel()); 604 } 605 606 GV->setThreadLocalMode(TLM); 607 } 608 609 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 610 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 611 if (!FoundStr.empty()) 612 return FoundStr; 613 614 const auto *ND = cast<NamedDecl>(GD.getDecl()); 615 SmallString<256> Buffer; 616 StringRef Str; 617 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 618 llvm::raw_svector_ostream Out(Buffer); 619 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 620 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 621 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 622 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 623 else 624 getCXXABI().getMangleContext().mangleName(ND, Out); 625 Str = Out.str(); 626 } else { 627 IdentifierInfo *II = ND->getIdentifier(); 628 assert(II && "Attempt to mangle unnamed decl."); 629 Str = II->getName(); 630 } 631 632 // Keep the first result in the case of a mangling collision. 633 auto Result = Manglings.insert(std::make_pair(Str, GD)); 634 return FoundStr = Result.first->first(); 635 } 636 637 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 638 const BlockDecl *BD) { 639 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 640 const Decl *D = GD.getDecl(); 641 642 SmallString<256> Buffer; 643 llvm::raw_svector_ostream Out(Buffer); 644 if (!D) 645 MangleCtx.mangleGlobalBlock(BD, 646 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 647 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 648 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 649 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 650 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 651 else 652 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 653 654 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 655 return Result.first->first(); 656 } 657 658 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 659 return getModule().getNamedValue(Name); 660 } 661 662 /// AddGlobalCtor - Add a function to the list that will be called before 663 /// main() runs. 664 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 665 llvm::Constant *AssociatedData) { 666 // FIXME: Type coercion of void()* types. 667 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 668 } 669 670 /// AddGlobalDtor - Add a function to the list that will be called 671 /// when the module is unloaded. 672 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 673 // FIXME: Type coercion of void()* types. 674 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 675 } 676 677 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 678 // Ctor function type is void()*. 679 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 680 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 681 682 // Get the type of a ctor entry, { i32, void ()*, i8* }. 683 llvm::StructType *CtorStructTy = llvm::StructType::get( 684 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 685 686 // Construct the constructor and destructor arrays. 687 SmallVector<llvm::Constant *, 8> Ctors; 688 for (const auto &I : Fns) { 689 llvm::Constant *S[] = { 690 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 691 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 692 (I.AssociatedData 693 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 694 : llvm::Constant::getNullValue(VoidPtrTy))}; 695 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 696 } 697 698 if (!Ctors.empty()) { 699 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 700 new llvm::GlobalVariable(TheModule, AT, false, 701 llvm::GlobalValue::AppendingLinkage, 702 llvm::ConstantArray::get(AT, Ctors), 703 GlobalName); 704 } 705 } 706 707 llvm::GlobalValue::LinkageTypes 708 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 709 const auto *D = cast<FunctionDecl>(GD.getDecl()); 710 711 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 712 713 if (isa<CXXDestructorDecl>(D) && 714 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 715 GD.getDtorType())) { 716 // Destructor variants in the Microsoft C++ ABI are always internal or 717 // linkonce_odr thunks emitted on an as-needed basis. 718 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 719 : llvm::GlobalValue::LinkOnceODRLinkage; 720 } 721 722 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 723 } 724 725 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 726 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 727 728 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 729 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 730 // Don't dllexport/import destructor thunks. 731 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 732 return; 733 } 734 } 735 736 if (FD->hasAttr<DLLImportAttr>()) 737 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 738 else if (FD->hasAttr<DLLExportAttr>()) 739 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 740 else 741 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 742 } 743 744 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 745 llvm::Function *F) { 746 setNonAliasAttributes(D, F); 747 } 748 749 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 750 const CGFunctionInfo &Info, 751 llvm::Function *F) { 752 unsigned CallingConv; 753 AttributeListType AttributeList; 754 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 755 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 756 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 757 } 758 759 /// Determines whether the language options require us to model 760 /// unwind exceptions. We treat -fexceptions as mandating this 761 /// except under the fragile ObjC ABI with only ObjC exceptions 762 /// enabled. This means, for example, that C with -fexceptions 763 /// enables this. 764 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 765 // If exceptions are completely disabled, obviously this is false. 766 if (!LangOpts.Exceptions) return false; 767 768 // If C++ exceptions are enabled, this is true. 769 if (LangOpts.CXXExceptions) return true; 770 771 // If ObjC exceptions are enabled, this depends on the ABI. 772 if (LangOpts.ObjCExceptions) { 773 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 774 } 775 776 return true; 777 } 778 779 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 780 llvm::Function *F) { 781 llvm::AttrBuilder B; 782 783 if (CodeGenOpts.UnwindTables) 784 B.addAttribute(llvm::Attribute::UWTable); 785 786 if (!hasUnwindExceptions(LangOpts)) 787 B.addAttribute(llvm::Attribute::NoUnwind); 788 789 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 790 B.addAttribute(llvm::Attribute::StackProtect); 791 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 792 B.addAttribute(llvm::Attribute::StackProtectStrong); 793 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 794 B.addAttribute(llvm::Attribute::StackProtectReq); 795 796 if (!D) { 797 F->addAttributes(llvm::AttributeSet::FunctionIndex, 798 llvm::AttributeSet::get( 799 F->getContext(), 800 llvm::AttributeSet::FunctionIndex, B)); 801 return; 802 } 803 804 if (D->hasAttr<NakedAttr>()) { 805 // Naked implies noinline: we should not be inlining such functions. 806 B.addAttribute(llvm::Attribute::Naked); 807 B.addAttribute(llvm::Attribute::NoInline); 808 } else if (D->hasAttr<NoDuplicateAttr>()) { 809 B.addAttribute(llvm::Attribute::NoDuplicate); 810 } else if (D->hasAttr<NoInlineAttr>()) { 811 B.addAttribute(llvm::Attribute::NoInline); 812 } else if (D->hasAttr<AlwaysInlineAttr>() && 813 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 814 llvm::Attribute::NoInline)) { 815 // (noinline wins over always_inline, and we can't specify both in IR) 816 B.addAttribute(llvm::Attribute::AlwaysInline); 817 } 818 819 if (D->hasAttr<ColdAttr>()) { 820 if (!D->hasAttr<OptimizeNoneAttr>()) 821 B.addAttribute(llvm::Attribute::OptimizeForSize); 822 B.addAttribute(llvm::Attribute::Cold); 823 } 824 825 if (D->hasAttr<MinSizeAttr>()) 826 B.addAttribute(llvm::Attribute::MinSize); 827 828 F->addAttributes(llvm::AttributeSet::FunctionIndex, 829 llvm::AttributeSet::get( 830 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 831 832 if (D->hasAttr<OptimizeNoneAttr>()) { 833 // OptimizeNone implies noinline; we should not be inlining such functions. 834 F->addFnAttr(llvm::Attribute::OptimizeNone); 835 F->addFnAttr(llvm::Attribute::NoInline); 836 837 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 838 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 839 F->removeFnAttr(llvm::Attribute::MinSize); 840 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 841 "OptimizeNone and AlwaysInline on same function!"); 842 843 // Attribute 'inlinehint' has no effect on 'optnone' functions. 844 // Explicitly remove it from the set of function attributes. 845 F->removeFnAttr(llvm::Attribute::InlineHint); 846 } 847 848 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 849 F->setUnnamedAddr(true); 850 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 851 if (MD->isVirtual()) 852 F->setUnnamedAddr(true); 853 854 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 855 if (alignment) 856 F->setAlignment(alignment); 857 858 // Some C++ ABIs require 2-byte alignment for member functions, in order to 859 // reserve a bit for differentiating between virtual and non-virtual member 860 // functions. If the current target's C++ ABI requires this and this is a 861 // member function, set its alignment accordingly. 862 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 863 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 864 F->setAlignment(2); 865 } 866 } 867 868 void CodeGenModule::SetCommonAttributes(const Decl *D, 869 llvm::GlobalValue *GV) { 870 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 871 setGlobalVisibility(GV, ND); 872 else 873 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 874 875 if (D && D->hasAttr<UsedAttr>()) 876 addUsedGlobal(GV); 877 } 878 879 void CodeGenModule::setAliasAttributes(const Decl *D, 880 llvm::GlobalValue *GV) { 881 SetCommonAttributes(D, GV); 882 883 // Process the dllexport attribute based on whether the original definition 884 // (not necessarily the aliasee) was exported. 885 if (D->hasAttr<DLLExportAttr>()) 886 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 887 } 888 889 void CodeGenModule::setNonAliasAttributes(const Decl *D, 890 llvm::GlobalObject *GO) { 891 SetCommonAttributes(D, GO); 892 893 if (D) 894 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 895 GO->setSection(SA->getName()); 896 897 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 898 } 899 900 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 901 llvm::Function *F, 902 const CGFunctionInfo &FI) { 903 SetLLVMFunctionAttributes(D, FI, F); 904 SetLLVMFunctionAttributesForDefinition(D, F); 905 906 F->setLinkage(llvm::Function::InternalLinkage); 907 908 setNonAliasAttributes(D, F); 909 } 910 911 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 912 const NamedDecl *ND) { 913 // Set linkage and visibility in case we never see a definition. 914 LinkageInfo LV = ND->getLinkageAndVisibility(); 915 if (LV.getLinkage() != ExternalLinkage) { 916 // Don't set internal linkage on declarations. 917 } else { 918 if (ND->hasAttr<DLLImportAttr>()) { 919 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 920 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 921 } else if (ND->hasAttr<DLLExportAttr>()) { 922 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 923 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 924 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 925 // "extern_weak" is overloaded in LLVM; we probably should have 926 // separate linkage types for this. 927 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 928 } 929 930 // Set visibility on a declaration only if it's explicit. 931 if (LV.isVisibilityExplicit()) 932 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 933 } 934 } 935 936 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 937 bool IsIncompleteFunction, 938 bool IsThunk) { 939 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 940 // If this is an intrinsic function, set the function's attributes 941 // to the intrinsic's attributes. 942 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 943 return; 944 } 945 946 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 947 948 if (!IsIncompleteFunction) 949 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 950 951 // Add the Returned attribute for "this", except for iOS 5 and earlier 952 // where substantial code, including the libstdc++ dylib, was compiled with 953 // GCC and does not actually return "this". 954 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 955 !(getTarget().getTriple().isiOS() && 956 getTarget().getTriple().isOSVersionLT(6))) { 957 assert(!F->arg_empty() && 958 F->arg_begin()->getType() 959 ->canLosslesslyBitCastTo(F->getReturnType()) && 960 "unexpected this return"); 961 F->addAttribute(1, llvm::Attribute::Returned); 962 } 963 964 // Only a few attributes are set on declarations; these may later be 965 // overridden by a definition. 966 967 setLinkageAndVisibilityForGV(F, FD); 968 969 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 970 F->setSection(SA->getName()); 971 972 // A replaceable global allocation function does not act like a builtin by 973 // default, only if it is invoked by a new-expression or delete-expression. 974 if (FD->isReplaceableGlobalAllocationFunction()) 975 F->addAttribute(llvm::AttributeSet::FunctionIndex, 976 llvm::Attribute::NoBuiltin); 977 978 // If we are checking indirect calls and this is not a non-static member 979 // function, emit a bit set entry for the function type. 980 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 981 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 982 llvm::NamedMDNode *BitsetsMD = 983 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 984 985 llvm::Metadata *BitsetOps[] = { 986 CreateMetadataIdentifierForType(FD->getType()), 987 llvm::ConstantAsMetadata::get(F), 988 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 989 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 990 } 991 } 992 993 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 994 assert(!GV->isDeclaration() && 995 "Only globals with definition can force usage."); 996 LLVMUsed.emplace_back(GV); 997 } 998 999 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1000 assert(!GV->isDeclaration() && 1001 "Only globals with definition can force usage."); 1002 LLVMCompilerUsed.emplace_back(GV); 1003 } 1004 1005 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1006 std::vector<llvm::WeakVH> &List) { 1007 // Don't create llvm.used if there is no need. 1008 if (List.empty()) 1009 return; 1010 1011 // Convert List to what ConstantArray needs. 1012 SmallVector<llvm::Constant*, 8> UsedArray; 1013 UsedArray.resize(List.size()); 1014 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1015 UsedArray[i] = 1016 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1017 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1018 } 1019 1020 if (UsedArray.empty()) 1021 return; 1022 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1023 1024 auto *GV = new llvm::GlobalVariable( 1025 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1026 llvm::ConstantArray::get(ATy, UsedArray), Name); 1027 1028 GV->setSection("llvm.metadata"); 1029 } 1030 1031 void CodeGenModule::emitLLVMUsed() { 1032 emitUsed(*this, "llvm.used", LLVMUsed); 1033 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1034 } 1035 1036 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1037 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1038 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1039 } 1040 1041 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1042 llvm::SmallString<32> Opt; 1043 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1044 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1045 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1046 } 1047 1048 void CodeGenModule::AddDependentLib(StringRef Lib) { 1049 llvm::SmallString<24> Opt; 1050 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1051 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1052 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1053 } 1054 1055 /// \brief Add link options implied by the given module, including modules 1056 /// it depends on, using a postorder walk. 1057 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1058 SmallVectorImpl<llvm::Metadata *> &Metadata, 1059 llvm::SmallPtrSet<Module *, 16> &Visited) { 1060 // Import this module's parent. 1061 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1062 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1063 } 1064 1065 // Import this module's dependencies. 1066 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1067 if (Visited.insert(Mod->Imports[I - 1]).second) 1068 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1069 } 1070 1071 // Add linker options to link against the libraries/frameworks 1072 // described by this module. 1073 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1074 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1075 // Link against a framework. Frameworks are currently Darwin only, so we 1076 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1077 if (Mod->LinkLibraries[I-1].IsFramework) { 1078 llvm::Metadata *Args[2] = { 1079 llvm::MDString::get(Context, "-framework"), 1080 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1081 1082 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1083 continue; 1084 } 1085 1086 // Link against a library. 1087 llvm::SmallString<24> Opt; 1088 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1089 Mod->LinkLibraries[I-1].Library, Opt); 1090 auto *OptString = llvm::MDString::get(Context, Opt); 1091 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1092 } 1093 } 1094 1095 void CodeGenModule::EmitModuleLinkOptions() { 1096 // Collect the set of all of the modules we want to visit to emit link 1097 // options, which is essentially the imported modules and all of their 1098 // non-explicit child modules. 1099 llvm::SetVector<clang::Module *> LinkModules; 1100 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1101 SmallVector<clang::Module *, 16> Stack; 1102 1103 // Seed the stack with imported modules. 1104 for (Module *M : ImportedModules) 1105 if (Visited.insert(M).second) 1106 Stack.push_back(M); 1107 1108 // Find all of the modules to import, making a little effort to prune 1109 // non-leaf modules. 1110 while (!Stack.empty()) { 1111 clang::Module *Mod = Stack.pop_back_val(); 1112 1113 bool AnyChildren = false; 1114 1115 // Visit the submodules of this module. 1116 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1117 SubEnd = Mod->submodule_end(); 1118 Sub != SubEnd; ++Sub) { 1119 // Skip explicit children; they need to be explicitly imported to be 1120 // linked against. 1121 if ((*Sub)->IsExplicit) 1122 continue; 1123 1124 if (Visited.insert(*Sub).second) { 1125 Stack.push_back(*Sub); 1126 AnyChildren = true; 1127 } 1128 } 1129 1130 // We didn't find any children, so add this module to the list of 1131 // modules to link against. 1132 if (!AnyChildren) { 1133 LinkModules.insert(Mod); 1134 } 1135 } 1136 1137 // Add link options for all of the imported modules in reverse topological 1138 // order. We don't do anything to try to order import link flags with respect 1139 // to linker options inserted by things like #pragma comment(). 1140 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1141 Visited.clear(); 1142 for (Module *M : LinkModules) 1143 if (Visited.insert(M).second) 1144 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1145 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1146 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1147 1148 // Add the linker options metadata flag. 1149 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1150 llvm::MDNode::get(getLLVMContext(), 1151 LinkerOptionsMetadata)); 1152 } 1153 1154 void CodeGenModule::EmitDeferred() { 1155 // Emit code for any potentially referenced deferred decls. Since a 1156 // previously unused static decl may become used during the generation of code 1157 // for a static function, iterate until no changes are made. 1158 1159 if (!DeferredVTables.empty()) { 1160 EmitDeferredVTables(); 1161 1162 // Emitting a v-table doesn't directly cause more v-tables to 1163 // become deferred, although it can cause functions to be 1164 // emitted that then need those v-tables. 1165 assert(DeferredVTables.empty()); 1166 } 1167 1168 // Stop if we're out of both deferred v-tables and deferred declarations. 1169 if (DeferredDeclsToEmit.empty()) 1170 return; 1171 1172 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1173 // work, it will not interfere with this. 1174 std::vector<DeferredGlobal> CurDeclsToEmit; 1175 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1176 1177 for (DeferredGlobal &G : CurDeclsToEmit) { 1178 GlobalDecl D = G.GD; 1179 llvm::GlobalValue *GV = G.GV; 1180 G.GV = nullptr; 1181 1182 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1183 // to get GlobalValue with exactly the type we need, not something that 1184 // might had been created for another decl with the same mangled name but 1185 // different type. 1186 // FIXME: Support for variables is not implemented yet. 1187 if (isa<FunctionDecl>(D.getDecl())) 1188 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1189 else 1190 if (!GV) 1191 GV = GetGlobalValue(getMangledName(D)); 1192 1193 // Check to see if we've already emitted this. This is necessary 1194 // for a couple of reasons: first, decls can end up in the 1195 // deferred-decls queue multiple times, and second, decls can end 1196 // up with definitions in unusual ways (e.g. by an extern inline 1197 // function acquiring a strong function redefinition). Just 1198 // ignore these cases. 1199 if (GV && !GV->isDeclaration()) 1200 continue; 1201 1202 // Otherwise, emit the definition and move on to the next one. 1203 EmitGlobalDefinition(D, GV); 1204 1205 // If we found out that we need to emit more decls, do that recursively. 1206 // This has the advantage that the decls are emitted in a DFS and related 1207 // ones are close together, which is convenient for testing. 1208 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1209 EmitDeferred(); 1210 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1211 } 1212 } 1213 } 1214 1215 void CodeGenModule::EmitGlobalAnnotations() { 1216 if (Annotations.empty()) 1217 return; 1218 1219 // Create a new global variable for the ConstantStruct in the Module. 1220 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1221 Annotations[0]->getType(), Annotations.size()), Annotations); 1222 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1223 llvm::GlobalValue::AppendingLinkage, 1224 Array, "llvm.global.annotations"); 1225 gv->setSection(AnnotationSection); 1226 } 1227 1228 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1229 llvm::Constant *&AStr = AnnotationStrings[Str]; 1230 if (AStr) 1231 return AStr; 1232 1233 // Not found yet, create a new global. 1234 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1235 auto *gv = 1236 new llvm::GlobalVariable(getModule(), s->getType(), true, 1237 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1238 gv->setSection(AnnotationSection); 1239 gv->setUnnamedAddr(true); 1240 AStr = gv; 1241 return gv; 1242 } 1243 1244 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1245 SourceManager &SM = getContext().getSourceManager(); 1246 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1247 if (PLoc.isValid()) 1248 return EmitAnnotationString(PLoc.getFilename()); 1249 return EmitAnnotationString(SM.getBufferName(Loc)); 1250 } 1251 1252 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1253 SourceManager &SM = getContext().getSourceManager(); 1254 PresumedLoc PLoc = SM.getPresumedLoc(L); 1255 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1256 SM.getExpansionLineNumber(L); 1257 return llvm::ConstantInt::get(Int32Ty, LineNo); 1258 } 1259 1260 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1261 const AnnotateAttr *AA, 1262 SourceLocation L) { 1263 // Get the globals for file name, annotation, and the line number. 1264 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1265 *UnitGV = EmitAnnotationUnit(L), 1266 *LineNoCst = EmitAnnotationLineNo(L); 1267 1268 // Create the ConstantStruct for the global annotation. 1269 llvm::Constant *Fields[4] = { 1270 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1271 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1272 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1273 LineNoCst 1274 }; 1275 return llvm::ConstantStruct::getAnon(Fields); 1276 } 1277 1278 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1279 llvm::GlobalValue *GV) { 1280 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1281 // Get the struct elements for these annotations. 1282 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1283 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1284 } 1285 1286 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1287 SourceLocation Loc) const { 1288 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1289 // Blacklist by function name. 1290 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1291 return true; 1292 // Blacklist by location. 1293 if (Loc.isValid()) 1294 return SanitizerBL.isBlacklistedLocation(Loc); 1295 // If location is unknown, this may be a compiler-generated function. Assume 1296 // it's located in the main file. 1297 auto &SM = Context.getSourceManager(); 1298 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1299 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1300 } 1301 return false; 1302 } 1303 1304 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1305 SourceLocation Loc, QualType Ty, 1306 StringRef Category) const { 1307 // For now globals can be blacklisted only in ASan and KASan. 1308 if (!LangOpts.Sanitize.hasOneOf( 1309 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1310 return false; 1311 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1312 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1313 return true; 1314 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1315 return true; 1316 // Check global type. 1317 if (!Ty.isNull()) { 1318 // Drill down the array types: if global variable of a fixed type is 1319 // blacklisted, we also don't instrument arrays of them. 1320 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1321 Ty = AT->getElementType(); 1322 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1323 // We allow to blacklist only record types (classes, structs etc.) 1324 if (Ty->isRecordType()) { 1325 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1326 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1327 return true; 1328 } 1329 } 1330 return false; 1331 } 1332 1333 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1334 // Never defer when EmitAllDecls is specified. 1335 if (LangOpts.EmitAllDecls) 1336 return true; 1337 1338 return getContext().DeclMustBeEmitted(Global); 1339 } 1340 1341 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1342 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1343 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1344 // Implicit template instantiations may change linkage if they are later 1345 // explicitly instantiated, so they should not be emitted eagerly. 1346 return false; 1347 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1348 // codegen for global variables, because they may be marked as threadprivate. 1349 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1350 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1351 return false; 1352 1353 return true; 1354 } 1355 1356 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1357 const CXXUuidofExpr* E) { 1358 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1359 // well-formed. 1360 StringRef Uuid = E->getUuidAsStringRef(Context); 1361 std::string Name = "_GUID_" + Uuid.lower(); 1362 std::replace(Name.begin(), Name.end(), '-', '_'); 1363 1364 // Contains a 32-bit field. 1365 CharUnits Alignment = CharUnits::fromQuantity(4); 1366 1367 // Look for an existing global. 1368 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1369 return ConstantAddress(GV, Alignment); 1370 1371 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1372 assert(Init && "failed to initialize as constant"); 1373 1374 auto *GV = new llvm::GlobalVariable( 1375 getModule(), Init->getType(), 1376 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1377 if (supportsCOMDAT()) 1378 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1379 return ConstantAddress(GV, Alignment); 1380 } 1381 1382 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1383 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1384 assert(AA && "No alias?"); 1385 1386 CharUnits Alignment = getContext().getDeclAlign(VD); 1387 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1388 1389 // See if there is already something with the target's name in the module. 1390 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1391 if (Entry) { 1392 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1393 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1394 return ConstantAddress(Ptr, Alignment); 1395 } 1396 1397 llvm::Constant *Aliasee; 1398 if (isa<llvm::FunctionType>(DeclTy)) 1399 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1400 GlobalDecl(cast<FunctionDecl>(VD)), 1401 /*ForVTable=*/false); 1402 else 1403 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1404 llvm::PointerType::getUnqual(DeclTy), 1405 nullptr); 1406 1407 auto *F = cast<llvm::GlobalValue>(Aliasee); 1408 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1409 WeakRefReferences.insert(F); 1410 1411 return ConstantAddress(Aliasee, Alignment); 1412 } 1413 1414 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1415 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1416 1417 // Weak references don't produce any output by themselves. 1418 if (Global->hasAttr<WeakRefAttr>()) 1419 return; 1420 1421 // If this is an alias definition (which otherwise looks like a declaration) 1422 // emit it now. 1423 if (Global->hasAttr<AliasAttr>()) 1424 return EmitAliasDefinition(GD); 1425 1426 // If this is CUDA, be selective about which declarations we emit. 1427 if (LangOpts.CUDA) { 1428 if (LangOpts.CUDAIsDevice) { 1429 if (!Global->hasAttr<CUDADeviceAttr>() && 1430 !Global->hasAttr<CUDAGlobalAttr>() && 1431 !Global->hasAttr<CUDAConstantAttr>() && 1432 !Global->hasAttr<CUDASharedAttr>()) 1433 return; 1434 } else { 1435 if (!Global->hasAttr<CUDAHostAttr>() && ( 1436 Global->hasAttr<CUDADeviceAttr>() || 1437 Global->hasAttr<CUDAConstantAttr>() || 1438 Global->hasAttr<CUDASharedAttr>())) 1439 return; 1440 } 1441 } 1442 1443 // Ignore declarations, they will be emitted on their first use. 1444 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1445 // Forward declarations are emitted lazily on first use. 1446 if (!FD->doesThisDeclarationHaveABody()) { 1447 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1448 return; 1449 1450 StringRef MangledName = getMangledName(GD); 1451 1452 // Compute the function info and LLVM type. 1453 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1454 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1455 1456 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1457 /*DontDefer=*/false); 1458 return; 1459 } 1460 } else { 1461 const auto *VD = cast<VarDecl>(Global); 1462 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1463 1464 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1465 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1466 return; 1467 } 1468 1469 // Defer code generation to first use when possible, e.g. if this is an inline 1470 // function. If the global must always be emitted, do it eagerly if possible 1471 // to benefit from cache locality. 1472 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1473 // Emit the definition if it can't be deferred. 1474 EmitGlobalDefinition(GD); 1475 return; 1476 } 1477 1478 // If we're deferring emission of a C++ variable with an 1479 // initializer, remember the order in which it appeared in the file. 1480 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1481 cast<VarDecl>(Global)->hasInit()) { 1482 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1483 CXXGlobalInits.push_back(nullptr); 1484 } 1485 1486 StringRef MangledName = getMangledName(GD); 1487 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1488 // The value has already been used and should therefore be emitted. 1489 addDeferredDeclToEmit(GV, GD); 1490 } else if (MustBeEmitted(Global)) { 1491 // The value must be emitted, but cannot be emitted eagerly. 1492 assert(!MayBeEmittedEagerly(Global)); 1493 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1494 } else { 1495 // Otherwise, remember that we saw a deferred decl with this name. The 1496 // first use of the mangled name will cause it to move into 1497 // DeferredDeclsToEmit. 1498 DeferredDecls[MangledName] = GD; 1499 } 1500 } 1501 1502 namespace { 1503 struct FunctionIsDirectlyRecursive : 1504 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1505 const StringRef Name; 1506 const Builtin::Context &BI; 1507 bool Result; 1508 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1509 Name(N), BI(C), Result(false) { 1510 } 1511 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1512 1513 bool TraverseCallExpr(CallExpr *E) { 1514 const FunctionDecl *FD = E->getDirectCallee(); 1515 if (!FD) 1516 return true; 1517 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1518 if (Attr && Name == Attr->getLabel()) { 1519 Result = true; 1520 return false; 1521 } 1522 unsigned BuiltinID = FD->getBuiltinID(); 1523 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1524 return true; 1525 StringRef BuiltinName = BI.getName(BuiltinID); 1526 if (BuiltinName.startswith("__builtin_") && 1527 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1528 Result = true; 1529 return false; 1530 } 1531 return true; 1532 } 1533 }; 1534 1535 struct DLLImportFunctionVisitor 1536 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1537 bool SafeToInline = true; 1538 1539 bool VisitVarDecl(VarDecl *VD) { 1540 // A thread-local variable cannot be imported. 1541 SafeToInline = !VD->getTLSKind(); 1542 return SafeToInline; 1543 } 1544 1545 // Make sure we're not referencing non-imported vars or functions. 1546 bool VisitDeclRefExpr(DeclRefExpr *E) { 1547 ValueDecl *VD = E->getDecl(); 1548 if (isa<FunctionDecl>(VD)) 1549 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1550 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1551 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1552 return SafeToInline; 1553 } 1554 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1555 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1556 return SafeToInline; 1557 } 1558 bool VisitCXXNewExpr(CXXNewExpr *E) { 1559 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1560 return SafeToInline; 1561 } 1562 }; 1563 } 1564 1565 // isTriviallyRecursive - Check if this function calls another 1566 // decl that, because of the asm attribute or the other decl being a builtin, 1567 // ends up pointing to itself. 1568 bool 1569 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1570 StringRef Name; 1571 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1572 // asm labels are a special kind of mangling we have to support. 1573 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1574 if (!Attr) 1575 return false; 1576 Name = Attr->getLabel(); 1577 } else { 1578 Name = FD->getName(); 1579 } 1580 1581 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1582 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1583 return Walker.Result; 1584 } 1585 1586 bool 1587 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1588 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1589 return true; 1590 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1591 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1592 return false; 1593 1594 if (F->hasAttr<DLLImportAttr>()) { 1595 // Check whether it would be safe to inline this dllimport function. 1596 DLLImportFunctionVisitor Visitor; 1597 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1598 if (!Visitor.SafeToInline) 1599 return false; 1600 } 1601 1602 // PR9614. Avoid cases where the source code is lying to us. An available 1603 // externally function should have an equivalent function somewhere else, 1604 // but a function that calls itself is clearly not equivalent to the real 1605 // implementation. 1606 // This happens in glibc's btowc and in some configure checks. 1607 return !isTriviallyRecursive(F); 1608 } 1609 1610 /// If the type for the method's class was generated by 1611 /// CGDebugInfo::createContextChain(), the cache contains only a 1612 /// limited DIType without any declarations. Since EmitFunctionStart() 1613 /// needs to find the canonical declaration for each method, we need 1614 /// to construct the complete type prior to emitting the method. 1615 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1616 if (!D->isInstance()) 1617 return; 1618 1619 if (CGDebugInfo *DI = getModuleDebugInfo()) 1620 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1621 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1622 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1623 } 1624 } 1625 1626 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1627 const auto *D = cast<ValueDecl>(GD.getDecl()); 1628 1629 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1630 Context.getSourceManager(), 1631 "Generating code for declaration"); 1632 1633 if (isa<FunctionDecl>(D)) { 1634 // At -O0, don't generate IR for functions with available_externally 1635 // linkage. 1636 if (!shouldEmitFunction(GD)) 1637 return; 1638 1639 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1640 CompleteDIClassType(Method); 1641 // Make sure to emit the definition(s) before we emit the thunks. 1642 // This is necessary for the generation of certain thunks. 1643 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1644 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1645 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1646 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1647 else 1648 EmitGlobalFunctionDefinition(GD, GV); 1649 1650 if (Method->isVirtual()) 1651 getVTables().EmitThunks(GD); 1652 1653 return; 1654 } 1655 1656 return EmitGlobalFunctionDefinition(GD, GV); 1657 } 1658 1659 if (const auto *VD = dyn_cast<VarDecl>(D)) 1660 return EmitGlobalVarDefinition(VD); 1661 1662 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1663 } 1664 1665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1666 llvm::Function *NewFn); 1667 1668 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1669 /// module, create and return an llvm Function with the specified type. If there 1670 /// is something in the module with the specified name, return it potentially 1671 /// bitcasted to the right type. 1672 /// 1673 /// If D is non-null, it specifies a decl that correspond to this. This is used 1674 /// to set the attributes on the function when it is first created. 1675 llvm::Constant * 1676 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1677 llvm::Type *Ty, 1678 GlobalDecl GD, bool ForVTable, 1679 bool DontDefer, bool IsThunk, 1680 llvm::AttributeSet ExtraAttrs, 1681 bool IsForDefinition) { 1682 const Decl *D = GD.getDecl(); 1683 1684 // Lookup the entry, lazily creating it if necessary. 1685 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1686 if (Entry) { 1687 if (WeakRefReferences.erase(Entry)) { 1688 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1689 if (FD && !FD->hasAttr<WeakAttr>()) 1690 Entry->setLinkage(llvm::Function::ExternalLinkage); 1691 } 1692 1693 // Handle dropped DLL attributes. 1694 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1695 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1696 1697 // If there are two attempts to define the same mangled name, issue an 1698 // error. 1699 if (IsForDefinition && !Entry->isDeclaration()) { 1700 GlobalDecl OtherGD; 1701 // Check that GD is not yet in ExplicitDefinitions is required to make 1702 // sure that we issue an error only once. 1703 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1704 (GD.getCanonicalDecl().getDecl() != 1705 OtherGD.getCanonicalDecl().getDecl()) && 1706 DiagnosedConflictingDefinitions.insert(GD).second) { 1707 getDiags().Report(D->getLocation(), 1708 diag::err_duplicate_mangled_name); 1709 getDiags().Report(OtherGD.getDecl()->getLocation(), 1710 diag::note_previous_definition); 1711 } 1712 } 1713 1714 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1715 (Entry->getType()->getElementType() == Ty)) { 1716 return Entry; 1717 } 1718 1719 // Make sure the result is of the correct type. 1720 // (If function is requested for a definition, we always need to create a new 1721 // function, not just return a bitcast.) 1722 if (!IsForDefinition) 1723 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1724 } 1725 1726 // This function doesn't have a complete type (for example, the return 1727 // type is an incomplete struct). Use a fake type instead, and make 1728 // sure not to try to set attributes. 1729 bool IsIncompleteFunction = false; 1730 1731 llvm::FunctionType *FTy; 1732 if (isa<llvm::FunctionType>(Ty)) { 1733 FTy = cast<llvm::FunctionType>(Ty); 1734 } else { 1735 FTy = llvm::FunctionType::get(VoidTy, false); 1736 IsIncompleteFunction = true; 1737 } 1738 1739 llvm::Function *F = 1740 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1741 Entry ? StringRef() : MangledName, &getModule()); 1742 1743 // If we already created a function with the same mangled name (but different 1744 // type) before, take its name and add it to the list of functions to be 1745 // replaced with F at the end of CodeGen. 1746 // 1747 // This happens if there is a prototype for a function (e.g. "int f()") and 1748 // then a definition of a different type (e.g. "int f(int x)"). 1749 if (Entry) { 1750 F->takeName(Entry); 1751 1752 // This might be an implementation of a function without a prototype, in 1753 // which case, try to do special replacement of calls which match the new 1754 // prototype. The really key thing here is that we also potentially drop 1755 // arguments from the call site so as to make a direct call, which makes the 1756 // inliner happier and suppresses a number of optimizer warnings (!) about 1757 // dropping arguments. 1758 if (!Entry->use_empty()) { 1759 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1760 Entry->removeDeadConstantUsers(); 1761 } 1762 1763 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1764 F, Entry->getType()->getElementType()->getPointerTo()); 1765 addGlobalValReplacement(Entry, BC); 1766 } 1767 1768 assert(F->getName() == MangledName && "name was uniqued!"); 1769 if (D) 1770 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1771 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1772 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1773 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1774 llvm::AttributeSet::get(VMContext, 1775 llvm::AttributeSet::FunctionIndex, 1776 B)); 1777 } 1778 1779 if (!DontDefer) { 1780 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1781 // each other bottoming out with the base dtor. Therefore we emit non-base 1782 // dtors on usage, even if there is no dtor definition in the TU. 1783 if (D && isa<CXXDestructorDecl>(D) && 1784 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1785 GD.getDtorType())) 1786 addDeferredDeclToEmit(F, GD); 1787 1788 // This is the first use or definition of a mangled name. If there is a 1789 // deferred decl with this name, remember that we need to emit it at the end 1790 // of the file. 1791 auto DDI = DeferredDecls.find(MangledName); 1792 if (DDI != DeferredDecls.end()) { 1793 // Move the potentially referenced deferred decl to the 1794 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1795 // don't need it anymore). 1796 addDeferredDeclToEmit(F, DDI->second); 1797 DeferredDecls.erase(DDI); 1798 1799 // Otherwise, there are cases we have to worry about where we're 1800 // using a declaration for which we must emit a definition but where 1801 // we might not find a top-level definition: 1802 // - member functions defined inline in their classes 1803 // - friend functions defined inline in some class 1804 // - special member functions with implicit definitions 1805 // If we ever change our AST traversal to walk into class methods, 1806 // this will be unnecessary. 1807 // 1808 // We also don't emit a definition for a function if it's going to be an 1809 // entry in a vtable, unless it's already marked as used. 1810 } else if (getLangOpts().CPlusPlus && D) { 1811 // Look for a declaration that's lexically in a record. 1812 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1813 FD = FD->getPreviousDecl()) { 1814 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1815 if (FD->doesThisDeclarationHaveABody()) { 1816 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1817 break; 1818 } 1819 } 1820 } 1821 } 1822 } 1823 1824 // Make sure the result is of the requested type. 1825 if (!IsIncompleteFunction) { 1826 assert(F->getType()->getElementType() == Ty); 1827 return F; 1828 } 1829 1830 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1831 return llvm::ConstantExpr::getBitCast(F, PTy); 1832 } 1833 1834 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1835 /// non-null, then this function will use the specified type if it has to 1836 /// create it (this occurs when we see a definition of the function). 1837 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1838 llvm::Type *Ty, 1839 bool ForVTable, 1840 bool DontDefer, 1841 bool IsForDefinition) { 1842 // If there was no specific requested type, just convert it now. 1843 if (!Ty) 1844 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1845 1846 StringRef MangledName = getMangledName(GD); 1847 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1848 /*IsThunk=*/false, llvm::AttributeSet(), 1849 IsForDefinition); 1850 } 1851 1852 /// CreateRuntimeFunction - Create a new runtime function with the specified 1853 /// type and name. 1854 llvm::Constant * 1855 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1856 StringRef Name, 1857 llvm::AttributeSet ExtraAttrs) { 1858 llvm::Constant *C = 1859 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1860 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1861 if (auto *F = dyn_cast<llvm::Function>(C)) 1862 if (F->empty()) 1863 F->setCallingConv(getRuntimeCC()); 1864 return C; 1865 } 1866 1867 /// CreateBuiltinFunction - Create a new builtin function with the specified 1868 /// type and name. 1869 llvm::Constant * 1870 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1871 StringRef Name, 1872 llvm::AttributeSet ExtraAttrs) { 1873 llvm::Constant *C = 1874 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1875 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1876 if (auto *F = dyn_cast<llvm::Function>(C)) 1877 if (F->empty()) 1878 F->setCallingConv(getBuiltinCC()); 1879 return C; 1880 } 1881 1882 /// isTypeConstant - Determine whether an object of this type can be emitted 1883 /// as a constant. 1884 /// 1885 /// If ExcludeCtor is true, the duration when the object's constructor runs 1886 /// will not be considered. The caller will need to verify that the object is 1887 /// not written to during its construction. 1888 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1889 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1890 return false; 1891 1892 if (Context.getLangOpts().CPlusPlus) { 1893 if (const CXXRecordDecl *Record 1894 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1895 return ExcludeCtor && !Record->hasMutableFields() && 1896 Record->hasTrivialDestructor(); 1897 } 1898 1899 return true; 1900 } 1901 1902 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1903 /// create and return an llvm GlobalVariable with the specified type. If there 1904 /// is something in the module with the specified name, return it potentially 1905 /// bitcasted to the right type. 1906 /// 1907 /// If D is non-null, it specifies a decl that correspond to this. This is used 1908 /// to set the attributes on the global when it is first created. 1909 llvm::Constant * 1910 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1911 llvm::PointerType *Ty, 1912 const VarDecl *D) { 1913 // Lookup the entry, lazily creating it if necessary. 1914 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1915 if (Entry) { 1916 if (WeakRefReferences.erase(Entry)) { 1917 if (D && !D->hasAttr<WeakAttr>()) 1918 Entry->setLinkage(llvm::Function::ExternalLinkage); 1919 } 1920 1921 // Handle dropped DLL attributes. 1922 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1923 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1924 1925 if (Entry->getType() == Ty) 1926 return Entry; 1927 1928 // Make sure the result is of the correct type. 1929 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1930 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1931 1932 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1933 } 1934 1935 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1936 auto *GV = new llvm::GlobalVariable( 1937 getModule(), Ty->getElementType(), false, 1938 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1939 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1940 1941 // This is the first use or definition of a mangled name. If there is a 1942 // deferred decl with this name, remember that we need to emit it at the end 1943 // of the file. 1944 auto DDI = DeferredDecls.find(MangledName); 1945 if (DDI != DeferredDecls.end()) { 1946 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1947 // list, and remove it from DeferredDecls (since we don't need it anymore). 1948 addDeferredDeclToEmit(GV, DDI->second); 1949 DeferredDecls.erase(DDI); 1950 } 1951 1952 // Handle things which are present even on external declarations. 1953 if (D) { 1954 // FIXME: This code is overly simple and should be merged with other global 1955 // handling. 1956 GV->setConstant(isTypeConstant(D->getType(), false)); 1957 1958 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1959 1960 setLinkageAndVisibilityForGV(GV, D); 1961 1962 if (D->getTLSKind()) { 1963 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1964 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1965 setTLSMode(GV, *D); 1966 } 1967 1968 // If required by the ABI, treat declarations of static data members with 1969 // inline initializers as definitions. 1970 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1971 EmitGlobalVarDefinition(D); 1972 } 1973 1974 // Handle XCore specific ABI requirements. 1975 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1976 D->getLanguageLinkage() == CLanguageLinkage && 1977 D->getType().isConstant(Context) && 1978 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1979 GV->setSection(".cp.rodata"); 1980 } 1981 1982 if (AddrSpace != Ty->getAddressSpace()) 1983 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1984 1985 return GV; 1986 } 1987 1988 llvm::Constant * 1989 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1990 bool IsForDefinition) { 1991 if (isa<CXXConstructorDecl>(GD.getDecl())) 1992 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1993 getFromCtorType(GD.getCtorType()), 1994 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1995 /*DontDefer=*/false, IsForDefinition); 1996 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1997 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1998 getFromDtorType(GD.getDtorType()), 1999 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2000 /*DontDefer=*/false, IsForDefinition); 2001 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2002 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2003 cast<CXXMethodDecl>(GD.getDecl())); 2004 auto Ty = getTypes().GetFunctionType(*FInfo); 2005 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2006 IsForDefinition); 2007 } else if (isa<FunctionDecl>(GD.getDecl())) { 2008 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2009 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2010 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2011 IsForDefinition); 2012 } else 2013 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2014 } 2015 2016 llvm::GlobalVariable * 2017 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2018 llvm::Type *Ty, 2019 llvm::GlobalValue::LinkageTypes Linkage) { 2020 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2021 llvm::GlobalVariable *OldGV = nullptr; 2022 2023 if (GV) { 2024 // Check if the variable has the right type. 2025 if (GV->getType()->getElementType() == Ty) 2026 return GV; 2027 2028 // Because C++ name mangling, the only way we can end up with an already 2029 // existing global with the same name is if it has been declared extern "C". 2030 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2031 OldGV = GV; 2032 } 2033 2034 // Create a new variable. 2035 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2036 Linkage, nullptr, Name); 2037 2038 if (OldGV) { 2039 // Replace occurrences of the old variable if needed. 2040 GV->takeName(OldGV); 2041 2042 if (!OldGV->use_empty()) { 2043 llvm::Constant *NewPtrForOldDecl = 2044 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2045 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2046 } 2047 2048 OldGV->eraseFromParent(); 2049 } 2050 2051 if (supportsCOMDAT() && GV->isWeakForLinker() && 2052 !GV->hasAvailableExternallyLinkage()) 2053 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2054 2055 return GV; 2056 } 2057 2058 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2059 /// given global variable. If Ty is non-null and if the global doesn't exist, 2060 /// then it will be created with the specified type instead of whatever the 2061 /// normal requested type would be. 2062 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2063 llvm::Type *Ty) { 2064 assert(D->hasGlobalStorage() && "Not a global variable"); 2065 QualType ASTTy = D->getType(); 2066 if (!Ty) 2067 Ty = getTypes().ConvertTypeForMem(ASTTy); 2068 2069 llvm::PointerType *PTy = 2070 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2071 2072 StringRef MangledName = getMangledName(D); 2073 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2074 } 2075 2076 /// CreateRuntimeVariable - Create a new runtime global variable with the 2077 /// specified type and name. 2078 llvm::Constant * 2079 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2080 StringRef Name) { 2081 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2082 } 2083 2084 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2085 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2086 2087 if (!MustBeEmitted(D)) { 2088 // If we have not seen a reference to this variable yet, place it 2089 // into the deferred declarations table to be emitted if needed 2090 // later. 2091 StringRef MangledName = getMangledName(D); 2092 if (!GetGlobalValue(MangledName)) { 2093 DeferredDecls[MangledName] = D; 2094 return; 2095 } 2096 } 2097 2098 // The tentative definition is the only definition. 2099 EmitGlobalVarDefinition(D); 2100 } 2101 2102 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2103 return Context.toCharUnitsFromBits( 2104 getDataLayout().getTypeStoreSizeInBits(Ty)); 2105 } 2106 2107 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2108 unsigned AddrSpace) { 2109 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2110 if (D->hasAttr<CUDAConstantAttr>()) 2111 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2112 else if (D->hasAttr<CUDASharedAttr>()) 2113 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2114 else 2115 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2116 } 2117 2118 return AddrSpace; 2119 } 2120 2121 template<typename SomeDecl> 2122 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2123 llvm::GlobalValue *GV) { 2124 if (!getLangOpts().CPlusPlus) 2125 return; 2126 2127 // Must have 'used' attribute, or else inline assembly can't rely on 2128 // the name existing. 2129 if (!D->template hasAttr<UsedAttr>()) 2130 return; 2131 2132 // Must have internal linkage and an ordinary name. 2133 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2134 return; 2135 2136 // Must be in an extern "C" context. Entities declared directly within 2137 // a record are not extern "C" even if the record is in such a context. 2138 const SomeDecl *First = D->getFirstDecl(); 2139 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2140 return; 2141 2142 // OK, this is an internal linkage entity inside an extern "C" linkage 2143 // specification. Make a note of that so we can give it the "expected" 2144 // mangled name if nothing else is using that name. 2145 std::pair<StaticExternCMap::iterator, bool> R = 2146 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2147 2148 // If we have multiple internal linkage entities with the same name 2149 // in extern "C" regions, none of them gets that name. 2150 if (!R.second) 2151 R.first->second = nullptr; 2152 } 2153 2154 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2155 if (!CGM.supportsCOMDAT()) 2156 return false; 2157 2158 if (D.hasAttr<SelectAnyAttr>()) 2159 return true; 2160 2161 GVALinkage Linkage; 2162 if (auto *VD = dyn_cast<VarDecl>(&D)) 2163 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2164 else 2165 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2166 2167 switch (Linkage) { 2168 case GVA_Internal: 2169 case GVA_AvailableExternally: 2170 case GVA_StrongExternal: 2171 return false; 2172 case GVA_DiscardableODR: 2173 case GVA_StrongODR: 2174 return true; 2175 } 2176 llvm_unreachable("No such linkage"); 2177 } 2178 2179 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2180 llvm::GlobalObject &GO) { 2181 if (!shouldBeInCOMDAT(*this, D)) 2182 return; 2183 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2184 } 2185 2186 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2187 llvm::Constant *Init = nullptr; 2188 QualType ASTTy = D->getType(); 2189 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2190 bool NeedsGlobalCtor = false; 2191 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2192 2193 const VarDecl *InitDecl; 2194 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2195 2196 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2197 // of their declaration." 2198 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2199 && D->hasAttr<CUDASharedAttr>()) { 2200 if (InitExpr) { 2201 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2202 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2203 Error(D->getLocation(), 2204 "__shared__ variable cannot have an initialization."); 2205 } 2206 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2207 } else if (!InitExpr) { 2208 // This is a tentative definition; tentative definitions are 2209 // implicitly initialized with { 0 }. 2210 // 2211 // Note that tentative definitions are only emitted at the end of 2212 // a translation unit, so they should never have incomplete 2213 // type. In addition, EmitTentativeDefinition makes sure that we 2214 // never attempt to emit a tentative definition if a real one 2215 // exists. A use may still exists, however, so we still may need 2216 // to do a RAUW. 2217 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2218 Init = EmitNullConstant(D->getType()); 2219 } else { 2220 initializedGlobalDecl = GlobalDecl(D); 2221 Init = EmitConstantInit(*InitDecl); 2222 2223 if (!Init) { 2224 QualType T = InitExpr->getType(); 2225 if (D->getType()->isReferenceType()) 2226 T = D->getType(); 2227 2228 if (getLangOpts().CPlusPlus) { 2229 Init = EmitNullConstant(T); 2230 NeedsGlobalCtor = true; 2231 } else { 2232 ErrorUnsupported(D, "static initializer"); 2233 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2234 } 2235 } else { 2236 // We don't need an initializer, so remove the entry for the delayed 2237 // initializer position (just in case this entry was delayed) if we 2238 // also don't need to register a destructor. 2239 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2240 DelayedCXXInitPosition.erase(D); 2241 } 2242 } 2243 2244 llvm::Type* InitType = Init->getType(); 2245 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2246 2247 // Strip off a bitcast if we got one back. 2248 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2249 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2250 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2251 // All zero index gep. 2252 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2253 Entry = CE->getOperand(0); 2254 } 2255 2256 // Entry is now either a Function or GlobalVariable. 2257 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2258 2259 // We have a definition after a declaration with the wrong type. 2260 // We must make a new GlobalVariable* and update everything that used OldGV 2261 // (a declaration or tentative definition) with the new GlobalVariable* 2262 // (which will be a definition). 2263 // 2264 // This happens if there is a prototype for a global (e.g. 2265 // "extern int x[];") and then a definition of a different type (e.g. 2266 // "int x[10];"). This also happens when an initializer has a different type 2267 // from the type of the global (this happens with unions). 2268 if (!GV || 2269 GV->getType()->getElementType() != InitType || 2270 GV->getType()->getAddressSpace() != 2271 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2272 2273 // Move the old entry aside so that we'll create a new one. 2274 Entry->setName(StringRef()); 2275 2276 // Make a new global with the correct type, this is now guaranteed to work. 2277 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2278 2279 // Replace all uses of the old global with the new global 2280 llvm::Constant *NewPtrForOldDecl = 2281 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2282 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2283 2284 // Erase the old global, since it is no longer used. 2285 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2286 } 2287 2288 MaybeHandleStaticInExternC(D, GV); 2289 2290 if (D->hasAttr<AnnotateAttr>()) 2291 AddGlobalAnnotations(D, GV); 2292 2293 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2294 // the device. [...]" 2295 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2296 // __device__, declares a variable that: [...] 2297 // Is accessible from all the threads within the grid and from the host 2298 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2299 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2300 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2301 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2302 GV->setExternallyInitialized(true); 2303 } 2304 GV->setInitializer(Init); 2305 2306 // If it is safe to mark the global 'constant', do so now. 2307 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2308 isTypeConstant(D->getType(), true)); 2309 2310 // If it is in a read-only section, mark it 'constant'. 2311 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2312 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2313 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2314 GV->setConstant(true); 2315 } 2316 2317 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2318 2319 // Set the llvm linkage type as appropriate. 2320 llvm::GlobalValue::LinkageTypes Linkage = 2321 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2322 2323 // On Darwin, the backing variable for a C++11 thread_local variable always 2324 // has internal linkage; all accesses should just be calls to the 2325 // Itanium-specified entry point, which has the normal linkage of the 2326 // variable. 2327 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2328 Context.getTargetInfo().getTriple().isMacOSX()) 2329 Linkage = llvm::GlobalValue::InternalLinkage; 2330 2331 GV->setLinkage(Linkage); 2332 if (D->hasAttr<DLLImportAttr>()) 2333 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2334 else if (D->hasAttr<DLLExportAttr>()) 2335 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2336 else 2337 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2338 2339 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2340 // common vars aren't constant even if declared const. 2341 GV->setConstant(false); 2342 2343 setNonAliasAttributes(D, GV); 2344 2345 if (D->getTLSKind() && !GV->isThreadLocal()) { 2346 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2347 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2348 setTLSMode(GV, *D); 2349 } 2350 2351 maybeSetTrivialComdat(*D, *GV); 2352 2353 // Emit the initializer function if necessary. 2354 if (NeedsGlobalCtor || NeedsGlobalDtor) 2355 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2356 2357 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2358 2359 // Emit global variable debug information. 2360 if (CGDebugInfo *DI = getModuleDebugInfo()) 2361 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2362 DI->EmitGlobalVariable(GV, D); 2363 } 2364 2365 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2366 CodeGenModule &CGM, const VarDecl *D, 2367 bool NoCommon) { 2368 // Don't give variables common linkage if -fno-common was specified unless it 2369 // was overridden by a NoCommon attribute. 2370 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2371 return true; 2372 2373 // C11 6.9.2/2: 2374 // A declaration of an identifier for an object that has file scope without 2375 // an initializer, and without a storage-class specifier or with the 2376 // storage-class specifier static, constitutes a tentative definition. 2377 if (D->getInit() || D->hasExternalStorage()) 2378 return true; 2379 2380 // A variable cannot be both common and exist in a section. 2381 if (D->hasAttr<SectionAttr>()) 2382 return true; 2383 2384 // Thread local vars aren't considered common linkage. 2385 if (D->getTLSKind()) 2386 return true; 2387 2388 // Tentative definitions marked with WeakImportAttr are true definitions. 2389 if (D->hasAttr<WeakImportAttr>()) 2390 return true; 2391 2392 // A variable cannot be both common and exist in a comdat. 2393 if (shouldBeInCOMDAT(CGM, *D)) 2394 return true; 2395 2396 // Declarations with a required alignment do not have common linakge in MSVC 2397 // mode. 2398 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2399 if (D->hasAttr<AlignedAttr>()) 2400 return true; 2401 QualType VarType = D->getType(); 2402 if (Context.isAlignmentRequired(VarType)) 2403 return true; 2404 2405 if (const auto *RT = VarType->getAs<RecordType>()) { 2406 const RecordDecl *RD = RT->getDecl(); 2407 for (const FieldDecl *FD : RD->fields()) { 2408 if (FD->isBitField()) 2409 continue; 2410 if (FD->hasAttr<AlignedAttr>()) 2411 return true; 2412 if (Context.isAlignmentRequired(FD->getType())) 2413 return true; 2414 } 2415 } 2416 } 2417 2418 return false; 2419 } 2420 2421 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2422 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2423 if (Linkage == GVA_Internal) 2424 return llvm::Function::InternalLinkage; 2425 2426 if (D->hasAttr<WeakAttr>()) { 2427 if (IsConstantVariable) 2428 return llvm::GlobalVariable::WeakODRLinkage; 2429 else 2430 return llvm::GlobalVariable::WeakAnyLinkage; 2431 } 2432 2433 // We are guaranteed to have a strong definition somewhere else, 2434 // so we can use available_externally linkage. 2435 if (Linkage == GVA_AvailableExternally) 2436 return llvm::Function::AvailableExternallyLinkage; 2437 2438 // Note that Apple's kernel linker doesn't support symbol 2439 // coalescing, so we need to avoid linkonce and weak linkages there. 2440 // Normally, this means we just map to internal, but for explicit 2441 // instantiations we'll map to external. 2442 2443 // In C++, the compiler has to emit a definition in every translation unit 2444 // that references the function. We should use linkonce_odr because 2445 // a) if all references in this translation unit are optimized away, we 2446 // don't need to codegen it. b) if the function persists, it needs to be 2447 // merged with other definitions. c) C++ has the ODR, so we know the 2448 // definition is dependable. 2449 if (Linkage == GVA_DiscardableODR) 2450 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2451 : llvm::Function::InternalLinkage; 2452 2453 // An explicit instantiation of a template has weak linkage, since 2454 // explicit instantiations can occur in multiple translation units 2455 // and must all be equivalent. However, we are not allowed to 2456 // throw away these explicit instantiations. 2457 if (Linkage == GVA_StrongODR) 2458 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2459 : llvm::Function::ExternalLinkage; 2460 2461 // C++ doesn't have tentative definitions and thus cannot have common 2462 // linkage. 2463 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2464 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2465 CodeGenOpts.NoCommon)) 2466 return llvm::GlobalVariable::CommonLinkage; 2467 2468 // selectany symbols are externally visible, so use weak instead of 2469 // linkonce. MSVC optimizes away references to const selectany globals, so 2470 // all definitions should be the same and ODR linkage should be used. 2471 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2472 if (D->hasAttr<SelectAnyAttr>()) 2473 return llvm::GlobalVariable::WeakODRLinkage; 2474 2475 // Otherwise, we have strong external linkage. 2476 assert(Linkage == GVA_StrongExternal); 2477 return llvm::GlobalVariable::ExternalLinkage; 2478 } 2479 2480 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2481 const VarDecl *VD, bool IsConstant) { 2482 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2483 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2484 } 2485 2486 /// Replace the uses of a function that was declared with a non-proto type. 2487 /// We want to silently drop extra arguments from call sites 2488 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2489 llvm::Function *newFn) { 2490 // Fast path. 2491 if (old->use_empty()) return; 2492 2493 llvm::Type *newRetTy = newFn->getReturnType(); 2494 SmallVector<llvm::Value*, 4> newArgs; 2495 2496 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2497 ui != ue; ) { 2498 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2499 llvm::User *user = use->getUser(); 2500 2501 // Recognize and replace uses of bitcasts. Most calls to 2502 // unprototyped functions will use bitcasts. 2503 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2504 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2505 replaceUsesOfNonProtoConstant(bitcast, newFn); 2506 continue; 2507 } 2508 2509 // Recognize calls to the function. 2510 llvm::CallSite callSite(user); 2511 if (!callSite) continue; 2512 if (!callSite.isCallee(&*use)) continue; 2513 2514 // If the return types don't match exactly, then we can't 2515 // transform this call unless it's dead. 2516 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2517 continue; 2518 2519 // Get the call site's attribute list. 2520 SmallVector<llvm::AttributeSet, 8> newAttrs; 2521 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2522 2523 // Collect any return attributes from the call. 2524 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2525 newAttrs.push_back( 2526 llvm::AttributeSet::get(newFn->getContext(), 2527 oldAttrs.getRetAttributes())); 2528 2529 // If the function was passed too few arguments, don't transform. 2530 unsigned newNumArgs = newFn->arg_size(); 2531 if (callSite.arg_size() < newNumArgs) continue; 2532 2533 // If extra arguments were passed, we silently drop them. 2534 // If any of the types mismatch, we don't transform. 2535 unsigned argNo = 0; 2536 bool dontTransform = false; 2537 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2538 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2539 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2540 dontTransform = true; 2541 break; 2542 } 2543 2544 // Add any parameter attributes. 2545 if (oldAttrs.hasAttributes(argNo + 1)) 2546 newAttrs. 2547 push_back(llvm:: 2548 AttributeSet::get(newFn->getContext(), 2549 oldAttrs.getParamAttributes(argNo + 1))); 2550 } 2551 if (dontTransform) 2552 continue; 2553 2554 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2555 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2556 oldAttrs.getFnAttributes())); 2557 2558 // Okay, we can transform this. Create the new call instruction and copy 2559 // over the required information. 2560 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2561 2562 llvm::CallSite newCall; 2563 if (callSite.isCall()) { 2564 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2565 callSite.getInstruction()); 2566 } else { 2567 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2568 newCall = llvm::InvokeInst::Create(newFn, 2569 oldInvoke->getNormalDest(), 2570 oldInvoke->getUnwindDest(), 2571 newArgs, "", 2572 callSite.getInstruction()); 2573 } 2574 newArgs.clear(); // for the next iteration 2575 2576 if (!newCall->getType()->isVoidTy()) 2577 newCall->takeName(callSite.getInstruction()); 2578 newCall.setAttributes( 2579 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2580 newCall.setCallingConv(callSite.getCallingConv()); 2581 2582 // Finally, remove the old call, replacing any uses with the new one. 2583 if (!callSite->use_empty()) 2584 callSite->replaceAllUsesWith(newCall.getInstruction()); 2585 2586 // Copy debug location attached to CI. 2587 if (callSite->getDebugLoc()) 2588 newCall->setDebugLoc(callSite->getDebugLoc()); 2589 callSite->eraseFromParent(); 2590 } 2591 } 2592 2593 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2594 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2595 /// existing call uses of the old function in the module, this adjusts them to 2596 /// call the new function directly. 2597 /// 2598 /// This is not just a cleanup: the always_inline pass requires direct calls to 2599 /// functions to be able to inline them. If there is a bitcast in the way, it 2600 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2601 /// run at -O0. 2602 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2603 llvm::Function *NewFn) { 2604 // If we're redefining a global as a function, don't transform it. 2605 if (!isa<llvm::Function>(Old)) return; 2606 2607 replaceUsesOfNonProtoConstant(Old, NewFn); 2608 } 2609 2610 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2611 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2612 // If we have a definition, this might be a deferred decl. If the 2613 // instantiation is explicit, make sure we emit it at the end. 2614 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2615 GetAddrOfGlobalVar(VD); 2616 2617 EmitTopLevelDecl(VD); 2618 } 2619 2620 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2621 llvm::GlobalValue *GV) { 2622 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2623 2624 // Compute the function info and LLVM type. 2625 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2626 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2627 2628 // Get or create the prototype for the function. 2629 if (!GV || (GV->getType()->getElementType() != Ty)) 2630 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2631 /*DontDefer=*/true, 2632 /*IsForDefinition=*/true)); 2633 2634 // Already emitted. 2635 if (!GV->isDeclaration()) 2636 return; 2637 2638 // We need to set linkage and visibility on the function before 2639 // generating code for it because various parts of IR generation 2640 // want to propagate this information down (e.g. to local static 2641 // declarations). 2642 auto *Fn = cast<llvm::Function>(GV); 2643 setFunctionLinkage(GD, Fn); 2644 setFunctionDLLStorageClass(GD, Fn); 2645 2646 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2647 setGlobalVisibility(Fn, D); 2648 2649 MaybeHandleStaticInExternC(D, Fn); 2650 2651 maybeSetTrivialComdat(*D, *Fn); 2652 2653 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2654 2655 setFunctionDefinitionAttributes(D, Fn); 2656 SetLLVMFunctionAttributesForDefinition(D, Fn); 2657 2658 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2659 AddGlobalCtor(Fn, CA->getPriority()); 2660 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2661 AddGlobalDtor(Fn, DA->getPriority()); 2662 if (D->hasAttr<AnnotateAttr>()) 2663 AddGlobalAnnotations(D, Fn); 2664 } 2665 2666 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2667 const auto *D = cast<ValueDecl>(GD.getDecl()); 2668 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2669 assert(AA && "Not an alias?"); 2670 2671 StringRef MangledName = getMangledName(GD); 2672 2673 if (AA->getAliasee() == MangledName) { 2674 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2675 return; 2676 } 2677 2678 // If there is a definition in the module, then it wins over the alias. 2679 // This is dubious, but allow it to be safe. Just ignore the alias. 2680 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2681 if (Entry && !Entry->isDeclaration()) 2682 return; 2683 2684 Aliases.push_back(GD); 2685 2686 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2687 2688 // Create a reference to the named value. This ensures that it is emitted 2689 // if a deferred decl. 2690 llvm::Constant *Aliasee; 2691 if (isa<llvm::FunctionType>(DeclTy)) 2692 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2693 /*ForVTable=*/false); 2694 else 2695 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2696 llvm::PointerType::getUnqual(DeclTy), 2697 /*D=*/nullptr); 2698 2699 // Create the new alias itself, but don't set a name yet. 2700 auto *GA = llvm::GlobalAlias::create( 2701 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2702 2703 if (Entry) { 2704 if (GA->getAliasee() == Entry) { 2705 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2706 return; 2707 } 2708 2709 assert(Entry->isDeclaration()); 2710 2711 // If there is a declaration in the module, then we had an extern followed 2712 // by the alias, as in: 2713 // extern int test6(); 2714 // ... 2715 // int test6() __attribute__((alias("test7"))); 2716 // 2717 // Remove it and replace uses of it with the alias. 2718 GA->takeName(Entry); 2719 2720 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2721 Entry->getType())); 2722 Entry->eraseFromParent(); 2723 } else { 2724 GA->setName(MangledName); 2725 } 2726 2727 // Set attributes which are particular to an alias; this is a 2728 // specialization of the attributes which may be set on a global 2729 // variable/function. 2730 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2731 D->isWeakImported()) { 2732 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2733 } 2734 2735 if (const auto *VD = dyn_cast<VarDecl>(D)) 2736 if (VD->getTLSKind()) 2737 setTLSMode(GA, *VD); 2738 2739 setAliasAttributes(D, GA); 2740 } 2741 2742 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2743 ArrayRef<llvm::Type*> Tys) { 2744 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2745 Tys); 2746 } 2747 2748 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2749 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2750 const StringLiteral *Literal, bool TargetIsLSB, 2751 bool &IsUTF16, unsigned &StringLength) { 2752 StringRef String = Literal->getString(); 2753 unsigned NumBytes = String.size(); 2754 2755 // Check for simple case. 2756 if (!Literal->containsNonAsciiOrNull()) { 2757 StringLength = NumBytes; 2758 return *Map.insert(std::make_pair(String, nullptr)).first; 2759 } 2760 2761 // Otherwise, convert the UTF8 literals into a string of shorts. 2762 IsUTF16 = true; 2763 2764 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2765 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2766 UTF16 *ToPtr = &ToBuf[0]; 2767 2768 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2769 &ToPtr, ToPtr + NumBytes, 2770 strictConversion); 2771 2772 // ConvertUTF8toUTF16 returns the length in ToPtr. 2773 StringLength = ToPtr - &ToBuf[0]; 2774 2775 // Add an explicit null. 2776 *ToPtr = 0; 2777 return *Map.insert(std::make_pair( 2778 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2779 (StringLength + 1) * 2), 2780 nullptr)).first; 2781 } 2782 2783 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2784 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2785 const StringLiteral *Literal, unsigned &StringLength) { 2786 StringRef String = Literal->getString(); 2787 StringLength = String.size(); 2788 return *Map.insert(std::make_pair(String, nullptr)).first; 2789 } 2790 2791 ConstantAddress 2792 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2793 unsigned StringLength = 0; 2794 bool isUTF16 = false; 2795 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2796 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2797 getDataLayout().isLittleEndian(), isUTF16, 2798 StringLength); 2799 2800 if (auto *C = Entry.second) 2801 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2802 2803 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2804 llvm::Constant *Zeros[] = { Zero, Zero }; 2805 llvm::Value *V; 2806 2807 // If we don't already have it, get __CFConstantStringClassReference. 2808 if (!CFConstantStringClassRef) { 2809 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2810 Ty = llvm::ArrayType::get(Ty, 0); 2811 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2812 "__CFConstantStringClassReference"); 2813 // Decay array -> ptr 2814 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2815 CFConstantStringClassRef = V; 2816 } 2817 else 2818 V = CFConstantStringClassRef; 2819 2820 QualType CFTy = getContext().getCFConstantStringType(); 2821 2822 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2823 2824 llvm::Constant *Fields[4]; 2825 2826 // Class pointer. 2827 Fields[0] = cast<llvm::ConstantExpr>(V); 2828 2829 // Flags. 2830 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2831 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2832 llvm::ConstantInt::get(Ty, 0x07C8); 2833 2834 // String pointer. 2835 llvm::Constant *C = nullptr; 2836 if (isUTF16) { 2837 auto Arr = llvm::makeArrayRef( 2838 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2839 Entry.first().size() / 2); 2840 C = llvm::ConstantDataArray::get(VMContext, Arr); 2841 } else { 2842 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2843 } 2844 2845 // Note: -fwritable-strings doesn't make the backing store strings of 2846 // CFStrings writable. (See <rdar://problem/10657500>) 2847 auto *GV = 2848 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2849 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2850 GV->setUnnamedAddr(true); 2851 // Don't enforce the target's minimum global alignment, since the only use 2852 // of the string is via this class initializer. 2853 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2854 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2855 // that changes the section it ends in, which surprises ld64. 2856 if (isUTF16) { 2857 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2858 GV->setAlignment(Align.getQuantity()); 2859 GV->setSection("__TEXT,__ustring"); 2860 } else { 2861 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2862 GV->setAlignment(Align.getQuantity()); 2863 GV->setSection("__TEXT,__cstring,cstring_literals"); 2864 } 2865 2866 // String. 2867 Fields[2] = 2868 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2869 2870 if (isUTF16) 2871 // Cast the UTF16 string to the correct type. 2872 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2873 2874 // String length. 2875 Ty = getTypes().ConvertType(getContext().LongTy); 2876 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2877 2878 CharUnits Alignment = getPointerAlign(); 2879 2880 // The struct. 2881 C = llvm::ConstantStruct::get(STy, Fields); 2882 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2883 llvm::GlobalVariable::PrivateLinkage, C, 2884 "_unnamed_cfstring_"); 2885 GV->setSection("__DATA,__cfstring"); 2886 GV->setAlignment(Alignment.getQuantity()); 2887 Entry.second = GV; 2888 2889 return ConstantAddress(GV, Alignment); 2890 } 2891 2892 ConstantAddress 2893 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2894 unsigned StringLength = 0; 2895 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2896 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2897 2898 if (auto *C = Entry.second) 2899 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2900 2901 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2902 llvm::Constant *Zeros[] = { Zero, Zero }; 2903 llvm::Value *V; 2904 // If we don't already have it, get _NSConstantStringClassReference. 2905 if (!ConstantStringClassRef) { 2906 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2907 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2908 llvm::Constant *GV; 2909 if (LangOpts.ObjCRuntime.isNonFragile()) { 2910 std::string str = 2911 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2912 : "OBJC_CLASS_$_" + StringClass; 2913 GV = getObjCRuntime().GetClassGlobal(str); 2914 // Make sure the result is of the correct type. 2915 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2916 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2917 ConstantStringClassRef = V; 2918 } else { 2919 std::string str = 2920 StringClass.empty() ? "_NSConstantStringClassReference" 2921 : "_" + StringClass + "ClassReference"; 2922 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2923 GV = CreateRuntimeVariable(PTy, str); 2924 // Decay array -> ptr 2925 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2926 ConstantStringClassRef = V; 2927 } 2928 } else 2929 V = ConstantStringClassRef; 2930 2931 if (!NSConstantStringType) { 2932 // Construct the type for a constant NSString. 2933 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2934 D->startDefinition(); 2935 2936 QualType FieldTypes[3]; 2937 2938 // const int *isa; 2939 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2940 // const char *str; 2941 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2942 // unsigned int length; 2943 FieldTypes[2] = Context.UnsignedIntTy; 2944 2945 // Create fields 2946 for (unsigned i = 0; i < 3; ++i) { 2947 FieldDecl *Field = FieldDecl::Create(Context, D, 2948 SourceLocation(), 2949 SourceLocation(), nullptr, 2950 FieldTypes[i], /*TInfo=*/nullptr, 2951 /*BitWidth=*/nullptr, 2952 /*Mutable=*/false, 2953 ICIS_NoInit); 2954 Field->setAccess(AS_public); 2955 D->addDecl(Field); 2956 } 2957 2958 D->completeDefinition(); 2959 QualType NSTy = Context.getTagDeclType(D); 2960 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2961 } 2962 2963 llvm::Constant *Fields[3]; 2964 2965 // Class pointer. 2966 Fields[0] = cast<llvm::ConstantExpr>(V); 2967 2968 // String pointer. 2969 llvm::Constant *C = 2970 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2971 2972 llvm::GlobalValue::LinkageTypes Linkage; 2973 bool isConstant; 2974 Linkage = llvm::GlobalValue::PrivateLinkage; 2975 isConstant = !LangOpts.WritableStrings; 2976 2977 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2978 Linkage, C, ".str"); 2979 GV->setUnnamedAddr(true); 2980 // Don't enforce the target's minimum global alignment, since the only use 2981 // of the string is via this class initializer. 2982 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2983 GV->setAlignment(Align.getQuantity()); 2984 Fields[1] = 2985 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2986 2987 // String length. 2988 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2989 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2990 2991 // The struct. 2992 CharUnits Alignment = getPointerAlign(); 2993 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2994 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2995 llvm::GlobalVariable::PrivateLinkage, C, 2996 "_unnamed_nsstring_"); 2997 GV->setAlignment(Alignment.getQuantity()); 2998 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2999 const char *NSStringNonFragileABISection = 3000 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3001 // FIXME. Fix section. 3002 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3003 ? NSStringNonFragileABISection 3004 : NSStringSection); 3005 Entry.second = GV; 3006 3007 return ConstantAddress(GV, Alignment); 3008 } 3009 3010 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3011 if (ObjCFastEnumerationStateType.isNull()) { 3012 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3013 D->startDefinition(); 3014 3015 QualType FieldTypes[] = { 3016 Context.UnsignedLongTy, 3017 Context.getPointerType(Context.getObjCIdType()), 3018 Context.getPointerType(Context.UnsignedLongTy), 3019 Context.getConstantArrayType(Context.UnsignedLongTy, 3020 llvm::APInt(32, 5), ArrayType::Normal, 0) 3021 }; 3022 3023 for (size_t i = 0; i < 4; ++i) { 3024 FieldDecl *Field = FieldDecl::Create(Context, 3025 D, 3026 SourceLocation(), 3027 SourceLocation(), nullptr, 3028 FieldTypes[i], /*TInfo=*/nullptr, 3029 /*BitWidth=*/nullptr, 3030 /*Mutable=*/false, 3031 ICIS_NoInit); 3032 Field->setAccess(AS_public); 3033 D->addDecl(Field); 3034 } 3035 3036 D->completeDefinition(); 3037 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3038 } 3039 3040 return ObjCFastEnumerationStateType; 3041 } 3042 3043 llvm::Constant * 3044 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3045 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3046 3047 // Don't emit it as the address of the string, emit the string data itself 3048 // as an inline array. 3049 if (E->getCharByteWidth() == 1) { 3050 SmallString<64> Str(E->getString()); 3051 3052 // Resize the string to the right size, which is indicated by its type. 3053 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3054 Str.resize(CAT->getSize().getZExtValue()); 3055 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3056 } 3057 3058 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3059 llvm::Type *ElemTy = AType->getElementType(); 3060 unsigned NumElements = AType->getNumElements(); 3061 3062 // Wide strings have either 2-byte or 4-byte elements. 3063 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3064 SmallVector<uint16_t, 32> Elements; 3065 Elements.reserve(NumElements); 3066 3067 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3068 Elements.push_back(E->getCodeUnit(i)); 3069 Elements.resize(NumElements); 3070 return llvm::ConstantDataArray::get(VMContext, Elements); 3071 } 3072 3073 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3074 SmallVector<uint32_t, 32> Elements; 3075 Elements.reserve(NumElements); 3076 3077 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3078 Elements.push_back(E->getCodeUnit(i)); 3079 Elements.resize(NumElements); 3080 return llvm::ConstantDataArray::get(VMContext, Elements); 3081 } 3082 3083 static llvm::GlobalVariable * 3084 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3085 CodeGenModule &CGM, StringRef GlobalName, 3086 CharUnits Alignment) { 3087 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3088 unsigned AddrSpace = 0; 3089 if (CGM.getLangOpts().OpenCL) 3090 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3091 3092 llvm::Module &M = CGM.getModule(); 3093 // Create a global variable for this string 3094 auto *GV = new llvm::GlobalVariable( 3095 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3096 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3097 GV->setAlignment(Alignment.getQuantity()); 3098 GV->setUnnamedAddr(true); 3099 if (GV->isWeakForLinker()) { 3100 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3101 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3102 } 3103 3104 return GV; 3105 } 3106 3107 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3108 /// constant array for the given string literal. 3109 ConstantAddress 3110 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3111 StringRef Name) { 3112 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3113 3114 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3115 llvm::GlobalVariable **Entry = nullptr; 3116 if (!LangOpts.WritableStrings) { 3117 Entry = &ConstantStringMap[C]; 3118 if (auto GV = *Entry) { 3119 if (Alignment.getQuantity() > GV->getAlignment()) 3120 GV->setAlignment(Alignment.getQuantity()); 3121 return ConstantAddress(GV, Alignment); 3122 } 3123 } 3124 3125 SmallString<256> MangledNameBuffer; 3126 StringRef GlobalVariableName; 3127 llvm::GlobalValue::LinkageTypes LT; 3128 3129 // Mangle the string literal if the ABI allows for it. However, we cannot 3130 // do this if we are compiling with ASan or -fwritable-strings because they 3131 // rely on strings having normal linkage. 3132 if (!LangOpts.WritableStrings && 3133 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3134 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3135 llvm::raw_svector_ostream Out(MangledNameBuffer); 3136 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3137 3138 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3139 GlobalVariableName = MangledNameBuffer; 3140 } else { 3141 LT = llvm::GlobalValue::PrivateLinkage; 3142 GlobalVariableName = Name; 3143 } 3144 3145 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3146 if (Entry) 3147 *Entry = GV; 3148 3149 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3150 QualType()); 3151 return ConstantAddress(GV, Alignment); 3152 } 3153 3154 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3155 /// array for the given ObjCEncodeExpr node. 3156 ConstantAddress 3157 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3158 std::string Str; 3159 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3160 3161 return GetAddrOfConstantCString(Str); 3162 } 3163 3164 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3165 /// the literal and a terminating '\0' character. 3166 /// The result has pointer to array type. 3167 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3168 const std::string &Str, const char *GlobalName) { 3169 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3170 CharUnits Alignment = 3171 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3172 3173 llvm::Constant *C = 3174 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3175 3176 // Don't share any string literals if strings aren't constant. 3177 llvm::GlobalVariable **Entry = nullptr; 3178 if (!LangOpts.WritableStrings) { 3179 Entry = &ConstantStringMap[C]; 3180 if (auto GV = *Entry) { 3181 if (Alignment.getQuantity() > GV->getAlignment()) 3182 GV->setAlignment(Alignment.getQuantity()); 3183 return ConstantAddress(GV, Alignment); 3184 } 3185 } 3186 3187 // Get the default prefix if a name wasn't specified. 3188 if (!GlobalName) 3189 GlobalName = ".str"; 3190 // Create a global variable for this. 3191 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3192 GlobalName, Alignment); 3193 if (Entry) 3194 *Entry = GV; 3195 return ConstantAddress(GV, Alignment); 3196 } 3197 3198 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3199 const MaterializeTemporaryExpr *E, const Expr *Init) { 3200 assert((E->getStorageDuration() == SD_Static || 3201 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3202 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3203 3204 // If we're not materializing a subobject of the temporary, keep the 3205 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3206 QualType MaterializedType = Init->getType(); 3207 if (Init == E->GetTemporaryExpr()) 3208 MaterializedType = E->getType(); 3209 3210 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3211 3212 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3213 return ConstantAddress(Slot, Align); 3214 3215 // FIXME: If an externally-visible declaration extends multiple temporaries, 3216 // we need to give each temporary the same name in every translation unit (and 3217 // we also need to make the temporaries externally-visible). 3218 SmallString<256> Name; 3219 llvm::raw_svector_ostream Out(Name); 3220 getCXXABI().getMangleContext().mangleReferenceTemporary( 3221 VD, E->getManglingNumber(), Out); 3222 3223 APValue *Value = nullptr; 3224 if (E->getStorageDuration() == SD_Static) { 3225 // We might have a cached constant initializer for this temporary. Note 3226 // that this might have a different value from the value computed by 3227 // evaluating the initializer if the surrounding constant expression 3228 // modifies the temporary. 3229 Value = getContext().getMaterializedTemporaryValue(E, false); 3230 if (Value && Value->isUninit()) 3231 Value = nullptr; 3232 } 3233 3234 // Try evaluating it now, it might have a constant initializer. 3235 Expr::EvalResult EvalResult; 3236 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3237 !EvalResult.hasSideEffects()) 3238 Value = &EvalResult.Val; 3239 3240 llvm::Constant *InitialValue = nullptr; 3241 bool Constant = false; 3242 llvm::Type *Type; 3243 if (Value) { 3244 // The temporary has a constant initializer, use it. 3245 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3246 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3247 Type = InitialValue->getType(); 3248 } else { 3249 // No initializer, the initialization will be provided when we 3250 // initialize the declaration which performed lifetime extension. 3251 Type = getTypes().ConvertTypeForMem(MaterializedType); 3252 } 3253 3254 // Create a global variable for this lifetime-extended temporary. 3255 llvm::GlobalValue::LinkageTypes Linkage = 3256 getLLVMLinkageVarDefinition(VD, Constant); 3257 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3258 const VarDecl *InitVD; 3259 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3260 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3261 // Temporaries defined inside a class get linkonce_odr linkage because the 3262 // class can be defined in multipe translation units. 3263 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3264 } else { 3265 // There is no need for this temporary to have external linkage if the 3266 // VarDecl has external linkage. 3267 Linkage = llvm::GlobalVariable::InternalLinkage; 3268 } 3269 } 3270 unsigned AddrSpace = GetGlobalVarAddressSpace( 3271 VD, getContext().getTargetAddressSpace(MaterializedType)); 3272 auto *GV = new llvm::GlobalVariable( 3273 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3274 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3275 AddrSpace); 3276 setGlobalVisibility(GV, VD); 3277 GV->setAlignment(Align.getQuantity()); 3278 if (supportsCOMDAT() && GV->isWeakForLinker()) 3279 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3280 if (VD->getTLSKind()) 3281 setTLSMode(GV, *VD); 3282 MaterializedGlobalTemporaryMap[E] = GV; 3283 return ConstantAddress(GV, Align); 3284 } 3285 3286 /// EmitObjCPropertyImplementations - Emit information for synthesized 3287 /// properties for an implementation. 3288 void CodeGenModule::EmitObjCPropertyImplementations(const 3289 ObjCImplementationDecl *D) { 3290 for (const auto *PID : D->property_impls()) { 3291 // Dynamic is just for type-checking. 3292 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3293 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3294 3295 // Determine which methods need to be implemented, some may have 3296 // been overridden. Note that ::isPropertyAccessor is not the method 3297 // we want, that just indicates if the decl came from a 3298 // property. What we want to know is if the method is defined in 3299 // this implementation. 3300 if (!D->getInstanceMethod(PD->getGetterName())) 3301 CodeGenFunction(*this).GenerateObjCGetter( 3302 const_cast<ObjCImplementationDecl *>(D), PID); 3303 if (!PD->isReadOnly() && 3304 !D->getInstanceMethod(PD->getSetterName())) 3305 CodeGenFunction(*this).GenerateObjCSetter( 3306 const_cast<ObjCImplementationDecl *>(D), PID); 3307 } 3308 } 3309 } 3310 3311 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3312 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3313 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3314 ivar; ivar = ivar->getNextIvar()) 3315 if (ivar->getType().isDestructedType()) 3316 return true; 3317 3318 return false; 3319 } 3320 3321 static bool AllTrivialInitializers(CodeGenModule &CGM, 3322 ObjCImplementationDecl *D) { 3323 CodeGenFunction CGF(CGM); 3324 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3325 E = D->init_end(); B != E; ++B) { 3326 CXXCtorInitializer *CtorInitExp = *B; 3327 Expr *Init = CtorInitExp->getInit(); 3328 if (!CGF.isTrivialInitializer(Init)) 3329 return false; 3330 } 3331 return true; 3332 } 3333 3334 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3335 /// for an implementation. 3336 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3337 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3338 if (needsDestructMethod(D)) { 3339 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3340 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3341 ObjCMethodDecl *DTORMethod = 3342 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3343 cxxSelector, getContext().VoidTy, nullptr, D, 3344 /*isInstance=*/true, /*isVariadic=*/false, 3345 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3346 /*isDefined=*/false, ObjCMethodDecl::Required); 3347 D->addInstanceMethod(DTORMethod); 3348 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3349 D->setHasDestructors(true); 3350 } 3351 3352 // If the implementation doesn't have any ivar initializers, we don't need 3353 // a .cxx_construct. 3354 if (D->getNumIvarInitializers() == 0 || 3355 AllTrivialInitializers(*this, D)) 3356 return; 3357 3358 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3359 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3360 // The constructor returns 'self'. 3361 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3362 D->getLocation(), 3363 D->getLocation(), 3364 cxxSelector, 3365 getContext().getObjCIdType(), 3366 nullptr, D, /*isInstance=*/true, 3367 /*isVariadic=*/false, 3368 /*isPropertyAccessor=*/true, 3369 /*isImplicitlyDeclared=*/true, 3370 /*isDefined=*/false, 3371 ObjCMethodDecl::Required); 3372 D->addInstanceMethod(CTORMethod); 3373 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3374 D->setHasNonZeroConstructors(true); 3375 } 3376 3377 /// EmitNamespace - Emit all declarations in a namespace. 3378 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3379 for (auto *I : ND->decls()) { 3380 if (const auto *VD = dyn_cast<VarDecl>(I)) 3381 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3382 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3383 continue; 3384 EmitTopLevelDecl(I); 3385 } 3386 } 3387 3388 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3389 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3390 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3391 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3392 ErrorUnsupported(LSD, "linkage spec"); 3393 return; 3394 } 3395 3396 for (auto *I : LSD->decls()) { 3397 // Meta-data for ObjC class includes references to implemented methods. 3398 // Generate class's method definitions first. 3399 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3400 for (auto *M : OID->methods()) 3401 EmitTopLevelDecl(M); 3402 } 3403 EmitTopLevelDecl(I); 3404 } 3405 } 3406 3407 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3408 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3409 // Ignore dependent declarations. 3410 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3411 return; 3412 3413 switch (D->getKind()) { 3414 case Decl::CXXConversion: 3415 case Decl::CXXMethod: 3416 case Decl::Function: 3417 // Skip function templates 3418 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3419 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3420 return; 3421 3422 EmitGlobal(cast<FunctionDecl>(D)); 3423 // Always provide some coverage mapping 3424 // even for the functions that aren't emitted. 3425 AddDeferredUnusedCoverageMapping(D); 3426 break; 3427 3428 case Decl::Var: 3429 // Skip variable templates 3430 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3431 return; 3432 case Decl::VarTemplateSpecialization: 3433 EmitGlobal(cast<VarDecl>(D)); 3434 break; 3435 3436 // Indirect fields from global anonymous structs and unions can be 3437 // ignored; only the actual variable requires IR gen support. 3438 case Decl::IndirectField: 3439 break; 3440 3441 // C++ Decls 3442 case Decl::Namespace: 3443 EmitNamespace(cast<NamespaceDecl>(D)); 3444 break; 3445 // No code generation needed. 3446 case Decl::UsingShadow: 3447 case Decl::ClassTemplate: 3448 case Decl::VarTemplate: 3449 case Decl::VarTemplatePartialSpecialization: 3450 case Decl::FunctionTemplate: 3451 case Decl::TypeAliasTemplate: 3452 case Decl::Block: 3453 case Decl::Empty: 3454 break; 3455 case Decl::Using: // using X; [C++] 3456 if (CGDebugInfo *DI = getModuleDebugInfo()) 3457 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3458 return; 3459 case Decl::NamespaceAlias: 3460 if (CGDebugInfo *DI = getModuleDebugInfo()) 3461 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3462 return; 3463 case Decl::UsingDirective: // using namespace X; [C++] 3464 if (CGDebugInfo *DI = getModuleDebugInfo()) 3465 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3466 return; 3467 case Decl::CXXConstructor: 3468 // Skip function templates 3469 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3470 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3471 return; 3472 3473 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3474 break; 3475 case Decl::CXXDestructor: 3476 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3477 return; 3478 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3479 break; 3480 3481 case Decl::StaticAssert: 3482 // Nothing to do. 3483 break; 3484 3485 // Objective-C Decls 3486 3487 // Forward declarations, no (immediate) code generation. 3488 case Decl::ObjCInterface: 3489 case Decl::ObjCCategory: 3490 break; 3491 3492 case Decl::ObjCProtocol: { 3493 auto *Proto = cast<ObjCProtocolDecl>(D); 3494 if (Proto->isThisDeclarationADefinition()) 3495 ObjCRuntime->GenerateProtocol(Proto); 3496 break; 3497 } 3498 3499 case Decl::ObjCCategoryImpl: 3500 // Categories have properties but don't support synthesize so we 3501 // can ignore them here. 3502 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3503 break; 3504 3505 case Decl::ObjCImplementation: { 3506 auto *OMD = cast<ObjCImplementationDecl>(D); 3507 EmitObjCPropertyImplementations(OMD); 3508 EmitObjCIvarInitializations(OMD); 3509 ObjCRuntime->GenerateClass(OMD); 3510 // Emit global variable debug information. 3511 if (CGDebugInfo *DI = getModuleDebugInfo()) 3512 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3513 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3514 OMD->getClassInterface()), OMD->getLocation()); 3515 break; 3516 } 3517 case Decl::ObjCMethod: { 3518 auto *OMD = cast<ObjCMethodDecl>(D); 3519 // If this is not a prototype, emit the body. 3520 if (OMD->getBody()) 3521 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3522 break; 3523 } 3524 case Decl::ObjCCompatibleAlias: 3525 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3526 break; 3527 3528 case Decl::LinkageSpec: 3529 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3530 break; 3531 3532 case Decl::FileScopeAsm: { 3533 // File-scope asm is ignored during device-side CUDA compilation. 3534 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3535 break; 3536 auto *AD = cast<FileScopeAsmDecl>(D); 3537 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3538 break; 3539 } 3540 3541 case Decl::Import: { 3542 auto *Import = cast<ImportDecl>(D); 3543 3544 // Ignore import declarations that come from imported modules. 3545 if (Import->getImportedOwningModule()) 3546 break; 3547 if (CGDebugInfo *DI = getModuleDebugInfo()) 3548 DI->EmitImportDecl(*Import); 3549 3550 ImportedModules.insert(Import->getImportedModule()); 3551 break; 3552 } 3553 3554 case Decl::OMPThreadPrivate: 3555 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3556 break; 3557 3558 case Decl::ClassTemplateSpecialization: { 3559 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3560 if (DebugInfo && 3561 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3562 Spec->hasDefinition()) 3563 DebugInfo->completeTemplateDefinition(*Spec); 3564 break; 3565 } 3566 3567 default: 3568 // Make sure we handled everything we should, every other kind is a 3569 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3570 // function. Need to recode Decl::Kind to do that easily. 3571 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3572 break; 3573 } 3574 } 3575 3576 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3577 // Do we need to generate coverage mapping? 3578 if (!CodeGenOpts.CoverageMapping) 3579 return; 3580 switch (D->getKind()) { 3581 case Decl::CXXConversion: 3582 case Decl::CXXMethod: 3583 case Decl::Function: 3584 case Decl::ObjCMethod: 3585 case Decl::CXXConstructor: 3586 case Decl::CXXDestructor: { 3587 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3588 return; 3589 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3590 if (I == DeferredEmptyCoverageMappingDecls.end()) 3591 DeferredEmptyCoverageMappingDecls[D] = true; 3592 break; 3593 } 3594 default: 3595 break; 3596 }; 3597 } 3598 3599 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3600 // Do we need to generate coverage mapping? 3601 if (!CodeGenOpts.CoverageMapping) 3602 return; 3603 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3604 if (Fn->isTemplateInstantiation()) 3605 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3606 } 3607 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3608 if (I == DeferredEmptyCoverageMappingDecls.end()) 3609 DeferredEmptyCoverageMappingDecls[D] = false; 3610 else 3611 I->second = false; 3612 } 3613 3614 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3615 std::vector<const Decl *> DeferredDecls; 3616 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3617 if (!I.second) 3618 continue; 3619 DeferredDecls.push_back(I.first); 3620 } 3621 // Sort the declarations by their location to make sure that the tests get a 3622 // predictable order for the coverage mapping for the unused declarations. 3623 if (CodeGenOpts.DumpCoverageMapping) 3624 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3625 [] (const Decl *LHS, const Decl *RHS) { 3626 return LHS->getLocStart() < RHS->getLocStart(); 3627 }); 3628 for (const auto *D : DeferredDecls) { 3629 switch (D->getKind()) { 3630 case Decl::CXXConversion: 3631 case Decl::CXXMethod: 3632 case Decl::Function: 3633 case Decl::ObjCMethod: { 3634 CodeGenPGO PGO(*this); 3635 GlobalDecl GD(cast<FunctionDecl>(D)); 3636 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3637 getFunctionLinkage(GD)); 3638 break; 3639 } 3640 case Decl::CXXConstructor: { 3641 CodeGenPGO PGO(*this); 3642 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3643 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3644 getFunctionLinkage(GD)); 3645 break; 3646 } 3647 case Decl::CXXDestructor: { 3648 CodeGenPGO PGO(*this); 3649 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3650 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3651 getFunctionLinkage(GD)); 3652 break; 3653 } 3654 default: 3655 break; 3656 }; 3657 } 3658 } 3659 3660 /// Turns the given pointer into a constant. 3661 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3662 const void *Ptr) { 3663 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3664 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3665 return llvm::ConstantInt::get(i64, PtrInt); 3666 } 3667 3668 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3669 llvm::NamedMDNode *&GlobalMetadata, 3670 GlobalDecl D, 3671 llvm::GlobalValue *Addr) { 3672 if (!GlobalMetadata) 3673 GlobalMetadata = 3674 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3675 3676 // TODO: should we report variant information for ctors/dtors? 3677 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3678 llvm::ConstantAsMetadata::get(GetPointerConstant( 3679 CGM.getLLVMContext(), D.getDecl()))}; 3680 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3681 } 3682 3683 /// For each function which is declared within an extern "C" region and marked 3684 /// as 'used', but has internal linkage, create an alias from the unmangled 3685 /// name to the mangled name if possible. People expect to be able to refer 3686 /// to such functions with an unmangled name from inline assembly within the 3687 /// same translation unit. 3688 void CodeGenModule::EmitStaticExternCAliases() { 3689 for (auto &I : StaticExternCValues) { 3690 IdentifierInfo *Name = I.first; 3691 llvm::GlobalValue *Val = I.second; 3692 if (Val && !getModule().getNamedValue(Name->getName())) 3693 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3694 } 3695 } 3696 3697 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3698 GlobalDecl &Result) const { 3699 auto Res = Manglings.find(MangledName); 3700 if (Res == Manglings.end()) 3701 return false; 3702 Result = Res->getValue(); 3703 return true; 3704 } 3705 3706 /// Emits metadata nodes associating all the global values in the 3707 /// current module with the Decls they came from. This is useful for 3708 /// projects using IR gen as a subroutine. 3709 /// 3710 /// Since there's currently no way to associate an MDNode directly 3711 /// with an llvm::GlobalValue, we create a global named metadata 3712 /// with the name 'clang.global.decl.ptrs'. 3713 void CodeGenModule::EmitDeclMetadata() { 3714 llvm::NamedMDNode *GlobalMetadata = nullptr; 3715 3716 // StaticLocalDeclMap 3717 for (auto &I : MangledDeclNames) { 3718 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3719 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3720 } 3721 } 3722 3723 /// Emits metadata nodes for all the local variables in the current 3724 /// function. 3725 void CodeGenFunction::EmitDeclMetadata() { 3726 if (LocalDeclMap.empty()) return; 3727 3728 llvm::LLVMContext &Context = getLLVMContext(); 3729 3730 // Find the unique metadata ID for this name. 3731 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3732 3733 llvm::NamedMDNode *GlobalMetadata = nullptr; 3734 3735 for (auto &I : LocalDeclMap) { 3736 const Decl *D = I.first; 3737 llvm::Value *Addr = I.second.getPointer(); 3738 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3739 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3740 Alloca->setMetadata( 3741 DeclPtrKind, llvm::MDNode::get( 3742 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3743 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3744 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3745 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3746 } 3747 } 3748 } 3749 3750 void CodeGenModule::EmitVersionIdentMetadata() { 3751 llvm::NamedMDNode *IdentMetadata = 3752 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3753 std::string Version = getClangFullVersion(); 3754 llvm::LLVMContext &Ctx = TheModule.getContext(); 3755 3756 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3757 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3758 } 3759 3760 void CodeGenModule::EmitTargetMetadata() { 3761 // Warning, new MangledDeclNames may be appended within this loop. 3762 // We rely on MapVector insertions adding new elements to the end 3763 // of the container. 3764 // FIXME: Move this loop into the one target that needs it, and only 3765 // loop over those declarations for which we couldn't emit the target 3766 // metadata when we emitted the declaration. 3767 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3768 auto Val = *(MangledDeclNames.begin() + I); 3769 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3770 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3771 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3772 } 3773 } 3774 3775 void CodeGenModule::EmitCoverageFile() { 3776 if (!getCodeGenOpts().CoverageFile.empty()) { 3777 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3778 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3779 llvm::LLVMContext &Ctx = TheModule.getContext(); 3780 llvm::MDString *CoverageFile = 3781 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3782 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3783 llvm::MDNode *CU = CUNode->getOperand(i); 3784 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3785 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3786 } 3787 } 3788 } 3789 } 3790 3791 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3792 // Sema has checked that all uuid strings are of the form 3793 // "12345678-1234-1234-1234-1234567890ab". 3794 assert(Uuid.size() == 36); 3795 for (unsigned i = 0; i < 36; ++i) { 3796 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3797 else assert(isHexDigit(Uuid[i])); 3798 } 3799 3800 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3801 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3802 3803 llvm::Constant *Field3[8]; 3804 for (unsigned Idx = 0; Idx < 8; ++Idx) 3805 Field3[Idx] = llvm::ConstantInt::get( 3806 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3807 3808 llvm::Constant *Fields[4] = { 3809 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3810 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3811 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3812 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3813 }; 3814 3815 return llvm::ConstantStruct::getAnon(Fields); 3816 } 3817 3818 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3819 bool ForEH) { 3820 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3821 // FIXME: should we even be calling this method if RTTI is disabled 3822 // and it's not for EH? 3823 if (!ForEH && !getLangOpts().RTTI) 3824 return llvm::Constant::getNullValue(Int8PtrTy); 3825 3826 if (ForEH && Ty->isObjCObjectPointerType() && 3827 LangOpts.ObjCRuntime.isGNUFamily()) 3828 return ObjCRuntime->GetEHType(Ty); 3829 3830 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3831 } 3832 3833 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3834 for (auto RefExpr : D->varlists()) { 3835 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3836 bool PerformInit = 3837 VD->getAnyInitializer() && 3838 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3839 /*ForRef=*/false); 3840 3841 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3842 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3843 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3844 CXXGlobalInits.push_back(InitFunction); 3845 } 3846 } 3847 3848 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3849 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3850 if (InternalId) 3851 return InternalId; 3852 3853 if (isExternallyVisible(T->getLinkage())) { 3854 std::string OutName; 3855 llvm::raw_string_ostream Out(OutName); 3856 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3857 3858 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3859 } else { 3860 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3861 llvm::ArrayRef<llvm::Metadata *>()); 3862 } 3863 3864 return InternalId; 3865 } 3866 3867 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3868 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3869 llvm::Metadata *BitsetOps[] = { 3870 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3871 llvm::ConstantAsMetadata::get(VTable), 3872 llvm::ConstantAsMetadata::get( 3873 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3874 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3875 } 3876