xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ae0d2244a23567c8d9863e63b338d34c31416a7b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), Types(*this), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts(), getCXXABI().getMangleContext()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726   }
727   if (!Error)
728     return;
729 
730   for (const GlobalDecl &GD : Aliases) {
731     StringRef MangledName = getMangledName(GD);
732     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
733     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
734     Alias->eraseFromParent();
735   }
736 }
737 
738 void CodeGenModule::clear() {
739   DeferredDeclsToEmit.clear();
740   EmittedDeferredDecls.clear();
741   DeferredAnnotations.clear();
742   if (OpenMPRuntime)
743     OpenMPRuntime->clear();
744 }
745 
746 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
747                                        StringRef MainFile) {
748   if (!hasDiagnostics())
749     return;
750   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
751     if (MainFile.empty())
752       MainFile = "<stdin>";
753     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
754   } else {
755     if (Mismatched > 0)
756       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
757 
758     if (Missing > 0)
759       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
760   }
761 }
762 
763 static std::optional<llvm::GlobalValue::VisibilityTypes>
764 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
765   // Map to LLVM visibility.
766   switch (K) {
767   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
768     return std::nullopt;
769   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
770     return llvm::GlobalValue::DefaultVisibility;
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
772     return llvm::GlobalValue::HiddenVisibility;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
774     return llvm::GlobalValue::ProtectedVisibility;
775   }
776   llvm_unreachable("unknown option value!");
777 }
778 
779 void setLLVMVisibility(llvm::GlobalValue &GV,
780                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
781   if (!V)
782     return;
783 
784   // Reset DSO locality before setting the visibility. This removes
785   // any effects that visibility options and annotations may have
786   // had on the DSO locality. Setting the visibility will implicitly set
787   // appropriate globals to DSO Local; however, this will be pessimistic
788   // w.r.t. to the normal compiler IRGen.
789   GV.setDSOLocal(false);
790   GV.setVisibility(*V);
791 }
792 
793 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
794                                              llvm::Module &M) {
795   if (!LO.VisibilityFromDLLStorageClass)
796     return;
797 
798   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
799       getLLVMVisibility(LO.getDLLExportVisibility());
800 
801   std::optional<llvm::GlobalValue::VisibilityTypes>
802       NoDLLStorageClassVisibility =
803           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes>
806       ExternDeclDLLImportVisibility =
807           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       ExternDeclNoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
812 
813   for (llvm::GlobalValue &GV : M.global_values()) {
814     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
815       continue;
816 
817     if (GV.isDeclarationForLinker())
818       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
819                                     llvm::GlobalValue::DLLImportStorageClass
820                                 ? ExternDeclDLLImportVisibility
821                                 : ExternDeclNoDLLStorageClassVisibility);
822     else
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLExportStorageClass
825                                 ? DLLExportVisibility
826                                 : NoDLLStorageClassVisibility);
827 
828     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
829   }
830 }
831 
832 static bool isStackProtectorOn(const LangOptions &LangOpts,
833                                const llvm::Triple &Triple,
834                                clang::LangOptions::StackProtectorMode Mode) {
835   if (Triple.isAMDGPU() || Triple.isNVPTX())
836     return false;
837   return LangOpts.getStackProtector() == Mode;
838 }
839 
840 void CodeGenModule::Release() {
841   Module *Primary = getContext().getCurrentNamedModule();
842   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
843     EmitModuleInitializers(Primary);
844   EmitDeferred();
845   DeferredDecls.insert(EmittedDeferredDecls.begin(),
846                        EmittedDeferredDecls.end());
847   EmittedDeferredDecls.clear();
848   EmitVTablesOpportunistically();
849   applyGlobalValReplacements();
850   applyReplacements();
851   emitMultiVersionFunctions();
852 
853   if (Context.getLangOpts().IncrementalExtensions &&
854       GlobalTopLevelStmtBlockInFlight.first) {
855     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
856     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
857     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
858   }
859 
860   // Module implementations are initialized the same way as a regular TU that
861   // imports one or more modules.
862   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
863     EmitCXXModuleInitFunc(Primary);
864   else
865     EmitCXXGlobalInitFunc();
866   EmitCXXGlobalCleanUpFunc();
867   registerGlobalDtorsWithAtExit();
868   EmitCXXThreadLocalInitFunc();
869   if (ObjCRuntime)
870     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
871       AddGlobalCtor(ObjCInitFunction);
872   if (Context.getLangOpts().CUDA && CUDARuntime) {
873     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
874       AddGlobalCtor(CudaCtorFunction);
875   }
876   if (OpenMPRuntime) {
877     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
878     OpenMPRuntime->clear();
879   }
880   if (PGOReader) {
881     getModule().setProfileSummary(
882         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
883         llvm::ProfileSummary::PSK_Instr);
884     if (PGOStats.hasDiagnostics())
885       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
886   }
887   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
888     return L.LexOrder < R.LexOrder;
889   });
890   EmitCtorList(GlobalCtors, "llvm.global_ctors");
891   EmitCtorList(GlobalDtors, "llvm.global_dtors");
892   EmitGlobalAnnotations();
893   EmitStaticExternCAliases();
894   checkAliases();
895   EmitDeferredUnusedCoverageMappings();
896   CodeGenPGO(*this).setValueProfilingFlag(getModule());
897   CodeGenPGO(*this).setProfileVersion(getModule());
898   if (CoverageMapping)
899     CoverageMapping->emit();
900   if (CodeGenOpts.SanitizeCfiCrossDso) {
901     CodeGenFunction(*this).EmitCfiCheckFail();
902     CodeGenFunction(*this).EmitCfiCheckStub();
903   }
904   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
905     finalizeKCFITypes();
906   emitAtAvailableLinkGuard();
907   if (Context.getTargetInfo().getTriple().isWasm())
908     EmitMainVoidAlias();
909 
910   if (getTriple().isAMDGPU() ||
911       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
912     // Emit amdhsa_code_object_version module flag, which is code object version
913     // times 100.
914     if (getTarget().getTargetOpts().CodeObjectVersion !=
915         llvm::CodeObjectVersionKind::COV_None) {
916       getModule().addModuleFlag(llvm::Module::Error,
917                                 "amdhsa_code_object_version",
918                                 getTarget().getTargetOpts().CodeObjectVersion);
919     }
920 
921     // Currently, "-mprintf-kind" option is only supported for HIP
922     if (LangOpts.HIP) {
923       auto *MDStr = llvm::MDString::get(
924           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
925                              TargetOptions::AMDGPUPrintfKind::Hostcall)
926                                 ? "hostcall"
927                                 : "buffered");
928       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
929                                 MDStr);
930     }
931   }
932 
933   // Emit a global array containing all external kernels or device variables
934   // used by host functions and mark it as used for CUDA/HIP. This is necessary
935   // to get kernels or device variables in archives linked in even if these
936   // kernels or device variables are only used in host functions.
937   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
938     SmallVector<llvm::Constant *, 8> UsedArray;
939     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
940       GlobalDecl GD;
941       if (auto *FD = dyn_cast<FunctionDecl>(D))
942         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
943       else
944         GD = GlobalDecl(D);
945       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
946           GetAddrOfGlobal(GD), Int8PtrTy));
947     }
948 
949     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
950 
951     auto *GV = new llvm::GlobalVariable(
952         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
953         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
954     addCompilerUsedGlobal(GV);
955   }
956   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
957     // Emit a unique ID so that host and device binaries from the same
958     // compilation unit can be associated.
959     auto *GV = new llvm::GlobalVariable(
960         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
961         llvm::Constant::getNullValue(Int8Ty),
962         "__hip_cuid_" + getContext().getCUIDHash());
963     addCompilerUsedGlobal(GV);
964   }
965   emitLLVMUsed();
966   if (SanStats)
967     SanStats->finish();
968 
969   if (CodeGenOpts.Autolink &&
970       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
971     EmitModuleLinkOptions();
972   }
973 
974   // On ELF we pass the dependent library specifiers directly to the linker
975   // without manipulating them. This is in contrast to other platforms where
976   // they are mapped to a specific linker option by the compiler. This
977   // difference is a result of the greater variety of ELF linkers and the fact
978   // that ELF linkers tend to handle libraries in a more complicated fashion
979   // than on other platforms. This forces us to defer handling the dependent
980   // libs to the linker.
981   //
982   // CUDA/HIP device and host libraries are different. Currently there is no
983   // way to differentiate dependent libraries for host or device. Existing
984   // usage of #pragma comment(lib, *) is intended for host libraries on
985   // Windows. Therefore emit llvm.dependent-libraries only for host.
986   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
987     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
988     for (auto *MD : ELFDependentLibraries)
989       NMD->addOperand(MD);
990   }
991 
992   if (CodeGenOpts.DwarfVersion) {
993     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
994                               CodeGenOpts.DwarfVersion);
995   }
996 
997   if (CodeGenOpts.Dwarf64)
998     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
999 
1000   if (Context.getLangOpts().SemanticInterposition)
1001     // Require various optimization to respect semantic interposition.
1002     getModule().setSemanticInterposition(true);
1003 
1004   if (CodeGenOpts.EmitCodeView) {
1005     // Indicate that we want CodeView in the metadata.
1006     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1007   }
1008   if (CodeGenOpts.CodeViewGHash) {
1009     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1010   }
1011   if (CodeGenOpts.ControlFlowGuard) {
1012     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1013     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1014   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1015     // Function ID tables for Control Flow Guard (cfguard=1).
1016     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1017   }
1018   if (CodeGenOpts.EHContGuard) {
1019     // Function ID tables for EH Continuation Guard.
1020     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1021   }
1022   if (Context.getLangOpts().Kernel) {
1023     // Note if we are compiling with /kernel.
1024     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1025   }
1026   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1027     // We don't support LTO with 2 with different StrictVTablePointers
1028     // FIXME: we could support it by stripping all the information introduced
1029     // by StrictVTablePointers.
1030 
1031     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1032 
1033     llvm::Metadata *Ops[2] = {
1034               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1035               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1036                   llvm::Type::getInt32Ty(VMContext), 1))};
1037 
1038     getModule().addModuleFlag(llvm::Module::Require,
1039                               "StrictVTablePointersRequirement",
1040                               llvm::MDNode::get(VMContext, Ops));
1041   }
1042   if (getModuleDebugInfo())
1043     // We support a single version in the linked module. The LLVM
1044     // parser will drop debug info with a different version number
1045     // (and warn about it, too).
1046     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1047                               llvm::DEBUG_METADATA_VERSION);
1048 
1049   // We need to record the widths of enums and wchar_t, so that we can generate
1050   // the correct build attributes in the ARM backend. wchar_size is also used by
1051   // TargetLibraryInfo.
1052   uint64_t WCharWidth =
1053       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1054   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1055 
1056   if (getTriple().isOSzOS()) {
1057     getModule().addModuleFlag(llvm::Module::Warning,
1058                               "zos_product_major_version",
1059                               uint32_t(CLANG_VERSION_MAJOR));
1060     getModule().addModuleFlag(llvm::Module::Warning,
1061                               "zos_product_minor_version",
1062                               uint32_t(CLANG_VERSION_MINOR));
1063     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1064                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1065     std::string ProductId = getClangVendor() + "clang";
1066     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1067                               llvm::MDString::get(VMContext, ProductId));
1068 
1069     // Record the language because we need it for the PPA2.
1070     StringRef lang_str = languageToString(
1071         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1072     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1073                               llvm::MDString::get(VMContext, lang_str));
1074 
1075     time_t TT = PreprocessorOpts.SourceDateEpoch
1076                     ? *PreprocessorOpts.SourceDateEpoch
1077                     : std::time(nullptr);
1078     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1079                               static_cast<uint64_t>(TT));
1080 
1081     // Multiple modes will be supported here.
1082     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1083                               llvm::MDString::get(VMContext, "ascii"));
1084   }
1085 
1086   llvm::Triple T = Context.getTargetInfo().getTriple();
1087   if (T.isARM() || T.isThumb()) {
1088     // The minimum width of an enum in bytes
1089     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1090     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1091   }
1092 
1093   if (T.isRISCV()) {
1094     StringRef ABIStr = Target.getABI();
1095     llvm::LLVMContext &Ctx = TheModule.getContext();
1096     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1097                               llvm::MDString::get(Ctx, ABIStr));
1098 
1099     // Add the canonical ISA string as metadata so the backend can set the ELF
1100     // attributes correctly. We use AppendUnique so LTO will keep all of the
1101     // unique ISA strings that were linked together.
1102     const std::vector<std::string> &Features =
1103         getTarget().getTargetOpts().Features;
1104     auto ParseResult =
1105         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1106     if (!errorToBool(ParseResult.takeError()))
1107       getModule().addModuleFlag(
1108           llvm::Module::AppendUnique, "riscv-isa",
1109           llvm::MDNode::get(
1110               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1111   }
1112 
1113   if (CodeGenOpts.SanitizeCfiCrossDso) {
1114     // Indicate that we want cross-DSO control flow integrity checks.
1115     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1116   }
1117 
1118   if (CodeGenOpts.WholeProgramVTables) {
1119     // Indicate whether VFE was enabled for this module, so that the
1120     // vcall_visibility metadata added under whole program vtables is handled
1121     // appropriately in the optimizer.
1122     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1123                               CodeGenOpts.VirtualFunctionElimination);
1124   }
1125 
1126   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1127     getModule().addModuleFlag(llvm::Module::Override,
1128                               "CFI Canonical Jump Tables",
1129                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1130   }
1131 
1132   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1133     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1134     // KCFI assumes patchable-function-prefix is the same for all indirectly
1135     // called functions. Store the expected offset for code generation.
1136     if (CodeGenOpts.PatchableFunctionEntryOffset)
1137       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1138                                 CodeGenOpts.PatchableFunctionEntryOffset);
1139   }
1140 
1141   if (CodeGenOpts.CFProtectionReturn &&
1142       Target.checkCFProtectionReturnSupported(getDiags())) {
1143     // Indicate that we want to instrument return control flow protection.
1144     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1145                               1);
1146   }
1147 
1148   if (CodeGenOpts.CFProtectionBranch &&
1149       Target.checkCFProtectionBranchSupported(getDiags())) {
1150     // Indicate that we want to instrument branch control flow protection.
1151     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1152                               1);
1153   }
1154 
1155   if (CodeGenOpts.FunctionReturnThunks)
1156     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1157 
1158   if (CodeGenOpts.IndirectBranchCSPrefix)
1159     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1160 
1161   // Add module metadata for return address signing (ignoring
1162   // non-leaf/all) and stack tagging. These are actually turned on by function
1163   // attributes, but we use module metadata to emit build attributes. This is
1164   // needed for LTO, where the function attributes are inside bitcode
1165   // serialised into a global variable by the time build attributes are
1166   // emitted, so we can't access them. LTO objects could be compiled with
1167   // different flags therefore module flags are set to "Min" behavior to achieve
1168   // the same end result of the normal build where e.g BTI is off if any object
1169   // doesn't support it.
1170   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1171       LangOpts.getSignReturnAddressScope() !=
1172           LangOptions::SignReturnAddressScopeKind::None)
1173     getModule().addModuleFlag(llvm::Module::Override,
1174                               "sign-return-address-buildattr", 1);
1175   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1176     getModule().addModuleFlag(llvm::Module::Override,
1177                               "tag-stack-memory-buildattr", 1);
1178 
1179   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1180     if (LangOpts.BranchTargetEnforcement)
1181       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1182                                 1);
1183     if (LangOpts.BranchProtectionPAuthLR)
1184       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1185                                 1);
1186     if (LangOpts.GuardedControlStack)
1187       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1188     if (LangOpts.hasSignReturnAddress())
1189       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1190     if (LangOpts.isSignReturnAddressScopeAll())
1191       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1192                                 1);
1193     if (!LangOpts.isSignReturnAddressWithAKey())
1194       getModule().addModuleFlag(llvm::Module::Min,
1195                                 "sign-return-address-with-bkey", 1);
1196 
1197     if (getTriple().isOSLinux()) {
1198       assert(getTriple().isOSBinFormatELF());
1199       using namespace llvm::ELF;
1200       uint64_t PAuthABIVersion =
1201           (LangOpts.PointerAuthIntrinsics
1202            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1203           (LangOpts.PointerAuthCalls
1204            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1205           (LangOpts.PointerAuthReturns
1206            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1207           (LangOpts.PointerAuthAuthTraps
1208            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1209           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1210            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1211           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1212            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1213           (LangOpts.PointerAuthInitFini
1214            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1215       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1216                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1217                     "Update when new enum items are defined");
1218       if (PAuthABIVersion != 0) {
1219         getModule().addModuleFlag(llvm::Module::Error,
1220                                   "aarch64-elf-pauthabi-platform",
1221                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1222         getModule().addModuleFlag(llvm::Module::Error,
1223                                   "aarch64-elf-pauthabi-version",
1224                                   PAuthABIVersion);
1225       }
1226     }
1227   }
1228 
1229   if (CodeGenOpts.StackClashProtector)
1230     getModule().addModuleFlag(
1231         llvm::Module::Override, "probe-stack",
1232         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1233 
1234   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1235     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1236                               CodeGenOpts.StackProbeSize);
1237 
1238   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1239     llvm::LLVMContext &Ctx = TheModule.getContext();
1240     getModule().addModuleFlag(
1241         llvm::Module::Error, "MemProfProfileFilename",
1242         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1243   }
1244 
1245   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1246     // Indicate whether __nvvm_reflect should be configured to flush denormal
1247     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1248     // property.)
1249     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1250                               CodeGenOpts.FP32DenormalMode.Output !=
1251                                   llvm::DenormalMode::IEEE);
1252   }
1253 
1254   if (LangOpts.EHAsynch)
1255     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1256 
1257   // Indicate whether this Module was compiled with -fopenmp
1258   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1259     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1260   if (getLangOpts().OpenMPIsTargetDevice)
1261     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1262                               LangOpts.OpenMP);
1263 
1264   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1265   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1266     EmitOpenCLMetadata();
1267     // Emit SPIR version.
1268     if (getTriple().isSPIR()) {
1269       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1270       // opencl.spir.version named metadata.
1271       // C++ for OpenCL has a distinct mapping for version compatibility with
1272       // OpenCL.
1273       auto Version = LangOpts.getOpenCLCompatibleVersion();
1274       llvm::Metadata *SPIRVerElts[] = {
1275           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1276               Int32Ty, Version / 100)),
1277           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1278               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1279       llvm::NamedMDNode *SPIRVerMD =
1280           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1281       llvm::LLVMContext &Ctx = TheModule.getContext();
1282       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1283     }
1284   }
1285 
1286   // HLSL related end of code gen work items.
1287   if (LangOpts.HLSL)
1288     getHLSLRuntime().finishCodeGen();
1289 
1290   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1291     assert(PLevel < 3 && "Invalid PIC Level");
1292     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1293     if (Context.getLangOpts().PIE)
1294       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1295   }
1296 
1297   if (getCodeGenOpts().CodeModel.size() > 0) {
1298     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1299                   .Case("tiny", llvm::CodeModel::Tiny)
1300                   .Case("small", llvm::CodeModel::Small)
1301                   .Case("kernel", llvm::CodeModel::Kernel)
1302                   .Case("medium", llvm::CodeModel::Medium)
1303                   .Case("large", llvm::CodeModel::Large)
1304                   .Default(~0u);
1305     if (CM != ~0u) {
1306       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1307       getModule().setCodeModel(codeModel);
1308 
1309       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1310           Context.getTargetInfo().getTriple().getArch() ==
1311               llvm::Triple::x86_64) {
1312         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1313       }
1314     }
1315   }
1316 
1317   if (CodeGenOpts.NoPLT)
1318     getModule().setRtLibUseGOT();
1319   if (getTriple().isOSBinFormatELF() &&
1320       CodeGenOpts.DirectAccessExternalData !=
1321           getModule().getDirectAccessExternalData()) {
1322     getModule().setDirectAccessExternalData(
1323         CodeGenOpts.DirectAccessExternalData);
1324   }
1325   if (CodeGenOpts.UnwindTables)
1326     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1327 
1328   switch (CodeGenOpts.getFramePointer()) {
1329   case CodeGenOptions::FramePointerKind::None:
1330     // 0 ("none") is the default.
1331     break;
1332   case CodeGenOptions::FramePointerKind::Reserved:
1333     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1334     break;
1335   case CodeGenOptions::FramePointerKind::NonLeaf:
1336     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1337     break;
1338   case CodeGenOptions::FramePointerKind::All:
1339     getModule().setFramePointer(llvm::FramePointerKind::All);
1340     break;
1341   }
1342 
1343   SimplifyPersonality();
1344 
1345   if (getCodeGenOpts().EmitDeclMetadata)
1346     EmitDeclMetadata();
1347 
1348   if (getCodeGenOpts().CoverageNotesFile.size() ||
1349       getCodeGenOpts().CoverageDataFile.size())
1350     EmitCoverageFile();
1351 
1352   if (CGDebugInfo *DI = getModuleDebugInfo())
1353     DI->finalize();
1354 
1355   if (getCodeGenOpts().EmitVersionIdentMetadata)
1356     EmitVersionIdentMetadata();
1357 
1358   if (!getCodeGenOpts().RecordCommandLine.empty())
1359     EmitCommandLineMetadata();
1360 
1361   if (!getCodeGenOpts().StackProtectorGuard.empty())
1362     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1363   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1364     getModule().setStackProtectorGuardReg(
1365         getCodeGenOpts().StackProtectorGuardReg);
1366   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1367     getModule().setStackProtectorGuardSymbol(
1368         getCodeGenOpts().StackProtectorGuardSymbol);
1369   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1370     getModule().setStackProtectorGuardOffset(
1371         getCodeGenOpts().StackProtectorGuardOffset);
1372   if (getCodeGenOpts().StackAlignment)
1373     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1374   if (getCodeGenOpts().SkipRaxSetup)
1375     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1376   if (getLangOpts().RegCall4)
1377     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1378 
1379   if (getContext().getTargetInfo().getMaxTLSAlign())
1380     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1381                               getContext().getTargetInfo().getMaxTLSAlign());
1382 
1383   getTargetCodeGenInfo().emitTargetGlobals(*this);
1384 
1385   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1386 
1387   EmitBackendOptionsMetadata(getCodeGenOpts());
1388 
1389   // If there is device offloading code embed it in the host now.
1390   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1391 
1392   // Set visibility from DLL storage class
1393   // We do this at the end of LLVM IR generation; after any operation
1394   // that might affect the DLL storage class or the visibility, and
1395   // before anything that might act on these.
1396   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1397 }
1398 
1399 void CodeGenModule::EmitOpenCLMetadata() {
1400   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1401   // opencl.ocl.version named metadata node.
1402   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1403   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1404 
1405   auto EmitVersion = [this](StringRef MDName, int Version) {
1406     llvm::Metadata *OCLVerElts[] = {
1407         llvm::ConstantAsMetadata::get(
1408             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1409         llvm::ConstantAsMetadata::get(
1410             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1411     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1412     llvm::LLVMContext &Ctx = TheModule.getContext();
1413     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1414   };
1415 
1416   EmitVersion("opencl.ocl.version", CLVersion);
1417   if (LangOpts.OpenCLCPlusPlus) {
1418     // In addition to the OpenCL compatible version, emit the C++ version.
1419     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1420   }
1421 }
1422 
1423 void CodeGenModule::EmitBackendOptionsMetadata(
1424     const CodeGenOptions &CodeGenOpts) {
1425   if (getTriple().isRISCV()) {
1426     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1427                               CodeGenOpts.SmallDataLimit);
1428   }
1429 }
1430 
1431 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1432   // Make sure that this type is translated.
1433   Types.UpdateCompletedType(TD);
1434 }
1435 
1436 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1437   // Make sure that this type is translated.
1438   Types.RefreshTypeCacheForClass(RD);
1439 }
1440 
1441 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1442   if (!TBAA)
1443     return nullptr;
1444   return TBAA->getTypeInfo(QTy);
1445 }
1446 
1447 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1448   if (!TBAA)
1449     return TBAAAccessInfo();
1450   if (getLangOpts().CUDAIsDevice) {
1451     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1452     // access info.
1453     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1454       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1455           nullptr)
1456         return TBAAAccessInfo();
1457     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1458       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1459           nullptr)
1460         return TBAAAccessInfo();
1461     }
1462   }
1463   return TBAA->getAccessInfo(AccessType);
1464 }
1465 
1466 TBAAAccessInfo
1467 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1468   if (!TBAA)
1469     return TBAAAccessInfo();
1470   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1471 }
1472 
1473 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1474   if (!TBAA)
1475     return nullptr;
1476   return TBAA->getTBAAStructInfo(QTy);
1477 }
1478 
1479 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1480   if (!TBAA)
1481     return nullptr;
1482   return TBAA->getBaseTypeInfo(QTy);
1483 }
1484 
1485 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1486   if (!TBAA)
1487     return nullptr;
1488   return TBAA->getAccessTagInfo(Info);
1489 }
1490 
1491 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1492                                                    TBAAAccessInfo TargetInfo) {
1493   if (!TBAA)
1494     return TBAAAccessInfo();
1495   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1496 }
1497 
1498 TBAAAccessInfo
1499 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1500                                                    TBAAAccessInfo InfoB) {
1501   if (!TBAA)
1502     return TBAAAccessInfo();
1503   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1504 }
1505 
1506 TBAAAccessInfo
1507 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1508                                               TBAAAccessInfo SrcInfo) {
1509   if (!TBAA)
1510     return TBAAAccessInfo();
1511   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1512 }
1513 
1514 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1515                                                 TBAAAccessInfo TBAAInfo) {
1516   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1517     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1518 }
1519 
1520 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1521     llvm::Instruction *I, const CXXRecordDecl *RD) {
1522   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1523                  llvm::MDNode::get(getLLVMContext(), {}));
1524 }
1525 
1526 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1527   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1528   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1529 }
1530 
1531 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1532 /// specified stmt yet.
1533 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1534   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1535                                                "cannot compile this %0 yet");
1536   std::string Msg = Type;
1537   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1538       << Msg << S->getSourceRange();
1539 }
1540 
1541 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1542 /// specified decl yet.
1543 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1544   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1545                                                "cannot compile this %0 yet");
1546   std::string Msg = Type;
1547   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1548 }
1549 
1550 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1551   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1552 }
1553 
1554 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1555                                         const NamedDecl *D) const {
1556   // Internal definitions always have default visibility.
1557   if (GV->hasLocalLinkage()) {
1558     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1559     return;
1560   }
1561   if (!D)
1562     return;
1563 
1564   // Set visibility for definitions, and for declarations if requested globally
1565   // or set explicitly.
1566   LinkageInfo LV = D->getLinkageAndVisibility();
1567 
1568   // OpenMP declare target variables must be visible to the host so they can
1569   // be registered. We require protected visibility unless the variable has
1570   // the DT_nohost modifier and does not need to be registered.
1571   if (Context.getLangOpts().OpenMP &&
1572       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1573       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1574       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1575           OMPDeclareTargetDeclAttr::DT_NoHost &&
1576       LV.getVisibility() == HiddenVisibility) {
1577     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1578     return;
1579   }
1580 
1581   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1582     // Reject incompatible dlllstorage and visibility annotations.
1583     if (!LV.isVisibilityExplicit())
1584       return;
1585     if (GV->hasDLLExportStorageClass()) {
1586       if (LV.getVisibility() == HiddenVisibility)
1587         getDiags().Report(D->getLocation(),
1588                           diag::err_hidden_visibility_dllexport);
1589     } else if (LV.getVisibility() != DefaultVisibility) {
1590       getDiags().Report(D->getLocation(),
1591                         diag::err_non_default_visibility_dllimport);
1592     }
1593     return;
1594   }
1595 
1596   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1597       !GV->isDeclarationForLinker())
1598     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1599 }
1600 
1601 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1602                                  llvm::GlobalValue *GV) {
1603   if (GV->hasLocalLinkage())
1604     return true;
1605 
1606   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1607     return true;
1608 
1609   // DLLImport explicitly marks the GV as external.
1610   if (GV->hasDLLImportStorageClass())
1611     return false;
1612 
1613   const llvm::Triple &TT = CGM.getTriple();
1614   const auto &CGOpts = CGM.getCodeGenOpts();
1615   if (TT.isWindowsGNUEnvironment()) {
1616     // In MinGW, variables without DLLImport can still be automatically
1617     // imported from a DLL by the linker; don't mark variables that
1618     // potentially could come from another DLL as DSO local.
1619 
1620     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1621     // (and this actually happens in the public interface of libstdc++), so
1622     // such variables can't be marked as DSO local. (Native TLS variables
1623     // can't be dllimported at all, though.)
1624     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1625         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1626         CGOpts.AutoImport)
1627       return false;
1628   }
1629 
1630   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1631   // remain unresolved in the link, they can be resolved to zero, which is
1632   // outside the current DSO.
1633   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1634     return false;
1635 
1636   // Every other GV is local on COFF.
1637   // Make an exception for windows OS in the triple: Some firmware builds use
1638   // *-win32-macho triples. This (accidentally?) produced windows relocations
1639   // without GOT tables in older clang versions; Keep this behaviour.
1640   // FIXME: even thread local variables?
1641   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1642     return true;
1643 
1644   // Only handle COFF and ELF for now.
1645   if (!TT.isOSBinFormatELF())
1646     return false;
1647 
1648   // If this is not an executable, don't assume anything is local.
1649   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1650   const auto &LOpts = CGM.getLangOpts();
1651   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1652     // On ELF, if -fno-semantic-interposition is specified and the target
1653     // supports local aliases, there will be neither CC1
1654     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1655     // dso_local on the function if using a local alias is preferable (can avoid
1656     // PLT indirection).
1657     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1658       return false;
1659     return !(CGM.getLangOpts().SemanticInterposition ||
1660              CGM.getLangOpts().HalfNoSemanticInterposition);
1661   }
1662 
1663   // A definition cannot be preempted from an executable.
1664   if (!GV->isDeclarationForLinker())
1665     return true;
1666 
1667   // Most PIC code sequences that assume that a symbol is local cannot produce a
1668   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1669   // depended, it seems worth it to handle it here.
1670   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1671     return false;
1672 
1673   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1674   if (TT.isPPC64())
1675     return false;
1676 
1677   if (CGOpts.DirectAccessExternalData) {
1678     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1679     // for non-thread-local variables. If the symbol is not defined in the
1680     // executable, a copy relocation will be needed at link time. dso_local is
1681     // excluded for thread-local variables because they generally don't support
1682     // copy relocations.
1683     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1684       if (!Var->isThreadLocal())
1685         return true;
1686 
1687     // -fno-pic sets dso_local on a function declaration to allow direct
1688     // accesses when taking its address (similar to a data symbol). If the
1689     // function is not defined in the executable, a canonical PLT entry will be
1690     // needed at link time. -fno-direct-access-external-data can avoid the
1691     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1692     // it could just cause trouble without providing perceptible benefits.
1693     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1694       return true;
1695   }
1696 
1697   // If we can use copy relocations we can assume it is local.
1698 
1699   // Otherwise don't assume it is local.
1700   return false;
1701 }
1702 
1703 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1704   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1705 }
1706 
1707 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1708                                           GlobalDecl GD) const {
1709   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1710   // C++ destructors have a few C++ ABI specific special cases.
1711   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1712     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1713     return;
1714   }
1715   setDLLImportDLLExport(GV, D);
1716 }
1717 
1718 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1719                                           const NamedDecl *D) const {
1720   if (D && D->isExternallyVisible()) {
1721     if (D->hasAttr<DLLImportAttr>())
1722       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1723     else if ((D->hasAttr<DLLExportAttr>() ||
1724               shouldMapVisibilityToDLLExport(D)) &&
1725              !GV->isDeclarationForLinker())
1726       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1727   }
1728 }
1729 
1730 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1731                                     GlobalDecl GD) const {
1732   setDLLImportDLLExport(GV, GD);
1733   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1734 }
1735 
1736 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1737                                     const NamedDecl *D) const {
1738   setDLLImportDLLExport(GV, D);
1739   setGVPropertiesAux(GV, D);
1740 }
1741 
1742 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1743                                        const NamedDecl *D) const {
1744   setGlobalVisibility(GV, D);
1745   setDSOLocal(GV);
1746   GV->setPartition(CodeGenOpts.SymbolPartition);
1747 }
1748 
1749 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1750   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1751       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1752       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1753       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1754       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1755 }
1756 
1757 llvm::GlobalVariable::ThreadLocalMode
1758 CodeGenModule::GetDefaultLLVMTLSModel() const {
1759   switch (CodeGenOpts.getDefaultTLSModel()) {
1760   case CodeGenOptions::GeneralDynamicTLSModel:
1761     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1762   case CodeGenOptions::LocalDynamicTLSModel:
1763     return llvm::GlobalVariable::LocalDynamicTLSModel;
1764   case CodeGenOptions::InitialExecTLSModel:
1765     return llvm::GlobalVariable::InitialExecTLSModel;
1766   case CodeGenOptions::LocalExecTLSModel:
1767     return llvm::GlobalVariable::LocalExecTLSModel;
1768   }
1769   llvm_unreachable("Invalid TLS model!");
1770 }
1771 
1772 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1773   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1774 
1775   llvm::GlobalValue::ThreadLocalMode TLM;
1776   TLM = GetDefaultLLVMTLSModel();
1777 
1778   // Override the TLS model if it is explicitly specified.
1779   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1780     TLM = GetLLVMTLSModel(Attr->getModel());
1781   }
1782 
1783   GV->setThreadLocalMode(TLM);
1784 }
1785 
1786 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1787                                           StringRef Name) {
1788   const TargetInfo &Target = CGM.getTarget();
1789   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1790 }
1791 
1792 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1793                                                  const CPUSpecificAttr *Attr,
1794                                                  unsigned CPUIndex,
1795                                                  raw_ostream &Out) {
1796   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1797   // supported.
1798   if (Attr)
1799     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1800   else if (CGM.getTarget().supportsIFunc())
1801     Out << ".resolver";
1802 }
1803 
1804 // Returns true if GD is a function decl with internal linkage and
1805 // needs a unique suffix after the mangled name.
1806 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1807                                         CodeGenModule &CGM) {
1808   const Decl *D = GD.getDecl();
1809   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1810          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1811 }
1812 
1813 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1814                                       const NamedDecl *ND,
1815                                       bool OmitMultiVersionMangling = false) {
1816   SmallString<256> Buffer;
1817   llvm::raw_svector_ostream Out(Buffer);
1818   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1819   if (!CGM.getModuleNameHash().empty())
1820     MC.needsUniqueInternalLinkageNames();
1821   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1822   if (ShouldMangle)
1823     MC.mangleName(GD.getWithDecl(ND), Out);
1824   else {
1825     IdentifierInfo *II = ND->getIdentifier();
1826     assert(II && "Attempt to mangle unnamed decl.");
1827     const auto *FD = dyn_cast<FunctionDecl>(ND);
1828 
1829     if (FD &&
1830         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1831       if (CGM.getLangOpts().RegCall4)
1832         Out << "__regcall4__" << II->getName();
1833       else
1834         Out << "__regcall3__" << II->getName();
1835     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1836                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1837       Out << "__device_stub__" << II->getName();
1838     } else {
1839       Out << II->getName();
1840     }
1841   }
1842 
1843   // Check if the module name hash should be appended for internal linkage
1844   // symbols.   This should come before multi-version target suffixes are
1845   // appended. This is to keep the name and module hash suffix of the
1846   // internal linkage function together.  The unique suffix should only be
1847   // added when name mangling is done to make sure that the final name can
1848   // be properly demangled.  For example, for C functions without prototypes,
1849   // name mangling is not done and the unique suffix should not be appeneded
1850   // then.
1851   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1852     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1853            "Hash computed when not explicitly requested");
1854     Out << CGM.getModuleNameHash();
1855   }
1856 
1857   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1858     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1859       switch (FD->getMultiVersionKind()) {
1860       case MultiVersionKind::CPUDispatch:
1861       case MultiVersionKind::CPUSpecific:
1862         AppendCPUSpecificCPUDispatchMangling(CGM,
1863                                              FD->getAttr<CPUSpecificAttr>(),
1864                                              GD.getMultiVersionIndex(), Out);
1865         break;
1866       case MultiVersionKind::Target: {
1867         auto *Attr = FD->getAttr<TargetAttr>();
1868         assert(Attr && "Expected TargetAttr to be present "
1869                        "for attribute mangling");
1870         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1871         Info.appendAttributeMangling(Attr, Out);
1872         break;
1873       }
1874       case MultiVersionKind::TargetVersion: {
1875         auto *Attr = FD->getAttr<TargetVersionAttr>();
1876         assert(Attr && "Expected TargetVersionAttr to be present "
1877                        "for attribute mangling");
1878         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1879         Info.appendAttributeMangling(Attr, Out);
1880         break;
1881       }
1882       case MultiVersionKind::TargetClones: {
1883         auto *Attr = FD->getAttr<TargetClonesAttr>();
1884         assert(Attr && "Expected TargetClonesAttr to be present "
1885                        "for attribute mangling");
1886         unsigned Index = GD.getMultiVersionIndex();
1887         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1888         Info.appendAttributeMangling(Attr, Index, Out);
1889         break;
1890       }
1891       case MultiVersionKind::None:
1892         llvm_unreachable("None multiversion type isn't valid here");
1893       }
1894     }
1895 
1896   // Make unique name for device side static file-scope variable for HIP.
1897   if (CGM.getContext().shouldExternalize(ND) &&
1898       CGM.getLangOpts().GPURelocatableDeviceCode &&
1899       CGM.getLangOpts().CUDAIsDevice)
1900     CGM.printPostfixForExternalizedDecl(Out, ND);
1901 
1902   return std::string(Out.str());
1903 }
1904 
1905 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1906                                             const FunctionDecl *FD,
1907                                             StringRef &CurName) {
1908   if (!FD->isMultiVersion())
1909     return;
1910 
1911   // Get the name of what this would be without the 'target' attribute.  This
1912   // allows us to lookup the version that was emitted when this wasn't a
1913   // multiversion function.
1914   std::string NonTargetName =
1915       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1916   GlobalDecl OtherGD;
1917   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1918     assert(OtherGD.getCanonicalDecl()
1919                .getDecl()
1920                ->getAsFunction()
1921                ->isMultiVersion() &&
1922            "Other GD should now be a multiversioned function");
1923     // OtherFD is the version of this function that was mangled BEFORE
1924     // becoming a MultiVersion function.  It potentially needs to be updated.
1925     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1926                                       .getDecl()
1927                                       ->getAsFunction()
1928                                       ->getMostRecentDecl();
1929     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1930     // This is so that if the initial version was already the 'default'
1931     // version, we don't try to update it.
1932     if (OtherName != NonTargetName) {
1933       // Remove instead of erase, since others may have stored the StringRef
1934       // to this.
1935       const auto ExistingRecord = Manglings.find(NonTargetName);
1936       if (ExistingRecord != std::end(Manglings))
1937         Manglings.remove(&(*ExistingRecord));
1938       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1939       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1940           Result.first->first();
1941       // If this is the current decl is being created, make sure we update the name.
1942       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1943         CurName = OtherNameRef;
1944       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1945         Entry->setName(OtherName);
1946     }
1947   }
1948 }
1949 
1950 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1951   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1952 
1953   // Some ABIs don't have constructor variants.  Make sure that base and
1954   // complete constructors get mangled the same.
1955   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1956     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1957       CXXCtorType OrigCtorType = GD.getCtorType();
1958       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1959       if (OrigCtorType == Ctor_Base)
1960         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1961     }
1962   }
1963 
1964   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1965   // static device variable depends on whether the variable is referenced by
1966   // a host or device host function. Therefore the mangled name cannot be
1967   // cached.
1968   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1969     auto FoundName = MangledDeclNames.find(CanonicalGD);
1970     if (FoundName != MangledDeclNames.end())
1971       return FoundName->second;
1972   }
1973 
1974   // Keep the first result in the case of a mangling collision.
1975   const auto *ND = cast<NamedDecl>(GD.getDecl());
1976   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1977 
1978   // Ensure either we have different ABIs between host and device compilations,
1979   // says host compilation following MSVC ABI but device compilation follows
1980   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1981   // mangling should be the same after name stubbing. The later checking is
1982   // very important as the device kernel name being mangled in host-compilation
1983   // is used to resolve the device binaries to be executed. Inconsistent naming
1984   // result in undefined behavior. Even though we cannot check that naming
1985   // directly between host- and device-compilations, the host- and
1986   // device-mangling in host compilation could help catching certain ones.
1987   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1988          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1989          (getContext().getAuxTargetInfo() &&
1990           (getContext().getAuxTargetInfo()->getCXXABI() !=
1991            getContext().getTargetInfo().getCXXABI())) ||
1992          getCUDARuntime().getDeviceSideName(ND) ==
1993              getMangledNameImpl(
1994                  *this,
1995                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1996                  ND));
1997 
1998   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1999   return MangledDeclNames[CanonicalGD] = Result.first->first();
2000 }
2001 
2002 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2003                                              const BlockDecl *BD) {
2004   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2005   const Decl *D = GD.getDecl();
2006 
2007   SmallString<256> Buffer;
2008   llvm::raw_svector_ostream Out(Buffer);
2009   if (!D)
2010     MangleCtx.mangleGlobalBlock(BD,
2011       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2012   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2013     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2014   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2015     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2016   else
2017     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2018 
2019   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2020   return Result.first->first();
2021 }
2022 
2023 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2024   auto it = MangledDeclNames.begin();
2025   while (it != MangledDeclNames.end()) {
2026     if (it->second == Name)
2027       return it->first;
2028     it++;
2029   }
2030   return GlobalDecl();
2031 }
2032 
2033 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2034   return getModule().getNamedValue(Name);
2035 }
2036 
2037 /// AddGlobalCtor - Add a function to the list that will be called before
2038 /// main() runs.
2039 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2040                                   unsigned LexOrder,
2041                                   llvm::Constant *AssociatedData) {
2042   // FIXME: Type coercion of void()* types.
2043   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2044 }
2045 
2046 /// AddGlobalDtor - Add a function to the list that will be called
2047 /// when the module is unloaded.
2048 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2049                                   bool IsDtorAttrFunc) {
2050   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2051       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2052     DtorsUsingAtExit[Priority].push_back(Dtor);
2053     return;
2054   }
2055 
2056   // FIXME: Type coercion of void()* types.
2057   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2058 }
2059 
2060 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2061   if (Fns.empty()) return;
2062 
2063   // Ctor function type is void()*.
2064   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2065   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2066       TheModule.getDataLayout().getProgramAddressSpace());
2067 
2068   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2069   llvm::StructType *CtorStructTy = llvm::StructType::get(
2070       Int32Ty, CtorPFTy, VoidPtrTy);
2071 
2072   // Construct the constructor and destructor arrays.
2073   ConstantInitBuilder builder(*this);
2074   auto ctors = builder.beginArray(CtorStructTy);
2075   for (const auto &I : Fns) {
2076     auto ctor = ctors.beginStruct(CtorStructTy);
2077     ctor.addInt(Int32Ty, I.Priority);
2078     ctor.add(I.Initializer);
2079     if (I.AssociatedData)
2080       ctor.add(I.AssociatedData);
2081     else
2082       ctor.addNullPointer(VoidPtrTy);
2083     ctor.finishAndAddTo(ctors);
2084   }
2085 
2086   auto list =
2087     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2088                                 /*constant*/ false,
2089                                 llvm::GlobalValue::AppendingLinkage);
2090 
2091   // The LTO linker doesn't seem to like it when we set an alignment
2092   // on appending variables.  Take it off as a workaround.
2093   list->setAlignment(std::nullopt);
2094 
2095   Fns.clear();
2096 }
2097 
2098 llvm::GlobalValue::LinkageTypes
2099 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2100   const auto *D = cast<FunctionDecl>(GD.getDecl());
2101 
2102   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2103 
2104   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2105     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2106 
2107   return getLLVMLinkageForDeclarator(D, Linkage);
2108 }
2109 
2110 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2111   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2112   if (!MDS) return nullptr;
2113 
2114   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2115 }
2116 
2117 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2118   if (auto *FnType = T->getAs<FunctionProtoType>())
2119     T = getContext().getFunctionType(
2120         FnType->getReturnType(), FnType->getParamTypes(),
2121         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2122 
2123   std::string OutName;
2124   llvm::raw_string_ostream Out(OutName);
2125   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2126       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2127 
2128   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2129     Out << ".normalized";
2130 
2131   return llvm::ConstantInt::get(Int32Ty,
2132                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2133 }
2134 
2135 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2136                                               const CGFunctionInfo &Info,
2137                                               llvm::Function *F, bool IsThunk) {
2138   unsigned CallingConv;
2139   llvm::AttributeList PAL;
2140   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2141                          /*AttrOnCallSite=*/false, IsThunk);
2142   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2143       getTarget().getTriple().isWindowsArm64EC()) {
2144     SourceLocation Loc;
2145     if (const Decl *D = GD.getDecl())
2146       Loc = D->getLocation();
2147 
2148     Error(Loc, "__vectorcall calling convention is not currently supported");
2149   }
2150   F->setAttributes(PAL);
2151   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2152 }
2153 
2154 static void removeImageAccessQualifier(std::string& TyName) {
2155   std::string ReadOnlyQual("__read_only");
2156   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2157   if (ReadOnlyPos != std::string::npos)
2158     // "+ 1" for the space after access qualifier.
2159     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2160   else {
2161     std::string WriteOnlyQual("__write_only");
2162     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2163     if (WriteOnlyPos != std::string::npos)
2164       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2165     else {
2166       std::string ReadWriteQual("__read_write");
2167       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2168       if (ReadWritePos != std::string::npos)
2169         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2170     }
2171   }
2172 }
2173 
2174 // Returns the address space id that should be produced to the
2175 // kernel_arg_addr_space metadata. This is always fixed to the ids
2176 // as specified in the SPIR 2.0 specification in order to differentiate
2177 // for example in clGetKernelArgInfo() implementation between the address
2178 // spaces with targets without unique mapping to the OpenCL address spaces
2179 // (basically all single AS CPUs).
2180 static unsigned ArgInfoAddressSpace(LangAS AS) {
2181   switch (AS) {
2182   case LangAS::opencl_global:
2183     return 1;
2184   case LangAS::opencl_constant:
2185     return 2;
2186   case LangAS::opencl_local:
2187     return 3;
2188   case LangAS::opencl_generic:
2189     return 4; // Not in SPIR 2.0 specs.
2190   case LangAS::opencl_global_device:
2191     return 5;
2192   case LangAS::opencl_global_host:
2193     return 6;
2194   default:
2195     return 0; // Assume private.
2196   }
2197 }
2198 
2199 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2200                                          const FunctionDecl *FD,
2201                                          CodeGenFunction *CGF) {
2202   assert(((FD && CGF) || (!FD && !CGF)) &&
2203          "Incorrect use - FD and CGF should either be both null or not!");
2204   // Create MDNodes that represent the kernel arg metadata.
2205   // Each MDNode is a list in the form of "key", N number of values which is
2206   // the same number of values as their are kernel arguments.
2207 
2208   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2209 
2210   // MDNode for the kernel argument address space qualifiers.
2211   SmallVector<llvm::Metadata *, 8> addressQuals;
2212 
2213   // MDNode for the kernel argument access qualifiers (images only).
2214   SmallVector<llvm::Metadata *, 8> accessQuals;
2215 
2216   // MDNode for the kernel argument type names.
2217   SmallVector<llvm::Metadata *, 8> argTypeNames;
2218 
2219   // MDNode for the kernel argument base type names.
2220   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2221 
2222   // MDNode for the kernel argument type qualifiers.
2223   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2224 
2225   // MDNode for the kernel argument names.
2226   SmallVector<llvm::Metadata *, 8> argNames;
2227 
2228   if (FD && CGF)
2229     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2230       const ParmVarDecl *parm = FD->getParamDecl(i);
2231       // Get argument name.
2232       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2233 
2234       if (!getLangOpts().OpenCL)
2235         continue;
2236       QualType ty = parm->getType();
2237       std::string typeQuals;
2238 
2239       // Get image and pipe access qualifier:
2240       if (ty->isImageType() || ty->isPipeType()) {
2241         const Decl *PDecl = parm;
2242         if (const auto *TD = ty->getAs<TypedefType>())
2243           PDecl = TD->getDecl();
2244         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2245         if (A && A->isWriteOnly())
2246           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2247         else if (A && A->isReadWrite())
2248           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2249         else
2250           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2251       } else
2252         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2253 
2254       auto getTypeSpelling = [&](QualType Ty) {
2255         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2256 
2257         if (Ty.isCanonical()) {
2258           StringRef typeNameRef = typeName;
2259           // Turn "unsigned type" to "utype"
2260           if (typeNameRef.consume_front("unsigned "))
2261             return std::string("u") + typeNameRef.str();
2262           if (typeNameRef.consume_front("signed "))
2263             return typeNameRef.str();
2264         }
2265 
2266         return typeName;
2267       };
2268 
2269       if (ty->isPointerType()) {
2270         QualType pointeeTy = ty->getPointeeType();
2271 
2272         // Get address qualifier.
2273         addressQuals.push_back(
2274             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2275                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2276 
2277         // Get argument type name.
2278         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2279         std::string baseTypeName =
2280             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2281         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2282         argBaseTypeNames.push_back(
2283             llvm::MDString::get(VMContext, baseTypeName));
2284 
2285         // Get argument type qualifiers:
2286         if (ty.isRestrictQualified())
2287           typeQuals = "restrict";
2288         if (pointeeTy.isConstQualified() ||
2289             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2290           typeQuals += typeQuals.empty() ? "const" : " const";
2291         if (pointeeTy.isVolatileQualified())
2292           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2293       } else {
2294         uint32_t AddrSpc = 0;
2295         bool isPipe = ty->isPipeType();
2296         if (ty->isImageType() || isPipe)
2297           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2298 
2299         addressQuals.push_back(
2300             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2301 
2302         // Get argument type name.
2303         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2304         std::string typeName = getTypeSpelling(ty);
2305         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2306 
2307         // Remove access qualifiers on images
2308         // (as they are inseparable from type in clang implementation,
2309         // but OpenCL spec provides a special query to get access qualifier
2310         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2311         if (ty->isImageType()) {
2312           removeImageAccessQualifier(typeName);
2313           removeImageAccessQualifier(baseTypeName);
2314         }
2315 
2316         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2317         argBaseTypeNames.push_back(
2318             llvm::MDString::get(VMContext, baseTypeName));
2319 
2320         if (isPipe)
2321           typeQuals = "pipe";
2322       }
2323       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2324     }
2325 
2326   if (getLangOpts().OpenCL) {
2327     Fn->setMetadata("kernel_arg_addr_space",
2328                     llvm::MDNode::get(VMContext, addressQuals));
2329     Fn->setMetadata("kernel_arg_access_qual",
2330                     llvm::MDNode::get(VMContext, accessQuals));
2331     Fn->setMetadata("kernel_arg_type",
2332                     llvm::MDNode::get(VMContext, argTypeNames));
2333     Fn->setMetadata("kernel_arg_base_type",
2334                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2335     Fn->setMetadata("kernel_arg_type_qual",
2336                     llvm::MDNode::get(VMContext, argTypeQuals));
2337   }
2338   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2339       getCodeGenOpts().HIPSaveKernelArgName)
2340     Fn->setMetadata("kernel_arg_name",
2341                     llvm::MDNode::get(VMContext, argNames));
2342 }
2343 
2344 /// Determines whether the language options require us to model
2345 /// unwind exceptions.  We treat -fexceptions as mandating this
2346 /// except under the fragile ObjC ABI with only ObjC exceptions
2347 /// enabled.  This means, for example, that C with -fexceptions
2348 /// enables this.
2349 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2350   // If exceptions are completely disabled, obviously this is false.
2351   if (!LangOpts.Exceptions) return false;
2352 
2353   // If C++ exceptions are enabled, this is true.
2354   if (LangOpts.CXXExceptions) return true;
2355 
2356   // If ObjC exceptions are enabled, this depends on the ABI.
2357   if (LangOpts.ObjCExceptions) {
2358     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2359   }
2360 
2361   return true;
2362 }
2363 
2364 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2365                                                       const CXXMethodDecl *MD) {
2366   // Check that the type metadata can ever actually be used by a call.
2367   if (!CGM.getCodeGenOpts().LTOUnit ||
2368       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2369     return false;
2370 
2371   // Only functions whose address can be taken with a member function pointer
2372   // need this sort of type metadata.
2373   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2374          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2375 }
2376 
2377 SmallVector<const CXXRecordDecl *, 0>
2378 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2379   llvm::SetVector<const CXXRecordDecl *> MostBases;
2380 
2381   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2382   CollectMostBases = [&](const CXXRecordDecl *RD) {
2383     if (RD->getNumBases() == 0)
2384       MostBases.insert(RD);
2385     for (const CXXBaseSpecifier &B : RD->bases())
2386       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2387   };
2388   CollectMostBases(RD);
2389   return MostBases.takeVector();
2390 }
2391 
2392 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2393                                                            llvm::Function *F) {
2394   llvm::AttrBuilder B(F->getContext());
2395 
2396   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2397     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2398 
2399   if (CodeGenOpts.StackClashProtector)
2400     B.addAttribute("probe-stack", "inline-asm");
2401 
2402   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2403     B.addAttribute("stack-probe-size",
2404                    std::to_string(CodeGenOpts.StackProbeSize));
2405 
2406   if (!hasUnwindExceptions(LangOpts))
2407     B.addAttribute(llvm::Attribute::NoUnwind);
2408 
2409   if (D && D->hasAttr<NoStackProtectorAttr>())
2410     ; // Do nothing.
2411   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2412            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2413     B.addAttribute(llvm::Attribute::StackProtectStrong);
2414   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2415     B.addAttribute(llvm::Attribute::StackProtect);
2416   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2417     B.addAttribute(llvm::Attribute::StackProtectStrong);
2418   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2419     B.addAttribute(llvm::Attribute::StackProtectReq);
2420 
2421   if (!D) {
2422     // If we don't have a declaration to control inlining, the function isn't
2423     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2424     // disabled, mark the function as noinline.
2425     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2426         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2427       B.addAttribute(llvm::Attribute::NoInline);
2428 
2429     F->addFnAttrs(B);
2430     return;
2431   }
2432 
2433   // Handle SME attributes that apply to function definitions,
2434   // rather than to function prototypes.
2435   if (D->hasAttr<ArmLocallyStreamingAttr>())
2436     B.addAttribute("aarch64_pstate_sm_body");
2437 
2438   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2439     if (Attr->isNewZA())
2440       B.addAttribute("aarch64_new_za");
2441     if (Attr->isNewZT0())
2442       B.addAttribute("aarch64_new_zt0");
2443   }
2444 
2445   // Track whether we need to add the optnone LLVM attribute,
2446   // starting with the default for this optimization level.
2447   bool ShouldAddOptNone =
2448       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2449   // We can't add optnone in the following cases, it won't pass the verifier.
2450   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2451   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2452 
2453   // Add optnone, but do so only if the function isn't always_inline.
2454   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2455       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2456     B.addAttribute(llvm::Attribute::OptimizeNone);
2457 
2458     // OptimizeNone implies noinline; we should not be inlining such functions.
2459     B.addAttribute(llvm::Attribute::NoInline);
2460 
2461     // We still need to handle naked functions even though optnone subsumes
2462     // much of their semantics.
2463     if (D->hasAttr<NakedAttr>())
2464       B.addAttribute(llvm::Attribute::Naked);
2465 
2466     // OptimizeNone wins over OptimizeForSize and MinSize.
2467     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2468     F->removeFnAttr(llvm::Attribute::MinSize);
2469   } else if (D->hasAttr<NakedAttr>()) {
2470     // Naked implies noinline: we should not be inlining such functions.
2471     B.addAttribute(llvm::Attribute::Naked);
2472     B.addAttribute(llvm::Attribute::NoInline);
2473   } else if (D->hasAttr<NoDuplicateAttr>()) {
2474     B.addAttribute(llvm::Attribute::NoDuplicate);
2475   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2476     // Add noinline if the function isn't always_inline.
2477     B.addAttribute(llvm::Attribute::NoInline);
2478   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2479              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2480     // (noinline wins over always_inline, and we can't specify both in IR)
2481     B.addAttribute(llvm::Attribute::AlwaysInline);
2482   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2483     // If we're not inlining, then force everything that isn't always_inline to
2484     // carry an explicit noinline attribute.
2485     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2486       B.addAttribute(llvm::Attribute::NoInline);
2487   } else {
2488     // Otherwise, propagate the inline hint attribute and potentially use its
2489     // absence to mark things as noinline.
2490     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2491       // Search function and template pattern redeclarations for inline.
2492       auto CheckForInline = [](const FunctionDecl *FD) {
2493         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2494           return Redecl->isInlineSpecified();
2495         };
2496         if (any_of(FD->redecls(), CheckRedeclForInline))
2497           return true;
2498         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2499         if (!Pattern)
2500           return false;
2501         return any_of(Pattern->redecls(), CheckRedeclForInline);
2502       };
2503       if (CheckForInline(FD)) {
2504         B.addAttribute(llvm::Attribute::InlineHint);
2505       } else if (CodeGenOpts.getInlining() ==
2506                      CodeGenOptions::OnlyHintInlining &&
2507                  !FD->isInlined() &&
2508                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2509         B.addAttribute(llvm::Attribute::NoInline);
2510       }
2511     }
2512   }
2513 
2514   // Add other optimization related attributes if we are optimizing this
2515   // function.
2516   if (!D->hasAttr<OptimizeNoneAttr>()) {
2517     if (D->hasAttr<ColdAttr>()) {
2518       if (!ShouldAddOptNone)
2519         B.addAttribute(llvm::Attribute::OptimizeForSize);
2520       B.addAttribute(llvm::Attribute::Cold);
2521     }
2522     if (D->hasAttr<HotAttr>())
2523       B.addAttribute(llvm::Attribute::Hot);
2524     if (D->hasAttr<MinSizeAttr>())
2525       B.addAttribute(llvm::Attribute::MinSize);
2526   }
2527 
2528   F->addFnAttrs(B);
2529 
2530   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2531   if (alignment)
2532     F->setAlignment(llvm::Align(alignment));
2533 
2534   if (!D->hasAttr<AlignedAttr>())
2535     if (LangOpts.FunctionAlignment)
2536       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2537 
2538   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2539   // reserve a bit for differentiating between virtual and non-virtual member
2540   // functions. If the current target's C++ ABI requires this and this is a
2541   // member function, set its alignment accordingly.
2542   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2543     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2544       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2545   }
2546 
2547   // In the cross-dso CFI mode with canonical jump tables, we want !type
2548   // attributes on definitions only.
2549   if (CodeGenOpts.SanitizeCfiCrossDso &&
2550       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2551     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2552       // Skip available_externally functions. They won't be codegen'ed in the
2553       // current module anyway.
2554       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2555         CreateFunctionTypeMetadataForIcall(FD, F);
2556     }
2557   }
2558 
2559   // Emit type metadata on member functions for member function pointer checks.
2560   // These are only ever necessary on definitions; we're guaranteed that the
2561   // definition will be present in the LTO unit as a result of LTO visibility.
2562   auto *MD = dyn_cast<CXXMethodDecl>(D);
2563   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2564     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2565       llvm::Metadata *Id =
2566           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2567               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2568       F->addTypeMetadata(0, Id);
2569     }
2570   }
2571 }
2572 
2573 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2574   const Decl *D = GD.getDecl();
2575   if (isa_and_nonnull<NamedDecl>(D))
2576     setGVProperties(GV, GD);
2577   else
2578     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2579 
2580   if (D && D->hasAttr<UsedAttr>())
2581     addUsedOrCompilerUsedGlobal(GV);
2582 
2583   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2584       VD &&
2585       ((CodeGenOpts.KeepPersistentStorageVariables &&
2586         (VD->getStorageDuration() == SD_Static ||
2587          VD->getStorageDuration() == SD_Thread)) ||
2588        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2589         VD->getType().isConstQualified())))
2590     addUsedOrCompilerUsedGlobal(GV);
2591 }
2592 
2593 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2594                                                 llvm::AttrBuilder &Attrs,
2595                                                 bool SetTargetFeatures) {
2596   // Add target-cpu and target-features attributes to functions. If
2597   // we have a decl for the function and it has a target attribute then
2598   // parse that and add it to the feature set.
2599   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2600   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2601   std::vector<std::string> Features;
2602   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2603   FD = FD ? FD->getMostRecentDecl() : FD;
2604   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2605   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2606   assert((!TD || !TV) && "both target_version and target specified");
2607   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2608   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2609   bool AddedAttr = false;
2610   if (TD || TV || SD || TC) {
2611     llvm::StringMap<bool> FeatureMap;
2612     getContext().getFunctionFeatureMap(FeatureMap, GD);
2613 
2614     // Produce the canonical string for this set of features.
2615     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2616       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2617 
2618     // Now add the target-cpu and target-features to the function.
2619     // While we populated the feature map above, we still need to
2620     // get and parse the target attribute so we can get the cpu for
2621     // the function.
2622     if (TD) {
2623       ParsedTargetAttr ParsedAttr =
2624           Target.parseTargetAttr(TD->getFeaturesStr());
2625       if (!ParsedAttr.CPU.empty() &&
2626           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2627         TargetCPU = ParsedAttr.CPU;
2628         TuneCPU = ""; // Clear the tune CPU.
2629       }
2630       if (!ParsedAttr.Tune.empty() &&
2631           getTarget().isValidCPUName(ParsedAttr.Tune))
2632         TuneCPU = ParsedAttr.Tune;
2633     }
2634 
2635     if (SD) {
2636       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2637       // favor this processor.
2638       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2639     }
2640   } else {
2641     // Otherwise just add the existing target cpu and target features to the
2642     // function.
2643     Features = getTarget().getTargetOpts().Features;
2644   }
2645 
2646   if (!TargetCPU.empty()) {
2647     Attrs.addAttribute("target-cpu", TargetCPU);
2648     AddedAttr = true;
2649   }
2650   if (!TuneCPU.empty()) {
2651     Attrs.addAttribute("tune-cpu", TuneCPU);
2652     AddedAttr = true;
2653   }
2654   if (!Features.empty() && SetTargetFeatures) {
2655     llvm::erase_if(Features, [&](const std::string& F) {
2656        return getTarget().isReadOnlyFeature(F.substr(1));
2657     });
2658     llvm::sort(Features);
2659     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2660     AddedAttr = true;
2661   }
2662 
2663   return AddedAttr;
2664 }
2665 
2666 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2667                                           llvm::GlobalObject *GO) {
2668   const Decl *D = GD.getDecl();
2669   SetCommonAttributes(GD, GO);
2670 
2671   if (D) {
2672     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2673       if (D->hasAttr<RetainAttr>())
2674         addUsedGlobal(GV);
2675       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2676         GV->addAttribute("bss-section", SA->getName());
2677       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2678         GV->addAttribute("data-section", SA->getName());
2679       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2680         GV->addAttribute("rodata-section", SA->getName());
2681       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2682         GV->addAttribute("relro-section", SA->getName());
2683     }
2684 
2685     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2686       if (D->hasAttr<RetainAttr>())
2687         addUsedGlobal(F);
2688       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2689         if (!D->getAttr<SectionAttr>())
2690           F->setSection(SA->getName());
2691 
2692       llvm::AttrBuilder Attrs(F->getContext());
2693       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2694         // We know that GetCPUAndFeaturesAttributes will always have the
2695         // newest set, since it has the newest possible FunctionDecl, so the
2696         // new ones should replace the old.
2697         llvm::AttributeMask RemoveAttrs;
2698         RemoveAttrs.addAttribute("target-cpu");
2699         RemoveAttrs.addAttribute("target-features");
2700         RemoveAttrs.addAttribute("tune-cpu");
2701         F->removeFnAttrs(RemoveAttrs);
2702         F->addFnAttrs(Attrs);
2703       }
2704     }
2705 
2706     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2707       GO->setSection(CSA->getName());
2708     else if (const auto *SA = D->getAttr<SectionAttr>())
2709       GO->setSection(SA->getName());
2710   }
2711 
2712   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2713 }
2714 
2715 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2716                                                   llvm::Function *F,
2717                                                   const CGFunctionInfo &FI) {
2718   const Decl *D = GD.getDecl();
2719   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2720   SetLLVMFunctionAttributesForDefinition(D, F);
2721 
2722   F->setLinkage(llvm::Function::InternalLinkage);
2723 
2724   setNonAliasAttributes(GD, F);
2725 }
2726 
2727 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2728   // Set linkage and visibility in case we never see a definition.
2729   LinkageInfo LV = ND->getLinkageAndVisibility();
2730   // Don't set internal linkage on declarations.
2731   // "extern_weak" is overloaded in LLVM; we probably should have
2732   // separate linkage types for this.
2733   if (isExternallyVisible(LV.getLinkage()) &&
2734       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2735     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2736 }
2737 
2738 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2739                                                        llvm::Function *F) {
2740   // Only if we are checking indirect calls.
2741   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2742     return;
2743 
2744   // Non-static class methods are handled via vtable or member function pointer
2745   // checks elsewhere.
2746   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2747     return;
2748 
2749   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2750   F->addTypeMetadata(0, MD);
2751   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2752 
2753   // Emit a hash-based bit set entry for cross-DSO calls.
2754   if (CodeGenOpts.SanitizeCfiCrossDso)
2755     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2756       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2757 }
2758 
2759 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2760   llvm::LLVMContext &Ctx = F->getContext();
2761   llvm::MDBuilder MDB(Ctx);
2762   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2763                  llvm::MDNode::get(
2764                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2765 }
2766 
2767 static bool allowKCFIIdentifier(StringRef Name) {
2768   // KCFI type identifier constants are only necessary for external assembly
2769   // functions, which means it's safe to skip unusual names. Subset of
2770   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2771   return llvm::all_of(Name, [](const char &C) {
2772     return llvm::isAlnum(C) || C == '_' || C == '.';
2773   });
2774 }
2775 
2776 void CodeGenModule::finalizeKCFITypes() {
2777   llvm::Module &M = getModule();
2778   for (auto &F : M.functions()) {
2779     // Remove KCFI type metadata from non-address-taken local functions.
2780     bool AddressTaken = F.hasAddressTaken();
2781     if (!AddressTaken && F.hasLocalLinkage())
2782       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2783 
2784     // Generate a constant with the expected KCFI type identifier for all
2785     // address-taken function declarations to support annotating indirectly
2786     // called assembly functions.
2787     if (!AddressTaken || !F.isDeclaration())
2788       continue;
2789 
2790     const llvm::ConstantInt *Type;
2791     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2792       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2793     else
2794       continue;
2795 
2796     StringRef Name = F.getName();
2797     if (!allowKCFIIdentifier(Name))
2798       continue;
2799 
2800     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2801                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2802                           .str();
2803     M.appendModuleInlineAsm(Asm);
2804   }
2805 }
2806 
2807 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2808                                           bool IsIncompleteFunction,
2809                                           bool IsThunk) {
2810 
2811   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2812     // If this is an intrinsic function, set the function's attributes
2813     // to the intrinsic's attributes.
2814     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2815     return;
2816   }
2817 
2818   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2819 
2820   if (!IsIncompleteFunction)
2821     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2822                               IsThunk);
2823 
2824   // Add the Returned attribute for "this", except for iOS 5 and earlier
2825   // where substantial code, including the libstdc++ dylib, was compiled with
2826   // GCC and does not actually return "this".
2827   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2828       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2829     assert(!F->arg_empty() &&
2830            F->arg_begin()->getType()
2831              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2832            "unexpected this return");
2833     F->addParamAttr(0, llvm::Attribute::Returned);
2834   }
2835 
2836   // Only a few attributes are set on declarations; these may later be
2837   // overridden by a definition.
2838 
2839   setLinkageForGV(F, FD);
2840   setGVProperties(F, FD);
2841 
2842   // Setup target-specific attributes.
2843   if (!IsIncompleteFunction && F->isDeclaration())
2844     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2845 
2846   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2847     F->setSection(CSA->getName());
2848   else if (const auto *SA = FD->getAttr<SectionAttr>())
2849      F->setSection(SA->getName());
2850 
2851   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2852     if (EA->isError())
2853       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2854     else if (EA->isWarning())
2855       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2856   }
2857 
2858   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2859   if (FD->isInlineBuiltinDeclaration()) {
2860     const FunctionDecl *FDBody;
2861     bool HasBody = FD->hasBody(FDBody);
2862     (void)HasBody;
2863     assert(HasBody && "Inline builtin declarations should always have an "
2864                       "available body!");
2865     if (shouldEmitFunction(FDBody))
2866       F->addFnAttr(llvm::Attribute::NoBuiltin);
2867   }
2868 
2869   if (FD->isReplaceableGlobalAllocationFunction()) {
2870     // A replaceable global allocation function does not act like a builtin by
2871     // default, only if it is invoked by a new-expression or delete-expression.
2872     F->addFnAttr(llvm::Attribute::NoBuiltin);
2873   }
2874 
2875   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2876     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2877   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2878     if (MD->isVirtual())
2879       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2880 
2881   // Don't emit entries for function declarations in the cross-DSO mode. This
2882   // is handled with better precision by the receiving DSO. But if jump tables
2883   // are non-canonical then we need type metadata in order to produce the local
2884   // jump table.
2885   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2886       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2887     CreateFunctionTypeMetadataForIcall(FD, F);
2888 
2889   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2890     setKCFIType(FD, F);
2891 
2892   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2893     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2894 
2895   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2896     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2897 
2898   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2899     // Annotate the callback behavior as metadata:
2900     //  - The callback callee (as argument number).
2901     //  - The callback payloads (as argument numbers).
2902     llvm::LLVMContext &Ctx = F->getContext();
2903     llvm::MDBuilder MDB(Ctx);
2904 
2905     // The payload indices are all but the first one in the encoding. The first
2906     // identifies the callback callee.
2907     int CalleeIdx = *CB->encoding_begin();
2908     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2909     F->addMetadata(llvm::LLVMContext::MD_callback,
2910                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2911                                                CalleeIdx, PayloadIndices,
2912                                                /* VarArgsArePassed */ false)}));
2913   }
2914 }
2915 
2916 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2917   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2918          "Only globals with definition can force usage.");
2919   LLVMUsed.emplace_back(GV);
2920 }
2921 
2922 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2923   assert(!GV->isDeclaration() &&
2924          "Only globals with definition can force usage.");
2925   LLVMCompilerUsed.emplace_back(GV);
2926 }
2927 
2928 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2929   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2930          "Only globals with definition can force usage.");
2931   if (getTriple().isOSBinFormatELF())
2932     LLVMCompilerUsed.emplace_back(GV);
2933   else
2934     LLVMUsed.emplace_back(GV);
2935 }
2936 
2937 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2938                      std::vector<llvm::WeakTrackingVH> &List) {
2939   // Don't create llvm.used if there is no need.
2940   if (List.empty())
2941     return;
2942 
2943   // Convert List to what ConstantArray needs.
2944   SmallVector<llvm::Constant*, 8> UsedArray;
2945   UsedArray.resize(List.size());
2946   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2947     UsedArray[i] =
2948         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2949             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2950   }
2951 
2952   if (UsedArray.empty())
2953     return;
2954   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2955 
2956   auto *GV = new llvm::GlobalVariable(
2957       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2958       llvm::ConstantArray::get(ATy, UsedArray), Name);
2959 
2960   GV->setSection("llvm.metadata");
2961 }
2962 
2963 void CodeGenModule::emitLLVMUsed() {
2964   emitUsed(*this, "llvm.used", LLVMUsed);
2965   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2966 }
2967 
2968 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2969   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2970   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2971 }
2972 
2973 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2974   llvm::SmallString<32> Opt;
2975   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2976   if (Opt.empty())
2977     return;
2978   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2979   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2980 }
2981 
2982 void CodeGenModule::AddDependentLib(StringRef Lib) {
2983   auto &C = getLLVMContext();
2984   if (getTarget().getTriple().isOSBinFormatELF()) {
2985       ELFDependentLibraries.push_back(
2986         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2987     return;
2988   }
2989 
2990   llvm::SmallString<24> Opt;
2991   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2992   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2993   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2994 }
2995 
2996 /// Add link options implied by the given module, including modules
2997 /// it depends on, using a postorder walk.
2998 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2999                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3000                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3001   // Import this module's parent.
3002   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3003     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3004   }
3005 
3006   // Import this module's dependencies.
3007   for (Module *Import : llvm::reverse(Mod->Imports)) {
3008     if (Visited.insert(Import).second)
3009       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3010   }
3011 
3012   // Add linker options to link against the libraries/frameworks
3013   // described by this module.
3014   llvm::LLVMContext &Context = CGM.getLLVMContext();
3015   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3016 
3017   // For modules that use export_as for linking, use that module
3018   // name instead.
3019   if (Mod->UseExportAsModuleLinkName)
3020     return;
3021 
3022   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3023     // Link against a framework.  Frameworks are currently Darwin only, so we
3024     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3025     if (LL.IsFramework) {
3026       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3027                                  llvm::MDString::get(Context, LL.Library)};
3028 
3029       Metadata.push_back(llvm::MDNode::get(Context, Args));
3030       continue;
3031     }
3032 
3033     // Link against a library.
3034     if (IsELF) {
3035       llvm::Metadata *Args[2] = {
3036           llvm::MDString::get(Context, "lib"),
3037           llvm::MDString::get(Context, LL.Library),
3038       };
3039       Metadata.push_back(llvm::MDNode::get(Context, Args));
3040     } else {
3041       llvm::SmallString<24> Opt;
3042       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3043       auto *OptString = llvm::MDString::get(Context, Opt);
3044       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3045     }
3046   }
3047 }
3048 
3049 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3050   assert(Primary->isNamedModuleUnit() &&
3051          "We should only emit module initializers for named modules.");
3052 
3053   // Emit the initializers in the order that sub-modules appear in the
3054   // source, first Global Module Fragments, if present.
3055   if (auto GMF = Primary->getGlobalModuleFragment()) {
3056     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3057       if (isa<ImportDecl>(D))
3058         continue;
3059       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3060       EmitTopLevelDecl(D);
3061     }
3062   }
3063   // Second any associated with the module, itself.
3064   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3065     // Skip import decls, the inits for those are called explicitly.
3066     if (isa<ImportDecl>(D))
3067       continue;
3068     EmitTopLevelDecl(D);
3069   }
3070   // Third any associated with the Privat eMOdule Fragment, if present.
3071   if (auto PMF = Primary->getPrivateModuleFragment()) {
3072     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3073       // Skip import decls, the inits for those are called explicitly.
3074       if (isa<ImportDecl>(D))
3075         continue;
3076       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3077       EmitTopLevelDecl(D);
3078     }
3079   }
3080 }
3081 
3082 void CodeGenModule::EmitModuleLinkOptions() {
3083   // Collect the set of all of the modules we want to visit to emit link
3084   // options, which is essentially the imported modules and all of their
3085   // non-explicit child modules.
3086   llvm::SetVector<clang::Module *> LinkModules;
3087   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3088   SmallVector<clang::Module *, 16> Stack;
3089 
3090   // Seed the stack with imported modules.
3091   for (Module *M : ImportedModules) {
3092     // Do not add any link flags when an implementation TU of a module imports
3093     // a header of that same module.
3094     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3095         !getLangOpts().isCompilingModule())
3096       continue;
3097     if (Visited.insert(M).second)
3098       Stack.push_back(M);
3099   }
3100 
3101   // Find all of the modules to import, making a little effort to prune
3102   // non-leaf modules.
3103   while (!Stack.empty()) {
3104     clang::Module *Mod = Stack.pop_back_val();
3105 
3106     bool AnyChildren = false;
3107 
3108     // Visit the submodules of this module.
3109     for (const auto &SM : Mod->submodules()) {
3110       // Skip explicit children; they need to be explicitly imported to be
3111       // linked against.
3112       if (SM->IsExplicit)
3113         continue;
3114 
3115       if (Visited.insert(SM).second) {
3116         Stack.push_back(SM);
3117         AnyChildren = true;
3118       }
3119     }
3120 
3121     // We didn't find any children, so add this module to the list of
3122     // modules to link against.
3123     if (!AnyChildren) {
3124       LinkModules.insert(Mod);
3125     }
3126   }
3127 
3128   // Add link options for all of the imported modules in reverse topological
3129   // order.  We don't do anything to try to order import link flags with respect
3130   // to linker options inserted by things like #pragma comment().
3131   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3132   Visited.clear();
3133   for (Module *M : LinkModules)
3134     if (Visited.insert(M).second)
3135       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3136   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3137   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3138 
3139   // Add the linker options metadata flag.
3140   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3141   for (auto *MD : LinkerOptionsMetadata)
3142     NMD->addOperand(MD);
3143 }
3144 
3145 void CodeGenModule::EmitDeferred() {
3146   // Emit deferred declare target declarations.
3147   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3148     getOpenMPRuntime().emitDeferredTargetDecls();
3149 
3150   // Emit code for any potentially referenced deferred decls.  Since a
3151   // previously unused static decl may become used during the generation of code
3152   // for a static function, iterate until no changes are made.
3153 
3154   if (!DeferredVTables.empty()) {
3155     EmitDeferredVTables();
3156 
3157     // Emitting a vtable doesn't directly cause more vtables to
3158     // become deferred, although it can cause functions to be
3159     // emitted that then need those vtables.
3160     assert(DeferredVTables.empty());
3161   }
3162 
3163   // Emit CUDA/HIP static device variables referenced by host code only.
3164   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3165   // needed for further handling.
3166   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3167     llvm::append_range(DeferredDeclsToEmit,
3168                        getContext().CUDADeviceVarODRUsedByHost);
3169 
3170   // Stop if we're out of both deferred vtables and deferred declarations.
3171   if (DeferredDeclsToEmit.empty())
3172     return;
3173 
3174   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3175   // work, it will not interfere with this.
3176   std::vector<GlobalDecl> CurDeclsToEmit;
3177   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3178 
3179   for (GlobalDecl &D : CurDeclsToEmit) {
3180     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3181     // to get GlobalValue with exactly the type we need, not something that
3182     // might had been created for another decl with the same mangled name but
3183     // different type.
3184     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3185         GetAddrOfGlobal(D, ForDefinition));
3186 
3187     // In case of different address spaces, we may still get a cast, even with
3188     // IsForDefinition equal to true. Query mangled names table to get
3189     // GlobalValue.
3190     if (!GV)
3191       GV = GetGlobalValue(getMangledName(D));
3192 
3193     // Make sure GetGlobalValue returned non-null.
3194     assert(GV);
3195 
3196     // Check to see if we've already emitted this.  This is necessary
3197     // for a couple of reasons: first, decls can end up in the
3198     // deferred-decls queue multiple times, and second, decls can end
3199     // up with definitions in unusual ways (e.g. by an extern inline
3200     // function acquiring a strong function redefinition).  Just
3201     // ignore these cases.
3202     if (!GV->isDeclaration())
3203       continue;
3204 
3205     // If this is OpenMP, check if it is legal to emit this global normally.
3206     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3207       continue;
3208 
3209     // Otherwise, emit the definition and move on to the next one.
3210     EmitGlobalDefinition(D, GV);
3211 
3212     // If we found out that we need to emit more decls, do that recursively.
3213     // This has the advantage that the decls are emitted in a DFS and related
3214     // ones are close together, which is convenient for testing.
3215     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3216       EmitDeferred();
3217       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3218     }
3219   }
3220 }
3221 
3222 void CodeGenModule::EmitVTablesOpportunistically() {
3223   // Try to emit external vtables as available_externally if they have emitted
3224   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3225   // is not allowed to create new references to things that need to be emitted
3226   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3227 
3228   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3229          && "Only emit opportunistic vtables with optimizations");
3230 
3231   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3232     assert(getVTables().isVTableExternal(RD) &&
3233            "This queue should only contain external vtables");
3234     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3235       VTables.GenerateClassData(RD);
3236   }
3237   OpportunisticVTables.clear();
3238 }
3239 
3240 void CodeGenModule::EmitGlobalAnnotations() {
3241   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3242     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3243     if (GV)
3244       AddGlobalAnnotations(VD, GV);
3245   }
3246   DeferredAnnotations.clear();
3247 
3248   if (Annotations.empty())
3249     return;
3250 
3251   // Create a new global variable for the ConstantStruct in the Module.
3252   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3253     Annotations[0]->getType(), Annotations.size()), Annotations);
3254   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3255                                       llvm::GlobalValue::AppendingLinkage,
3256                                       Array, "llvm.global.annotations");
3257   gv->setSection(AnnotationSection);
3258 }
3259 
3260 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3261   llvm::Constant *&AStr = AnnotationStrings[Str];
3262   if (AStr)
3263     return AStr;
3264 
3265   // Not found yet, create a new global.
3266   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3267   auto *gv = new llvm::GlobalVariable(
3268       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3269       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3270       ConstGlobalsPtrTy->getAddressSpace());
3271   gv->setSection(AnnotationSection);
3272   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3273   AStr = gv;
3274   return gv;
3275 }
3276 
3277 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3278   SourceManager &SM = getContext().getSourceManager();
3279   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3280   if (PLoc.isValid())
3281     return EmitAnnotationString(PLoc.getFilename());
3282   return EmitAnnotationString(SM.getBufferName(Loc));
3283 }
3284 
3285 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3286   SourceManager &SM = getContext().getSourceManager();
3287   PresumedLoc PLoc = SM.getPresumedLoc(L);
3288   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3289     SM.getExpansionLineNumber(L);
3290   return llvm::ConstantInt::get(Int32Ty, LineNo);
3291 }
3292 
3293 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3294   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3295   if (Exprs.empty())
3296     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3297 
3298   llvm::FoldingSetNodeID ID;
3299   for (Expr *E : Exprs) {
3300     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3301   }
3302   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3303   if (Lookup)
3304     return Lookup;
3305 
3306   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3307   LLVMArgs.reserve(Exprs.size());
3308   ConstantEmitter ConstEmiter(*this);
3309   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3310     const auto *CE = cast<clang::ConstantExpr>(E);
3311     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3312                                     CE->getType());
3313   });
3314   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3315   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3316                                       llvm::GlobalValue::PrivateLinkage, Struct,
3317                                       ".args");
3318   GV->setSection(AnnotationSection);
3319   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3320 
3321   Lookup = GV;
3322   return GV;
3323 }
3324 
3325 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3326                                                 const AnnotateAttr *AA,
3327                                                 SourceLocation L) {
3328   // Get the globals for file name, annotation, and the line number.
3329   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3330                  *UnitGV = EmitAnnotationUnit(L),
3331                  *LineNoCst = EmitAnnotationLineNo(L),
3332                  *Args = EmitAnnotationArgs(AA);
3333 
3334   llvm::Constant *GVInGlobalsAS = GV;
3335   if (GV->getAddressSpace() !=
3336       getDataLayout().getDefaultGlobalsAddressSpace()) {
3337     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3338         GV,
3339         llvm::PointerType::get(
3340             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3341   }
3342 
3343   // Create the ConstantStruct for the global annotation.
3344   llvm::Constant *Fields[] = {
3345       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3346   };
3347   return llvm::ConstantStruct::getAnon(Fields);
3348 }
3349 
3350 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3351                                          llvm::GlobalValue *GV) {
3352   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3353   // Get the struct elements for these annotations.
3354   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3355     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3356 }
3357 
3358 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3359                                        SourceLocation Loc) const {
3360   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3361   // NoSanitize by function name.
3362   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3363     return true;
3364   // NoSanitize by location. Check "mainfile" prefix.
3365   auto &SM = Context.getSourceManager();
3366   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3367   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3368     return true;
3369 
3370   // Check "src" prefix.
3371   if (Loc.isValid())
3372     return NoSanitizeL.containsLocation(Kind, Loc);
3373   // If location is unknown, this may be a compiler-generated function. Assume
3374   // it's located in the main file.
3375   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3376 }
3377 
3378 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3379                                        llvm::GlobalVariable *GV,
3380                                        SourceLocation Loc, QualType Ty,
3381                                        StringRef Category) const {
3382   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3383   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3384     return true;
3385   auto &SM = Context.getSourceManager();
3386   if (NoSanitizeL.containsMainFile(
3387           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3388           Category))
3389     return true;
3390   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3391     return true;
3392 
3393   // Check global type.
3394   if (!Ty.isNull()) {
3395     // Drill down the array types: if global variable of a fixed type is
3396     // not sanitized, we also don't instrument arrays of them.
3397     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3398       Ty = AT->getElementType();
3399     Ty = Ty.getCanonicalType().getUnqualifiedType();
3400     // Only record types (classes, structs etc.) are ignored.
3401     if (Ty->isRecordType()) {
3402       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3403       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3404         return true;
3405     }
3406   }
3407   return false;
3408 }
3409 
3410 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3411                                    StringRef Category) const {
3412   const auto &XRayFilter = getContext().getXRayFilter();
3413   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3414   auto Attr = ImbueAttr::NONE;
3415   if (Loc.isValid())
3416     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3417   if (Attr == ImbueAttr::NONE)
3418     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3419   switch (Attr) {
3420   case ImbueAttr::NONE:
3421     return false;
3422   case ImbueAttr::ALWAYS:
3423     Fn->addFnAttr("function-instrument", "xray-always");
3424     break;
3425   case ImbueAttr::ALWAYS_ARG1:
3426     Fn->addFnAttr("function-instrument", "xray-always");
3427     Fn->addFnAttr("xray-log-args", "1");
3428     break;
3429   case ImbueAttr::NEVER:
3430     Fn->addFnAttr("function-instrument", "xray-never");
3431     break;
3432   }
3433   return true;
3434 }
3435 
3436 ProfileList::ExclusionType
3437 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3438                                               SourceLocation Loc) const {
3439   const auto &ProfileList = getContext().getProfileList();
3440   // If the profile list is empty, then instrument everything.
3441   if (ProfileList.isEmpty())
3442     return ProfileList::Allow;
3443   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3444   // First, check the function name.
3445   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3446     return *V;
3447   // Next, check the source location.
3448   if (Loc.isValid())
3449     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3450       return *V;
3451   // If location is unknown, this may be a compiler-generated function. Assume
3452   // it's located in the main file.
3453   auto &SM = Context.getSourceManager();
3454   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3455     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3456       return *V;
3457   return ProfileList.getDefault(Kind);
3458 }
3459 
3460 ProfileList::ExclusionType
3461 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3462                                                  SourceLocation Loc) const {
3463   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3464   if (V != ProfileList::Allow)
3465     return V;
3466 
3467   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3468   if (NumGroups > 1) {
3469     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3470     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3471       return ProfileList::Skip;
3472   }
3473   return ProfileList::Allow;
3474 }
3475 
3476 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3477   // Never defer when EmitAllDecls is specified.
3478   if (LangOpts.EmitAllDecls)
3479     return true;
3480 
3481   const auto *VD = dyn_cast<VarDecl>(Global);
3482   if (VD &&
3483       ((CodeGenOpts.KeepPersistentStorageVariables &&
3484         (VD->getStorageDuration() == SD_Static ||
3485          VD->getStorageDuration() == SD_Thread)) ||
3486        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3487         VD->getType().isConstQualified())))
3488     return true;
3489 
3490   return getContext().DeclMustBeEmitted(Global);
3491 }
3492 
3493 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3494   // In OpenMP 5.0 variables and function may be marked as
3495   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3496   // that they must be emitted on the host/device. To be sure we need to have
3497   // seen a declare target with an explicit mentioning of the function, we know
3498   // we have if the level of the declare target attribute is -1. Note that we
3499   // check somewhere else if we should emit this at all.
3500   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3501     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3502         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3503     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3504       return false;
3505   }
3506 
3507   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3508     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3509       // Implicit template instantiations may change linkage if they are later
3510       // explicitly instantiated, so they should not be emitted eagerly.
3511       return false;
3512     // Defer until all versions have been semantically checked.
3513     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3514       return false;
3515   }
3516   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3517     if (Context.getInlineVariableDefinitionKind(VD) ==
3518         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3519       // A definition of an inline constexpr static data member may change
3520       // linkage later if it's redeclared outside the class.
3521       return false;
3522     if (CXX20ModuleInits && VD->getOwningModule() &&
3523         !VD->getOwningModule()->isModuleMapModule()) {
3524       // For CXX20, module-owned initializers need to be deferred, since it is
3525       // not known at this point if they will be run for the current module or
3526       // as part of the initializer for an imported one.
3527       return false;
3528     }
3529   }
3530   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3531   // codegen for global variables, because they may be marked as threadprivate.
3532   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3533       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3534       !Global->getType().isConstantStorage(getContext(), false, false) &&
3535       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3536     return false;
3537 
3538   return true;
3539 }
3540 
3541 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3542   StringRef Name = getMangledName(GD);
3543 
3544   // The UUID descriptor should be pointer aligned.
3545   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3546 
3547   // Look for an existing global.
3548   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3549     return ConstantAddress(GV, GV->getValueType(), Alignment);
3550 
3551   ConstantEmitter Emitter(*this);
3552   llvm::Constant *Init;
3553 
3554   APValue &V = GD->getAsAPValue();
3555   if (!V.isAbsent()) {
3556     // If possible, emit the APValue version of the initializer. In particular,
3557     // this gets the type of the constant right.
3558     Init = Emitter.emitForInitializer(
3559         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3560   } else {
3561     // As a fallback, directly construct the constant.
3562     // FIXME: This may get padding wrong under esoteric struct layout rules.
3563     // MSVC appears to create a complete type 'struct __s_GUID' that it
3564     // presumably uses to represent these constants.
3565     MSGuidDecl::Parts Parts = GD->getParts();
3566     llvm::Constant *Fields[4] = {
3567         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3568         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3569         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3570         llvm::ConstantDataArray::getRaw(
3571             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3572             Int8Ty)};
3573     Init = llvm::ConstantStruct::getAnon(Fields);
3574   }
3575 
3576   auto *GV = new llvm::GlobalVariable(
3577       getModule(), Init->getType(),
3578       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3579   if (supportsCOMDAT())
3580     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3581   setDSOLocal(GV);
3582 
3583   if (!V.isAbsent()) {
3584     Emitter.finalize(GV);
3585     return ConstantAddress(GV, GV->getValueType(), Alignment);
3586   }
3587 
3588   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3589   return ConstantAddress(GV, Ty, Alignment);
3590 }
3591 
3592 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3593     const UnnamedGlobalConstantDecl *GCD) {
3594   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3595 
3596   llvm::GlobalVariable **Entry = nullptr;
3597   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3598   if (*Entry)
3599     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3600 
3601   ConstantEmitter Emitter(*this);
3602   llvm::Constant *Init;
3603 
3604   const APValue &V = GCD->getValue();
3605 
3606   assert(!V.isAbsent());
3607   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3608                                     GCD->getType());
3609 
3610   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3611                                       /*isConstant=*/true,
3612                                       llvm::GlobalValue::PrivateLinkage, Init,
3613                                       ".constant");
3614   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3615   GV->setAlignment(Alignment.getAsAlign());
3616 
3617   Emitter.finalize(GV);
3618 
3619   *Entry = GV;
3620   return ConstantAddress(GV, GV->getValueType(), Alignment);
3621 }
3622 
3623 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3624     const TemplateParamObjectDecl *TPO) {
3625   StringRef Name = getMangledName(TPO);
3626   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3627 
3628   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3629     return ConstantAddress(GV, GV->getValueType(), Alignment);
3630 
3631   ConstantEmitter Emitter(*this);
3632   llvm::Constant *Init = Emitter.emitForInitializer(
3633         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3634 
3635   if (!Init) {
3636     ErrorUnsupported(TPO, "template parameter object");
3637     return ConstantAddress::invalid();
3638   }
3639 
3640   llvm::GlobalValue::LinkageTypes Linkage =
3641       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3642           ? llvm::GlobalValue::LinkOnceODRLinkage
3643           : llvm::GlobalValue::InternalLinkage;
3644   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3645                                       /*isConstant=*/true, Linkage, Init, Name);
3646   setGVProperties(GV, TPO);
3647   if (supportsCOMDAT())
3648     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3649   Emitter.finalize(GV);
3650 
3651     return ConstantAddress(GV, GV->getValueType(), Alignment);
3652 }
3653 
3654 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3655   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3656   assert(AA && "No alias?");
3657 
3658   CharUnits Alignment = getContext().getDeclAlign(VD);
3659   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3660 
3661   // See if there is already something with the target's name in the module.
3662   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3663   if (Entry)
3664     return ConstantAddress(Entry, DeclTy, Alignment);
3665 
3666   llvm::Constant *Aliasee;
3667   if (isa<llvm::FunctionType>(DeclTy))
3668     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3669                                       GlobalDecl(cast<FunctionDecl>(VD)),
3670                                       /*ForVTable=*/false);
3671   else
3672     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3673                                     nullptr);
3674 
3675   auto *F = cast<llvm::GlobalValue>(Aliasee);
3676   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3677   WeakRefReferences.insert(F);
3678 
3679   return ConstantAddress(Aliasee, DeclTy, Alignment);
3680 }
3681 
3682 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3683   if (!D)
3684     return false;
3685   if (auto *A = D->getAttr<AttrT>())
3686     return A->isImplicit();
3687   return D->isImplicit();
3688 }
3689 
3690 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3691   const auto *Global = cast<ValueDecl>(GD.getDecl());
3692 
3693   // Weak references don't produce any output by themselves.
3694   if (Global->hasAttr<WeakRefAttr>())
3695     return;
3696 
3697   // If this is an alias definition (which otherwise looks like a declaration)
3698   // emit it now.
3699   if (Global->hasAttr<AliasAttr>())
3700     return EmitAliasDefinition(GD);
3701 
3702   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3703   if (Global->hasAttr<IFuncAttr>())
3704     return emitIFuncDefinition(GD);
3705 
3706   // If this is a cpu_dispatch multiversion function, emit the resolver.
3707   if (Global->hasAttr<CPUDispatchAttr>())
3708     return emitCPUDispatchDefinition(GD);
3709 
3710   // If this is CUDA, be selective about which declarations we emit.
3711   // Non-constexpr non-lambda implicit host device functions are not emitted
3712   // unless they are used on device side.
3713   if (LangOpts.CUDA) {
3714     if (LangOpts.CUDAIsDevice) {
3715       const auto *FD = dyn_cast<FunctionDecl>(Global);
3716       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3717            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3718             hasImplicitAttr<CUDAHostAttr>(FD) &&
3719             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3720             !isLambdaCallOperator(FD) &&
3721             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3722           !Global->hasAttr<CUDAGlobalAttr>() &&
3723           !Global->hasAttr<CUDAConstantAttr>() &&
3724           !Global->hasAttr<CUDASharedAttr>() &&
3725           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3726           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3727           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3728             !Global->hasAttr<CUDAHostAttr>()))
3729         return;
3730     } else {
3731       // We need to emit host-side 'shadows' for all global
3732       // device-side variables because the CUDA runtime needs their
3733       // size and host-side address in order to provide access to
3734       // their device-side incarnations.
3735 
3736       // So device-only functions are the only things we skip.
3737       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3738           Global->hasAttr<CUDADeviceAttr>())
3739         return;
3740 
3741       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3742              "Expected Variable or Function");
3743     }
3744   }
3745 
3746   if (LangOpts.OpenMP) {
3747     // If this is OpenMP, check if it is legal to emit this global normally.
3748     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3749       return;
3750     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3751       if (MustBeEmitted(Global))
3752         EmitOMPDeclareReduction(DRD);
3753       return;
3754     }
3755     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3756       if (MustBeEmitted(Global))
3757         EmitOMPDeclareMapper(DMD);
3758       return;
3759     }
3760   }
3761 
3762   // Ignore declarations, they will be emitted on their first use.
3763   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3764     // Update deferred annotations with the latest declaration if the function
3765     // function was already used or defined.
3766     if (FD->hasAttr<AnnotateAttr>()) {
3767       StringRef MangledName = getMangledName(GD);
3768       if (GetGlobalValue(MangledName))
3769         DeferredAnnotations[MangledName] = FD;
3770     }
3771 
3772     // Forward declarations are emitted lazily on first use.
3773     if (!FD->doesThisDeclarationHaveABody()) {
3774       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3775           (!FD->isMultiVersion() ||
3776            !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3777         return;
3778 
3779       StringRef MangledName = getMangledName(GD);
3780 
3781       // Compute the function info and LLVM type.
3782       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3783       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3784 
3785       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3786                               /*DontDefer=*/false);
3787       return;
3788     }
3789   } else {
3790     const auto *VD = cast<VarDecl>(Global);
3791     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3792     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3793         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3794       if (LangOpts.OpenMP) {
3795         // Emit declaration of the must-be-emitted declare target variable.
3796         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3797                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3798 
3799           // If this variable has external storage and doesn't require special
3800           // link handling we defer to its canonical definition.
3801           if (VD->hasExternalStorage() &&
3802               Res != OMPDeclareTargetDeclAttr::MT_Link)
3803             return;
3804 
3805           bool UnifiedMemoryEnabled =
3806               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3807           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3808                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3809               !UnifiedMemoryEnabled) {
3810             (void)GetAddrOfGlobalVar(VD);
3811           } else {
3812             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3813                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3814                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3815                      UnifiedMemoryEnabled)) &&
3816                    "Link clause or to clause with unified memory expected.");
3817             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3818           }
3819 
3820           return;
3821         }
3822       }
3823       // If this declaration may have caused an inline variable definition to
3824       // change linkage, make sure that it's emitted.
3825       if (Context.getInlineVariableDefinitionKind(VD) ==
3826           ASTContext::InlineVariableDefinitionKind::Strong)
3827         GetAddrOfGlobalVar(VD);
3828       return;
3829     }
3830   }
3831 
3832   // Defer code generation to first use when possible, e.g. if this is an inline
3833   // function. If the global must always be emitted, do it eagerly if possible
3834   // to benefit from cache locality.
3835   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3836     // Emit the definition if it can't be deferred.
3837     EmitGlobalDefinition(GD);
3838     addEmittedDeferredDecl(GD);
3839     return;
3840   }
3841 
3842   // If we're deferring emission of a C++ variable with an
3843   // initializer, remember the order in which it appeared in the file.
3844   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3845       cast<VarDecl>(Global)->hasInit()) {
3846     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3847     CXXGlobalInits.push_back(nullptr);
3848   }
3849 
3850   StringRef MangledName = getMangledName(GD);
3851   if (GetGlobalValue(MangledName) != nullptr) {
3852     // The value has already been used and should therefore be emitted.
3853     addDeferredDeclToEmit(GD);
3854   } else if (MustBeEmitted(Global)) {
3855     // The value must be emitted, but cannot be emitted eagerly.
3856     assert(!MayBeEmittedEagerly(Global));
3857     addDeferredDeclToEmit(GD);
3858   } else {
3859     // Otherwise, remember that we saw a deferred decl with this name.  The
3860     // first use of the mangled name will cause it to move into
3861     // DeferredDeclsToEmit.
3862     DeferredDecls[MangledName] = GD;
3863   }
3864 }
3865 
3866 // Check if T is a class type with a destructor that's not dllimport.
3867 static bool HasNonDllImportDtor(QualType T) {
3868   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3869     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3870       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3871         return true;
3872 
3873   return false;
3874 }
3875 
3876 namespace {
3877   struct FunctionIsDirectlyRecursive
3878       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3879     const StringRef Name;
3880     const Builtin::Context &BI;
3881     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3882         : Name(N), BI(C) {}
3883 
3884     bool VisitCallExpr(const CallExpr *E) {
3885       const FunctionDecl *FD = E->getDirectCallee();
3886       if (!FD)
3887         return false;
3888       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3889       if (Attr && Name == Attr->getLabel())
3890         return true;
3891       unsigned BuiltinID = FD->getBuiltinID();
3892       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3893         return false;
3894       StringRef BuiltinName = BI.getName(BuiltinID);
3895       if (BuiltinName.starts_with("__builtin_") &&
3896           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3897         return true;
3898       }
3899       return false;
3900     }
3901 
3902     bool VisitStmt(const Stmt *S) {
3903       for (const Stmt *Child : S->children())
3904         if (Child && this->Visit(Child))
3905           return true;
3906       return false;
3907     }
3908   };
3909 
3910   // Make sure we're not referencing non-imported vars or functions.
3911   struct DLLImportFunctionVisitor
3912       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3913     bool SafeToInline = true;
3914 
3915     bool shouldVisitImplicitCode() const { return true; }
3916 
3917     bool VisitVarDecl(VarDecl *VD) {
3918       if (VD->getTLSKind()) {
3919         // A thread-local variable cannot be imported.
3920         SafeToInline = false;
3921         return SafeToInline;
3922       }
3923 
3924       // A variable definition might imply a destructor call.
3925       if (VD->isThisDeclarationADefinition())
3926         SafeToInline = !HasNonDllImportDtor(VD->getType());
3927 
3928       return SafeToInline;
3929     }
3930 
3931     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3932       if (const auto *D = E->getTemporary()->getDestructor())
3933         SafeToInline = D->hasAttr<DLLImportAttr>();
3934       return SafeToInline;
3935     }
3936 
3937     bool VisitDeclRefExpr(DeclRefExpr *E) {
3938       ValueDecl *VD = E->getDecl();
3939       if (isa<FunctionDecl>(VD))
3940         SafeToInline = VD->hasAttr<DLLImportAttr>();
3941       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3942         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3943       return SafeToInline;
3944     }
3945 
3946     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3947       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3948       return SafeToInline;
3949     }
3950 
3951     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3952       CXXMethodDecl *M = E->getMethodDecl();
3953       if (!M) {
3954         // Call through a pointer to member function. This is safe to inline.
3955         SafeToInline = true;
3956       } else {
3957         SafeToInline = M->hasAttr<DLLImportAttr>();
3958       }
3959       return SafeToInline;
3960     }
3961 
3962     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3963       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3964       return SafeToInline;
3965     }
3966 
3967     bool VisitCXXNewExpr(CXXNewExpr *E) {
3968       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3969       return SafeToInline;
3970     }
3971   };
3972 }
3973 
3974 // isTriviallyRecursive - Check if this function calls another
3975 // decl that, because of the asm attribute or the other decl being a builtin,
3976 // ends up pointing to itself.
3977 bool
3978 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3979   StringRef Name;
3980   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3981     // asm labels are a special kind of mangling we have to support.
3982     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3983     if (!Attr)
3984       return false;
3985     Name = Attr->getLabel();
3986   } else {
3987     Name = FD->getName();
3988   }
3989 
3990   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3991   const Stmt *Body = FD->getBody();
3992   return Body ? Walker.Visit(Body) : false;
3993 }
3994 
3995 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3996   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3997     return true;
3998 
3999   const auto *F = cast<FunctionDecl>(GD.getDecl());
4000   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4001     return false;
4002 
4003   // We don't import function bodies from other named module units since that
4004   // behavior may break ABI compatibility of the current unit.
4005   if (const Module *M = F->getOwningModule();
4006       M && M->getTopLevelModule()->isNamedModule() &&
4007       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4008     // There are practices to mark template member function as always-inline
4009     // and mark the template as extern explicit instantiation but not give
4010     // the definition for member function. So we have to emit the function
4011     // from explicitly instantiation with always-inline.
4012     //
4013     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4014     //
4015     // TODO: Maybe it is better to give it a warning if we call a non-inline
4016     // function from other module units which is marked as always-inline.
4017     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4018       return false;
4019     }
4020   }
4021 
4022   if (F->hasAttr<NoInlineAttr>())
4023     return false;
4024 
4025   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4026     // Check whether it would be safe to inline this dllimport function.
4027     DLLImportFunctionVisitor Visitor;
4028     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4029     if (!Visitor.SafeToInline)
4030       return false;
4031 
4032     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4033       // Implicit destructor invocations aren't captured in the AST, so the
4034       // check above can't see them. Check for them manually here.
4035       for (const Decl *Member : Dtor->getParent()->decls())
4036         if (isa<FieldDecl>(Member))
4037           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4038             return false;
4039       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4040         if (HasNonDllImportDtor(B.getType()))
4041           return false;
4042     }
4043   }
4044 
4045   // Inline builtins declaration must be emitted. They often are fortified
4046   // functions.
4047   if (F->isInlineBuiltinDeclaration())
4048     return true;
4049 
4050   // PR9614. Avoid cases where the source code is lying to us. An available
4051   // externally function should have an equivalent function somewhere else,
4052   // but a function that calls itself through asm label/`__builtin_` trickery is
4053   // clearly not equivalent to the real implementation.
4054   // This happens in glibc's btowc and in some configure checks.
4055   return !isTriviallyRecursive(F);
4056 }
4057 
4058 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4059   return CodeGenOpts.OptimizationLevel > 0;
4060 }
4061 
4062 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4063                                                        llvm::GlobalValue *GV) {
4064   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4065 
4066   if (FD->isCPUSpecificMultiVersion()) {
4067     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4068     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4069       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4070   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4071     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4072       // AArch64 favors the default target version over the clone if any.
4073       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4074           TC->isFirstOfVersion(I))
4075         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4076     // Ensure that the resolver function is also emitted.
4077     GetOrCreateMultiVersionResolver(GD);
4078   } else
4079     EmitGlobalFunctionDefinition(GD, GV);
4080 
4081   // Defer the resolver emission until we can reason whether the TU
4082   // contains a default target version implementation.
4083   if (FD->isTargetVersionMultiVersion())
4084     AddDeferredMultiVersionResolverToEmit(GD);
4085 }
4086 
4087 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4088   const auto *D = cast<ValueDecl>(GD.getDecl());
4089 
4090   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4091                                  Context.getSourceManager(),
4092                                  "Generating code for declaration");
4093 
4094   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4095     // At -O0, don't generate IR for functions with available_externally
4096     // linkage.
4097     if (!shouldEmitFunction(GD))
4098       return;
4099 
4100     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4101       std::string Name;
4102       llvm::raw_string_ostream OS(Name);
4103       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4104                                /*Qualified=*/true);
4105       return Name;
4106     });
4107 
4108     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4109       // Make sure to emit the definition(s) before we emit the thunks.
4110       // This is necessary for the generation of certain thunks.
4111       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4112         ABI->emitCXXStructor(GD);
4113       else if (FD->isMultiVersion())
4114         EmitMultiVersionFunctionDefinition(GD, GV);
4115       else
4116         EmitGlobalFunctionDefinition(GD, GV);
4117 
4118       if (Method->isVirtual())
4119         getVTables().EmitThunks(GD);
4120 
4121       return;
4122     }
4123 
4124     if (FD->isMultiVersion())
4125       return EmitMultiVersionFunctionDefinition(GD, GV);
4126     return EmitGlobalFunctionDefinition(GD, GV);
4127   }
4128 
4129   if (const auto *VD = dyn_cast<VarDecl>(D))
4130     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4131 
4132   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4133 }
4134 
4135 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4136                                                       llvm::Function *NewFn);
4137 
4138 static unsigned
4139 TargetMVPriority(const TargetInfo &TI,
4140                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4141   unsigned Priority = 0;
4142   unsigned NumFeatures = 0;
4143   for (StringRef Feat : RO.Conditions.Features) {
4144     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4145     NumFeatures++;
4146   }
4147 
4148   if (!RO.Conditions.Architecture.empty())
4149     Priority = std::max(
4150         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4151 
4152   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4153 
4154   return Priority;
4155 }
4156 
4157 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4158 // TU can forward declare the function without causing problems.  Particularly
4159 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4160 // work with internal linkage functions, so that the same function name can be
4161 // used with internal linkage in multiple TUs.
4162 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4163                                                        GlobalDecl GD) {
4164   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4165   if (FD->getFormalLinkage() == Linkage::Internal)
4166     return llvm::GlobalValue::InternalLinkage;
4167   return llvm::GlobalValue::WeakODRLinkage;
4168 }
4169 
4170 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4171   auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext());
4172   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4173   StorageClass SC = FD->getStorageClass();
4174   DeclarationName Name = FD->getNameInfo().getName();
4175 
4176   FunctionDecl *NewDecl =
4177       FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4178                            FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4179 
4180   NewDecl->setIsMultiVersion();
4181   NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4182       NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4183 
4184   return NewDecl;
4185 }
4186 
4187 void CodeGenModule::emitMultiVersionFunctions() {
4188   std::vector<GlobalDecl> MVFuncsToEmit;
4189   MultiVersionFuncs.swap(MVFuncsToEmit);
4190   for (GlobalDecl GD : MVFuncsToEmit) {
4191     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4192     assert(FD && "Expected a FunctionDecl");
4193 
4194     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4195       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4196       StringRef MangledName = getMangledName(CurGD);
4197       llvm::Constant *Func = GetGlobalValue(MangledName);
4198       if (!Func) {
4199         if (Decl->isDefined()) {
4200           EmitGlobalFunctionDefinition(CurGD, nullptr);
4201           Func = GetGlobalValue(MangledName);
4202         } else {
4203           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4204           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4205           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4206                                    /*DontDefer=*/false, ForDefinition);
4207         }
4208         assert(Func && "This should have just been created");
4209       }
4210       return cast<llvm::Function>(Func);
4211     };
4212 
4213     bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4214     bool ShouldEmitResolver =
4215         !getContext().getTargetInfo().getTriple().isAArch64();
4216     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4217 
4218     getContext().forEachMultiversionedFunctionVersion(
4219         FD, [&](const FunctionDecl *CurFD) {
4220           llvm::SmallVector<StringRef, 8> Feats;
4221 
4222           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4223             TA->getAddedFeatures(Feats);
4224             llvm::Function *Func = createFunction(CurFD);
4225             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4226           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4227             bool HasDefaultDef = TVA->isDefaultVersion() &&
4228                                  CurFD->doesThisDeclarationHaveABody();
4229             HasDefaultDecl |= TVA->isDefaultVersion();
4230             ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4231             TVA->getFeatures(Feats);
4232             llvm::Function *Func = createFunction(CurFD);
4233             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4234           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4235             ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4236             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4237               if (!TC->isFirstOfVersion(I))
4238                 continue;
4239 
4240               llvm::Function *Func = createFunction(CurFD, I);
4241               StringRef Architecture;
4242               Feats.clear();
4243               if (getTarget().getTriple().isAArch64())
4244                 TC->getFeatures(Feats, I);
4245               else {
4246                 StringRef Version = TC->getFeatureStr(I);
4247                 if (Version.starts_with("arch="))
4248                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4249                 else if (Version != "default")
4250                   Feats.push_back(Version);
4251               }
4252               Options.emplace_back(Func, Architecture, Feats);
4253             }
4254           } else
4255             llvm_unreachable("unexpected MultiVersionKind");
4256         });
4257 
4258     if (!ShouldEmitResolver)
4259       continue;
4260 
4261     if (!HasDefaultDecl) {
4262       FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4263       llvm::Function *Func = createFunction(NewFD);
4264       llvm::SmallVector<StringRef, 1> Feats;
4265       Options.emplace_back(Func, /*Architecture*/ "", Feats);
4266     }
4267 
4268     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4269     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4270       ResolverConstant = IFunc->getResolver();
4271       if (FD->isTargetClonesMultiVersion() &&
4272           !getTarget().getTriple().isAArch64()) {
4273         std::string MangledName = getMangledNameImpl(
4274             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4275         if (!GetGlobalValue(MangledName + ".ifunc")) {
4276           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4277           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4278           // In prior versions of Clang, the mangling for ifuncs incorrectly
4279           // included an .ifunc suffix. This alias is generated for backward
4280           // compatibility. It is deprecated, and may be removed in the future.
4281           auto *Alias = llvm::GlobalAlias::create(
4282               DeclTy, 0, getMultiversionLinkage(*this, GD),
4283               MangledName + ".ifunc", IFunc, &getModule());
4284           SetCommonAttributes(FD, Alias);
4285         }
4286       }
4287     }
4288     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4289 
4290     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4291 
4292     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4293       ResolverFunc->setComdat(
4294           getModule().getOrInsertComdat(ResolverFunc->getName()));
4295 
4296     const TargetInfo &TI = getTarget();
4297     llvm::stable_sort(
4298         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4299                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4300           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4301         });
4302     CodeGenFunction CGF(*this);
4303     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4304   }
4305 
4306   // Ensure that any additions to the deferred decls list caused by emitting a
4307   // variant are emitted.  This can happen when the variant itself is inline and
4308   // calls a function without linkage.
4309   if (!MVFuncsToEmit.empty())
4310     EmitDeferred();
4311 
4312   // Ensure that any additions to the multiversion funcs list from either the
4313   // deferred decls or the multiversion functions themselves are emitted.
4314   if (!MultiVersionFuncs.empty())
4315     emitMultiVersionFunctions();
4316 }
4317 
4318 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4319   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4320   assert(FD && "Not a FunctionDecl?");
4321   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4322   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4323   assert(DD && "Not a cpu_dispatch Function?");
4324 
4325   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4326   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4327 
4328   StringRef ResolverName = getMangledName(GD);
4329   UpdateMultiVersionNames(GD, FD, ResolverName);
4330 
4331   llvm::Type *ResolverType;
4332   GlobalDecl ResolverGD;
4333   if (getTarget().supportsIFunc()) {
4334     ResolverType = llvm::FunctionType::get(
4335         llvm::PointerType::get(DeclTy,
4336                                getTypes().getTargetAddressSpace(FD->getType())),
4337         false);
4338   }
4339   else {
4340     ResolverType = DeclTy;
4341     ResolverGD = GD;
4342   }
4343 
4344   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4345       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4346   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4347   if (supportsCOMDAT())
4348     ResolverFunc->setComdat(
4349         getModule().getOrInsertComdat(ResolverFunc->getName()));
4350 
4351   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4352   const TargetInfo &Target = getTarget();
4353   unsigned Index = 0;
4354   for (const IdentifierInfo *II : DD->cpus()) {
4355     // Get the name of the target function so we can look it up/create it.
4356     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4357                               getCPUSpecificMangling(*this, II->getName());
4358 
4359     llvm::Constant *Func = GetGlobalValue(MangledName);
4360 
4361     if (!Func) {
4362       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4363       if (ExistingDecl.getDecl() &&
4364           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4365         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4366         Func = GetGlobalValue(MangledName);
4367       } else {
4368         if (!ExistingDecl.getDecl())
4369           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4370 
4371       Func = GetOrCreateLLVMFunction(
4372           MangledName, DeclTy, ExistingDecl,
4373           /*ForVTable=*/false, /*DontDefer=*/true,
4374           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4375       }
4376     }
4377 
4378     llvm::SmallVector<StringRef, 32> Features;
4379     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4380     llvm::transform(Features, Features.begin(),
4381                     [](StringRef Str) { return Str.substr(1); });
4382     llvm::erase_if(Features, [&Target](StringRef Feat) {
4383       return !Target.validateCpuSupports(Feat);
4384     });
4385     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4386     ++Index;
4387   }
4388 
4389   llvm::stable_sort(
4390       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4391                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4392         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4393                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4394       });
4395 
4396   // If the list contains multiple 'default' versions, such as when it contains
4397   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4398   // always run on at least a 'pentium'). We do this by deleting the 'least
4399   // advanced' (read, lowest mangling letter).
4400   while (Options.size() > 1 &&
4401          llvm::all_of(llvm::X86::getCpuSupportsMask(
4402                           (Options.end() - 2)->Conditions.Features),
4403                       [](auto X) { return X == 0; })) {
4404     StringRef LHSName = (Options.end() - 2)->Function->getName();
4405     StringRef RHSName = (Options.end() - 1)->Function->getName();
4406     if (LHSName.compare(RHSName) < 0)
4407       Options.erase(Options.end() - 2);
4408     else
4409       Options.erase(Options.end() - 1);
4410   }
4411 
4412   CodeGenFunction CGF(*this);
4413   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4414 
4415   if (getTarget().supportsIFunc()) {
4416     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4417     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4418 
4419     // Fix up function declarations that were created for cpu_specific before
4420     // cpu_dispatch was known
4421     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4422       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4423       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4424                                            &getModule());
4425       GI->takeName(IFunc);
4426       IFunc->replaceAllUsesWith(GI);
4427       IFunc->eraseFromParent();
4428       IFunc = GI;
4429     }
4430 
4431     std::string AliasName = getMangledNameImpl(
4432         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4433     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4434     if (!AliasFunc) {
4435       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4436                                            &getModule());
4437       SetCommonAttributes(GD, GA);
4438     }
4439   }
4440 }
4441 
4442 /// Adds a declaration to the list of multi version functions if not present.
4443 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4444   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4445   assert(FD && "Not a FunctionDecl?");
4446 
4447   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4448     std::string MangledName =
4449         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4450     if (!DeferredResolversToEmit.insert(MangledName).second)
4451       return;
4452   }
4453   MultiVersionFuncs.push_back(GD);
4454 }
4455 
4456 /// If a dispatcher for the specified mangled name is not in the module, create
4457 /// and return an llvm Function with the specified type.
4458 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4459   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4460   assert(FD && "Not a FunctionDecl?");
4461 
4462   std::string MangledName =
4463       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4464 
4465   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4466   // a separate resolver).
4467   std::string ResolverName = MangledName;
4468   if (getTarget().supportsIFunc()) {
4469     switch (FD->getMultiVersionKind()) {
4470     case MultiVersionKind::None:
4471       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4472     case MultiVersionKind::Target:
4473     case MultiVersionKind::CPUSpecific:
4474     case MultiVersionKind::CPUDispatch:
4475       ResolverName += ".ifunc";
4476       break;
4477     case MultiVersionKind::TargetClones:
4478     case MultiVersionKind::TargetVersion:
4479       break;
4480     }
4481   } else if (FD->isTargetMultiVersion()) {
4482     ResolverName += ".resolver";
4483   }
4484 
4485   // If the resolver has already been created, just return it.
4486   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4487     return ResolverGV;
4488 
4489   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4490   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4491 
4492   // The resolver needs to be created. For target and target_clones, defer
4493   // creation until the end of the TU.
4494   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4495     AddDeferredMultiVersionResolverToEmit(GD);
4496 
4497   // For cpu_specific, don't create an ifunc yet because we don't know if the
4498   // cpu_dispatch will be emitted in this translation unit.
4499   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4500     llvm::Type *ResolverType = llvm::FunctionType::get(
4501         llvm::PointerType::get(DeclTy,
4502                                getTypes().getTargetAddressSpace(FD->getType())),
4503         false);
4504     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4505         MangledName + ".resolver", ResolverType, GlobalDecl{},
4506         /*ForVTable=*/false);
4507     llvm::GlobalIFunc *GIF =
4508         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4509                                   "", Resolver, &getModule());
4510     GIF->setName(ResolverName);
4511     SetCommonAttributes(FD, GIF);
4512 
4513     return GIF;
4514   }
4515 
4516   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4517       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4518   assert(isa<llvm::GlobalValue>(Resolver) &&
4519          "Resolver should be created for the first time");
4520   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4521   return Resolver;
4522 }
4523 
4524 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4525                                            const llvm::GlobalValue *GV) const {
4526   auto SC = GV->getDLLStorageClass();
4527   if (SC == llvm::GlobalValue::DefaultStorageClass)
4528     return false;
4529   const Decl *MRD = D->getMostRecentDecl();
4530   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4531             !MRD->hasAttr<DLLImportAttr>()) ||
4532            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4533             !MRD->hasAttr<DLLExportAttr>())) &&
4534           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4535 }
4536 
4537 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4538 /// module, create and return an llvm Function with the specified type. If there
4539 /// is something in the module with the specified name, return it potentially
4540 /// bitcasted to the right type.
4541 ///
4542 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4543 /// to set the attributes on the function when it is first created.
4544 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4545     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4546     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4547     ForDefinition_t IsForDefinition) {
4548   const Decl *D = GD.getDecl();
4549 
4550   // Any attempts to use a MultiVersion function should result in retrieving
4551   // the iFunc instead. Name Mangling will handle the rest of the changes.
4552   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4553     // For the device mark the function as one that should be emitted.
4554     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4555         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4556         !DontDefer && !IsForDefinition) {
4557       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4558         GlobalDecl GDDef;
4559         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4560           GDDef = GlobalDecl(CD, GD.getCtorType());
4561         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4562           GDDef = GlobalDecl(DD, GD.getDtorType());
4563         else
4564           GDDef = GlobalDecl(FDDef);
4565         EmitGlobal(GDDef);
4566       }
4567     }
4568 
4569     if (FD->isMultiVersion()) {
4570       UpdateMultiVersionNames(GD, FD, MangledName);
4571       if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4572           !FD->isUsed())
4573         AddDeferredMultiVersionResolverToEmit(GD);
4574       else if (!IsForDefinition)
4575         return GetOrCreateMultiVersionResolver(GD);
4576     }
4577   }
4578 
4579   // Lookup the entry, lazily creating it if necessary.
4580   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4581   if (Entry) {
4582     if (WeakRefReferences.erase(Entry)) {
4583       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4584       if (FD && !FD->hasAttr<WeakAttr>())
4585         Entry->setLinkage(llvm::Function::ExternalLinkage);
4586     }
4587 
4588     // Handle dropped DLL attributes.
4589     if (D && shouldDropDLLAttribute(D, Entry)) {
4590       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4591       setDSOLocal(Entry);
4592     }
4593 
4594     // If there are two attempts to define the same mangled name, issue an
4595     // error.
4596     if (IsForDefinition && !Entry->isDeclaration()) {
4597       GlobalDecl OtherGD;
4598       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4599       // to make sure that we issue an error only once.
4600       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4601           (GD.getCanonicalDecl().getDecl() !=
4602            OtherGD.getCanonicalDecl().getDecl()) &&
4603           DiagnosedConflictingDefinitions.insert(GD).second) {
4604         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4605             << MangledName;
4606         getDiags().Report(OtherGD.getDecl()->getLocation(),
4607                           diag::note_previous_definition);
4608       }
4609     }
4610 
4611     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4612         (Entry->getValueType() == Ty)) {
4613       return Entry;
4614     }
4615 
4616     // Make sure the result is of the correct type.
4617     // (If function is requested for a definition, we always need to create a new
4618     // function, not just return a bitcast.)
4619     if (!IsForDefinition)
4620       return Entry;
4621   }
4622 
4623   // This function doesn't have a complete type (for example, the return
4624   // type is an incomplete struct). Use a fake type instead, and make
4625   // sure not to try to set attributes.
4626   bool IsIncompleteFunction = false;
4627 
4628   llvm::FunctionType *FTy;
4629   if (isa<llvm::FunctionType>(Ty)) {
4630     FTy = cast<llvm::FunctionType>(Ty);
4631   } else {
4632     FTy = llvm::FunctionType::get(VoidTy, false);
4633     IsIncompleteFunction = true;
4634   }
4635 
4636   llvm::Function *F =
4637       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4638                              Entry ? StringRef() : MangledName, &getModule());
4639 
4640   // Store the declaration associated with this function so it is potentially
4641   // updated by further declarations or definitions and emitted at the end.
4642   if (D && D->hasAttr<AnnotateAttr>())
4643     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4644 
4645   // If we already created a function with the same mangled name (but different
4646   // type) before, take its name and add it to the list of functions to be
4647   // replaced with F at the end of CodeGen.
4648   //
4649   // This happens if there is a prototype for a function (e.g. "int f()") and
4650   // then a definition of a different type (e.g. "int f(int x)").
4651   if (Entry) {
4652     F->takeName(Entry);
4653 
4654     // This might be an implementation of a function without a prototype, in
4655     // which case, try to do special replacement of calls which match the new
4656     // prototype.  The really key thing here is that we also potentially drop
4657     // arguments from the call site so as to make a direct call, which makes the
4658     // inliner happier and suppresses a number of optimizer warnings (!) about
4659     // dropping arguments.
4660     if (!Entry->use_empty()) {
4661       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4662       Entry->removeDeadConstantUsers();
4663     }
4664 
4665     addGlobalValReplacement(Entry, F);
4666   }
4667 
4668   assert(F->getName() == MangledName && "name was uniqued!");
4669   if (D)
4670     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4671   if (ExtraAttrs.hasFnAttrs()) {
4672     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4673     F->addFnAttrs(B);
4674   }
4675 
4676   if (!DontDefer) {
4677     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4678     // each other bottoming out with the base dtor.  Therefore we emit non-base
4679     // dtors on usage, even if there is no dtor definition in the TU.
4680     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4681         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4682                                            GD.getDtorType()))
4683       addDeferredDeclToEmit(GD);
4684 
4685     // This is the first use or definition of a mangled name.  If there is a
4686     // deferred decl with this name, remember that we need to emit it at the end
4687     // of the file.
4688     auto DDI = DeferredDecls.find(MangledName);
4689     if (DDI != DeferredDecls.end()) {
4690       // Move the potentially referenced deferred decl to the
4691       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4692       // don't need it anymore).
4693       addDeferredDeclToEmit(DDI->second);
4694       DeferredDecls.erase(DDI);
4695 
4696       // Otherwise, there are cases we have to worry about where we're
4697       // using a declaration for which we must emit a definition but where
4698       // we might not find a top-level definition:
4699       //   - member functions defined inline in their classes
4700       //   - friend functions defined inline in some class
4701       //   - special member functions with implicit definitions
4702       // If we ever change our AST traversal to walk into class methods,
4703       // this will be unnecessary.
4704       //
4705       // We also don't emit a definition for a function if it's going to be an
4706       // entry in a vtable, unless it's already marked as used.
4707     } else if (getLangOpts().CPlusPlus && D) {
4708       // Look for a declaration that's lexically in a record.
4709       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4710            FD = FD->getPreviousDecl()) {
4711         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4712           if (FD->doesThisDeclarationHaveABody()) {
4713             addDeferredDeclToEmit(GD.getWithDecl(FD));
4714             break;
4715           }
4716         }
4717       }
4718     }
4719   }
4720 
4721   // Make sure the result is of the requested type.
4722   if (!IsIncompleteFunction) {
4723     assert(F->getFunctionType() == Ty);
4724     return F;
4725   }
4726 
4727   return F;
4728 }
4729 
4730 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4731 /// non-null, then this function will use the specified type if it has to
4732 /// create it (this occurs when we see a definition of the function).
4733 llvm::Constant *
4734 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4735                                  bool DontDefer,
4736                                  ForDefinition_t IsForDefinition) {
4737   // If there was no specific requested type, just convert it now.
4738   if (!Ty) {
4739     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4740     Ty = getTypes().ConvertType(FD->getType());
4741   }
4742 
4743   // Devirtualized destructor calls may come through here instead of via
4744   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4745   // of the complete destructor when necessary.
4746   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4747     if (getTarget().getCXXABI().isMicrosoft() &&
4748         GD.getDtorType() == Dtor_Complete &&
4749         DD->getParent()->getNumVBases() == 0)
4750       GD = GlobalDecl(DD, Dtor_Base);
4751   }
4752 
4753   StringRef MangledName = getMangledName(GD);
4754   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4755                                     /*IsThunk=*/false, llvm::AttributeList(),
4756                                     IsForDefinition);
4757   // Returns kernel handle for HIP kernel stub function.
4758   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4759       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4760     auto *Handle = getCUDARuntime().getKernelHandle(
4761         cast<llvm::Function>(F->stripPointerCasts()), GD);
4762     if (IsForDefinition)
4763       return F;
4764     return Handle;
4765   }
4766   return F;
4767 }
4768 
4769 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4770   llvm::GlobalValue *F =
4771       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4772 
4773   return llvm::NoCFIValue::get(F);
4774 }
4775 
4776 static const FunctionDecl *
4777 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4778   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4779   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4780 
4781   IdentifierInfo &CII = C.Idents.get(Name);
4782   for (const auto *Result : DC->lookup(&CII))
4783     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4784       return FD;
4785 
4786   if (!C.getLangOpts().CPlusPlus)
4787     return nullptr;
4788 
4789   // Demangle the premangled name from getTerminateFn()
4790   IdentifierInfo &CXXII =
4791       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4792           ? C.Idents.get("terminate")
4793           : C.Idents.get(Name);
4794 
4795   for (const auto &N : {"__cxxabiv1", "std"}) {
4796     IdentifierInfo &NS = C.Idents.get(N);
4797     for (const auto *Result : DC->lookup(&NS)) {
4798       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4799       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4800         for (const auto *Result : LSD->lookup(&NS))
4801           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4802             break;
4803 
4804       if (ND)
4805         for (const auto *Result : ND->lookup(&CXXII))
4806           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4807             return FD;
4808     }
4809   }
4810 
4811   return nullptr;
4812 }
4813 
4814 /// CreateRuntimeFunction - Create a new runtime function with the specified
4815 /// type and name.
4816 llvm::FunctionCallee
4817 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4818                                      llvm::AttributeList ExtraAttrs, bool Local,
4819                                      bool AssumeConvergent) {
4820   if (AssumeConvergent) {
4821     ExtraAttrs =
4822         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4823   }
4824 
4825   llvm::Constant *C =
4826       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4827                               /*DontDefer=*/false, /*IsThunk=*/false,
4828                               ExtraAttrs);
4829 
4830   if (auto *F = dyn_cast<llvm::Function>(C)) {
4831     if (F->empty()) {
4832       F->setCallingConv(getRuntimeCC());
4833 
4834       // In Windows Itanium environments, try to mark runtime functions
4835       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4836       // will link their standard library statically or dynamically. Marking
4837       // functions imported when they are not imported can cause linker errors
4838       // and warnings.
4839       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4840           !getCodeGenOpts().LTOVisibilityPublicStd) {
4841         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4842         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4843           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4844           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4845         }
4846       }
4847       setDSOLocal(F);
4848       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4849       // of trying to approximate the attributes using the LLVM function
4850       // signature. This requires revising the API of CreateRuntimeFunction().
4851       markRegisterParameterAttributes(F);
4852     }
4853   }
4854 
4855   return {FTy, C};
4856 }
4857 
4858 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4859 /// create and return an llvm GlobalVariable with the specified type and address
4860 /// space. If there is something in the module with the specified name, return
4861 /// it potentially bitcasted to the right type.
4862 ///
4863 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4864 /// to set the attributes on the global when it is first created.
4865 ///
4866 /// If IsForDefinition is true, it is guaranteed that an actual global with
4867 /// type Ty will be returned, not conversion of a variable with the same
4868 /// mangled name but some other type.
4869 llvm::Constant *
4870 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4871                                      LangAS AddrSpace, const VarDecl *D,
4872                                      ForDefinition_t IsForDefinition) {
4873   // Lookup the entry, lazily creating it if necessary.
4874   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4875   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4876   if (Entry) {
4877     if (WeakRefReferences.erase(Entry)) {
4878       if (D && !D->hasAttr<WeakAttr>())
4879         Entry->setLinkage(llvm::Function::ExternalLinkage);
4880     }
4881 
4882     // Handle dropped DLL attributes.
4883     if (D && shouldDropDLLAttribute(D, Entry))
4884       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4885 
4886     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4887       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4888 
4889     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4890       return Entry;
4891 
4892     // If there are two attempts to define the same mangled name, issue an
4893     // error.
4894     if (IsForDefinition && !Entry->isDeclaration()) {
4895       GlobalDecl OtherGD;
4896       const VarDecl *OtherD;
4897 
4898       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4899       // to make sure that we issue an error only once.
4900       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4901           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4902           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4903           OtherD->hasInit() &&
4904           DiagnosedConflictingDefinitions.insert(D).second) {
4905         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4906             << MangledName;
4907         getDiags().Report(OtherGD.getDecl()->getLocation(),
4908                           diag::note_previous_definition);
4909       }
4910     }
4911 
4912     // Make sure the result is of the correct type.
4913     if (Entry->getType()->getAddressSpace() != TargetAS)
4914       return llvm::ConstantExpr::getAddrSpaceCast(
4915           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4916 
4917     // (If global is requested for a definition, we always need to create a new
4918     // global, not just return a bitcast.)
4919     if (!IsForDefinition)
4920       return Entry;
4921   }
4922 
4923   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4924 
4925   auto *GV = new llvm::GlobalVariable(
4926       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4927       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4928       getContext().getTargetAddressSpace(DAddrSpace));
4929 
4930   // If we already created a global with the same mangled name (but different
4931   // type) before, take its name and remove it from its parent.
4932   if (Entry) {
4933     GV->takeName(Entry);
4934 
4935     if (!Entry->use_empty()) {
4936       Entry->replaceAllUsesWith(GV);
4937     }
4938 
4939     Entry->eraseFromParent();
4940   }
4941 
4942   // This is the first use or definition of a mangled name.  If there is a
4943   // deferred decl with this name, remember that we need to emit it at the end
4944   // of the file.
4945   auto DDI = DeferredDecls.find(MangledName);
4946   if (DDI != DeferredDecls.end()) {
4947     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4948     // list, and remove it from DeferredDecls (since we don't need it anymore).
4949     addDeferredDeclToEmit(DDI->second);
4950     DeferredDecls.erase(DDI);
4951   }
4952 
4953   // Handle things which are present even on external declarations.
4954   if (D) {
4955     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4956       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4957 
4958     // FIXME: This code is overly simple and should be merged with other global
4959     // handling.
4960     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4961 
4962     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4963 
4964     setLinkageForGV(GV, D);
4965 
4966     if (D->getTLSKind()) {
4967       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4968         CXXThreadLocals.push_back(D);
4969       setTLSMode(GV, *D);
4970     }
4971 
4972     setGVProperties(GV, D);
4973 
4974     // If required by the ABI, treat declarations of static data members with
4975     // inline initializers as definitions.
4976     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4977       EmitGlobalVarDefinition(D);
4978     }
4979 
4980     // Emit section information for extern variables.
4981     if (D->hasExternalStorage()) {
4982       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4983         GV->setSection(SA->getName());
4984     }
4985 
4986     // Handle XCore specific ABI requirements.
4987     if (getTriple().getArch() == llvm::Triple::xcore &&
4988         D->getLanguageLinkage() == CLanguageLinkage &&
4989         D->getType().isConstant(Context) &&
4990         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4991       GV->setSection(".cp.rodata");
4992 
4993     // Handle code model attribute
4994     if (const auto *CMA = D->getAttr<CodeModelAttr>())
4995       GV->setCodeModel(CMA->getModel());
4996 
4997     // Check if we a have a const declaration with an initializer, we may be
4998     // able to emit it as available_externally to expose it's value to the
4999     // optimizer.
5000     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5001         D->getType().isConstQualified() && !GV->hasInitializer() &&
5002         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5003       const auto *Record =
5004           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5005       bool HasMutableFields = Record && Record->hasMutableFields();
5006       if (!HasMutableFields) {
5007         const VarDecl *InitDecl;
5008         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5009         if (InitExpr) {
5010           ConstantEmitter emitter(*this);
5011           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5012           if (Init) {
5013             auto *InitType = Init->getType();
5014             if (GV->getValueType() != InitType) {
5015               // The type of the initializer does not match the definition.
5016               // This happens when an initializer has a different type from
5017               // the type of the global (because of padding at the end of a
5018               // structure for instance).
5019               GV->setName(StringRef());
5020               // Make a new global with the correct type, this is now guaranteed
5021               // to work.
5022               auto *NewGV = cast<llvm::GlobalVariable>(
5023                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5024                       ->stripPointerCasts());
5025 
5026               // Erase the old global, since it is no longer used.
5027               GV->eraseFromParent();
5028               GV = NewGV;
5029             } else {
5030               GV->setInitializer(Init);
5031               GV->setConstant(true);
5032               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5033             }
5034             emitter.finalize(GV);
5035           }
5036         }
5037       }
5038     }
5039   }
5040 
5041   if (D &&
5042       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5043     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5044     // External HIP managed variables needed to be recorded for transformation
5045     // in both device and host compilations.
5046     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5047         D->hasExternalStorage())
5048       getCUDARuntime().handleVarRegistration(D, *GV);
5049   }
5050 
5051   if (D)
5052     SanitizerMD->reportGlobal(GV, *D);
5053 
5054   LangAS ExpectedAS =
5055       D ? D->getType().getAddressSpace()
5056         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5057   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5058   if (DAddrSpace != ExpectedAS) {
5059     return getTargetCodeGenInfo().performAddrSpaceCast(
5060         *this, GV, DAddrSpace, ExpectedAS,
5061         llvm::PointerType::get(getLLVMContext(), TargetAS));
5062   }
5063 
5064   return GV;
5065 }
5066 
5067 llvm::Constant *
5068 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5069   const Decl *D = GD.getDecl();
5070 
5071   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5072     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5073                                 /*DontDefer=*/false, IsForDefinition);
5074 
5075   if (isa<CXXMethodDecl>(D)) {
5076     auto FInfo =
5077         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5078     auto Ty = getTypes().GetFunctionType(*FInfo);
5079     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5080                              IsForDefinition);
5081   }
5082 
5083   if (isa<FunctionDecl>(D)) {
5084     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5085     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5086     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5087                              IsForDefinition);
5088   }
5089 
5090   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5091 }
5092 
5093 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5094     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5095     llvm::Align Alignment) {
5096   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5097   llvm::GlobalVariable *OldGV = nullptr;
5098 
5099   if (GV) {
5100     // Check if the variable has the right type.
5101     if (GV->getValueType() == Ty)
5102       return GV;
5103 
5104     // Because C++ name mangling, the only way we can end up with an already
5105     // existing global with the same name is if it has been declared extern "C".
5106     assert(GV->isDeclaration() && "Declaration has wrong type!");
5107     OldGV = GV;
5108   }
5109 
5110   // Create a new variable.
5111   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5112                                 Linkage, nullptr, Name);
5113 
5114   if (OldGV) {
5115     // Replace occurrences of the old variable if needed.
5116     GV->takeName(OldGV);
5117 
5118     if (!OldGV->use_empty()) {
5119       OldGV->replaceAllUsesWith(GV);
5120     }
5121 
5122     OldGV->eraseFromParent();
5123   }
5124 
5125   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5126       !GV->hasAvailableExternallyLinkage())
5127     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5128 
5129   GV->setAlignment(Alignment);
5130 
5131   return GV;
5132 }
5133 
5134 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5135 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5136 /// then it will be created with the specified type instead of whatever the
5137 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5138 /// that an actual global with type Ty will be returned, not conversion of a
5139 /// variable with the same mangled name but some other type.
5140 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5141                                                   llvm::Type *Ty,
5142                                            ForDefinition_t IsForDefinition) {
5143   assert(D->hasGlobalStorage() && "Not a global variable");
5144   QualType ASTTy = D->getType();
5145   if (!Ty)
5146     Ty = getTypes().ConvertTypeForMem(ASTTy);
5147 
5148   StringRef MangledName = getMangledName(D);
5149   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5150                                IsForDefinition);
5151 }
5152 
5153 /// CreateRuntimeVariable - Create a new runtime global variable with the
5154 /// specified type and name.
5155 llvm::Constant *
5156 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5157                                      StringRef Name) {
5158   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5159                                                        : LangAS::Default;
5160   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5161   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5162   return Ret;
5163 }
5164 
5165 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5166   assert(!D->getInit() && "Cannot emit definite definitions here!");
5167 
5168   StringRef MangledName = getMangledName(D);
5169   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5170 
5171   // We already have a definition, not declaration, with the same mangled name.
5172   // Emitting of declaration is not required (and actually overwrites emitted
5173   // definition).
5174   if (GV && !GV->isDeclaration())
5175     return;
5176 
5177   // If we have not seen a reference to this variable yet, place it into the
5178   // deferred declarations table to be emitted if needed later.
5179   if (!MustBeEmitted(D) && !GV) {
5180       DeferredDecls[MangledName] = D;
5181       return;
5182   }
5183 
5184   // The tentative definition is the only definition.
5185   EmitGlobalVarDefinition(D);
5186 }
5187 
5188 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5189   if (auto const *V = dyn_cast<const VarDecl>(D))
5190     EmitExternalVarDeclaration(V);
5191   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5192     EmitExternalFunctionDeclaration(FD);
5193 }
5194 
5195 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5196   return Context.toCharUnitsFromBits(
5197       getDataLayout().getTypeStoreSizeInBits(Ty));
5198 }
5199 
5200 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5201   if (LangOpts.OpenCL) {
5202     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5203     assert(AS == LangAS::opencl_global ||
5204            AS == LangAS::opencl_global_device ||
5205            AS == LangAS::opencl_global_host ||
5206            AS == LangAS::opencl_constant ||
5207            AS == LangAS::opencl_local ||
5208            AS >= LangAS::FirstTargetAddressSpace);
5209     return AS;
5210   }
5211 
5212   if (LangOpts.SYCLIsDevice &&
5213       (!D || D->getType().getAddressSpace() == LangAS::Default))
5214     return LangAS::sycl_global;
5215 
5216   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5217     if (D) {
5218       if (D->hasAttr<CUDAConstantAttr>())
5219         return LangAS::cuda_constant;
5220       if (D->hasAttr<CUDASharedAttr>())
5221         return LangAS::cuda_shared;
5222       if (D->hasAttr<CUDADeviceAttr>())
5223         return LangAS::cuda_device;
5224       if (D->getType().isConstQualified())
5225         return LangAS::cuda_constant;
5226     }
5227     return LangAS::cuda_device;
5228   }
5229 
5230   if (LangOpts.OpenMP) {
5231     LangAS AS;
5232     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5233       return AS;
5234   }
5235   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5236 }
5237 
5238 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5239   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5240   if (LangOpts.OpenCL)
5241     return LangAS::opencl_constant;
5242   if (LangOpts.SYCLIsDevice)
5243     return LangAS::sycl_global;
5244   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5245     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5246     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5247     // with OpVariable instructions with Generic storage class which is not
5248     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5249     // UniformConstant storage class is not viable as pointers to it may not be
5250     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5251     return LangAS::cuda_device;
5252   if (auto AS = getTarget().getConstantAddressSpace())
5253     return *AS;
5254   return LangAS::Default;
5255 }
5256 
5257 // In address space agnostic languages, string literals are in default address
5258 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5259 // emitted in constant address space in LLVM IR. To be consistent with other
5260 // parts of AST, string literal global variables in constant address space
5261 // need to be casted to default address space before being put into address
5262 // map and referenced by other part of CodeGen.
5263 // In OpenCL, string literals are in constant address space in AST, therefore
5264 // they should not be casted to default address space.
5265 static llvm::Constant *
5266 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5267                                        llvm::GlobalVariable *GV) {
5268   llvm::Constant *Cast = GV;
5269   if (!CGM.getLangOpts().OpenCL) {
5270     auto AS = CGM.GetGlobalConstantAddressSpace();
5271     if (AS != LangAS::Default)
5272       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5273           CGM, GV, AS, LangAS::Default,
5274           llvm::PointerType::get(
5275               CGM.getLLVMContext(),
5276               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5277   }
5278   return Cast;
5279 }
5280 
5281 template<typename SomeDecl>
5282 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5283                                                llvm::GlobalValue *GV) {
5284   if (!getLangOpts().CPlusPlus)
5285     return;
5286 
5287   // Must have 'used' attribute, or else inline assembly can't rely on
5288   // the name existing.
5289   if (!D->template hasAttr<UsedAttr>())
5290     return;
5291 
5292   // Must have internal linkage and an ordinary name.
5293   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5294     return;
5295 
5296   // Must be in an extern "C" context. Entities declared directly within
5297   // a record are not extern "C" even if the record is in such a context.
5298   const SomeDecl *First = D->getFirstDecl();
5299   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5300     return;
5301 
5302   // OK, this is an internal linkage entity inside an extern "C" linkage
5303   // specification. Make a note of that so we can give it the "expected"
5304   // mangled name if nothing else is using that name.
5305   std::pair<StaticExternCMap::iterator, bool> R =
5306       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5307 
5308   // If we have multiple internal linkage entities with the same name
5309   // in extern "C" regions, none of them gets that name.
5310   if (!R.second)
5311     R.first->second = nullptr;
5312 }
5313 
5314 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5315   if (!CGM.supportsCOMDAT())
5316     return false;
5317 
5318   if (D.hasAttr<SelectAnyAttr>())
5319     return true;
5320 
5321   GVALinkage Linkage;
5322   if (auto *VD = dyn_cast<VarDecl>(&D))
5323     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5324   else
5325     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5326 
5327   switch (Linkage) {
5328   case GVA_Internal:
5329   case GVA_AvailableExternally:
5330   case GVA_StrongExternal:
5331     return false;
5332   case GVA_DiscardableODR:
5333   case GVA_StrongODR:
5334     return true;
5335   }
5336   llvm_unreachable("No such linkage");
5337 }
5338 
5339 bool CodeGenModule::supportsCOMDAT() const {
5340   return getTriple().supportsCOMDAT();
5341 }
5342 
5343 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5344                                           llvm::GlobalObject &GO) {
5345   if (!shouldBeInCOMDAT(*this, D))
5346     return;
5347   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5348 }
5349 
5350 /// Pass IsTentative as true if you want to create a tentative definition.
5351 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5352                                             bool IsTentative) {
5353   // OpenCL global variables of sampler type are translated to function calls,
5354   // therefore no need to be translated.
5355   QualType ASTTy = D->getType();
5356   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5357     return;
5358 
5359   // If this is OpenMP device, check if it is legal to emit this global
5360   // normally.
5361   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5362       OpenMPRuntime->emitTargetGlobalVariable(D))
5363     return;
5364 
5365   llvm::TrackingVH<llvm::Constant> Init;
5366   bool NeedsGlobalCtor = false;
5367   // Whether the definition of the variable is available externally.
5368   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5369   // since this is the job for its original source.
5370   bool IsDefinitionAvailableExternally =
5371       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5372   bool NeedsGlobalDtor =
5373       !IsDefinitionAvailableExternally &&
5374       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5375 
5376   // It is helpless to emit the definition for an available_externally variable
5377   // which can't be marked as const.
5378   // We don't need to check if it needs global ctor or dtor. See the above
5379   // comment for ideas.
5380   if (IsDefinitionAvailableExternally &&
5381       (!D->hasConstantInitialization() ||
5382        // TODO: Update this when we have interface to check constexpr
5383        // destructor.
5384        D->needsDestruction(getContext()) ||
5385        !D->getType().isConstantStorage(getContext(), true, true)))
5386     return;
5387 
5388   const VarDecl *InitDecl;
5389   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5390 
5391   std::optional<ConstantEmitter> emitter;
5392 
5393   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5394   // as part of their declaration."  Sema has already checked for
5395   // error cases, so we just need to set Init to UndefValue.
5396   bool IsCUDASharedVar =
5397       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5398   // Shadows of initialized device-side global variables are also left
5399   // undefined.
5400   // Managed Variables should be initialized on both host side and device side.
5401   bool IsCUDAShadowVar =
5402       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5403       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5404        D->hasAttr<CUDASharedAttr>());
5405   bool IsCUDADeviceShadowVar =
5406       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5407       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5408        D->getType()->isCUDADeviceBuiltinTextureType());
5409   if (getLangOpts().CUDA &&
5410       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5411     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5412   else if (D->hasAttr<LoaderUninitializedAttr>())
5413     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5414   else if (!InitExpr) {
5415     // This is a tentative definition; tentative definitions are
5416     // implicitly initialized with { 0 }.
5417     //
5418     // Note that tentative definitions are only emitted at the end of
5419     // a translation unit, so they should never have incomplete
5420     // type. In addition, EmitTentativeDefinition makes sure that we
5421     // never attempt to emit a tentative definition if a real one
5422     // exists. A use may still exists, however, so we still may need
5423     // to do a RAUW.
5424     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5425     Init = EmitNullConstant(D->getType());
5426   } else {
5427     initializedGlobalDecl = GlobalDecl(D);
5428     emitter.emplace(*this);
5429     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5430     if (!Initializer) {
5431       QualType T = InitExpr->getType();
5432       if (D->getType()->isReferenceType())
5433         T = D->getType();
5434 
5435       if (getLangOpts().CPlusPlus) {
5436         if (InitDecl->hasFlexibleArrayInit(getContext()))
5437           ErrorUnsupported(D, "flexible array initializer");
5438         Init = EmitNullConstant(T);
5439 
5440         if (!IsDefinitionAvailableExternally)
5441           NeedsGlobalCtor = true;
5442       } else {
5443         ErrorUnsupported(D, "static initializer");
5444         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5445       }
5446     } else {
5447       Init = Initializer;
5448       // We don't need an initializer, so remove the entry for the delayed
5449       // initializer position (just in case this entry was delayed) if we
5450       // also don't need to register a destructor.
5451       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5452         DelayedCXXInitPosition.erase(D);
5453 
5454 #ifndef NDEBUG
5455       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5456                           InitDecl->getFlexibleArrayInitChars(getContext());
5457       CharUnits CstSize = CharUnits::fromQuantity(
5458           getDataLayout().getTypeAllocSize(Init->getType()));
5459       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5460 #endif
5461     }
5462   }
5463 
5464   llvm::Type* InitType = Init->getType();
5465   llvm::Constant *Entry =
5466       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5467 
5468   // Strip off pointer casts if we got them.
5469   Entry = Entry->stripPointerCasts();
5470 
5471   // Entry is now either a Function or GlobalVariable.
5472   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5473 
5474   // We have a definition after a declaration with the wrong type.
5475   // We must make a new GlobalVariable* and update everything that used OldGV
5476   // (a declaration or tentative definition) with the new GlobalVariable*
5477   // (which will be a definition).
5478   //
5479   // This happens if there is a prototype for a global (e.g.
5480   // "extern int x[];") and then a definition of a different type (e.g.
5481   // "int x[10];"). This also happens when an initializer has a different type
5482   // from the type of the global (this happens with unions).
5483   if (!GV || GV->getValueType() != InitType ||
5484       GV->getType()->getAddressSpace() !=
5485           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5486 
5487     // Move the old entry aside so that we'll create a new one.
5488     Entry->setName(StringRef());
5489 
5490     // Make a new global with the correct type, this is now guaranteed to work.
5491     GV = cast<llvm::GlobalVariable>(
5492         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5493             ->stripPointerCasts());
5494 
5495     // Replace all uses of the old global with the new global
5496     llvm::Constant *NewPtrForOldDecl =
5497         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5498                                                              Entry->getType());
5499     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5500 
5501     // Erase the old global, since it is no longer used.
5502     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5503   }
5504 
5505   MaybeHandleStaticInExternC(D, GV);
5506 
5507   if (D->hasAttr<AnnotateAttr>())
5508     AddGlobalAnnotations(D, GV);
5509 
5510   // Set the llvm linkage type as appropriate.
5511   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5512 
5513   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5514   // the device. [...]"
5515   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5516   // __device__, declares a variable that: [...]
5517   // Is accessible from all the threads within the grid and from the host
5518   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5519   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5520   if (LangOpts.CUDA) {
5521     if (LangOpts.CUDAIsDevice) {
5522       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5523           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5524            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5525            D->getType()->isCUDADeviceBuiltinTextureType()))
5526         GV->setExternallyInitialized(true);
5527     } else {
5528       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5529     }
5530     getCUDARuntime().handleVarRegistration(D, *GV);
5531   }
5532 
5533   GV->setInitializer(Init);
5534   if (emitter)
5535     emitter->finalize(GV);
5536 
5537   // If it is safe to mark the global 'constant', do so now.
5538   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5539                   D->getType().isConstantStorage(getContext(), true, true));
5540 
5541   // If it is in a read-only section, mark it 'constant'.
5542   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5543     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5544     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5545       GV->setConstant(true);
5546   }
5547 
5548   CharUnits AlignVal = getContext().getDeclAlign(D);
5549   // Check for alignment specifed in an 'omp allocate' directive.
5550   if (std::optional<CharUnits> AlignValFromAllocate =
5551           getOMPAllocateAlignment(D))
5552     AlignVal = *AlignValFromAllocate;
5553   GV->setAlignment(AlignVal.getAsAlign());
5554 
5555   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5556   // function is only defined alongside the variable, not also alongside
5557   // callers. Normally, all accesses to a thread_local go through the
5558   // thread-wrapper in order to ensure initialization has occurred, underlying
5559   // variable will never be used other than the thread-wrapper, so it can be
5560   // converted to internal linkage.
5561   //
5562   // However, if the variable has the 'constinit' attribute, it _can_ be
5563   // referenced directly, without calling the thread-wrapper, so the linkage
5564   // must not be changed.
5565   //
5566   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5567   // weak or linkonce, the de-duplication semantics are important to preserve,
5568   // so we don't change the linkage.
5569   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5570       Linkage == llvm::GlobalValue::ExternalLinkage &&
5571       Context.getTargetInfo().getTriple().isOSDarwin() &&
5572       !D->hasAttr<ConstInitAttr>())
5573     Linkage = llvm::GlobalValue::InternalLinkage;
5574 
5575   GV->setLinkage(Linkage);
5576   if (D->hasAttr<DLLImportAttr>())
5577     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5578   else if (D->hasAttr<DLLExportAttr>())
5579     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5580   else
5581     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5582 
5583   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5584     // common vars aren't constant even if declared const.
5585     GV->setConstant(false);
5586     // Tentative definition of global variables may be initialized with
5587     // non-zero null pointers. In this case they should have weak linkage
5588     // since common linkage must have zero initializer and must not have
5589     // explicit section therefore cannot have non-zero initial value.
5590     if (!GV->getInitializer()->isNullValue())
5591       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5592   }
5593 
5594   setNonAliasAttributes(D, GV);
5595 
5596   if (D->getTLSKind() && !GV->isThreadLocal()) {
5597     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5598       CXXThreadLocals.push_back(D);
5599     setTLSMode(GV, *D);
5600   }
5601 
5602   maybeSetTrivialComdat(*D, *GV);
5603 
5604   // Emit the initializer function if necessary.
5605   if (NeedsGlobalCtor || NeedsGlobalDtor)
5606     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5607 
5608   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5609 
5610   // Emit global variable debug information.
5611   if (CGDebugInfo *DI = getModuleDebugInfo())
5612     if (getCodeGenOpts().hasReducedDebugInfo())
5613       DI->EmitGlobalVariable(GV, D);
5614 }
5615 
5616 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5617   if (CGDebugInfo *DI = getModuleDebugInfo())
5618     if (getCodeGenOpts().hasReducedDebugInfo()) {
5619       QualType ASTTy = D->getType();
5620       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5621       llvm::Constant *GV =
5622           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5623       DI->EmitExternalVariable(
5624           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5625     }
5626 }
5627 
5628 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5629   if (CGDebugInfo *DI = getModuleDebugInfo())
5630     if (getCodeGenOpts().hasReducedDebugInfo()) {
5631       auto *Ty = getTypes().ConvertType(FD->getType());
5632       StringRef MangledName = getMangledName(FD);
5633       auto *Fn = dyn_cast<llvm::Function>(
5634           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5635       if (!Fn->getSubprogram())
5636         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5637     }
5638 }
5639 
5640 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5641                                       CodeGenModule &CGM, const VarDecl *D,
5642                                       bool NoCommon) {
5643   // Don't give variables common linkage if -fno-common was specified unless it
5644   // was overridden by a NoCommon attribute.
5645   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5646     return true;
5647 
5648   // C11 6.9.2/2:
5649   //   A declaration of an identifier for an object that has file scope without
5650   //   an initializer, and without a storage-class specifier or with the
5651   //   storage-class specifier static, constitutes a tentative definition.
5652   if (D->getInit() || D->hasExternalStorage())
5653     return true;
5654 
5655   // A variable cannot be both common and exist in a section.
5656   if (D->hasAttr<SectionAttr>())
5657     return true;
5658 
5659   // A variable cannot be both common and exist in a section.
5660   // We don't try to determine which is the right section in the front-end.
5661   // If no specialized section name is applicable, it will resort to default.
5662   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5663       D->hasAttr<PragmaClangDataSectionAttr>() ||
5664       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5665       D->hasAttr<PragmaClangRodataSectionAttr>())
5666     return true;
5667 
5668   // Thread local vars aren't considered common linkage.
5669   if (D->getTLSKind())
5670     return true;
5671 
5672   // Tentative definitions marked with WeakImportAttr are true definitions.
5673   if (D->hasAttr<WeakImportAttr>())
5674     return true;
5675 
5676   // A variable cannot be both common and exist in a comdat.
5677   if (shouldBeInCOMDAT(CGM, *D))
5678     return true;
5679 
5680   // Declarations with a required alignment do not have common linkage in MSVC
5681   // mode.
5682   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5683     if (D->hasAttr<AlignedAttr>())
5684       return true;
5685     QualType VarType = D->getType();
5686     if (Context.isAlignmentRequired(VarType))
5687       return true;
5688 
5689     if (const auto *RT = VarType->getAs<RecordType>()) {
5690       const RecordDecl *RD = RT->getDecl();
5691       for (const FieldDecl *FD : RD->fields()) {
5692         if (FD->isBitField())
5693           continue;
5694         if (FD->hasAttr<AlignedAttr>())
5695           return true;
5696         if (Context.isAlignmentRequired(FD->getType()))
5697           return true;
5698       }
5699     }
5700   }
5701 
5702   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5703   // common symbols, so symbols with greater alignment requirements cannot be
5704   // common.
5705   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5706   // alignments for common symbols via the aligncomm directive, so this
5707   // restriction only applies to MSVC environments.
5708   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5709       Context.getTypeAlignIfKnown(D->getType()) >
5710           Context.toBits(CharUnits::fromQuantity(32)))
5711     return true;
5712 
5713   return false;
5714 }
5715 
5716 llvm::GlobalValue::LinkageTypes
5717 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5718                                            GVALinkage Linkage) {
5719   if (Linkage == GVA_Internal)
5720     return llvm::Function::InternalLinkage;
5721 
5722   if (D->hasAttr<WeakAttr>())
5723     return llvm::GlobalVariable::WeakAnyLinkage;
5724 
5725   if (const auto *FD = D->getAsFunction())
5726     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5727       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5728 
5729   // We are guaranteed to have a strong definition somewhere else,
5730   // so we can use available_externally linkage.
5731   if (Linkage == GVA_AvailableExternally)
5732     return llvm::GlobalValue::AvailableExternallyLinkage;
5733 
5734   // Note that Apple's kernel linker doesn't support symbol
5735   // coalescing, so we need to avoid linkonce and weak linkages there.
5736   // Normally, this means we just map to internal, but for explicit
5737   // instantiations we'll map to external.
5738 
5739   // In C++, the compiler has to emit a definition in every translation unit
5740   // that references the function.  We should use linkonce_odr because
5741   // a) if all references in this translation unit are optimized away, we
5742   // don't need to codegen it.  b) if the function persists, it needs to be
5743   // merged with other definitions. c) C++ has the ODR, so we know the
5744   // definition is dependable.
5745   if (Linkage == GVA_DiscardableODR)
5746     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5747                                             : llvm::Function::InternalLinkage;
5748 
5749   // An explicit instantiation of a template has weak linkage, since
5750   // explicit instantiations can occur in multiple translation units
5751   // and must all be equivalent. However, we are not allowed to
5752   // throw away these explicit instantiations.
5753   //
5754   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5755   // so say that CUDA templates are either external (for kernels) or internal.
5756   // This lets llvm perform aggressive inter-procedural optimizations. For
5757   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5758   // therefore we need to follow the normal linkage paradigm.
5759   if (Linkage == GVA_StrongODR) {
5760     if (getLangOpts().AppleKext)
5761       return llvm::Function::ExternalLinkage;
5762     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5763         !getLangOpts().GPURelocatableDeviceCode)
5764       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5765                                           : llvm::Function::InternalLinkage;
5766     return llvm::Function::WeakODRLinkage;
5767   }
5768 
5769   // C++ doesn't have tentative definitions and thus cannot have common
5770   // linkage.
5771   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5772       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5773                                  CodeGenOpts.NoCommon))
5774     return llvm::GlobalVariable::CommonLinkage;
5775 
5776   // selectany symbols are externally visible, so use weak instead of
5777   // linkonce.  MSVC optimizes away references to const selectany globals, so
5778   // all definitions should be the same and ODR linkage should be used.
5779   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5780   if (D->hasAttr<SelectAnyAttr>())
5781     return llvm::GlobalVariable::WeakODRLinkage;
5782 
5783   // Otherwise, we have strong external linkage.
5784   assert(Linkage == GVA_StrongExternal);
5785   return llvm::GlobalVariable::ExternalLinkage;
5786 }
5787 
5788 llvm::GlobalValue::LinkageTypes
5789 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5790   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5791   return getLLVMLinkageForDeclarator(VD, Linkage);
5792 }
5793 
5794 /// Replace the uses of a function that was declared with a non-proto type.
5795 /// We want to silently drop extra arguments from call sites
5796 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5797                                           llvm::Function *newFn) {
5798   // Fast path.
5799   if (old->use_empty())
5800     return;
5801 
5802   llvm::Type *newRetTy = newFn->getReturnType();
5803   SmallVector<llvm::Value *, 4> newArgs;
5804 
5805   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5806 
5807   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5808        ui != ue; ui++) {
5809     llvm::User *user = ui->getUser();
5810 
5811     // Recognize and replace uses of bitcasts.  Most calls to
5812     // unprototyped functions will use bitcasts.
5813     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5814       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5815         replaceUsesOfNonProtoConstant(bitcast, newFn);
5816       continue;
5817     }
5818 
5819     // Recognize calls to the function.
5820     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5821     if (!callSite)
5822       continue;
5823     if (!callSite->isCallee(&*ui))
5824       continue;
5825 
5826     // If the return types don't match exactly, then we can't
5827     // transform this call unless it's dead.
5828     if (callSite->getType() != newRetTy && !callSite->use_empty())
5829       continue;
5830 
5831     // Get the call site's attribute list.
5832     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5833     llvm::AttributeList oldAttrs = callSite->getAttributes();
5834 
5835     // If the function was passed too few arguments, don't transform.
5836     unsigned newNumArgs = newFn->arg_size();
5837     if (callSite->arg_size() < newNumArgs)
5838       continue;
5839 
5840     // If extra arguments were passed, we silently drop them.
5841     // If any of the types mismatch, we don't transform.
5842     unsigned argNo = 0;
5843     bool dontTransform = false;
5844     for (llvm::Argument &A : newFn->args()) {
5845       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5846         dontTransform = true;
5847         break;
5848       }
5849 
5850       // Add any parameter attributes.
5851       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5852       argNo++;
5853     }
5854     if (dontTransform)
5855       continue;
5856 
5857     // Okay, we can transform this.  Create the new call instruction and copy
5858     // over the required information.
5859     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5860 
5861     // Copy over any operand bundles.
5862     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5863     callSite->getOperandBundlesAsDefs(newBundles);
5864 
5865     llvm::CallBase *newCall;
5866     if (isa<llvm::CallInst>(callSite)) {
5867       newCall =
5868           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5869     } else {
5870       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5871       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5872                                          oldInvoke->getUnwindDest(), newArgs,
5873                                          newBundles, "", callSite);
5874     }
5875     newArgs.clear(); // for the next iteration
5876 
5877     if (!newCall->getType()->isVoidTy())
5878       newCall->takeName(callSite);
5879     newCall->setAttributes(
5880         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5881                                  oldAttrs.getRetAttrs(), newArgAttrs));
5882     newCall->setCallingConv(callSite->getCallingConv());
5883 
5884     // Finally, remove the old call, replacing any uses with the new one.
5885     if (!callSite->use_empty())
5886       callSite->replaceAllUsesWith(newCall);
5887 
5888     // Copy debug location attached to CI.
5889     if (callSite->getDebugLoc())
5890       newCall->setDebugLoc(callSite->getDebugLoc());
5891 
5892     callSitesToBeRemovedFromParent.push_back(callSite);
5893   }
5894 
5895   for (auto *callSite : callSitesToBeRemovedFromParent) {
5896     callSite->eraseFromParent();
5897   }
5898 }
5899 
5900 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5901 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5902 /// existing call uses of the old function in the module, this adjusts them to
5903 /// call the new function directly.
5904 ///
5905 /// This is not just a cleanup: the always_inline pass requires direct calls to
5906 /// functions to be able to inline them.  If there is a bitcast in the way, it
5907 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5908 /// run at -O0.
5909 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5910                                                       llvm::Function *NewFn) {
5911   // If we're redefining a global as a function, don't transform it.
5912   if (!isa<llvm::Function>(Old)) return;
5913 
5914   replaceUsesOfNonProtoConstant(Old, NewFn);
5915 }
5916 
5917 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5918   auto DK = VD->isThisDeclarationADefinition();
5919   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5920     return;
5921 
5922   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5923   // If we have a definition, this might be a deferred decl. If the
5924   // instantiation is explicit, make sure we emit it at the end.
5925   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5926     GetAddrOfGlobalVar(VD);
5927 
5928   EmitTopLevelDecl(VD);
5929 }
5930 
5931 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5932                                                  llvm::GlobalValue *GV) {
5933   const auto *D = cast<FunctionDecl>(GD.getDecl());
5934 
5935   // Compute the function info and LLVM type.
5936   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5937   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5938 
5939   // Get or create the prototype for the function.
5940   if (!GV || (GV->getValueType() != Ty))
5941     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5942                                                    /*DontDefer=*/true,
5943                                                    ForDefinition));
5944 
5945   // Already emitted.
5946   if (!GV->isDeclaration())
5947     return;
5948 
5949   // We need to set linkage and visibility on the function before
5950   // generating code for it because various parts of IR generation
5951   // want to propagate this information down (e.g. to local static
5952   // declarations).
5953   auto *Fn = cast<llvm::Function>(GV);
5954   setFunctionLinkage(GD, Fn);
5955 
5956   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5957   setGVProperties(Fn, GD);
5958 
5959   MaybeHandleStaticInExternC(D, Fn);
5960 
5961   maybeSetTrivialComdat(*D, *Fn);
5962 
5963   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5964 
5965   setNonAliasAttributes(GD, Fn);
5966   SetLLVMFunctionAttributesForDefinition(D, Fn);
5967 
5968   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5969     AddGlobalCtor(Fn, CA->getPriority());
5970   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5971     AddGlobalDtor(Fn, DA->getPriority(), true);
5972   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5973     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5974 }
5975 
5976 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5977   const auto *D = cast<ValueDecl>(GD.getDecl());
5978   const AliasAttr *AA = D->getAttr<AliasAttr>();
5979   assert(AA && "Not an alias?");
5980 
5981   StringRef MangledName = getMangledName(GD);
5982 
5983   if (AA->getAliasee() == MangledName) {
5984     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5985     return;
5986   }
5987 
5988   // If there is a definition in the module, then it wins over the alias.
5989   // This is dubious, but allow it to be safe.  Just ignore the alias.
5990   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5991   if (Entry && !Entry->isDeclaration())
5992     return;
5993 
5994   Aliases.push_back(GD);
5995 
5996   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5997 
5998   // Create a reference to the named value.  This ensures that it is emitted
5999   // if a deferred decl.
6000   llvm::Constant *Aliasee;
6001   llvm::GlobalValue::LinkageTypes LT;
6002   if (isa<llvm::FunctionType>(DeclTy)) {
6003     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6004                                       /*ForVTable=*/false);
6005     LT = getFunctionLinkage(GD);
6006   } else {
6007     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6008                                     /*D=*/nullptr);
6009     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6010       LT = getLLVMLinkageVarDefinition(VD);
6011     else
6012       LT = getFunctionLinkage(GD);
6013   }
6014 
6015   // Create the new alias itself, but don't set a name yet.
6016   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6017   auto *GA =
6018       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6019 
6020   if (Entry) {
6021     if (GA->getAliasee() == Entry) {
6022       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6023       return;
6024     }
6025 
6026     assert(Entry->isDeclaration());
6027 
6028     // If there is a declaration in the module, then we had an extern followed
6029     // by the alias, as in:
6030     //   extern int test6();
6031     //   ...
6032     //   int test6() __attribute__((alias("test7")));
6033     //
6034     // Remove it and replace uses of it with the alias.
6035     GA->takeName(Entry);
6036 
6037     Entry->replaceAllUsesWith(GA);
6038     Entry->eraseFromParent();
6039   } else {
6040     GA->setName(MangledName);
6041   }
6042 
6043   // Set attributes which are particular to an alias; this is a
6044   // specialization of the attributes which may be set on a global
6045   // variable/function.
6046   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6047       D->isWeakImported()) {
6048     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6049   }
6050 
6051   if (const auto *VD = dyn_cast<VarDecl>(D))
6052     if (VD->getTLSKind())
6053       setTLSMode(GA, *VD);
6054 
6055   SetCommonAttributes(GD, GA);
6056 
6057   // Emit global alias debug information.
6058   if (isa<VarDecl>(D))
6059     if (CGDebugInfo *DI = getModuleDebugInfo())
6060       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6061 }
6062 
6063 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6064   const auto *D = cast<ValueDecl>(GD.getDecl());
6065   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6066   assert(IFA && "Not an ifunc?");
6067 
6068   StringRef MangledName = getMangledName(GD);
6069 
6070   if (IFA->getResolver() == MangledName) {
6071     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6072     return;
6073   }
6074 
6075   // Report an error if some definition overrides ifunc.
6076   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6077   if (Entry && !Entry->isDeclaration()) {
6078     GlobalDecl OtherGD;
6079     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6080         DiagnosedConflictingDefinitions.insert(GD).second) {
6081       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6082           << MangledName;
6083       Diags.Report(OtherGD.getDecl()->getLocation(),
6084                    diag::note_previous_definition);
6085     }
6086     return;
6087   }
6088 
6089   Aliases.push_back(GD);
6090 
6091   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6092   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
6093   llvm::Constant *Resolver =
6094       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
6095                               /*ForVTable=*/false);
6096   llvm::GlobalIFunc *GIF =
6097       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6098                                 "", Resolver, &getModule());
6099   if (Entry) {
6100     if (GIF->getResolver() == Entry) {
6101       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6102       return;
6103     }
6104     assert(Entry->isDeclaration());
6105 
6106     // If there is a declaration in the module, then we had an extern followed
6107     // by the ifunc, as in:
6108     //   extern int test();
6109     //   ...
6110     //   int test() __attribute__((ifunc("resolver")));
6111     //
6112     // Remove it and replace uses of it with the ifunc.
6113     GIF->takeName(Entry);
6114 
6115     Entry->replaceAllUsesWith(GIF);
6116     Entry->eraseFromParent();
6117   } else
6118     GIF->setName(MangledName);
6119   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6120     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6121   }
6122   SetCommonAttributes(GD, GIF);
6123 }
6124 
6125 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6126                                             ArrayRef<llvm::Type*> Tys) {
6127   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6128                                          Tys);
6129 }
6130 
6131 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6132 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6133                          const StringLiteral *Literal, bool TargetIsLSB,
6134                          bool &IsUTF16, unsigned &StringLength) {
6135   StringRef String = Literal->getString();
6136   unsigned NumBytes = String.size();
6137 
6138   // Check for simple case.
6139   if (!Literal->containsNonAsciiOrNull()) {
6140     StringLength = NumBytes;
6141     return *Map.insert(std::make_pair(String, nullptr)).first;
6142   }
6143 
6144   // Otherwise, convert the UTF8 literals into a string of shorts.
6145   IsUTF16 = true;
6146 
6147   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6148   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6149   llvm::UTF16 *ToPtr = &ToBuf[0];
6150 
6151   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6152                                  ToPtr + NumBytes, llvm::strictConversion);
6153 
6154   // ConvertUTF8toUTF16 returns the length in ToPtr.
6155   StringLength = ToPtr - &ToBuf[0];
6156 
6157   // Add an explicit null.
6158   *ToPtr = 0;
6159   return *Map.insert(std::make_pair(
6160                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6161                                    (StringLength + 1) * 2),
6162                          nullptr)).first;
6163 }
6164 
6165 ConstantAddress
6166 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6167   unsigned StringLength = 0;
6168   bool isUTF16 = false;
6169   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6170       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6171                                getDataLayout().isLittleEndian(), isUTF16,
6172                                StringLength);
6173 
6174   if (auto *C = Entry.second)
6175     return ConstantAddress(
6176         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6177 
6178   const ASTContext &Context = getContext();
6179   const llvm::Triple &Triple = getTriple();
6180 
6181   const auto CFRuntime = getLangOpts().CFRuntime;
6182   const bool IsSwiftABI =
6183       static_cast<unsigned>(CFRuntime) >=
6184       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6185   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6186 
6187   // If we don't already have it, get __CFConstantStringClassReference.
6188   if (!CFConstantStringClassRef) {
6189     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6190     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6191     Ty = llvm::ArrayType::get(Ty, 0);
6192 
6193     switch (CFRuntime) {
6194     default: break;
6195     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6196     case LangOptions::CoreFoundationABI::Swift5_0:
6197       CFConstantStringClassName =
6198           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6199                               : "$s10Foundation19_NSCFConstantStringCN";
6200       Ty = IntPtrTy;
6201       break;
6202     case LangOptions::CoreFoundationABI::Swift4_2:
6203       CFConstantStringClassName =
6204           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6205                               : "$S10Foundation19_NSCFConstantStringCN";
6206       Ty = IntPtrTy;
6207       break;
6208     case LangOptions::CoreFoundationABI::Swift4_1:
6209       CFConstantStringClassName =
6210           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6211                               : "__T010Foundation19_NSCFConstantStringCN";
6212       Ty = IntPtrTy;
6213       break;
6214     }
6215 
6216     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6217 
6218     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6219       llvm::GlobalValue *GV = nullptr;
6220 
6221       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6222         IdentifierInfo &II = Context.Idents.get(GV->getName());
6223         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6224         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6225 
6226         const VarDecl *VD = nullptr;
6227         for (const auto *Result : DC->lookup(&II))
6228           if ((VD = dyn_cast<VarDecl>(Result)))
6229             break;
6230 
6231         if (Triple.isOSBinFormatELF()) {
6232           if (!VD)
6233             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6234         } else {
6235           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6236           if (!VD || !VD->hasAttr<DLLExportAttr>())
6237             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6238           else
6239             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6240         }
6241 
6242         setDSOLocal(GV);
6243       }
6244     }
6245 
6246     // Decay array -> ptr
6247     CFConstantStringClassRef =
6248         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6249   }
6250 
6251   QualType CFTy = Context.getCFConstantStringType();
6252 
6253   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6254 
6255   ConstantInitBuilder Builder(*this);
6256   auto Fields = Builder.beginStruct(STy);
6257 
6258   // Class pointer.
6259   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6260 
6261   // Flags.
6262   if (IsSwiftABI) {
6263     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6264     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6265   } else {
6266     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6267   }
6268 
6269   // String pointer.
6270   llvm::Constant *C = nullptr;
6271   if (isUTF16) {
6272     auto Arr = llvm::ArrayRef(
6273         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6274         Entry.first().size() / 2);
6275     C = llvm::ConstantDataArray::get(VMContext, Arr);
6276   } else {
6277     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6278   }
6279 
6280   // Note: -fwritable-strings doesn't make the backing store strings of
6281   // CFStrings writable.
6282   auto *GV =
6283       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6284                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6285   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6286   // Don't enforce the target's minimum global alignment, since the only use
6287   // of the string is via this class initializer.
6288   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6289                             : Context.getTypeAlignInChars(Context.CharTy);
6290   GV->setAlignment(Align.getAsAlign());
6291 
6292   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6293   // Without it LLVM can merge the string with a non unnamed_addr one during
6294   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6295   if (Triple.isOSBinFormatMachO())
6296     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6297                            : "__TEXT,__cstring,cstring_literals");
6298   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6299   // the static linker to adjust permissions to read-only later on.
6300   else if (Triple.isOSBinFormatELF())
6301     GV->setSection(".rodata");
6302 
6303   // String.
6304   Fields.add(GV);
6305 
6306   // String length.
6307   llvm::IntegerType *LengthTy =
6308       llvm::IntegerType::get(getModule().getContext(),
6309                              Context.getTargetInfo().getLongWidth());
6310   if (IsSwiftABI) {
6311     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6312         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6313       LengthTy = Int32Ty;
6314     else
6315       LengthTy = IntPtrTy;
6316   }
6317   Fields.addInt(LengthTy, StringLength);
6318 
6319   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6320   // properly aligned on 32-bit platforms.
6321   CharUnits Alignment =
6322       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6323 
6324   // The struct.
6325   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6326                                     /*isConstant=*/false,
6327                                     llvm::GlobalVariable::PrivateLinkage);
6328   GV->addAttribute("objc_arc_inert");
6329   switch (Triple.getObjectFormat()) {
6330   case llvm::Triple::UnknownObjectFormat:
6331     llvm_unreachable("unknown file format");
6332   case llvm::Triple::DXContainer:
6333   case llvm::Triple::GOFF:
6334   case llvm::Triple::SPIRV:
6335   case llvm::Triple::XCOFF:
6336     llvm_unreachable("unimplemented");
6337   case llvm::Triple::COFF:
6338   case llvm::Triple::ELF:
6339   case llvm::Triple::Wasm:
6340     GV->setSection("cfstring");
6341     break;
6342   case llvm::Triple::MachO:
6343     GV->setSection("__DATA,__cfstring");
6344     break;
6345   }
6346   Entry.second = GV;
6347 
6348   return ConstantAddress(GV, GV->getValueType(), Alignment);
6349 }
6350 
6351 bool CodeGenModule::getExpressionLocationsEnabled() const {
6352   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6353 }
6354 
6355 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6356   if (ObjCFastEnumerationStateType.isNull()) {
6357     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6358     D->startDefinition();
6359 
6360     QualType FieldTypes[] = {
6361         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6362         Context.getPointerType(Context.UnsignedLongTy),
6363         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6364                                      nullptr, ArraySizeModifier::Normal, 0)};
6365 
6366     for (size_t i = 0; i < 4; ++i) {
6367       FieldDecl *Field = FieldDecl::Create(Context,
6368                                            D,
6369                                            SourceLocation(),
6370                                            SourceLocation(), nullptr,
6371                                            FieldTypes[i], /*TInfo=*/nullptr,
6372                                            /*BitWidth=*/nullptr,
6373                                            /*Mutable=*/false,
6374                                            ICIS_NoInit);
6375       Field->setAccess(AS_public);
6376       D->addDecl(Field);
6377     }
6378 
6379     D->completeDefinition();
6380     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6381   }
6382 
6383   return ObjCFastEnumerationStateType;
6384 }
6385 
6386 llvm::Constant *
6387 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6388   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6389 
6390   // Don't emit it as the address of the string, emit the string data itself
6391   // as an inline array.
6392   if (E->getCharByteWidth() == 1) {
6393     SmallString<64> Str(E->getString());
6394 
6395     // Resize the string to the right size, which is indicated by its type.
6396     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6397     assert(CAT && "String literal not of constant array type!");
6398     Str.resize(CAT->getZExtSize());
6399     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6400   }
6401 
6402   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6403   llvm::Type *ElemTy = AType->getElementType();
6404   unsigned NumElements = AType->getNumElements();
6405 
6406   // Wide strings have either 2-byte or 4-byte elements.
6407   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6408     SmallVector<uint16_t, 32> Elements;
6409     Elements.reserve(NumElements);
6410 
6411     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6412       Elements.push_back(E->getCodeUnit(i));
6413     Elements.resize(NumElements);
6414     return llvm::ConstantDataArray::get(VMContext, Elements);
6415   }
6416 
6417   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6418   SmallVector<uint32_t, 32> Elements;
6419   Elements.reserve(NumElements);
6420 
6421   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6422     Elements.push_back(E->getCodeUnit(i));
6423   Elements.resize(NumElements);
6424   return llvm::ConstantDataArray::get(VMContext, Elements);
6425 }
6426 
6427 static llvm::GlobalVariable *
6428 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6429                       CodeGenModule &CGM, StringRef GlobalName,
6430                       CharUnits Alignment) {
6431   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6432       CGM.GetGlobalConstantAddressSpace());
6433 
6434   llvm::Module &M = CGM.getModule();
6435   // Create a global variable for this string
6436   auto *GV = new llvm::GlobalVariable(
6437       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6438       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6439   GV->setAlignment(Alignment.getAsAlign());
6440   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6441   if (GV->isWeakForLinker()) {
6442     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6443     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6444   }
6445   CGM.setDSOLocal(GV);
6446 
6447   return GV;
6448 }
6449 
6450 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6451 /// constant array for the given string literal.
6452 ConstantAddress
6453 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6454                                                   StringRef Name) {
6455   CharUnits Alignment =
6456       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6457 
6458   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6459   llvm::GlobalVariable **Entry = nullptr;
6460   if (!LangOpts.WritableStrings) {
6461     Entry = &ConstantStringMap[C];
6462     if (auto GV = *Entry) {
6463       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6464         GV->setAlignment(Alignment.getAsAlign());
6465       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6466                              GV->getValueType(), Alignment);
6467     }
6468   }
6469 
6470   SmallString<256> MangledNameBuffer;
6471   StringRef GlobalVariableName;
6472   llvm::GlobalValue::LinkageTypes LT;
6473 
6474   // Mangle the string literal if that's how the ABI merges duplicate strings.
6475   // Don't do it if they are writable, since we don't want writes in one TU to
6476   // affect strings in another.
6477   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6478       !LangOpts.WritableStrings) {
6479     llvm::raw_svector_ostream Out(MangledNameBuffer);
6480     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6481     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6482     GlobalVariableName = MangledNameBuffer;
6483   } else {
6484     LT = llvm::GlobalValue::PrivateLinkage;
6485     GlobalVariableName = Name;
6486   }
6487 
6488   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6489 
6490   CGDebugInfo *DI = getModuleDebugInfo();
6491   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6492     DI->AddStringLiteralDebugInfo(GV, S);
6493 
6494   if (Entry)
6495     *Entry = GV;
6496 
6497   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6498 
6499   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6500                          GV->getValueType(), Alignment);
6501 }
6502 
6503 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6504 /// array for the given ObjCEncodeExpr node.
6505 ConstantAddress
6506 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6507   std::string Str;
6508   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6509 
6510   return GetAddrOfConstantCString(Str);
6511 }
6512 
6513 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6514 /// the literal and a terminating '\0' character.
6515 /// The result has pointer to array type.
6516 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6517     const std::string &Str, const char *GlobalName) {
6518   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6519   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6520       getContext().CharTy, /*VD=*/nullptr);
6521 
6522   llvm::Constant *C =
6523       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6524 
6525   // Don't share any string literals if strings aren't constant.
6526   llvm::GlobalVariable **Entry = nullptr;
6527   if (!LangOpts.WritableStrings) {
6528     Entry = &ConstantStringMap[C];
6529     if (auto GV = *Entry) {
6530       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6531         GV->setAlignment(Alignment.getAsAlign());
6532       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6533                              GV->getValueType(), Alignment);
6534     }
6535   }
6536 
6537   // Get the default prefix if a name wasn't specified.
6538   if (!GlobalName)
6539     GlobalName = ".str";
6540   // Create a global variable for this.
6541   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6542                                   GlobalName, Alignment);
6543   if (Entry)
6544     *Entry = GV;
6545 
6546   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6547                          GV->getValueType(), Alignment);
6548 }
6549 
6550 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6551     const MaterializeTemporaryExpr *E, const Expr *Init) {
6552   assert((E->getStorageDuration() == SD_Static ||
6553           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6554   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6555 
6556   // If we're not materializing a subobject of the temporary, keep the
6557   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6558   QualType MaterializedType = Init->getType();
6559   if (Init == E->getSubExpr())
6560     MaterializedType = E->getType();
6561 
6562   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6563 
6564   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6565   if (!InsertResult.second) {
6566     // We've seen this before: either we already created it or we're in the
6567     // process of doing so.
6568     if (!InsertResult.first->second) {
6569       // We recursively re-entered this function, probably during emission of
6570       // the initializer. Create a placeholder. We'll clean this up in the
6571       // outer call, at the end of this function.
6572       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6573       InsertResult.first->second = new llvm::GlobalVariable(
6574           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6575           nullptr);
6576     }
6577     return ConstantAddress(InsertResult.first->second,
6578                            llvm::cast<llvm::GlobalVariable>(
6579                                InsertResult.first->second->stripPointerCasts())
6580                                ->getValueType(),
6581                            Align);
6582   }
6583 
6584   // FIXME: If an externally-visible declaration extends multiple temporaries,
6585   // we need to give each temporary the same name in every translation unit (and
6586   // we also need to make the temporaries externally-visible).
6587   SmallString<256> Name;
6588   llvm::raw_svector_ostream Out(Name);
6589   getCXXABI().getMangleContext().mangleReferenceTemporary(
6590       VD, E->getManglingNumber(), Out);
6591 
6592   APValue *Value = nullptr;
6593   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6594     // If the initializer of the extending declaration is a constant
6595     // initializer, we should have a cached constant initializer for this
6596     // temporary. Note that this might have a different value from the value
6597     // computed by evaluating the initializer if the surrounding constant
6598     // expression modifies the temporary.
6599     Value = E->getOrCreateValue(false);
6600   }
6601 
6602   // Try evaluating it now, it might have a constant initializer.
6603   Expr::EvalResult EvalResult;
6604   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6605       !EvalResult.hasSideEffects())
6606     Value = &EvalResult.Val;
6607 
6608   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6609 
6610   std::optional<ConstantEmitter> emitter;
6611   llvm::Constant *InitialValue = nullptr;
6612   bool Constant = false;
6613   llvm::Type *Type;
6614   if (Value) {
6615     // The temporary has a constant initializer, use it.
6616     emitter.emplace(*this);
6617     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6618                                                MaterializedType);
6619     Constant =
6620         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6621                                            /*ExcludeDtor*/ false);
6622     Type = InitialValue->getType();
6623   } else {
6624     // No initializer, the initialization will be provided when we
6625     // initialize the declaration which performed lifetime extension.
6626     Type = getTypes().ConvertTypeForMem(MaterializedType);
6627   }
6628 
6629   // Create a global variable for this lifetime-extended temporary.
6630   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6631   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6632     const VarDecl *InitVD;
6633     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6634         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6635       // Temporaries defined inside a class get linkonce_odr linkage because the
6636       // class can be defined in multiple translation units.
6637       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6638     } else {
6639       // There is no need for this temporary to have external linkage if the
6640       // VarDecl has external linkage.
6641       Linkage = llvm::GlobalVariable::InternalLinkage;
6642     }
6643   }
6644   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6645   auto *GV = new llvm::GlobalVariable(
6646       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6647       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6648   if (emitter) emitter->finalize(GV);
6649   // Don't assign dllimport or dllexport to local linkage globals.
6650   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6651     setGVProperties(GV, VD);
6652     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6653       // The reference temporary should never be dllexport.
6654       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6655   }
6656   GV->setAlignment(Align.getAsAlign());
6657   if (supportsCOMDAT() && GV->isWeakForLinker())
6658     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6659   if (VD->getTLSKind())
6660     setTLSMode(GV, *VD);
6661   llvm::Constant *CV = GV;
6662   if (AddrSpace != LangAS::Default)
6663     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6664         *this, GV, AddrSpace, LangAS::Default,
6665         llvm::PointerType::get(
6666             getLLVMContext(),
6667             getContext().getTargetAddressSpace(LangAS::Default)));
6668 
6669   // Update the map with the new temporary. If we created a placeholder above,
6670   // replace it with the new global now.
6671   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6672   if (Entry) {
6673     Entry->replaceAllUsesWith(CV);
6674     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6675   }
6676   Entry = CV;
6677 
6678   return ConstantAddress(CV, Type, Align);
6679 }
6680 
6681 /// EmitObjCPropertyImplementations - Emit information for synthesized
6682 /// properties for an implementation.
6683 void CodeGenModule::EmitObjCPropertyImplementations(const
6684                                                     ObjCImplementationDecl *D) {
6685   for (const auto *PID : D->property_impls()) {
6686     // Dynamic is just for type-checking.
6687     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6688       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6689 
6690       // Determine which methods need to be implemented, some may have
6691       // been overridden. Note that ::isPropertyAccessor is not the method
6692       // we want, that just indicates if the decl came from a
6693       // property. What we want to know is if the method is defined in
6694       // this implementation.
6695       auto *Getter = PID->getGetterMethodDecl();
6696       if (!Getter || Getter->isSynthesizedAccessorStub())
6697         CodeGenFunction(*this).GenerateObjCGetter(
6698             const_cast<ObjCImplementationDecl *>(D), PID);
6699       auto *Setter = PID->getSetterMethodDecl();
6700       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6701         CodeGenFunction(*this).GenerateObjCSetter(
6702                                  const_cast<ObjCImplementationDecl *>(D), PID);
6703     }
6704   }
6705 }
6706 
6707 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6708   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6709   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6710        ivar; ivar = ivar->getNextIvar())
6711     if (ivar->getType().isDestructedType())
6712       return true;
6713 
6714   return false;
6715 }
6716 
6717 static bool AllTrivialInitializers(CodeGenModule &CGM,
6718                                    ObjCImplementationDecl *D) {
6719   CodeGenFunction CGF(CGM);
6720   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6721        E = D->init_end(); B != E; ++B) {
6722     CXXCtorInitializer *CtorInitExp = *B;
6723     Expr *Init = CtorInitExp->getInit();
6724     if (!CGF.isTrivialInitializer(Init))
6725       return false;
6726   }
6727   return true;
6728 }
6729 
6730 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6731 /// for an implementation.
6732 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6733   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6734   if (needsDestructMethod(D)) {
6735     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6736     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6737     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6738         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6739         getContext().VoidTy, nullptr, D,
6740         /*isInstance=*/true, /*isVariadic=*/false,
6741         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6742         /*isImplicitlyDeclared=*/true,
6743         /*isDefined=*/false, ObjCImplementationControl::Required);
6744     D->addInstanceMethod(DTORMethod);
6745     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6746     D->setHasDestructors(true);
6747   }
6748 
6749   // If the implementation doesn't have any ivar initializers, we don't need
6750   // a .cxx_construct.
6751   if (D->getNumIvarInitializers() == 0 ||
6752       AllTrivialInitializers(*this, D))
6753     return;
6754 
6755   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6756   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6757   // The constructor returns 'self'.
6758   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6759       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6760       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6761       /*isVariadic=*/false,
6762       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6763       /*isImplicitlyDeclared=*/true,
6764       /*isDefined=*/false, ObjCImplementationControl::Required);
6765   D->addInstanceMethod(CTORMethod);
6766   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6767   D->setHasNonZeroConstructors(true);
6768 }
6769 
6770 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6771 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6772   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6773       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6774     ErrorUnsupported(LSD, "linkage spec");
6775     return;
6776   }
6777 
6778   EmitDeclContext(LSD);
6779 }
6780 
6781 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6782   // Device code should not be at top level.
6783   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6784     return;
6785 
6786   std::unique_ptr<CodeGenFunction> &CurCGF =
6787       GlobalTopLevelStmtBlockInFlight.first;
6788 
6789   // We emitted a top-level stmt but after it there is initialization.
6790   // Stop squashing the top-level stmts into a single function.
6791   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6792     CurCGF->FinishFunction(D->getEndLoc());
6793     CurCGF = nullptr;
6794   }
6795 
6796   if (!CurCGF) {
6797     // void __stmts__N(void)
6798     // FIXME: Ask the ABI name mangler to pick a name.
6799     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6800     FunctionArgList Args;
6801     QualType RetTy = getContext().VoidTy;
6802     const CGFunctionInfo &FnInfo =
6803         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6804     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6805     llvm::Function *Fn = llvm::Function::Create(
6806         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6807 
6808     CurCGF.reset(new CodeGenFunction(*this));
6809     GlobalTopLevelStmtBlockInFlight.second = D;
6810     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6811                           D->getBeginLoc(), D->getBeginLoc());
6812     CXXGlobalInits.push_back(Fn);
6813   }
6814 
6815   CurCGF->EmitStmt(D->getStmt());
6816 }
6817 
6818 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6819   for (auto *I : DC->decls()) {
6820     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6821     // are themselves considered "top-level", so EmitTopLevelDecl on an
6822     // ObjCImplDecl does not recursively visit them. We need to do that in
6823     // case they're nested inside another construct (LinkageSpecDecl /
6824     // ExportDecl) that does stop them from being considered "top-level".
6825     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6826       for (auto *M : OID->methods())
6827         EmitTopLevelDecl(M);
6828     }
6829 
6830     EmitTopLevelDecl(I);
6831   }
6832 }
6833 
6834 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6835 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6836   // Ignore dependent declarations.
6837   if (D->isTemplated())
6838     return;
6839 
6840   // Consteval function shouldn't be emitted.
6841   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6842     return;
6843 
6844   switch (D->getKind()) {
6845   case Decl::CXXConversion:
6846   case Decl::CXXMethod:
6847   case Decl::Function:
6848     EmitGlobal(cast<FunctionDecl>(D));
6849     // Always provide some coverage mapping
6850     // even for the functions that aren't emitted.
6851     AddDeferredUnusedCoverageMapping(D);
6852     break;
6853 
6854   case Decl::CXXDeductionGuide:
6855     // Function-like, but does not result in code emission.
6856     break;
6857 
6858   case Decl::Var:
6859   case Decl::Decomposition:
6860   case Decl::VarTemplateSpecialization:
6861     EmitGlobal(cast<VarDecl>(D));
6862     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6863       for (auto *B : DD->bindings())
6864         if (auto *HD = B->getHoldingVar())
6865           EmitGlobal(HD);
6866     break;
6867 
6868   // Indirect fields from global anonymous structs and unions can be
6869   // ignored; only the actual variable requires IR gen support.
6870   case Decl::IndirectField:
6871     break;
6872 
6873   // C++ Decls
6874   case Decl::Namespace:
6875     EmitDeclContext(cast<NamespaceDecl>(D));
6876     break;
6877   case Decl::ClassTemplateSpecialization: {
6878     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6879     if (CGDebugInfo *DI = getModuleDebugInfo())
6880       if (Spec->getSpecializationKind() ==
6881               TSK_ExplicitInstantiationDefinition &&
6882           Spec->hasDefinition())
6883         DI->completeTemplateDefinition(*Spec);
6884   } [[fallthrough]];
6885   case Decl::CXXRecord: {
6886     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6887     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6888       if (CRD->hasDefinition())
6889         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6890       if (auto *ES = D->getASTContext().getExternalSource())
6891         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6892           DI->completeUnusedClass(*CRD);
6893     }
6894     // Emit any static data members, they may be definitions.
6895     for (auto *I : CRD->decls())
6896       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6897         EmitTopLevelDecl(I);
6898     break;
6899   }
6900     // No code generation needed.
6901   case Decl::UsingShadow:
6902   case Decl::ClassTemplate:
6903   case Decl::VarTemplate:
6904   case Decl::Concept:
6905   case Decl::VarTemplatePartialSpecialization:
6906   case Decl::FunctionTemplate:
6907   case Decl::TypeAliasTemplate:
6908   case Decl::Block:
6909   case Decl::Empty:
6910   case Decl::Binding:
6911     break;
6912   case Decl::Using:          // using X; [C++]
6913     if (CGDebugInfo *DI = getModuleDebugInfo())
6914         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6915     break;
6916   case Decl::UsingEnum: // using enum X; [C++]
6917     if (CGDebugInfo *DI = getModuleDebugInfo())
6918       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6919     break;
6920   case Decl::NamespaceAlias:
6921     if (CGDebugInfo *DI = getModuleDebugInfo())
6922         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6923     break;
6924   case Decl::UsingDirective: // using namespace X; [C++]
6925     if (CGDebugInfo *DI = getModuleDebugInfo())
6926       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6927     break;
6928   case Decl::CXXConstructor:
6929     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6930     break;
6931   case Decl::CXXDestructor:
6932     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6933     break;
6934 
6935   case Decl::StaticAssert:
6936     // Nothing to do.
6937     break;
6938 
6939   // Objective-C Decls
6940 
6941   // Forward declarations, no (immediate) code generation.
6942   case Decl::ObjCInterface:
6943   case Decl::ObjCCategory:
6944     break;
6945 
6946   case Decl::ObjCProtocol: {
6947     auto *Proto = cast<ObjCProtocolDecl>(D);
6948     if (Proto->isThisDeclarationADefinition())
6949       ObjCRuntime->GenerateProtocol(Proto);
6950     break;
6951   }
6952 
6953   case Decl::ObjCCategoryImpl:
6954     // Categories have properties but don't support synthesize so we
6955     // can ignore them here.
6956     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6957     break;
6958 
6959   case Decl::ObjCImplementation: {
6960     auto *OMD = cast<ObjCImplementationDecl>(D);
6961     EmitObjCPropertyImplementations(OMD);
6962     EmitObjCIvarInitializations(OMD);
6963     ObjCRuntime->GenerateClass(OMD);
6964     // Emit global variable debug information.
6965     if (CGDebugInfo *DI = getModuleDebugInfo())
6966       if (getCodeGenOpts().hasReducedDebugInfo())
6967         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6968             OMD->getClassInterface()), OMD->getLocation());
6969     break;
6970   }
6971   case Decl::ObjCMethod: {
6972     auto *OMD = cast<ObjCMethodDecl>(D);
6973     // If this is not a prototype, emit the body.
6974     if (OMD->getBody())
6975       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6976     break;
6977   }
6978   case Decl::ObjCCompatibleAlias:
6979     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6980     break;
6981 
6982   case Decl::PragmaComment: {
6983     const auto *PCD = cast<PragmaCommentDecl>(D);
6984     switch (PCD->getCommentKind()) {
6985     case PCK_Unknown:
6986       llvm_unreachable("unexpected pragma comment kind");
6987     case PCK_Linker:
6988       AppendLinkerOptions(PCD->getArg());
6989       break;
6990     case PCK_Lib:
6991         AddDependentLib(PCD->getArg());
6992       break;
6993     case PCK_Compiler:
6994     case PCK_ExeStr:
6995     case PCK_User:
6996       break; // We ignore all of these.
6997     }
6998     break;
6999   }
7000 
7001   case Decl::PragmaDetectMismatch: {
7002     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7003     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7004     break;
7005   }
7006 
7007   case Decl::LinkageSpec:
7008     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7009     break;
7010 
7011   case Decl::FileScopeAsm: {
7012     // File-scope asm is ignored during device-side CUDA compilation.
7013     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7014       break;
7015     // File-scope asm is ignored during device-side OpenMP compilation.
7016     if (LangOpts.OpenMPIsTargetDevice)
7017       break;
7018     // File-scope asm is ignored during device-side SYCL compilation.
7019     if (LangOpts.SYCLIsDevice)
7020       break;
7021     auto *AD = cast<FileScopeAsmDecl>(D);
7022     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7023     break;
7024   }
7025 
7026   case Decl::TopLevelStmt:
7027     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7028     break;
7029 
7030   case Decl::Import: {
7031     auto *Import = cast<ImportDecl>(D);
7032 
7033     // If we've already imported this module, we're done.
7034     if (!ImportedModules.insert(Import->getImportedModule()))
7035       break;
7036 
7037     // Emit debug information for direct imports.
7038     if (!Import->getImportedOwningModule()) {
7039       if (CGDebugInfo *DI = getModuleDebugInfo())
7040         DI->EmitImportDecl(*Import);
7041     }
7042 
7043     // For C++ standard modules we are done - we will call the module
7044     // initializer for imported modules, and that will likewise call those for
7045     // any imports it has.
7046     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7047         !Import->getImportedOwningModule()->isModuleMapModule())
7048       break;
7049 
7050     // For clang C++ module map modules the initializers for sub-modules are
7051     // emitted here.
7052 
7053     // Find all of the submodules and emit the module initializers.
7054     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7055     SmallVector<clang::Module *, 16> Stack;
7056     Visited.insert(Import->getImportedModule());
7057     Stack.push_back(Import->getImportedModule());
7058 
7059     while (!Stack.empty()) {
7060       clang::Module *Mod = Stack.pop_back_val();
7061       if (!EmittedModuleInitializers.insert(Mod).second)
7062         continue;
7063 
7064       for (auto *D : Context.getModuleInitializers(Mod))
7065         EmitTopLevelDecl(D);
7066 
7067       // Visit the submodules of this module.
7068       for (auto *Submodule : Mod->submodules()) {
7069         // Skip explicit children; they need to be explicitly imported to emit
7070         // the initializers.
7071         if (Submodule->IsExplicit)
7072           continue;
7073 
7074         if (Visited.insert(Submodule).second)
7075           Stack.push_back(Submodule);
7076       }
7077     }
7078     break;
7079   }
7080 
7081   case Decl::Export:
7082     EmitDeclContext(cast<ExportDecl>(D));
7083     break;
7084 
7085   case Decl::OMPThreadPrivate:
7086     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7087     break;
7088 
7089   case Decl::OMPAllocate:
7090     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7091     break;
7092 
7093   case Decl::OMPDeclareReduction:
7094     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7095     break;
7096 
7097   case Decl::OMPDeclareMapper:
7098     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7099     break;
7100 
7101   case Decl::OMPRequires:
7102     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7103     break;
7104 
7105   case Decl::Typedef:
7106   case Decl::TypeAlias: // using foo = bar; [C++11]
7107     if (CGDebugInfo *DI = getModuleDebugInfo())
7108       DI->EmitAndRetainType(
7109           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7110     break;
7111 
7112   case Decl::Record:
7113     if (CGDebugInfo *DI = getModuleDebugInfo())
7114       if (cast<RecordDecl>(D)->getDefinition())
7115         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7116     break;
7117 
7118   case Decl::Enum:
7119     if (CGDebugInfo *DI = getModuleDebugInfo())
7120       if (cast<EnumDecl>(D)->getDefinition())
7121         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7122     break;
7123 
7124   case Decl::HLSLBuffer:
7125     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7126     break;
7127 
7128   default:
7129     // Make sure we handled everything we should, every other kind is a
7130     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7131     // function. Need to recode Decl::Kind to do that easily.
7132     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7133     break;
7134   }
7135 }
7136 
7137 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7138   // Do we need to generate coverage mapping?
7139   if (!CodeGenOpts.CoverageMapping)
7140     return;
7141   switch (D->getKind()) {
7142   case Decl::CXXConversion:
7143   case Decl::CXXMethod:
7144   case Decl::Function:
7145   case Decl::ObjCMethod:
7146   case Decl::CXXConstructor:
7147   case Decl::CXXDestructor: {
7148     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7149       break;
7150     SourceManager &SM = getContext().getSourceManager();
7151     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7152       break;
7153     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7154     break;
7155   }
7156   default:
7157     break;
7158   };
7159 }
7160 
7161 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7162   // Do we need to generate coverage mapping?
7163   if (!CodeGenOpts.CoverageMapping)
7164     return;
7165   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7166     if (Fn->isTemplateInstantiation())
7167       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7168   }
7169   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7170 }
7171 
7172 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7173   // We call takeVector() here to avoid use-after-free.
7174   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7175   // we deserialize function bodies to emit coverage info for them, and that
7176   // deserializes more declarations. How should we handle that case?
7177   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7178     if (!Entry.second)
7179       continue;
7180     const Decl *D = Entry.first;
7181     switch (D->getKind()) {
7182     case Decl::CXXConversion:
7183     case Decl::CXXMethod:
7184     case Decl::Function:
7185     case Decl::ObjCMethod: {
7186       CodeGenPGO PGO(*this);
7187       GlobalDecl GD(cast<FunctionDecl>(D));
7188       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7189                                   getFunctionLinkage(GD));
7190       break;
7191     }
7192     case Decl::CXXConstructor: {
7193       CodeGenPGO PGO(*this);
7194       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7195       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7196                                   getFunctionLinkage(GD));
7197       break;
7198     }
7199     case Decl::CXXDestructor: {
7200       CodeGenPGO PGO(*this);
7201       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7202       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7203                                   getFunctionLinkage(GD));
7204       break;
7205     }
7206     default:
7207       break;
7208     };
7209   }
7210 }
7211 
7212 void CodeGenModule::EmitMainVoidAlias() {
7213   // In order to transition away from "__original_main" gracefully, emit an
7214   // alias for "main" in the no-argument case so that libc can detect when
7215   // new-style no-argument main is in used.
7216   if (llvm::Function *F = getModule().getFunction("main")) {
7217     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7218         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7219       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7220       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7221     }
7222   }
7223 }
7224 
7225 /// Turns the given pointer into a constant.
7226 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7227                                           const void *Ptr) {
7228   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7229   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7230   return llvm::ConstantInt::get(i64, PtrInt);
7231 }
7232 
7233 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7234                                    llvm::NamedMDNode *&GlobalMetadata,
7235                                    GlobalDecl D,
7236                                    llvm::GlobalValue *Addr) {
7237   if (!GlobalMetadata)
7238     GlobalMetadata =
7239       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7240 
7241   // TODO: should we report variant information for ctors/dtors?
7242   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7243                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7244                                CGM.getLLVMContext(), D.getDecl()))};
7245   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7246 }
7247 
7248 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7249                                                  llvm::GlobalValue *CppFunc) {
7250   // Store the list of ifuncs we need to replace uses in.
7251   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7252   // List of ConstantExprs that we should be able to delete when we're done
7253   // here.
7254   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7255 
7256   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7257   if (Elem == CppFunc)
7258     return false;
7259 
7260   // First make sure that all users of this are ifuncs (or ifuncs via a
7261   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7262   // later.
7263   for (llvm::User *User : Elem->users()) {
7264     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7265     // ifunc directly. In any other case, just give up, as we don't know what we
7266     // could break by changing those.
7267     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7268       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7269         return false;
7270 
7271       for (llvm::User *CEUser : ConstExpr->users()) {
7272         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7273           IFuncs.push_back(IFunc);
7274         } else {
7275           return false;
7276         }
7277       }
7278       CEs.push_back(ConstExpr);
7279     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7280       IFuncs.push_back(IFunc);
7281     } else {
7282       // This user is one we don't know how to handle, so fail redirection. This
7283       // will result in an ifunc retaining a resolver name that will ultimately
7284       // fail to be resolved to a defined function.
7285       return false;
7286     }
7287   }
7288 
7289   // Now we know this is a valid case where we can do this alias replacement, we
7290   // need to remove all of the references to Elem (and the bitcasts!) so we can
7291   // delete it.
7292   for (llvm::GlobalIFunc *IFunc : IFuncs)
7293     IFunc->setResolver(nullptr);
7294   for (llvm::ConstantExpr *ConstExpr : CEs)
7295     ConstExpr->destroyConstant();
7296 
7297   // We should now be out of uses for the 'old' version of this function, so we
7298   // can erase it as well.
7299   Elem->eraseFromParent();
7300 
7301   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7302     // The type of the resolver is always just a function-type that returns the
7303     // type of the IFunc, so create that here. If the type of the actual
7304     // resolver doesn't match, it just gets bitcast to the right thing.
7305     auto *ResolverTy =
7306         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7307     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7308         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7309     IFunc->setResolver(Resolver);
7310   }
7311   return true;
7312 }
7313 
7314 /// For each function which is declared within an extern "C" region and marked
7315 /// as 'used', but has internal linkage, create an alias from the unmangled
7316 /// name to the mangled name if possible. People expect to be able to refer
7317 /// to such functions with an unmangled name from inline assembly within the
7318 /// same translation unit.
7319 void CodeGenModule::EmitStaticExternCAliases() {
7320   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7321     return;
7322   for (auto &I : StaticExternCValues) {
7323     const IdentifierInfo *Name = I.first;
7324     llvm::GlobalValue *Val = I.second;
7325 
7326     // If Val is null, that implies there were multiple declarations that each
7327     // had a claim to the unmangled name. In this case, generation of the alias
7328     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7329     if (!Val)
7330       break;
7331 
7332     llvm::GlobalValue *ExistingElem =
7333         getModule().getNamedValue(Name->getName());
7334 
7335     // If there is either not something already by this name, or we were able to
7336     // replace all uses from IFuncs, create the alias.
7337     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7338       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7339   }
7340 }
7341 
7342 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7343                                              GlobalDecl &Result) const {
7344   auto Res = Manglings.find(MangledName);
7345   if (Res == Manglings.end())
7346     return false;
7347   Result = Res->getValue();
7348   return true;
7349 }
7350 
7351 /// Emits metadata nodes associating all the global values in the
7352 /// current module with the Decls they came from.  This is useful for
7353 /// projects using IR gen as a subroutine.
7354 ///
7355 /// Since there's currently no way to associate an MDNode directly
7356 /// with an llvm::GlobalValue, we create a global named metadata
7357 /// with the name 'clang.global.decl.ptrs'.
7358 void CodeGenModule::EmitDeclMetadata() {
7359   llvm::NamedMDNode *GlobalMetadata = nullptr;
7360 
7361   for (auto &I : MangledDeclNames) {
7362     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7363     // Some mangled names don't necessarily have an associated GlobalValue
7364     // in this module, e.g. if we mangled it for DebugInfo.
7365     if (Addr)
7366       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7367   }
7368 }
7369 
7370 /// Emits metadata nodes for all the local variables in the current
7371 /// function.
7372 void CodeGenFunction::EmitDeclMetadata() {
7373   if (LocalDeclMap.empty()) return;
7374 
7375   llvm::LLVMContext &Context = getLLVMContext();
7376 
7377   // Find the unique metadata ID for this name.
7378   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7379 
7380   llvm::NamedMDNode *GlobalMetadata = nullptr;
7381 
7382   for (auto &I : LocalDeclMap) {
7383     const Decl *D = I.first;
7384     llvm::Value *Addr = I.second.emitRawPointer(*this);
7385     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7386       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7387       Alloca->setMetadata(
7388           DeclPtrKind, llvm::MDNode::get(
7389                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7390     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7391       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7392       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7393     }
7394   }
7395 }
7396 
7397 void CodeGenModule::EmitVersionIdentMetadata() {
7398   llvm::NamedMDNode *IdentMetadata =
7399     TheModule.getOrInsertNamedMetadata("llvm.ident");
7400   std::string Version = getClangFullVersion();
7401   llvm::LLVMContext &Ctx = TheModule.getContext();
7402 
7403   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7404   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7405 }
7406 
7407 void CodeGenModule::EmitCommandLineMetadata() {
7408   llvm::NamedMDNode *CommandLineMetadata =
7409     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7410   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7411   llvm::LLVMContext &Ctx = TheModule.getContext();
7412 
7413   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7414   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7415 }
7416 
7417 void CodeGenModule::EmitCoverageFile() {
7418   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7419   if (!CUNode)
7420     return;
7421 
7422   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7423   llvm::LLVMContext &Ctx = TheModule.getContext();
7424   auto *CoverageDataFile =
7425       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7426   auto *CoverageNotesFile =
7427       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7428   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7429     llvm::MDNode *CU = CUNode->getOperand(i);
7430     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7431     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7432   }
7433 }
7434 
7435 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7436                                                        bool ForEH) {
7437   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7438   // FIXME: should we even be calling this method if RTTI is disabled
7439   // and it's not for EH?
7440   if (!shouldEmitRTTI(ForEH))
7441     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7442 
7443   if (ForEH && Ty->isObjCObjectPointerType() &&
7444       LangOpts.ObjCRuntime.isGNUFamily())
7445     return ObjCRuntime->GetEHType(Ty);
7446 
7447   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7448 }
7449 
7450 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7451   // Do not emit threadprivates in simd-only mode.
7452   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7453     return;
7454   for (auto RefExpr : D->varlists()) {
7455     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7456     bool PerformInit =
7457         VD->getAnyInitializer() &&
7458         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7459                                                         /*ForRef=*/false);
7460 
7461     Address Addr(GetAddrOfGlobalVar(VD),
7462                  getTypes().ConvertTypeForMem(VD->getType()),
7463                  getContext().getDeclAlign(VD));
7464     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7465             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7466       CXXGlobalInits.push_back(InitFunction);
7467   }
7468 }
7469 
7470 llvm::Metadata *
7471 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7472                                             StringRef Suffix) {
7473   if (auto *FnType = T->getAs<FunctionProtoType>())
7474     T = getContext().getFunctionType(
7475         FnType->getReturnType(), FnType->getParamTypes(),
7476         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7477 
7478   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7479   if (InternalId)
7480     return InternalId;
7481 
7482   if (isExternallyVisible(T->getLinkage())) {
7483     std::string OutName;
7484     llvm::raw_string_ostream Out(OutName);
7485     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7486         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7487 
7488     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7489       Out << ".normalized";
7490 
7491     Out << Suffix;
7492 
7493     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7494   } else {
7495     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7496                                            llvm::ArrayRef<llvm::Metadata *>());
7497   }
7498 
7499   return InternalId;
7500 }
7501 
7502 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7503   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7504 }
7505 
7506 llvm::Metadata *
7507 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7508   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7509 }
7510 
7511 // Generalize pointer types to a void pointer with the qualifiers of the
7512 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7513 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7514 // 'void *'.
7515 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7516   if (!Ty->isPointerType())
7517     return Ty;
7518 
7519   return Ctx.getPointerType(
7520       QualType(Ctx.VoidTy).withCVRQualifiers(
7521           Ty->getPointeeType().getCVRQualifiers()));
7522 }
7523 
7524 // Apply type generalization to a FunctionType's return and argument types
7525 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7526   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7527     SmallVector<QualType, 8> GeneralizedParams;
7528     for (auto &Param : FnType->param_types())
7529       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7530 
7531     return Ctx.getFunctionType(
7532         GeneralizeType(Ctx, FnType->getReturnType()),
7533         GeneralizedParams, FnType->getExtProtoInfo());
7534   }
7535 
7536   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7537     return Ctx.getFunctionNoProtoType(
7538         GeneralizeType(Ctx, FnType->getReturnType()));
7539 
7540   llvm_unreachable("Encountered unknown FunctionType");
7541 }
7542 
7543 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7544   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7545                                       GeneralizedMetadataIdMap, ".generalized");
7546 }
7547 
7548 /// Returns whether this module needs the "all-vtables" type identifier.
7549 bool CodeGenModule::NeedAllVtablesTypeId() const {
7550   // Returns true if at least one of vtable-based CFI checkers is enabled and
7551   // is not in the trapping mode.
7552   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7553            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7554           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7555            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7556           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7557            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7558           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7559            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7560 }
7561 
7562 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7563                                           CharUnits Offset,
7564                                           const CXXRecordDecl *RD) {
7565   llvm::Metadata *MD =
7566       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7567   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7568 
7569   if (CodeGenOpts.SanitizeCfiCrossDso)
7570     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7571       VTable->addTypeMetadata(Offset.getQuantity(),
7572                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7573 
7574   if (NeedAllVtablesTypeId()) {
7575     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7576     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7577   }
7578 }
7579 
7580 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7581   if (!SanStats)
7582     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7583 
7584   return *SanStats;
7585 }
7586 
7587 llvm::Value *
7588 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7589                                                   CodeGenFunction &CGF) {
7590   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7591   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7592   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7593   auto *Call = CGF.EmitRuntimeCall(
7594       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7595   return Call;
7596 }
7597 
7598 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7599     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7600   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7601                                  /* forPointeeType= */ true);
7602 }
7603 
7604 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7605                                                  LValueBaseInfo *BaseInfo,
7606                                                  TBAAAccessInfo *TBAAInfo,
7607                                                  bool forPointeeType) {
7608   if (TBAAInfo)
7609     *TBAAInfo = getTBAAAccessInfo(T);
7610 
7611   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7612   // that doesn't return the information we need to compute BaseInfo.
7613 
7614   // Honor alignment typedef attributes even on incomplete types.
7615   // We also honor them straight for C++ class types, even as pointees;
7616   // there's an expressivity gap here.
7617   if (auto TT = T->getAs<TypedefType>()) {
7618     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7619       if (BaseInfo)
7620         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7621       return getContext().toCharUnitsFromBits(Align);
7622     }
7623   }
7624 
7625   bool AlignForArray = T->isArrayType();
7626 
7627   // Analyze the base element type, so we don't get confused by incomplete
7628   // array types.
7629   T = getContext().getBaseElementType(T);
7630 
7631   if (T->isIncompleteType()) {
7632     // We could try to replicate the logic from
7633     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7634     // type is incomplete, so it's impossible to test. We could try to reuse
7635     // getTypeAlignIfKnown, but that doesn't return the information we need
7636     // to set BaseInfo.  So just ignore the possibility that the alignment is
7637     // greater than one.
7638     if (BaseInfo)
7639       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7640     return CharUnits::One();
7641   }
7642 
7643   if (BaseInfo)
7644     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7645 
7646   CharUnits Alignment;
7647   const CXXRecordDecl *RD;
7648   if (T.getQualifiers().hasUnaligned()) {
7649     Alignment = CharUnits::One();
7650   } else if (forPointeeType && !AlignForArray &&
7651              (RD = T->getAsCXXRecordDecl())) {
7652     // For C++ class pointees, we don't know whether we're pointing at a
7653     // base or a complete object, so we generally need to use the
7654     // non-virtual alignment.
7655     Alignment = getClassPointerAlignment(RD);
7656   } else {
7657     Alignment = getContext().getTypeAlignInChars(T);
7658   }
7659 
7660   // Cap to the global maximum type alignment unless the alignment
7661   // was somehow explicit on the type.
7662   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7663     if (Alignment.getQuantity() > MaxAlign &&
7664         !getContext().isAlignmentRequired(T))
7665       Alignment = CharUnits::fromQuantity(MaxAlign);
7666   }
7667   return Alignment;
7668 }
7669 
7670 bool CodeGenModule::stopAutoInit() {
7671   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7672   if (StopAfter) {
7673     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7674     // used
7675     if (NumAutoVarInit >= StopAfter) {
7676       return true;
7677     }
7678     if (!NumAutoVarInit) {
7679       unsigned DiagID = getDiags().getCustomDiagID(
7680           DiagnosticsEngine::Warning,
7681           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7682           "number of times ftrivial-auto-var-init=%1 gets applied.");
7683       getDiags().Report(DiagID)
7684           << StopAfter
7685           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7686                       LangOptions::TrivialAutoVarInitKind::Zero
7687                   ? "zero"
7688                   : "pattern");
7689     }
7690     ++NumAutoVarInit;
7691   }
7692   return false;
7693 }
7694 
7695 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7696                                                     const Decl *D) const {
7697   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7698   // postfix beginning with '.' since the symbol name can be demangled.
7699   if (LangOpts.HIP)
7700     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7701   else
7702     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7703 
7704   // If the CUID is not specified we try to generate a unique postfix.
7705   if (getLangOpts().CUID.empty()) {
7706     SourceManager &SM = getContext().getSourceManager();
7707     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7708     assert(PLoc.isValid() && "Source location is expected to be valid.");
7709 
7710     // Get the hash of the user defined macros.
7711     llvm::MD5 Hash;
7712     llvm::MD5::MD5Result Result;
7713     for (const auto &Arg : PreprocessorOpts.Macros)
7714       Hash.update(Arg.first);
7715     Hash.final(Result);
7716 
7717     // Get the UniqueID for the file containing the decl.
7718     llvm::sys::fs::UniqueID ID;
7719     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7720       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7721       assert(PLoc.isValid() && "Source location is expected to be valid.");
7722       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7723         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7724             << PLoc.getFilename() << EC.message();
7725     }
7726     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7727        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7728   } else {
7729     OS << getContext().getCUIDHash();
7730   }
7731 }
7732 
7733 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7734   assert(DeferredDeclsToEmit.empty() &&
7735          "Should have emitted all decls deferred to emit.");
7736   assert(NewBuilder->DeferredDecls.empty() &&
7737          "Newly created module should not have deferred decls");
7738   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7739   assert(EmittedDeferredDecls.empty() &&
7740          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7741 
7742   assert(NewBuilder->DeferredVTables.empty() &&
7743          "Newly created module should not have deferred vtables");
7744   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7745 
7746   assert(NewBuilder->MangledDeclNames.empty() &&
7747          "Newly created module should not have mangled decl names");
7748   assert(NewBuilder->Manglings.empty() &&
7749          "Newly created module should not have manglings");
7750   NewBuilder->Manglings = std::move(Manglings);
7751 
7752   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7753 
7754   NewBuilder->TBAA = std::move(TBAA);
7755 
7756   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7757 }
7758