1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeGPU.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CodeGen.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ConvertUTF.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/MD5.h" 66 #include "llvm/Support/TimeProfiler.h" 67 #include "llvm/Support/X86TargetParser.h" 68 69 using namespace clang; 70 using namespace CodeGen; 71 72 static llvm::cl::opt<bool> LimitedCoverage( 73 "limited-coverage-experimental", llvm::cl::Hidden, 74 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 // Build C++20 Module initializers. 140 // TODO: Add Microsoft here once we know the mangling required for the 141 // initializers. 142 CXX20ModuleInits = 143 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 144 ItaniumMangleContext::MK_Itanium; 145 146 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 147 148 if (LangOpts.ObjC) 149 createObjCRuntime(); 150 if (LangOpts.OpenCL) 151 createOpenCLRuntime(); 152 if (LangOpts.OpenMP) 153 createOpenMPRuntime(); 154 if (LangOpts.CUDA) 155 createCUDARuntime(); 156 if (LangOpts.HLSL) 157 createHLSLRuntime(); 158 159 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 160 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 161 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 162 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 163 getCXXABI().getMangleContext())); 164 165 // If debug info or coverage generation is enabled, create the CGDebugInfo 166 // object. 167 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 168 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 169 DebugInfo.reset(new CGDebugInfo(*this)); 170 171 Block.GlobalUniqueCount = 0; 172 173 if (C.getLangOpts().ObjC) 174 ObjCData.reset(new ObjCEntrypoints()); 175 176 if (CodeGenOpts.hasProfileClangUse()) { 177 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 178 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 179 if (auto E = ReaderOrErr.takeError()) { 180 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 181 "Could not read profile %0: %1"); 182 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 183 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 184 << EI.message(); 185 }); 186 } else 187 PGOReader = std::move(ReaderOrErr.get()); 188 } 189 190 // If coverage mapping generation is enabled, create the 191 // CoverageMappingModuleGen object. 192 if (CodeGenOpts.CoverageMapping) 193 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 194 195 // Generate the module name hash here if needed. 196 if (CodeGenOpts.UniqueInternalLinkageNames && 197 !getModule().getSourceFileName().empty()) { 198 std::string Path = getModule().getSourceFileName(); 199 // Check if a path substitution is needed from the MacroPrefixMap. 200 for (const auto &Entry : LangOpts.MacroPrefixMap) 201 if (Path.rfind(Entry.first, 0) != std::string::npos) { 202 Path = Entry.second + Path.substr(Entry.first.size()); 203 break; 204 } 205 llvm::MD5 Md5; 206 Md5.update(Path); 207 llvm::MD5::MD5Result R; 208 Md5.final(R); 209 SmallString<32> Str; 210 llvm::MD5::stringifyResult(R, Str); 211 // Convert MD5hash to Decimal. Demangler suffixes can either contain 212 // numbers or characters but not both. 213 llvm::APInt IntHash(128, Str.str(), 16); 214 // Prepend "__uniq" before the hash for tools like profilers to understand 215 // that this symbol is of internal linkage type. The "__uniq" is the 216 // pre-determined prefix that is used to tell tools that this symbol was 217 // created with -funique-internal-linakge-symbols and the tools can strip or 218 // keep the prefix as needed. 219 ModuleNameHash = (Twine(".__uniq.") + 220 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 221 } 222 } 223 224 CodeGenModule::~CodeGenModule() {} 225 226 void CodeGenModule::createObjCRuntime() { 227 // This is just isGNUFamily(), but we want to force implementors of 228 // new ABIs to decide how best to do this. 229 switch (LangOpts.ObjCRuntime.getKind()) { 230 case ObjCRuntime::GNUstep: 231 case ObjCRuntime::GCC: 232 case ObjCRuntime::ObjFW: 233 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 234 return; 235 236 case ObjCRuntime::FragileMacOSX: 237 case ObjCRuntime::MacOSX: 238 case ObjCRuntime::iOS: 239 case ObjCRuntime::WatchOS: 240 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 241 return; 242 } 243 llvm_unreachable("bad runtime kind"); 244 } 245 246 void CodeGenModule::createOpenCLRuntime() { 247 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 248 } 249 250 void CodeGenModule::createOpenMPRuntime() { 251 // Select a specialized code generation class based on the target, if any. 252 // If it does not exist use the default implementation. 253 switch (getTriple().getArch()) { 254 case llvm::Triple::nvptx: 255 case llvm::Triple::nvptx64: 256 case llvm::Triple::amdgcn: 257 assert(getLangOpts().OpenMPIsDevice && 258 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 259 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 260 break; 261 default: 262 if (LangOpts.OpenMPSimd) 263 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 264 else 265 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 266 break; 267 } 268 } 269 270 void CodeGenModule::createCUDARuntime() { 271 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 272 } 273 274 void CodeGenModule::createHLSLRuntime() { 275 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 276 } 277 278 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 279 Replacements[Name] = C; 280 } 281 282 void CodeGenModule::applyReplacements() { 283 for (auto &I : Replacements) { 284 StringRef MangledName = I.first(); 285 llvm::Constant *Replacement = I.second; 286 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 287 if (!Entry) 288 continue; 289 auto *OldF = cast<llvm::Function>(Entry); 290 auto *NewF = dyn_cast<llvm::Function>(Replacement); 291 if (!NewF) { 292 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 293 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 294 } else { 295 auto *CE = cast<llvm::ConstantExpr>(Replacement); 296 assert(CE->getOpcode() == llvm::Instruction::BitCast || 297 CE->getOpcode() == llvm::Instruction::GetElementPtr); 298 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 299 } 300 } 301 302 // Replace old with new, but keep the old order. 303 OldF->replaceAllUsesWith(Replacement); 304 if (NewF) { 305 NewF->removeFromParent(); 306 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 307 NewF); 308 } 309 OldF->eraseFromParent(); 310 } 311 } 312 313 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 314 GlobalValReplacements.push_back(std::make_pair(GV, C)); 315 } 316 317 void CodeGenModule::applyGlobalValReplacements() { 318 for (auto &I : GlobalValReplacements) { 319 llvm::GlobalValue *GV = I.first; 320 llvm::Constant *C = I.second; 321 322 GV->replaceAllUsesWith(C); 323 GV->eraseFromParent(); 324 } 325 } 326 327 // This is only used in aliases that we created and we know they have a 328 // linear structure. 329 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 330 const llvm::Constant *C; 331 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 332 C = GA->getAliasee(); 333 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 334 C = GI->getResolver(); 335 else 336 return GV; 337 338 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 339 if (!AliaseeGV) 340 return nullptr; 341 342 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 343 if (FinalGV == GV) 344 return nullptr; 345 346 return FinalGV; 347 } 348 349 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 350 SourceLocation Location, bool IsIFunc, 351 const llvm::GlobalValue *Alias, 352 const llvm::GlobalValue *&GV) { 353 GV = getAliasedGlobal(Alias); 354 if (!GV) { 355 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 356 return false; 357 } 358 359 if (GV->isDeclaration()) { 360 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 361 return false; 362 } 363 364 if (IsIFunc) { 365 // Check resolver function type. 366 const auto *F = dyn_cast<llvm::Function>(GV); 367 if (!F) { 368 Diags.Report(Location, diag::err_alias_to_undefined) 369 << IsIFunc << IsIFunc; 370 return false; 371 } 372 373 llvm::FunctionType *FTy = F->getFunctionType(); 374 if (!FTy->getReturnType()->isPointerTy()) { 375 Diags.Report(Location, diag::err_ifunc_resolver_return); 376 return false; 377 } 378 } 379 380 return true; 381 } 382 383 void CodeGenModule::checkAliases() { 384 // Check if the constructed aliases are well formed. It is really unfortunate 385 // that we have to do this in CodeGen, but we only construct mangled names 386 // and aliases during codegen. 387 bool Error = false; 388 DiagnosticsEngine &Diags = getDiags(); 389 for (const GlobalDecl &GD : Aliases) { 390 const auto *D = cast<ValueDecl>(GD.getDecl()); 391 SourceLocation Location; 392 bool IsIFunc = D->hasAttr<IFuncAttr>(); 393 if (const Attr *A = D->getDefiningAttr()) 394 Location = A->getLocation(); 395 else 396 llvm_unreachable("Not an alias or ifunc?"); 397 398 StringRef MangledName = getMangledName(GD); 399 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 400 const llvm::GlobalValue *GV = nullptr; 401 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 402 Error = true; 403 continue; 404 } 405 406 llvm::Constant *Aliasee = 407 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 408 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 409 410 llvm::GlobalValue *AliaseeGV; 411 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 412 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 413 else 414 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 415 416 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 417 StringRef AliasSection = SA->getName(); 418 if (AliasSection != AliaseeGV->getSection()) 419 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 420 << AliasSection << IsIFunc << IsIFunc; 421 } 422 423 // We have to handle alias to weak aliases in here. LLVM itself disallows 424 // this since the object semantics would not match the IL one. For 425 // compatibility with gcc we implement it by just pointing the alias 426 // to its aliasee's aliasee. We also warn, since the user is probably 427 // expecting the link to be weak. 428 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 429 if (GA->isInterposable()) { 430 Diags.Report(Location, diag::warn_alias_to_weak_alias) 431 << GV->getName() << GA->getName() << IsIFunc; 432 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 433 GA->getAliasee(), Alias->getType()); 434 435 if (IsIFunc) 436 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 437 else 438 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 439 } 440 } 441 } 442 if (!Error) 443 return; 444 445 for (const GlobalDecl &GD : Aliases) { 446 StringRef MangledName = getMangledName(GD); 447 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 448 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 449 Alias->eraseFromParent(); 450 } 451 } 452 453 void CodeGenModule::clear() { 454 DeferredDeclsToEmit.clear(); 455 if (OpenMPRuntime) 456 OpenMPRuntime->clear(); 457 } 458 459 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 460 StringRef MainFile) { 461 if (!hasDiagnostics()) 462 return; 463 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 464 if (MainFile.empty()) 465 MainFile = "<stdin>"; 466 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 467 } else { 468 if (Mismatched > 0) 469 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 470 471 if (Missing > 0) 472 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 473 } 474 } 475 476 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 477 llvm::Module &M) { 478 if (!LO.VisibilityFromDLLStorageClass) 479 return; 480 481 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 482 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 483 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 484 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 485 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 486 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 487 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 488 CodeGenModule::GetLLVMVisibility( 489 LO.getExternDeclNoDLLStorageClassVisibility()); 490 491 for (llvm::GlobalValue &GV : M.global_values()) { 492 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 493 continue; 494 495 // Reset DSO locality before setting the visibility. This removes 496 // any effects that visibility options and annotations may have 497 // had on the DSO locality. Setting the visibility will implicitly set 498 // appropriate globals to DSO Local; however, this will be pessimistic 499 // w.r.t. to the normal compiler IRGen. 500 GV.setDSOLocal(false); 501 502 if (GV.isDeclarationForLinker()) { 503 GV.setVisibility(GV.getDLLStorageClass() == 504 llvm::GlobalValue::DLLImportStorageClass 505 ? ExternDeclDLLImportVisibility 506 : ExternDeclNoDLLStorageClassVisibility); 507 } else { 508 GV.setVisibility(GV.getDLLStorageClass() == 509 llvm::GlobalValue::DLLExportStorageClass 510 ? DLLExportVisibility 511 : NoDLLStorageClassVisibility); 512 } 513 514 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 515 } 516 } 517 518 void CodeGenModule::Release() { 519 Module *Primary = getContext().getModuleForCodeGen(); 520 if (CXX20ModuleInits && Primary) 521 EmitModuleInitializers(Primary); 522 EmitDeferred(); 523 EmitVTablesOpportunistically(); 524 applyGlobalValReplacements(); 525 applyReplacements(); 526 emitMultiVersionFunctions(); 527 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 528 EmitCXXModuleInitFunc(Primary); 529 else 530 EmitCXXGlobalInitFunc(); 531 EmitCXXGlobalCleanUpFunc(); 532 registerGlobalDtorsWithAtExit(); 533 EmitCXXThreadLocalInitFunc(); 534 if (ObjCRuntime) 535 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 536 AddGlobalCtor(ObjCInitFunction); 537 if (Context.getLangOpts().CUDA && CUDARuntime) { 538 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 539 AddGlobalCtor(CudaCtorFunction); 540 } 541 if (OpenMPRuntime) { 542 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 543 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 544 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 545 } 546 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 547 OpenMPRuntime->clear(); 548 } 549 if (PGOReader) { 550 getModule().setProfileSummary( 551 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 552 llvm::ProfileSummary::PSK_Instr); 553 if (PGOStats.hasDiagnostics()) 554 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 555 } 556 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 557 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 558 EmitGlobalAnnotations(); 559 EmitStaticExternCAliases(); 560 checkAliases(); 561 EmitDeferredUnusedCoverageMappings(); 562 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 563 if (CoverageMapping) 564 CoverageMapping->emit(); 565 if (CodeGenOpts.SanitizeCfiCrossDso) { 566 CodeGenFunction(*this).EmitCfiCheckFail(); 567 CodeGenFunction(*this).EmitCfiCheckStub(); 568 } 569 emitAtAvailableLinkGuard(); 570 if (Context.getTargetInfo().getTriple().isWasm()) 571 EmitMainVoidAlias(); 572 573 if (getTriple().isAMDGPU()) { 574 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 575 // preserve ASAN functions in bitcode libraries. 576 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 577 auto *FT = llvm::FunctionType::get(VoidTy, {}); 578 auto *F = llvm::Function::Create( 579 FT, llvm::GlobalValue::ExternalLinkage, 580 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 581 auto *Var = new llvm::GlobalVariable( 582 getModule(), FT->getPointerTo(), 583 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 584 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 585 llvm::GlobalVariable::NotThreadLocal); 586 addCompilerUsedGlobal(Var); 587 } 588 // Emit amdgpu_code_object_version module flag, which is code object version 589 // times 100. 590 // ToDo: Enable module flag for all code object version when ROCm device 591 // library is ready. 592 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 593 getModule().addModuleFlag(llvm::Module::Error, 594 "amdgpu_code_object_version", 595 getTarget().getTargetOpts().CodeObjectVersion); 596 } 597 } 598 599 // Emit a global array containing all external kernels or device variables 600 // used by host functions and mark it as used for CUDA/HIP. This is necessary 601 // to get kernels or device variables in archives linked in even if these 602 // kernels or device variables are only used in host functions. 603 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 604 SmallVector<llvm::Constant *, 8> UsedArray; 605 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 606 GlobalDecl GD; 607 if (auto *FD = dyn_cast<FunctionDecl>(D)) 608 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 609 else 610 GD = GlobalDecl(D); 611 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 612 GetAddrOfGlobal(GD), Int8PtrTy)); 613 } 614 615 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 616 617 auto *GV = new llvm::GlobalVariable( 618 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 619 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 620 addCompilerUsedGlobal(GV); 621 } 622 623 emitLLVMUsed(); 624 if (SanStats) 625 SanStats->finish(); 626 627 if (CodeGenOpts.Autolink && 628 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 629 EmitModuleLinkOptions(); 630 } 631 632 // On ELF we pass the dependent library specifiers directly to the linker 633 // without manipulating them. This is in contrast to other platforms where 634 // they are mapped to a specific linker option by the compiler. This 635 // difference is a result of the greater variety of ELF linkers and the fact 636 // that ELF linkers tend to handle libraries in a more complicated fashion 637 // than on other platforms. This forces us to defer handling the dependent 638 // libs to the linker. 639 // 640 // CUDA/HIP device and host libraries are different. Currently there is no 641 // way to differentiate dependent libraries for host or device. Existing 642 // usage of #pragma comment(lib, *) is intended for host libraries on 643 // Windows. Therefore emit llvm.dependent-libraries only for host. 644 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 645 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 646 for (auto *MD : ELFDependentLibraries) 647 NMD->addOperand(MD); 648 } 649 650 // Record mregparm value now so it is visible through rest of codegen. 651 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 652 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 653 CodeGenOpts.NumRegisterParameters); 654 655 if (CodeGenOpts.DwarfVersion) { 656 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 657 CodeGenOpts.DwarfVersion); 658 } 659 660 if (CodeGenOpts.Dwarf64) 661 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 662 663 if (Context.getLangOpts().SemanticInterposition) 664 // Require various optimization to respect semantic interposition. 665 getModule().setSemanticInterposition(true); 666 667 if (CodeGenOpts.EmitCodeView) { 668 // Indicate that we want CodeView in the metadata. 669 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 670 } 671 if (CodeGenOpts.CodeViewGHash) { 672 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 673 } 674 if (CodeGenOpts.ControlFlowGuard) { 675 // Function ID tables and checks for Control Flow Guard (cfguard=2). 676 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 677 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 678 // Function ID tables for Control Flow Guard (cfguard=1). 679 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 680 } 681 if (CodeGenOpts.EHContGuard) { 682 // Function ID tables for EH Continuation Guard. 683 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 684 } 685 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 686 // We don't support LTO with 2 with different StrictVTablePointers 687 // FIXME: we could support it by stripping all the information introduced 688 // by StrictVTablePointers. 689 690 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 691 692 llvm::Metadata *Ops[2] = { 693 llvm::MDString::get(VMContext, "StrictVTablePointers"), 694 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 695 llvm::Type::getInt32Ty(VMContext), 1))}; 696 697 getModule().addModuleFlag(llvm::Module::Require, 698 "StrictVTablePointersRequirement", 699 llvm::MDNode::get(VMContext, Ops)); 700 } 701 if (getModuleDebugInfo()) 702 // We support a single version in the linked module. The LLVM 703 // parser will drop debug info with a different version number 704 // (and warn about it, too). 705 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 706 llvm::DEBUG_METADATA_VERSION); 707 708 // We need to record the widths of enums and wchar_t, so that we can generate 709 // the correct build attributes in the ARM backend. wchar_size is also used by 710 // TargetLibraryInfo. 711 uint64_t WCharWidth = 712 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 713 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 714 715 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 716 if ( Arch == llvm::Triple::arm 717 || Arch == llvm::Triple::armeb 718 || Arch == llvm::Triple::thumb 719 || Arch == llvm::Triple::thumbeb) { 720 // The minimum width of an enum in bytes 721 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 722 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 723 } 724 725 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 726 StringRef ABIStr = Target.getABI(); 727 llvm::LLVMContext &Ctx = TheModule.getContext(); 728 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 729 llvm::MDString::get(Ctx, ABIStr)); 730 } 731 732 if (CodeGenOpts.SanitizeCfiCrossDso) { 733 // Indicate that we want cross-DSO control flow integrity checks. 734 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 735 } 736 737 if (CodeGenOpts.WholeProgramVTables) { 738 // Indicate whether VFE was enabled for this module, so that the 739 // vcall_visibility metadata added under whole program vtables is handled 740 // appropriately in the optimizer. 741 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 742 CodeGenOpts.VirtualFunctionElimination); 743 } 744 745 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 746 getModule().addModuleFlag(llvm::Module::Override, 747 "CFI Canonical Jump Tables", 748 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 749 } 750 751 if (CodeGenOpts.CFProtectionReturn && 752 Target.checkCFProtectionReturnSupported(getDiags())) { 753 // Indicate that we want to instrument return control flow protection. 754 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 755 1); 756 } 757 758 if (CodeGenOpts.CFProtectionBranch && 759 Target.checkCFProtectionBranchSupported(getDiags())) { 760 // Indicate that we want to instrument branch control flow protection. 761 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 762 1); 763 } 764 765 if (CodeGenOpts.IBTSeal) 766 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 767 768 // Add module metadata for return address signing (ignoring 769 // non-leaf/all) and stack tagging. These are actually turned on by function 770 // attributes, but we use module metadata to emit build attributes. This is 771 // needed for LTO, where the function attributes are inside bitcode 772 // serialised into a global variable by the time build attributes are 773 // emitted, so we can't access them. LTO objects could be compiled with 774 // different flags therefore module flags are set to "Min" behavior to achieve 775 // the same end result of the normal build where e.g BTI is off if any object 776 // doesn't support it. 777 if (Context.getTargetInfo().hasFeature("ptrauth") && 778 LangOpts.getSignReturnAddressScope() != 779 LangOptions::SignReturnAddressScopeKind::None) 780 getModule().addModuleFlag(llvm::Module::Override, 781 "sign-return-address-buildattr", 1); 782 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 783 getModule().addModuleFlag(llvm::Module::Override, 784 "tag-stack-memory-buildattr", 1); 785 786 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 787 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 788 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 789 Arch == llvm::Triple::aarch64_be) { 790 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 791 LangOpts.BranchTargetEnforcement); 792 793 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 794 LangOpts.hasSignReturnAddress()); 795 796 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 797 LangOpts.isSignReturnAddressScopeAll()); 798 799 getModule().addModuleFlag(llvm::Module::Min, 800 "sign-return-address-with-bkey", 801 !LangOpts.isSignReturnAddressWithAKey()); 802 } 803 804 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 805 llvm::LLVMContext &Ctx = TheModule.getContext(); 806 getModule().addModuleFlag( 807 llvm::Module::Error, "MemProfProfileFilename", 808 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 809 } 810 811 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 812 // Indicate whether __nvvm_reflect should be configured to flush denormal 813 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 814 // property.) 815 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 816 CodeGenOpts.FP32DenormalMode.Output != 817 llvm::DenormalMode::IEEE); 818 } 819 820 if (LangOpts.EHAsynch) 821 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 822 823 // Indicate whether this Module was compiled with -fopenmp 824 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 825 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 826 if (getLangOpts().OpenMPIsDevice) 827 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 828 LangOpts.OpenMP); 829 830 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 831 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 832 EmitOpenCLMetadata(); 833 // Emit SPIR version. 834 if (getTriple().isSPIR()) { 835 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 836 // opencl.spir.version named metadata. 837 // C++ for OpenCL has a distinct mapping for version compatibility with 838 // OpenCL. 839 auto Version = LangOpts.getOpenCLCompatibleVersion(); 840 llvm::Metadata *SPIRVerElts[] = { 841 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 842 Int32Ty, Version / 100)), 843 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 844 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 845 llvm::NamedMDNode *SPIRVerMD = 846 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 847 llvm::LLVMContext &Ctx = TheModule.getContext(); 848 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 849 } 850 } 851 852 // HLSL related end of code gen work items. 853 if (LangOpts.HLSL) 854 getHLSLRuntime().finishCodeGen(); 855 856 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 857 assert(PLevel < 3 && "Invalid PIC Level"); 858 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 859 if (Context.getLangOpts().PIE) 860 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 861 } 862 863 if (getCodeGenOpts().CodeModel.size() > 0) { 864 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 865 .Case("tiny", llvm::CodeModel::Tiny) 866 .Case("small", llvm::CodeModel::Small) 867 .Case("kernel", llvm::CodeModel::Kernel) 868 .Case("medium", llvm::CodeModel::Medium) 869 .Case("large", llvm::CodeModel::Large) 870 .Default(~0u); 871 if (CM != ~0u) { 872 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 873 getModule().setCodeModel(codeModel); 874 } 875 } 876 877 if (CodeGenOpts.NoPLT) 878 getModule().setRtLibUseGOT(); 879 if (CodeGenOpts.UnwindTables) 880 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 881 882 switch (CodeGenOpts.getFramePointer()) { 883 case CodeGenOptions::FramePointerKind::None: 884 // 0 ("none") is the default. 885 break; 886 case CodeGenOptions::FramePointerKind::NonLeaf: 887 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 888 break; 889 case CodeGenOptions::FramePointerKind::All: 890 getModule().setFramePointer(llvm::FramePointerKind::All); 891 break; 892 } 893 894 SimplifyPersonality(); 895 896 if (getCodeGenOpts().EmitDeclMetadata) 897 EmitDeclMetadata(); 898 899 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 900 EmitCoverageFile(); 901 902 if (CGDebugInfo *DI = getModuleDebugInfo()) 903 DI->finalize(); 904 905 if (getCodeGenOpts().EmitVersionIdentMetadata) 906 EmitVersionIdentMetadata(); 907 908 if (!getCodeGenOpts().RecordCommandLine.empty()) 909 EmitCommandLineMetadata(); 910 911 if (!getCodeGenOpts().StackProtectorGuard.empty()) 912 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 913 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 914 getModule().setStackProtectorGuardReg( 915 getCodeGenOpts().StackProtectorGuardReg); 916 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 917 getModule().setStackProtectorGuardOffset( 918 getCodeGenOpts().StackProtectorGuardOffset); 919 if (getCodeGenOpts().StackAlignment) 920 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 921 if (getCodeGenOpts().SkipRaxSetup) 922 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 923 924 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 925 926 EmitBackendOptionsMetadata(getCodeGenOpts()); 927 928 // If there is device offloading code embed it in the host now. 929 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 930 931 // Set visibility from DLL storage class 932 // We do this at the end of LLVM IR generation; after any operation 933 // that might affect the DLL storage class or the visibility, and 934 // before anything that might act on these. 935 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 936 } 937 938 void CodeGenModule::EmitOpenCLMetadata() { 939 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 940 // opencl.ocl.version named metadata node. 941 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 942 auto Version = LangOpts.getOpenCLCompatibleVersion(); 943 llvm::Metadata *OCLVerElts[] = { 944 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 945 Int32Ty, Version / 100)), 946 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 947 Int32Ty, (Version % 100) / 10))}; 948 llvm::NamedMDNode *OCLVerMD = 949 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 950 llvm::LLVMContext &Ctx = TheModule.getContext(); 951 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 952 } 953 954 void CodeGenModule::EmitBackendOptionsMetadata( 955 const CodeGenOptions CodeGenOpts) { 956 switch (getTriple().getArch()) { 957 default: 958 break; 959 case llvm::Triple::riscv32: 960 case llvm::Triple::riscv64: 961 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 962 CodeGenOpts.SmallDataLimit); 963 break; 964 } 965 } 966 967 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 968 // Make sure that this type is translated. 969 Types.UpdateCompletedType(TD); 970 } 971 972 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 973 // Make sure that this type is translated. 974 Types.RefreshTypeCacheForClass(RD); 975 } 976 977 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 978 if (!TBAA) 979 return nullptr; 980 return TBAA->getTypeInfo(QTy); 981 } 982 983 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 984 if (!TBAA) 985 return TBAAAccessInfo(); 986 if (getLangOpts().CUDAIsDevice) { 987 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 988 // access info. 989 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 990 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 991 nullptr) 992 return TBAAAccessInfo(); 993 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 994 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 995 nullptr) 996 return TBAAAccessInfo(); 997 } 998 } 999 return TBAA->getAccessInfo(AccessType); 1000 } 1001 1002 TBAAAccessInfo 1003 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1004 if (!TBAA) 1005 return TBAAAccessInfo(); 1006 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1007 } 1008 1009 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1010 if (!TBAA) 1011 return nullptr; 1012 return TBAA->getTBAAStructInfo(QTy); 1013 } 1014 1015 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1016 if (!TBAA) 1017 return nullptr; 1018 return TBAA->getBaseTypeInfo(QTy); 1019 } 1020 1021 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1022 if (!TBAA) 1023 return nullptr; 1024 return TBAA->getAccessTagInfo(Info); 1025 } 1026 1027 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1028 TBAAAccessInfo TargetInfo) { 1029 if (!TBAA) 1030 return TBAAAccessInfo(); 1031 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1032 } 1033 1034 TBAAAccessInfo 1035 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1036 TBAAAccessInfo InfoB) { 1037 if (!TBAA) 1038 return TBAAAccessInfo(); 1039 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1040 } 1041 1042 TBAAAccessInfo 1043 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1044 TBAAAccessInfo SrcInfo) { 1045 if (!TBAA) 1046 return TBAAAccessInfo(); 1047 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1048 } 1049 1050 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1051 TBAAAccessInfo TBAAInfo) { 1052 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1053 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1054 } 1055 1056 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1057 llvm::Instruction *I, const CXXRecordDecl *RD) { 1058 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1059 llvm::MDNode::get(getLLVMContext(), {})); 1060 } 1061 1062 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1063 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1064 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1065 } 1066 1067 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1068 /// specified stmt yet. 1069 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1070 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1071 "cannot compile this %0 yet"); 1072 std::string Msg = Type; 1073 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1074 << Msg << S->getSourceRange(); 1075 } 1076 1077 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1078 /// specified decl yet. 1079 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1080 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1081 "cannot compile this %0 yet"); 1082 std::string Msg = Type; 1083 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1084 } 1085 1086 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1087 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1088 } 1089 1090 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1091 const NamedDecl *D) const { 1092 if (GV->hasDLLImportStorageClass()) 1093 return; 1094 // Internal definitions always have default visibility. 1095 if (GV->hasLocalLinkage()) { 1096 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1097 return; 1098 } 1099 if (!D) 1100 return; 1101 // Set visibility for definitions, and for declarations if requested globally 1102 // or set explicitly. 1103 LinkageInfo LV = D->getLinkageAndVisibility(); 1104 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1105 !GV->isDeclarationForLinker()) 1106 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1107 } 1108 1109 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1110 llvm::GlobalValue *GV) { 1111 if (GV->hasLocalLinkage()) 1112 return true; 1113 1114 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1115 return true; 1116 1117 // DLLImport explicitly marks the GV as external. 1118 if (GV->hasDLLImportStorageClass()) 1119 return false; 1120 1121 const llvm::Triple &TT = CGM.getTriple(); 1122 if (TT.isWindowsGNUEnvironment()) { 1123 // In MinGW, variables without DLLImport can still be automatically 1124 // imported from a DLL by the linker; don't mark variables that 1125 // potentially could come from another DLL as DSO local. 1126 1127 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1128 // (and this actually happens in the public interface of libstdc++), so 1129 // such variables can't be marked as DSO local. (Native TLS variables 1130 // can't be dllimported at all, though.) 1131 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1132 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1133 return false; 1134 } 1135 1136 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1137 // remain unresolved in the link, they can be resolved to zero, which is 1138 // outside the current DSO. 1139 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1140 return false; 1141 1142 // Every other GV is local on COFF. 1143 // Make an exception for windows OS in the triple: Some firmware builds use 1144 // *-win32-macho triples. This (accidentally?) produced windows relocations 1145 // without GOT tables in older clang versions; Keep this behaviour. 1146 // FIXME: even thread local variables? 1147 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1148 return true; 1149 1150 // Only handle COFF and ELF for now. 1151 if (!TT.isOSBinFormatELF()) 1152 return false; 1153 1154 // If this is not an executable, don't assume anything is local. 1155 const auto &CGOpts = CGM.getCodeGenOpts(); 1156 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1157 const auto &LOpts = CGM.getLangOpts(); 1158 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1159 // On ELF, if -fno-semantic-interposition is specified and the target 1160 // supports local aliases, there will be neither CC1 1161 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1162 // dso_local on the function if using a local alias is preferable (can avoid 1163 // PLT indirection). 1164 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1165 return false; 1166 return !(CGM.getLangOpts().SemanticInterposition || 1167 CGM.getLangOpts().HalfNoSemanticInterposition); 1168 } 1169 1170 // A definition cannot be preempted from an executable. 1171 if (!GV->isDeclarationForLinker()) 1172 return true; 1173 1174 // Most PIC code sequences that assume that a symbol is local cannot produce a 1175 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1176 // depended, it seems worth it to handle it here. 1177 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1178 return false; 1179 1180 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1181 if (TT.isPPC64()) 1182 return false; 1183 1184 if (CGOpts.DirectAccessExternalData) { 1185 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1186 // for non-thread-local variables. If the symbol is not defined in the 1187 // executable, a copy relocation will be needed at link time. dso_local is 1188 // excluded for thread-local variables because they generally don't support 1189 // copy relocations. 1190 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1191 if (!Var->isThreadLocal()) 1192 return true; 1193 1194 // -fno-pic sets dso_local on a function declaration to allow direct 1195 // accesses when taking its address (similar to a data symbol). If the 1196 // function is not defined in the executable, a canonical PLT entry will be 1197 // needed at link time. -fno-direct-access-external-data can avoid the 1198 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1199 // it could just cause trouble without providing perceptible benefits. 1200 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1201 return true; 1202 } 1203 1204 // If we can use copy relocations we can assume it is local. 1205 1206 // Otherwise don't assume it is local. 1207 return false; 1208 } 1209 1210 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1211 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1212 } 1213 1214 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1215 GlobalDecl GD) const { 1216 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1217 // C++ destructors have a few C++ ABI specific special cases. 1218 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1219 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1220 return; 1221 } 1222 setDLLImportDLLExport(GV, D); 1223 } 1224 1225 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1226 const NamedDecl *D) const { 1227 if (D && D->isExternallyVisible()) { 1228 if (D->hasAttr<DLLImportAttr>()) 1229 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1230 else if ((D->hasAttr<DLLExportAttr>() || 1231 shouldMapVisibilityToDLLExport(D)) && 1232 !GV->isDeclarationForLinker()) 1233 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1234 } 1235 } 1236 1237 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1238 GlobalDecl GD) const { 1239 setDLLImportDLLExport(GV, GD); 1240 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1241 } 1242 1243 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1244 const NamedDecl *D) const { 1245 setDLLImportDLLExport(GV, D); 1246 setGVPropertiesAux(GV, D); 1247 } 1248 1249 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1250 const NamedDecl *D) const { 1251 setGlobalVisibility(GV, D); 1252 setDSOLocal(GV); 1253 GV->setPartition(CodeGenOpts.SymbolPartition); 1254 } 1255 1256 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1257 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1258 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1259 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1260 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1261 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1262 } 1263 1264 llvm::GlobalVariable::ThreadLocalMode 1265 CodeGenModule::GetDefaultLLVMTLSModel() const { 1266 switch (CodeGenOpts.getDefaultTLSModel()) { 1267 case CodeGenOptions::GeneralDynamicTLSModel: 1268 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1269 case CodeGenOptions::LocalDynamicTLSModel: 1270 return llvm::GlobalVariable::LocalDynamicTLSModel; 1271 case CodeGenOptions::InitialExecTLSModel: 1272 return llvm::GlobalVariable::InitialExecTLSModel; 1273 case CodeGenOptions::LocalExecTLSModel: 1274 return llvm::GlobalVariable::LocalExecTLSModel; 1275 } 1276 llvm_unreachable("Invalid TLS model!"); 1277 } 1278 1279 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1280 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1281 1282 llvm::GlobalValue::ThreadLocalMode TLM; 1283 TLM = GetDefaultLLVMTLSModel(); 1284 1285 // Override the TLS model if it is explicitly specified. 1286 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1287 TLM = GetLLVMTLSModel(Attr->getModel()); 1288 } 1289 1290 GV->setThreadLocalMode(TLM); 1291 } 1292 1293 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1294 StringRef Name) { 1295 const TargetInfo &Target = CGM.getTarget(); 1296 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1297 } 1298 1299 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1300 const CPUSpecificAttr *Attr, 1301 unsigned CPUIndex, 1302 raw_ostream &Out) { 1303 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1304 // supported. 1305 if (Attr) 1306 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1307 else if (CGM.getTarget().supportsIFunc()) 1308 Out << ".resolver"; 1309 } 1310 1311 static void AppendTargetMangling(const CodeGenModule &CGM, 1312 const TargetAttr *Attr, raw_ostream &Out) { 1313 if (Attr->isDefaultVersion()) 1314 return; 1315 1316 Out << '.'; 1317 const TargetInfo &Target = CGM.getTarget(); 1318 ParsedTargetAttr Info = 1319 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1320 // Multiversioning doesn't allow "no-${feature}", so we can 1321 // only have "+" prefixes here. 1322 assert(LHS.startswith("+") && RHS.startswith("+") && 1323 "Features should always have a prefix."); 1324 return Target.multiVersionSortPriority(LHS.substr(1)) > 1325 Target.multiVersionSortPriority(RHS.substr(1)); 1326 }); 1327 1328 bool IsFirst = true; 1329 1330 if (!Info.Architecture.empty()) { 1331 IsFirst = false; 1332 Out << "arch_" << Info.Architecture; 1333 } 1334 1335 for (StringRef Feat : Info.Features) { 1336 if (!IsFirst) 1337 Out << '_'; 1338 IsFirst = false; 1339 Out << Feat.substr(1); 1340 } 1341 } 1342 1343 // Returns true if GD is a function decl with internal linkage and 1344 // needs a unique suffix after the mangled name. 1345 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1346 CodeGenModule &CGM) { 1347 const Decl *D = GD.getDecl(); 1348 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1349 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1350 } 1351 1352 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1353 const TargetClonesAttr *Attr, 1354 unsigned VersionIndex, 1355 raw_ostream &Out) { 1356 Out << '.'; 1357 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1358 if (FeatureStr.startswith("arch=")) 1359 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1360 else 1361 Out << FeatureStr; 1362 1363 Out << '.' << Attr->getMangledIndex(VersionIndex); 1364 } 1365 1366 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1367 const NamedDecl *ND, 1368 bool OmitMultiVersionMangling = false) { 1369 SmallString<256> Buffer; 1370 llvm::raw_svector_ostream Out(Buffer); 1371 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1372 if (!CGM.getModuleNameHash().empty()) 1373 MC.needsUniqueInternalLinkageNames(); 1374 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1375 if (ShouldMangle) 1376 MC.mangleName(GD.getWithDecl(ND), Out); 1377 else { 1378 IdentifierInfo *II = ND->getIdentifier(); 1379 assert(II && "Attempt to mangle unnamed decl."); 1380 const auto *FD = dyn_cast<FunctionDecl>(ND); 1381 1382 if (FD && 1383 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1384 Out << "__regcall3__" << II->getName(); 1385 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1386 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1387 Out << "__device_stub__" << II->getName(); 1388 } else { 1389 Out << II->getName(); 1390 } 1391 } 1392 1393 // Check if the module name hash should be appended for internal linkage 1394 // symbols. This should come before multi-version target suffixes are 1395 // appended. This is to keep the name and module hash suffix of the 1396 // internal linkage function together. The unique suffix should only be 1397 // added when name mangling is done to make sure that the final name can 1398 // be properly demangled. For example, for C functions without prototypes, 1399 // name mangling is not done and the unique suffix should not be appeneded 1400 // then. 1401 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1402 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1403 "Hash computed when not explicitly requested"); 1404 Out << CGM.getModuleNameHash(); 1405 } 1406 1407 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1408 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1409 switch (FD->getMultiVersionKind()) { 1410 case MultiVersionKind::CPUDispatch: 1411 case MultiVersionKind::CPUSpecific: 1412 AppendCPUSpecificCPUDispatchMangling(CGM, 1413 FD->getAttr<CPUSpecificAttr>(), 1414 GD.getMultiVersionIndex(), Out); 1415 break; 1416 case MultiVersionKind::Target: 1417 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1418 break; 1419 case MultiVersionKind::TargetClones: 1420 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1421 GD.getMultiVersionIndex(), Out); 1422 break; 1423 case MultiVersionKind::None: 1424 llvm_unreachable("None multiversion type isn't valid here"); 1425 } 1426 } 1427 1428 // Make unique name for device side static file-scope variable for HIP. 1429 if (CGM.getContext().shouldExternalize(ND) && 1430 CGM.getLangOpts().GPURelocatableDeviceCode && 1431 CGM.getLangOpts().CUDAIsDevice) 1432 CGM.printPostfixForExternalizedDecl(Out, ND); 1433 1434 return std::string(Out.str()); 1435 } 1436 1437 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1438 const FunctionDecl *FD, 1439 StringRef &CurName) { 1440 if (!FD->isMultiVersion()) 1441 return; 1442 1443 // Get the name of what this would be without the 'target' attribute. This 1444 // allows us to lookup the version that was emitted when this wasn't a 1445 // multiversion function. 1446 std::string NonTargetName = 1447 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1448 GlobalDecl OtherGD; 1449 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1450 assert(OtherGD.getCanonicalDecl() 1451 .getDecl() 1452 ->getAsFunction() 1453 ->isMultiVersion() && 1454 "Other GD should now be a multiversioned function"); 1455 // OtherFD is the version of this function that was mangled BEFORE 1456 // becoming a MultiVersion function. It potentially needs to be updated. 1457 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1458 .getDecl() 1459 ->getAsFunction() 1460 ->getMostRecentDecl(); 1461 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1462 // This is so that if the initial version was already the 'default' 1463 // version, we don't try to update it. 1464 if (OtherName != NonTargetName) { 1465 // Remove instead of erase, since others may have stored the StringRef 1466 // to this. 1467 const auto ExistingRecord = Manglings.find(NonTargetName); 1468 if (ExistingRecord != std::end(Manglings)) 1469 Manglings.remove(&(*ExistingRecord)); 1470 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1471 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1472 Result.first->first(); 1473 // If this is the current decl is being created, make sure we update the name. 1474 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1475 CurName = OtherNameRef; 1476 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1477 Entry->setName(OtherName); 1478 } 1479 } 1480 } 1481 1482 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1483 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1484 1485 // Some ABIs don't have constructor variants. Make sure that base and 1486 // complete constructors get mangled the same. 1487 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1488 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1489 CXXCtorType OrigCtorType = GD.getCtorType(); 1490 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1491 if (OrigCtorType == Ctor_Base) 1492 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1493 } 1494 } 1495 1496 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1497 // static device variable depends on whether the variable is referenced by 1498 // a host or device host function. Therefore the mangled name cannot be 1499 // cached. 1500 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1501 auto FoundName = MangledDeclNames.find(CanonicalGD); 1502 if (FoundName != MangledDeclNames.end()) 1503 return FoundName->second; 1504 } 1505 1506 // Keep the first result in the case of a mangling collision. 1507 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1508 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1509 1510 // Ensure either we have different ABIs between host and device compilations, 1511 // says host compilation following MSVC ABI but device compilation follows 1512 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1513 // mangling should be the same after name stubbing. The later checking is 1514 // very important as the device kernel name being mangled in host-compilation 1515 // is used to resolve the device binaries to be executed. Inconsistent naming 1516 // result in undefined behavior. Even though we cannot check that naming 1517 // directly between host- and device-compilations, the host- and 1518 // device-mangling in host compilation could help catching certain ones. 1519 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1520 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1521 (getContext().getAuxTargetInfo() && 1522 (getContext().getAuxTargetInfo()->getCXXABI() != 1523 getContext().getTargetInfo().getCXXABI())) || 1524 getCUDARuntime().getDeviceSideName(ND) == 1525 getMangledNameImpl( 1526 *this, 1527 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1528 ND)); 1529 1530 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1531 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1532 } 1533 1534 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1535 const BlockDecl *BD) { 1536 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1537 const Decl *D = GD.getDecl(); 1538 1539 SmallString<256> Buffer; 1540 llvm::raw_svector_ostream Out(Buffer); 1541 if (!D) 1542 MangleCtx.mangleGlobalBlock(BD, 1543 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1544 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1545 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1546 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1547 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1548 else 1549 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1550 1551 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1552 return Result.first->first(); 1553 } 1554 1555 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1556 auto it = MangledDeclNames.begin(); 1557 while (it != MangledDeclNames.end()) { 1558 if (it->second == Name) 1559 return it->first; 1560 it++; 1561 } 1562 return GlobalDecl(); 1563 } 1564 1565 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1566 return getModule().getNamedValue(Name); 1567 } 1568 1569 /// AddGlobalCtor - Add a function to the list that will be called before 1570 /// main() runs. 1571 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1572 llvm::Constant *AssociatedData) { 1573 // FIXME: Type coercion of void()* types. 1574 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1575 } 1576 1577 /// AddGlobalDtor - Add a function to the list that will be called 1578 /// when the module is unloaded. 1579 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1580 bool IsDtorAttrFunc) { 1581 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1582 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1583 DtorsUsingAtExit[Priority].push_back(Dtor); 1584 return; 1585 } 1586 1587 // FIXME: Type coercion of void()* types. 1588 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1589 } 1590 1591 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1592 if (Fns.empty()) return; 1593 1594 // Ctor function type is void()*. 1595 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1596 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1597 TheModule.getDataLayout().getProgramAddressSpace()); 1598 1599 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1600 llvm::StructType *CtorStructTy = llvm::StructType::get( 1601 Int32Ty, CtorPFTy, VoidPtrTy); 1602 1603 // Construct the constructor and destructor arrays. 1604 ConstantInitBuilder builder(*this); 1605 auto ctors = builder.beginArray(CtorStructTy); 1606 for (const auto &I : Fns) { 1607 auto ctor = ctors.beginStruct(CtorStructTy); 1608 ctor.addInt(Int32Ty, I.Priority); 1609 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1610 if (I.AssociatedData) 1611 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1612 else 1613 ctor.addNullPointer(VoidPtrTy); 1614 ctor.finishAndAddTo(ctors); 1615 } 1616 1617 auto list = 1618 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1619 /*constant*/ false, 1620 llvm::GlobalValue::AppendingLinkage); 1621 1622 // The LTO linker doesn't seem to like it when we set an alignment 1623 // on appending variables. Take it off as a workaround. 1624 list->setAlignment(llvm::None); 1625 1626 Fns.clear(); 1627 } 1628 1629 llvm::GlobalValue::LinkageTypes 1630 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1631 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1632 1633 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1634 1635 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1636 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1637 1638 if (isa<CXXConstructorDecl>(D) && 1639 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1640 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1641 // Our approach to inheriting constructors is fundamentally different from 1642 // that used by the MS ABI, so keep our inheriting constructor thunks 1643 // internal rather than trying to pick an unambiguous mangling for them. 1644 return llvm::GlobalValue::InternalLinkage; 1645 } 1646 1647 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1648 } 1649 1650 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1651 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1652 if (!MDS) return nullptr; 1653 1654 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1655 } 1656 1657 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1658 const CGFunctionInfo &Info, 1659 llvm::Function *F, bool IsThunk) { 1660 unsigned CallingConv; 1661 llvm::AttributeList PAL; 1662 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1663 /*AttrOnCallSite=*/false, IsThunk); 1664 F->setAttributes(PAL); 1665 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1666 } 1667 1668 static void removeImageAccessQualifier(std::string& TyName) { 1669 std::string ReadOnlyQual("__read_only"); 1670 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1671 if (ReadOnlyPos != std::string::npos) 1672 // "+ 1" for the space after access qualifier. 1673 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1674 else { 1675 std::string WriteOnlyQual("__write_only"); 1676 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1677 if (WriteOnlyPos != std::string::npos) 1678 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1679 else { 1680 std::string ReadWriteQual("__read_write"); 1681 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1682 if (ReadWritePos != std::string::npos) 1683 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1684 } 1685 } 1686 } 1687 1688 // Returns the address space id that should be produced to the 1689 // kernel_arg_addr_space metadata. This is always fixed to the ids 1690 // as specified in the SPIR 2.0 specification in order to differentiate 1691 // for example in clGetKernelArgInfo() implementation between the address 1692 // spaces with targets without unique mapping to the OpenCL address spaces 1693 // (basically all single AS CPUs). 1694 static unsigned ArgInfoAddressSpace(LangAS AS) { 1695 switch (AS) { 1696 case LangAS::opencl_global: 1697 return 1; 1698 case LangAS::opencl_constant: 1699 return 2; 1700 case LangAS::opencl_local: 1701 return 3; 1702 case LangAS::opencl_generic: 1703 return 4; // Not in SPIR 2.0 specs. 1704 case LangAS::opencl_global_device: 1705 return 5; 1706 case LangAS::opencl_global_host: 1707 return 6; 1708 default: 1709 return 0; // Assume private. 1710 } 1711 } 1712 1713 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1714 const FunctionDecl *FD, 1715 CodeGenFunction *CGF) { 1716 assert(((FD && CGF) || (!FD && !CGF)) && 1717 "Incorrect use - FD and CGF should either be both null or not!"); 1718 // Create MDNodes that represent the kernel arg metadata. 1719 // Each MDNode is a list in the form of "key", N number of values which is 1720 // the same number of values as their are kernel arguments. 1721 1722 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1723 1724 // MDNode for the kernel argument address space qualifiers. 1725 SmallVector<llvm::Metadata *, 8> addressQuals; 1726 1727 // MDNode for the kernel argument access qualifiers (images only). 1728 SmallVector<llvm::Metadata *, 8> accessQuals; 1729 1730 // MDNode for the kernel argument type names. 1731 SmallVector<llvm::Metadata *, 8> argTypeNames; 1732 1733 // MDNode for the kernel argument base type names. 1734 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1735 1736 // MDNode for the kernel argument type qualifiers. 1737 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1738 1739 // MDNode for the kernel argument names. 1740 SmallVector<llvm::Metadata *, 8> argNames; 1741 1742 if (FD && CGF) 1743 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1744 const ParmVarDecl *parm = FD->getParamDecl(i); 1745 // Get argument name. 1746 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1747 1748 if (!getLangOpts().OpenCL) 1749 continue; 1750 QualType ty = parm->getType(); 1751 std::string typeQuals; 1752 1753 // Get image and pipe access qualifier: 1754 if (ty->isImageType() || ty->isPipeType()) { 1755 const Decl *PDecl = parm; 1756 if (auto *TD = dyn_cast<TypedefType>(ty)) 1757 PDecl = TD->getDecl(); 1758 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1759 if (A && A->isWriteOnly()) 1760 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1761 else if (A && A->isReadWrite()) 1762 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1763 else 1764 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1765 } else 1766 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1767 1768 auto getTypeSpelling = [&](QualType Ty) { 1769 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1770 1771 if (Ty.isCanonical()) { 1772 StringRef typeNameRef = typeName; 1773 // Turn "unsigned type" to "utype" 1774 if (typeNameRef.consume_front("unsigned ")) 1775 return std::string("u") + typeNameRef.str(); 1776 if (typeNameRef.consume_front("signed ")) 1777 return typeNameRef.str(); 1778 } 1779 1780 return typeName; 1781 }; 1782 1783 if (ty->isPointerType()) { 1784 QualType pointeeTy = ty->getPointeeType(); 1785 1786 // Get address qualifier. 1787 addressQuals.push_back( 1788 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1789 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1790 1791 // Get argument type name. 1792 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1793 std::string baseTypeName = 1794 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1795 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1796 argBaseTypeNames.push_back( 1797 llvm::MDString::get(VMContext, baseTypeName)); 1798 1799 // Get argument type qualifiers: 1800 if (ty.isRestrictQualified()) 1801 typeQuals = "restrict"; 1802 if (pointeeTy.isConstQualified() || 1803 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1804 typeQuals += typeQuals.empty() ? "const" : " const"; 1805 if (pointeeTy.isVolatileQualified()) 1806 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1807 } else { 1808 uint32_t AddrSpc = 0; 1809 bool isPipe = ty->isPipeType(); 1810 if (ty->isImageType() || isPipe) 1811 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1812 1813 addressQuals.push_back( 1814 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1815 1816 // Get argument type name. 1817 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1818 std::string typeName = getTypeSpelling(ty); 1819 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1820 1821 // Remove access qualifiers on images 1822 // (as they are inseparable from type in clang implementation, 1823 // but OpenCL spec provides a special query to get access qualifier 1824 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1825 if (ty->isImageType()) { 1826 removeImageAccessQualifier(typeName); 1827 removeImageAccessQualifier(baseTypeName); 1828 } 1829 1830 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1831 argBaseTypeNames.push_back( 1832 llvm::MDString::get(VMContext, baseTypeName)); 1833 1834 if (isPipe) 1835 typeQuals = "pipe"; 1836 } 1837 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1838 } 1839 1840 if (getLangOpts().OpenCL) { 1841 Fn->setMetadata("kernel_arg_addr_space", 1842 llvm::MDNode::get(VMContext, addressQuals)); 1843 Fn->setMetadata("kernel_arg_access_qual", 1844 llvm::MDNode::get(VMContext, accessQuals)); 1845 Fn->setMetadata("kernel_arg_type", 1846 llvm::MDNode::get(VMContext, argTypeNames)); 1847 Fn->setMetadata("kernel_arg_base_type", 1848 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1849 Fn->setMetadata("kernel_arg_type_qual", 1850 llvm::MDNode::get(VMContext, argTypeQuals)); 1851 } 1852 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1853 getCodeGenOpts().HIPSaveKernelArgName) 1854 Fn->setMetadata("kernel_arg_name", 1855 llvm::MDNode::get(VMContext, argNames)); 1856 } 1857 1858 /// Determines whether the language options require us to model 1859 /// unwind exceptions. We treat -fexceptions as mandating this 1860 /// except under the fragile ObjC ABI with only ObjC exceptions 1861 /// enabled. This means, for example, that C with -fexceptions 1862 /// enables this. 1863 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1864 // If exceptions are completely disabled, obviously this is false. 1865 if (!LangOpts.Exceptions) return false; 1866 1867 // If C++ exceptions are enabled, this is true. 1868 if (LangOpts.CXXExceptions) return true; 1869 1870 // If ObjC exceptions are enabled, this depends on the ABI. 1871 if (LangOpts.ObjCExceptions) { 1872 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1873 } 1874 1875 return true; 1876 } 1877 1878 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1879 const CXXMethodDecl *MD) { 1880 // Check that the type metadata can ever actually be used by a call. 1881 if (!CGM.getCodeGenOpts().LTOUnit || 1882 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1883 return false; 1884 1885 // Only functions whose address can be taken with a member function pointer 1886 // need this sort of type metadata. 1887 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1888 !isa<CXXDestructorDecl>(MD); 1889 } 1890 1891 std::vector<const CXXRecordDecl *> 1892 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1893 llvm::SetVector<const CXXRecordDecl *> MostBases; 1894 1895 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1896 CollectMostBases = [&](const CXXRecordDecl *RD) { 1897 if (RD->getNumBases() == 0) 1898 MostBases.insert(RD); 1899 for (const CXXBaseSpecifier &B : RD->bases()) 1900 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1901 }; 1902 CollectMostBases(RD); 1903 return MostBases.takeVector(); 1904 } 1905 1906 llvm::GlobalVariable * 1907 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1908 auto It = RTTIProxyMap.find(Addr); 1909 if (It != RTTIProxyMap.end()) 1910 return It->second; 1911 1912 auto *FTRTTIProxy = new llvm::GlobalVariable( 1913 TheModule, Addr->getType(), 1914 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1915 "__llvm_rtti_proxy"); 1916 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1917 1918 RTTIProxyMap[Addr] = FTRTTIProxy; 1919 return FTRTTIProxy; 1920 } 1921 1922 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1923 llvm::Function *F) { 1924 llvm::AttrBuilder B(F->getContext()); 1925 1926 if (CodeGenOpts.UnwindTables) 1927 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1928 1929 if (CodeGenOpts.StackClashProtector) 1930 B.addAttribute("probe-stack", "inline-asm"); 1931 1932 if (!hasUnwindExceptions(LangOpts)) 1933 B.addAttribute(llvm::Attribute::NoUnwind); 1934 1935 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1936 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1937 B.addAttribute(llvm::Attribute::StackProtect); 1938 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1939 B.addAttribute(llvm::Attribute::StackProtectStrong); 1940 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1941 B.addAttribute(llvm::Attribute::StackProtectReq); 1942 } 1943 1944 if (!D) { 1945 // If we don't have a declaration to control inlining, the function isn't 1946 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1947 // disabled, mark the function as noinline. 1948 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1949 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1950 B.addAttribute(llvm::Attribute::NoInline); 1951 1952 F->addFnAttrs(B); 1953 return; 1954 } 1955 1956 // Track whether we need to add the optnone LLVM attribute, 1957 // starting with the default for this optimization level. 1958 bool ShouldAddOptNone = 1959 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1960 // We can't add optnone in the following cases, it won't pass the verifier. 1961 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1962 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1963 1964 // Add optnone, but do so only if the function isn't always_inline. 1965 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1966 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1967 B.addAttribute(llvm::Attribute::OptimizeNone); 1968 1969 // OptimizeNone implies noinline; we should not be inlining such functions. 1970 B.addAttribute(llvm::Attribute::NoInline); 1971 1972 // We still need to handle naked functions even though optnone subsumes 1973 // much of their semantics. 1974 if (D->hasAttr<NakedAttr>()) 1975 B.addAttribute(llvm::Attribute::Naked); 1976 1977 // OptimizeNone wins over OptimizeForSize and MinSize. 1978 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1979 F->removeFnAttr(llvm::Attribute::MinSize); 1980 } else if (D->hasAttr<NakedAttr>()) { 1981 // Naked implies noinline: we should not be inlining such functions. 1982 B.addAttribute(llvm::Attribute::Naked); 1983 B.addAttribute(llvm::Attribute::NoInline); 1984 } else if (D->hasAttr<NoDuplicateAttr>()) { 1985 B.addAttribute(llvm::Attribute::NoDuplicate); 1986 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1987 // Add noinline if the function isn't always_inline. 1988 B.addAttribute(llvm::Attribute::NoInline); 1989 } else if (D->hasAttr<AlwaysInlineAttr>() && 1990 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1991 // (noinline wins over always_inline, and we can't specify both in IR) 1992 B.addAttribute(llvm::Attribute::AlwaysInline); 1993 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1994 // If we're not inlining, then force everything that isn't always_inline to 1995 // carry an explicit noinline attribute. 1996 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1997 B.addAttribute(llvm::Attribute::NoInline); 1998 } else { 1999 // Otherwise, propagate the inline hint attribute and potentially use its 2000 // absence to mark things as noinline. 2001 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2002 // Search function and template pattern redeclarations for inline. 2003 auto CheckForInline = [](const FunctionDecl *FD) { 2004 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2005 return Redecl->isInlineSpecified(); 2006 }; 2007 if (any_of(FD->redecls(), CheckRedeclForInline)) 2008 return true; 2009 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2010 if (!Pattern) 2011 return false; 2012 return any_of(Pattern->redecls(), CheckRedeclForInline); 2013 }; 2014 if (CheckForInline(FD)) { 2015 B.addAttribute(llvm::Attribute::InlineHint); 2016 } else if (CodeGenOpts.getInlining() == 2017 CodeGenOptions::OnlyHintInlining && 2018 !FD->isInlined() && 2019 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2020 B.addAttribute(llvm::Attribute::NoInline); 2021 } 2022 } 2023 } 2024 2025 // Add other optimization related attributes if we are optimizing this 2026 // function. 2027 if (!D->hasAttr<OptimizeNoneAttr>()) { 2028 if (D->hasAttr<ColdAttr>()) { 2029 if (!ShouldAddOptNone) 2030 B.addAttribute(llvm::Attribute::OptimizeForSize); 2031 B.addAttribute(llvm::Attribute::Cold); 2032 } 2033 if (D->hasAttr<HotAttr>()) 2034 B.addAttribute(llvm::Attribute::Hot); 2035 if (D->hasAttr<MinSizeAttr>()) 2036 B.addAttribute(llvm::Attribute::MinSize); 2037 } 2038 2039 F->addFnAttrs(B); 2040 2041 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2042 if (alignment) 2043 F->setAlignment(llvm::Align(alignment)); 2044 2045 if (!D->hasAttr<AlignedAttr>()) 2046 if (LangOpts.FunctionAlignment) 2047 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2048 2049 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2050 // reserve a bit for differentiating between virtual and non-virtual member 2051 // functions. If the current target's C++ ABI requires this and this is a 2052 // member function, set its alignment accordingly. 2053 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2054 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2055 F->setAlignment(llvm::Align(2)); 2056 } 2057 2058 // In the cross-dso CFI mode with canonical jump tables, we want !type 2059 // attributes on definitions only. 2060 if (CodeGenOpts.SanitizeCfiCrossDso && 2061 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2062 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2063 // Skip available_externally functions. They won't be codegen'ed in the 2064 // current module anyway. 2065 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2066 CreateFunctionTypeMetadataForIcall(FD, F); 2067 } 2068 } 2069 2070 // Emit type metadata on member functions for member function pointer checks. 2071 // These are only ever necessary on definitions; we're guaranteed that the 2072 // definition will be present in the LTO unit as a result of LTO visibility. 2073 auto *MD = dyn_cast<CXXMethodDecl>(D); 2074 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2075 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2076 llvm::Metadata *Id = 2077 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2078 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2079 F->addTypeMetadata(0, Id); 2080 } 2081 } 2082 } 2083 2084 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2085 llvm::Function *F) { 2086 if (D->hasAttr<StrictFPAttr>()) { 2087 llvm::AttrBuilder FuncAttrs(F->getContext()); 2088 FuncAttrs.addAttribute("strictfp"); 2089 F->addFnAttrs(FuncAttrs); 2090 } 2091 } 2092 2093 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2094 const Decl *D = GD.getDecl(); 2095 if (isa_and_nonnull<NamedDecl>(D)) 2096 setGVProperties(GV, GD); 2097 else 2098 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2099 2100 if (D && D->hasAttr<UsedAttr>()) 2101 addUsedOrCompilerUsedGlobal(GV); 2102 2103 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2104 const auto *VD = cast<VarDecl>(D); 2105 if (VD->getType().isConstQualified() && 2106 VD->getStorageDuration() == SD_Static) 2107 addUsedOrCompilerUsedGlobal(GV); 2108 } 2109 } 2110 2111 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2112 llvm::AttrBuilder &Attrs) { 2113 // Add target-cpu and target-features attributes to functions. If 2114 // we have a decl for the function and it has a target attribute then 2115 // parse that and add it to the feature set. 2116 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2117 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2118 std::vector<std::string> Features; 2119 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2120 FD = FD ? FD->getMostRecentDecl() : FD; 2121 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2122 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2123 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2124 bool AddedAttr = false; 2125 if (TD || SD || TC) { 2126 llvm::StringMap<bool> FeatureMap; 2127 getContext().getFunctionFeatureMap(FeatureMap, GD); 2128 2129 // Produce the canonical string for this set of features. 2130 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2131 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2132 2133 // Now add the target-cpu and target-features to the function. 2134 // While we populated the feature map above, we still need to 2135 // get and parse the target attribute so we can get the cpu for 2136 // the function. 2137 if (TD) { 2138 ParsedTargetAttr ParsedAttr = TD->parse(); 2139 if (!ParsedAttr.Architecture.empty() && 2140 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2141 TargetCPU = ParsedAttr.Architecture; 2142 TuneCPU = ""; // Clear the tune CPU. 2143 } 2144 if (!ParsedAttr.Tune.empty() && 2145 getTarget().isValidCPUName(ParsedAttr.Tune)) 2146 TuneCPU = ParsedAttr.Tune; 2147 } 2148 2149 if (SD) { 2150 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2151 // favor this processor. 2152 TuneCPU = getTarget().getCPUSpecificTuneName( 2153 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2154 } 2155 } else { 2156 // Otherwise just add the existing target cpu and target features to the 2157 // function. 2158 Features = getTarget().getTargetOpts().Features; 2159 } 2160 2161 if (!TargetCPU.empty()) { 2162 Attrs.addAttribute("target-cpu", TargetCPU); 2163 AddedAttr = true; 2164 } 2165 if (!TuneCPU.empty()) { 2166 Attrs.addAttribute("tune-cpu", TuneCPU); 2167 AddedAttr = true; 2168 } 2169 if (!Features.empty()) { 2170 llvm::sort(Features); 2171 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2172 AddedAttr = true; 2173 } 2174 2175 return AddedAttr; 2176 } 2177 2178 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2179 llvm::GlobalObject *GO) { 2180 const Decl *D = GD.getDecl(); 2181 SetCommonAttributes(GD, GO); 2182 2183 if (D) { 2184 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2185 if (D->hasAttr<RetainAttr>()) 2186 addUsedGlobal(GV); 2187 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2188 GV->addAttribute("bss-section", SA->getName()); 2189 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2190 GV->addAttribute("data-section", SA->getName()); 2191 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2192 GV->addAttribute("rodata-section", SA->getName()); 2193 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2194 GV->addAttribute("relro-section", SA->getName()); 2195 } 2196 2197 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2198 if (D->hasAttr<RetainAttr>()) 2199 addUsedGlobal(F); 2200 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2201 if (!D->getAttr<SectionAttr>()) 2202 F->addFnAttr("implicit-section-name", SA->getName()); 2203 2204 llvm::AttrBuilder Attrs(F->getContext()); 2205 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2206 // We know that GetCPUAndFeaturesAttributes will always have the 2207 // newest set, since it has the newest possible FunctionDecl, so the 2208 // new ones should replace the old. 2209 llvm::AttributeMask RemoveAttrs; 2210 RemoveAttrs.addAttribute("target-cpu"); 2211 RemoveAttrs.addAttribute("target-features"); 2212 RemoveAttrs.addAttribute("tune-cpu"); 2213 F->removeFnAttrs(RemoveAttrs); 2214 F->addFnAttrs(Attrs); 2215 } 2216 } 2217 2218 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2219 GO->setSection(CSA->getName()); 2220 else if (const auto *SA = D->getAttr<SectionAttr>()) 2221 GO->setSection(SA->getName()); 2222 } 2223 2224 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2225 } 2226 2227 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2228 llvm::Function *F, 2229 const CGFunctionInfo &FI) { 2230 const Decl *D = GD.getDecl(); 2231 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2232 SetLLVMFunctionAttributesForDefinition(D, F); 2233 2234 F->setLinkage(llvm::Function::InternalLinkage); 2235 2236 setNonAliasAttributes(GD, F); 2237 } 2238 2239 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2240 // Set linkage and visibility in case we never see a definition. 2241 LinkageInfo LV = ND->getLinkageAndVisibility(); 2242 // Don't set internal linkage on declarations. 2243 // "extern_weak" is overloaded in LLVM; we probably should have 2244 // separate linkage types for this. 2245 if (isExternallyVisible(LV.getLinkage()) && 2246 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2247 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2248 } 2249 2250 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2251 llvm::Function *F) { 2252 // Only if we are checking indirect calls. 2253 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2254 return; 2255 2256 // Non-static class methods are handled via vtable or member function pointer 2257 // checks elsewhere. 2258 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2259 return; 2260 2261 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2262 F->addTypeMetadata(0, MD); 2263 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2264 2265 // Emit a hash-based bit set entry for cross-DSO calls. 2266 if (CodeGenOpts.SanitizeCfiCrossDso) 2267 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2268 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2269 } 2270 2271 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2272 bool IsIncompleteFunction, 2273 bool IsThunk) { 2274 2275 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2276 // If this is an intrinsic function, set the function's attributes 2277 // to the intrinsic's attributes. 2278 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2279 return; 2280 } 2281 2282 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2283 2284 if (!IsIncompleteFunction) 2285 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2286 IsThunk); 2287 2288 // Add the Returned attribute for "this", except for iOS 5 and earlier 2289 // where substantial code, including the libstdc++ dylib, was compiled with 2290 // GCC and does not actually return "this". 2291 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2292 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2293 assert(!F->arg_empty() && 2294 F->arg_begin()->getType() 2295 ->canLosslesslyBitCastTo(F->getReturnType()) && 2296 "unexpected this return"); 2297 F->addParamAttr(0, llvm::Attribute::Returned); 2298 } 2299 2300 // Only a few attributes are set on declarations; these may later be 2301 // overridden by a definition. 2302 2303 setLinkageForGV(F, FD); 2304 setGVProperties(F, FD); 2305 2306 // Setup target-specific attributes. 2307 if (!IsIncompleteFunction && F->isDeclaration()) 2308 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2309 2310 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2311 F->setSection(CSA->getName()); 2312 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2313 F->setSection(SA->getName()); 2314 2315 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2316 if (EA->isError()) 2317 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2318 else if (EA->isWarning()) 2319 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2320 } 2321 2322 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2323 if (FD->isInlineBuiltinDeclaration()) { 2324 const FunctionDecl *FDBody; 2325 bool HasBody = FD->hasBody(FDBody); 2326 (void)HasBody; 2327 assert(HasBody && "Inline builtin declarations should always have an " 2328 "available body!"); 2329 if (shouldEmitFunction(FDBody)) 2330 F->addFnAttr(llvm::Attribute::NoBuiltin); 2331 } 2332 2333 if (FD->isReplaceableGlobalAllocationFunction()) { 2334 // A replaceable global allocation function does not act like a builtin by 2335 // default, only if it is invoked by a new-expression or delete-expression. 2336 F->addFnAttr(llvm::Attribute::NoBuiltin); 2337 } 2338 2339 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2340 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2341 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2342 if (MD->isVirtual()) 2343 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2344 2345 // Don't emit entries for function declarations in the cross-DSO mode. This 2346 // is handled with better precision by the receiving DSO. But if jump tables 2347 // are non-canonical then we need type metadata in order to produce the local 2348 // jump table. 2349 if (!CodeGenOpts.SanitizeCfiCrossDso || 2350 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2351 CreateFunctionTypeMetadataForIcall(FD, F); 2352 2353 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2354 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2355 2356 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2357 // Annotate the callback behavior as metadata: 2358 // - The callback callee (as argument number). 2359 // - The callback payloads (as argument numbers). 2360 llvm::LLVMContext &Ctx = F->getContext(); 2361 llvm::MDBuilder MDB(Ctx); 2362 2363 // The payload indices are all but the first one in the encoding. The first 2364 // identifies the callback callee. 2365 int CalleeIdx = *CB->encoding_begin(); 2366 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2367 F->addMetadata(llvm::LLVMContext::MD_callback, 2368 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2369 CalleeIdx, PayloadIndices, 2370 /* VarArgsArePassed */ false)})); 2371 } 2372 } 2373 2374 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2375 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2376 "Only globals with definition can force usage."); 2377 LLVMUsed.emplace_back(GV); 2378 } 2379 2380 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2381 assert(!GV->isDeclaration() && 2382 "Only globals with definition can force usage."); 2383 LLVMCompilerUsed.emplace_back(GV); 2384 } 2385 2386 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2387 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2388 "Only globals with definition can force usage."); 2389 if (getTriple().isOSBinFormatELF()) 2390 LLVMCompilerUsed.emplace_back(GV); 2391 else 2392 LLVMUsed.emplace_back(GV); 2393 } 2394 2395 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2396 std::vector<llvm::WeakTrackingVH> &List) { 2397 // Don't create llvm.used if there is no need. 2398 if (List.empty()) 2399 return; 2400 2401 // Convert List to what ConstantArray needs. 2402 SmallVector<llvm::Constant*, 8> UsedArray; 2403 UsedArray.resize(List.size()); 2404 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2405 UsedArray[i] = 2406 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2407 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2408 } 2409 2410 if (UsedArray.empty()) 2411 return; 2412 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2413 2414 auto *GV = new llvm::GlobalVariable( 2415 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2416 llvm::ConstantArray::get(ATy, UsedArray), Name); 2417 2418 GV->setSection("llvm.metadata"); 2419 } 2420 2421 void CodeGenModule::emitLLVMUsed() { 2422 emitUsed(*this, "llvm.used", LLVMUsed); 2423 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2424 } 2425 2426 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2427 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2428 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2429 } 2430 2431 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2432 llvm::SmallString<32> Opt; 2433 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2434 if (Opt.empty()) 2435 return; 2436 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2437 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2438 } 2439 2440 void CodeGenModule::AddDependentLib(StringRef Lib) { 2441 auto &C = getLLVMContext(); 2442 if (getTarget().getTriple().isOSBinFormatELF()) { 2443 ELFDependentLibraries.push_back( 2444 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2445 return; 2446 } 2447 2448 llvm::SmallString<24> Opt; 2449 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2450 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2451 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2452 } 2453 2454 /// Add link options implied by the given module, including modules 2455 /// it depends on, using a postorder walk. 2456 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2457 SmallVectorImpl<llvm::MDNode *> &Metadata, 2458 llvm::SmallPtrSet<Module *, 16> &Visited) { 2459 // Import this module's parent. 2460 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2461 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2462 } 2463 2464 // Import this module's dependencies. 2465 for (Module *Import : llvm::reverse(Mod->Imports)) { 2466 if (Visited.insert(Import).second) 2467 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2468 } 2469 2470 // Add linker options to link against the libraries/frameworks 2471 // described by this module. 2472 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2473 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2474 2475 // For modules that use export_as for linking, use that module 2476 // name instead. 2477 if (Mod->UseExportAsModuleLinkName) 2478 return; 2479 2480 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2481 // Link against a framework. Frameworks are currently Darwin only, so we 2482 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2483 if (LL.IsFramework) { 2484 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2485 llvm::MDString::get(Context, LL.Library)}; 2486 2487 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2488 continue; 2489 } 2490 2491 // Link against a library. 2492 if (IsELF) { 2493 llvm::Metadata *Args[2] = { 2494 llvm::MDString::get(Context, "lib"), 2495 llvm::MDString::get(Context, LL.Library), 2496 }; 2497 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2498 } else { 2499 llvm::SmallString<24> Opt; 2500 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2501 auto *OptString = llvm::MDString::get(Context, Opt); 2502 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2503 } 2504 } 2505 } 2506 2507 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2508 // Emit the initializers in the order that sub-modules appear in the 2509 // source, first Global Module Fragments, if present. 2510 if (auto GMF = Primary->getGlobalModuleFragment()) { 2511 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2512 assert(D->getKind() == Decl::Var && "GMF initializer decl is not a var?"); 2513 EmitTopLevelDecl(D); 2514 } 2515 } 2516 // Second any associated with the module, itself. 2517 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2518 // Skip import decls, the inits for those are called explicitly. 2519 if (D->getKind() == Decl::Import) 2520 continue; 2521 EmitTopLevelDecl(D); 2522 } 2523 // Third any associated with the Privat eMOdule Fragment, if present. 2524 if (auto PMF = Primary->getPrivateModuleFragment()) { 2525 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2526 assert(D->getKind() == Decl::Var && "PMF initializer decl is not a var?"); 2527 EmitTopLevelDecl(D); 2528 } 2529 } 2530 } 2531 2532 void CodeGenModule::EmitModuleLinkOptions() { 2533 // Collect the set of all of the modules we want to visit to emit link 2534 // options, which is essentially the imported modules and all of their 2535 // non-explicit child modules. 2536 llvm::SetVector<clang::Module *> LinkModules; 2537 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2538 SmallVector<clang::Module *, 16> Stack; 2539 2540 // Seed the stack with imported modules. 2541 for (Module *M : ImportedModules) { 2542 // Do not add any link flags when an implementation TU of a module imports 2543 // a header of that same module. 2544 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2545 !getLangOpts().isCompilingModule()) 2546 continue; 2547 if (Visited.insert(M).second) 2548 Stack.push_back(M); 2549 } 2550 2551 // Find all of the modules to import, making a little effort to prune 2552 // non-leaf modules. 2553 while (!Stack.empty()) { 2554 clang::Module *Mod = Stack.pop_back_val(); 2555 2556 bool AnyChildren = false; 2557 2558 // Visit the submodules of this module. 2559 for (const auto &SM : Mod->submodules()) { 2560 // Skip explicit children; they need to be explicitly imported to be 2561 // linked against. 2562 if (SM->IsExplicit) 2563 continue; 2564 2565 if (Visited.insert(SM).second) { 2566 Stack.push_back(SM); 2567 AnyChildren = true; 2568 } 2569 } 2570 2571 // We didn't find any children, so add this module to the list of 2572 // modules to link against. 2573 if (!AnyChildren) { 2574 LinkModules.insert(Mod); 2575 } 2576 } 2577 2578 // Add link options for all of the imported modules in reverse topological 2579 // order. We don't do anything to try to order import link flags with respect 2580 // to linker options inserted by things like #pragma comment(). 2581 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2582 Visited.clear(); 2583 for (Module *M : LinkModules) 2584 if (Visited.insert(M).second) 2585 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2586 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2587 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2588 2589 // Add the linker options metadata flag. 2590 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2591 for (auto *MD : LinkerOptionsMetadata) 2592 NMD->addOperand(MD); 2593 } 2594 2595 void CodeGenModule::EmitDeferred() { 2596 // Emit deferred declare target declarations. 2597 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2598 getOpenMPRuntime().emitDeferredTargetDecls(); 2599 2600 // Emit code for any potentially referenced deferred decls. Since a 2601 // previously unused static decl may become used during the generation of code 2602 // for a static function, iterate until no changes are made. 2603 2604 if (!DeferredVTables.empty()) { 2605 EmitDeferredVTables(); 2606 2607 // Emitting a vtable doesn't directly cause more vtables to 2608 // become deferred, although it can cause functions to be 2609 // emitted that then need those vtables. 2610 assert(DeferredVTables.empty()); 2611 } 2612 2613 // Emit CUDA/HIP static device variables referenced by host code only. 2614 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2615 // needed for further handling. 2616 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2617 llvm::append_range(DeferredDeclsToEmit, 2618 getContext().CUDADeviceVarODRUsedByHost); 2619 2620 // Stop if we're out of both deferred vtables and deferred declarations. 2621 if (DeferredDeclsToEmit.empty()) 2622 return; 2623 2624 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2625 // work, it will not interfere with this. 2626 std::vector<GlobalDecl> CurDeclsToEmit; 2627 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2628 2629 for (GlobalDecl &D : CurDeclsToEmit) { 2630 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2631 // to get GlobalValue with exactly the type we need, not something that 2632 // might had been created for another decl with the same mangled name but 2633 // different type. 2634 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2635 GetAddrOfGlobal(D, ForDefinition)); 2636 2637 // In case of different address spaces, we may still get a cast, even with 2638 // IsForDefinition equal to true. Query mangled names table to get 2639 // GlobalValue. 2640 if (!GV) 2641 GV = GetGlobalValue(getMangledName(D)); 2642 2643 // Make sure GetGlobalValue returned non-null. 2644 assert(GV); 2645 2646 // Check to see if we've already emitted this. This is necessary 2647 // for a couple of reasons: first, decls can end up in the 2648 // deferred-decls queue multiple times, and second, decls can end 2649 // up with definitions in unusual ways (e.g. by an extern inline 2650 // function acquiring a strong function redefinition). Just 2651 // ignore these cases. 2652 if (!GV->isDeclaration()) 2653 continue; 2654 2655 // If this is OpenMP, check if it is legal to emit this global normally. 2656 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2657 continue; 2658 2659 // Otherwise, emit the definition and move on to the next one. 2660 EmitGlobalDefinition(D, GV); 2661 2662 // If we found out that we need to emit more decls, do that recursively. 2663 // This has the advantage that the decls are emitted in a DFS and related 2664 // ones are close together, which is convenient for testing. 2665 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2666 EmitDeferred(); 2667 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2668 } 2669 } 2670 } 2671 2672 void CodeGenModule::EmitVTablesOpportunistically() { 2673 // Try to emit external vtables as available_externally if they have emitted 2674 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2675 // is not allowed to create new references to things that need to be emitted 2676 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2677 2678 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2679 && "Only emit opportunistic vtables with optimizations"); 2680 2681 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2682 assert(getVTables().isVTableExternal(RD) && 2683 "This queue should only contain external vtables"); 2684 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2685 VTables.GenerateClassData(RD); 2686 } 2687 OpportunisticVTables.clear(); 2688 } 2689 2690 void CodeGenModule::EmitGlobalAnnotations() { 2691 if (Annotations.empty()) 2692 return; 2693 2694 // Create a new global variable for the ConstantStruct in the Module. 2695 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2696 Annotations[0]->getType(), Annotations.size()), Annotations); 2697 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2698 llvm::GlobalValue::AppendingLinkage, 2699 Array, "llvm.global.annotations"); 2700 gv->setSection(AnnotationSection); 2701 } 2702 2703 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2704 llvm::Constant *&AStr = AnnotationStrings[Str]; 2705 if (AStr) 2706 return AStr; 2707 2708 // Not found yet, create a new global. 2709 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2710 auto *gv = 2711 new llvm::GlobalVariable(getModule(), s->getType(), true, 2712 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2713 gv->setSection(AnnotationSection); 2714 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2715 AStr = gv; 2716 return gv; 2717 } 2718 2719 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2720 SourceManager &SM = getContext().getSourceManager(); 2721 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2722 if (PLoc.isValid()) 2723 return EmitAnnotationString(PLoc.getFilename()); 2724 return EmitAnnotationString(SM.getBufferName(Loc)); 2725 } 2726 2727 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2728 SourceManager &SM = getContext().getSourceManager(); 2729 PresumedLoc PLoc = SM.getPresumedLoc(L); 2730 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2731 SM.getExpansionLineNumber(L); 2732 return llvm::ConstantInt::get(Int32Ty, LineNo); 2733 } 2734 2735 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2736 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2737 if (Exprs.empty()) 2738 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2739 2740 llvm::FoldingSetNodeID ID; 2741 for (Expr *E : Exprs) { 2742 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2743 } 2744 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2745 if (Lookup) 2746 return Lookup; 2747 2748 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2749 LLVMArgs.reserve(Exprs.size()); 2750 ConstantEmitter ConstEmiter(*this); 2751 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2752 const auto *CE = cast<clang::ConstantExpr>(E); 2753 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2754 CE->getType()); 2755 }); 2756 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2757 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2758 llvm::GlobalValue::PrivateLinkage, Struct, 2759 ".args"); 2760 GV->setSection(AnnotationSection); 2761 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2762 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2763 2764 Lookup = Bitcasted; 2765 return Bitcasted; 2766 } 2767 2768 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2769 const AnnotateAttr *AA, 2770 SourceLocation L) { 2771 // Get the globals for file name, annotation, and the line number. 2772 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2773 *UnitGV = EmitAnnotationUnit(L), 2774 *LineNoCst = EmitAnnotationLineNo(L), 2775 *Args = EmitAnnotationArgs(AA); 2776 2777 llvm::Constant *GVInGlobalsAS = GV; 2778 if (GV->getAddressSpace() != 2779 getDataLayout().getDefaultGlobalsAddressSpace()) { 2780 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2781 GV, GV->getValueType()->getPointerTo( 2782 getDataLayout().getDefaultGlobalsAddressSpace())); 2783 } 2784 2785 // Create the ConstantStruct for the global annotation. 2786 llvm::Constant *Fields[] = { 2787 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2788 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2789 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2790 LineNoCst, 2791 Args, 2792 }; 2793 return llvm::ConstantStruct::getAnon(Fields); 2794 } 2795 2796 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2797 llvm::GlobalValue *GV) { 2798 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2799 // Get the struct elements for these annotations. 2800 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2801 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2802 } 2803 2804 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2805 SourceLocation Loc) const { 2806 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2807 // NoSanitize by function name. 2808 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2809 return true; 2810 // NoSanitize by location. 2811 if (Loc.isValid()) 2812 return NoSanitizeL.containsLocation(Kind, Loc); 2813 // If location is unknown, this may be a compiler-generated function. Assume 2814 // it's located in the main file. 2815 auto &SM = Context.getSourceManager(); 2816 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2817 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2818 } 2819 return false; 2820 } 2821 2822 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2823 llvm::GlobalVariable *GV, 2824 SourceLocation Loc, QualType Ty, 2825 StringRef Category) const { 2826 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2827 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2828 return true; 2829 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2830 return true; 2831 // Check global type. 2832 if (!Ty.isNull()) { 2833 // Drill down the array types: if global variable of a fixed type is 2834 // not sanitized, we also don't instrument arrays of them. 2835 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2836 Ty = AT->getElementType(); 2837 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2838 // Only record types (classes, structs etc.) are ignored. 2839 if (Ty->isRecordType()) { 2840 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2841 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2842 return true; 2843 } 2844 } 2845 return false; 2846 } 2847 2848 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2849 StringRef Category) const { 2850 const auto &XRayFilter = getContext().getXRayFilter(); 2851 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2852 auto Attr = ImbueAttr::NONE; 2853 if (Loc.isValid()) 2854 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2855 if (Attr == ImbueAttr::NONE) 2856 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2857 switch (Attr) { 2858 case ImbueAttr::NONE: 2859 return false; 2860 case ImbueAttr::ALWAYS: 2861 Fn->addFnAttr("function-instrument", "xray-always"); 2862 break; 2863 case ImbueAttr::ALWAYS_ARG1: 2864 Fn->addFnAttr("function-instrument", "xray-always"); 2865 Fn->addFnAttr("xray-log-args", "1"); 2866 break; 2867 case ImbueAttr::NEVER: 2868 Fn->addFnAttr("function-instrument", "xray-never"); 2869 break; 2870 } 2871 return true; 2872 } 2873 2874 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2875 SourceLocation Loc) const { 2876 const auto &ProfileList = getContext().getProfileList(); 2877 // If the profile list is empty, then instrument everything. 2878 if (ProfileList.isEmpty()) 2879 return false; 2880 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2881 // First, check the function name. 2882 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2883 if (V) 2884 return *V; 2885 // Next, check the source location. 2886 if (Loc.isValid()) { 2887 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2888 if (V) 2889 return *V; 2890 } 2891 // If location is unknown, this may be a compiler-generated function. Assume 2892 // it's located in the main file. 2893 auto &SM = Context.getSourceManager(); 2894 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2895 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2896 if (V) 2897 return *V; 2898 } 2899 return ProfileList.getDefault(); 2900 } 2901 2902 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2903 // Never defer when EmitAllDecls is specified. 2904 if (LangOpts.EmitAllDecls) 2905 return true; 2906 2907 if (CodeGenOpts.KeepStaticConsts) { 2908 const auto *VD = dyn_cast<VarDecl>(Global); 2909 if (VD && VD->getType().isConstQualified() && 2910 VD->getStorageDuration() == SD_Static) 2911 return true; 2912 } 2913 2914 return getContext().DeclMustBeEmitted(Global); 2915 } 2916 2917 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2918 // In OpenMP 5.0 variables and function may be marked as 2919 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2920 // that they must be emitted on the host/device. To be sure we need to have 2921 // seen a declare target with an explicit mentioning of the function, we know 2922 // we have if the level of the declare target attribute is -1. Note that we 2923 // check somewhere else if we should emit this at all. 2924 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2925 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2926 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2927 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2928 return false; 2929 } 2930 2931 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2932 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2933 // Implicit template instantiations may change linkage if they are later 2934 // explicitly instantiated, so they should not be emitted eagerly. 2935 return false; 2936 } 2937 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 2938 if (Context.getInlineVariableDefinitionKind(VD) == 2939 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2940 // A definition of an inline constexpr static data member may change 2941 // linkage later if it's redeclared outside the class. 2942 return false; 2943 if (CXX20ModuleInits && VD->getOwningModule()) { 2944 // For CXX20, module-owned initializers need to be deferred, since it is 2945 // not known at this point if they will be run for the current module or 2946 // as part of the initializer for an imported one. 2947 return false; 2948 } 2949 } 2950 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2951 // codegen for global variables, because they may be marked as threadprivate. 2952 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2953 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2954 !isTypeConstant(Global->getType(), false) && 2955 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2956 return false; 2957 2958 return true; 2959 } 2960 2961 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2962 StringRef Name = getMangledName(GD); 2963 2964 // The UUID descriptor should be pointer aligned. 2965 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2966 2967 // Look for an existing global. 2968 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2969 return ConstantAddress(GV, GV->getValueType(), Alignment); 2970 2971 ConstantEmitter Emitter(*this); 2972 llvm::Constant *Init; 2973 2974 APValue &V = GD->getAsAPValue(); 2975 if (!V.isAbsent()) { 2976 // If possible, emit the APValue version of the initializer. In particular, 2977 // this gets the type of the constant right. 2978 Init = Emitter.emitForInitializer( 2979 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2980 } else { 2981 // As a fallback, directly construct the constant. 2982 // FIXME: This may get padding wrong under esoteric struct layout rules. 2983 // MSVC appears to create a complete type 'struct __s_GUID' that it 2984 // presumably uses to represent these constants. 2985 MSGuidDecl::Parts Parts = GD->getParts(); 2986 llvm::Constant *Fields[4] = { 2987 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2988 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2989 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2990 llvm::ConstantDataArray::getRaw( 2991 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2992 Int8Ty)}; 2993 Init = llvm::ConstantStruct::getAnon(Fields); 2994 } 2995 2996 auto *GV = new llvm::GlobalVariable( 2997 getModule(), Init->getType(), 2998 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2999 if (supportsCOMDAT()) 3000 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3001 setDSOLocal(GV); 3002 3003 if (!V.isAbsent()) { 3004 Emitter.finalize(GV); 3005 return ConstantAddress(GV, GV->getValueType(), Alignment); 3006 } 3007 3008 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3009 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3010 GV, Ty->getPointerTo(GV->getAddressSpace())); 3011 return ConstantAddress(Addr, Ty, Alignment); 3012 } 3013 3014 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3015 const UnnamedGlobalConstantDecl *GCD) { 3016 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3017 3018 llvm::GlobalVariable **Entry = nullptr; 3019 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3020 if (*Entry) 3021 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3022 3023 ConstantEmitter Emitter(*this); 3024 llvm::Constant *Init; 3025 3026 const APValue &V = GCD->getValue(); 3027 3028 assert(!V.isAbsent()); 3029 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3030 GCD->getType()); 3031 3032 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3033 /*isConstant=*/true, 3034 llvm::GlobalValue::PrivateLinkage, Init, 3035 ".constant"); 3036 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3037 GV->setAlignment(Alignment.getAsAlign()); 3038 3039 Emitter.finalize(GV); 3040 3041 *Entry = GV; 3042 return ConstantAddress(GV, GV->getValueType(), Alignment); 3043 } 3044 3045 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3046 const TemplateParamObjectDecl *TPO) { 3047 StringRef Name = getMangledName(TPO); 3048 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3049 3050 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3051 return ConstantAddress(GV, GV->getValueType(), Alignment); 3052 3053 ConstantEmitter Emitter(*this); 3054 llvm::Constant *Init = Emitter.emitForInitializer( 3055 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3056 3057 if (!Init) { 3058 ErrorUnsupported(TPO, "template parameter object"); 3059 return ConstantAddress::invalid(); 3060 } 3061 3062 auto *GV = new llvm::GlobalVariable( 3063 getModule(), Init->getType(), 3064 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3065 if (supportsCOMDAT()) 3066 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3067 Emitter.finalize(GV); 3068 3069 return ConstantAddress(GV, GV->getValueType(), Alignment); 3070 } 3071 3072 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3073 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3074 assert(AA && "No alias?"); 3075 3076 CharUnits Alignment = getContext().getDeclAlign(VD); 3077 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3078 3079 // See if there is already something with the target's name in the module. 3080 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3081 if (Entry) { 3082 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3083 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3084 return ConstantAddress(Ptr, DeclTy, Alignment); 3085 } 3086 3087 llvm::Constant *Aliasee; 3088 if (isa<llvm::FunctionType>(DeclTy)) 3089 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3090 GlobalDecl(cast<FunctionDecl>(VD)), 3091 /*ForVTable=*/false); 3092 else 3093 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3094 nullptr); 3095 3096 auto *F = cast<llvm::GlobalValue>(Aliasee); 3097 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3098 WeakRefReferences.insert(F); 3099 3100 return ConstantAddress(Aliasee, DeclTy, Alignment); 3101 } 3102 3103 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3104 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3105 3106 // Weak references don't produce any output by themselves. 3107 if (Global->hasAttr<WeakRefAttr>()) 3108 return; 3109 3110 // If this is an alias definition (which otherwise looks like a declaration) 3111 // emit it now. 3112 if (Global->hasAttr<AliasAttr>()) 3113 return EmitAliasDefinition(GD); 3114 3115 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3116 if (Global->hasAttr<IFuncAttr>()) 3117 return emitIFuncDefinition(GD); 3118 3119 // If this is a cpu_dispatch multiversion function, emit the resolver. 3120 if (Global->hasAttr<CPUDispatchAttr>()) 3121 return emitCPUDispatchDefinition(GD); 3122 3123 // If this is CUDA, be selective about which declarations we emit. 3124 if (LangOpts.CUDA) { 3125 if (LangOpts.CUDAIsDevice) { 3126 if (!Global->hasAttr<CUDADeviceAttr>() && 3127 !Global->hasAttr<CUDAGlobalAttr>() && 3128 !Global->hasAttr<CUDAConstantAttr>() && 3129 !Global->hasAttr<CUDASharedAttr>() && 3130 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3131 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3132 return; 3133 } else { 3134 // We need to emit host-side 'shadows' for all global 3135 // device-side variables because the CUDA runtime needs their 3136 // size and host-side address in order to provide access to 3137 // their device-side incarnations. 3138 3139 // So device-only functions are the only things we skip. 3140 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3141 Global->hasAttr<CUDADeviceAttr>()) 3142 return; 3143 3144 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3145 "Expected Variable or Function"); 3146 } 3147 } 3148 3149 if (LangOpts.OpenMP) { 3150 // If this is OpenMP, check if it is legal to emit this global normally. 3151 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3152 return; 3153 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3154 if (MustBeEmitted(Global)) 3155 EmitOMPDeclareReduction(DRD); 3156 return; 3157 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3158 if (MustBeEmitted(Global)) 3159 EmitOMPDeclareMapper(DMD); 3160 return; 3161 } 3162 } 3163 3164 // Ignore declarations, they will be emitted on their first use. 3165 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3166 // Forward declarations are emitted lazily on first use. 3167 if (!FD->doesThisDeclarationHaveABody()) { 3168 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3169 return; 3170 3171 StringRef MangledName = getMangledName(GD); 3172 3173 // Compute the function info and LLVM type. 3174 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3175 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3176 3177 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3178 /*DontDefer=*/false); 3179 return; 3180 } 3181 } else { 3182 const auto *VD = cast<VarDecl>(Global); 3183 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3184 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3185 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3186 if (LangOpts.OpenMP) { 3187 // Emit declaration of the must-be-emitted declare target variable. 3188 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3189 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3190 bool UnifiedMemoryEnabled = 3191 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3192 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3193 !UnifiedMemoryEnabled) { 3194 (void)GetAddrOfGlobalVar(VD); 3195 } else { 3196 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3197 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3198 UnifiedMemoryEnabled)) && 3199 "Link clause or to clause with unified memory expected."); 3200 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3201 } 3202 3203 return; 3204 } 3205 } 3206 // If this declaration may have caused an inline variable definition to 3207 // change linkage, make sure that it's emitted. 3208 if (Context.getInlineVariableDefinitionKind(VD) == 3209 ASTContext::InlineVariableDefinitionKind::Strong) 3210 GetAddrOfGlobalVar(VD); 3211 return; 3212 } 3213 } 3214 3215 // Defer code generation to first use when possible, e.g. if this is an inline 3216 // function. If the global must always be emitted, do it eagerly if possible 3217 // to benefit from cache locality. 3218 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3219 // Emit the definition if it can't be deferred. 3220 EmitGlobalDefinition(GD); 3221 return; 3222 } 3223 3224 // If we're deferring emission of a C++ variable with an 3225 // initializer, remember the order in which it appeared in the file. 3226 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3227 cast<VarDecl>(Global)->hasInit()) { 3228 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3229 CXXGlobalInits.push_back(nullptr); 3230 } 3231 3232 StringRef MangledName = getMangledName(GD); 3233 if (GetGlobalValue(MangledName) != nullptr) { 3234 // The value has already been used and should therefore be emitted. 3235 addDeferredDeclToEmit(GD); 3236 } else if (MustBeEmitted(Global)) { 3237 // The value must be emitted, but cannot be emitted eagerly. 3238 assert(!MayBeEmittedEagerly(Global)); 3239 addDeferredDeclToEmit(GD); 3240 } else { 3241 // Otherwise, remember that we saw a deferred decl with this name. The 3242 // first use of the mangled name will cause it to move into 3243 // DeferredDeclsToEmit. 3244 DeferredDecls[MangledName] = GD; 3245 } 3246 } 3247 3248 // Check if T is a class type with a destructor that's not dllimport. 3249 static bool HasNonDllImportDtor(QualType T) { 3250 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3251 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3252 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3253 return true; 3254 3255 return false; 3256 } 3257 3258 namespace { 3259 struct FunctionIsDirectlyRecursive 3260 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3261 const StringRef Name; 3262 const Builtin::Context &BI; 3263 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3264 : Name(N), BI(C) {} 3265 3266 bool VisitCallExpr(const CallExpr *E) { 3267 const FunctionDecl *FD = E->getDirectCallee(); 3268 if (!FD) 3269 return false; 3270 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3271 if (Attr && Name == Attr->getLabel()) 3272 return true; 3273 unsigned BuiltinID = FD->getBuiltinID(); 3274 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3275 return false; 3276 StringRef BuiltinName = BI.getName(BuiltinID); 3277 if (BuiltinName.startswith("__builtin_") && 3278 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3279 return true; 3280 } 3281 return false; 3282 } 3283 3284 bool VisitStmt(const Stmt *S) { 3285 for (const Stmt *Child : S->children()) 3286 if (Child && this->Visit(Child)) 3287 return true; 3288 return false; 3289 } 3290 }; 3291 3292 // Make sure we're not referencing non-imported vars or functions. 3293 struct DLLImportFunctionVisitor 3294 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3295 bool SafeToInline = true; 3296 3297 bool shouldVisitImplicitCode() const { return true; } 3298 3299 bool VisitVarDecl(VarDecl *VD) { 3300 if (VD->getTLSKind()) { 3301 // A thread-local variable cannot be imported. 3302 SafeToInline = false; 3303 return SafeToInline; 3304 } 3305 3306 // A variable definition might imply a destructor call. 3307 if (VD->isThisDeclarationADefinition()) 3308 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3309 3310 return SafeToInline; 3311 } 3312 3313 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3314 if (const auto *D = E->getTemporary()->getDestructor()) 3315 SafeToInline = D->hasAttr<DLLImportAttr>(); 3316 return SafeToInline; 3317 } 3318 3319 bool VisitDeclRefExpr(DeclRefExpr *E) { 3320 ValueDecl *VD = E->getDecl(); 3321 if (isa<FunctionDecl>(VD)) 3322 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3323 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3324 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3325 return SafeToInline; 3326 } 3327 3328 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3329 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3330 return SafeToInline; 3331 } 3332 3333 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3334 CXXMethodDecl *M = E->getMethodDecl(); 3335 if (!M) { 3336 // Call through a pointer to member function. This is safe to inline. 3337 SafeToInline = true; 3338 } else { 3339 SafeToInline = M->hasAttr<DLLImportAttr>(); 3340 } 3341 return SafeToInline; 3342 } 3343 3344 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3345 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3346 return SafeToInline; 3347 } 3348 3349 bool VisitCXXNewExpr(CXXNewExpr *E) { 3350 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3351 return SafeToInline; 3352 } 3353 }; 3354 } 3355 3356 // isTriviallyRecursive - Check if this function calls another 3357 // decl that, because of the asm attribute or the other decl being a builtin, 3358 // ends up pointing to itself. 3359 bool 3360 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3361 StringRef Name; 3362 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3363 // asm labels are a special kind of mangling we have to support. 3364 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3365 if (!Attr) 3366 return false; 3367 Name = Attr->getLabel(); 3368 } else { 3369 Name = FD->getName(); 3370 } 3371 3372 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3373 const Stmt *Body = FD->getBody(); 3374 return Body ? Walker.Visit(Body) : false; 3375 } 3376 3377 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3378 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3379 return true; 3380 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3381 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3382 return false; 3383 3384 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3385 // Check whether it would be safe to inline this dllimport function. 3386 DLLImportFunctionVisitor Visitor; 3387 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3388 if (!Visitor.SafeToInline) 3389 return false; 3390 3391 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3392 // Implicit destructor invocations aren't captured in the AST, so the 3393 // check above can't see them. Check for them manually here. 3394 for (const Decl *Member : Dtor->getParent()->decls()) 3395 if (isa<FieldDecl>(Member)) 3396 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3397 return false; 3398 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3399 if (HasNonDllImportDtor(B.getType())) 3400 return false; 3401 } 3402 } 3403 3404 // Inline builtins declaration must be emitted. They often are fortified 3405 // functions. 3406 if (F->isInlineBuiltinDeclaration()) 3407 return true; 3408 3409 // PR9614. Avoid cases where the source code is lying to us. An available 3410 // externally function should have an equivalent function somewhere else, 3411 // but a function that calls itself through asm label/`__builtin_` trickery is 3412 // clearly not equivalent to the real implementation. 3413 // This happens in glibc's btowc and in some configure checks. 3414 return !isTriviallyRecursive(F); 3415 } 3416 3417 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3418 return CodeGenOpts.OptimizationLevel > 0; 3419 } 3420 3421 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3422 llvm::GlobalValue *GV) { 3423 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3424 3425 if (FD->isCPUSpecificMultiVersion()) { 3426 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3427 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3428 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3429 } else if (FD->isTargetClonesMultiVersion()) { 3430 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3431 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3432 if (Clone->isFirstOfVersion(I)) 3433 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3434 // Ensure that the resolver function is also emitted. 3435 GetOrCreateMultiVersionResolver(GD); 3436 } else 3437 EmitGlobalFunctionDefinition(GD, GV); 3438 } 3439 3440 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3441 const auto *D = cast<ValueDecl>(GD.getDecl()); 3442 3443 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3444 Context.getSourceManager(), 3445 "Generating code for declaration"); 3446 3447 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3448 // At -O0, don't generate IR for functions with available_externally 3449 // linkage. 3450 if (!shouldEmitFunction(GD)) 3451 return; 3452 3453 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3454 std::string Name; 3455 llvm::raw_string_ostream OS(Name); 3456 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3457 /*Qualified=*/true); 3458 return Name; 3459 }); 3460 3461 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3462 // Make sure to emit the definition(s) before we emit the thunks. 3463 // This is necessary for the generation of certain thunks. 3464 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3465 ABI->emitCXXStructor(GD); 3466 else if (FD->isMultiVersion()) 3467 EmitMultiVersionFunctionDefinition(GD, GV); 3468 else 3469 EmitGlobalFunctionDefinition(GD, GV); 3470 3471 if (Method->isVirtual()) 3472 getVTables().EmitThunks(GD); 3473 3474 return; 3475 } 3476 3477 if (FD->isMultiVersion()) 3478 return EmitMultiVersionFunctionDefinition(GD, GV); 3479 return EmitGlobalFunctionDefinition(GD, GV); 3480 } 3481 3482 if (const auto *VD = dyn_cast<VarDecl>(D)) 3483 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3484 3485 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3486 } 3487 3488 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3489 llvm::Function *NewFn); 3490 3491 static unsigned 3492 TargetMVPriority(const TargetInfo &TI, 3493 const CodeGenFunction::MultiVersionResolverOption &RO) { 3494 unsigned Priority = 0; 3495 for (StringRef Feat : RO.Conditions.Features) 3496 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3497 3498 if (!RO.Conditions.Architecture.empty()) 3499 Priority = std::max( 3500 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3501 return Priority; 3502 } 3503 3504 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3505 // TU can forward declare the function without causing problems. Particularly 3506 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3507 // work with internal linkage functions, so that the same function name can be 3508 // used with internal linkage in multiple TUs. 3509 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3510 GlobalDecl GD) { 3511 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3512 if (FD->getFormalLinkage() == InternalLinkage) 3513 return llvm::GlobalValue::InternalLinkage; 3514 return llvm::GlobalValue::WeakODRLinkage; 3515 } 3516 3517 void CodeGenModule::emitMultiVersionFunctions() { 3518 std::vector<GlobalDecl> MVFuncsToEmit; 3519 MultiVersionFuncs.swap(MVFuncsToEmit); 3520 for (GlobalDecl GD : MVFuncsToEmit) { 3521 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3522 assert(FD && "Expected a FunctionDecl"); 3523 3524 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3525 if (FD->isTargetMultiVersion()) { 3526 getContext().forEachMultiversionedFunctionVersion( 3527 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3528 GlobalDecl CurGD{ 3529 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3530 StringRef MangledName = getMangledName(CurGD); 3531 llvm::Constant *Func = GetGlobalValue(MangledName); 3532 if (!Func) { 3533 if (CurFD->isDefined()) { 3534 EmitGlobalFunctionDefinition(CurGD, nullptr); 3535 Func = GetGlobalValue(MangledName); 3536 } else { 3537 const CGFunctionInfo &FI = 3538 getTypes().arrangeGlobalDeclaration(GD); 3539 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3540 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3541 /*DontDefer=*/false, ForDefinition); 3542 } 3543 assert(Func && "This should have just been created"); 3544 } 3545 3546 const auto *TA = CurFD->getAttr<TargetAttr>(); 3547 llvm::SmallVector<StringRef, 8> Feats; 3548 TA->getAddedFeatures(Feats); 3549 3550 Options.emplace_back(cast<llvm::Function>(Func), 3551 TA->getArchitecture(), Feats); 3552 }); 3553 } else if (FD->isTargetClonesMultiVersion()) { 3554 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3555 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3556 ++VersionIndex) { 3557 if (!TC->isFirstOfVersion(VersionIndex)) 3558 continue; 3559 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3560 VersionIndex}; 3561 StringRef Version = TC->getFeatureStr(VersionIndex); 3562 StringRef MangledName = getMangledName(CurGD); 3563 llvm::Constant *Func = GetGlobalValue(MangledName); 3564 if (!Func) { 3565 if (FD->isDefined()) { 3566 EmitGlobalFunctionDefinition(CurGD, nullptr); 3567 Func = GetGlobalValue(MangledName); 3568 } else { 3569 const CGFunctionInfo &FI = 3570 getTypes().arrangeGlobalDeclaration(CurGD); 3571 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3572 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3573 /*DontDefer=*/false, ForDefinition); 3574 } 3575 assert(Func && "This should have just been created"); 3576 } 3577 3578 StringRef Architecture; 3579 llvm::SmallVector<StringRef, 1> Feature; 3580 3581 if (Version.startswith("arch=")) 3582 Architecture = Version.drop_front(sizeof("arch=") - 1); 3583 else if (Version != "default") 3584 Feature.push_back(Version); 3585 3586 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3587 } 3588 } else { 3589 assert(0 && "Expected a target or target_clones multiversion function"); 3590 continue; 3591 } 3592 3593 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3594 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3595 ResolverConstant = IFunc->getResolver(); 3596 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3597 3598 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3599 3600 if (supportsCOMDAT()) 3601 ResolverFunc->setComdat( 3602 getModule().getOrInsertComdat(ResolverFunc->getName())); 3603 3604 const TargetInfo &TI = getTarget(); 3605 llvm::stable_sort( 3606 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3607 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3608 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3609 }); 3610 CodeGenFunction CGF(*this); 3611 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3612 } 3613 3614 // Ensure that any additions to the deferred decls list caused by emitting a 3615 // variant are emitted. This can happen when the variant itself is inline and 3616 // calls a function without linkage. 3617 if (!MVFuncsToEmit.empty()) 3618 EmitDeferred(); 3619 3620 // Ensure that any additions to the multiversion funcs list from either the 3621 // deferred decls or the multiversion functions themselves are emitted. 3622 if (!MultiVersionFuncs.empty()) 3623 emitMultiVersionFunctions(); 3624 } 3625 3626 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3627 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3628 assert(FD && "Not a FunctionDecl?"); 3629 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3630 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3631 assert(DD && "Not a cpu_dispatch Function?"); 3632 3633 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3634 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3635 3636 StringRef ResolverName = getMangledName(GD); 3637 UpdateMultiVersionNames(GD, FD, ResolverName); 3638 3639 llvm::Type *ResolverType; 3640 GlobalDecl ResolverGD; 3641 if (getTarget().supportsIFunc()) { 3642 ResolverType = llvm::FunctionType::get( 3643 llvm::PointerType::get(DeclTy, 3644 Context.getTargetAddressSpace(FD->getType())), 3645 false); 3646 } 3647 else { 3648 ResolverType = DeclTy; 3649 ResolverGD = GD; 3650 } 3651 3652 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3653 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3654 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3655 if (supportsCOMDAT()) 3656 ResolverFunc->setComdat( 3657 getModule().getOrInsertComdat(ResolverFunc->getName())); 3658 3659 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3660 const TargetInfo &Target = getTarget(); 3661 unsigned Index = 0; 3662 for (const IdentifierInfo *II : DD->cpus()) { 3663 // Get the name of the target function so we can look it up/create it. 3664 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3665 getCPUSpecificMangling(*this, II->getName()); 3666 3667 llvm::Constant *Func = GetGlobalValue(MangledName); 3668 3669 if (!Func) { 3670 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3671 if (ExistingDecl.getDecl() && 3672 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3673 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3674 Func = GetGlobalValue(MangledName); 3675 } else { 3676 if (!ExistingDecl.getDecl()) 3677 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3678 3679 Func = GetOrCreateLLVMFunction( 3680 MangledName, DeclTy, ExistingDecl, 3681 /*ForVTable=*/false, /*DontDefer=*/true, 3682 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3683 } 3684 } 3685 3686 llvm::SmallVector<StringRef, 32> Features; 3687 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3688 llvm::transform(Features, Features.begin(), 3689 [](StringRef Str) { return Str.substr(1); }); 3690 llvm::erase_if(Features, [&Target](StringRef Feat) { 3691 return !Target.validateCpuSupports(Feat); 3692 }); 3693 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3694 ++Index; 3695 } 3696 3697 llvm::stable_sort( 3698 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3699 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3700 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3701 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3702 }); 3703 3704 // If the list contains multiple 'default' versions, such as when it contains 3705 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3706 // always run on at least a 'pentium'). We do this by deleting the 'least 3707 // advanced' (read, lowest mangling letter). 3708 while (Options.size() > 1 && 3709 llvm::X86::getCpuSupportsMask( 3710 (Options.end() - 2)->Conditions.Features) == 0) { 3711 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3712 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3713 if (LHSName.compare(RHSName) < 0) 3714 Options.erase(Options.end() - 2); 3715 else 3716 Options.erase(Options.end() - 1); 3717 } 3718 3719 CodeGenFunction CGF(*this); 3720 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3721 3722 if (getTarget().supportsIFunc()) { 3723 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3724 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3725 3726 // Fix up function declarations that were created for cpu_specific before 3727 // cpu_dispatch was known 3728 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3729 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3730 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3731 &getModule()); 3732 GI->takeName(IFunc); 3733 IFunc->replaceAllUsesWith(GI); 3734 IFunc->eraseFromParent(); 3735 IFunc = GI; 3736 } 3737 3738 std::string AliasName = getMangledNameImpl( 3739 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3740 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3741 if (!AliasFunc) { 3742 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3743 &getModule()); 3744 SetCommonAttributes(GD, GA); 3745 } 3746 } 3747 } 3748 3749 /// If a dispatcher for the specified mangled name is not in the module, create 3750 /// and return an llvm Function with the specified type. 3751 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3752 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3753 assert(FD && "Not a FunctionDecl?"); 3754 3755 std::string MangledName = 3756 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3757 3758 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3759 // a separate resolver). 3760 std::string ResolverName = MangledName; 3761 if (getTarget().supportsIFunc()) 3762 ResolverName += ".ifunc"; 3763 else if (FD->isTargetMultiVersion()) 3764 ResolverName += ".resolver"; 3765 3766 // If the resolver has already been created, just return it. 3767 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3768 return ResolverGV; 3769 3770 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3771 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3772 3773 // The resolver needs to be created. For target and target_clones, defer 3774 // creation until the end of the TU. 3775 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3776 MultiVersionFuncs.push_back(GD); 3777 3778 // For cpu_specific, don't create an ifunc yet because we don't know if the 3779 // cpu_dispatch will be emitted in this translation unit. 3780 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3781 llvm::Type *ResolverType = llvm::FunctionType::get( 3782 llvm::PointerType::get( 3783 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3784 false); 3785 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3786 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3787 /*ForVTable=*/false); 3788 llvm::GlobalIFunc *GIF = 3789 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3790 "", Resolver, &getModule()); 3791 GIF->setName(ResolverName); 3792 SetCommonAttributes(FD, GIF); 3793 3794 return GIF; 3795 } 3796 3797 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3798 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3799 assert(isa<llvm::GlobalValue>(Resolver) && 3800 "Resolver should be created for the first time"); 3801 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3802 return Resolver; 3803 } 3804 3805 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3806 /// module, create and return an llvm Function with the specified type. If there 3807 /// is something in the module with the specified name, return it potentially 3808 /// bitcasted to the right type. 3809 /// 3810 /// If D is non-null, it specifies a decl that correspond to this. This is used 3811 /// to set the attributes on the function when it is first created. 3812 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3813 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3814 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3815 ForDefinition_t IsForDefinition) { 3816 const Decl *D = GD.getDecl(); 3817 3818 // Any attempts to use a MultiVersion function should result in retrieving 3819 // the iFunc instead. Name Mangling will handle the rest of the changes. 3820 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3821 // For the device mark the function as one that should be emitted. 3822 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3823 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3824 !DontDefer && !IsForDefinition) { 3825 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3826 GlobalDecl GDDef; 3827 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3828 GDDef = GlobalDecl(CD, GD.getCtorType()); 3829 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3830 GDDef = GlobalDecl(DD, GD.getDtorType()); 3831 else 3832 GDDef = GlobalDecl(FDDef); 3833 EmitGlobal(GDDef); 3834 } 3835 } 3836 3837 if (FD->isMultiVersion()) { 3838 UpdateMultiVersionNames(GD, FD, MangledName); 3839 if (!IsForDefinition) 3840 return GetOrCreateMultiVersionResolver(GD); 3841 } 3842 } 3843 3844 // Lookup the entry, lazily creating it if necessary. 3845 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3846 if (Entry) { 3847 if (WeakRefReferences.erase(Entry)) { 3848 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3849 if (FD && !FD->hasAttr<WeakAttr>()) 3850 Entry->setLinkage(llvm::Function::ExternalLinkage); 3851 } 3852 3853 // Handle dropped DLL attributes. 3854 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3855 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3856 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3857 setDSOLocal(Entry); 3858 } 3859 3860 // If there are two attempts to define the same mangled name, issue an 3861 // error. 3862 if (IsForDefinition && !Entry->isDeclaration()) { 3863 GlobalDecl OtherGD; 3864 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3865 // to make sure that we issue an error only once. 3866 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3867 (GD.getCanonicalDecl().getDecl() != 3868 OtherGD.getCanonicalDecl().getDecl()) && 3869 DiagnosedConflictingDefinitions.insert(GD).second) { 3870 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3871 << MangledName; 3872 getDiags().Report(OtherGD.getDecl()->getLocation(), 3873 diag::note_previous_definition); 3874 } 3875 } 3876 3877 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3878 (Entry->getValueType() == Ty)) { 3879 return Entry; 3880 } 3881 3882 // Make sure the result is of the correct type. 3883 // (If function is requested for a definition, we always need to create a new 3884 // function, not just return a bitcast.) 3885 if (!IsForDefinition) 3886 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3887 } 3888 3889 // This function doesn't have a complete type (for example, the return 3890 // type is an incomplete struct). Use a fake type instead, and make 3891 // sure not to try to set attributes. 3892 bool IsIncompleteFunction = false; 3893 3894 llvm::FunctionType *FTy; 3895 if (isa<llvm::FunctionType>(Ty)) { 3896 FTy = cast<llvm::FunctionType>(Ty); 3897 } else { 3898 FTy = llvm::FunctionType::get(VoidTy, false); 3899 IsIncompleteFunction = true; 3900 } 3901 3902 llvm::Function *F = 3903 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3904 Entry ? StringRef() : MangledName, &getModule()); 3905 3906 // If we already created a function with the same mangled name (but different 3907 // type) before, take its name and add it to the list of functions to be 3908 // replaced with F at the end of CodeGen. 3909 // 3910 // This happens if there is a prototype for a function (e.g. "int f()") and 3911 // then a definition of a different type (e.g. "int f(int x)"). 3912 if (Entry) { 3913 F->takeName(Entry); 3914 3915 // This might be an implementation of a function without a prototype, in 3916 // which case, try to do special replacement of calls which match the new 3917 // prototype. The really key thing here is that we also potentially drop 3918 // arguments from the call site so as to make a direct call, which makes the 3919 // inliner happier and suppresses a number of optimizer warnings (!) about 3920 // dropping arguments. 3921 if (!Entry->use_empty()) { 3922 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3923 Entry->removeDeadConstantUsers(); 3924 } 3925 3926 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3927 F, Entry->getValueType()->getPointerTo()); 3928 addGlobalValReplacement(Entry, BC); 3929 } 3930 3931 assert(F->getName() == MangledName && "name was uniqued!"); 3932 if (D) 3933 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3934 if (ExtraAttrs.hasFnAttrs()) { 3935 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3936 F->addFnAttrs(B); 3937 } 3938 3939 if (!DontDefer) { 3940 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3941 // each other bottoming out with the base dtor. Therefore we emit non-base 3942 // dtors on usage, even if there is no dtor definition in the TU. 3943 if (D && isa<CXXDestructorDecl>(D) && 3944 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3945 GD.getDtorType())) 3946 addDeferredDeclToEmit(GD); 3947 3948 // This is the first use or definition of a mangled name. If there is a 3949 // deferred decl with this name, remember that we need to emit it at the end 3950 // of the file. 3951 auto DDI = DeferredDecls.find(MangledName); 3952 if (DDI != DeferredDecls.end()) { 3953 // Move the potentially referenced deferred decl to the 3954 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3955 // don't need it anymore). 3956 addDeferredDeclToEmit(DDI->second); 3957 DeferredDecls.erase(DDI); 3958 3959 // Otherwise, there are cases we have to worry about where we're 3960 // using a declaration for which we must emit a definition but where 3961 // we might not find a top-level definition: 3962 // - member functions defined inline in their classes 3963 // - friend functions defined inline in some class 3964 // - special member functions with implicit definitions 3965 // If we ever change our AST traversal to walk into class methods, 3966 // this will be unnecessary. 3967 // 3968 // We also don't emit a definition for a function if it's going to be an 3969 // entry in a vtable, unless it's already marked as used. 3970 } else if (getLangOpts().CPlusPlus && D) { 3971 // Look for a declaration that's lexically in a record. 3972 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3973 FD = FD->getPreviousDecl()) { 3974 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3975 if (FD->doesThisDeclarationHaveABody()) { 3976 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3977 break; 3978 } 3979 } 3980 } 3981 } 3982 } 3983 3984 // Make sure the result is of the requested type. 3985 if (!IsIncompleteFunction) { 3986 assert(F->getFunctionType() == Ty); 3987 return F; 3988 } 3989 3990 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3991 return llvm::ConstantExpr::getBitCast(F, PTy); 3992 } 3993 3994 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3995 /// non-null, then this function will use the specified type if it has to 3996 /// create it (this occurs when we see a definition of the function). 3997 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3998 llvm::Type *Ty, 3999 bool ForVTable, 4000 bool DontDefer, 4001 ForDefinition_t IsForDefinition) { 4002 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4003 "consteval function should never be emitted"); 4004 // If there was no specific requested type, just convert it now. 4005 if (!Ty) { 4006 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4007 Ty = getTypes().ConvertType(FD->getType()); 4008 } 4009 4010 // Devirtualized destructor calls may come through here instead of via 4011 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4012 // of the complete destructor when necessary. 4013 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4014 if (getTarget().getCXXABI().isMicrosoft() && 4015 GD.getDtorType() == Dtor_Complete && 4016 DD->getParent()->getNumVBases() == 0) 4017 GD = GlobalDecl(DD, Dtor_Base); 4018 } 4019 4020 StringRef MangledName = getMangledName(GD); 4021 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4022 /*IsThunk=*/false, llvm::AttributeList(), 4023 IsForDefinition); 4024 // Returns kernel handle for HIP kernel stub function. 4025 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4026 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4027 auto *Handle = getCUDARuntime().getKernelHandle( 4028 cast<llvm::Function>(F->stripPointerCasts()), GD); 4029 if (IsForDefinition) 4030 return F; 4031 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4032 } 4033 return F; 4034 } 4035 4036 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4037 llvm::GlobalValue *F = 4038 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4039 4040 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4041 llvm::Type::getInt8PtrTy(VMContext)); 4042 } 4043 4044 static const FunctionDecl * 4045 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4046 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4047 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4048 4049 IdentifierInfo &CII = C.Idents.get(Name); 4050 for (const auto *Result : DC->lookup(&CII)) 4051 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4052 return FD; 4053 4054 if (!C.getLangOpts().CPlusPlus) 4055 return nullptr; 4056 4057 // Demangle the premangled name from getTerminateFn() 4058 IdentifierInfo &CXXII = 4059 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4060 ? C.Idents.get("terminate") 4061 : C.Idents.get(Name); 4062 4063 for (const auto &N : {"__cxxabiv1", "std"}) { 4064 IdentifierInfo &NS = C.Idents.get(N); 4065 for (const auto *Result : DC->lookup(&NS)) { 4066 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4067 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4068 for (const auto *Result : LSD->lookup(&NS)) 4069 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4070 break; 4071 4072 if (ND) 4073 for (const auto *Result : ND->lookup(&CXXII)) 4074 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4075 return FD; 4076 } 4077 } 4078 4079 return nullptr; 4080 } 4081 4082 /// CreateRuntimeFunction - Create a new runtime function with the specified 4083 /// type and name. 4084 llvm::FunctionCallee 4085 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4086 llvm::AttributeList ExtraAttrs, bool Local, 4087 bool AssumeConvergent) { 4088 if (AssumeConvergent) { 4089 ExtraAttrs = 4090 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4091 } 4092 4093 llvm::Constant *C = 4094 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4095 /*DontDefer=*/false, /*IsThunk=*/false, 4096 ExtraAttrs); 4097 4098 if (auto *F = dyn_cast<llvm::Function>(C)) { 4099 if (F->empty()) { 4100 F->setCallingConv(getRuntimeCC()); 4101 4102 // In Windows Itanium environments, try to mark runtime functions 4103 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4104 // will link their standard library statically or dynamically. Marking 4105 // functions imported when they are not imported can cause linker errors 4106 // and warnings. 4107 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4108 !getCodeGenOpts().LTOVisibilityPublicStd) { 4109 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4110 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4111 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4112 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4113 } 4114 } 4115 setDSOLocal(F); 4116 } 4117 } 4118 4119 return {FTy, C}; 4120 } 4121 4122 /// isTypeConstant - Determine whether an object of this type can be emitted 4123 /// as a constant. 4124 /// 4125 /// If ExcludeCtor is true, the duration when the object's constructor runs 4126 /// will not be considered. The caller will need to verify that the object is 4127 /// not written to during its construction. 4128 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4129 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4130 return false; 4131 4132 if (Context.getLangOpts().CPlusPlus) { 4133 if (const CXXRecordDecl *Record 4134 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4135 return ExcludeCtor && !Record->hasMutableFields() && 4136 Record->hasTrivialDestructor(); 4137 } 4138 4139 return true; 4140 } 4141 4142 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4143 /// create and return an llvm GlobalVariable with the specified type and address 4144 /// space. If there is something in the module with the specified name, return 4145 /// it potentially bitcasted to the right type. 4146 /// 4147 /// If D is non-null, it specifies a decl that correspond to this. This is used 4148 /// to set the attributes on the global when it is first created. 4149 /// 4150 /// If IsForDefinition is true, it is guaranteed that an actual global with 4151 /// type Ty will be returned, not conversion of a variable with the same 4152 /// mangled name but some other type. 4153 llvm::Constant * 4154 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4155 LangAS AddrSpace, const VarDecl *D, 4156 ForDefinition_t IsForDefinition) { 4157 // Lookup the entry, lazily creating it if necessary. 4158 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4159 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4160 if (Entry) { 4161 if (WeakRefReferences.erase(Entry)) { 4162 if (D && !D->hasAttr<WeakAttr>()) 4163 Entry->setLinkage(llvm::Function::ExternalLinkage); 4164 } 4165 4166 // Handle dropped DLL attributes. 4167 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4168 !shouldMapVisibilityToDLLExport(D)) 4169 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4170 4171 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4172 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4173 4174 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4175 return Entry; 4176 4177 // If there are two attempts to define the same mangled name, issue an 4178 // error. 4179 if (IsForDefinition && !Entry->isDeclaration()) { 4180 GlobalDecl OtherGD; 4181 const VarDecl *OtherD; 4182 4183 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4184 // to make sure that we issue an error only once. 4185 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4186 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4187 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4188 OtherD->hasInit() && 4189 DiagnosedConflictingDefinitions.insert(D).second) { 4190 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4191 << MangledName; 4192 getDiags().Report(OtherGD.getDecl()->getLocation(), 4193 diag::note_previous_definition); 4194 } 4195 } 4196 4197 // Make sure the result is of the correct type. 4198 if (Entry->getType()->getAddressSpace() != TargetAS) { 4199 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4200 Ty->getPointerTo(TargetAS)); 4201 } 4202 4203 // (If global is requested for a definition, we always need to create a new 4204 // global, not just return a bitcast.) 4205 if (!IsForDefinition) 4206 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4207 } 4208 4209 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4210 4211 auto *GV = new llvm::GlobalVariable( 4212 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4213 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4214 getContext().getTargetAddressSpace(DAddrSpace)); 4215 4216 // If we already created a global with the same mangled name (but different 4217 // type) before, take its name and remove it from its parent. 4218 if (Entry) { 4219 GV->takeName(Entry); 4220 4221 if (!Entry->use_empty()) { 4222 llvm::Constant *NewPtrForOldDecl = 4223 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4224 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4225 } 4226 4227 Entry->eraseFromParent(); 4228 } 4229 4230 // This is the first use or definition of a mangled name. If there is a 4231 // deferred decl with this name, remember that we need to emit it at the end 4232 // of the file. 4233 auto DDI = DeferredDecls.find(MangledName); 4234 if (DDI != DeferredDecls.end()) { 4235 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4236 // list, and remove it from DeferredDecls (since we don't need it anymore). 4237 addDeferredDeclToEmit(DDI->second); 4238 DeferredDecls.erase(DDI); 4239 } 4240 4241 // Handle things which are present even on external declarations. 4242 if (D) { 4243 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4244 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4245 4246 // FIXME: This code is overly simple and should be merged with other global 4247 // handling. 4248 GV->setConstant(isTypeConstant(D->getType(), false)); 4249 4250 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4251 4252 setLinkageForGV(GV, D); 4253 4254 if (D->getTLSKind()) { 4255 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4256 CXXThreadLocals.push_back(D); 4257 setTLSMode(GV, *D); 4258 } 4259 4260 setGVProperties(GV, D); 4261 4262 // If required by the ABI, treat declarations of static data members with 4263 // inline initializers as definitions. 4264 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4265 EmitGlobalVarDefinition(D); 4266 } 4267 4268 // Emit section information for extern variables. 4269 if (D->hasExternalStorage()) { 4270 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4271 GV->setSection(SA->getName()); 4272 } 4273 4274 // Handle XCore specific ABI requirements. 4275 if (getTriple().getArch() == llvm::Triple::xcore && 4276 D->getLanguageLinkage() == CLanguageLinkage && 4277 D->getType().isConstant(Context) && 4278 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4279 GV->setSection(".cp.rodata"); 4280 4281 // Check if we a have a const declaration with an initializer, we may be 4282 // able to emit it as available_externally to expose it's value to the 4283 // optimizer. 4284 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4285 D->getType().isConstQualified() && !GV->hasInitializer() && 4286 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4287 const auto *Record = 4288 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4289 bool HasMutableFields = Record && Record->hasMutableFields(); 4290 if (!HasMutableFields) { 4291 const VarDecl *InitDecl; 4292 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4293 if (InitExpr) { 4294 ConstantEmitter emitter(*this); 4295 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4296 if (Init) { 4297 auto *InitType = Init->getType(); 4298 if (GV->getValueType() != InitType) { 4299 // The type of the initializer does not match the definition. 4300 // This happens when an initializer has a different type from 4301 // the type of the global (because of padding at the end of a 4302 // structure for instance). 4303 GV->setName(StringRef()); 4304 // Make a new global with the correct type, this is now guaranteed 4305 // to work. 4306 auto *NewGV = cast<llvm::GlobalVariable>( 4307 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4308 ->stripPointerCasts()); 4309 4310 // Erase the old global, since it is no longer used. 4311 GV->eraseFromParent(); 4312 GV = NewGV; 4313 } else { 4314 GV->setInitializer(Init); 4315 GV->setConstant(true); 4316 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4317 } 4318 emitter.finalize(GV); 4319 } 4320 } 4321 } 4322 } 4323 } 4324 4325 if (GV->isDeclaration()) { 4326 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4327 // External HIP managed variables needed to be recorded for transformation 4328 // in both device and host compilations. 4329 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4330 D->hasExternalStorage()) 4331 getCUDARuntime().handleVarRegistration(D, *GV); 4332 } 4333 4334 LangAS ExpectedAS = 4335 D ? D->getType().getAddressSpace() 4336 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4337 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4338 if (DAddrSpace != ExpectedAS) { 4339 return getTargetCodeGenInfo().performAddrSpaceCast( 4340 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4341 } 4342 4343 return GV; 4344 } 4345 4346 llvm::Constant * 4347 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4348 const Decl *D = GD.getDecl(); 4349 4350 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4351 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4352 /*DontDefer=*/false, IsForDefinition); 4353 4354 if (isa<CXXMethodDecl>(D)) { 4355 auto FInfo = 4356 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4357 auto Ty = getTypes().GetFunctionType(*FInfo); 4358 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4359 IsForDefinition); 4360 } 4361 4362 if (isa<FunctionDecl>(D)) { 4363 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4364 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4365 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4366 IsForDefinition); 4367 } 4368 4369 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4370 } 4371 4372 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4373 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4374 unsigned Alignment) { 4375 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4376 llvm::GlobalVariable *OldGV = nullptr; 4377 4378 if (GV) { 4379 // Check if the variable has the right type. 4380 if (GV->getValueType() == Ty) 4381 return GV; 4382 4383 // Because C++ name mangling, the only way we can end up with an already 4384 // existing global with the same name is if it has been declared extern "C". 4385 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4386 OldGV = GV; 4387 } 4388 4389 // Create a new variable. 4390 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4391 Linkage, nullptr, Name); 4392 4393 if (OldGV) { 4394 // Replace occurrences of the old variable if needed. 4395 GV->takeName(OldGV); 4396 4397 if (!OldGV->use_empty()) { 4398 llvm::Constant *NewPtrForOldDecl = 4399 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4400 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4401 } 4402 4403 OldGV->eraseFromParent(); 4404 } 4405 4406 if (supportsCOMDAT() && GV->isWeakForLinker() && 4407 !GV->hasAvailableExternallyLinkage()) 4408 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4409 4410 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4411 4412 return GV; 4413 } 4414 4415 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4416 /// given global variable. If Ty is non-null and if the global doesn't exist, 4417 /// then it will be created with the specified type instead of whatever the 4418 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4419 /// that an actual global with type Ty will be returned, not conversion of a 4420 /// variable with the same mangled name but some other type. 4421 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4422 llvm::Type *Ty, 4423 ForDefinition_t IsForDefinition) { 4424 assert(D->hasGlobalStorage() && "Not a global variable"); 4425 QualType ASTTy = D->getType(); 4426 if (!Ty) 4427 Ty = getTypes().ConvertTypeForMem(ASTTy); 4428 4429 StringRef MangledName = getMangledName(D); 4430 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4431 IsForDefinition); 4432 } 4433 4434 /// CreateRuntimeVariable - Create a new runtime global variable with the 4435 /// specified type and name. 4436 llvm::Constant * 4437 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4438 StringRef Name) { 4439 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4440 : LangAS::Default; 4441 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4442 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4443 return Ret; 4444 } 4445 4446 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4447 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4448 4449 StringRef MangledName = getMangledName(D); 4450 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4451 4452 // We already have a definition, not declaration, with the same mangled name. 4453 // Emitting of declaration is not required (and actually overwrites emitted 4454 // definition). 4455 if (GV && !GV->isDeclaration()) 4456 return; 4457 4458 // If we have not seen a reference to this variable yet, place it into the 4459 // deferred declarations table to be emitted if needed later. 4460 if (!MustBeEmitted(D) && !GV) { 4461 DeferredDecls[MangledName] = D; 4462 return; 4463 } 4464 4465 // The tentative definition is the only definition. 4466 EmitGlobalVarDefinition(D); 4467 } 4468 4469 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4470 EmitExternalVarDeclaration(D); 4471 } 4472 4473 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4474 return Context.toCharUnitsFromBits( 4475 getDataLayout().getTypeStoreSizeInBits(Ty)); 4476 } 4477 4478 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4479 if (LangOpts.OpenCL) { 4480 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4481 assert(AS == LangAS::opencl_global || 4482 AS == LangAS::opencl_global_device || 4483 AS == LangAS::opencl_global_host || 4484 AS == LangAS::opencl_constant || 4485 AS == LangAS::opencl_local || 4486 AS >= LangAS::FirstTargetAddressSpace); 4487 return AS; 4488 } 4489 4490 if (LangOpts.SYCLIsDevice && 4491 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4492 return LangAS::sycl_global; 4493 4494 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4495 if (D && D->hasAttr<CUDAConstantAttr>()) 4496 return LangAS::cuda_constant; 4497 else if (D && D->hasAttr<CUDASharedAttr>()) 4498 return LangAS::cuda_shared; 4499 else if (D && D->hasAttr<CUDADeviceAttr>()) 4500 return LangAS::cuda_device; 4501 else if (D && D->getType().isConstQualified()) 4502 return LangAS::cuda_constant; 4503 else 4504 return LangAS::cuda_device; 4505 } 4506 4507 if (LangOpts.OpenMP) { 4508 LangAS AS; 4509 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4510 return AS; 4511 } 4512 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4513 } 4514 4515 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4516 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4517 if (LangOpts.OpenCL) 4518 return LangAS::opencl_constant; 4519 if (LangOpts.SYCLIsDevice) 4520 return LangAS::sycl_global; 4521 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4522 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4523 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4524 // with OpVariable instructions with Generic storage class which is not 4525 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4526 // UniformConstant storage class is not viable as pointers to it may not be 4527 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4528 return LangAS::cuda_device; 4529 if (auto AS = getTarget().getConstantAddressSpace()) 4530 return *AS; 4531 return LangAS::Default; 4532 } 4533 4534 // In address space agnostic languages, string literals are in default address 4535 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4536 // emitted in constant address space in LLVM IR. To be consistent with other 4537 // parts of AST, string literal global variables in constant address space 4538 // need to be casted to default address space before being put into address 4539 // map and referenced by other part of CodeGen. 4540 // In OpenCL, string literals are in constant address space in AST, therefore 4541 // they should not be casted to default address space. 4542 static llvm::Constant * 4543 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4544 llvm::GlobalVariable *GV) { 4545 llvm::Constant *Cast = GV; 4546 if (!CGM.getLangOpts().OpenCL) { 4547 auto AS = CGM.GetGlobalConstantAddressSpace(); 4548 if (AS != LangAS::Default) 4549 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4550 CGM, GV, AS, LangAS::Default, 4551 GV->getValueType()->getPointerTo( 4552 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4553 } 4554 return Cast; 4555 } 4556 4557 template<typename SomeDecl> 4558 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4559 llvm::GlobalValue *GV) { 4560 if (!getLangOpts().CPlusPlus) 4561 return; 4562 4563 // Must have 'used' attribute, or else inline assembly can't rely on 4564 // the name existing. 4565 if (!D->template hasAttr<UsedAttr>()) 4566 return; 4567 4568 // Must have internal linkage and an ordinary name. 4569 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4570 return; 4571 4572 // Must be in an extern "C" context. Entities declared directly within 4573 // a record are not extern "C" even if the record is in such a context. 4574 const SomeDecl *First = D->getFirstDecl(); 4575 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4576 return; 4577 4578 // OK, this is an internal linkage entity inside an extern "C" linkage 4579 // specification. Make a note of that so we can give it the "expected" 4580 // mangled name if nothing else is using that name. 4581 std::pair<StaticExternCMap::iterator, bool> R = 4582 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4583 4584 // If we have multiple internal linkage entities with the same name 4585 // in extern "C" regions, none of them gets that name. 4586 if (!R.second) 4587 R.first->second = nullptr; 4588 } 4589 4590 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4591 if (!CGM.supportsCOMDAT()) 4592 return false; 4593 4594 if (D.hasAttr<SelectAnyAttr>()) 4595 return true; 4596 4597 GVALinkage Linkage; 4598 if (auto *VD = dyn_cast<VarDecl>(&D)) 4599 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4600 else 4601 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4602 4603 switch (Linkage) { 4604 case GVA_Internal: 4605 case GVA_AvailableExternally: 4606 case GVA_StrongExternal: 4607 return false; 4608 case GVA_DiscardableODR: 4609 case GVA_StrongODR: 4610 return true; 4611 } 4612 llvm_unreachable("No such linkage"); 4613 } 4614 4615 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4616 llvm::GlobalObject &GO) { 4617 if (!shouldBeInCOMDAT(*this, D)) 4618 return; 4619 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4620 } 4621 4622 /// Pass IsTentative as true if you want to create a tentative definition. 4623 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4624 bool IsTentative) { 4625 // OpenCL global variables of sampler type are translated to function calls, 4626 // therefore no need to be translated. 4627 QualType ASTTy = D->getType(); 4628 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4629 return; 4630 4631 // If this is OpenMP device, check if it is legal to emit this global 4632 // normally. 4633 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4634 OpenMPRuntime->emitTargetGlobalVariable(D)) 4635 return; 4636 4637 llvm::TrackingVH<llvm::Constant> Init; 4638 bool NeedsGlobalCtor = false; 4639 bool NeedsGlobalDtor = 4640 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4641 4642 const VarDecl *InitDecl; 4643 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4644 4645 Optional<ConstantEmitter> emitter; 4646 4647 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4648 // as part of their declaration." Sema has already checked for 4649 // error cases, so we just need to set Init to UndefValue. 4650 bool IsCUDASharedVar = 4651 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4652 // Shadows of initialized device-side global variables are also left 4653 // undefined. 4654 // Managed Variables should be initialized on both host side and device side. 4655 bool IsCUDAShadowVar = 4656 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4657 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4658 D->hasAttr<CUDASharedAttr>()); 4659 bool IsCUDADeviceShadowVar = 4660 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4661 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4662 D->getType()->isCUDADeviceBuiltinTextureType()); 4663 if (getLangOpts().CUDA && 4664 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4665 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4666 else if (D->hasAttr<LoaderUninitializedAttr>()) 4667 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4668 else if (!InitExpr) { 4669 // This is a tentative definition; tentative definitions are 4670 // implicitly initialized with { 0 }. 4671 // 4672 // Note that tentative definitions are only emitted at the end of 4673 // a translation unit, so they should never have incomplete 4674 // type. In addition, EmitTentativeDefinition makes sure that we 4675 // never attempt to emit a tentative definition if a real one 4676 // exists. A use may still exists, however, so we still may need 4677 // to do a RAUW. 4678 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4679 Init = EmitNullConstant(D->getType()); 4680 } else { 4681 initializedGlobalDecl = GlobalDecl(D); 4682 emitter.emplace(*this); 4683 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4684 if (!Initializer) { 4685 QualType T = InitExpr->getType(); 4686 if (D->getType()->isReferenceType()) 4687 T = D->getType(); 4688 4689 if (getLangOpts().CPlusPlus) { 4690 if (InitDecl->hasFlexibleArrayInit(getContext())) 4691 ErrorUnsupported(D, "flexible array initializer"); 4692 Init = EmitNullConstant(T); 4693 NeedsGlobalCtor = true; 4694 } else { 4695 ErrorUnsupported(D, "static initializer"); 4696 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4697 } 4698 } else { 4699 Init = Initializer; 4700 // We don't need an initializer, so remove the entry for the delayed 4701 // initializer position (just in case this entry was delayed) if we 4702 // also don't need to register a destructor. 4703 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4704 DelayedCXXInitPosition.erase(D); 4705 4706 #ifndef NDEBUG 4707 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4708 InitDecl->getFlexibleArrayInitChars(getContext()); 4709 CharUnits CstSize = CharUnits::fromQuantity( 4710 getDataLayout().getTypeAllocSize(Init->getType())); 4711 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4712 #endif 4713 } 4714 } 4715 4716 llvm::Type* InitType = Init->getType(); 4717 llvm::Constant *Entry = 4718 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4719 4720 // Strip off pointer casts if we got them. 4721 Entry = Entry->stripPointerCasts(); 4722 4723 // Entry is now either a Function or GlobalVariable. 4724 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4725 4726 // We have a definition after a declaration with the wrong type. 4727 // We must make a new GlobalVariable* and update everything that used OldGV 4728 // (a declaration or tentative definition) with the new GlobalVariable* 4729 // (which will be a definition). 4730 // 4731 // This happens if there is a prototype for a global (e.g. 4732 // "extern int x[];") and then a definition of a different type (e.g. 4733 // "int x[10];"). This also happens when an initializer has a different type 4734 // from the type of the global (this happens with unions). 4735 if (!GV || GV->getValueType() != InitType || 4736 GV->getType()->getAddressSpace() != 4737 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4738 4739 // Move the old entry aside so that we'll create a new one. 4740 Entry->setName(StringRef()); 4741 4742 // Make a new global with the correct type, this is now guaranteed to work. 4743 GV = cast<llvm::GlobalVariable>( 4744 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4745 ->stripPointerCasts()); 4746 4747 // Replace all uses of the old global with the new global 4748 llvm::Constant *NewPtrForOldDecl = 4749 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4750 Entry->getType()); 4751 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4752 4753 // Erase the old global, since it is no longer used. 4754 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4755 } 4756 4757 MaybeHandleStaticInExternC(D, GV); 4758 4759 if (D->hasAttr<AnnotateAttr>()) 4760 AddGlobalAnnotations(D, GV); 4761 4762 // Set the llvm linkage type as appropriate. 4763 llvm::GlobalValue::LinkageTypes Linkage = 4764 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4765 4766 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4767 // the device. [...]" 4768 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4769 // __device__, declares a variable that: [...] 4770 // Is accessible from all the threads within the grid and from the host 4771 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4772 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4773 if (GV && LangOpts.CUDA) { 4774 if (LangOpts.CUDAIsDevice) { 4775 if (Linkage != llvm::GlobalValue::InternalLinkage && 4776 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4777 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4778 D->getType()->isCUDADeviceBuiltinTextureType())) 4779 GV->setExternallyInitialized(true); 4780 } else { 4781 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4782 } 4783 getCUDARuntime().handleVarRegistration(D, *GV); 4784 } 4785 4786 GV->setInitializer(Init); 4787 if (emitter) 4788 emitter->finalize(GV); 4789 4790 // If it is safe to mark the global 'constant', do so now. 4791 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4792 isTypeConstant(D->getType(), true)); 4793 4794 // If it is in a read-only section, mark it 'constant'. 4795 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4796 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4797 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4798 GV->setConstant(true); 4799 } 4800 4801 CharUnits AlignVal = getContext().getDeclAlign(D); 4802 // Check for alignment specifed in an 'omp allocate' directive. 4803 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4804 getOMPAllocateAlignment(D)) 4805 AlignVal = *AlignValFromAllocate; 4806 GV->setAlignment(AlignVal.getAsAlign()); 4807 4808 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4809 // function is only defined alongside the variable, not also alongside 4810 // callers. Normally, all accesses to a thread_local go through the 4811 // thread-wrapper in order to ensure initialization has occurred, underlying 4812 // variable will never be used other than the thread-wrapper, so it can be 4813 // converted to internal linkage. 4814 // 4815 // However, if the variable has the 'constinit' attribute, it _can_ be 4816 // referenced directly, without calling the thread-wrapper, so the linkage 4817 // must not be changed. 4818 // 4819 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4820 // weak or linkonce, the de-duplication semantics are important to preserve, 4821 // so we don't change the linkage. 4822 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4823 Linkage == llvm::GlobalValue::ExternalLinkage && 4824 Context.getTargetInfo().getTriple().isOSDarwin() && 4825 !D->hasAttr<ConstInitAttr>()) 4826 Linkage = llvm::GlobalValue::InternalLinkage; 4827 4828 GV->setLinkage(Linkage); 4829 if (D->hasAttr<DLLImportAttr>()) 4830 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4831 else if (D->hasAttr<DLLExportAttr>()) 4832 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4833 else 4834 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4835 4836 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4837 // common vars aren't constant even if declared const. 4838 GV->setConstant(false); 4839 // Tentative definition of global variables may be initialized with 4840 // non-zero null pointers. In this case they should have weak linkage 4841 // since common linkage must have zero initializer and must not have 4842 // explicit section therefore cannot have non-zero initial value. 4843 if (!GV->getInitializer()->isNullValue()) 4844 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4845 } 4846 4847 setNonAliasAttributes(D, GV); 4848 4849 if (D->getTLSKind() && !GV->isThreadLocal()) { 4850 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4851 CXXThreadLocals.push_back(D); 4852 setTLSMode(GV, *D); 4853 } 4854 4855 maybeSetTrivialComdat(*D, *GV); 4856 4857 // Emit the initializer function if necessary. 4858 if (NeedsGlobalCtor || NeedsGlobalDtor) 4859 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4860 4861 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4862 4863 // Emit global variable debug information. 4864 if (CGDebugInfo *DI = getModuleDebugInfo()) 4865 if (getCodeGenOpts().hasReducedDebugInfo()) 4866 DI->EmitGlobalVariable(GV, D); 4867 } 4868 4869 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4870 if (CGDebugInfo *DI = getModuleDebugInfo()) 4871 if (getCodeGenOpts().hasReducedDebugInfo()) { 4872 QualType ASTTy = D->getType(); 4873 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4874 llvm::Constant *GV = 4875 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4876 DI->EmitExternalVariable( 4877 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4878 } 4879 } 4880 4881 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4882 CodeGenModule &CGM, const VarDecl *D, 4883 bool NoCommon) { 4884 // Don't give variables common linkage if -fno-common was specified unless it 4885 // was overridden by a NoCommon attribute. 4886 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4887 return true; 4888 4889 // C11 6.9.2/2: 4890 // A declaration of an identifier for an object that has file scope without 4891 // an initializer, and without a storage-class specifier or with the 4892 // storage-class specifier static, constitutes a tentative definition. 4893 if (D->getInit() || D->hasExternalStorage()) 4894 return true; 4895 4896 // A variable cannot be both common and exist in a section. 4897 if (D->hasAttr<SectionAttr>()) 4898 return true; 4899 4900 // A variable cannot be both common and exist in a section. 4901 // We don't try to determine which is the right section in the front-end. 4902 // If no specialized section name is applicable, it will resort to default. 4903 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4904 D->hasAttr<PragmaClangDataSectionAttr>() || 4905 D->hasAttr<PragmaClangRelroSectionAttr>() || 4906 D->hasAttr<PragmaClangRodataSectionAttr>()) 4907 return true; 4908 4909 // Thread local vars aren't considered common linkage. 4910 if (D->getTLSKind()) 4911 return true; 4912 4913 // Tentative definitions marked with WeakImportAttr are true definitions. 4914 if (D->hasAttr<WeakImportAttr>()) 4915 return true; 4916 4917 // A variable cannot be both common and exist in a comdat. 4918 if (shouldBeInCOMDAT(CGM, *D)) 4919 return true; 4920 4921 // Declarations with a required alignment do not have common linkage in MSVC 4922 // mode. 4923 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4924 if (D->hasAttr<AlignedAttr>()) 4925 return true; 4926 QualType VarType = D->getType(); 4927 if (Context.isAlignmentRequired(VarType)) 4928 return true; 4929 4930 if (const auto *RT = VarType->getAs<RecordType>()) { 4931 const RecordDecl *RD = RT->getDecl(); 4932 for (const FieldDecl *FD : RD->fields()) { 4933 if (FD->isBitField()) 4934 continue; 4935 if (FD->hasAttr<AlignedAttr>()) 4936 return true; 4937 if (Context.isAlignmentRequired(FD->getType())) 4938 return true; 4939 } 4940 } 4941 } 4942 4943 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4944 // common symbols, so symbols with greater alignment requirements cannot be 4945 // common. 4946 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4947 // alignments for common symbols via the aligncomm directive, so this 4948 // restriction only applies to MSVC environments. 4949 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4950 Context.getTypeAlignIfKnown(D->getType()) > 4951 Context.toBits(CharUnits::fromQuantity(32))) 4952 return true; 4953 4954 return false; 4955 } 4956 4957 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4958 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4959 if (Linkage == GVA_Internal) 4960 return llvm::Function::InternalLinkage; 4961 4962 if (D->hasAttr<WeakAttr>()) 4963 return llvm::GlobalVariable::WeakAnyLinkage; 4964 4965 if (const auto *FD = D->getAsFunction()) 4966 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4967 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4968 4969 // We are guaranteed to have a strong definition somewhere else, 4970 // so we can use available_externally linkage. 4971 if (Linkage == GVA_AvailableExternally) 4972 return llvm::GlobalValue::AvailableExternallyLinkage; 4973 4974 // Note that Apple's kernel linker doesn't support symbol 4975 // coalescing, so we need to avoid linkonce and weak linkages there. 4976 // Normally, this means we just map to internal, but for explicit 4977 // instantiations we'll map to external. 4978 4979 // In C++, the compiler has to emit a definition in every translation unit 4980 // that references the function. We should use linkonce_odr because 4981 // a) if all references in this translation unit are optimized away, we 4982 // don't need to codegen it. b) if the function persists, it needs to be 4983 // merged with other definitions. c) C++ has the ODR, so we know the 4984 // definition is dependable. 4985 if (Linkage == GVA_DiscardableODR) 4986 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4987 : llvm::Function::InternalLinkage; 4988 4989 // An explicit instantiation of a template has weak linkage, since 4990 // explicit instantiations can occur in multiple translation units 4991 // and must all be equivalent. However, we are not allowed to 4992 // throw away these explicit instantiations. 4993 // 4994 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4995 // so say that CUDA templates are either external (for kernels) or internal. 4996 // This lets llvm perform aggressive inter-procedural optimizations. For 4997 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4998 // therefore we need to follow the normal linkage paradigm. 4999 if (Linkage == GVA_StrongODR) { 5000 if (getLangOpts().AppleKext) 5001 return llvm::Function::ExternalLinkage; 5002 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5003 !getLangOpts().GPURelocatableDeviceCode) 5004 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5005 : llvm::Function::InternalLinkage; 5006 return llvm::Function::WeakODRLinkage; 5007 } 5008 5009 // C++ doesn't have tentative definitions and thus cannot have common 5010 // linkage. 5011 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5012 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5013 CodeGenOpts.NoCommon)) 5014 return llvm::GlobalVariable::CommonLinkage; 5015 5016 // selectany symbols are externally visible, so use weak instead of 5017 // linkonce. MSVC optimizes away references to const selectany globals, so 5018 // all definitions should be the same and ODR linkage should be used. 5019 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5020 if (D->hasAttr<SelectAnyAttr>()) 5021 return llvm::GlobalVariable::WeakODRLinkage; 5022 5023 // Otherwise, we have strong external linkage. 5024 assert(Linkage == GVA_StrongExternal); 5025 return llvm::GlobalVariable::ExternalLinkage; 5026 } 5027 5028 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5029 const VarDecl *VD, bool IsConstant) { 5030 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5031 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5032 } 5033 5034 /// Replace the uses of a function that was declared with a non-proto type. 5035 /// We want to silently drop extra arguments from call sites 5036 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5037 llvm::Function *newFn) { 5038 // Fast path. 5039 if (old->use_empty()) return; 5040 5041 llvm::Type *newRetTy = newFn->getReturnType(); 5042 SmallVector<llvm::Value*, 4> newArgs; 5043 5044 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5045 ui != ue; ) { 5046 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5047 llvm::User *user = use->getUser(); 5048 5049 // Recognize and replace uses of bitcasts. Most calls to 5050 // unprototyped functions will use bitcasts. 5051 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5052 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5053 replaceUsesOfNonProtoConstant(bitcast, newFn); 5054 continue; 5055 } 5056 5057 // Recognize calls to the function. 5058 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5059 if (!callSite) continue; 5060 if (!callSite->isCallee(&*use)) 5061 continue; 5062 5063 // If the return types don't match exactly, then we can't 5064 // transform this call unless it's dead. 5065 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5066 continue; 5067 5068 // Get the call site's attribute list. 5069 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5070 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5071 5072 // If the function was passed too few arguments, don't transform. 5073 unsigned newNumArgs = newFn->arg_size(); 5074 if (callSite->arg_size() < newNumArgs) 5075 continue; 5076 5077 // If extra arguments were passed, we silently drop them. 5078 // If any of the types mismatch, we don't transform. 5079 unsigned argNo = 0; 5080 bool dontTransform = false; 5081 for (llvm::Argument &A : newFn->args()) { 5082 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5083 dontTransform = true; 5084 break; 5085 } 5086 5087 // Add any parameter attributes. 5088 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5089 argNo++; 5090 } 5091 if (dontTransform) 5092 continue; 5093 5094 // Okay, we can transform this. Create the new call instruction and copy 5095 // over the required information. 5096 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5097 5098 // Copy over any operand bundles. 5099 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5100 callSite->getOperandBundlesAsDefs(newBundles); 5101 5102 llvm::CallBase *newCall; 5103 if (isa<llvm::CallInst>(callSite)) { 5104 newCall = 5105 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5106 } else { 5107 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5108 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5109 oldInvoke->getUnwindDest(), newArgs, 5110 newBundles, "", callSite); 5111 } 5112 newArgs.clear(); // for the next iteration 5113 5114 if (!newCall->getType()->isVoidTy()) 5115 newCall->takeName(callSite); 5116 newCall->setAttributes( 5117 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5118 oldAttrs.getRetAttrs(), newArgAttrs)); 5119 newCall->setCallingConv(callSite->getCallingConv()); 5120 5121 // Finally, remove the old call, replacing any uses with the new one. 5122 if (!callSite->use_empty()) 5123 callSite->replaceAllUsesWith(newCall); 5124 5125 // Copy debug location attached to CI. 5126 if (callSite->getDebugLoc()) 5127 newCall->setDebugLoc(callSite->getDebugLoc()); 5128 5129 callSite->eraseFromParent(); 5130 } 5131 } 5132 5133 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5134 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5135 /// existing call uses of the old function in the module, this adjusts them to 5136 /// call the new function directly. 5137 /// 5138 /// This is not just a cleanup: the always_inline pass requires direct calls to 5139 /// functions to be able to inline them. If there is a bitcast in the way, it 5140 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5141 /// run at -O0. 5142 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5143 llvm::Function *NewFn) { 5144 // If we're redefining a global as a function, don't transform it. 5145 if (!isa<llvm::Function>(Old)) return; 5146 5147 replaceUsesOfNonProtoConstant(Old, NewFn); 5148 } 5149 5150 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5151 auto DK = VD->isThisDeclarationADefinition(); 5152 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5153 return; 5154 5155 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5156 // If we have a definition, this might be a deferred decl. If the 5157 // instantiation is explicit, make sure we emit it at the end. 5158 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5159 GetAddrOfGlobalVar(VD); 5160 5161 EmitTopLevelDecl(VD); 5162 } 5163 5164 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5165 llvm::GlobalValue *GV) { 5166 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5167 5168 // Compute the function info and LLVM type. 5169 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5170 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5171 5172 // Get or create the prototype for the function. 5173 if (!GV || (GV->getValueType() != Ty)) 5174 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5175 /*DontDefer=*/true, 5176 ForDefinition)); 5177 5178 // Already emitted. 5179 if (!GV->isDeclaration()) 5180 return; 5181 5182 // We need to set linkage and visibility on the function before 5183 // generating code for it because various parts of IR generation 5184 // want to propagate this information down (e.g. to local static 5185 // declarations). 5186 auto *Fn = cast<llvm::Function>(GV); 5187 setFunctionLinkage(GD, Fn); 5188 5189 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5190 setGVProperties(Fn, GD); 5191 5192 MaybeHandleStaticInExternC(D, Fn); 5193 5194 maybeSetTrivialComdat(*D, *Fn); 5195 5196 // Set CodeGen attributes that represent floating point environment. 5197 setLLVMFunctionFEnvAttributes(D, Fn); 5198 5199 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5200 5201 setNonAliasAttributes(GD, Fn); 5202 SetLLVMFunctionAttributesForDefinition(D, Fn); 5203 5204 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5205 AddGlobalCtor(Fn, CA->getPriority()); 5206 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5207 AddGlobalDtor(Fn, DA->getPriority(), true); 5208 if (D->hasAttr<AnnotateAttr>()) 5209 AddGlobalAnnotations(D, Fn); 5210 } 5211 5212 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5213 const auto *D = cast<ValueDecl>(GD.getDecl()); 5214 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5215 assert(AA && "Not an alias?"); 5216 5217 StringRef MangledName = getMangledName(GD); 5218 5219 if (AA->getAliasee() == MangledName) { 5220 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5221 return; 5222 } 5223 5224 // If there is a definition in the module, then it wins over the alias. 5225 // This is dubious, but allow it to be safe. Just ignore the alias. 5226 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5227 if (Entry && !Entry->isDeclaration()) 5228 return; 5229 5230 Aliases.push_back(GD); 5231 5232 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5233 5234 // Create a reference to the named value. This ensures that it is emitted 5235 // if a deferred decl. 5236 llvm::Constant *Aliasee; 5237 llvm::GlobalValue::LinkageTypes LT; 5238 if (isa<llvm::FunctionType>(DeclTy)) { 5239 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5240 /*ForVTable=*/false); 5241 LT = getFunctionLinkage(GD); 5242 } else { 5243 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5244 /*D=*/nullptr); 5245 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5246 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5247 else 5248 LT = getFunctionLinkage(GD); 5249 } 5250 5251 // Create the new alias itself, but don't set a name yet. 5252 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5253 auto *GA = 5254 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5255 5256 if (Entry) { 5257 if (GA->getAliasee() == Entry) { 5258 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5259 return; 5260 } 5261 5262 assert(Entry->isDeclaration()); 5263 5264 // If there is a declaration in the module, then we had an extern followed 5265 // by the alias, as in: 5266 // extern int test6(); 5267 // ... 5268 // int test6() __attribute__((alias("test7"))); 5269 // 5270 // Remove it and replace uses of it with the alias. 5271 GA->takeName(Entry); 5272 5273 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5274 Entry->getType())); 5275 Entry->eraseFromParent(); 5276 } else { 5277 GA->setName(MangledName); 5278 } 5279 5280 // Set attributes which are particular to an alias; this is a 5281 // specialization of the attributes which may be set on a global 5282 // variable/function. 5283 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5284 D->isWeakImported()) { 5285 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5286 } 5287 5288 if (const auto *VD = dyn_cast<VarDecl>(D)) 5289 if (VD->getTLSKind()) 5290 setTLSMode(GA, *VD); 5291 5292 SetCommonAttributes(GD, GA); 5293 5294 // Emit global alias debug information. 5295 if (isa<VarDecl>(D)) 5296 if (CGDebugInfo *DI = getModuleDebugInfo()) 5297 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5298 } 5299 5300 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5301 const auto *D = cast<ValueDecl>(GD.getDecl()); 5302 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5303 assert(IFA && "Not an ifunc?"); 5304 5305 StringRef MangledName = getMangledName(GD); 5306 5307 if (IFA->getResolver() == MangledName) { 5308 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5309 return; 5310 } 5311 5312 // Report an error if some definition overrides ifunc. 5313 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5314 if (Entry && !Entry->isDeclaration()) { 5315 GlobalDecl OtherGD; 5316 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5317 DiagnosedConflictingDefinitions.insert(GD).second) { 5318 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5319 << MangledName; 5320 Diags.Report(OtherGD.getDecl()->getLocation(), 5321 diag::note_previous_definition); 5322 } 5323 return; 5324 } 5325 5326 Aliases.push_back(GD); 5327 5328 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5329 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5330 llvm::Constant *Resolver = 5331 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5332 /*ForVTable=*/false); 5333 llvm::GlobalIFunc *GIF = 5334 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5335 "", Resolver, &getModule()); 5336 if (Entry) { 5337 if (GIF->getResolver() == Entry) { 5338 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5339 return; 5340 } 5341 assert(Entry->isDeclaration()); 5342 5343 // If there is a declaration in the module, then we had an extern followed 5344 // by the ifunc, as in: 5345 // extern int test(); 5346 // ... 5347 // int test() __attribute__((ifunc("resolver"))); 5348 // 5349 // Remove it and replace uses of it with the ifunc. 5350 GIF->takeName(Entry); 5351 5352 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5353 Entry->getType())); 5354 Entry->eraseFromParent(); 5355 } else 5356 GIF->setName(MangledName); 5357 5358 SetCommonAttributes(GD, GIF); 5359 } 5360 5361 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5362 ArrayRef<llvm::Type*> Tys) { 5363 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5364 Tys); 5365 } 5366 5367 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5368 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5369 const StringLiteral *Literal, bool TargetIsLSB, 5370 bool &IsUTF16, unsigned &StringLength) { 5371 StringRef String = Literal->getString(); 5372 unsigned NumBytes = String.size(); 5373 5374 // Check for simple case. 5375 if (!Literal->containsNonAsciiOrNull()) { 5376 StringLength = NumBytes; 5377 return *Map.insert(std::make_pair(String, nullptr)).first; 5378 } 5379 5380 // Otherwise, convert the UTF8 literals into a string of shorts. 5381 IsUTF16 = true; 5382 5383 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5384 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5385 llvm::UTF16 *ToPtr = &ToBuf[0]; 5386 5387 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5388 ToPtr + NumBytes, llvm::strictConversion); 5389 5390 // ConvertUTF8toUTF16 returns the length in ToPtr. 5391 StringLength = ToPtr - &ToBuf[0]; 5392 5393 // Add an explicit null. 5394 *ToPtr = 0; 5395 return *Map.insert(std::make_pair( 5396 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5397 (StringLength + 1) * 2), 5398 nullptr)).first; 5399 } 5400 5401 ConstantAddress 5402 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5403 unsigned StringLength = 0; 5404 bool isUTF16 = false; 5405 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5406 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5407 getDataLayout().isLittleEndian(), isUTF16, 5408 StringLength); 5409 5410 if (auto *C = Entry.second) 5411 return ConstantAddress( 5412 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5413 5414 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5415 llvm::Constant *Zeros[] = { Zero, Zero }; 5416 5417 const ASTContext &Context = getContext(); 5418 const llvm::Triple &Triple = getTriple(); 5419 5420 const auto CFRuntime = getLangOpts().CFRuntime; 5421 const bool IsSwiftABI = 5422 static_cast<unsigned>(CFRuntime) >= 5423 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5424 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5425 5426 // If we don't already have it, get __CFConstantStringClassReference. 5427 if (!CFConstantStringClassRef) { 5428 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5429 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5430 Ty = llvm::ArrayType::get(Ty, 0); 5431 5432 switch (CFRuntime) { 5433 default: break; 5434 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5435 case LangOptions::CoreFoundationABI::Swift5_0: 5436 CFConstantStringClassName = 5437 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5438 : "$s10Foundation19_NSCFConstantStringCN"; 5439 Ty = IntPtrTy; 5440 break; 5441 case LangOptions::CoreFoundationABI::Swift4_2: 5442 CFConstantStringClassName = 5443 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5444 : "$S10Foundation19_NSCFConstantStringCN"; 5445 Ty = IntPtrTy; 5446 break; 5447 case LangOptions::CoreFoundationABI::Swift4_1: 5448 CFConstantStringClassName = 5449 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5450 : "__T010Foundation19_NSCFConstantStringCN"; 5451 Ty = IntPtrTy; 5452 break; 5453 } 5454 5455 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5456 5457 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5458 llvm::GlobalValue *GV = nullptr; 5459 5460 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5461 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5462 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5463 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5464 5465 const VarDecl *VD = nullptr; 5466 for (const auto *Result : DC->lookup(&II)) 5467 if ((VD = dyn_cast<VarDecl>(Result))) 5468 break; 5469 5470 if (Triple.isOSBinFormatELF()) { 5471 if (!VD) 5472 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5473 } else { 5474 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5475 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5476 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5477 else 5478 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5479 } 5480 5481 setDSOLocal(GV); 5482 } 5483 } 5484 5485 // Decay array -> ptr 5486 CFConstantStringClassRef = 5487 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5488 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5489 } 5490 5491 QualType CFTy = Context.getCFConstantStringType(); 5492 5493 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5494 5495 ConstantInitBuilder Builder(*this); 5496 auto Fields = Builder.beginStruct(STy); 5497 5498 // Class pointer. 5499 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5500 5501 // Flags. 5502 if (IsSwiftABI) { 5503 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5504 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5505 } else { 5506 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5507 } 5508 5509 // String pointer. 5510 llvm::Constant *C = nullptr; 5511 if (isUTF16) { 5512 auto Arr = llvm::makeArrayRef( 5513 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5514 Entry.first().size() / 2); 5515 C = llvm::ConstantDataArray::get(VMContext, Arr); 5516 } else { 5517 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5518 } 5519 5520 // Note: -fwritable-strings doesn't make the backing store strings of 5521 // CFStrings writable. (See <rdar://problem/10657500>) 5522 auto *GV = 5523 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5524 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5525 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5526 // Don't enforce the target's minimum global alignment, since the only use 5527 // of the string is via this class initializer. 5528 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5529 : Context.getTypeAlignInChars(Context.CharTy); 5530 GV->setAlignment(Align.getAsAlign()); 5531 5532 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5533 // Without it LLVM can merge the string with a non unnamed_addr one during 5534 // LTO. Doing that changes the section it ends in, which surprises ld64. 5535 if (Triple.isOSBinFormatMachO()) 5536 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5537 : "__TEXT,__cstring,cstring_literals"); 5538 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5539 // the static linker to adjust permissions to read-only later on. 5540 else if (Triple.isOSBinFormatELF()) 5541 GV->setSection(".rodata"); 5542 5543 // String. 5544 llvm::Constant *Str = 5545 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5546 5547 if (isUTF16) 5548 // Cast the UTF16 string to the correct type. 5549 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5550 Fields.add(Str); 5551 5552 // String length. 5553 llvm::IntegerType *LengthTy = 5554 llvm::IntegerType::get(getModule().getContext(), 5555 Context.getTargetInfo().getLongWidth()); 5556 if (IsSwiftABI) { 5557 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5558 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5559 LengthTy = Int32Ty; 5560 else 5561 LengthTy = IntPtrTy; 5562 } 5563 Fields.addInt(LengthTy, StringLength); 5564 5565 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5566 // properly aligned on 32-bit platforms. 5567 CharUnits Alignment = 5568 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5569 5570 // The struct. 5571 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5572 /*isConstant=*/false, 5573 llvm::GlobalVariable::PrivateLinkage); 5574 GV->addAttribute("objc_arc_inert"); 5575 switch (Triple.getObjectFormat()) { 5576 case llvm::Triple::UnknownObjectFormat: 5577 llvm_unreachable("unknown file format"); 5578 case llvm::Triple::DXContainer: 5579 case llvm::Triple::GOFF: 5580 case llvm::Triple::SPIRV: 5581 case llvm::Triple::XCOFF: 5582 llvm_unreachable("unimplemented"); 5583 case llvm::Triple::COFF: 5584 case llvm::Triple::ELF: 5585 case llvm::Triple::Wasm: 5586 GV->setSection("cfstring"); 5587 break; 5588 case llvm::Triple::MachO: 5589 GV->setSection("__DATA,__cfstring"); 5590 break; 5591 } 5592 Entry.second = GV; 5593 5594 return ConstantAddress(GV, GV->getValueType(), Alignment); 5595 } 5596 5597 bool CodeGenModule::getExpressionLocationsEnabled() const { 5598 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5599 } 5600 5601 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5602 if (ObjCFastEnumerationStateType.isNull()) { 5603 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5604 D->startDefinition(); 5605 5606 QualType FieldTypes[] = { 5607 Context.UnsignedLongTy, 5608 Context.getPointerType(Context.getObjCIdType()), 5609 Context.getPointerType(Context.UnsignedLongTy), 5610 Context.getConstantArrayType(Context.UnsignedLongTy, 5611 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5612 }; 5613 5614 for (size_t i = 0; i < 4; ++i) { 5615 FieldDecl *Field = FieldDecl::Create(Context, 5616 D, 5617 SourceLocation(), 5618 SourceLocation(), nullptr, 5619 FieldTypes[i], /*TInfo=*/nullptr, 5620 /*BitWidth=*/nullptr, 5621 /*Mutable=*/false, 5622 ICIS_NoInit); 5623 Field->setAccess(AS_public); 5624 D->addDecl(Field); 5625 } 5626 5627 D->completeDefinition(); 5628 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5629 } 5630 5631 return ObjCFastEnumerationStateType; 5632 } 5633 5634 llvm::Constant * 5635 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5636 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5637 5638 // Don't emit it as the address of the string, emit the string data itself 5639 // as an inline array. 5640 if (E->getCharByteWidth() == 1) { 5641 SmallString<64> Str(E->getString()); 5642 5643 // Resize the string to the right size, which is indicated by its type. 5644 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5645 Str.resize(CAT->getSize().getZExtValue()); 5646 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5647 } 5648 5649 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5650 llvm::Type *ElemTy = AType->getElementType(); 5651 unsigned NumElements = AType->getNumElements(); 5652 5653 // Wide strings have either 2-byte or 4-byte elements. 5654 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5655 SmallVector<uint16_t, 32> Elements; 5656 Elements.reserve(NumElements); 5657 5658 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5659 Elements.push_back(E->getCodeUnit(i)); 5660 Elements.resize(NumElements); 5661 return llvm::ConstantDataArray::get(VMContext, Elements); 5662 } 5663 5664 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5665 SmallVector<uint32_t, 32> Elements; 5666 Elements.reserve(NumElements); 5667 5668 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5669 Elements.push_back(E->getCodeUnit(i)); 5670 Elements.resize(NumElements); 5671 return llvm::ConstantDataArray::get(VMContext, Elements); 5672 } 5673 5674 static llvm::GlobalVariable * 5675 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5676 CodeGenModule &CGM, StringRef GlobalName, 5677 CharUnits Alignment) { 5678 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5679 CGM.GetGlobalConstantAddressSpace()); 5680 5681 llvm::Module &M = CGM.getModule(); 5682 // Create a global variable for this string 5683 auto *GV = new llvm::GlobalVariable( 5684 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5685 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5686 GV->setAlignment(Alignment.getAsAlign()); 5687 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5688 if (GV->isWeakForLinker()) { 5689 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5690 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5691 } 5692 CGM.setDSOLocal(GV); 5693 5694 return GV; 5695 } 5696 5697 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5698 /// constant array for the given string literal. 5699 ConstantAddress 5700 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5701 StringRef Name) { 5702 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5703 5704 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5705 llvm::GlobalVariable **Entry = nullptr; 5706 if (!LangOpts.WritableStrings) { 5707 Entry = &ConstantStringMap[C]; 5708 if (auto GV = *Entry) { 5709 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5710 GV->setAlignment(Alignment.getAsAlign()); 5711 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5712 GV->getValueType(), Alignment); 5713 } 5714 } 5715 5716 SmallString<256> MangledNameBuffer; 5717 StringRef GlobalVariableName; 5718 llvm::GlobalValue::LinkageTypes LT; 5719 5720 // Mangle the string literal if that's how the ABI merges duplicate strings. 5721 // Don't do it if they are writable, since we don't want writes in one TU to 5722 // affect strings in another. 5723 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5724 !LangOpts.WritableStrings) { 5725 llvm::raw_svector_ostream Out(MangledNameBuffer); 5726 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5727 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5728 GlobalVariableName = MangledNameBuffer; 5729 } else { 5730 LT = llvm::GlobalValue::PrivateLinkage; 5731 GlobalVariableName = Name; 5732 } 5733 5734 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5735 5736 CGDebugInfo *DI = getModuleDebugInfo(); 5737 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5738 DI->AddStringLiteralDebugInfo(GV, S); 5739 5740 if (Entry) 5741 *Entry = GV; 5742 5743 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5744 5745 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5746 GV->getValueType(), Alignment); 5747 } 5748 5749 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5750 /// array for the given ObjCEncodeExpr node. 5751 ConstantAddress 5752 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5753 std::string Str; 5754 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5755 5756 return GetAddrOfConstantCString(Str); 5757 } 5758 5759 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5760 /// the literal and a terminating '\0' character. 5761 /// The result has pointer to array type. 5762 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5763 const std::string &Str, const char *GlobalName) { 5764 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5765 CharUnits Alignment = 5766 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5767 5768 llvm::Constant *C = 5769 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5770 5771 // Don't share any string literals if strings aren't constant. 5772 llvm::GlobalVariable **Entry = nullptr; 5773 if (!LangOpts.WritableStrings) { 5774 Entry = &ConstantStringMap[C]; 5775 if (auto GV = *Entry) { 5776 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5777 GV->setAlignment(Alignment.getAsAlign()); 5778 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5779 GV->getValueType(), Alignment); 5780 } 5781 } 5782 5783 // Get the default prefix if a name wasn't specified. 5784 if (!GlobalName) 5785 GlobalName = ".str"; 5786 // Create a global variable for this. 5787 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5788 GlobalName, Alignment); 5789 if (Entry) 5790 *Entry = GV; 5791 5792 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5793 GV->getValueType(), Alignment); 5794 } 5795 5796 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5797 const MaterializeTemporaryExpr *E, const Expr *Init) { 5798 assert((E->getStorageDuration() == SD_Static || 5799 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5800 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5801 5802 // If we're not materializing a subobject of the temporary, keep the 5803 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5804 QualType MaterializedType = Init->getType(); 5805 if (Init == E->getSubExpr()) 5806 MaterializedType = E->getType(); 5807 5808 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5809 5810 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5811 if (!InsertResult.second) { 5812 // We've seen this before: either we already created it or we're in the 5813 // process of doing so. 5814 if (!InsertResult.first->second) { 5815 // We recursively re-entered this function, probably during emission of 5816 // the initializer. Create a placeholder. We'll clean this up in the 5817 // outer call, at the end of this function. 5818 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5819 InsertResult.first->second = new llvm::GlobalVariable( 5820 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5821 nullptr); 5822 } 5823 return ConstantAddress(InsertResult.first->second, 5824 llvm::cast<llvm::GlobalVariable>( 5825 InsertResult.first->second->stripPointerCasts()) 5826 ->getValueType(), 5827 Align); 5828 } 5829 5830 // FIXME: If an externally-visible declaration extends multiple temporaries, 5831 // we need to give each temporary the same name in every translation unit (and 5832 // we also need to make the temporaries externally-visible). 5833 SmallString<256> Name; 5834 llvm::raw_svector_ostream Out(Name); 5835 getCXXABI().getMangleContext().mangleReferenceTemporary( 5836 VD, E->getManglingNumber(), Out); 5837 5838 APValue *Value = nullptr; 5839 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5840 // If the initializer of the extending declaration is a constant 5841 // initializer, we should have a cached constant initializer for this 5842 // temporary. Note that this might have a different value from the value 5843 // computed by evaluating the initializer if the surrounding constant 5844 // expression modifies the temporary. 5845 Value = E->getOrCreateValue(false); 5846 } 5847 5848 // Try evaluating it now, it might have a constant initializer. 5849 Expr::EvalResult EvalResult; 5850 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5851 !EvalResult.hasSideEffects()) 5852 Value = &EvalResult.Val; 5853 5854 LangAS AddrSpace = 5855 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5856 5857 Optional<ConstantEmitter> emitter; 5858 llvm::Constant *InitialValue = nullptr; 5859 bool Constant = false; 5860 llvm::Type *Type; 5861 if (Value) { 5862 // The temporary has a constant initializer, use it. 5863 emitter.emplace(*this); 5864 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5865 MaterializedType); 5866 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5867 Type = InitialValue->getType(); 5868 } else { 5869 // No initializer, the initialization will be provided when we 5870 // initialize the declaration which performed lifetime extension. 5871 Type = getTypes().ConvertTypeForMem(MaterializedType); 5872 } 5873 5874 // Create a global variable for this lifetime-extended temporary. 5875 llvm::GlobalValue::LinkageTypes Linkage = 5876 getLLVMLinkageVarDefinition(VD, Constant); 5877 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5878 const VarDecl *InitVD; 5879 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5880 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5881 // Temporaries defined inside a class get linkonce_odr linkage because the 5882 // class can be defined in multiple translation units. 5883 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5884 } else { 5885 // There is no need for this temporary to have external linkage if the 5886 // VarDecl has external linkage. 5887 Linkage = llvm::GlobalVariable::InternalLinkage; 5888 } 5889 } 5890 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5891 auto *GV = new llvm::GlobalVariable( 5892 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5893 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5894 if (emitter) emitter->finalize(GV); 5895 setGVProperties(GV, VD); 5896 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5897 // The reference temporary should never be dllexport. 5898 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5899 GV->setAlignment(Align.getAsAlign()); 5900 if (supportsCOMDAT() && GV->isWeakForLinker()) 5901 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5902 if (VD->getTLSKind()) 5903 setTLSMode(GV, *VD); 5904 llvm::Constant *CV = GV; 5905 if (AddrSpace != LangAS::Default) 5906 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5907 *this, GV, AddrSpace, LangAS::Default, 5908 Type->getPointerTo( 5909 getContext().getTargetAddressSpace(LangAS::Default))); 5910 5911 // Update the map with the new temporary. If we created a placeholder above, 5912 // replace it with the new global now. 5913 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5914 if (Entry) { 5915 Entry->replaceAllUsesWith( 5916 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5917 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5918 } 5919 Entry = CV; 5920 5921 return ConstantAddress(CV, Type, Align); 5922 } 5923 5924 /// EmitObjCPropertyImplementations - Emit information for synthesized 5925 /// properties for an implementation. 5926 void CodeGenModule::EmitObjCPropertyImplementations(const 5927 ObjCImplementationDecl *D) { 5928 for (const auto *PID : D->property_impls()) { 5929 // Dynamic is just for type-checking. 5930 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5931 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5932 5933 // Determine which methods need to be implemented, some may have 5934 // been overridden. Note that ::isPropertyAccessor is not the method 5935 // we want, that just indicates if the decl came from a 5936 // property. What we want to know is if the method is defined in 5937 // this implementation. 5938 auto *Getter = PID->getGetterMethodDecl(); 5939 if (!Getter || Getter->isSynthesizedAccessorStub()) 5940 CodeGenFunction(*this).GenerateObjCGetter( 5941 const_cast<ObjCImplementationDecl *>(D), PID); 5942 auto *Setter = PID->getSetterMethodDecl(); 5943 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5944 CodeGenFunction(*this).GenerateObjCSetter( 5945 const_cast<ObjCImplementationDecl *>(D), PID); 5946 } 5947 } 5948 } 5949 5950 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5951 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5952 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5953 ivar; ivar = ivar->getNextIvar()) 5954 if (ivar->getType().isDestructedType()) 5955 return true; 5956 5957 return false; 5958 } 5959 5960 static bool AllTrivialInitializers(CodeGenModule &CGM, 5961 ObjCImplementationDecl *D) { 5962 CodeGenFunction CGF(CGM); 5963 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5964 E = D->init_end(); B != E; ++B) { 5965 CXXCtorInitializer *CtorInitExp = *B; 5966 Expr *Init = CtorInitExp->getInit(); 5967 if (!CGF.isTrivialInitializer(Init)) 5968 return false; 5969 } 5970 return true; 5971 } 5972 5973 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5974 /// for an implementation. 5975 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5976 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5977 if (needsDestructMethod(D)) { 5978 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5979 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5980 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5981 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5982 getContext().VoidTy, nullptr, D, 5983 /*isInstance=*/true, /*isVariadic=*/false, 5984 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5985 /*isImplicitlyDeclared=*/true, 5986 /*isDefined=*/false, ObjCMethodDecl::Required); 5987 D->addInstanceMethod(DTORMethod); 5988 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5989 D->setHasDestructors(true); 5990 } 5991 5992 // If the implementation doesn't have any ivar initializers, we don't need 5993 // a .cxx_construct. 5994 if (D->getNumIvarInitializers() == 0 || 5995 AllTrivialInitializers(*this, D)) 5996 return; 5997 5998 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5999 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6000 // The constructor returns 'self'. 6001 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6002 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6003 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6004 /*isVariadic=*/false, 6005 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6006 /*isImplicitlyDeclared=*/true, 6007 /*isDefined=*/false, ObjCMethodDecl::Required); 6008 D->addInstanceMethod(CTORMethod); 6009 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6010 D->setHasNonZeroConstructors(true); 6011 } 6012 6013 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6014 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6015 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6016 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6017 ErrorUnsupported(LSD, "linkage spec"); 6018 return; 6019 } 6020 6021 EmitDeclContext(LSD); 6022 } 6023 6024 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6025 for (auto *I : DC->decls()) { 6026 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6027 // are themselves considered "top-level", so EmitTopLevelDecl on an 6028 // ObjCImplDecl does not recursively visit them. We need to do that in 6029 // case they're nested inside another construct (LinkageSpecDecl / 6030 // ExportDecl) that does stop them from being considered "top-level". 6031 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6032 for (auto *M : OID->methods()) 6033 EmitTopLevelDecl(M); 6034 } 6035 6036 EmitTopLevelDecl(I); 6037 } 6038 } 6039 6040 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6041 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6042 // Ignore dependent declarations. 6043 if (D->isTemplated()) 6044 return; 6045 6046 // Consteval function shouldn't be emitted. 6047 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6048 if (FD->isConsteval()) 6049 return; 6050 6051 switch (D->getKind()) { 6052 case Decl::CXXConversion: 6053 case Decl::CXXMethod: 6054 case Decl::Function: 6055 EmitGlobal(cast<FunctionDecl>(D)); 6056 // Always provide some coverage mapping 6057 // even for the functions that aren't emitted. 6058 AddDeferredUnusedCoverageMapping(D); 6059 break; 6060 6061 case Decl::CXXDeductionGuide: 6062 // Function-like, but does not result in code emission. 6063 break; 6064 6065 case Decl::Var: 6066 case Decl::Decomposition: 6067 case Decl::VarTemplateSpecialization: 6068 EmitGlobal(cast<VarDecl>(D)); 6069 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6070 for (auto *B : DD->bindings()) 6071 if (auto *HD = B->getHoldingVar()) 6072 EmitGlobal(HD); 6073 break; 6074 6075 // Indirect fields from global anonymous structs and unions can be 6076 // ignored; only the actual variable requires IR gen support. 6077 case Decl::IndirectField: 6078 break; 6079 6080 // C++ Decls 6081 case Decl::Namespace: 6082 EmitDeclContext(cast<NamespaceDecl>(D)); 6083 break; 6084 case Decl::ClassTemplateSpecialization: { 6085 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6086 if (CGDebugInfo *DI = getModuleDebugInfo()) 6087 if (Spec->getSpecializationKind() == 6088 TSK_ExplicitInstantiationDefinition && 6089 Spec->hasDefinition()) 6090 DI->completeTemplateDefinition(*Spec); 6091 } LLVM_FALLTHROUGH; 6092 case Decl::CXXRecord: { 6093 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6094 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6095 if (CRD->hasDefinition()) 6096 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6097 if (auto *ES = D->getASTContext().getExternalSource()) 6098 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6099 DI->completeUnusedClass(*CRD); 6100 } 6101 // Emit any static data members, they may be definitions. 6102 for (auto *I : CRD->decls()) 6103 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6104 EmitTopLevelDecl(I); 6105 break; 6106 } 6107 // No code generation needed. 6108 case Decl::UsingShadow: 6109 case Decl::ClassTemplate: 6110 case Decl::VarTemplate: 6111 case Decl::Concept: 6112 case Decl::VarTemplatePartialSpecialization: 6113 case Decl::FunctionTemplate: 6114 case Decl::TypeAliasTemplate: 6115 case Decl::Block: 6116 case Decl::Empty: 6117 case Decl::Binding: 6118 break; 6119 case Decl::Using: // using X; [C++] 6120 if (CGDebugInfo *DI = getModuleDebugInfo()) 6121 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6122 break; 6123 case Decl::UsingEnum: // using enum X; [C++] 6124 if (CGDebugInfo *DI = getModuleDebugInfo()) 6125 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6126 break; 6127 case Decl::NamespaceAlias: 6128 if (CGDebugInfo *DI = getModuleDebugInfo()) 6129 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6130 break; 6131 case Decl::UsingDirective: // using namespace X; [C++] 6132 if (CGDebugInfo *DI = getModuleDebugInfo()) 6133 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6134 break; 6135 case Decl::CXXConstructor: 6136 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6137 break; 6138 case Decl::CXXDestructor: 6139 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6140 break; 6141 6142 case Decl::StaticAssert: 6143 // Nothing to do. 6144 break; 6145 6146 // Objective-C Decls 6147 6148 // Forward declarations, no (immediate) code generation. 6149 case Decl::ObjCInterface: 6150 case Decl::ObjCCategory: 6151 break; 6152 6153 case Decl::ObjCProtocol: { 6154 auto *Proto = cast<ObjCProtocolDecl>(D); 6155 if (Proto->isThisDeclarationADefinition()) 6156 ObjCRuntime->GenerateProtocol(Proto); 6157 break; 6158 } 6159 6160 case Decl::ObjCCategoryImpl: 6161 // Categories have properties but don't support synthesize so we 6162 // can ignore them here. 6163 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6164 break; 6165 6166 case Decl::ObjCImplementation: { 6167 auto *OMD = cast<ObjCImplementationDecl>(D); 6168 EmitObjCPropertyImplementations(OMD); 6169 EmitObjCIvarInitializations(OMD); 6170 ObjCRuntime->GenerateClass(OMD); 6171 // Emit global variable debug information. 6172 if (CGDebugInfo *DI = getModuleDebugInfo()) 6173 if (getCodeGenOpts().hasReducedDebugInfo()) 6174 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6175 OMD->getClassInterface()), OMD->getLocation()); 6176 break; 6177 } 6178 case Decl::ObjCMethod: { 6179 auto *OMD = cast<ObjCMethodDecl>(D); 6180 // If this is not a prototype, emit the body. 6181 if (OMD->getBody()) 6182 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6183 break; 6184 } 6185 case Decl::ObjCCompatibleAlias: 6186 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6187 break; 6188 6189 case Decl::PragmaComment: { 6190 const auto *PCD = cast<PragmaCommentDecl>(D); 6191 switch (PCD->getCommentKind()) { 6192 case PCK_Unknown: 6193 llvm_unreachable("unexpected pragma comment kind"); 6194 case PCK_Linker: 6195 AppendLinkerOptions(PCD->getArg()); 6196 break; 6197 case PCK_Lib: 6198 AddDependentLib(PCD->getArg()); 6199 break; 6200 case PCK_Compiler: 6201 case PCK_ExeStr: 6202 case PCK_User: 6203 break; // We ignore all of these. 6204 } 6205 break; 6206 } 6207 6208 case Decl::PragmaDetectMismatch: { 6209 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6210 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6211 break; 6212 } 6213 6214 case Decl::LinkageSpec: 6215 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6216 break; 6217 6218 case Decl::FileScopeAsm: { 6219 // File-scope asm is ignored during device-side CUDA compilation. 6220 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6221 break; 6222 // File-scope asm is ignored during device-side OpenMP compilation. 6223 if (LangOpts.OpenMPIsDevice) 6224 break; 6225 // File-scope asm is ignored during device-side SYCL compilation. 6226 if (LangOpts.SYCLIsDevice) 6227 break; 6228 auto *AD = cast<FileScopeAsmDecl>(D); 6229 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6230 break; 6231 } 6232 6233 case Decl::Import: { 6234 auto *Import = cast<ImportDecl>(D); 6235 6236 // If we've already imported this module, we're done. 6237 if (!ImportedModules.insert(Import->getImportedModule())) 6238 break; 6239 6240 // Emit debug information for direct imports. 6241 if (!Import->getImportedOwningModule()) { 6242 if (CGDebugInfo *DI = getModuleDebugInfo()) 6243 DI->EmitImportDecl(*Import); 6244 } 6245 6246 // For CXX20 we are done - we will call the module initializer for the 6247 // imported module, and that will likewise call those for any imports it 6248 // has. 6249 if (CXX20ModuleInits) 6250 break; 6251 6252 // Find all of the submodules and emit the module initializers. 6253 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6254 SmallVector<clang::Module *, 16> Stack; 6255 Visited.insert(Import->getImportedModule()); 6256 Stack.push_back(Import->getImportedModule()); 6257 6258 while (!Stack.empty()) { 6259 clang::Module *Mod = Stack.pop_back_val(); 6260 if (!EmittedModuleInitializers.insert(Mod).second) 6261 continue; 6262 6263 for (auto *D : Context.getModuleInitializers(Mod)) 6264 EmitTopLevelDecl(D); 6265 6266 // Visit the submodules of this module. 6267 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6268 SubEnd = Mod->submodule_end(); 6269 Sub != SubEnd; ++Sub) { 6270 // Skip explicit children; they need to be explicitly imported to emit 6271 // the initializers. 6272 if ((*Sub)->IsExplicit) 6273 continue; 6274 6275 if (Visited.insert(*Sub).second) 6276 Stack.push_back(*Sub); 6277 } 6278 } 6279 break; 6280 } 6281 6282 case Decl::Export: 6283 EmitDeclContext(cast<ExportDecl>(D)); 6284 break; 6285 6286 case Decl::OMPThreadPrivate: 6287 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6288 break; 6289 6290 case Decl::OMPAllocate: 6291 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6292 break; 6293 6294 case Decl::OMPDeclareReduction: 6295 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6296 break; 6297 6298 case Decl::OMPDeclareMapper: 6299 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6300 break; 6301 6302 case Decl::OMPRequires: 6303 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6304 break; 6305 6306 case Decl::Typedef: 6307 case Decl::TypeAlias: // using foo = bar; [C++11] 6308 if (CGDebugInfo *DI = getModuleDebugInfo()) 6309 DI->EmitAndRetainType( 6310 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6311 break; 6312 6313 case Decl::Record: 6314 if (CGDebugInfo *DI = getModuleDebugInfo()) 6315 if (cast<RecordDecl>(D)->getDefinition()) 6316 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6317 break; 6318 6319 case Decl::Enum: 6320 if (CGDebugInfo *DI = getModuleDebugInfo()) 6321 if (cast<EnumDecl>(D)->getDefinition()) 6322 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6323 break; 6324 6325 default: 6326 // Make sure we handled everything we should, every other kind is a 6327 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6328 // function. Need to recode Decl::Kind to do that easily. 6329 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6330 break; 6331 } 6332 } 6333 6334 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6335 // Do we need to generate coverage mapping? 6336 if (!CodeGenOpts.CoverageMapping) 6337 return; 6338 switch (D->getKind()) { 6339 case Decl::CXXConversion: 6340 case Decl::CXXMethod: 6341 case Decl::Function: 6342 case Decl::ObjCMethod: 6343 case Decl::CXXConstructor: 6344 case Decl::CXXDestructor: { 6345 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6346 break; 6347 SourceManager &SM = getContext().getSourceManager(); 6348 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6349 break; 6350 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6351 if (I == DeferredEmptyCoverageMappingDecls.end()) 6352 DeferredEmptyCoverageMappingDecls[D] = true; 6353 break; 6354 } 6355 default: 6356 break; 6357 }; 6358 } 6359 6360 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6361 // Do we need to generate coverage mapping? 6362 if (!CodeGenOpts.CoverageMapping) 6363 return; 6364 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6365 if (Fn->isTemplateInstantiation()) 6366 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6367 } 6368 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6369 if (I == DeferredEmptyCoverageMappingDecls.end()) 6370 DeferredEmptyCoverageMappingDecls[D] = false; 6371 else 6372 I->second = false; 6373 } 6374 6375 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6376 // We call takeVector() here to avoid use-after-free. 6377 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6378 // we deserialize function bodies to emit coverage info for them, and that 6379 // deserializes more declarations. How should we handle that case? 6380 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6381 if (!Entry.second) 6382 continue; 6383 const Decl *D = Entry.first; 6384 switch (D->getKind()) { 6385 case Decl::CXXConversion: 6386 case Decl::CXXMethod: 6387 case Decl::Function: 6388 case Decl::ObjCMethod: { 6389 CodeGenPGO PGO(*this); 6390 GlobalDecl GD(cast<FunctionDecl>(D)); 6391 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6392 getFunctionLinkage(GD)); 6393 break; 6394 } 6395 case Decl::CXXConstructor: { 6396 CodeGenPGO PGO(*this); 6397 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6398 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6399 getFunctionLinkage(GD)); 6400 break; 6401 } 6402 case Decl::CXXDestructor: { 6403 CodeGenPGO PGO(*this); 6404 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6405 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6406 getFunctionLinkage(GD)); 6407 break; 6408 } 6409 default: 6410 break; 6411 }; 6412 } 6413 } 6414 6415 void CodeGenModule::EmitMainVoidAlias() { 6416 // In order to transition away from "__original_main" gracefully, emit an 6417 // alias for "main" in the no-argument case so that libc can detect when 6418 // new-style no-argument main is in used. 6419 if (llvm::Function *F = getModule().getFunction("main")) { 6420 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6421 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6422 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6423 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6424 } 6425 } 6426 } 6427 6428 /// Turns the given pointer into a constant. 6429 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6430 const void *Ptr) { 6431 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6432 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6433 return llvm::ConstantInt::get(i64, PtrInt); 6434 } 6435 6436 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6437 llvm::NamedMDNode *&GlobalMetadata, 6438 GlobalDecl D, 6439 llvm::GlobalValue *Addr) { 6440 if (!GlobalMetadata) 6441 GlobalMetadata = 6442 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6443 6444 // TODO: should we report variant information for ctors/dtors? 6445 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6446 llvm::ConstantAsMetadata::get(GetPointerConstant( 6447 CGM.getLLVMContext(), D.getDecl()))}; 6448 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6449 } 6450 6451 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6452 llvm::GlobalValue *CppFunc) { 6453 // Store the list of ifuncs we need to replace uses in. 6454 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6455 // List of ConstantExprs that we should be able to delete when we're done 6456 // here. 6457 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6458 6459 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6460 if (Elem == CppFunc) 6461 return false; 6462 6463 // First make sure that all users of this are ifuncs (or ifuncs via a 6464 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6465 // later. 6466 for (llvm::User *User : Elem->users()) { 6467 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6468 // ifunc directly. In any other case, just give up, as we don't know what we 6469 // could break by changing those. 6470 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6471 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6472 return false; 6473 6474 for (llvm::User *CEUser : ConstExpr->users()) { 6475 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6476 IFuncs.push_back(IFunc); 6477 } else { 6478 return false; 6479 } 6480 } 6481 CEs.push_back(ConstExpr); 6482 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6483 IFuncs.push_back(IFunc); 6484 } else { 6485 // This user is one we don't know how to handle, so fail redirection. This 6486 // will result in an ifunc retaining a resolver name that will ultimately 6487 // fail to be resolved to a defined function. 6488 return false; 6489 } 6490 } 6491 6492 // Now we know this is a valid case where we can do this alias replacement, we 6493 // need to remove all of the references to Elem (and the bitcasts!) so we can 6494 // delete it. 6495 for (llvm::GlobalIFunc *IFunc : IFuncs) 6496 IFunc->setResolver(nullptr); 6497 for (llvm::ConstantExpr *ConstExpr : CEs) 6498 ConstExpr->destroyConstant(); 6499 6500 // We should now be out of uses for the 'old' version of this function, so we 6501 // can erase it as well. 6502 Elem->eraseFromParent(); 6503 6504 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6505 // The type of the resolver is always just a function-type that returns the 6506 // type of the IFunc, so create that here. If the type of the actual 6507 // resolver doesn't match, it just gets bitcast to the right thing. 6508 auto *ResolverTy = 6509 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6510 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6511 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6512 IFunc->setResolver(Resolver); 6513 } 6514 return true; 6515 } 6516 6517 /// For each function which is declared within an extern "C" region and marked 6518 /// as 'used', but has internal linkage, create an alias from the unmangled 6519 /// name to the mangled name if possible. People expect to be able to refer 6520 /// to such functions with an unmangled name from inline assembly within the 6521 /// same translation unit. 6522 void CodeGenModule::EmitStaticExternCAliases() { 6523 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6524 return; 6525 for (auto &I : StaticExternCValues) { 6526 IdentifierInfo *Name = I.first; 6527 llvm::GlobalValue *Val = I.second; 6528 6529 // If Val is null, that implies there were multiple declarations that each 6530 // had a claim to the unmangled name. In this case, generation of the alias 6531 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6532 if (!Val) 6533 break; 6534 6535 llvm::GlobalValue *ExistingElem = 6536 getModule().getNamedValue(Name->getName()); 6537 6538 // If there is either not something already by this name, or we were able to 6539 // replace all uses from IFuncs, create the alias. 6540 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6541 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6542 } 6543 } 6544 6545 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6546 GlobalDecl &Result) const { 6547 auto Res = Manglings.find(MangledName); 6548 if (Res == Manglings.end()) 6549 return false; 6550 Result = Res->getValue(); 6551 return true; 6552 } 6553 6554 /// Emits metadata nodes associating all the global values in the 6555 /// current module with the Decls they came from. This is useful for 6556 /// projects using IR gen as a subroutine. 6557 /// 6558 /// Since there's currently no way to associate an MDNode directly 6559 /// with an llvm::GlobalValue, we create a global named metadata 6560 /// with the name 'clang.global.decl.ptrs'. 6561 void CodeGenModule::EmitDeclMetadata() { 6562 llvm::NamedMDNode *GlobalMetadata = nullptr; 6563 6564 for (auto &I : MangledDeclNames) { 6565 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6566 // Some mangled names don't necessarily have an associated GlobalValue 6567 // in this module, e.g. if we mangled it for DebugInfo. 6568 if (Addr) 6569 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6570 } 6571 } 6572 6573 /// Emits metadata nodes for all the local variables in the current 6574 /// function. 6575 void CodeGenFunction::EmitDeclMetadata() { 6576 if (LocalDeclMap.empty()) return; 6577 6578 llvm::LLVMContext &Context = getLLVMContext(); 6579 6580 // Find the unique metadata ID for this name. 6581 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6582 6583 llvm::NamedMDNode *GlobalMetadata = nullptr; 6584 6585 for (auto &I : LocalDeclMap) { 6586 const Decl *D = I.first; 6587 llvm::Value *Addr = I.second.getPointer(); 6588 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6589 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6590 Alloca->setMetadata( 6591 DeclPtrKind, llvm::MDNode::get( 6592 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6593 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6594 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6595 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6596 } 6597 } 6598 } 6599 6600 void CodeGenModule::EmitVersionIdentMetadata() { 6601 llvm::NamedMDNode *IdentMetadata = 6602 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6603 std::string Version = getClangFullVersion(); 6604 llvm::LLVMContext &Ctx = TheModule.getContext(); 6605 6606 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6607 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6608 } 6609 6610 void CodeGenModule::EmitCommandLineMetadata() { 6611 llvm::NamedMDNode *CommandLineMetadata = 6612 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6613 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6614 llvm::LLVMContext &Ctx = TheModule.getContext(); 6615 6616 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6617 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6618 } 6619 6620 void CodeGenModule::EmitCoverageFile() { 6621 if (getCodeGenOpts().CoverageDataFile.empty() && 6622 getCodeGenOpts().CoverageNotesFile.empty()) 6623 return; 6624 6625 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6626 if (!CUNode) 6627 return; 6628 6629 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6630 llvm::LLVMContext &Ctx = TheModule.getContext(); 6631 auto *CoverageDataFile = 6632 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6633 auto *CoverageNotesFile = 6634 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6635 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6636 llvm::MDNode *CU = CUNode->getOperand(i); 6637 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6638 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6639 } 6640 } 6641 6642 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6643 bool ForEH) { 6644 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6645 // FIXME: should we even be calling this method if RTTI is disabled 6646 // and it's not for EH? 6647 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6648 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6649 getTriple().isNVPTX())) 6650 return llvm::Constant::getNullValue(Int8PtrTy); 6651 6652 if (ForEH && Ty->isObjCObjectPointerType() && 6653 LangOpts.ObjCRuntime.isGNUFamily()) 6654 return ObjCRuntime->GetEHType(Ty); 6655 6656 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6657 } 6658 6659 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6660 // Do not emit threadprivates in simd-only mode. 6661 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6662 return; 6663 for (auto RefExpr : D->varlists()) { 6664 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6665 bool PerformInit = 6666 VD->getAnyInitializer() && 6667 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6668 /*ForRef=*/false); 6669 6670 Address Addr(GetAddrOfGlobalVar(VD), 6671 getTypes().ConvertTypeForMem(VD->getType()), 6672 getContext().getDeclAlign(VD)); 6673 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6674 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6675 CXXGlobalInits.push_back(InitFunction); 6676 } 6677 } 6678 6679 llvm::Metadata * 6680 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6681 StringRef Suffix) { 6682 if (auto *FnType = T->getAs<FunctionProtoType>()) 6683 T = getContext().getFunctionType( 6684 FnType->getReturnType(), FnType->getParamTypes(), 6685 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6686 6687 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6688 if (InternalId) 6689 return InternalId; 6690 6691 if (isExternallyVisible(T->getLinkage())) { 6692 std::string OutName; 6693 llvm::raw_string_ostream Out(OutName); 6694 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6695 Out << Suffix; 6696 6697 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6698 } else { 6699 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6700 llvm::ArrayRef<llvm::Metadata *>()); 6701 } 6702 6703 return InternalId; 6704 } 6705 6706 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6707 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6708 } 6709 6710 llvm::Metadata * 6711 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6712 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6713 } 6714 6715 // Generalize pointer types to a void pointer with the qualifiers of the 6716 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6717 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6718 // 'void *'. 6719 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6720 if (!Ty->isPointerType()) 6721 return Ty; 6722 6723 return Ctx.getPointerType( 6724 QualType(Ctx.VoidTy).withCVRQualifiers( 6725 Ty->getPointeeType().getCVRQualifiers())); 6726 } 6727 6728 // Apply type generalization to a FunctionType's return and argument types 6729 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6730 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6731 SmallVector<QualType, 8> GeneralizedParams; 6732 for (auto &Param : FnType->param_types()) 6733 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6734 6735 return Ctx.getFunctionType( 6736 GeneralizeType(Ctx, FnType->getReturnType()), 6737 GeneralizedParams, FnType->getExtProtoInfo()); 6738 } 6739 6740 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6741 return Ctx.getFunctionNoProtoType( 6742 GeneralizeType(Ctx, FnType->getReturnType())); 6743 6744 llvm_unreachable("Encountered unknown FunctionType"); 6745 } 6746 6747 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6748 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6749 GeneralizedMetadataIdMap, ".generalized"); 6750 } 6751 6752 /// Returns whether this module needs the "all-vtables" type identifier. 6753 bool CodeGenModule::NeedAllVtablesTypeId() const { 6754 // Returns true if at least one of vtable-based CFI checkers is enabled and 6755 // is not in the trapping mode. 6756 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6757 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6758 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6759 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6760 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6761 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6762 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6763 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6764 } 6765 6766 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6767 CharUnits Offset, 6768 const CXXRecordDecl *RD) { 6769 llvm::Metadata *MD = 6770 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6771 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6772 6773 if (CodeGenOpts.SanitizeCfiCrossDso) 6774 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6775 VTable->addTypeMetadata(Offset.getQuantity(), 6776 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6777 6778 if (NeedAllVtablesTypeId()) { 6779 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6780 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6781 } 6782 } 6783 6784 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6785 if (!SanStats) 6786 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6787 6788 return *SanStats; 6789 } 6790 6791 llvm::Value * 6792 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6793 CodeGenFunction &CGF) { 6794 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6795 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6796 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6797 auto *Call = CGF.EmitRuntimeCall( 6798 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6799 return Call; 6800 } 6801 6802 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6803 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6804 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6805 /* forPointeeType= */ true); 6806 } 6807 6808 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6809 LValueBaseInfo *BaseInfo, 6810 TBAAAccessInfo *TBAAInfo, 6811 bool forPointeeType) { 6812 if (TBAAInfo) 6813 *TBAAInfo = getTBAAAccessInfo(T); 6814 6815 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6816 // that doesn't return the information we need to compute BaseInfo. 6817 6818 // Honor alignment typedef attributes even on incomplete types. 6819 // We also honor them straight for C++ class types, even as pointees; 6820 // there's an expressivity gap here. 6821 if (auto TT = T->getAs<TypedefType>()) { 6822 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6823 if (BaseInfo) 6824 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6825 return getContext().toCharUnitsFromBits(Align); 6826 } 6827 } 6828 6829 bool AlignForArray = T->isArrayType(); 6830 6831 // Analyze the base element type, so we don't get confused by incomplete 6832 // array types. 6833 T = getContext().getBaseElementType(T); 6834 6835 if (T->isIncompleteType()) { 6836 // We could try to replicate the logic from 6837 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6838 // type is incomplete, so it's impossible to test. We could try to reuse 6839 // getTypeAlignIfKnown, but that doesn't return the information we need 6840 // to set BaseInfo. So just ignore the possibility that the alignment is 6841 // greater than one. 6842 if (BaseInfo) 6843 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6844 return CharUnits::One(); 6845 } 6846 6847 if (BaseInfo) 6848 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6849 6850 CharUnits Alignment; 6851 const CXXRecordDecl *RD; 6852 if (T.getQualifiers().hasUnaligned()) { 6853 Alignment = CharUnits::One(); 6854 } else if (forPointeeType && !AlignForArray && 6855 (RD = T->getAsCXXRecordDecl())) { 6856 // For C++ class pointees, we don't know whether we're pointing at a 6857 // base or a complete object, so we generally need to use the 6858 // non-virtual alignment. 6859 Alignment = getClassPointerAlignment(RD); 6860 } else { 6861 Alignment = getContext().getTypeAlignInChars(T); 6862 } 6863 6864 // Cap to the global maximum type alignment unless the alignment 6865 // was somehow explicit on the type. 6866 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6867 if (Alignment.getQuantity() > MaxAlign && 6868 !getContext().isAlignmentRequired(T)) 6869 Alignment = CharUnits::fromQuantity(MaxAlign); 6870 } 6871 return Alignment; 6872 } 6873 6874 bool CodeGenModule::stopAutoInit() { 6875 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6876 if (StopAfter) { 6877 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6878 // used 6879 if (NumAutoVarInit >= StopAfter) { 6880 return true; 6881 } 6882 if (!NumAutoVarInit) { 6883 unsigned DiagID = getDiags().getCustomDiagID( 6884 DiagnosticsEngine::Warning, 6885 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6886 "number of times ftrivial-auto-var-init=%1 gets applied."); 6887 getDiags().Report(DiagID) 6888 << StopAfter 6889 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6890 LangOptions::TrivialAutoVarInitKind::Zero 6891 ? "zero" 6892 : "pattern"); 6893 } 6894 ++NumAutoVarInit; 6895 } 6896 return false; 6897 } 6898 6899 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6900 const Decl *D) const { 6901 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6902 // postfix beginning with '.' since the symbol name can be demangled. 6903 if (LangOpts.HIP) 6904 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6905 else 6906 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6907 6908 // If the CUID is not specified we try to generate a unique postfix. 6909 if (getLangOpts().CUID.empty()) { 6910 SourceManager &SM = getContext().getSourceManager(); 6911 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6912 assert(PLoc.isValid() && "Source location is expected to be valid."); 6913 6914 // Get the hash of the user defined macros. 6915 llvm::MD5 Hash; 6916 llvm::MD5::MD5Result Result; 6917 for (const auto &Arg : PreprocessorOpts.Macros) 6918 Hash.update(Arg.first); 6919 Hash.final(Result); 6920 6921 // Get the UniqueID for the file containing the decl. 6922 llvm::sys::fs::UniqueID ID; 6923 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6924 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6925 assert(PLoc.isValid() && "Source location is expected to be valid."); 6926 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6927 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6928 << PLoc.getFilename() << EC.message(); 6929 } 6930 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6931 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6932 } else { 6933 OS << getContext().getCUIDHash(); 6934 } 6935 } 6936