1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 SizeSizeInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, 117 C.getTargetInfo().getMaxPointerWidth()); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 AllocaInt8PtrTy = Int8Ty->getPointerTo( 121 M.getDataLayout().getAllocaAddrSpace()); 122 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 123 124 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 125 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 211 break; 212 } 213 } 214 215 void CodeGenModule::createCUDARuntime() { 216 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 217 } 218 219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 220 Replacements[Name] = C; 221 } 222 223 void CodeGenModule::applyReplacements() { 224 for (auto &I : Replacements) { 225 StringRef MangledName = I.first(); 226 llvm::Constant *Replacement = I.second; 227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 228 if (!Entry) 229 continue; 230 auto *OldF = cast<llvm::Function>(Entry); 231 auto *NewF = dyn_cast<llvm::Function>(Replacement); 232 if (!NewF) { 233 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 234 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 235 } else { 236 auto *CE = cast<llvm::ConstantExpr>(Replacement); 237 assert(CE->getOpcode() == llvm::Instruction::BitCast || 238 CE->getOpcode() == llvm::Instruction::GetElementPtr); 239 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 240 } 241 } 242 243 // Replace old with new, but keep the old order. 244 OldF->replaceAllUsesWith(Replacement); 245 if (NewF) { 246 NewF->removeFromParent(); 247 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 248 NewF); 249 } 250 OldF->eraseFromParent(); 251 } 252 } 253 254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 255 GlobalValReplacements.push_back(std::make_pair(GV, C)); 256 } 257 258 void CodeGenModule::applyGlobalValReplacements() { 259 for (auto &I : GlobalValReplacements) { 260 llvm::GlobalValue *GV = I.first; 261 llvm::Constant *C = I.second; 262 263 GV->replaceAllUsesWith(C); 264 GV->eraseFromParent(); 265 } 266 } 267 268 // This is only used in aliases that we created and we know they have a 269 // linear structure. 270 static const llvm::GlobalObject *getAliasedGlobal( 271 const llvm::GlobalIndirectSymbol &GIS) { 272 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 273 const llvm::Constant *C = &GIS; 274 for (;;) { 275 C = C->stripPointerCasts(); 276 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 277 return GO; 278 // stripPointerCasts will not walk over weak aliases. 279 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 280 if (!GIS2) 281 return nullptr; 282 if (!Visited.insert(GIS2).second) 283 return nullptr; 284 C = GIS2->getIndirectSymbol(); 285 } 286 } 287 288 void CodeGenModule::checkAliases() { 289 // Check if the constructed aliases are well formed. It is really unfortunate 290 // that we have to do this in CodeGen, but we only construct mangled names 291 // and aliases during codegen. 292 bool Error = false; 293 DiagnosticsEngine &Diags = getDiags(); 294 for (const GlobalDecl &GD : Aliases) { 295 const auto *D = cast<ValueDecl>(GD.getDecl()); 296 SourceLocation Location; 297 bool IsIFunc = D->hasAttr<IFuncAttr>(); 298 if (const Attr *A = D->getDefiningAttr()) 299 Location = A->getLocation(); 300 else 301 llvm_unreachable("Not an alias or ifunc?"); 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 305 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 306 if (!GV) { 307 Error = true; 308 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 309 } else if (GV->isDeclaration()) { 310 Error = true; 311 Diags.Report(Location, diag::err_alias_to_undefined) 312 << IsIFunc << IsIFunc; 313 } else if (IsIFunc) { 314 // Check resolver function type. 315 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 316 GV->getType()->getPointerElementType()); 317 assert(FTy); 318 if (!FTy->getReturnType()->isPointerTy()) 319 Diags.Report(Location, diag::err_ifunc_resolver_return); 320 if (FTy->getNumParams()) 321 Diags.Report(Location, diag::err_ifunc_resolver_params); 322 } 323 324 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 325 llvm::GlobalValue *AliaseeGV; 326 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 327 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 328 else 329 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 330 331 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 332 StringRef AliasSection = SA->getName(); 333 if (AliasSection != AliaseeGV->getSection()) 334 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 335 << AliasSection << IsIFunc << IsIFunc; 336 } 337 338 // We have to handle alias to weak aliases in here. LLVM itself disallows 339 // this since the object semantics would not match the IL one. For 340 // compatibility with gcc we implement it by just pointing the alias 341 // to its aliasee's aliasee. We also warn, since the user is probably 342 // expecting the link to be weak. 343 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 344 if (GA->isInterposable()) { 345 Diags.Report(Location, diag::warn_alias_to_weak_alias) 346 << GV->getName() << GA->getName() << IsIFunc; 347 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 348 GA->getIndirectSymbol(), Alias->getType()); 349 Alias->setIndirectSymbol(Aliasee); 350 } 351 } 352 } 353 if (!Error) 354 return; 355 356 for (const GlobalDecl &GD : Aliases) { 357 StringRef MangledName = getMangledName(GD); 358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 359 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 360 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 361 Alias->eraseFromParent(); 362 } 363 } 364 365 void CodeGenModule::clear() { 366 DeferredDeclsToEmit.clear(); 367 if (OpenMPRuntime) 368 OpenMPRuntime->clear(); 369 } 370 371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 372 StringRef MainFile) { 373 if (!hasDiagnostics()) 374 return; 375 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 376 if (MainFile.empty()) 377 MainFile = "<stdin>"; 378 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 379 } else { 380 if (Mismatched > 0) 381 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 382 383 if (Missing > 0) 384 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 385 } 386 } 387 388 void CodeGenModule::Release() { 389 EmitDeferred(); 390 EmitVTablesOpportunistically(); 391 applyGlobalValReplacements(); 392 applyReplacements(); 393 checkAliases(); 394 EmitCXXGlobalInitFunc(); 395 EmitCXXGlobalDtorFunc(); 396 EmitCXXThreadLocalInitFunc(); 397 if (ObjCRuntime) 398 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 399 AddGlobalCtor(ObjCInitFunction); 400 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 401 CUDARuntime) { 402 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 403 AddGlobalCtor(CudaCtorFunction); 404 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 405 AddGlobalDtor(CudaDtorFunction); 406 } 407 if (OpenMPRuntime) 408 if (llvm::Function *OpenMPRegistrationFunction = 409 OpenMPRuntime->emitRegistrationFunction()) { 410 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 411 OpenMPRegistrationFunction : nullptr; 412 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 413 } 414 if (PGOReader) { 415 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 416 if (PGOStats.hasDiagnostics()) 417 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 418 } 419 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 420 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 421 EmitGlobalAnnotations(); 422 EmitStaticExternCAliases(); 423 EmitDeferredUnusedCoverageMappings(); 424 if (CoverageMapping) 425 CoverageMapping->emit(); 426 if (CodeGenOpts.SanitizeCfiCrossDso) { 427 CodeGenFunction(*this).EmitCfiCheckFail(); 428 CodeGenFunction(*this).EmitCfiCheckStub(); 429 } 430 emitAtAvailableLinkGuard(); 431 emitLLVMUsed(); 432 if (SanStats) 433 SanStats->finish(); 434 435 if (CodeGenOpts.Autolink && 436 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 437 EmitModuleLinkOptions(); 438 } 439 440 // Record mregparm value now so it is visible through rest of codegen. 441 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 442 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 443 CodeGenOpts.NumRegisterParameters); 444 445 if (CodeGenOpts.DwarfVersion) { 446 // We actually want the latest version when there are conflicts. 447 // We can change from Warning to Latest if such mode is supported. 448 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 449 CodeGenOpts.DwarfVersion); 450 } 451 if (CodeGenOpts.EmitCodeView) { 452 // Indicate that we want CodeView in the metadata. 453 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 454 } 455 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 456 // We don't support LTO with 2 with different StrictVTablePointers 457 // FIXME: we could support it by stripping all the information introduced 458 // by StrictVTablePointers. 459 460 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 461 462 llvm::Metadata *Ops[2] = { 463 llvm::MDString::get(VMContext, "StrictVTablePointers"), 464 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 465 llvm::Type::getInt32Ty(VMContext), 1))}; 466 467 getModule().addModuleFlag(llvm::Module::Require, 468 "StrictVTablePointersRequirement", 469 llvm::MDNode::get(VMContext, Ops)); 470 } 471 if (DebugInfo) 472 // We support a single version in the linked module. The LLVM 473 // parser will drop debug info with a different version number 474 // (and warn about it, too). 475 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 476 llvm::DEBUG_METADATA_VERSION); 477 478 // We need to record the widths of enums and wchar_t, so that we can generate 479 // the correct build attributes in the ARM backend. wchar_size is also used by 480 // TargetLibraryInfo. 481 uint64_t WCharWidth = 482 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 509 if (LangOpts.OpenCL) { 510 EmitOpenCLMetadata(); 511 // Emit SPIR version. 512 if (getTriple().getArch() == llvm::Triple::spir || 513 getTriple().getArch() == llvm::Triple::spir64) { 514 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 515 // opencl.spir.version named metadata. 516 llvm::Metadata *SPIRVerElts[] = { 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 Int32Ty, LangOpts.OpenCLVersion / 100)), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 521 llvm::NamedMDNode *SPIRVerMD = 522 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 523 llvm::LLVMContext &Ctx = TheModule.getContext(); 524 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 525 } 526 } 527 528 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 529 assert(PLevel < 3 && "Invalid PIC Level"); 530 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 531 if (Context.getLangOpts().PIE) 532 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 533 } 534 535 SimplifyPersonality(); 536 537 if (getCodeGenOpts().EmitDeclMetadata) 538 EmitDeclMetadata(); 539 540 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 541 EmitCoverageFile(); 542 543 if (DebugInfo) 544 DebugInfo->finalize(); 545 546 EmitVersionIdentMetadata(); 547 548 EmitTargetMetadata(); 549 } 550 551 void CodeGenModule::EmitOpenCLMetadata() { 552 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 553 // opencl.ocl.version named metadata node. 554 llvm::Metadata *OCLVerElts[] = { 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 Int32Ty, LangOpts.OpenCLVersion / 100)), 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 559 llvm::NamedMDNode *OCLVerMD = 560 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 561 llvm::LLVMContext &Ctx = TheModule.getContext(); 562 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 563 } 564 565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 566 // Make sure that this type is translated. 567 Types.UpdateCompletedType(TD); 568 } 569 570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 571 // Make sure that this type is translated. 572 Types.RefreshTypeCacheForClass(RD); 573 } 574 575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 576 if (!TBAA) 577 return nullptr; 578 return TBAA->getTypeInfo(QTy); 579 } 580 581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 582 // Pointee values may have incomplete types, but they shall never be 583 // dereferenced. 584 if (AccessType->isIncompleteType()) 585 return TBAAAccessInfo::getIncompleteInfo(); 586 587 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 588 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 589 } 590 591 TBAAAccessInfo 592 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 593 if (!TBAA) 594 return TBAAAccessInfo(); 595 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTBAAStructInfo(QTy); 602 } 603 604 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 605 if (!TBAA) 606 return nullptr; 607 return TBAA->getBaseTypeInfo(QTy); 608 } 609 610 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 611 if (!TBAA) 612 return nullptr; 613 return TBAA->getAccessTagInfo(Info); 614 } 615 616 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 617 TBAAAccessInfo TargetInfo) { 618 if (!TBAA) 619 return TBAAAccessInfo(); 620 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 621 } 622 623 TBAAAccessInfo 624 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 625 TBAAAccessInfo InfoB) { 626 if (!TBAA) 627 return TBAAAccessInfo(); 628 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 629 } 630 631 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 632 TBAAAccessInfo TBAAInfo) { 633 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 634 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 635 } 636 637 void CodeGenModule::DecorateInstructionWithInvariantGroup( 638 llvm::Instruction *I, const CXXRecordDecl *RD) { 639 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 640 llvm::MDNode::get(getLLVMContext(), {})); 641 } 642 643 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 644 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 645 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 646 } 647 648 /// ErrorUnsupported - Print out an error that codegen doesn't support the 649 /// specified stmt yet. 650 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 651 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 652 "cannot compile this %0 yet"); 653 std::string Msg = Type; 654 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 655 << Msg << S->getSourceRange(); 656 } 657 658 /// ErrorUnsupported - Print out an error that codegen doesn't support the 659 /// specified decl yet. 660 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 661 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 662 "cannot compile this %0 yet"); 663 std::string Msg = Type; 664 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 665 } 666 667 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 668 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 669 } 670 671 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 672 const NamedDecl *D, 673 ForDefinition_t IsForDefinition) const { 674 // Internal definitions always have default visibility. 675 if (GV->hasLocalLinkage()) { 676 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 677 return; 678 } 679 680 // Set visibility for definitions. 681 LinkageInfo LV = D->getLinkageAndVisibility(); 682 if (LV.isVisibilityExplicit() || 683 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 684 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 685 } 686 687 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 688 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 689 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 690 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 691 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 692 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 693 } 694 695 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 696 CodeGenOptions::TLSModel M) { 697 switch (M) { 698 case CodeGenOptions::GeneralDynamicTLSModel: 699 return llvm::GlobalVariable::GeneralDynamicTLSModel; 700 case CodeGenOptions::LocalDynamicTLSModel: 701 return llvm::GlobalVariable::LocalDynamicTLSModel; 702 case CodeGenOptions::InitialExecTLSModel: 703 return llvm::GlobalVariable::InitialExecTLSModel; 704 case CodeGenOptions::LocalExecTLSModel: 705 return llvm::GlobalVariable::LocalExecTLSModel; 706 } 707 llvm_unreachable("Invalid TLS model!"); 708 } 709 710 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 711 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 712 713 llvm::GlobalValue::ThreadLocalMode TLM; 714 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 715 716 // Override the TLS model if it is explicitly specified. 717 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 718 TLM = GetLLVMTLSModel(Attr->getModel()); 719 } 720 721 GV->setThreadLocalMode(TLM); 722 } 723 724 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 725 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 726 727 // Some ABIs don't have constructor variants. Make sure that base and 728 // complete constructors get mangled the same. 729 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 730 if (!getTarget().getCXXABI().hasConstructorVariants()) { 731 CXXCtorType OrigCtorType = GD.getCtorType(); 732 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 733 if (OrigCtorType == Ctor_Base) 734 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 735 } 736 } 737 738 auto FoundName = MangledDeclNames.find(CanonicalGD); 739 if (FoundName != MangledDeclNames.end()) 740 return FoundName->second; 741 742 const auto *ND = cast<NamedDecl>(GD.getDecl()); 743 SmallString<256> Buffer; 744 StringRef Str; 745 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 746 llvm::raw_svector_ostream Out(Buffer); 747 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 748 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 749 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 750 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 751 else 752 getCXXABI().getMangleContext().mangleName(ND, Out); 753 Str = Out.str(); 754 } else { 755 IdentifierInfo *II = ND->getIdentifier(); 756 assert(II && "Attempt to mangle unnamed decl."); 757 const auto *FD = dyn_cast<FunctionDecl>(ND); 758 759 if (FD && 760 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 761 llvm::raw_svector_ostream Out(Buffer); 762 Out << "__regcall3__" << II->getName(); 763 Str = Out.str(); 764 } else { 765 Str = II->getName(); 766 } 767 } 768 769 // Keep the first result in the case of a mangling collision. 770 auto Result = Manglings.insert(std::make_pair(Str, GD)); 771 return MangledDeclNames[CanonicalGD] = Result.first->first(); 772 } 773 774 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 775 const BlockDecl *BD) { 776 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 777 const Decl *D = GD.getDecl(); 778 779 SmallString<256> Buffer; 780 llvm::raw_svector_ostream Out(Buffer); 781 if (!D) 782 MangleCtx.mangleGlobalBlock(BD, 783 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 784 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 785 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 786 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 787 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 788 else 789 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 790 791 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 792 return Result.first->first(); 793 } 794 795 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 796 return getModule().getNamedValue(Name); 797 } 798 799 /// AddGlobalCtor - Add a function to the list that will be called before 800 /// main() runs. 801 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 802 llvm::Constant *AssociatedData) { 803 // FIXME: Type coercion of void()* types. 804 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 805 } 806 807 /// AddGlobalDtor - Add a function to the list that will be called 808 /// when the module is unloaded. 809 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 810 // FIXME: Type coercion of void()* types. 811 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 812 } 813 814 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 815 if (Fns.empty()) return; 816 817 // Ctor function type is void()*. 818 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 819 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 820 821 // Get the type of a ctor entry, { i32, void ()*, i8* }. 822 llvm::StructType *CtorStructTy = llvm::StructType::get( 823 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 824 825 // Construct the constructor and destructor arrays. 826 ConstantInitBuilder builder(*this); 827 auto ctors = builder.beginArray(CtorStructTy); 828 for (const auto &I : Fns) { 829 auto ctor = ctors.beginStruct(CtorStructTy); 830 ctor.addInt(Int32Ty, I.Priority); 831 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 832 if (I.AssociatedData) 833 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 834 else 835 ctor.addNullPointer(VoidPtrTy); 836 ctor.finishAndAddTo(ctors); 837 } 838 839 auto list = 840 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 841 /*constant*/ false, 842 llvm::GlobalValue::AppendingLinkage); 843 844 // The LTO linker doesn't seem to like it when we set an alignment 845 // on appending variables. Take it off as a workaround. 846 list->setAlignment(0); 847 848 Fns.clear(); 849 } 850 851 llvm::GlobalValue::LinkageTypes 852 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 853 const auto *D = cast<FunctionDecl>(GD.getDecl()); 854 855 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 856 857 if (isa<CXXDestructorDecl>(D) && 858 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 859 switch (GD.getDtorType()) { 860 case CXXDtorType::Dtor_Base: 861 break; 862 case CXXDtorType::Dtor_Comdat: 863 case CXXDtorType::Dtor_Complete: 864 if (D->hasAttr<DLLImportAttr>() && 865 (cast<CXXDestructorDecl>(D)->getParent()->getNumVBases() || 866 (Linkage == GVA_AvailableExternally || 867 Linkage == GVA_StrongExternal))) 868 return llvm::Function::AvailableExternallyLinkage; 869 else 870 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 871 : llvm::GlobalValue::LinkOnceODRLinkage; 872 case CXXDtorType::Dtor_Deleting: 873 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 874 : llvm::GlobalValue::LinkOnceODRLinkage; 875 } 876 } 877 if (isa<CXXConstructorDecl>(D) && 878 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 879 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 880 // Our approach to inheriting constructors is fundamentally different from 881 // that used by the MS ABI, so keep our inheriting constructor thunks 882 // internal rather than trying to pick an unambiguous mangling for them. 883 return llvm::GlobalValue::InternalLinkage; 884 } 885 886 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 887 } 888 889 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 890 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 891 892 if (dyn_cast_or_null<CXXDestructorDecl>(FD)) { 893 switch (GD.getDtorType()) { 894 case CXXDtorType::Dtor_Comdat: 895 case CXXDtorType::Dtor_Deleting: { 896 // Don't dllexport/import destructor thunks. 897 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 898 return; 899 } 900 case CXXDtorType::Dtor_Complete: 901 if (FD->hasAttr<DLLImportAttr>()) 902 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 903 else if (FD->hasAttr<DLLExportAttr>()) 904 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 905 else 906 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 907 return; 908 case CXXDtorType::Dtor_Base: 909 break; 910 } 911 } 912 913 if (FD->hasAttr<DLLImportAttr>()) 914 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 915 else if (FD->hasAttr<DLLExportAttr>()) 916 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 917 else 918 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 919 } 920 921 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 922 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 923 if (!MDS) return nullptr; 924 925 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 926 } 927 928 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 929 llvm::Function *F) { 930 setNonAliasAttributes(D, F); 931 } 932 933 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 934 const CGFunctionInfo &Info, 935 llvm::Function *F) { 936 unsigned CallingConv; 937 llvm::AttributeList PAL; 938 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 939 F->setAttributes(PAL); 940 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 941 } 942 943 /// Determines whether the language options require us to model 944 /// unwind exceptions. We treat -fexceptions as mandating this 945 /// except under the fragile ObjC ABI with only ObjC exceptions 946 /// enabled. This means, for example, that C with -fexceptions 947 /// enables this. 948 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 949 // If exceptions are completely disabled, obviously this is false. 950 if (!LangOpts.Exceptions) return false; 951 952 // If C++ exceptions are enabled, this is true. 953 if (LangOpts.CXXExceptions) return true; 954 955 // If ObjC exceptions are enabled, this depends on the ABI. 956 if (LangOpts.ObjCExceptions) { 957 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 958 } 959 960 return true; 961 } 962 963 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 964 llvm::Function *F) { 965 llvm::AttrBuilder B; 966 967 if (CodeGenOpts.UnwindTables) 968 B.addAttribute(llvm::Attribute::UWTable); 969 970 if (!hasUnwindExceptions(LangOpts)) 971 B.addAttribute(llvm::Attribute::NoUnwind); 972 973 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 974 B.addAttribute(llvm::Attribute::StackProtect); 975 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 976 B.addAttribute(llvm::Attribute::StackProtectStrong); 977 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 978 B.addAttribute(llvm::Attribute::StackProtectReq); 979 980 if (!D) { 981 // If we don't have a declaration to control inlining, the function isn't 982 // explicitly marked as alwaysinline for semantic reasons, and inlining is 983 // disabled, mark the function as noinline. 984 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 985 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 986 B.addAttribute(llvm::Attribute::NoInline); 987 988 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 989 return; 990 } 991 992 // Track whether we need to add the optnone LLVM attribute, 993 // starting with the default for this optimization level. 994 bool ShouldAddOptNone = 995 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 996 // We can't add optnone in the following cases, it won't pass the verifier. 997 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 998 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 999 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1000 1001 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1002 B.addAttribute(llvm::Attribute::OptimizeNone); 1003 1004 // OptimizeNone implies noinline; we should not be inlining such functions. 1005 B.addAttribute(llvm::Attribute::NoInline); 1006 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1007 "OptimizeNone and AlwaysInline on same function!"); 1008 1009 // We still need to handle naked functions even though optnone subsumes 1010 // much of their semantics. 1011 if (D->hasAttr<NakedAttr>()) 1012 B.addAttribute(llvm::Attribute::Naked); 1013 1014 // OptimizeNone wins over OptimizeForSize and MinSize. 1015 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1016 F->removeFnAttr(llvm::Attribute::MinSize); 1017 } else if (D->hasAttr<NakedAttr>()) { 1018 // Naked implies noinline: we should not be inlining such functions. 1019 B.addAttribute(llvm::Attribute::Naked); 1020 B.addAttribute(llvm::Attribute::NoInline); 1021 } else if (D->hasAttr<NoDuplicateAttr>()) { 1022 B.addAttribute(llvm::Attribute::NoDuplicate); 1023 } else if (D->hasAttr<NoInlineAttr>()) { 1024 B.addAttribute(llvm::Attribute::NoInline); 1025 } else if (D->hasAttr<AlwaysInlineAttr>() && 1026 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1027 // (noinline wins over always_inline, and we can't specify both in IR) 1028 B.addAttribute(llvm::Attribute::AlwaysInline); 1029 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1030 // If we're not inlining, then force everything that isn't always_inline to 1031 // carry an explicit noinline attribute. 1032 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1033 B.addAttribute(llvm::Attribute::NoInline); 1034 } else { 1035 // Otherwise, propagate the inline hint attribute and potentially use its 1036 // absence to mark things as noinline. 1037 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1038 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1039 return Redecl->isInlineSpecified(); 1040 })) { 1041 B.addAttribute(llvm::Attribute::InlineHint); 1042 } else if (CodeGenOpts.getInlining() == 1043 CodeGenOptions::OnlyHintInlining && 1044 !FD->isInlined() && 1045 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1046 B.addAttribute(llvm::Attribute::NoInline); 1047 } 1048 } 1049 } 1050 1051 // Add other optimization related attributes if we are optimizing this 1052 // function. 1053 if (!D->hasAttr<OptimizeNoneAttr>()) { 1054 if (D->hasAttr<ColdAttr>()) { 1055 if (!ShouldAddOptNone) 1056 B.addAttribute(llvm::Attribute::OptimizeForSize); 1057 B.addAttribute(llvm::Attribute::Cold); 1058 } 1059 1060 if (D->hasAttr<MinSizeAttr>()) 1061 B.addAttribute(llvm::Attribute::MinSize); 1062 } 1063 1064 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1065 1066 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1067 if (alignment) 1068 F->setAlignment(alignment); 1069 1070 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1071 // reserve a bit for differentiating between virtual and non-virtual member 1072 // functions. If the current target's C++ ABI requires this and this is a 1073 // member function, set its alignment accordingly. 1074 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1075 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1076 F->setAlignment(2); 1077 } 1078 1079 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1080 if (CodeGenOpts.SanitizeCfiCrossDso) 1081 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1082 CreateFunctionTypeMetadata(FD, F); 1083 } 1084 1085 void CodeGenModule::SetCommonAttributes(const Decl *D, 1086 llvm::GlobalValue *GV) { 1087 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1088 setGlobalVisibility(GV, ND, ForDefinition); 1089 else 1090 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1091 1092 if (D && D->hasAttr<UsedAttr>()) 1093 addUsedGlobal(GV); 1094 } 1095 1096 void CodeGenModule::setAliasAttributes(const Decl *D, 1097 llvm::GlobalValue *GV) { 1098 SetCommonAttributes(D, GV); 1099 1100 // Process the dllexport attribute based on whether the original definition 1101 // (not necessarily the aliasee) was exported. 1102 if (D->hasAttr<DLLExportAttr>()) 1103 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1104 } 1105 1106 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1107 llvm::GlobalObject *GO) { 1108 SetCommonAttributes(D, GO); 1109 1110 if (D) { 1111 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1112 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1113 GV->addAttribute("bss-section", SA->getName()); 1114 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1115 GV->addAttribute("data-section", SA->getName()); 1116 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1117 GV->addAttribute("rodata-section", SA->getName()); 1118 } 1119 1120 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1121 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1122 if (!D->getAttr<SectionAttr>()) 1123 F->addFnAttr("implicit-section-name", SA->getName()); 1124 } 1125 1126 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1127 GO->setSection(SA->getName()); 1128 } 1129 1130 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1131 } 1132 1133 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1134 llvm::Function *F, 1135 const CGFunctionInfo &FI) { 1136 SetLLVMFunctionAttributes(D, FI, F); 1137 SetLLVMFunctionAttributesForDefinition(D, F); 1138 1139 F->setLinkage(llvm::Function::InternalLinkage); 1140 1141 setNonAliasAttributes(D, F); 1142 } 1143 1144 static void setLinkageForGV(llvm::GlobalValue *GV, 1145 const NamedDecl *ND) { 1146 // Set linkage and visibility in case we never see a definition. 1147 LinkageInfo LV = ND->getLinkageAndVisibility(); 1148 if (!isExternallyVisible(LV.getLinkage())) { 1149 // Don't set internal linkage on declarations. 1150 } else { 1151 if (ND->hasAttr<DLLImportAttr>()) { 1152 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1153 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1154 } else if (ND->hasAttr<DLLExportAttr>()) { 1155 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1156 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1157 // "extern_weak" is overloaded in LLVM; we probably should have 1158 // separate linkage types for this. 1159 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1160 } 1161 } 1162 } 1163 1164 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1165 llvm::Function *F) { 1166 // Only if we are checking indirect calls. 1167 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1168 return; 1169 1170 // Non-static class methods are handled via vtable pointer checks elsewhere. 1171 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1172 return; 1173 1174 // Additionally, if building with cross-DSO support... 1175 if (CodeGenOpts.SanitizeCfiCrossDso) { 1176 // Skip available_externally functions. They won't be codegen'ed in the 1177 // current module anyway. 1178 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1179 return; 1180 } 1181 1182 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1183 F->addTypeMetadata(0, MD); 1184 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1185 1186 // Emit a hash-based bit set entry for cross-DSO calls. 1187 if (CodeGenOpts.SanitizeCfiCrossDso) 1188 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1189 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1190 } 1191 1192 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1193 bool IsIncompleteFunction, 1194 bool IsThunk, 1195 ForDefinition_t IsForDefinition) { 1196 1197 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1198 // If this is an intrinsic function, set the function's attributes 1199 // to the intrinsic's attributes. 1200 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1201 return; 1202 } 1203 1204 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1205 1206 if (!IsIncompleteFunction) { 1207 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1208 // Setup target-specific attributes. 1209 if (!IsForDefinition) 1210 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1211 NotForDefinition); 1212 } 1213 1214 // Add the Returned attribute for "this", except for iOS 5 and earlier 1215 // where substantial code, including the libstdc++ dylib, was compiled with 1216 // GCC and does not actually return "this". 1217 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1218 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1219 assert(!F->arg_empty() && 1220 F->arg_begin()->getType() 1221 ->canLosslesslyBitCastTo(F->getReturnType()) && 1222 "unexpected this return"); 1223 F->addAttribute(1, llvm::Attribute::Returned); 1224 } 1225 1226 // Only a few attributes are set on declarations; these may later be 1227 // overridden by a definition. 1228 1229 setLinkageForGV(F, FD); 1230 setGlobalVisibility(F, FD, NotForDefinition); 1231 1232 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1233 F->addFnAttr("implicit-section-name"); 1234 } 1235 1236 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1237 F->setSection(SA->getName()); 1238 1239 if (FD->isReplaceableGlobalAllocationFunction()) { 1240 // A replaceable global allocation function does not act like a builtin by 1241 // default, only if it is invoked by a new-expression or delete-expression. 1242 F->addAttribute(llvm::AttributeList::FunctionIndex, 1243 llvm::Attribute::NoBuiltin); 1244 1245 // A sane operator new returns a non-aliasing pointer. 1246 // FIXME: Also add NonNull attribute to the return value 1247 // for the non-nothrow forms? 1248 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1249 if (getCodeGenOpts().AssumeSaneOperatorNew && 1250 (Kind == OO_New || Kind == OO_Array_New)) 1251 F->addAttribute(llvm::AttributeList::ReturnIndex, 1252 llvm::Attribute::NoAlias); 1253 } 1254 1255 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1256 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1257 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1258 if (MD->isVirtual()) 1259 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1260 1261 // Don't emit entries for function declarations in the cross-DSO mode. This 1262 // is handled with better precision by the receiving DSO. 1263 if (!CodeGenOpts.SanitizeCfiCrossDso) 1264 CreateFunctionTypeMetadata(FD, F); 1265 1266 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1267 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1268 } 1269 1270 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1271 assert(!GV->isDeclaration() && 1272 "Only globals with definition can force usage."); 1273 LLVMUsed.emplace_back(GV); 1274 } 1275 1276 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1277 assert(!GV->isDeclaration() && 1278 "Only globals with definition can force usage."); 1279 LLVMCompilerUsed.emplace_back(GV); 1280 } 1281 1282 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1283 std::vector<llvm::WeakTrackingVH> &List) { 1284 // Don't create llvm.used if there is no need. 1285 if (List.empty()) 1286 return; 1287 1288 // Convert List to what ConstantArray needs. 1289 SmallVector<llvm::Constant*, 8> UsedArray; 1290 UsedArray.resize(List.size()); 1291 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1292 UsedArray[i] = 1293 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1294 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1295 } 1296 1297 if (UsedArray.empty()) 1298 return; 1299 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1300 1301 auto *GV = new llvm::GlobalVariable( 1302 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1303 llvm::ConstantArray::get(ATy, UsedArray), Name); 1304 1305 GV->setSection("llvm.metadata"); 1306 } 1307 1308 void CodeGenModule::emitLLVMUsed() { 1309 emitUsed(*this, "llvm.used", LLVMUsed); 1310 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1311 } 1312 1313 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1314 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1315 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1316 } 1317 1318 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1319 llvm::SmallString<32> Opt; 1320 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1321 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1322 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1323 } 1324 1325 void CodeGenModule::AddDependentLib(StringRef Lib) { 1326 llvm::SmallString<24> Opt; 1327 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1328 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1329 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1330 } 1331 1332 /// \brief Add link options implied by the given module, including modules 1333 /// it depends on, using a postorder walk. 1334 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1335 SmallVectorImpl<llvm::MDNode *> &Metadata, 1336 llvm::SmallPtrSet<Module *, 16> &Visited) { 1337 // Import this module's parent. 1338 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1339 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1340 } 1341 1342 // Import this module's dependencies. 1343 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1344 if (Visited.insert(Mod->Imports[I - 1]).second) 1345 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1346 } 1347 1348 // Add linker options to link against the libraries/frameworks 1349 // described by this module. 1350 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1351 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1352 // Link against a framework. Frameworks are currently Darwin only, so we 1353 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1354 if (Mod->LinkLibraries[I-1].IsFramework) { 1355 llvm::Metadata *Args[2] = { 1356 llvm::MDString::get(Context, "-framework"), 1357 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1358 1359 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1360 continue; 1361 } 1362 1363 // Link against a library. 1364 llvm::SmallString<24> Opt; 1365 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1366 Mod->LinkLibraries[I-1].Library, Opt); 1367 auto *OptString = llvm::MDString::get(Context, Opt); 1368 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1369 } 1370 } 1371 1372 void CodeGenModule::EmitModuleLinkOptions() { 1373 // Collect the set of all of the modules we want to visit to emit link 1374 // options, which is essentially the imported modules and all of their 1375 // non-explicit child modules. 1376 llvm::SetVector<clang::Module *> LinkModules; 1377 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1378 SmallVector<clang::Module *, 16> Stack; 1379 1380 // Seed the stack with imported modules. 1381 for (Module *M : ImportedModules) { 1382 // Do not add any link flags when an implementation TU of a module imports 1383 // a header of that same module. 1384 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1385 !getLangOpts().isCompilingModule()) 1386 continue; 1387 if (Visited.insert(M).second) 1388 Stack.push_back(M); 1389 } 1390 1391 // Find all of the modules to import, making a little effort to prune 1392 // non-leaf modules. 1393 while (!Stack.empty()) { 1394 clang::Module *Mod = Stack.pop_back_val(); 1395 1396 bool AnyChildren = false; 1397 1398 // Visit the submodules of this module. 1399 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1400 SubEnd = Mod->submodule_end(); 1401 Sub != SubEnd; ++Sub) { 1402 // Skip explicit children; they need to be explicitly imported to be 1403 // linked against. 1404 if ((*Sub)->IsExplicit) 1405 continue; 1406 1407 if (Visited.insert(*Sub).second) { 1408 Stack.push_back(*Sub); 1409 AnyChildren = true; 1410 } 1411 } 1412 1413 // We didn't find any children, so add this module to the list of 1414 // modules to link against. 1415 if (!AnyChildren) { 1416 LinkModules.insert(Mod); 1417 } 1418 } 1419 1420 // Add link options for all of the imported modules in reverse topological 1421 // order. We don't do anything to try to order import link flags with respect 1422 // to linker options inserted by things like #pragma comment(). 1423 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1424 Visited.clear(); 1425 for (Module *M : LinkModules) 1426 if (Visited.insert(M).second) 1427 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1428 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1429 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1430 1431 // Add the linker options metadata flag. 1432 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1433 for (auto *MD : LinkerOptionsMetadata) 1434 NMD->addOperand(MD); 1435 } 1436 1437 void CodeGenModule::EmitDeferred() { 1438 // Emit code for any potentially referenced deferred decls. Since a 1439 // previously unused static decl may become used during the generation of code 1440 // for a static function, iterate until no changes are made. 1441 1442 if (!DeferredVTables.empty()) { 1443 EmitDeferredVTables(); 1444 1445 // Emitting a vtable doesn't directly cause more vtables to 1446 // become deferred, although it can cause functions to be 1447 // emitted that then need those vtables. 1448 assert(DeferredVTables.empty()); 1449 } 1450 1451 // Stop if we're out of both deferred vtables and deferred declarations. 1452 if (DeferredDeclsToEmit.empty()) 1453 return; 1454 1455 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1456 // work, it will not interfere with this. 1457 std::vector<GlobalDecl> CurDeclsToEmit; 1458 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1459 1460 for (GlobalDecl &D : CurDeclsToEmit) { 1461 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1462 // to get GlobalValue with exactly the type we need, not something that 1463 // might had been created for another decl with the same mangled name but 1464 // different type. 1465 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1466 GetAddrOfGlobal(D, ForDefinition)); 1467 1468 // In case of different address spaces, we may still get a cast, even with 1469 // IsForDefinition equal to true. Query mangled names table to get 1470 // GlobalValue. 1471 if (!GV) 1472 GV = GetGlobalValue(getMangledName(D)); 1473 1474 // Make sure GetGlobalValue returned non-null. 1475 assert(GV); 1476 1477 // Check to see if we've already emitted this. This is necessary 1478 // for a couple of reasons: first, decls can end up in the 1479 // deferred-decls queue multiple times, and second, decls can end 1480 // up with definitions in unusual ways (e.g. by an extern inline 1481 // function acquiring a strong function redefinition). Just 1482 // ignore these cases. 1483 if (!GV->isDeclaration()) 1484 continue; 1485 1486 // Otherwise, emit the definition and move on to the next one. 1487 EmitGlobalDefinition(D, GV); 1488 1489 // If we found out that we need to emit more decls, do that recursively. 1490 // This has the advantage that the decls are emitted in a DFS and related 1491 // ones are close together, which is convenient for testing. 1492 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1493 EmitDeferred(); 1494 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1495 } 1496 } 1497 } 1498 1499 void CodeGenModule::EmitVTablesOpportunistically() { 1500 // Try to emit external vtables as available_externally if they have emitted 1501 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1502 // is not allowed to create new references to things that need to be emitted 1503 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1504 1505 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1506 && "Only emit opportunistic vtables with optimizations"); 1507 1508 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1509 assert(getVTables().isVTableExternal(RD) && 1510 "This queue should only contain external vtables"); 1511 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1512 VTables.GenerateClassData(RD); 1513 } 1514 OpportunisticVTables.clear(); 1515 } 1516 1517 void CodeGenModule::EmitGlobalAnnotations() { 1518 if (Annotations.empty()) 1519 return; 1520 1521 // Create a new global variable for the ConstantStruct in the Module. 1522 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1523 Annotations[0]->getType(), Annotations.size()), Annotations); 1524 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1525 llvm::GlobalValue::AppendingLinkage, 1526 Array, "llvm.global.annotations"); 1527 gv->setSection(AnnotationSection); 1528 } 1529 1530 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1531 llvm::Constant *&AStr = AnnotationStrings[Str]; 1532 if (AStr) 1533 return AStr; 1534 1535 // Not found yet, create a new global. 1536 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1537 auto *gv = 1538 new llvm::GlobalVariable(getModule(), s->getType(), true, 1539 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1540 gv->setSection(AnnotationSection); 1541 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1542 AStr = gv; 1543 return gv; 1544 } 1545 1546 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1547 SourceManager &SM = getContext().getSourceManager(); 1548 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1549 if (PLoc.isValid()) 1550 return EmitAnnotationString(PLoc.getFilename()); 1551 return EmitAnnotationString(SM.getBufferName(Loc)); 1552 } 1553 1554 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1555 SourceManager &SM = getContext().getSourceManager(); 1556 PresumedLoc PLoc = SM.getPresumedLoc(L); 1557 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1558 SM.getExpansionLineNumber(L); 1559 return llvm::ConstantInt::get(Int32Ty, LineNo); 1560 } 1561 1562 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1563 const AnnotateAttr *AA, 1564 SourceLocation L) { 1565 // Get the globals for file name, annotation, and the line number. 1566 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1567 *UnitGV = EmitAnnotationUnit(L), 1568 *LineNoCst = EmitAnnotationLineNo(L); 1569 1570 // Create the ConstantStruct for the global annotation. 1571 llvm::Constant *Fields[4] = { 1572 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1573 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1574 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1575 LineNoCst 1576 }; 1577 return llvm::ConstantStruct::getAnon(Fields); 1578 } 1579 1580 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1581 llvm::GlobalValue *GV) { 1582 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1583 // Get the struct elements for these annotations. 1584 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1585 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1586 } 1587 1588 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1589 llvm::Function *Fn, 1590 SourceLocation Loc) const { 1591 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1592 // Blacklist by function name. 1593 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1594 return true; 1595 // Blacklist by location. 1596 if (Loc.isValid()) 1597 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1598 // If location is unknown, this may be a compiler-generated function. Assume 1599 // it's located in the main file. 1600 auto &SM = Context.getSourceManager(); 1601 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1602 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1603 } 1604 return false; 1605 } 1606 1607 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1608 SourceLocation Loc, QualType Ty, 1609 StringRef Category) const { 1610 // For now globals can be blacklisted only in ASan and KASan. 1611 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1612 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1613 if (!EnabledAsanMask) 1614 return false; 1615 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1616 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1617 return true; 1618 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1619 return true; 1620 // Check global type. 1621 if (!Ty.isNull()) { 1622 // Drill down the array types: if global variable of a fixed type is 1623 // blacklisted, we also don't instrument arrays of them. 1624 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1625 Ty = AT->getElementType(); 1626 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1627 // We allow to blacklist only record types (classes, structs etc.) 1628 if (Ty->isRecordType()) { 1629 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1630 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1631 return true; 1632 } 1633 } 1634 return false; 1635 } 1636 1637 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1638 StringRef Category) const { 1639 if (!LangOpts.XRayInstrument) 1640 return false; 1641 const auto &XRayFilter = getContext().getXRayFilter(); 1642 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1643 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1644 if (Loc.isValid()) 1645 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1646 if (Attr == ImbueAttr::NONE) 1647 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1648 switch (Attr) { 1649 case ImbueAttr::NONE: 1650 return false; 1651 case ImbueAttr::ALWAYS: 1652 Fn->addFnAttr("function-instrument", "xray-always"); 1653 break; 1654 case ImbueAttr::ALWAYS_ARG1: 1655 Fn->addFnAttr("function-instrument", "xray-always"); 1656 Fn->addFnAttr("xray-log-args", "1"); 1657 break; 1658 case ImbueAttr::NEVER: 1659 Fn->addFnAttr("function-instrument", "xray-never"); 1660 break; 1661 } 1662 return true; 1663 } 1664 1665 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1666 // Never defer when EmitAllDecls is specified. 1667 if (LangOpts.EmitAllDecls) 1668 return true; 1669 1670 return getContext().DeclMustBeEmitted(Global); 1671 } 1672 1673 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1674 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1675 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1676 // Implicit template instantiations may change linkage if they are later 1677 // explicitly instantiated, so they should not be emitted eagerly. 1678 return false; 1679 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1680 if (Context.getInlineVariableDefinitionKind(VD) == 1681 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1682 // A definition of an inline constexpr static data member may change 1683 // linkage later if it's redeclared outside the class. 1684 return false; 1685 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1686 // codegen for global variables, because they may be marked as threadprivate. 1687 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1688 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1689 return false; 1690 1691 return true; 1692 } 1693 1694 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1695 const CXXUuidofExpr* E) { 1696 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1697 // well-formed. 1698 StringRef Uuid = E->getUuidStr(); 1699 std::string Name = "_GUID_" + Uuid.lower(); 1700 std::replace(Name.begin(), Name.end(), '-', '_'); 1701 1702 // The UUID descriptor should be pointer aligned. 1703 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1704 1705 // Look for an existing global. 1706 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1707 return ConstantAddress(GV, Alignment); 1708 1709 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1710 assert(Init && "failed to initialize as constant"); 1711 1712 auto *GV = new llvm::GlobalVariable( 1713 getModule(), Init->getType(), 1714 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1715 if (supportsCOMDAT()) 1716 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1717 return ConstantAddress(GV, Alignment); 1718 } 1719 1720 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1721 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1722 assert(AA && "No alias?"); 1723 1724 CharUnits Alignment = getContext().getDeclAlign(VD); 1725 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1726 1727 // See if there is already something with the target's name in the module. 1728 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1729 if (Entry) { 1730 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1731 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1732 return ConstantAddress(Ptr, Alignment); 1733 } 1734 1735 llvm::Constant *Aliasee; 1736 if (isa<llvm::FunctionType>(DeclTy)) 1737 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1738 GlobalDecl(cast<FunctionDecl>(VD)), 1739 /*ForVTable=*/false); 1740 else 1741 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1742 llvm::PointerType::getUnqual(DeclTy), 1743 nullptr); 1744 1745 auto *F = cast<llvm::GlobalValue>(Aliasee); 1746 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1747 WeakRefReferences.insert(F); 1748 1749 return ConstantAddress(Aliasee, Alignment); 1750 } 1751 1752 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1753 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1754 1755 // Weak references don't produce any output by themselves. 1756 if (Global->hasAttr<WeakRefAttr>()) 1757 return; 1758 1759 // If this is an alias definition (which otherwise looks like a declaration) 1760 // emit it now. 1761 if (Global->hasAttr<AliasAttr>()) 1762 return EmitAliasDefinition(GD); 1763 1764 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1765 if (Global->hasAttr<IFuncAttr>()) 1766 return emitIFuncDefinition(GD); 1767 1768 // If this is CUDA, be selective about which declarations we emit. 1769 if (LangOpts.CUDA) { 1770 if (LangOpts.CUDAIsDevice) { 1771 if (!Global->hasAttr<CUDADeviceAttr>() && 1772 !Global->hasAttr<CUDAGlobalAttr>() && 1773 !Global->hasAttr<CUDAConstantAttr>() && 1774 !Global->hasAttr<CUDASharedAttr>()) 1775 return; 1776 } else { 1777 // We need to emit host-side 'shadows' for all global 1778 // device-side variables because the CUDA runtime needs their 1779 // size and host-side address in order to provide access to 1780 // their device-side incarnations. 1781 1782 // So device-only functions are the only things we skip. 1783 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1784 Global->hasAttr<CUDADeviceAttr>()) 1785 return; 1786 1787 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1788 "Expected Variable or Function"); 1789 } 1790 } 1791 1792 if (LangOpts.OpenMP) { 1793 // If this is OpenMP device, check if it is legal to emit this global 1794 // normally. 1795 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1796 return; 1797 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1798 if (MustBeEmitted(Global)) 1799 EmitOMPDeclareReduction(DRD); 1800 return; 1801 } 1802 } 1803 1804 // Ignore declarations, they will be emitted on their first use. 1805 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1806 // Forward declarations are emitted lazily on first use. 1807 if (!FD->doesThisDeclarationHaveABody()) { 1808 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1809 return; 1810 1811 StringRef MangledName = getMangledName(GD); 1812 1813 // Compute the function info and LLVM type. 1814 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1815 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1816 1817 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1818 /*DontDefer=*/false); 1819 return; 1820 } 1821 } else { 1822 const auto *VD = cast<VarDecl>(Global); 1823 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1824 // We need to emit device-side global CUDA variables even if a 1825 // variable does not have a definition -- we still need to define 1826 // host-side shadow for it. 1827 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1828 !VD->hasDefinition() && 1829 (VD->hasAttr<CUDAConstantAttr>() || 1830 VD->hasAttr<CUDADeviceAttr>()); 1831 if (!MustEmitForCuda && 1832 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1833 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1834 // If this declaration may have caused an inline variable definition to 1835 // change linkage, make sure that it's emitted. 1836 if (Context.getInlineVariableDefinitionKind(VD) == 1837 ASTContext::InlineVariableDefinitionKind::Strong) 1838 GetAddrOfGlobalVar(VD); 1839 return; 1840 } 1841 } 1842 1843 // Defer code generation to first use when possible, e.g. if this is an inline 1844 // function. If the global must always be emitted, do it eagerly if possible 1845 // to benefit from cache locality. 1846 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1847 // Emit the definition if it can't be deferred. 1848 EmitGlobalDefinition(GD); 1849 return; 1850 } 1851 1852 // If we're deferring emission of a C++ variable with an 1853 // initializer, remember the order in which it appeared in the file. 1854 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1855 cast<VarDecl>(Global)->hasInit()) { 1856 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1857 CXXGlobalInits.push_back(nullptr); 1858 } 1859 1860 StringRef MangledName = getMangledName(GD); 1861 if (GetGlobalValue(MangledName) != nullptr) { 1862 // The value has already been used and should therefore be emitted. 1863 addDeferredDeclToEmit(GD); 1864 } else if (MustBeEmitted(Global)) { 1865 // The value must be emitted, but cannot be emitted eagerly. 1866 assert(!MayBeEmittedEagerly(Global)); 1867 addDeferredDeclToEmit(GD); 1868 } else { 1869 // Otherwise, remember that we saw a deferred decl with this name. The 1870 // first use of the mangled name will cause it to move into 1871 // DeferredDeclsToEmit. 1872 DeferredDecls[MangledName] = GD; 1873 } 1874 } 1875 1876 // Check if T is a class type with a destructor that's not dllimport. 1877 static bool HasNonDllImportDtor(QualType T) { 1878 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1879 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1880 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1881 return true; 1882 1883 return false; 1884 } 1885 1886 namespace { 1887 struct FunctionIsDirectlyRecursive : 1888 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1889 const StringRef Name; 1890 const Builtin::Context &BI; 1891 bool Result; 1892 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1893 Name(N), BI(C), Result(false) { 1894 } 1895 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1896 1897 bool TraverseCallExpr(CallExpr *E) { 1898 const FunctionDecl *FD = E->getDirectCallee(); 1899 if (!FD) 1900 return true; 1901 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1902 if (Attr && Name == Attr->getLabel()) { 1903 Result = true; 1904 return false; 1905 } 1906 unsigned BuiltinID = FD->getBuiltinID(); 1907 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1908 return true; 1909 StringRef BuiltinName = BI.getName(BuiltinID); 1910 if (BuiltinName.startswith("__builtin_") && 1911 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1912 Result = true; 1913 return false; 1914 } 1915 return true; 1916 } 1917 }; 1918 1919 // Make sure we're not referencing non-imported vars or functions. 1920 struct DLLImportFunctionVisitor 1921 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1922 bool SafeToInline = true; 1923 1924 bool shouldVisitImplicitCode() const { return true; } 1925 1926 bool VisitVarDecl(VarDecl *VD) { 1927 if (VD->getTLSKind()) { 1928 // A thread-local variable cannot be imported. 1929 SafeToInline = false; 1930 return SafeToInline; 1931 } 1932 1933 // A variable definition might imply a destructor call. 1934 if (VD->isThisDeclarationADefinition()) 1935 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1936 1937 return SafeToInline; 1938 } 1939 1940 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1941 if (const auto *D = E->getTemporary()->getDestructor()) 1942 SafeToInline = D->hasAttr<DLLImportAttr>(); 1943 return SafeToInline; 1944 } 1945 1946 bool VisitDeclRefExpr(DeclRefExpr *E) { 1947 ValueDecl *VD = E->getDecl(); 1948 if (isa<FunctionDecl>(VD)) 1949 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1950 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1951 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1952 return SafeToInline; 1953 } 1954 1955 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1956 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1957 return SafeToInline; 1958 } 1959 1960 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1961 CXXMethodDecl *M = E->getMethodDecl(); 1962 if (!M) { 1963 // Call through a pointer to member function. This is safe to inline. 1964 SafeToInline = true; 1965 } else { 1966 SafeToInline = M->hasAttr<DLLImportAttr>(); 1967 } 1968 return SafeToInline; 1969 } 1970 1971 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1972 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1973 return SafeToInline; 1974 } 1975 1976 bool VisitCXXNewExpr(CXXNewExpr *E) { 1977 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1978 return SafeToInline; 1979 } 1980 }; 1981 } 1982 1983 // isTriviallyRecursive - Check if this function calls another 1984 // decl that, because of the asm attribute or the other decl being a builtin, 1985 // ends up pointing to itself. 1986 bool 1987 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1988 StringRef Name; 1989 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1990 // asm labels are a special kind of mangling we have to support. 1991 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1992 if (!Attr) 1993 return false; 1994 Name = Attr->getLabel(); 1995 } else { 1996 Name = FD->getName(); 1997 } 1998 1999 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2000 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2001 return Walker.Result; 2002 } 2003 2004 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2005 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2006 return true; 2007 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2008 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2009 return false; 2010 2011 if (F->hasAttr<DLLImportAttr>()) { 2012 // Check whether it would be safe to inline this dllimport function. 2013 DLLImportFunctionVisitor Visitor; 2014 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2015 if (!Visitor.SafeToInline) 2016 return false; 2017 2018 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2019 // Implicit destructor invocations aren't captured in the AST, so the 2020 // check above can't see them. Check for them manually here. 2021 for (const Decl *Member : Dtor->getParent()->decls()) 2022 if (isa<FieldDecl>(Member)) 2023 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2024 return false; 2025 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2026 if (HasNonDllImportDtor(B.getType())) 2027 return false; 2028 } 2029 } 2030 2031 // PR9614. Avoid cases where the source code is lying to us. An available 2032 // externally function should have an equivalent function somewhere else, 2033 // but a function that calls itself is clearly not equivalent to the real 2034 // implementation. 2035 // This happens in glibc's btowc and in some configure checks. 2036 return !isTriviallyRecursive(F); 2037 } 2038 2039 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2040 return CodeGenOpts.OptimizationLevel > 0; 2041 } 2042 2043 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2044 const auto *D = cast<ValueDecl>(GD.getDecl()); 2045 2046 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2047 Context.getSourceManager(), 2048 "Generating code for declaration"); 2049 2050 if (isa<FunctionDecl>(D)) { 2051 // At -O0, don't generate IR for functions with available_externally 2052 // linkage. 2053 if (!shouldEmitFunction(GD)) 2054 return; 2055 2056 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2057 // Make sure to emit the definition(s) before we emit the thunks. 2058 // This is necessary for the generation of certain thunks. 2059 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2060 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2061 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2062 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2063 else 2064 EmitGlobalFunctionDefinition(GD, GV); 2065 2066 if (Method->isVirtual()) 2067 getVTables().EmitThunks(GD); 2068 2069 return; 2070 } 2071 2072 return EmitGlobalFunctionDefinition(GD, GV); 2073 } 2074 2075 if (const auto *VD = dyn_cast<VarDecl>(D)) 2076 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2077 2078 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2079 } 2080 2081 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2082 llvm::Function *NewFn); 2083 2084 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2085 /// module, create and return an llvm Function with the specified type. If there 2086 /// is something in the module with the specified name, return it potentially 2087 /// bitcasted to the right type. 2088 /// 2089 /// If D is non-null, it specifies a decl that correspond to this. This is used 2090 /// to set the attributes on the function when it is first created. 2091 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2092 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2093 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2094 ForDefinition_t IsForDefinition) { 2095 const Decl *D = GD.getDecl(); 2096 2097 // Lookup the entry, lazily creating it if necessary. 2098 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2099 if (Entry) { 2100 if (WeakRefReferences.erase(Entry)) { 2101 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2102 if (FD && !FD->hasAttr<WeakAttr>()) 2103 Entry->setLinkage(llvm::Function::ExternalLinkage); 2104 } 2105 2106 // Handle dropped DLL attributes. 2107 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2108 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2109 2110 // If there are two attempts to define the same mangled name, issue an 2111 // error. 2112 if (IsForDefinition && !Entry->isDeclaration()) { 2113 GlobalDecl OtherGD; 2114 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2115 // to make sure that we issue an error only once. 2116 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2117 (GD.getCanonicalDecl().getDecl() != 2118 OtherGD.getCanonicalDecl().getDecl()) && 2119 DiagnosedConflictingDefinitions.insert(GD).second) { 2120 getDiags().Report(D->getLocation(), 2121 diag::err_duplicate_mangled_name); 2122 getDiags().Report(OtherGD.getDecl()->getLocation(), 2123 diag::note_previous_definition); 2124 } 2125 } 2126 2127 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2128 (Entry->getType()->getElementType() == Ty)) { 2129 return Entry; 2130 } 2131 2132 // Make sure the result is of the correct type. 2133 // (If function is requested for a definition, we always need to create a new 2134 // function, not just return a bitcast.) 2135 if (!IsForDefinition) 2136 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2137 } 2138 2139 // This function doesn't have a complete type (for example, the return 2140 // type is an incomplete struct). Use a fake type instead, and make 2141 // sure not to try to set attributes. 2142 bool IsIncompleteFunction = false; 2143 2144 llvm::FunctionType *FTy; 2145 if (isa<llvm::FunctionType>(Ty)) { 2146 FTy = cast<llvm::FunctionType>(Ty); 2147 } else { 2148 FTy = llvm::FunctionType::get(VoidTy, false); 2149 IsIncompleteFunction = true; 2150 } 2151 2152 llvm::Function *F = 2153 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2154 Entry ? StringRef() : MangledName, &getModule()); 2155 2156 // If we already created a function with the same mangled name (but different 2157 // type) before, take its name and add it to the list of functions to be 2158 // replaced with F at the end of CodeGen. 2159 // 2160 // This happens if there is a prototype for a function (e.g. "int f()") and 2161 // then a definition of a different type (e.g. "int f(int x)"). 2162 if (Entry) { 2163 F->takeName(Entry); 2164 2165 // This might be an implementation of a function without a prototype, in 2166 // which case, try to do special replacement of calls which match the new 2167 // prototype. The really key thing here is that we also potentially drop 2168 // arguments from the call site so as to make a direct call, which makes the 2169 // inliner happier and suppresses a number of optimizer warnings (!) about 2170 // dropping arguments. 2171 if (!Entry->use_empty()) { 2172 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2173 Entry->removeDeadConstantUsers(); 2174 } 2175 2176 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2177 F, Entry->getType()->getElementType()->getPointerTo()); 2178 addGlobalValReplacement(Entry, BC); 2179 } 2180 2181 assert(F->getName() == MangledName && "name was uniqued!"); 2182 if (D) 2183 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2184 IsForDefinition); 2185 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2186 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2187 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2188 } 2189 2190 if (!DontDefer) { 2191 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2192 // each other bottoming out with the base dtor. Therefore we emit non-base 2193 // dtors on usage, even if there is no dtor definition in the TU. 2194 if (D && isa<CXXDestructorDecl>(D) && 2195 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2196 GD.getDtorType())) 2197 addDeferredDeclToEmit(GD); 2198 2199 // This is the first use or definition of a mangled name. If there is a 2200 // deferred decl with this name, remember that we need to emit it at the end 2201 // of the file. 2202 auto DDI = DeferredDecls.find(MangledName); 2203 if (DDI != DeferredDecls.end()) { 2204 // Move the potentially referenced deferred decl to the 2205 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2206 // don't need it anymore). 2207 addDeferredDeclToEmit(DDI->second); 2208 DeferredDecls.erase(DDI); 2209 2210 // Otherwise, there are cases we have to worry about where we're 2211 // using a declaration for which we must emit a definition but where 2212 // we might not find a top-level definition: 2213 // - member functions defined inline in their classes 2214 // - friend functions defined inline in some class 2215 // - special member functions with implicit definitions 2216 // If we ever change our AST traversal to walk into class methods, 2217 // this will be unnecessary. 2218 // 2219 // We also don't emit a definition for a function if it's going to be an 2220 // entry in a vtable, unless it's already marked as used. 2221 } else if (getLangOpts().CPlusPlus && D) { 2222 // Look for a declaration that's lexically in a record. 2223 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2224 FD = FD->getPreviousDecl()) { 2225 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2226 if (FD->doesThisDeclarationHaveABody()) { 2227 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2228 break; 2229 } 2230 } 2231 } 2232 } 2233 } 2234 2235 // Make sure the result is of the requested type. 2236 if (!IsIncompleteFunction) { 2237 assert(F->getType()->getElementType() == Ty); 2238 return F; 2239 } 2240 2241 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2242 return llvm::ConstantExpr::getBitCast(F, PTy); 2243 } 2244 2245 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2246 /// non-null, then this function will use the specified type if it has to 2247 /// create it (this occurs when we see a definition of the function). 2248 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2249 llvm::Type *Ty, 2250 bool ForVTable, 2251 bool DontDefer, 2252 ForDefinition_t IsForDefinition) { 2253 // If there was no specific requested type, just convert it now. 2254 if (!Ty) { 2255 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2256 auto CanonTy = Context.getCanonicalType(FD->getType()); 2257 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2258 } 2259 2260 StringRef MangledName = getMangledName(GD); 2261 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2262 /*IsThunk=*/false, llvm::AttributeList(), 2263 IsForDefinition); 2264 } 2265 2266 static const FunctionDecl * 2267 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2268 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2269 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2270 2271 IdentifierInfo &CII = C.Idents.get(Name); 2272 for (const auto &Result : DC->lookup(&CII)) 2273 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2274 return FD; 2275 2276 if (!C.getLangOpts().CPlusPlus) 2277 return nullptr; 2278 2279 // Demangle the premangled name from getTerminateFn() 2280 IdentifierInfo &CXXII = 2281 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2282 ? C.Idents.get("terminate") 2283 : C.Idents.get(Name); 2284 2285 for (const auto &N : {"__cxxabiv1", "std"}) { 2286 IdentifierInfo &NS = C.Idents.get(N); 2287 for (const auto &Result : DC->lookup(&NS)) { 2288 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2289 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2290 for (const auto &Result : LSD->lookup(&NS)) 2291 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2292 break; 2293 2294 if (ND) 2295 for (const auto &Result : ND->lookup(&CXXII)) 2296 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2297 return FD; 2298 } 2299 } 2300 2301 return nullptr; 2302 } 2303 2304 /// CreateRuntimeFunction - Create a new runtime function with the specified 2305 /// type and name. 2306 llvm::Constant * 2307 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2308 llvm::AttributeList ExtraAttrs, 2309 bool Local) { 2310 llvm::Constant *C = 2311 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2312 /*DontDefer=*/false, /*IsThunk=*/false, 2313 ExtraAttrs); 2314 2315 if (auto *F = dyn_cast<llvm::Function>(C)) { 2316 if (F->empty()) { 2317 F->setCallingConv(getRuntimeCC()); 2318 2319 if (!Local && getTriple().isOSBinFormatCOFF() && 2320 !getCodeGenOpts().LTOVisibilityPublicStd && 2321 !getTriple().isWindowsGNUEnvironment()) { 2322 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2323 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2324 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2325 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2326 } 2327 } 2328 } 2329 } 2330 2331 return C; 2332 } 2333 2334 /// CreateBuiltinFunction - Create a new builtin function with the specified 2335 /// type and name. 2336 llvm::Constant * 2337 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2338 llvm::AttributeList ExtraAttrs) { 2339 llvm::Constant *C = 2340 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2341 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2342 if (auto *F = dyn_cast<llvm::Function>(C)) 2343 if (F->empty()) 2344 F->setCallingConv(getBuiltinCC()); 2345 return C; 2346 } 2347 2348 /// isTypeConstant - Determine whether an object of this type can be emitted 2349 /// as a constant. 2350 /// 2351 /// If ExcludeCtor is true, the duration when the object's constructor runs 2352 /// will not be considered. The caller will need to verify that the object is 2353 /// not written to during its construction. 2354 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2355 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2356 return false; 2357 2358 if (Context.getLangOpts().CPlusPlus) { 2359 if (const CXXRecordDecl *Record 2360 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2361 return ExcludeCtor && !Record->hasMutableFields() && 2362 Record->hasTrivialDestructor(); 2363 } 2364 2365 return true; 2366 } 2367 2368 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2369 /// create and return an llvm GlobalVariable with the specified type. If there 2370 /// is something in the module with the specified name, return it potentially 2371 /// bitcasted to the right type. 2372 /// 2373 /// If D is non-null, it specifies a decl that correspond to this. This is used 2374 /// to set the attributes on the global when it is first created. 2375 /// 2376 /// If IsForDefinition is true, it is guranteed that an actual global with 2377 /// type Ty will be returned, not conversion of a variable with the same 2378 /// mangled name but some other type. 2379 llvm::Constant * 2380 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2381 llvm::PointerType *Ty, 2382 const VarDecl *D, 2383 ForDefinition_t IsForDefinition) { 2384 // Lookup the entry, lazily creating it if necessary. 2385 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2386 if (Entry) { 2387 if (WeakRefReferences.erase(Entry)) { 2388 if (D && !D->hasAttr<WeakAttr>()) 2389 Entry->setLinkage(llvm::Function::ExternalLinkage); 2390 } 2391 2392 // Handle dropped DLL attributes. 2393 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2394 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2395 2396 if (Entry->getType() == Ty) 2397 return Entry; 2398 2399 // If there are two attempts to define the same mangled name, issue an 2400 // error. 2401 if (IsForDefinition && !Entry->isDeclaration()) { 2402 GlobalDecl OtherGD; 2403 const VarDecl *OtherD; 2404 2405 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2406 // to make sure that we issue an error only once. 2407 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2408 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2409 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2410 OtherD->hasInit() && 2411 DiagnosedConflictingDefinitions.insert(D).second) { 2412 getDiags().Report(D->getLocation(), 2413 diag::err_duplicate_mangled_name); 2414 getDiags().Report(OtherGD.getDecl()->getLocation(), 2415 diag::note_previous_definition); 2416 } 2417 } 2418 2419 // Make sure the result is of the correct type. 2420 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2421 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2422 2423 // (If global is requested for a definition, we always need to create a new 2424 // global, not just return a bitcast.) 2425 if (!IsForDefinition) 2426 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2427 } 2428 2429 auto AddrSpace = GetGlobalVarAddressSpace(D); 2430 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2431 2432 auto *GV = new llvm::GlobalVariable( 2433 getModule(), Ty->getElementType(), false, 2434 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2435 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2436 2437 // If we already created a global with the same mangled name (but different 2438 // type) before, take its name and remove it from its parent. 2439 if (Entry) { 2440 GV->takeName(Entry); 2441 2442 if (!Entry->use_empty()) { 2443 llvm::Constant *NewPtrForOldDecl = 2444 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2445 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2446 } 2447 2448 Entry->eraseFromParent(); 2449 } 2450 2451 // This is the first use or definition of a mangled name. If there is a 2452 // deferred decl with this name, remember that we need to emit it at the end 2453 // of the file. 2454 auto DDI = DeferredDecls.find(MangledName); 2455 if (DDI != DeferredDecls.end()) { 2456 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2457 // list, and remove it from DeferredDecls (since we don't need it anymore). 2458 addDeferredDeclToEmit(DDI->second); 2459 DeferredDecls.erase(DDI); 2460 } 2461 2462 // Handle things which are present even on external declarations. 2463 if (D) { 2464 // FIXME: This code is overly simple and should be merged with other global 2465 // handling. 2466 GV->setConstant(isTypeConstant(D->getType(), false)); 2467 2468 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2469 2470 setLinkageForGV(GV, D); 2471 setGlobalVisibility(GV, D, NotForDefinition); 2472 2473 if (D->getTLSKind()) { 2474 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2475 CXXThreadLocals.push_back(D); 2476 setTLSMode(GV, *D); 2477 } 2478 2479 // If required by the ABI, treat declarations of static data members with 2480 // inline initializers as definitions. 2481 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2482 EmitGlobalVarDefinition(D); 2483 } 2484 2485 // Emit section information for extern variables. 2486 if (D->hasExternalStorage()) { 2487 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2488 GV->setSection(SA->getName()); 2489 } 2490 2491 // Handle XCore specific ABI requirements. 2492 if (getTriple().getArch() == llvm::Triple::xcore && 2493 D->getLanguageLinkage() == CLanguageLinkage && 2494 D->getType().isConstant(Context) && 2495 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2496 GV->setSection(".cp.rodata"); 2497 2498 // Check if we a have a const declaration with an initializer, we may be 2499 // able to emit it as available_externally to expose it's value to the 2500 // optimizer. 2501 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2502 D->getType().isConstQualified() && !GV->hasInitializer() && 2503 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2504 const auto *Record = 2505 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2506 bool HasMutableFields = Record && Record->hasMutableFields(); 2507 if (!HasMutableFields) { 2508 const VarDecl *InitDecl; 2509 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2510 if (InitExpr) { 2511 ConstantEmitter emitter(*this); 2512 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2513 if (Init) { 2514 auto *InitType = Init->getType(); 2515 if (GV->getType()->getElementType() != InitType) { 2516 // The type of the initializer does not match the definition. 2517 // This happens when an initializer has a different type from 2518 // the type of the global (because of padding at the end of a 2519 // structure for instance). 2520 GV->setName(StringRef()); 2521 // Make a new global with the correct type, this is now guaranteed 2522 // to work. 2523 auto *NewGV = cast<llvm::GlobalVariable>( 2524 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2525 2526 // Erase the old global, since it is no longer used. 2527 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2528 GV = NewGV; 2529 } else { 2530 GV->setInitializer(Init); 2531 GV->setConstant(true); 2532 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2533 } 2534 emitter.finalize(GV); 2535 } 2536 } 2537 } 2538 } 2539 } 2540 2541 LangAS ExpectedAS = 2542 D ? D->getType().getAddressSpace() 2543 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2544 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2545 Ty->getPointerAddressSpace()); 2546 if (AddrSpace != ExpectedAS) 2547 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2548 ExpectedAS, Ty); 2549 2550 return GV; 2551 } 2552 2553 llvm::Constant * 2554 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2555 ForDefinition_t IsForDefinition) { 2556 const Decl *D = GD.getDecl(); 2557 if (isa<CXXConstructorDecl>(D)) 2558 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2559 getFromCtorType(GD.getCtorType()), 2560 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2561 /*DontDefer=*/false, IsForDefinition); 2562 else if (isa<CXXDestructorDecl>(D)) 2563 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2564 getFromDtorType(GD.getDtorType()), 2565 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2566 /*DontDefer=*/false, IsForDefinition); 2567 else if (isa<CXXMethodDecl>(D)) { 2568 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2569 cast<CXXMethodDecl>(D)); 2570 auto Ty = getTypes().GetFunctionType(*FInfo); 2571 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2572 IsForDefinition); 2573 } else if (isa<FunctionDecl>(D)) { 2574 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2575 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2576 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2577 IsForDefinition); 2578 } else 2579 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2580 IsForDefinition); 2581 } 2582 2583 llvm::GlobalVariable * 2584 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2585 llvm::Type *Ty, 2586 llvm::GlobalValue::LinkageTypes Linkage) { 2587 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2588 llvm::GlobalVariable *OldGV = nullptr; 2589 2590 if (GV) { 2591 // Check if the variable has the right type. 2592 if (GV->getType()->getElementType() == Ty) 2593 return GV; 2594 2595 // Because C++ name mangling, the only way we can end up with an already 2596 // existing global with the same name is if it has been declared extern "C". 2597 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2598 OldGV = GV; 2599 } 2600 2601 // Create a new variable. 2602 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2603 Linkage, nullptr, Name); 2604 2605 if (OldGV) { 2606 // Replace occurrences of the old variable if needed. 2607 GV->takeName(OldGV); 2608 2609 if (!OldGV->use_empty()) { 2610 llvm::Constant *NewPtrForOldDecl = 2611 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2612 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2613 } 2614 2615 OldGV->eraseFromParent(); 2616 } 2617 2618 if (supportsCOMDAT() && GV->isWeakForLinker() && 2619 !GV->hasAvailableExternallyLinkage()) 2620 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2621 2622 return GV; 2623 } 2624 2625 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2626 /// given global variable. If Ty is non-null and if the global doesn't exist, 2627 /// then it will be created with the specified type instead of whatever the 2628 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2629 /// that an actual global with type Ty will be returned, not conversion of a 2630 /// variable with the same mangled name but some other type. 2631 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2632 llvm::Type *Ty, 2633 ForDefinition_t IsForDefinition) { 2634 assert(D->hasGlobalStorage() && "Not a global variable"); 2635 QualType ASTTy = D->getType(); 2636 if (!Ty) 2637 Ty = getTypes().ConvertTypeForMem(ASTTy); 2638 2639 llvm::PointerType *PTy = 2640 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2641 2642 StringRef MangledName = getMangledName(D); 2643 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2644 } 2645 2646 /// CreateRuntimeVariable - Create a new runtime global variable with the 2647 /// specified type and name. 2648 llvm::Constant * 2649 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2650 StringRef Name) { 2651 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2652 } 2653 2654 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2655 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2656 2657 StringRef MangledName = getMangledName(D); 2658 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2659 2660 // We already have a definition, not declaration, with the same mangled name. 2661 // Emitting of declaration is not required (and actually overwrites emitted 2662 // definition). 2663 if (GV && !GV->isDeclaration()) 2664 return; 2665 2666 // If we have not seen a reference to this variable yet, place it into the 2667 // deferred declarations table to be emitted if needed later. 2668 if (!MustBeEmitted(D) && !GV) { 2669 DeferredDecls[MangledName] = D; 2670 return; 2671 } 2672 2673 // The tentative definition is the only definition. 2674 EmitGlobalVarDefinition(D); 2675 } 2676 2677 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2678 return Context.toCharUnitsFromBits( 2679 getDataLayout().getTypeStoreSizeInBits(Ty)); 2680 } 2681 2682 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2683 LangAS AddrSpace = LangAS::Default; 2684 if (LangOpts.OpenCL) { 2685 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2686 assert(AddrSpace == LangAS::opencl_global || 2687 AddrSpace == LangAS::opencl_constant || 2688 AddrSpace == LangAS::opencl_local || 2689 AddrSpace >= LangAS::FirstTargetAddressSpace); 2690 return AddrSpace; 2691 } 2692 2693 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2694 if (D && D->hasAttr<CUDAConstantAttr>()) 2695 return LangAS::cuda_constant; 2696 else if (D && D->hasAttr<CUDASharedAttr>()) 2697 return LangAS::cuda_shared; 2698 else 2699 return LangAS::cuda_device; 2700 } 2701 2702 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2703 } 2704 2705 template<typename SomeDecl> 2706 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2707 llvm::GlobalValue *GV) { 2708 if (!getLangOpts().CPlusPlus) 2709 return; 2710 2711 // Must have 'used' attribute, or else inline assembly can't rely on 2712 // the name existing. 2713 if (!D->template hasAttr<UsedAttr>()) 2714 return; 2715 2716 // Must have internal linkage and an ordinary name. 2717 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2718 return; 2719 2720 // Must be in an extern "C" context. Entities declared directly within 2721 // a record are not extern "C" even if the record is in such a context. 2722 const SomeDecl *First = D->getFirstDecl(); 2723 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2724 return; 2725 2726 // OK, this is an internal linkage entity inside an extern "C" linkage 2727 // specification. Make a note of that so we can give it the "expected" 2728 // mangled name if nothing else is using that name. 2729 std::pair<StaticExternCMap::iterator, bool> R = 2730 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2731 2732 // If we have multiple internal linkage entities with the same name 2733 // in extern "C" regions, none of them gets that name. 2734 if (!R.second) 2735 R.first->second = nullptr; 2736 } 2737 2738 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2739 if (!CGM.supportsCOMDAT()) 2740 return false; 2741 2742 if (D.hasAttr<SelectAnyAttr>()) 2743 return true; 2744 2745 GVALinkage Linkage; 2746 if (auto *VD = dyn_cast<VarDecl>(&D)) 2747 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2748 else 2749 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2750 2751 switch (Linkage) { 2752 case GVA_Internal: 2753 case GVA_AvailableExternally: 2754 case GVA_StrongExternal: 2755 return false; 2756 case GVA_DiscardableODR: 2757 case GVA_StrongODR: 2758 return true; 2759 } 2760 llvm_unreachable("No such linkage"); 2761 } 2762 2763 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2764 llvm::GlobalObject &GO) { 2765 if (!shouldBeInCOMDAT(*this, D)) 2766 return; 2767 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2768 } 2769 2770 /// Pass IsTentative as true if you want to create a tentative definition. 2771 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2772 bool IsTentative) { 2773 // OpenCL global variables of sampler type are translated to function calls, 2774 // therefore no need to be translated. 2775 QualType ASTTy = D->getType(); 2776 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2777 return; 2778 2779 llvm::Constant *Init = nullptr; 2780 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2781 bool NeedsGlobalCtor = false; 2782 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2783 2784 const VarDecl *InitDecl; 2785 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2786 2787 Optional<ConstantEmitter> emitter; 2788 2789 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2790 // as part of their declaration." Sema has already checked for 2791 // error cases, so we just need to set Init to UndefValue. 2792 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2793 D->hasAttr<CUDASharedAttr>()) 2794 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2795 else if (!InitExpr) { 2796 // This is a tentative definition; tentative definitions are 2797 // implicitly initialized with { 0 }. 2798 // 2799 // Note that tentative definitions are only emitted at the end of 2800 // a translation unit, so they should never have incomplete 2801 // type. In addition, EmitTentativeDefinition makes sure that we 2802 // never attempt to emit a tentative definition if a real one 2803 // exists. A use may still exists, however, so we still may need 2804 // to do a RAUW. 2805 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2806 Init = EmitNullConstant(D->getType()); 2807 } else { 2808 initializedGlobalDecl = GlobalDecl(D); 2809 emitter.emplace(*this); 2810 Init = emitter->tryEmitForInitializer(*InitDecl); 2811 2812 if (!Init) { 2813 QualType T = InitExpr->getType(); 2814 if (D->getType()->isReferenceType()) 2815 T = D->getType(); 2816 2817 if (getLangOpts().CPlusPlus) { 2818 Init = EmitNullConstant(T); 2819 NeedsGlobalCtor = true; 2820 } else { 2821 ErrorUnsupported(D, "static initializer"); 2822 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2823 } 2824 } else { 2825 // We don't need an initializer, so remove the entry for the delayed 2826 // initializer position (just in case this entry was delayed) if we 2827 // also don't need to register a destructor. 2828 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2829 DelayedCXXInitPosition.erase(D); 2830 } 2831 } 2832 2833 llvm::Type* InitType = Init->getType(); 2834 llvm::Constant *Entry = 2835 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2836 2837 // Strip off a bitcast if we got one back. 2838 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2839 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2840 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2841 // All zero index gep. 2842 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2843 Entry = CE->getOperand(0); 2844 } 2845 2846 // Entry is now either a Function or GlobalVariable. 2847 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2848 2849 // We have a definition after a declaration with the wrong type. 2850 // We must make a new GlobalVariable* and update everything that used OldGV 2851 // (a declaration or tentative definition) with the new GlobalVariable* 2852 // (which will be a definition). 2853 // 2854 // This happens if there is a prototype for a global (e.g. 2855 // "extern int x[];") and then a definition of a different type (e.g. 2856 // "int x[10];"). This also happens when an initializer has a different type 2857 // from the type of the global (this happens with unions). 2858 if (!GV || GV->getType()->getElementType() != InitType || 2859 GV->getType()->getAddressSpace() != 2860 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2861 2862 // Move the old entry aside so that we'll create a new one. 2863 Entry->setName(StringRef()); 2864 2865 // Make a new global with the correct type, this is now guaranteed to work. 2866 GV = cast<llvm::GlobalVariable>( 2867 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2868 2869 // Replace all uses of the old global with the new global 2870 llvm::Constant *NewPtrForOldDecl = 2871 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2872 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2873 2874 // Erase the old global, since it is no longer used. 2875 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2876 } 2877 2878 MaybeHandleStaticInExternC(D, GV); 2879 2880 if (D->hasAttr<AnnotateAttr>()) 2881 AddGlobalAnnotations(D, GV); 2882 2883 // Set the llvm linkage type as appropriate. 2884 llvm::GlobalValue::LinkageTypes Linkage = 2885 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2886 2887 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2888 // the device. [...]" 2889 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2890 // __device__, declares a variable that: [...] 2891 // Is accessible from all the threads within the grid and from the host 2892 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2893 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2894 if (GV && LangOpts.CUDA) { 2895 if (LangOpts.CUDAIsDevice) { 2896 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2897 GV->setExternallyInitialized(true); 2898 } else { 2899 // Host-side shadows of external declarations of device-side 2900 // global variables become internal definitions. These have to 2901 // be internal in order to prevent name conflicts with global 2902 // host variables with the same name in a different TUs. 2903 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2904 Linkage = llvm::GlobalValue::InternalLinkage; 2905 2906 // Shadow variables and their properties must be registered 2907 // with CUDA runtime. 2908 unsigned Flags = 0; 2909 if (!D->hasDefinition()) 2910 Flags |= CGCUDARuntime::ExternDeviceVar; 2911 if (D->hasAttr<CUDAConstantAttr>()) 2912 Flags |= CGCUDARuntime::ConstantDeviceVar; 2913 getCUDARuntime().registerDeviceVar(*GV, Flags); 2914 } else if (D->hasAttr<CUDASharedAttr>()) 2915 // __shared__ variables are odd. Shadows do get created, but 2916 // they are not registered with the CUDA runtime, so they 2917 // can't really be used to access their device-side 2918 // counterparts. It's not clear yet whether it's nvcc's bug or 2919 // a feature, but we've got to do the same for compatibility. 2920 Linkage = llvm::GlobalValue::InternalLinkage; 2921 } 2922 } 2923 2924 GV->setInitializer(Init); 2925 if (emitter) emitter->finalize(GV); 2926 2927 // If it is safe to mark the global 'constant', do so now. 2928 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2929 isTypeConstant(D->getType(), true)); 2930 2931 // If it is in a read-only section, mark it 'constant'. 2932 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2933 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2934 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2935 GV->setConstant(true); 2936 } 2937 2938 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2939 2940 2941 // On Darwin, if the normal linkage of a C++ thread_local variable is 2942 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2943 // copies within a linkage unit; otherwise, the backing variable has 2944 // internal linkage and all accesses should just be calls to the 2945 // Itanium-specified entry point, which has the normal linkage of the 2946 // variable. This is to preserve the ability to change the implementation 2947 // behind the scenes. 2948 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2949 Context.getTargetInfo().getTriple().isOSDarwin() && 2950 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2951 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2952 Linkage = llvm::GlobalValue::InternalLinkage; 2953 2954 GV->setLinkage(Linkage); 2955 if (D->hasAttr<DLLImportAttr>()) 2956 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2957 else if (D->hasAttr<DLLExportAttr>()) 2958 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2959 else 2960 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2961 2962 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2963 // common vars aren't constant even if declared const. 2964 GV->setConstant(false); 2965 // Tentative definition of global variables may be initialized with 2966 // non-zero null pointers. In this case they should have weak linkage 2967 // since common linkage must have zero initializer and must not have 2968 // explicit section therefore cannot have non-zero initial value. 2969 if (!GV->getInitializer()->isNullValue()) 2970 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2971 } 2972 2973 setNonAliasAttributes(D, GV); 2974 2975 if (D->getTLSKind() && !GV->isThreadLocal()) { 2976 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2977 CXXThreadLocals.push_back(D); 2978 setTLSMode(GV, *D); 2979 } 2980 2981 maybeSetTrivialComdat(*D, *GV); 2982 2983 // Emit the initializer function if necessary. 2984 if (NeedsGlobalCtor || NeedsGlobalDtor) 2985 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2986 2987 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2988 2989 // Emit global variable debug information. 2990 if (CGDebugInfo *DI = getModuleDebugInfo()) 2991 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2992 DI->EmitGlobalVariable(GV, D); 2993 } 2994 2995 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2996 CodeGenModule &CGM, const VarDecl *D, 2997 bool NoCommon) { 2998 // Don't give variables common linkage if -fno-common was specified unless it 2999 // was overridden by a NoCommon attribute. 3000 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3001 return true; 3002 3003 // C11 6.9.2/2: 3004 // A declaration of an identifier for an object that has file scope without 3005 // an initializer, and without a storage-class specifier or with the 3006 // storage-class specifier static, constitutes a tentative definition. 3007 if (D->getInit() || D->hasExternalStorage()) 3008 return true; 3009 3010 // A variable cannot be both common and exist in a section. 3011 if (D->hasAttr<SectionAttr>()) 3012 return true; 3013 3014 // A variable cannot be both common and exist in a section. 3015 // We dont try to determine which is the right section in the front-end. 3016 // If no specialized section name is applicable, it will resort to default. 3017 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3018 D->hasAttr<PragmaClangDataSectionAttr>() || 3019 D->hasAttr<PragmaClangRodataSectionAttr>()) 3020 return true; 3021 3022 // Thread local vars aren't considered common linkage. 3023 if (D->getTLSKind()) 3024 return true; 3025 3026 // Tentative definitions marked with WeakImportAttr are true definitions. 3027 if (D->hasAttr<WeakImportAttr>()) 3028 return true; 3029 3030 // A variable cannot be both common and exist in a comdat. 3031 if (shouldBeInCOMDAT(CGM, *D)) 3032 return true; 3033 3034 // Declarations with a required alignment do not have common linkage in MSVC 3035 // mode. 3036 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3037 if (D->hasAttr<AlignedAttr>()) 3038 return true; 3039 QualType VarType = D->getType(); 3040 if (Context.isAlignmentRequired(VarType)) 3041 return true; 3042 3043 if (const auto *RT = VarType->getAs<RecordType>()) { 3044 const RecordDecl *RD = RT->getDecl(); 3045 for (const FieldDecl *FD : RD->fields()) { 3046 if (FD->isBitField()) 3047 continue; 3048 if (FD->hasAttr<AlignedAttr>()) 3049 return true; 3050 if (Context.isAlignmentRequired(FD->getType())) 3051 return true; 3052 } 3053 } 3054 } 3055 3056 return false; 3057 } 3058 3059 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3060 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3061 if (Linkage == GVA_Internal) 3062 return llvm::Function::InternalLinkage; 3063 3064 if (D->hasAttr<WeakAttr>()) { 3065 if (IsConstantVariable) 3066 return llvm::GlobalVariable::WeakODRLinkage; 3067 else 3068 return llvm::GlobalVariable::WeakAnyLinkage; 3069 } 3070 3071 // We are guaranteed to have a strong definition somewhere else, 3072 // so we can use available_externally linkage. 3073 if (Linkage == GVA_AvailableExternally) 3074 return llvm::GlobalValue::AvailableExternallyLinkage; 3075 3076 // Note that Apple's kernel linker doesn't support symbol 3077 // coalescing, so we need to avoid linkonce and weak linkages there. 3078 // Normally, this means we just map to internal, but for explicit 3079 // instantiations we'll map to external. 3080 3081 // In C++, the compiler has to emit a definition in every translation unit 3082 // that references the function. We should use linkonce_odr because 3083 // a) if all references in this translation unit are optimized away, we 3084 // don't need to codegen it. b) if the function persists, it needs to be 3085 // merged with other definitions. c) C++ has the ODR, so we know the 3086 // definition is dependable. 3087 if (Linkage == GVA_DiscardableODR) 3088 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3089 : llvm::Function::InternalLinkage; 3090 3091 // An explicit instantiation of a template has weak linkage, since 3092 // explicit instantiations can occur in multiple translation units 3093 // and must all be equivalent. However, we are not allowed to 3094 // throw away these explicit instantiations. 3095 // 3096 // We don't currently support CUDA device code spread out across multiple TUs, 3097 // so say that CUDA templates are either external (for kernels) or internal. 3098 // This lets llvm perform aggressive inter-procedural optimizations. 3099 if (Linkage == GVA_StrongODR) { 3100 if (Context.getLangOpts().AppleKext) 3101 return llvm::Function::ExternalLinkage; 3102 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3103 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3104 : llvm::Function::InternalLinkage; 3105 return llvm::Function::WeakODRLinkage; 3106 } 3107 3108 // C++ doesn't have tentative definitions and thus cannot have common 3109 // linkage. 3110 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3111 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3112 CodeGenOpts.NoCommon)) 3113 return llvm::GlobalVariable::CommonLinkage; 3114 3115 // selectany symbols are externally visible, so use weak instead of 3116 // linkonce. MSVC optimizes away references to const selectany globals, so 3117 // all definitions should be the same and ODR linkage should be used. 3118 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3119 if (D->hasAttr<SelectAnyAttr>()) 3120 return llvm::GlobalVariable::WeakODRLinkage; 3121 3122 // Otherwise, we have strong external linkage. 3123 assert(Linkage == GVA_StrongExternal); 3124 return llvm::GlobalVariable::ExternalLinkage; 3125 } 3126 3127 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3128 const VarDecl *VD, bool IsConstant) { 3129 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3130 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3131 } 3132 3133 /// Replace the uses of a function that was declared with a non-proto type. 3134 /// We want to silently drop extra arguments from call sites 3135 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3136 llvm::Function *newFn) { 3137 // Fast path. 3138 if (old->use_empty()) return; 3139 3140 llvm::Type *newRetTy = newFn->getReturnType(); 3141 SmallVector<llvm::Value*, 4> newArgs; 3142 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3143 3144 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3145 ui != ue; ) { 3146 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3147 llvm::User *user = use->getUser(); 3148 3149 // Recognize and replace uses of bitcasts. Most calls to 3150 // unprototyped functions will use bitcasts. 3151 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3152 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3153 replaceUsesOfNonProtoConstant(bitcast, newFn); 3154 continue; 3155 } 3156 3157 // Recognize calls to the function. 3158 llvm::CallSite callSite(user); 3159 if (!callSite) continue; 3160 if (!callSite.isCallee(&*use)) continue; 3161 3162 // If the return types don't match exactly, then we can't 3163 // transform this call unless it's dead. 3164 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3165 continue; 3166 3167 // Get the call site's attribute list. 3168 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3169 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3170 3171 // If the function was passed too few arguments, don't transform. 3172 unsigned newNumArgs = newFn->arg_size(); 3173 if (callSite.arg_size() < newNumArgs) continue; 3174 3175 // If extra arguments were passed, we silently drop them. 3176 // If any of the types mismatch, we don't transform. 3177 unsigned argNo = 0; 3178 bool dontTransform = false; 3179 for (llvm::Argument &A : newFn->args()) { 3180 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3181 dontTransform = true; 3182 break; 3183 } 3184 3185 // Add any parameter attributes. 3186 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3187 argNo++; 3188 } 3189 if (dontTransform) 3190 continue; 3191 3192 // Okay, we can transform this. Create the new call instruction and copy 3193 // over the required information. 3194 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3195 3196 // Copy over any operand bundles. 3197 callSite.getOperandBundlesAsDefs(newBundles); 3198 3199 llvm::CallSite newCall; 3200 if (callSite.isCall()) { 3201 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3202 callSite.getInstruction()); 3203 } else { 3204 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3205 newCall = llvm::InvokeInst::Create(newFn, 3206 oldInvoke->getNormalDest(), 3207 oldInvoke->getUnwindDest(), 3208 newArgs, newBundles, "", 3209 callSite.getInstruction()); 3210 } 3211 newArgs.clear(); // for the next iteration 3212 3213 if (!newCall->getType()->isVoidTy()) 3214 newCall->takeName(callSite.getInstruction()); 3215 newCall.setAttributes(llvm::AttributeList::get( 3216 newFn->getContext(), oldAttrs.getFnAttributes(), 3217 oldAttrs.getRetAttributes(), newArgAttrs)); 3218 newCall.setCallingConv(callSite.getCallingConv()); 3219 3220 // Finally, remove the old call, replacing any uses with the new one. 3221 if (!callSite->use_empty()) 3222 callSite->replaceAllUsesWith(newCall.getInstruction()); 3223 3224 // Copy debug location attached to CI. 3225 if (callSite->getDebugLoc()) 3226 newCall->setDebugLoc(callSite->getDebugLoc()); 3227 3228 callSite->eraseFromParent(); 3229 } 3230 } 3231 3232 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3233 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3234 /// existing call uses of the old function in the module, this adjusts them to 3235 /// call the new function directly. 3236 /// 3237 /// This is not just a cleanup: the always_inline pass requires direct calls to 3238 /// functions to be able to inline them. If there is a bitcast in the way, it 3239 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3240 /// run at -O0. 3241 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3242 llvm::Function *NewFn) { 3243 // If we're redefining a global as a function, don't transform it. 3244 if (!isa<llvm::Function>(Old)) return; 3245 3246 replaceUsesOfNonProtoConstant(Old, NewFn); 3247 } 3248 3249 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3250 auto DK = VD->isThisDeclarationADefinition(); 3251 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3252 return; 3253 3254 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3255 // If we have a definition, this might be a deferred decl. If the 3256 // instantiation is explicit, make sure we emit it at the end. 3257 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3258 GetAddrOfGlobalVar(VD); 3259 3260 EmitTopLevelDecl(VD); 3261 } 3262 3263 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3264 llvm::GlobalValue *GV) { 3265 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3266 3267 // Compute the function info and LLVM type. 3268 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3269 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3270 3271 // Get or create the prototype for the function. 3272 if (!GV || (GV->getType()->getElementType() != Ty)) 3273 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3274 /*DontDefer=*/true, 3275 ForDefinition)); 3276 3277 // Already emitted. 3278 if (!GV->isDeclaration()) 3279 return; 3280 3281 // We need to set linkage and visibility on the function before 3282 // generating code for it because various parts of IR generation 3283 // want to propagate this information down (e.g. to local static 3284 // declarations). 3285 auto *Fn = cast<llvm::Function>(GV); 3286 setFunctionLinkage(GD, Fn); 3287 setFunctionDLLStorageClass(GD, Fn); 3288 3289 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3290 setGlobalVisibility(Fn, D, ForDefinition); 3291 3292 MaybeHandleStaticInExternC(D, Fn); 3293 3294 maybeSetTrivialComdat(*D, *Fn); 3295 3296 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3297 3298 setFunctionDefinitionAttributes(D, Fn); 3299 SetLLVMFunctionAttributesForDefinition(D, Fn); 3300 3301 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3302 AddGlobalCtor(Fn, CA->getPriority()); 3303 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3304 AddGlobalDtor(Fn, DA->getPriority()); 3305 if (D->hasAttr<AnnotateAttr>()) 3306 AddGlobalAnnotations(D, Fn); 3307 } 3308 3309 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3310 const auto *D = cast<ValueDecl>(GD.getDecl()); 3311 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3312 assert(AA && "Not an alias?"); 3313 3314 StringRef MangledName = getMangledName(GD); 3315 3316 if (AA->getAliasee() == MangledName) { 3317 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3318 return; 3319 } 3320 3321 // If there is a definition in the module, then it wins over the alias. 3322 // This is dubious, but allow it to be safe. Just ignore the alias. 3323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3324 if (Entry && !Entry->isDeclaration()) 3325 return; 3326 3327 Aliases.push_back(GD); 3328 3329 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3330 3331 // Create a reference to the named value. This ensures that it is emitted 3332 // if a deferred decl. 3333 llvm::Constant *Aliasee; 3334 if (isa<llvm::FunctionType>(DeclTy)) 3335 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3336 /*ForVTable=*/false); 3337 else 3338 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3339 llvm::PointerType::getUnqual(DeclTy), 3340 /*D=*/nullptr); 3341 3342 // Create the new alias itself, but don't set a name yet. 3343 auto *GA = llvm::GlobalAlias::create( 3344 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3345 3346 if (Entry) { 3347 if (GA->getAliasee() == Entry) { 3348 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3349 return; 3350 } 3351 3352 assert(Entry->isDeclaration()); 3353 3354 // If there is a declaration in the module, then we had an extern followed 3355 // by the alias, as in: 3356 // extern int test6(); 3357 // ... 3358 // int test6() __attribute__((alias("test7"))); 3359 // 3360 // Remove it and replace uses of it with the alias. 3361 GA->takeName(Entry); 3362 3363 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3364 Entry->getType())); 3365 Entry->eraseFromParent(); 3366 } else { 3367 GA->setName(MangledName); 3368 } 3369 3370 // Set attributes which are particular to an alias; this is a 3371 // specialization of the attributes which may be set on a global 3372 // variable/function. 3373 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3374 D->isWeakImported()) { 3375 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3376 } 3377 3378 if (const auto *VD = dyn_cast<VarDecl>(D)) 3379 if (VD->getTLSKind()) 3380 setTLSMode(GA, *VD); 3381 3382 setAliasAttributes(D, GA); 3383 } 3384 3385 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3386 const auto *D = cast<ValueDecl>(GD.getDecl()); 3387 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3388 assert(IFA && "Not an ifunc?"); 3389 3390 StringRef MangledName = getMangledName(GD); 3391 3392 if (IFA->getResolver() == MangledName) { 3393 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3394 return; 3395 } 3396 3397 // Report an error if some definition overrides ifunc. 3398 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3399 if (Entry && !Entry->isDeclaration()) { 3400 GlobalDecl OtherGD; 3401 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3402 DiagnosedConflictingDefinitions.insert(GD).second) { 3403 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3404 Diags.Report(OtherGD.getDecl()->getLocation(), 3405 diag::note_previous_definition); 3406 } 3407 return; 3408 } 3409 3410 Aliases.push_back(GD); 3411 3412 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3413 llvm::Constant *Resolver = 3414 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3415 /*ForVTable=*/false); 3416 llvm::GlobalIFunc *GIF = 3417 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3418 "", Resolver, &getModule()); 3419 if (Entry) { 3420 if (GIF->getResolver() == Entry) { 3421 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3422 return; 3423 } 3424 assert(Entry->isDeclaration()); 3425 3426 // If there is a declaration in the module, then we had an extern followed 3427 // by the ifunc, as in: 3428 // extern int test(); 3429 // ... 3430 // int test() __attribute__((ifunc("resolver"))); 3431 // 3432 // Remove it and replace uses of it with the ifunc. 3433 GIF->takeName(Entry); 3434 3435 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3436 Entry->getType())); 3437 Entry->eraseFromParent(); 3438 } else 3439 GIF->setName(MangledName); 3440 3441 SetCommonAttributes(D, GIF); 3442 } 3443 3444 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3445 ArrayRef<llvm::Type*> Tys) { 3446 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3447 Tys); 3448 } 3449 3450 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3451 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3452 const StringLiteral *Literal, bool TargetIsLSB, 3453 bool &IsUTF16, unsigned &StringLength) { 3454 StringRef String = Literal->getString(); 3455 unsigned NumBytes = String.size(); 3456 3457 // Check for simple case. 3458 if (!Literal->containsNonAsciiOrNull()) { 3459 StringLength = NumBytes; 3460 return *Map.insert(std::make_pair(String, nullptr)).first; 3461 } 3462 3463 // Otherwise, convert the UTF8 literals into a string of shorts. 3464 IsUTF16 = true; 3465 3466 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3467 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3468 llvm::UTF16 *ToPtr = &ToBuf[0]; 3469 3470 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3471 ToPtr + NumBytes, llvm::strictConversion); 3472 3473 // ConvertUTF8toUTF16 returns the length in ToPtr. 3474 StringLength = ToPtr - &ToBuf[0]; 3475 3476 // Add an explicit null. 3477 *ToPtr = 0; 3478 return *Map.insert(std::make_pair( 3479 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3480 (StringLength + 1) * 2), 3481 nullptr)).first; 3482 } 3483 3484 ConstantAddress 3485 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3486 unsigned StringLength = 0; 3487 bool isUTF16 = false; 3488 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3489 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3490 getDataLayout().isLittleEndian(), isUTF16, 3491 StringLength); 3492 3493 if (auto *C = Entry.second) 3494 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3495 3496 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3497 llvm::Constant *Zeros[] = { Zero, Zero }; 3498 3499 // If we don't already have it, get __CFConstantStringClassReference. 3500 if (!CFConstantStringClassRef) { 3501 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3502 Ty = llvm::ArrayType::get(Ty, 0); 3503 llvm::Constant *GV = 3504 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3505 3506 if (getTriple().isOSBinFormatCOFF()) { 3507 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3508 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3509 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3510 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3511 3512 const VarDecl *VD = nullptr; 3513 for (const auto &Result : DC->lookup(&II)) 3514 if ((VD = dyn_cast<VarDecl>(Result))) 3515 break; 3516 3517 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3518 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3519 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3520 } else { 3521 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3522 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3523 } 3524 } 3525 3526 // Decay array -> ptr 3527 CFConstantStringClassRef = 3528 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3529 } 3530 3531 QualType CFTy = getContext().getCFConstantStringType(); 3532 3533 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3534 3535 ConstantInitBuilder Builder(*this); 3536 auto Fields = Builder.beginStruct(STy); 3537 3538 // Class pointer. 3539 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3540 3541 // Flags. 3542 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3543 3544 // String pointer. 3545 llvm::Constant *C = nullptr; 3546 if (isUTF16) { 3547 auto Arr = llvm::makeArrayRef( 3548 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3549 Entry.first().size() / 2); 3550 C = llvm::ConstantDataArray::get(VMContext, Arr); 3551 } else { 3552 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3553 } 3554 3555 // Note: -fwritable-strings doesn't make the backing store strings of 3556 // CFStrings writable. (See <rdar://problem/10657500>) 3557 auto *GV = 3558 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3559 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3560 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3561 // Don't enforce the target's minimum global alignment, since the only use 3562 // of the string is via this class initializer. 3563 CharUnits Align = isUTF16 3564 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3565 : getContext().getTypeAlignInChars(getContext().CharTy); 3566 GV->setAlignment(Align.getQuantity()); 3567 3568 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3569 // Without it LLVM can merge the string with a non unnamed_addr one during 3570 // LTO. Doing that changes the section it ends in, which surprises ld64. 3571 if (getTriple().isOSBinFormatMachO()) 3572 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3573 : "__TEXT,__cstring,cstring_literals"); 3574 3575 // String. 3576 llvm::Constant *Str = 3577 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3578 3579 if (isUTF16) 3580 // Cast the UTF16 string to the correct type. 3581 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3582 Fields.add(Str); 3583 3584 // String length. 3585 auto Ty = getTypes().ConvertType(getContext().LongTy); 3586 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3587 3588 CharUnits Alignment = getPointerAlign(); 3589 3590 // The struct. 3591 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3592 /*isConstant=*/false, 3593 llvm::GlobalVariable::PrivateLinkage); 3594 switch (getTriple().getObjectFormat()) { 3595 case llvm::Triple::UnknownObjectFormat: 3596 llvm_unreachable("unknown file format"); 3597 case llvm::Triple::COFF: 3598 case llvm::Triple::ELF: 3599 case llvm::Triple::Wasm: 3600 GV->setSection("cfstring"); 3601 break; 3602 case llvm::Triple::MachO: 3603 GV->setSection("__DATA,__cfstring"); 3604 break; 3605 } 3606 Entry.second = GV; 3607 3608 return ConstantAddress(GV, Alignment); 3609 } 3610 3611 bool CodeGenModule::getExpressionLocationsEnabled() const { 3612 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3613 } 3614 3615 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3616 if (ObjCFastEnumerationStateType.isNull()) { 3617 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3618 D->startDefinition(); 3619 3620 QualType FieldTypes[] = { 3621 Context.UnsignedLongTy, 3622 Context.getPointerType(Context.getObjCIdType()), 3623 Context.getPointerType(Context.UnsignedLongTy), 3624 Context.getConstantArrayType(Context.UnsignedLongTy, 3625 llvm::APInt(32, 5), ArrayType::Normal, 0) 3626 }; 3627 3628 for (size_t i = 0; i < 4; ++i) { 3629 FieldDecl *Field = FieldDecl::Create(Context, 3630 D, 3631 SourceLocation(), 3632 SourceLocation(), nullptr, 3633 FieldTypes[i], /*TInfo=*/nullptr, 3634 /*BitWidth=*/nullptr, 3635 /*Mutable=*/false, 3636 ICIS_NoInit); 3637 Field->setAccess(AS_public); 3638 D->addDecl(Field); 3639 } 3640 3641 D->completeDefinition(); 3642 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3643 } 3644 3645 return ObjCFastEnumerationStateType; 3646 } 3647 3648 llvm::Constant * 3649 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3650 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3651 3652 // Don't emit it as the address of the string, emit the string data itself 3653 // as an inline array. 3654 if (E->getCharByteWidth() == 1) { 3655 SmallString<64> Str(E->getString()); 3656 3657 // Resize the string to the right size, which is indicated by its type. 3658 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3659 Str.resize(CAT->getSize().getZExtValue()); 3660 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3661 } 3662 3663 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3664 llvm::Type *ElemTy = AType->getElementType(); 3665 unsigned NumElements = AType->getNumElements(); 3666 3667 // Wide strings have either 2-byte or 4-byte elements. 3668 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3669 SmallVector<uint16_t, 32> Elements; 3670 Elements.reserve(NumElements); 3671 3672 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3673 Elements.push_back(E->getCodeUnit(i)); 3674 Elements.resize(NumElements); 3675 return llvm::ConstantDataArray::get(VMContext, Elements); 3676 } 3677 3678 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3679 SmallVector<uint32_t, 32> Elements; 3680 Elements.reserve(NumElements); 3681 3682 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3683 Elements.push_back(E->getCodeUnit(i)); 3684 Elements.resize(NumElements); 3685 return llvm::ConstantDataArray::get(VMContext, Elements); 3686 } 3687 3688 static llvm::GlobalVariable * 3689 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3690 CodeGenModule &CGM, StringRef GlobalName, 3691 CharUnits Alignment) { 3692 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3693 unsigned AddrSpace = 0; 3694 if (CGM.getLangOpts().OpenCL) 3695 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3696 3697 llvm::Module &M = CGM.getModule(); 3698 // Create a global variable for this string 3699 auto *GV = new llvm::GlobalVariable( 3700 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3701 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3702 GV->setAlignment(Alignment.getQuantity()); 3703 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3704 if (GV->isWeakForLinker()) { 3705 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3706 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3707 } 3708 3709 return GV; 3710 } 3711 3712 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3713 /// constant array for the given string literal. 3714 ConstantAddress 3715 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3716 StringRef Name) { 3717 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3718 3719 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3720 llvm::GlobalVariable **Entry = nullptr; 3721 if (!LangOpts.WritableStrings) { 3722 Entry = &ConstantStringMap[C]; 3723 if (auto GV = *Entry) { 3724 if (Alignment.getQuantity() > GV->getAlignment()) 3725 GV->setAlignment(Alignment.getQuantity()); 3726 return ConstantAddress(GV, Alignment); 3727 } 3728 } 3729 3730 SmallString<256> MangledNameBuffer; 3731 StringRef GlobalVariableName; 3732 llvm::GlobalValue::LinkageTypes LT; 3733 3734 // Mangle the string literal if the ABI allows for it. However, we cannot 3735 // do this if we are compiling with ASan or -fwritable-strings because they 3736 // rely on strings having normal linkage. 3737 if (!LangOpts.WritableStrings && 3738 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3739 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3740 llvm::raw_svector_ostream Out(MangledNameBuffer); 3741 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3742 3743 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3744 GlobalVariableName = MangledNameBuffer; 3745 } else { 3746 LT = llvm::GlobalValue::PrivateLinkage; 3747 GlobalVariableName = Name; 3748 } 3749 3750 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3751 if (Entry) 3752 *Entry = GV; 3753 3754 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3755 QualType()); 3756 return ConstantAddress(GV, Alignment); 3757 } 3758 3759 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3760 /// array for the given ObjCEncodeExpr node. 3761 ConstantAddress 3762 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3763 std::string Str; 3764 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3765 3766 return GetAddrOfConstantCString(Str); 3767 } 3768 3769 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3770 /// the literal and a terminating '\0' character. 3771 /// The result has pointer to array type. 3772 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3773 const std::string &Str, const char *GlobalName) { 3774 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3775 CharUnits Alignment = 3776 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3777 3778 llvm::Constant *C = 3779 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3780 3781 // Don't share any string literals if strings aren't constant. 3782 llvm::GlobalVariable **Entry = nullptr; 3783 if (!LangOpts.WritableStrings) { 3784 Entry = &ConstantStringMap[C]; 3785 if (auto GV = *Entry) { 3786 if (Alignment.getQuantity() > GV->getAlignment()) 3787 GV->setAlignment(Alignment.getQuantity()); 3788 return ConstantAddress(GV, Alignment); 3789 } 3790 } 3791 3792 // Get the default prefix if a name wasn't specified. 3793 if (!GlobalName) 3794 GlobalName = ".str"; 3795 // Create a global variable for this. 3796 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3797 GlobalName, Alignment); 3798 if (Entry) 3799 *Entry = GV; 3800 return ConstantAddress(GV, Alignment); 3801 } 3802 3803 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3804 const MaterializeTemporaryExpr *E, const Expr *Init) { 3805 assert((E->getStorageDuration() == SD_Static || 3806 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3807 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3808 3809 // If we're not materializing a subobject of the temporary, keep the 3810 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3811 QualType MaterializedType = Init->getType(); 3812 if (Init == E->GetTemporaryExpr()) 3813 MaterializedType = E->getType(); 3814 3815 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3816 3817 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3818 return ConstantAddress(Slot, Align); 3819 3820 // FIXME: If an externally-visible declaration extends multiple temporaries, 3821 // we need to give each temporary the same name in every translation unit (and 3822 // we also need to make the temporaries externally-visible). 3823 SmallString<256> Name; 3824 llvm::raw_svector_ostream Out(Name); 3825 getCXXABI().getMangleContext().mangleReferenceTemporary( 3826 VD, E->getManglingNumber(), Out); 3827 3828 APValue *Value = nullptr; 3829 if (E->getStorageDuration() == SD_Static) { 3830 // We might have a cached constant initializer for this temporary. Note 3831 // that this might have a different value from the value computed by 3832 // evaluating the initializer if the surrounding constant expression 3833 // modifies the temporary. 3834 Value = getContext().getMaterializedTemporaryValue(E, false); 3835 if (Value && Value->isUninit()) 3836 Value = nullptr; 3837 } 3838 3839 // Try evaluating it now, it might have a constant initializer. 3840 Expr::EvalResult EvalResult; 3841 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3842 !EvalResult.hasSideEffects()) 3843 Value = &EvalResult.Val; 3844 3845 LangAS AddrSpace = 3846 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3847 3848 Optional<ConstantEmitter> emitter; 3849 llvm::Constant *InitialValue = nullptr; 3850 bool Constant = false; 3851 llvm::Type *Type; 3852 if (Value) { 3853 // The temporary has a constant initializer, use it. 3854 emitter.emplace(*this); 3855 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3856 MaterializedType); 3857 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3858 Type = InitialValue->getType(); 3859 } else { 3860 // No initializer, the initialization will be provided when we 3861 // initialize the declaration which performed lifetime extension. 3862 Type = getTypes().ConvertTypeForMem(MaterializedType); 3863 } 3864 3865 // Create a global variable for this lifetime-extended temporary. 3866 llvm::GlobalValue::LinkageTypes Linkage = 3867 getLLVMLinkageVarDefinition(VD, Constant); 3868 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3869 const VarDecl *InitVD; 3870 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3871 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3872 // Temporaries defined inside a class get linkonce_odr linkage because the 3873 // class can be defined in multipe translation units. 3874 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3875 } else { 3876 // There is no need for this temporary to have external linkage if the 3877 // VarDecl has external linkage. 3878 Linkage = llvm::GlobalVariable::InternalLinkage; 3879 } 3880 } 3881 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3882 auto *GV = new llvm::GlobalVariable( 3883 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3884 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3885 if (emitter) emitter->finalize(GV); 3886 setGlobalVisibility(GV, VD, ForDefinition); 3887 GV->setAlignment(Align.getQuantity()); 3888 if (supportsCOMDAT() && GV->isWeakForLinker()) 3889 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3890 if (VD->getTLSKind()) 3891 setTLSMode(GV, *VD); 3892 llvm::Constant *CV = GV; 3893 if (AddrSpace != LangAS::Default) 3894 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3895 *this, GV, AddrSpace, LangAS::Default, 3896 Type->getPointerTo( 3897 getContext().getTargetAddressSpace(LangAS::Default))); 3898 MaterializedGlobalTemporaryMap[E] = CV; 3899 return ConstantAddress(CV, Align); 3900 } 3901 3902 /// EmitObjCPropertyImplementations - Emit information for synthesized 3903 /// properties for an implementation. 3904 void CodeGenModule::EmitObjCPropertyImplementations(const 3905 ObjCImplementationDecl *D) { 3906 for (const auto *PID : D->property_impls()) { 3907 // Dynamic is just for type-checking. 3908 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3909 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3910 3911 // Determine which methods need to be implemented, some may have 3912 // been overridden. Note that ::isPropertyAccessor is not the method 3913 // we want, that just indicates if the decl came from a 3914 // property. What we want to know is if the method is defined in 3915 // this implementation. 3916 if (!D->getInstanceMethod(PD->getGetterName())) 3917 CodeGenFunction(*this).GenerateObjCGetter( 3918 const_cast<ObjCImplementationDecl *>(D), PID); 3919 if (!PD->isReadOnly() && 3920 !D->getInstanceMethod(PD->getSetterName())) 3921 CodeGenFunction(*this).GenerateObjCSetter( 3922 const_cast<ObjCImplementationDecl *>(D), PID); 3923 } 3924 } 3925 } 3926 3927 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3928 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3929 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3930 ivar; ivar = ivar->getNextIvar()) 3931 if (ivar->getType().isDestructedType()) 3932 return true; 3933 3934 return false; 3935 } 3936 3937 static bool AllTrivialInitializers(CodeGenModule &CGM, 3938 ObjCImplementationDecl *D) { 3939 CodeGenFunction CGF(CGM); 3940 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3941 E = D->init_end(); B != E; ++B) { 3942 CXXCtorInitializer *CtorInitExp = *B; 3943 Expr *Init = CtorInitExp->getInit(); 3944 if (!CGF.isTrivialInitializer(Init)) 3945 return false; 3946 } 3947 return true; 3948 } 3949 3950 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3951 /// for an implementation. 3952 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3953 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3954 if (needsDestructMethod(D)) { 3955 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3956 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3957 ObjCMethodDecl *DTORMethod = 3958 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3959 cxxSelector, getContext().VoidTy, nullptr, D, 3960 /*isInstance=*/true, /*isVariadic=*/false, 3961 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3962 /*isDefined=*/false, ObjCMethodDecl::Required); 3963 D->addInstanceMethod(DTORMethod); 3964 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3965 D->setHasDestructors(true); 3966 } 3967 3968 // If the implementation doesn't have any ivar initializers, we don't need 3969 // a .cxx_construct. 3970 if (D->getNumIvarInitializers() == 0 || 3971 AllTrivialInitializers(*this, D)) 3972 return; 3973 3974 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3975 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3976 // The constructor returns 'self'. 3977 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3978 D->getLocation(), 3979 D->getLocation(), 3980 cxxSelector, 3981 getContext().getObjCIdType(), 3982 nullptr, D, /*isInstance=*/true, 3983 /*isVariadic=*/false, 3984 /*isPropertyAccessor=*/true, 3985 /*isImplicitlyDeclared=*/true, 3986 /*isDefined=*/false, 3987 ObjCMethodDecl::Required); 3988 D->addInstanceMethod(CTORMethod); 3989 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3990 D->setHasNonZeroConstructors(true); 3991 } 3992 3993 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3994 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3995 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3996 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3997 ErrorUnsupported(LSD, "linkage spec"); 3998 return; 3999 } 4000 4001 EmitDeclContext(LSD); 4002 } 4003 4004 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4005 for (auto *I : DC->decls()) { 4006 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4007 // are themselves considered "top-level", so EmitTopLevelDecl on an 4008 // ObjCImplDecl does not recursively visit them. We need to do that in 4009 // case they're nested inside another construct (LinkageSpecDecl / 4010 // ExportDecl) that does stop them from being considered "top-level". 4011 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4012 for (auto *M : OID->methods()) 4013 EmitTopLevelDecl(M); 4014 } 4015 4016 EmitTopLevelDecl(I); 4017 } 4018 } 4019 4020 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4021 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4022 // Ignore dependent declarations. 4023 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4024 return; 4025 4026 switch (D->getKind()) { 4027 case Decl::CXXConversion: 4028 case Decl::CXXMethod: 4029 case Decl::Function: 4030 // Skip function templates 4031 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4032 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4033 return; 4034 4035 EmitGlobal(cast<FunctionDecl>(D)); 4036 // Always provide some coverage mapping 4037 // even for the functions that aren't emitted. 4038 AddDeferredUnusedCoverageMapping(D); 4039 break; 4040 4041 case Decl::CXXDeductionGuide: 4042 // Function-like, but does not result in code emission. 4043 break; 4044 4045 case Decl::Var: 4046 case Decl::Decomposition: 4047 // Skip variable templates 4048 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4049 return; 4050 LLVM_FALLTHROUGH; 4051 case Decl::VarTemplateSpecialization: 4052 EmitGlobal(cast<VarDecl>(D)); 4053 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4054 for (auto *B : DD->bindings()) 4055 if (auto *HD = B->getHoldingVar()) 4056 EmitGlobal(HD); 4057 break; 4058 4059 // Indirect fields from global anonymous structs and unions can be 4060 // ignored; only the actual variable requires IR gen support. 4061 case Decl::IndirectField: 4062 break; 4063 4064 // C++ Decls 4065 case Decl::Namespace: 4066 EmitDeclContext(cast<NamespaceDecl>(D)); 4067 break; 4068 case Decl::ClassTemplateSpecialization: { 4069 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4070 if (DebugInfo && 4071 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4072 Spec->hasDefinition()) 4073 DebugInfo->completeTemplateDefinition(*Spec); 4074 } LLVM_FALLTHROUGH; 4075 case Decl::CXXRecord: 4076 if (DebugInfo) { 4077 if (auto *ES = D->getASTContext().getExternalSource()) 4078 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4079 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4080 } 4081 // Emit any static data members, they may be definitions. 4082 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4083 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4084 EmitTopLevelDecl(I); 4085 break; 4086 // No code generation needed. 4087 case Decl::UsingShadow: 4088 case Decl::ClassTemplate: 4089 case Decl::VarTemplate: 4090 case Decl::VarTemplatePartialSpecialization: 4091 case Decl::FunctionTemplate: 4092 case Decl::TypeAliasTemplate: 4093 case Decl::Block: 4094 case Decl::Empty: 4095 break; 4096 case Decl::Using: // using X; [C++] 4097 if (CGDebugInfo *DI = getModuleDebugInfo()) 4098 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4099 return; 4100 case Decl::NamespaceAlias: 4101 if (CGDebugInfo *DI = getModuleDebugInfo()) 4102 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4103 return; 4104 case Decl::UsingDirective: // using namespace X; [C++] 4105 if (CGDebugInfo *DI = getModuleDebugInfo()) 4106 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4107 return; 4108 case Decl::CXXConstructor: 4109 // Skip function templates 4110 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4111 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4112 return; 4113 4114 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4115 break; 4116 case Decl::CXXDestructor: 4117 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4118 return; 4119 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4120 break; 4121 4122 case Decl::StaticAssert: 4123 // Nothing to do. 4124 break; 4125 4126 // Objective-C Decls 4127 4128 // Forward declarations, no (immediate) code generation. 4129 case Decl::ObjCInterface: 4130 case Decl::ObjCCategory: 4131 break; 4132 4133 case Decl::ObjCProtocol: { 4134 auto *Proto = cast<ObjCProtocolDecl>(D); 4135 if (Proto->isThisDeclarationADefinition()) 4136 ObjCRuntime->GenerateProtocol(Proto); 4137 break; 4138 } 4139 4140 case Decl::ObjCCategoryImpl: 4141 // Categories have properties but don't support synthesize so we 4142 // can ignore them here. 4143 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4144 break; 4145 4146 case Decl::ObjCImplementation: { 4147 auto *OMD = cast<ObjCImplementationDecl>(D); 4148 EmitObjCPropertyImplementations(OMD); 4149 EmitObjCIvarInitializations(OMD); 4150 ObjCRuntime->GenerateClass(OMD); 4151 // Emit global variable debug information. 4152 if (CGDebugInfo *DI = getModuleDebugInfo()) 4153 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4154 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4155 OMD->getClassInterface()), OMD->getLocation()); 4156 break; 4157 } 4158 case Decl::ObjCMethod: { 4159 auto *OMD = cast<ObjCMethodDecl>(D); 4160 // If this is not a prototype, emit the body. 4161 if (OMD->getBody()) 4162 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4163 break; 4164 } 4165 case Decl::ObjCCompatibleAlias: 4166 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4167 break; 4168 4169 case Decl::PragmaComment: { 4170 const auto *PCD = cast<PragmaCommentDecl>(D); 4171 switch (PCD->getCommentKind()) { 4172 case PCK_Unknown: 4173 llvm_unreachable("unexpected pragma comment kind"); 4174 case PCK_Linker: 4175 AppendLinkerOptions(PCD->getArg()); 4176 break; 4177 case PCK_Lib: 4178 AddDependentLib(PCD->getArg()); 4179 break; 4180 case PCK_Compiler: 4181 case PCK_ExeStr: 4182 case PCK_User: 4183 break; // We ignore all of these. 4184 } 4185 break; 4186 } 4187 4188 case Decl::PragmaDetectMismatch: { 4189 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4190 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4191 break; 4192 } 4193 4194 case Decl::LinkageSpec: 4195 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4196 break; 4197 4198 case Decl::FileScopeAsm: { 4199 // File-scope asm is ignored during device-side CUDA compilation. 4200 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4201 break; 4202 // File-scope asm is ignored during device-side OpenMP compilation. 4203 if (LangOpts.OpenMPIsDevice) 4204 break; 4205 auto *AD = cast<FileScopeAsmDecl>(D); 4206 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4207 break; 4208 } 4209 4210 case Decl::Import: { 4211 auto *Import = cast<ImportDecl>(D); 4212 4213 // If we've already imported this module, we're done. 4214 if (!ImportedModules.insert(Import->getImportedModule())) 4215 break; 4216 4217 // Emit debug information for direct imports. 4218 if (!Import->getImportedOwningModule()) { 4219 if (CGDebugInfo *DI = getModuleDebugInfo()) 4220 DI->EmitImportDecl(*Import); 4221 } 4222 4223 // Find all of the submodules and emit the module initializers. 4224 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4225 SmallVector<clang::Module *, 16> Stack; 4226 Visited.insert(Import->getImportedModule()); 4227 Stack.push_back(Import->getImportedModule()); 4228 4229 while (!Stack.empty()) { 4230 clang::Module *Mod = Stack.pop_back_val(); 4231 if (!EmittedModuleInitializers.insert(Mod).second) 4232 continue; 4233 4234 for (auto *D : Context.getModuleInitializers(Mod)) 4235 EmitTopLevelDecl(D); 4236 4237 // Visit the submodules of this module. 4238 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4239 SubEnd = Mod->submodule_end(); 4240 Sub != SubEnd; ++Sub) { 4241 // Skip explicit children; they need to be explicitly imported to emit 4242 // the initializers. 4243 if ((*Sub)->IsExplicit) 4244 continue; 4245 4246 if (Visited.insert(*Sub).second) 4247 Stack.push_back(*Sub); 4248 } 4249 } 4250 break; 4251 } 4252 4253 case Decl::Export: 4254 EmitDeclContext(cast<ExportDecl>(D)); 4255 break; 4256 4257 case Decl::OMPThreadPrivate: 4258 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4259 break; 4260 4261 case Decl::OMPDeclareReduction: 4262 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4263 break; 4264 4265 default: 4266 // Make sure we handled everything we should, every other kind is a 4267 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4268 // function. Need to recode Decl::Kind to do that easily. 4269 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4270 break; 4271 } 4272 } 4273 4274 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4275 // Do we need to generate coverage mapping? 4276 if (!CodeGenOpts.CoverageMapping) 4277 return; 4278 switch (D->getKind()) { 4279 case Decl::CXXConversion: 4280 case Decl::CXXMethod: 4281 case Decl::Function: 4282 case Decl::ObjCMethod: 4283 case Decl::CXXConstructor: 4284 case Decl::CXXDestructor: { 4285 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4286 return; 4287 SourceManager &SM = getContext().getSourceManager(); 4288 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4289 return; 4290 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4291 if (I == DeferredEmptyCoverageMappingDecls.end()) 4292 DeferredEmptyCoverageMappingDecls[D] = true; 4293 break; 4294 } 4295 default: 4296 break; 4297 }; 4298 } 4299 4300 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4301 // Do we need to generate coverage mapping? 4302 if (!CodeGenOpts.CoverageMapping) 4303 return; 4304 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4305 if (Fn->isTemplateInstantiation()) 4306 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4307 } 4308 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4309 if (I == DeferredEmptyCoverageMappingDecls.end()) 4310 DeferredEmptyCoverageMappingDecls[D] = false; 4311 else 4312 I->second = false; 4313 } 4314 4315 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4316 // We call takeVector() here to avoid use-after-free. 4317 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4318 // we deserialize function bodies to emit coverage info for them, and that 4319 // deserializes more declarations. How should we handle that case? 4320 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4321 if (!Entry.second) 4322 continue; 4323 const Decl *D = Entry.first; 4324 switch (D->getKind()) { 4325 case Decl::CXXConversion: 4326 case Decl::CXXMethod: 4327 case Decl::Function: 4328 case Decl::ObjCMethod: { 4329 CodeGenPGO PGO(*this); 4330 GlobalDecl GD(cast<FunctionDecl>(D)); 4331 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4332 getFunctionLinkage(GD)); 4333 break; 4334 } 4335 case Decl::CXXConstructor: { 4336 CodeGenPGO PGO(*this); 4337 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4338 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4339 getFunctionLinkage(GD)); 4340 break; 4341 } 4342 case Decl::CXXDestructor: { 4343 CodeGenPGO PGO(*this); 4344 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4345 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4346 getFunctionLinkage(GD)); 4347 break; 4348 } 4349 default: 4350 break; 4351 }; 4352 } 4353 } 4354 4355 /// Turns the given pointer into a constant. 4356 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4357 const void *Ptr) { 4358 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4359 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4360 return llvm::ConstantInt::get(i64, PtrInt); 4361 } 4362 4363 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4364 llvm::NamedMDNode *&GlobalMetadata, 4365 GlobalDecl D, 4366 llvm::GlobalValue *Addr) { 4367 if (!GlobalMetadata) 4368 GlobalMetadata = 4369 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4370 4371 // TODO: should we report variant information for ctors/dtors? 4372 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4373 llvm::ConstantAsMetadata::get(GetPointerConstant( 4374 CGM.getLLVMContext(), D.getDecl()))}; 4375 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4376 } 4377 4378 /// For each function which is declared within an extern "C" region and marked 4379 /// as 'used', but has internal linkage, create an alias from the unmangled 4380 /// name to the mangled name if possible. People expect to be able to refer 4381 /// to such functions with an unmangled name from inline assembly within the 4382 /// same translation unit. 4383 void CodeGenModule::EmitStaticExternCAliases() { 4384 // Don't do anything if we're generating CUDA device code -- the NVPTX 4385 // assembly target doesn't support aliases. 4386 if (Context.getTargetInfo().getTriple().isNVPTX()) 4387 return; 4388 for (auto &I : StaticExternCValues) { 4389 IdentifierInfo *Name = I.first; 4390 llvm::GlobalValue *Val = I.second; 4391 if (Val && !getModule().getNamedValue(Name->getName())) 4392 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4393 } 4394 } 4395 4396 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4397 GlobalDecl &Result) const { 4398 auto Res = Manglings.find(MangledName); 4399 if (Res == Manglings.end()) 4400 return false; 4401 Result = Res->getValue(); 4402 return true; 4403 } 4404 4405 /// Emits metadata nodes associating all the global values in the 4406 /// current module with the Decls they came from. This is useful for 4407 /// projects using IR gen as a subroutine. 4408 /// 4409 /// Since there's currently no way to associate an MDNode directly 4410 /// with an llvm::GlobalValue, we create a global named metadata 4411 /// with the name 'clang.global.decl.ptrs'. 4412 void CodeGenModule::EmitDeclMetadata() { 4413 llvm::NamedMDNode *GlobalMetadata = nullptr; 4414 4415 for (auto &I : MangledDeclNames) { 4416 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4417 // Some mangled names don't necessarily have an associated GlobalValue 4418 // in this module, e.g. if we mangled it for DebugInfo. 4419 if (Addr) 4420 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4421 } 4422 } 4423 4424 /// Emits metadata nodes for all the local variables in the current 4425 /// function. 4426 void CodeGenFunction::EmitDeclMetadata() { 4427 if (LocalDeclMap.empty()) return; 4428 4429 llvm::LLVMContext &Context = getLLVMContext(); 4430 4431 // Find the unique metadata ID for this name. 4432 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4433 4434 llvm::NamedMDNode *GlobalMetadata = nullptr; 4435 4436 for (auto &I : LocalDeclMap) { 4437 const Decl *D = I.first; 4438 llvm::Value *Addr = I.second.getPointer(); 4439 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4440 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4441 Alloca->setMetadata( 4442 DeclPtrKind, llvm::MDNode::get( 4443 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4444 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4445 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4446 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4447 } 4448 } 4449 } 4450 4451 void CodeGenModule::EmitVersionIdentMetadata() { 4452 llvm::NamedMDNode *IdentMetadata = 4453 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4454 std::string Version = getClangFullVersion(); 4455 llvm::LLVMContext &Ctx = TheModule.getContext(); 4456 4457 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4458 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4459 } 4460 4461 void CodeGenModule::EmitTargetMetadata() { 4462 // Warning, new MangledDeclNames may be appended within this loop. 4463 // We rely on MapVector insertions adding new elements to the end 4464 // of the container. 4465 // FIXME: Move this loop into the one target that needs it, and only 4466 // loop over those declarations for which we couldn't emit the target 4467 // metadata when we emitted the declaration. 4468 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4469 auto Val = *(MangledDeclNames.begin() + I); 4470 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4471 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4472 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4473 } 4474 } 4475 4476 void CodeGenModule::EmitCoverageFile() { 4477 if (getCodeGenOpts().CoverageDataFile.empty() && 4478 getCodeGenOpts().CoverageNotesFile.empty()) 4479 return; 4480 4481 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4482 if (!CUNode) 4483 return; 4484 4485 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4486 llvm::LLVMContext &Ctx = TheModule.getContext(); 4487 auto *CoverageDataFile = 4488 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4489 auto *CoverageNotesFile = 4490 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4491 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4492 llvm::MDNode *CU = CUNode->getOperand(i); 4493 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4494 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4495 } 4496 } 4497 4498 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4499 // Sema has checked that all uuid strings are of the form 4500 // "12345678-1234-1234-1234-1234567890ab". 4501 assert(Uuid.size() == 36); 4502 for (unsigned i = 0; i < 36; ++i) { 4503 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4504 else assert(isHexDigit(Uuid[i])); 4505 } 4506 4507 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4508 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4509 4510 llvm::Constant *Field3[8]; 4511 for (unsigned Idx = 0; Idx < 8; ++Idx) 4512 Field3[Idx] = llvm::ConstantInt::get( 4513 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4514 4515 llvm::Constant *Fields[4] = { 4516 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4517 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4518 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4519 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4520 }; 4521 4522 return llvm::ConstantStruct::getAnon(Fields); 4523 } 4524 4525 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4526 bool ForEH) { 4527 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4528 // FIXME: should we even be calling this method if RTTI is disabled 4529 // and it's not for EH? 4530 if (!ForEH && !getLangOpts().RTTI) 4531 return llvm::Constant::getNullValue(Int8PtrTy); 4532 4533 if (ForEH && Ty->isObjCObjectPointerType() && 4534 LangOpts.ObjCRuntime.isGNUFamily()) 4535 return ObjCRuntime->GetEHType(Ty); 4536 4537 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4538 } 4539 4540 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4541 for (auto RefExpr : D->varlists()) { 4542 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4543 bool PerformInit = 4544 VD->getAnyInitializer() && 4545 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4546 /*ForRef=*/false); 4547 4548 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4549 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4550 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4551 CXXGlobalInits.push_back(InitFunction); 4552 } 4553 } 4554 4555 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4556 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4557 if (InternalId) 4558 return InternalId; 4559 4560 if (isExternallyVisible(T->getLinkage())) { 4561 std::string OutName; 4562 llvm::raw_string_ostream Out(OutName); 4563 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4564 4565 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4566 } else { 4567 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4568 llvm::ArrayRef<llvm::Metadata *>()); 4569 } 4570 4571 return InternalId; 4572 } 4573 4574 // Generalize pointer types to a void pointer with the qualifiers of the 4575 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4576 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4577 // 'void *'. 4578 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4579 if (!Ty->isPointerType()) 4580 return Ty; 4581 4582 return Ctx.getPointerType( 4583 QualType(Ctx.VoidTy).withCVRQualifiers( 4584 Ty->getPointeeType().getCVRQualifiers())); 4585 } 4586 4587 // Apply type generalization to a FunctionType's return and argument types 4588 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4589 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4590 SmallVector<QualType, 8> GeneralizedParams; 4591 for (auto &Param : FnType->param_types()) 4592 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4593 4594 return Ctx.getFunctionType( 4595 GeneralizeType(Ctx, FnType->getReturnType()), 4596 GeneralizedParams, FnType->getExtProtoInfo()); 4597 } 4598 4599 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4600 return Ctx.getFunctionNoProtoType( 4601 GeneralizeType(Ctx, FnType->getReturnType())); 4602 4603 llvm_unreachable("Encountered unknown FunctionType"); 4604 } 4605 4606 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4607 T = GeneralizeFunctionType(getContext(), T); 4608 4609 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4610 if (InternalId) 4611 return InternalId; 4612 4613 if (isExternallyVisible(T->getLinkage())) { 4614 std::string OutName; 4615 llvm::raw_string_ostream Out(OutName); 4616 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4617 Out << ".generalized"; 4618 4619 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4620 } else { 4621 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4622 llvm::ArrayRef<llvm::Metadata *>()); 4623 } 4624 4625 return InternalId; 4626 } 4627 4628 /// Returns whether this module needs the "all-vtables" type identifier. 4629 bool CodeGenModule::NeedAllVtablesTypeId() const { 4630 // Returns true if at least one of vtable-based CFI checkers is enabled and 4631 // is not in the trapping mode. 4632 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4633 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4634 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4635 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4636 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4637 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4638 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4639 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4640 } 4641 4642 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4643 CharUnits Offset, 4644 const CXXRecordDecl *RD) { 4645 llvm::Metadata *MD = 4646 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4647 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4648 4649 if (CodeGenOpts.SanitizeCfiCrossDso) 4650 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4651 VTable->addTypeMetadata(Offset.getQuantity(), 4652 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4653 4654 if (NeedAllVtablesTypeId()) { 4655 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4656 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4657 } 4658 } 4659 4660 // Fills in the supplied string map with the set of target features for the 4661 // passed in function. 4662 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4663 const FunctionDecl *FD) { 4664 StringRef TargetCPU = Target.getTargetOpts().CPU; 4665 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4666 // If we have a TargetAttr build up the feature map based on that. 4667 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4668 4669 ParsedAttr.Features.erase( 4670 llvm::remove_if(ParsedAttr.Features, 4671 [&](const std::string &Feat) { 4672 return !Target.isValidFeatureName( 4673 StringRef{Feat}.substr(1)); 4674 }), 4675 ParsedAttr.Features.end()); 4676 4677 // Make a copy of the features as passed on the command line into the 4678 // beginning of the additional features from the function to override. 4679 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4680 Target.getTargetOpts().FeaturesAsWritten.begin(), 4681 Target.getTargetOpts().FeaturesAsWritten.end()); 4682 4683 if (ParsedAttr.Architecture != "" && 4684 Target.isValidCPUName(ParsedAttr.Architecture)) 4685 TargetCPU = ParsedAttr.Architecture; 4686 4687 // Now populate the feature map, first with the TargetCPU which is either 4688 // the default or a new one from the target attribute string. Then we'll use 4689 // the passed in features (FeaturesAsWritten) along with the new ones from 4690 // the attribute. 4691 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4692 ParsedAttr.Features); 4693 } else { 4694 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4695 Target.getTargetOpts().Features); 4696 } 4697 } 4698 4699 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4700 if (!SanStats) 4701 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4702 4703 return *SanStats; 4704 } 4705 llvm::Value * 4706 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4707 CodeGenFunction &CGF) { 4708 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4709 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4710 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4711 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4712 "__translate_sampler_initializer"), 4713 {C}); 4714 } 4715