1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // Record mregparm value now so it is visible through rest of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 454 if (CodeGenOpts.DwarfVersion) { 455 // We actually want the latest version when there are conflicts. 456 // We can change from Warning to Latest if such mode is supported. 457 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 458 CodeGenOpts.DwarfVersion); 459 } 460 if (CodeGenOpts.EmitCodeView) { 461 // Indicate that we want CodeView in the metadata. 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 463 } 464 if (CodeGenOpts.CodeViewGHash) { 465 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 466 } 467 if (CodeGenOpts.ControlFlowGuard) { 468 // We want function ID tables for Control Flow Guard. 469 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 470 } 471 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 472 // We don't support LTO with 2 with different StrictVTablePointers 473 // FIXME: we could support it by stripping all the information introduced 474 // by StrictVTablePointers. 475 476 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 477 478 llvm::Metadata *Ops[2] = { 479 llvm::MDString::get(VMContext, "StrictVTablePointers"), 480 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 481 llvm::Type::getInt32Ty(VMContext), 1))}; 482 483 getModule().addModuleFlag(llvm::Module::Require, 484 "StrictVTablePointersRequirement", 485 llvm::MDNode::get(VMContext, Ops)); 486 } 487 if (DebugInfo) 488 // We support a single version in the linked module. The LLVM 489 // parser will drop debug info with a different version number 490 // (and warn about it, too). 491 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 492 llvm::DEBUG_METADATA_VERSION); 493 494 // We need to record the widths of enums and wchar_t, so that we can generate 495 // the correct build attributes in the ARM backend. wchar_size is also used by 496 // TargetLibraryInfo. 497 uint64_t WCharWidth = 498 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 499 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 500 501 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 502 if ( Arch == llvm::Triple::arm 503 || Arch == llvm::Triple::armeb 504 || Arch == llvm::Triple::thumb 505 || Arch == llvm::Triple::thumbeb) { 506 // The minimum width of an enum in bytes 507 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 508 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 509 } 510 511 if (CodeGenOpts.SanitizeCfiCrossDso) { 512 // Indicate that we want cross-DSO control flow integrity checks. 513 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 514 } 515 516 if (CodeGenOpts.CFProtectionReturn && 517 Target.checkCFProtectionReturnSupported(getDiags())) { 518 // Indicate that we want to instrument return control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 520 1); 521 } 522 523 if (CodeGenOpts.CFProtectionBranch && 524 Target.checkCFProtectionBranchSupported(getDiags())) { 525 // Indicate that we want to instrument branch control flow protection. 526 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 527 1); 528 } 529 530 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 531 // Indicate whether __nvvm_reflect should be configured to flush denormal 532 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 533 // property.) 534 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 535 CodeGenOpts.FlushDenorm ? 1 : 0); 536 } 537 538 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 539 if (LangOpts.OpenCL) { 540 EmitOpenCLMetadata(); 541 // Emit SPIR version. 542 if (getTriple().isSPIR()) { 543 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 544 // opencl.spir.version named metadata. 545 llvm::Metadata *SPIRVerElts[] = { 546 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 547 Int32Ty, LangOpts.OpenCLVersion / 100)), 548 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 549 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 550 llvm::NamedMDNode *SPIRVerMD = 551 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 552 llvm::LLVMContext &Ctx = TheModule.getContext(); 553 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 554 } 555 } 556 557 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 558 assert(PLevel < 3 && "Invalid PIC Level"); 559 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 560 if (Context.getLangOpts().PIE) 561 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 562 } 563 564 if (getCodeGenOpts().CodeModel.size() > 0) { 565 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 566 .Case("tiny", llvm::CodeModel::Tiny) 567 .Case("small", llvm::CodeModel::Small) 568 .Case("kernel", llvm::CodeModel::Kernel) 569 .Case("medium", llvm::CodeModel::Medium) 570 .Case("large", llvm::CodeModel::Large) 571 .Default(~0u); 572 if (CM != ~0u) { 573 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 574 getModule().setCodeModel(codeModel); 575 } 576 } 577 578 if (CodeGenOpts.NoPLT) 579 getModule().setRtLibUseGOT(); 580 581 SimplifyPersonality(); 582 583 if (getCodeGenOpts().EmitDeclMetadata) 584 EmitDeclMetadata(); 585 586 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 587 EmitCoverageFile(); 588 589 if (DebugInfo) 590 DebugInfo->finalize(); 591 592 if (getCodeGenOpts().EmitVersionIdentMetadata) 593 EmitVersionIdentMetadata(); 594 595 if (!getCodeGenOpts().RecordCommandLine.empty()) 596 EmitCommandLineMetadata(); 597 598 EmitTargetMetadata(); 599 } 600 601 void CodeGenModule::EmitOpenCLMetadata() { 602 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 603 // opencl.ocl.version named metadata node. 604 llvm::Metadata *OCLVerElts[] = { 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 Int32Ty, LangOpts.OpenCLVersion / 100)), 607 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 608 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 609 llvm::NamedMDNode *OCLVerMD = 610 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 611 llvm::LLVMContext &Ctx = TheModule.getContext(); 612 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 613 } 614 615 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 616 // Make sure that this type is translated. 617 Types.UpdateCompletedType(TD); 618 } 619 620 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 621 // Make sure that this type is translated. 622 Types.RefreshTypeCacheForClass(RD); 623 } 624 625 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 626 if (!TBAA) 627 return nullptr; 628 return TBAA->getTypeInfo(QTy); 629 } 630 631 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 632 if (!TBAA) 633 return TBAAAccessInfo(); 634 return TBAA->getAccessInfo(AccessType); 635 } 636 637 TBAAAccessInfo 638 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 639 if (!TBAA) 640 return TBAAAccessInfo(); 641 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 642 } 643 644 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 645 if (!TBAA) 646 return nullptr; 647 return TBAA->getTBAAStructInfo(QTy); 648 } 649 650 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 651 if (!TBAA) 652 return nullptr; 653 return TBAA->getBaseTypeInfo(QTy); 654 } 655 656 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 657 if (!TBAA) 658 return nullptr; 659 return TBAA->getAccessTagInfo(Info); 660 } 661 662 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 663 TBAAAccessInfo TargetInfo) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 671 TBAAAccessInfo InfoB) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 675 } 676 677 TBAAAccessInfo 678 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 679 TBAAAccessInfo SrcInfo) { 680 if (!TBAA) 681 return TBAAAccessInfo(); 682 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 683 } 684 685 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 686 TBAAAccessInfo TBAAInfo) { 687 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 688 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 689 } 690 691 void CodeGenModule::DecorateInstructionWithInvariantGroup( 692 llvm::Instruction *I, const CXXRecordDecl *RD) { 693 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 694 llvm::MDNode::get(getLLVMContext(), {})); 695 } 696 697 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 698 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 699 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 700 } 701 702 /// ErrorUnsupported - Print out an error that codegen doesn't support the 703 /// specified stmt yet. 704 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 705 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 706 "cannot compile this %0 yet"); 707 std::string Msg = Type; 708 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 709 << Msg << S->getSourceRange(); 710 } 711 712 /// ErrorUnsupported - Print out an error that codegen doesn't support the 713 /// specified decl yet. 714 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 715 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 716 "cannot compile this %0 yet"); 717 std::string Msg = Type; 718 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 719 } 720 721 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 722 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 723 } 724 725 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 726 const NamedDecl *D) const { 727 if (GV->hasDLLImportStorageClass()) 728 return; 729 // Internal definitions always have default visibility. 730 if (GV->hasLocalLinkage()) { 731 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 732 return; 733 } 734 if (!D) 735 return; 736 // Set visibility for definitions, and for declarations if requested globally 737 // or set explicitly. 738 LinkageInfo LV = D->getLinkageAndVisibility(); 739 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 740 !GV->isDeclarationForLinker()) 741 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 742 } 743 744 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 745 llvm::GlobalValue *GV) { 746 if (GV->hasLocalLinkage()) 747 return true; 748 749 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 750 return true; 751 752 // DLLImport explicitly marks the GV as external. 753 if (GV->hasDLLImportStorageClass()) 754 return false; 755 756 const llvm::Triple &TT = CGM.getTriple(); 757 if (TT.isWindowsGNUEnvironment()) { 758 // In MinGW, variables without DLLImport can still be automatically 759 // imported from a DLL by the linker; don't mark variables that 760 // potentially could come from another DLL as DSO local. 761 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 762 !GV->isThreadLocal()) 763 return false; 764 } 765 766 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 767 // remain unresolved in the link, they can be resolved to zero, which is 768 // outside the current DSO. 769 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 770 return false; 771 772 // Every other GV is local on COFF. 773 // Make an exception for windows OS in the triple: Some firmware builds use 774 // *-win32-macho triples. This (accidentally?) produced windows relocations 775 // without GOT tables in older clang versions; Keep this behaviour. 776 // FIXME: even thread local variables? 777 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 778 return true; 779 780 // Only handle COFF and ELF for now. 781 if (!TT.isOSBinFormatELF()) 782 return false; 783 784 // If this is not an executable, don't assume anything is local. 785 const auto &CGOpts = CGM.getCodeGenOpts(); 786 llvm::Reloc::Model RM = CGOpts.RelocationModel; 787 const auto &LOpts = CGM.getLangOpts(); 788 if (RM != llvm::Reloc::Static && !LOpts.PIE) 789 return false; 790 791 // A definition cannot be preempted from an executable. 792 if (!GV->isDeclarationForLinker()) 793 return true; 794 795 // Most PIC code sequences that assume that a symbol is local cannot produce a 796 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 797 // depended, it seems worth it to handle it here. 798 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 799 return false; 800 801 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 802 llvm::Triple::ArchType Arch = TT.getArch(); 803 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 804 Arch == llvm::Triple::ppc64le) 805 return false; 806 807 // If we can use copy relocations we can assume it is local. 808 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 809 if (!Var->isThreadLocal() && 810 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 811 return true; 812 813 // If we can use a plt entry as the symbol address we can assume it 814 // is local. 815 // FIXME: This should work for PIE, but the gold linker doesn't support it. 816 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 817 return true; 818 819 // Otherwise don't assue it is local. 820 return false; 821 } 822 823 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 824 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 825 } 826 827 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 828 GlobalDecl GD) const { 829 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 830 // C++ destructors have a few C++ ABI specific special cases. 831 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 832 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 833 return; 834 } 835 setDLLImportDLLExport(GV, D); 836 } 837 838 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 839 const NamedDecl *D) const { 840 if (D && D->isExternallyVisible()) { 841 if (D->hasAttr<DLLImportAttr>()) 842 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 843 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 844 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 845 } 846 } 847 848 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 849 GlobalDecl GD) const { 850 setDLLImportDLLExport(GV, GD); 851 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 852 } 853 854 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 855 const NamedDecl *D) const { 856 setDLLImportDLLExport(GV, D); 857 setGlobalVisibilityAndLocal(GV, D); 858 } 859 860 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 861 const NamedDecl *D) const { 862 setGlobalVisibility(GV, D); 863 setDSOLocal(GV); 864 } 865 866 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 867 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 868 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 869 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 870 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 871 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 872 } 873 874 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 875 CodeGenOptions::TLSModel M) { 876 switch (M) { 877 case CodeGenOptions::GeneralDynamicTLSModel: 878 return llvm::GlobalVariable::GeneralDynamicTLSModel; 879 case CodeGenOptions::LocalDynamicTLSModel: 880 return llvm::GlobalVariable::LocalDynamicTLSModel; 881 case CodeGenOptions::InitialExecTLSModel: 882 return llvm::GlobalVariable::InitialExecTLSModel; 883 case CodeGenOptions::LocalExecTLSModel: 884 return llvm::GlobalVariable::LocalExecTLSModel; 885 } 886 llvm_unreachable("Invalid TLS model!"); 887 } 888 889 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 890 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 891 892 llvm::GlobalValue::ThreadLocalMode TLM; 893 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 894 895 // Override the TLS model if it is explicitly specified. 896 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 897 TLM = GetLLVMTLSModel(Attr->getModel()); 898 } 899 900 GV->setThreadLocalMode(TLM); 901 } 902 903 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 904 StringRef Name) { 905 const TargetInfo &Target = CGM.getTarget(); 906 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 907 } 908 909 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 910 const CPUSpecificAttr *Attr, 911 unsigned CPUIndex, 912 raw_ostream &Out) { 913 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 914 // supported. 915 if (Attr) 916 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 917 else if (CGM.getTarget().supportsIFunc()) 918 Out << ".resolver"; 919 } 920 921 static void AppendTargetMangling(const CodeGenModule &CGM, 922 const TargetAttr *Attr, raw_ostream &Out) { 923 if (Attr->isDefaultVersion()) 924 return; 925 926 Out << '.'; 927 const TargetInfo &Target = CGM.getTarget(); 928 TargetAttr::ParsedTargetAttr Info = 929 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 930 // Multiversioning doesn't allow "no-${feature}", so we can 931 // only have "+" prefixes here. 932 assert(LHS.startswith("+") && RHS.startswith("+") && 933 "Features should always have a prefix."); 934 return Target.multiVersionSortPriority(LHS.substr(1)) > 935 Target.multiVersionSortPriority(RHS.substr(1)); 936 }); 937 938 bool IsFirst = true; 939 940 if (!Info.Architecture.empty()) { 941 IsFirst = false; 942 Out << "arch_" << Info.Architecture; 943 } 944 945 for (StringRef Feat : Info.Features) { 946 if (!IsFirst) 947 Out << '_'; 948 IsFirst = false; 949 Out << Feat.substr(1); 950 } 951 } 952 953 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 954 const NamedDecl *ND, 955 bool OmitMultiVersionMangling = false) { 956 SmallString<256> Buffer; 957 llvm::raw_svector_ostream Out(Buffer); 958 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 959 if (MC.shouldMangleDeclName(ND)) { 960 llvm::raw_svector_ostream Out(Buffer); 961 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 962 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 963 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 964 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 965 else 966 MC.mangleName(ND, Out); 967 } else { 968 IdentifierInfo *II = ND->getIdentifier(); 969 assert(II && "Attempt to mangle unnamed decl."); 970 const auto *FD = dyn_cast<FunctionDecl>(ND); 971 972 if (FD && 973 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 974 llvm::raw_svector_ostream Out(Buffer); 975 Out << "__regcall3__" << II->getName(); 976 } else { 977 Out << II->getName(); 978 } 979 } 980 981 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 982 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 983 switch (FD->getMultiVersionKind()) { 984 case MultiVersionKind::CPUDispatch: 985 case MultiVersionKind::CPUSpecific: 986 AppendCPUSpecificCPUDispatchMangling(CGM, 987 FD->getAttr<CPUSpecificAttr>(), 988 GD.getMultiVersionIndex(), Out); 989 break; 990 case MultiVersionKind::Target: 991 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 992 break; 993 case MultiVersionKind::None: 994 llvm_unreachable("None multiversion type isn't valid here"); 995 } 996 } 997 998 return Out.str(); 999 } 1000 1001 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1002 const FunctionDecl *FD) { 1003 if (!FD->isMultiVersion()) 1004 return; 1005 1006 // Get the name of what this would be without the 'target' attribute. This 1007 // allows us to lookup the version that was emitted when this wasn't a 1008 // multiversion function. 1009 std::string NonTargetName = 1010 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1011 GlobalDecl OtherGD; 1012 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1013 assert(OtherGD.getCanonicalDecl() 1014 .getDecl() 1015 ->getAsFunction() 1016 ->isMultiVersion() && 1017 "Other GD should now be a multiversioned function"); 1018 // OtherFD is the version of this function that was mangled BEFORE 1019 // becoming a MultiVersion function. It potentially needs to be updated. 1020 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1021 .getDecl() 1022 ->getAsFunction() 1023 ->getMostRecentDecl(); 1024 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1025 // This is so that if the initial version was already the 'default' 1026 // version, we don't try to update it. 1027 if (OtherName != NonTargetName) { 1028 // Remove instead of erase, since others may have stored the StringRef 1029 // to this. 1030 const auto ExistingRecord = Manglings.find(NonTargetName); 1031 if (ExistingRecord != std::end(Manglings)) 1032 Manglings.remove(&(*ExistingRecord)); 1033 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1034 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1035 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1036 Entry->setName(OtherName); 1037 } 1038 } 1039 } 1040 1041 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1042 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1043 1044 // Some ABIs don't have constructor variants. Make sure that base and 1045 // complete constructors get mangled the same. 1046 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1047 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1048 CXXCtorType OrigCtorType = GD.getCtorType(); 1049 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1050 if (OrigCtorType == Ctor_Base) 1051 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1052 } 1053 } 1054 1055 auto FoundName = MangledDeclNames.find(CanonicalGD); 1056 if (FoundName != MangledDeclNames.end()) 1057 return FoundName->second; 1058 1059 // Keep the first result in the case of a mangling collision. 1060 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1061 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1062 1063 // Postfix kernel stub names with .stub to differentiate them from kernel 1064 // names in device binaries. This is to facilitate the debugger to find 1065 // the correct symbols for kernels in the device binary. 1066 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1067 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1068 FD->hasAttr<CUDAGlobalAttr>()) 1069 MangledName = MangledName + ".stub"; 1070 1071 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1072 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1073 } 1074 1075 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1076 const BlockDecl *BD) { 1077 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1078 const Decl *D = GD.getDecl(); 1079 1080 SmallString<256> Buffer; 1081 llvm::raw_svector_ostream Out(Buffer); 1082 if (!D) 1083 MangleCtx.mangleGlobalBlock(BD, 1084 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1085 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1086 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1087 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1088 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1089 else 1090 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1091 1092 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1093 return Result.first->first(); 1094 } 1095 1096 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1097 return getModule().getNamedValue(Name); 1098 } 1099 1100 /// AddGlobalCtor - Add a function to the list that will be called before 1101 /// main() runs. 1102 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1103 llvm::Constant *AssociatedData) { 1104 // FIXME: Type coercion of void()* types. 1105 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1106 } 1107 1108 /// AddGlobalDtor - Add a function to the list that will be called 1109 /// when the module is unloaded. 1110 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1111 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1112 DtorsUsingAtExit[Priority].push_back(Dtor); 1113 return; 1114 } 1115 1116 // FIXME: Type coercion of void()* types. 1117 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1118 } 1119 1120 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1121 if (Fns.empty()) return; 1122 1123 // Ctor function type is void()*. 1124 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1125 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1126 TheModule.getDataLayout().getProgramAddressSpace()); 1127 1128 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1129 llvm::StructType *CtorStructTy = llvm::StructType::get( 1130 Int32Ty, CtorPFTy, VoidPtrTy); 1131 1132 // Construct the constructor and destructor arrays. 1133 ConstantInitBuilder builder(*this); 1134 auto ctors = builder.beginArray(CtorStructTy); 1135 for (const auto &I : Fns) { 1136 auto ctor = ctors.beginStruct(CtorStructTy); 1137 ctor.addInt(Int32Ty, I.Priority); 1138 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1139 if (I.AssociatedData) 1140 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1141 else 1142 ctor.addNullPointer(VoidPtrTy); 1143 ctor.finishAndAddTo(ctors); 1144 } 1145 1146 auto list = 1147 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1148 /*constant*/ false, 1149 llvm::GlobalValue::AppendingLinkage); 1150 1151 // The LTO linker doesn't seem to like it when we set an alignment 1152 // on appending variables. Take it off as a workaround. 1153 list->setAlignment(0); 1154 1155 Fns.clear(); 1156 } 1157 1158 llvm::GlobalValue::LinkageTypes 1159 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1160 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1161 1162 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1163 1164 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1165 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1166 1167 if (isa<CXXConstructorDecl>(D) && 1168 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1169 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1170 // Our approach to inheriting constructors is fundamentally different from 1171 // that used by the MS ABI, so keep our inheriting constructor thunks 1172 // internal rather than trying to pick an unambiguous mangling for them. 1173 return llvm::GlobalValue::InternalLinkage; 1174 } 1175 1176 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1177 } 1178 1179 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1180 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1181 if (!MDS) return nullptr; 1182 1183 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1184 } 1185 1186 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1187 const CGFunctionInfo &Info, 1188 llvm::Function *F) { 1189 unsigned CallingConv; 1190 llvm::AttributeList PAL; 1191 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1192 F->setAttributes(PAL); 1193 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1194 } 1195 1196 static void removeImageAccessQualifier(std::string& TyName) { 1197 std::string ReadOnlyQual("__read_only"); 1198 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1199 if (ReadOnlyPos != std::string::npos) 1200 // "+ 1" for the space after access qualifier. 1201 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1202 else { 1203 std::string WriteOnlyQual("__write_only"); 1204 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1205 if (WriteOnlyPos != std::string::npos) 1206 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1207 else { 1208 std::string ReadWriteQual("__read_write"); 1209 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1210 if (ReadWritePos != std::string::npos) 1211 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1212 } 1213 } 1214 } 1215 1216 // Returns the address space id that should be produced to the 1217 // kernel_arg_addr_space metadata. This is always fixed to the ids 1218 // as specified in the SPIR 2.0 specification in order to differentiate 1219 // for example in clGetKernelArgInfo() implementation between the address 1220 // spaces with targets without unique mapping to the OpenCL address spaces 1221 // (basically all single AS CPUs). 1222 static unsigned ArgInfoAddressSpace(LangAS AS) { 1223 switch (AS) { 1224 case LangAS::opencl_global: return 1; 1225 case LangAS::opencl_constant: return 2; 1226 case LangAS::opencl_local: return 3; 1227 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1228 default: 1229 return 0; // Assume private. 1230 } 1231 } 1232 1233 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1234 const FunctionDecl *FD, 1235 CodeGenFunction *CGF) { 1236 assert(((FD && CGF) || (!FD && !CGF)) && 1237 "Incorrect use - FD and CGF should either be both null or not!"); 1238 // Create MDNodes that represent the kernel arg metadata. 1239 // Each MDNode is a list in the form of "key", N number of values which is 1240 // the same number of values as their are kernel arguments. 1241 1242 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1243 1244 // MDNode for the kernel argument address space qualifiers. 1245 SmallVector<llvm::Metadata *, 8> addressQuals; 1246 1247 // MDNode for the kernel argument access qualifiers (images only). 1248 SmallVector<llvm::Metadata *, 8> accessQuals; 1249 1250 // MDNode for the kernel argument type names. 1251 SmallVector<llvm::Metadata *, 8> argTypeNames; 1252 1253 // MDNode for the kernel argument base type names. 1254 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1255 1256 // MDNode for the kernel argument type qualifiers. 1257 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1258 1259 // MDNode for the kernel argument names. 1260 SmallVector<llvm::Metadata *, 8> argNames; 1261 1262 if (FD && CGF) 1263 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1264 const ParmVarDecl *parm = FD->getParamDecl(i); 1265 QualType ty = parm->getType(); 1266 std::string typeQuals; 1267 1268 if (ty->isPointerType()) { 1269 QualType pointeeTy = ty->getPointeeType(); 1270 1271 // Get address qualifier. 1272 addressQuals.push_back( 1273 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1274 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1275 1276 // Get argument type name. 1277 std::string typeName = 1278 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1279 1280 // Turn "unsigned type" to "utype" 1281 std::string::size_type pos = typeName.find("unsigned"); 1282 if (pointeeTy.isCanonical() && pos != std::string::npos) 1283 typeName.erase(pos + 1, 8); 1284 1285 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1286 1287 std::string baseTypeName = 1288 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1289 Policy) + 1290 "*"; 1291 1292 // Turn "unsigned type" to "utype" 1293 pos = baseTypeName.find("unsigned"); 1294 if (pos != std::string::npos) 1295 baseTypeName.erase(pos + 1, 8); 1296 1297 argBaseTypeNames.push_back( 1298 llvm::MDString::get(VMContext, baseTypeName)); 1299 1300 // Get argument type qualifiers: 1301 if (ty.isRestrictQualified()) 1302 typeQuals = "restrict"; 1303 if (pointeeTy.isConstQualified() || 1304 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1305 typeQuals += typeQuals.empty() ? "const" : " const"; 1306 if (pointeeTy.isVolatileQualified()) 1307 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1308 } else { 1309 uint32_t AddrSpc = 0; 1310 bool isPipe = ty->isPipeType(); 1311 if (ty->isImageType() || isPipe) 1312 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1313 1314 addressQuals.push_back( 1315 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1316 1317 // Get argument type name. 1318 std::string typeName; 1319 if (isPipe) 1320 typeName = ty.getCanonicalType() 1321 ->getAs<PipeType>() 1322 ->getElementType() 1323 .getAsString(Policy); 1324 else 1325 typeName = ty.getUnqualifiedType().getAsString(Policy); 1326 1327 // Turn "unsigned type" to "utype" 1328 std::string::size_type pos = typeName.find("unsigned"); 1329 if (ty.isCanonical() && pos != std::string::npos) 1330 typeName.erase(pos + 1, 8); 1331 1332 std::string baseTypeName; 1333 if (isPipe) 1334 baseTypeName = ty.getCanonicalType() 1335 ->getAs<PipeType>() 1336 ->getElementType() 1337 .getCanonicalType() 1338 .getAsString(Policy); 1339 else 1340 baseTypeName = 1341 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1342 1343 // Remove access qualifiers on images 1344 // (as they are inseparable from type in clang implementation, 1345 // but OpenCL spec provides a special query to get access qualifier 1346 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1347 if (ty->isImageType()) { 1348 removeImageAccessQualifier(typeName); 1349 removeImageAccessQualifier(baseTypeName); 1350 } 1351 1352 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1353 1354 // Turn "unsigned type" to "utype" 1355 pos = baseTypeName.find("unsigned"); 1356 if (pos != std::string::npos) 1357 baseTypeName.erase(pos + 1, 8); 1358 1359 argBaseTypeNames.push_back( 1360 llvm::MDString::get(VMContext, baseTypeName)); 1361 1362 if (isPipe) 1363 typeQuals = "pipe"; 1364 } 1365 1366 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1367 1368 // Get image and pipe access qualifier: 1369 if (ty->isImageType() || ty->isPipeType()) { 1370 const Decl *PDecl = parm; 1371 if (auto *TD = dyn_cast<TypedefType>(ty)) 1372 PDecl = TD->getDecl(); 1373 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1374 if (A && A->isWriteOnly()) 1375 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1376 else if (A && A->isReadWrite()) 1377 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1378 else 1379 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1380 } else 1381 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1382 1383 // Get argument name. 1384 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1385 } 1386 1387 Fn->setMetadata("kernel_arg_addr_space", 1388 llvm::MDNode::get(VMContext, addressQuals)); 1389 Fn->setMetadata("kernel_arg_access_qual", 1390 llvm::MDNode::get(VMContext, accessQuals)); 1391 Fn->setMetadata("kernel_arg_type", 1392 llvm::MDNode::get(VMContext, argTypeNames)); 1393 Fn->setMetadata("kernel_arg_base_type", 1394 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1395 Fn->setMetadata("kernel_arg_type_qual", 1396 llvm::MDNode::get(VMContext, argTypeQuals)); 1397 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1398 Fn->setMetadata("kernel_arg_name", 1399 llvm::MDNode::get(VMContext, argNames)); 1400 } 1401 1402 /// Determines whether the language options require us to model 1403 /// unwind exceptions. We treat -fexceptions as mandating this 1404 /// except under the fragile ObjC ABI with only ObjC exceptions 1405 /// enabled. This means, for example, that C with -fexceptions 1406 /// enables this. 1407 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1408 // If exceptions are completely disabled, obviously this is false. 1409 if (!LangOpts.Exceptions) return false; 1410 1411 // If C++ exceptions are enabled, this is true. 1412 if (LangOpts.CXXExceptions) return true; 1413 1414 // If ObjC exceptions are enabled, this depends on the ABI. 1415 if (LangOpts.ObjCExceptions) { 1416 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1417 } 1418 1419 return true; 1420 } 1421 1422 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1423 const CXXMethodDecl *MD) { 1424 // Check that the type metadata can ever actually be used by a call. 1425 if (!CGM.getCodeGenOpts().LTOUnit || 1426 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1427 return false; 1428 1429 // Only functions whose address can be taken with a member function pointer 1430 // need this sort of type metadata. 1431 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1432 !isa<CXXDestructorDecl>(MD); 1433 } 1434 1435 std::vector<const CXXRecordDecl *> 1436 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1437 llvm::SetVector<const CXXRecordDecl *> MostBases; 1438 1439 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1440 CollectMostBases = [&](const CXXRecordDecl *RD) { 1441 if (RD->getNumBases() == 0) 1442 MostBases.insert(RD); 1443 for (const CXXBaseSpecifier &B : RD->bases()) 1444 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1445 }; 1446 CollectMostBases(RD); 1447 return MostBases.takeVector(); 1448 } 1449 1450 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1451 llvm::Function *F) { 1452 llvm::AttrBuilder B; 1453 1454 if (CodeGenOpts.UnwindTables) 1455 B.addAttribute(llvm::Attribute::UWTable); 1456 1457 if (!hasUnwindExceptions(LangOpts)) 1458 B.addAttribute(llvm::Attribute::NoUnwind); 1459 1460 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1461 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1462 B.addAttribute(llvm::Attribute::StackProtect); 1463 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1464 B.addAttribute(llvm::Attribute::StackProtectStrong); 1465 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1466 B.addAttribute(llvm::Attribute::StackProtectReq); 1467 } 1468 1469 if (!D) { 1470 // If we don't have a declaration to control inlining, the function isn't 1471 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1472 // disabled, mark the function as noinline. 1473 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1474 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1475 B.addAttribute(llvm::Attribute::NoInline); 1476 1477 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1478 return; 1479 } 1480 1481 // Track whether we need to add the optnone LLVM attribute, 1482 // starting with the default for this optimization level. 1483 bool ShouldAddOptNone = 1484 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1485 // We can't add optnone in the following cases, it won't pass the verifier. 1486 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1487 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1488 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1489 1490 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1491 B.addAttribute(llvm::Attribute::OptimizeNone); 1492 1493 // OptimizeNone implies noinline; we should not be inlining such functions. 1494 B.addAttribute(llvm::Attribute::NoInline); 1495 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1496 "OptimizeNone and AlwaysInline on same function!"); 1497 1498 // We still need to handle naked functions even though optnone subsumes 1499 // much of their semantics. 1500 if (D->hasAttr<NakedAttr>()) 1501 B.addAttribute(llvm::Attribute::Naked); 1502 1503 // OptimizeNone wins over OptimizeForSize and MinSize. 1504 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1505 F->removeFnAttr(llvm::Attribute::MinSize); 1506 } else if (D->hasAttr<NakedAttr>()) { 1507 // Naked implies noinline: we should not be inlining such functions. 1508 B.addAttribute(llvm::Attribute::Naked); 1509 B.addAttribute(llvm::Attribute::NoInline); 1510 } else if (D->hasAttr<NoDuplicateAttr>()) { 1511 B.addAttribute(llvm::Attribute::NoDuplicate); 1512 } else if (D->hasAttr<NoInlineAttr>()) { 1513 B.addAttribute(llvm::Attribute::NoInline); 1514 } else if (D->hasAttr<AlwaysInlineAttr>() && 1515 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1516 // (noinline wins over always_inline, and we can't specify both in IR) 1517 B.addAttribute(llvm::Attribute::AlwaysInline); 1518 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1519 // If we're not inlining, then force everything that isn't always_inline to 1520 // carry an explicit noinline attribute. 1521 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1522 B.addAttribute(llvm::Attribute::NoInline); 1523 } else { 1524 // Otherwise, propagate the inline hint attribute and potentially use its 1525 // absence to mark things as noinline. 1526 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1527 // Search function and template pattern redeclarations for inline. 1528 auto CheckForInline = [](const FunctionDecl *FD) { 1529 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1530 return Redecl->isInlineSpecified(); 1531 }; 1532 if (any_of(FD->redecls(), CheckRedeclForInline)) 1533 return true; 1534 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1535 if (!Pattern) 1536 return false; 1537 return any_of(Pattern->redecls(), CheckRedeclForInline); 1538 }; 1539 if (CheckForInline(FD)) { 1540 B.addAttribute(llvm::Attribute::InlineHint); 1541 } else if (CodeGenOpts.getInlining() == 1542 CodeGenOptions::OnlyHintInlining && 1543 !FD->isInlined() && 1544 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1545 B.addAttribute(llvm::Attribute::NoInline); 1546 } 1547 } 1548 } 1549 1550 // Add other optimization related attributes if we are optimizing this 1551 // function. 1552 if (!D->hasAttr<OptimizeNoneAttr>()) { 1553 if (D->hasAttr<ColdAttr>()) { 1554 if (!ShouldAddOptNone) 1555 B.addAttribute(llvm::Attribute::OptimizeForSize); 1556 B.addAttribute(llvm::Attribute::Cold); 1557 } 1558 1559 if (D->hasAttr<MinSizeAttr>()) 1560 B.addAttribute(llvm::Attribute::MinSize); 1561 } 1562 1563 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1564 1565 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1566 if (alignment) 1567 F->setAlignment(alignment); 1568 1569 if (!D->hasAttr<AlignedAttr>()) 1570 if (LangOpts.FunctionAlignment) 1571 F->setAlignment(1 << LangOpts.FunctionAlignment); 1572 1573 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1574 // reserve a bit for differentiating between virtual and non-virtual member 1575 // functions. If the current target's C++ ABI requires this and this is a 1576 // member function, set its alignment accordingly. 1577 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1578 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1579 F->setAlignment(2); 1580 } 1581 1582 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1583 if (CodeGenOpts.SanitizeCfiCrossDso) 1584 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1585 CreateFunctionTypeMetadataForIcall(FD, F); 1586 1587 // Emit type metadata on member functions for member function pointer checks. 1588 // These are only ever necessary on definitions; we're guaranteed that the 1589 // definition will be present in the LTO unit as a result of LTO visibility. 1590 auto *MD = dyn_cast<CXXMethodDecl>(D); 1591 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1592 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1593 llvm::Metadata *Id = 1594 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1595 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1596 F->addTypeMetadata(0, Id); 1597 } 1598 } 1599 } 1600 1601 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1602 const Decl *D = GD.getDecl(); 1603 if (dyn_cast_or_null<NamedDecl>(D)) 1604 setGVProperties(GV, GD); 1605 else 1606 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1607 1608 if (D && D->hasAttr<UsedAttr>()) 1609 addUsedGlobal(GV); 1610 1611 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1612 const auto *VD = cast<VarDecl>(D); 1613 if (VD->getType().isConstQualified() && 1614 VD->getStorageDuration() == SD_Static) 1615 addUsedGlobal(GV); 1616 } 1617 } 1618 1619 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1620 llvm::AttrBuilder &Attrs) { 1621 // Add target-cpu and target-features attributes to functions. If 1622 // we have a decl for the function and it has a target attribute then 1623 // parse that and add it to the feature set. 1624 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1625 std::vector<std::string> Features; 1626 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1627 FD = FD ? FD->getMostRecentDecl() : FD; 1628 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1629 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1630 bool AddedAttr = false; 1631 if (TD || SD) { 1632 llvm::StringMap<bool> FeatureMap; 1633 getFunctionFeatureMap(FeatureMap, GD); 1634 1635 // Produce the canonical string for this set of features. 1636 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1637 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1638 1639 // Now add the target-cpu and target-features to the function. 1640 // While we populated the feature map above, we still need to 1641 // get and parse the target attribute so we can get the cpu for 1642 // the function. 1643 if (TD) { 1644 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1645 if (ParsedAttr.Architecture != "" && 1646 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1647 TargetCPU = ParsedAttr.Architecture; 1648 } 1649 } else { 1650 // Otherwise just add the existing target cpu and target features to the 1651 // function. 1652 Features = getTarget().getTargetOpts().Features; 1653 } 1654 1655 if (TargetCPU != "") { 1656 Attrs.addAttribute("target-cpu", TargetCPU); 1657 AddedAttr = true; 1658 } 1659 if (!Features.empty()) { 1660 llvm::sort(Features); 1661 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1662 AddedAttr = true; 1663 } 1664 1665 return AddedAttr; 1666 } 1667 1668 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1669 llvm::GlobalObject *GO) { 1670 const Decl *D = GD.getDecl(); 1671 SetCommonAttributes(GD, GO); 1672 1673 if (D) { 1674 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1675 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1676 GV->addAttribute("bss-section", SA->getName()); 1677 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1678 GV->addAttribute("data-section", SA->getName()); 1679 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1680 GV->addAttribute("rodata-section", SA->getName()); 1681 } 1682 1683 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1684 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1685 if (!D->getAttr<SectionAttr>()) 1686 F->addFnAttr("implicit-section-name", SA->getName()); 1687 1688 llvm::AttrBuilder Attrs; 1689 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1690 // We know that GetCPUAndFeaturesAttributes will always have the 1691 // newest set, since it has the newest possible FunctionDecl, so the 1692 // new ones should replace the old. 1693 F->removeFnAttr("target-cpu"); 1694 F->removeFnAttr("target-features"); 1695 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1696 } 1697 } 1698 1699 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1700 GO->setSection(CSA->getName()); 1701 else if (const auto *SA = D->getAttr<SectionAttr>()) 1702 GO->setSection(SA->getName()); 1703 } 1704 1705 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1706 } 1707 1708 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1709 llvm::Function *F, 1710 const CGFunctionInfo &FI) { 1711 const Decl *D = GD.getDecl(); 1712 SetLLVMFunctionAttributes(GD, FI, F); 1713 SetLLVMFunctionAttributesForDefinition(D, F); 1714 1715 F->setLinkage(llvm::Function::InternalLinkage); 1716 1717 setNonAliasAttributes(GD, F); 1718 } 1719 1720 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1721 // Set linkage and visibility in case we never see a definition. 1722 LinkageInfo LV = ND->getLinkageAndVisibility(); 1723 // Don't set internal linkage on declarations. 1724 // "extern_weak" is overloaded in LLVM; we probably should have 1725 // separate linkage types for this. 1726 if (isExternallyVisible(LV.getLinkage()) && 1727 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1728 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1729 } 1730 1731 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1732 llvm::Function *F) { 1733 // Only if we are checking indirect calls. 1734 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1735 return; 1736 1737 // Non-static class methods are handled via vtable or member function pointer 1738 // checks elsewhere. 1739 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1740 return; 1741 1742 // Additionally, if building with cross-DSO support... 1743 if (CodeGenOpts.SanitizeCfiCrossDso) { 1744 // Skip available_externally functions. They won't be codegen'ed in the 1745 // current module anyway. 1746 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1747 return; 1748 } 1749 1750 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1751 F->addTypeMetadata(0, MD); 1752 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1753 1754 // Emit a hash-based bit set entry for cross-DSO calls. 1755 if (CodeGenOpts.SanitizeCfiCrossDso) 1756 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1757 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1758 } 1759 1760 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1761 bool IsIncompleteFunction, 1762 bool IsThunk) { 1763 1764 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1765 // If this is an intrinsic function, set the function's attributes 1766 // to the intrinsic's attributes. 1767 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1768 return; 1769 } 1770 1771 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1772 1773 if (!IsIncompleteFunction) 1774 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1775 1776 // Add the Returned attribute for "this", except for iOS 5 and earlier 1777 // where substantial code, including the libstdc++ dylib, was compiled with 1778 // GCC and does not actually return "this". 1779 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1780 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1781 assert(!F->arg_empty() && 1782 F->arg_begin()->getType() 1783 ->canLosslesslyBitCastTo(F->getReturnType()) && 1784 "unexpected this return"); 1785 F->addAttribute(1, llvm::Attribute::Returned); 1786 } 1787 1788 // Only a few attributes are set on declarations; these may later be 1789 // overridden by a definition. 1790 1791 setLinkageForGV(F, FD); 1792 setGVProperties(F, FD); 1793 1794 // Setup target-specific attributes. 1795 if (!IsIncompleteFunction && F->isDeclaration()) 1796 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1797 1798 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1799 F->setSection(CSA->getName()); 1800 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1801 F->setSection(SA->getName()); 1802 1803 if (FD->isReplaceableGlobalAllocationFunction()) { 1804 // A replaceable global allocation function does not act like a builtin by 1805 // default, only if it is invoked by a new-expression or delete-expression. 1806 F->addAttribute(llvm::AttributeList::FunctionIndex, 1807 llvm::Attribute::NoBuiltin); 1808 1809 // A sane operator new returns a non-aliasing pointer. 1810 // FIXME: Also add NonNull attribute to the return value 1811 // for the non-nothrow forms? 1812 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1813 if (getCodeGenOpts().AssumeSaneOperatorNew && 1814 (Kind == OO_New || Kind == OO_Array_New)) 1815 F->addAttribute(llvm::AttributeList::ReturnIndex, 1816 llvm::Attribute::NoAlias); 1817 } 1818 1819 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1820 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1821 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1822 if (MD->isVirtual()) 1823 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1824 1825 // Don't emit entries for function declarations in the cross-DSO mode. This 1826 // is handled with better precision by the receiving DSO. 1827 if (!CodeGenOpts.SanitizeCfiCrossDso) 1828 CreateFunctionTypeMetadataForIcall(FD, F); 1829 1830 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1831 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1832 1833 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1834 // Annotate the callback behavior as metadata: 1835 // - The callback callee (as argument number). 1836 // - The callback payloads (as argument numbers). 1837 llvm::LLVMContext &Ctx = F->getContext(); 1838 llvm::MDBuilder MDB(Ctx); 1839 1840 // The payload indices are all but the first one in the encoding. The first 1841 // identifies the callback callee. 1842 int CalleeIdx = *CB->encoding_begin(); 1843 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1844 F->addMetadata(llvm::LLVMContext::MD_callback, 1845 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1846 CalleeIdx, PayloadIndices, 1847 /* VarArgsArePassed */ false)})); 1848 } 1849 } 1850 1851 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1852 assert(!GV->isDeclaration() && 1853 "Only globals with definition can force usage."); 1854 LLVMUsed.emplace_back(GV); 1855 } 1856 1857 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1858 assert(!GV->isDeclaration() && 1859 "Only globals with definition can force usage."); 1860 LLVMCompilerUsed.emplace_back(GV); 1861 } 1862 1863 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1864 std::vector<llvm::WeakTrackingVH> &List) { 1865 // Don't create llvm.used if there is no need. 1866 if (List.empty()) 1867 return; 1868 1869 // Convert List to what ConstantArray needs. 1870 SmallVector<llvm::Constant*, 8> UsedArray; 1871 UsedArray.resize(List.size()); 1872 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1873 UsedArray[i] = 1874 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1875 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1876 } 1877 1878 if (UsedArray.empty()) 1879 return; 1880 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1881 1882 auto *GV = new llvm::GlobalVariable( 1883 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1884 llvm::ConstantArray::get(ATy, UsedArray), Name); 1885 1886 GV->setSection("llvm.metadata"); 1887 } 1888 1889 void CodeGenModule::emitLLVMUsed() { 1890 emitUsed(*this, "llvm.used", LLVMUsed); 1891 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1892 } 1893 1894 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1895 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1896 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1897 } 1898 1899 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1900 llvm::SmallString<32> Opt; 1901 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1902 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1903 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1904 } 1905 1906 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1907 auto &C = getLLVMContext(); 1908 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1909 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1910 } 1911 1912 void CodeGenModule::AddDependentLib(StringRef Lib) { 1913 llvm::SmallString<24> Opt; 1914 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1915 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1916 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1917 } 1918 1919 /// Add link options implied by the given module, including modules 1920 /// it depends on, using a postorder walk. 1921 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1922 SmallVectorImpl<llvm::MDNode *> &Metadata, 1923 llvm::SmallPtrSet<Module *, 16> &Visited) { 1924 // Import this module's parent. 1925 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1926 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1927 } 1928 1929 // Import this module's dependencies. 1930 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1931 if (Visited.insert(Mod->Imports[I - 1]).second) 1932 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1933 } 1934 1935 // Add linker options to link against the libraries/frameworks 1936 // described by this module. 1937 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1938 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1939 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1940 1941 // For modules that use export_as for linking, use that module 1942 // name instead. 1943 if (Mod->UseExportAsModuleLinkName) 1944 return; 1945 1946 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1947 // Link against a framework. Frameworks are currently Darwin only, so we 1948 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1949 if (Mod->LinkLibraries[I-1].IsFramework) { 1950 llvm::Metadata *Args[2] = { 1951 llvm::MDString::get(Context, "-framework"), 1952 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1953 1954 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1955 continue; 1956 } 1957 1958 // Link against a library. 1959 if (IsELF && !IsPS4) { 1960 llvm::Metadata *Args[2] = { 1961 llvm::MDString::get(Context, "lib"), 1962 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1963 }; 1964 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1965 } else { 1966 llvm::SmallString<24> Opt; 1967 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1968 Mod->LinkLibraries[I - 1].Library, Opt); 1969 auto *OptString = llvm::MDString::get(Context, Opt); 1970 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1971 } 1972 } 1973 } 1974 1975 void CodeGenModule::EmitModuleLinkOptions() { 1976 // Collect the set of all of the modules we want to visit to emit link 1977 // options, which is essentially the imported modules and all of their 1978 // non-explicit child modules. 1979 llvm::SetVector<clang::Module *> LinkModules; 1980 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1981 SmallVector<clang::Module *, 16> Stack; 1982 1983 // Seed the stack with imported modules. 1984 for (Module *M : ImportedModules) { 1985 // Do not add any link flags when an implementation TU of a module imports 1986 // a header of that same module. 1987 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1988 !getLangOpts().isCompilingModule()) 1989 continue; 1990 if (Visited.insert(M).second) 1991 Stack.push_back(M); 1992 } 1993 1994 // Find all of the modules to import, making a little effort to prune 1995 // non-leaf modules. 1996 while (!Stack.empty()) { 1997 clang::Module *Mod = Stack.pop_back_val(); 1998 1999 bool AnyChildren = false; 2000 2001 // Visit the submodules of this module. 2002 for (const auto &SM : Mod->submodules()) { 2003 // Skip explicit children; they need to be explicitly imported to be 2004 // linked against. 2005 if (SM->IsExplicit) 2006 continue; 2007 2008 if (Visited.insert(SM).second) { 2009 Stack.push_back(SM); 2010 AnyChildren = true; 2011 } 2012 } 2013 2014 // We didn't find any children, so add this module to the list of 2015 // modules to link against. 2016 if (!AnyChildren) { 2017 LinkModules.insert(Mod); 2018 } 2019 } 2020 2021 // Add link options for all of the imported modules in reverse topological 2022 // order. We don't do anything to try to order import link flags with respect 2023 // to linker options inserted by things like #pragma comment(). 2024 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2025 Visited.clear(); 2026 for (Module *M : LinkModules) 2027 if (Visited.insert(M).second) 2028 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2029 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2030 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2031 2032 // Add the linker options metadata flag. 2033 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2034 for (auto *MD : LinkerOptionsMetadata) 2035 NMD->addOperand(MD); 2036 } 2037 2038 void CodeGenModule::EmitDeferred() { 2039 // Emit deferred declare target declarations. 2040 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2041 getOpenMPRuntime().emitDeferredTargetDecls(); 2042 2043 // Emit code for any potentially referenced deferred decls. Since a 2044 // previously unused static decl may become used during the generation of code 2045 // for a static function, iterate until no changes are made. 2046 2047 if (!DeferredVTables.empty()) { 2048 EmitDeferredVTables(); 2049 2050 // Emitting a vtable doesn't directly cause more vtables to 2051 // become deferred, although it can cause functions to be 2052 // emitted that then need those vtables. 2053 assert(DeferredVTables.empty()); 2054 } 2055 2056 // Stop if we're out of both deferred vtables and deferred declarations. 2057 if (DeferredDeclsToEmit.empty()) 2058 return; 2059 2060 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2061 // work, it will not interfere with this. 2062 std::vector<GlobalDecl> CurDeclsToEmit; 2063 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2064 2065 for (GlobalDecl &D : CurDeclsToEmit) { 2066 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2067 // to get GlobalValue with exactly the type we need, not something that 2068 // might had been created for another decl with the same mangled name but 2069 // different type. 2070 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2071 GetAddrOfGlobal(D, ForDefinition)); 2072 2073 // In case of different address spaces, we may still get a cast, even with 2074 // IsForDefinition equal to true. Query mangled names table to get 2075 // GlobalValue. 2076 if (!GV) 2077 GV = GetGlobalValue(getMangledName(D)); 2078 2079 // Make sure GetGlobalValue returned non-null. 2080 assert(GV); 2081 2082 // Check to see if we've already emitted this. This is necessary 2083 // for a couple of reasons: first, decls can end up in the 2084 // deferred-decls queue multiple times, and second, decls can end 2085 // up with definitions in unusual ways (e.g. by an extern inline 2086 // function acquiring a strong function redefinition). Just 2087 // ignore these cases. 2088 if (!GV->isDeclaration()) 2089 continue; 2090 2091 // Otherwise, emit the definition and move on to the next one. 2092 EmitGlobalDefinition(D, GV); 2093 2094 // If we found out that we need to emit more decls, do that recursively. 2095 // This has the advantage that the decls are emitted in a DFS and related 2096 // ones are close together, which is convenient for testing. 2097 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2098 EmitDeferred(); 2099 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2100 } 2101 } 2102 } 2103 2104 void CodeGenModule::EmitVTablesOpportunistically() { 2105 // Try to emit external vtables as available_externally if they have emitted 2106 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2107 // is not allowed to create new references to things that need to be emitted 2108 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2109 2110 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2111 && "Only emit opportunistic vtables with optimizations"); 2112 2113 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2114 assert(getVTables().isVTableExternal(RD) && 2115 "This queue should only contain external vtables"); 2116 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2117 VTables.GenerateClassData(RD); 2118 } 2119 OpportunisticVTables.clear(); 2120 } 2121 2122 void CodeGenModule::EmitGlobalAnnotations() { 2123 if (Annotations.empty()) 2124 return; 2125 2126 // Create a new global variable for the ConstantStruct in the Module. 2127 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2128 Annotations[0]->getType(), Annotations.size()), Annotations); 2129 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2130 llvm::GlobalValue::AppendingLinkage, 2131 Array, "llvm.global.annotations"); 2132 gv->setSection(AnnotationSection); 2133 } 2134 2135 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2136 llvm::Constant *&AStr = AnnotationStrings[Str]; 2137 if (AStr) 2138 return AStr; 2139 2140 // Not found yet, create a new global. 2141 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2142 auto *gv = 2143 new llvm::GlobalVariable(getModule(), s->getType(), true, 2144 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2145 gv->setSection(AnnotationSection); 2146 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2147 AStr = gv; 2148 return gv; 2149 } 2150 2151 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2152 SourceManager &SM = getContext().getSourceManager(); 2153 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2154 if (PLoc.isValid()) 2155 return EmitAnnotationString(PLoc.getFilename()); 2156 return EmitAnnotationString(SM.getBufferName(Loc)); 2157 } 2158 2159 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2160 SourceManager &SM = getContext().getSourceManager(); 2161 PresumedLoc PLoc = SM.getPresumedLoc(L); 2162 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2163 SM.getExpansionLineNumber(L); 2164 return llvm::ConstantInt::get(Int32Ty, LineNo); 2165 } 2166 2167 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2168 const AnnotateAttr *AA, 2169 SourceLocation L) { 2170 // Get the globals for file name, annotation, and the line number. 2171 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2172 *UnitGV = EmitAnnotationUnit(L), 2173 *LineNoCst = EmitAnnotationLineNo(L); 2174 2175 // Create the ConstantStruct for the global annotation. 2176 llvm::Constant *Fields[4] = { 2177 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2178 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2179 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2180 LineNoCst 2181 }; 2182 return llvm::ConstantStruct::getAnon(Fields); 2183 } 2184 2185 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2186 llvm::GlobalValue *GV) { 2187 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2188 // Get the struct elements for these annotations. 2189 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2190 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2191 } 2192 2193 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2194 llvm::Function *Fn, 2195 SourceLocation Loc) const { 2196 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2197 // Blacklist by function name. 2198 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2199 return true; 2200 // Blacklist by location. 2201 if (Loc.isValid()) 2202 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2203 // If location is unknown, this may be a compiler-generated function. Assume 2204 // it's located in the main file. 2205 auto &SM = Context.getSourceManager(); 2206 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2207 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2208 } 2209 return false; 2210 } 2211 2212 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2213 SourceLocation Loc, QualType Ty, 2214 StringRef Category) const { 2215 // For now globals can be blacklisted only in ASan and KASan. 2216 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2217 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2218 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2219 if (!EnabledAsanMask) 2220 return false; 2221 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2222 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2223 return true; 2224 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2225 return true; 2226 // Check global type. 2227 if (!Ty.isNull()) { 2228 // Drill down the array types: if global variable of a fixed type is 2229 // blacklisted, we also don't instrument arrays of them. 2230 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2231 Ty = AT->getElementType(); 2232 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2233 // We allow to blacklist only record types (classes, structs etc.) 2234 if (Ty->isRecordType()) { 2235 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2236 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2237 return true; 2238 } 2239 } 2240 return false; 2241 } 2242 2243 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2244 StringRef Category) const { 2245 const auto &XRayFilter = getContext().getXRayFilter(); 2246 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2247 auto Attr = ImbueAttr::NONE; 2248 if (Loc.isValid()) 2249 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2250 if (Attr == ImbueAttr::NONE) 2251 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2252 switch (Attr) { 2253 case ImbueAttr::NONE: 2254 return false; 2255 case ImbueAttr::ALWAYS: 2256 Fn->addFnAttr("function-instrument", "xray-always"); 2257 break; 2258 case ImbueAttr::ALWAYS_ARG1: 2259 Fn->addFnAttr("function-instrument", "xray-always"); 2260 Fn->addFnAttr("xray-log-args", "1"); 2261 break; 2262 case ImbueAttr::NEVER: 2263 Fn->addFnAttr("function-instrument", "xray-never"); 2264 break; 2265 } 2266 return true; 2267 } 2268 2269 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2270 // Never defer when EmitAllDecls is specified. 2271 if (LangOpts.EmitAllDecls) 2272 return true; 2273 2274 if (CodeGenOpts.KeepStaticConsts) { 2275 const auto *VD = dyn_cast<VarDecl>(Global); 2276 if (VD && VD->getType().isConstQualified() && 2277 VD->getStorageDuration() == SD_Static) 2278 return true; 2279 } 2280 2281 return getContext().DeclMustBeEmitted(Global); 2282 } 2283 2284 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2285 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2286 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2287 // Implicit template instantiations may change linkage if they are later 2288 // explicitly instantiated, so they should not be emitted eagerly. 2289 return false; 2290 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2291 if (Context.getInlineVariableDefinitionKind(VD) == 2292 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2293 // A definition of an inline constexpr static data member may change 2294 // linkage later if it's redeclared outside the class. 2295 return false; 2296 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2297 // codegen for global variables, because they may be marked as threadprivate. 2298 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2299 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2300 !isTypeConstant(Global->getType(), false) && 2301 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2302 return false; 2303 2304 return true; 2305 } 2306 2307 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2308 const CXXUuidofExpr* E) { 2309 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2310 // well-formed. 2311 StringRef Uuid = E->getUuidStr(); 2312 std::string Name = "_GUID_" + Uuid.lower(); 2313 std::replace(Name.begin(), Name.end(), '-', '_'); 2314 2315 // The UUID descriptor should be pointer aligned. 2316 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2317 2318 // Look for an existing global. 2319 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2320 return ConstantAddress(GV, Alignment); 2321 2322 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2323 assert(Init && "failed to initialize as constant"); 2324 2325 auto *GV = new llvm::GlobalVariable( 2326 getModule(), Init->getType(), 2327 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2328 if (supportsCOMDAT()) 2329 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2330 setDSOLocal(GV); 2331 return ConstantAddress(GV, Alignment); 2332 } 2333 2334 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2335 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2336 assert(AA && "No alias?"); 2337 2338 CharUnits Alignment = getContext().getDeclAlign(VD); 2339 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2340 2341 // See if there is already something with the target's name in the module. 2342 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2343 if (Entry) { 2344 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2345 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2346 return ConstantAddress(Ptr, Alignment); 2347 } 2348 2349 llvm::Constant *Aliasee; 2350 if (isa<llvm::FunctionType>(DeclTy)) 2351 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2352 GlobalDecl(cast<FunctionDecl>(VD)), 2353 /*ForVTable=*/false); 2354 else 2355 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2356 llvm::PointerType::getUnqual(DeclTy), 2357 nullptr); 2358 2359 auto *F = cast<llvm::GlobalValue>(Aliasee); 2360 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2361 WeakRefReferences.insert(F); 2362 2363 return ConstantAddress(Aliasee, Alignment); 2364 } 2365 2366 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2367 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2368 2369 // Weak references don't produce any output by themselves. 2370 if (Global->hasAttr<WeakRefAttr>()) 2371 return; 2372 2373 // If this is an alias definition (which otherwise looks like a declaration) 2374 // emit it now. 2375 if (Global->hasAttr<AliasAttr>()) 2376 return EmitAliasDefinition(GD); 2377 2378 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2379 if (Global->hasAttr<IFuncAttr>()) 2380 return emitIFuncDefinition(GD); 2381 2382 // If this is a cpu_dispatch multiversion function, emit the resolver. 2383 if (Global->hasAttr<CPUDispatchAttr>()) 2384 return emitCPUDispatchDefinition(GD); 2385 2386 // If this is CUDA, be selective about which declarations we emit. 2387 if (LangOpts.CUDA) { 2388 if (LangOpts.CUDAIsDevice) { 2389 if (!Global->hasAttr<CUDADeviceAttr>() && 2390 !Global->hasAttr<CUDAGlobalAttr>() && 2391 !Global->hasAttr<CUDAConstantAttr>() && 2392 !Global->hasAttr<CUDASharedAttr>()) 2393 return; 2394 } else { 2395 // We need to emit host-side 'shadows' for all global 2396 // device-side variables because the CUDA runtime needs their 2397 // size and host-side address in order to provide access to 2398 // their device-side incarnations. 2399 2400 // So device-only functions are the only things we skip. 2401 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2402 Global->hasAttr<CUDADeviceAttr>()) 2403 return; 2404 2405 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2406 "Expected Variable or Function"); 2407 } 2408 } 2409 2410 if (LangOpts.OpenMP) { 2411 // If this is OpenMP device, check if it is legal to emit this global 2412 // normally. 2413 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2414 return; 2415 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2416 if (MustBeEmitted(Global)) 2417 EmitOMPDeclareReduction(DRD); 2418 return; 2419 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2420 if (MustBeEmitted(Global)) 2421 EmitOMPDeclareMapper(DMD); 2422 return; 2423 } 2424 } 2425 2426 // Ignore declarations, they will be emitted on their first use. 2427 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2428 // Forward declarations are emitted lazily on first use. 2429 if (!FD->doesThisDeclarationHaveABody()) { 2430 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2431 return; 2432 2433 StringRef MangledName = getMangledName(GD); 2434 2435 // Compute the function info and LLVM type. 2436 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2437 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2438 2439 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2440 /*DontDefer=*/false); 2441 return; 2442 } 2443 } else { 2444 const auto *VD = cast<VarDecl>(Global); 2445 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2446 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2447 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2448 if (LangOpts.OpenMP) { 2449 // Emit declaration of the must-be-emitted declare target variable. 2450 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2451 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2452 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2453 (void)GetAddrOfGlobalVar(VD); 2454 } else { 2455 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2456 "link claue expected."); 2457 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2458 } 2459 return; 2460 } 2461 } 2462 // If this declaration may have caused an inline variable definition to 2463 // change linkage, make sure that it's emitted. 2464 if (Context.getInlineVariableDefinitionKind(VD) == 2465 ASTContext::InlineVariableDefinitionKind::Strong) 2466 GetAddrOfGlobalVar(VD); 2467 return; 2468 } 2469 } 2470 2471 // Defer code generation to first use when possible, e.g. if this is an inline 2472 // function. If the global must always be emitted, do it eagerly if possible 2473 // to benefit from cache locality. 2474 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2475 // Emit the definition if it can't be deferred. 2476 EmitGlobalDefinition(GD); 2477 return; 2478 } 2479 2480 // If we're deferring emission of a C++ variable with an 2481 // initializer, remember the order in which it appeared in the file. 2482 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2483 cast<VarDecl>(Global)->hasInit()) { 2484 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2485 CXXGlobalInits.push_back(nullptr); 2486 } 2487 2488 StringRef MangledName = getMangledName(GD); 2489 if (GetGlobalValue(MangledName) != nullptr) { 2490 // The value has already been used and should therefore be emitted. 2491 addDeferredDeclToEmit(GD); 2492 } else if (MustBeEmitted(Global)) { 2493 // The value must be emitted, but cannot be emitted eagerly. 2494 assert(!MayBeEmittedEagerly(Global)); 2495 addDeferredDeclToEmit(GD); 2496 } else { 2497 // Otherwise, remember that we saw a deferred decl with this name. The 2498 // first use of the mangled name will cause it to move into 2499 // DeferredDeclsToEmit. 2500 DeferredDecls[MangledName] = GD; 2501 } 2502 } 2503 2504 // Check if T is a class type with a destructor that's not dllimport. 2505 static bool HasNonDllImportDtor(QualType T) { 2506 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2507 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2508 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2509 return true; 2510 2511 return false; 2512 } 2513 2514 namespace { 2515 struct FunctionIsDirectlyRecursive 2516 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2517 const StringRef Name; 2518 const Builtin::Context &BI; 2519 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2520 : Name(N), BI(C) {} 2521 2522 bool VisitCallExpr(const CallExpr *E) { 2523 const FunctionDecl *FD = E->getDirectCallee(); 2524 if (!FD) 2525 return false; 2526 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2527 if (Attr && Name == Attr->getLabel()) 2528 return true; 2529 unsigned BuiltinID = FD->getBuiltinID(); 2530 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2531 return false; 2532 StringRef BuiltinName = BI.getName(BuiltinID); 2533 if (BuiltinName.startswith("__builtin_") && 2534 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2535 return true; 2536 } 2537 return false; 2538 } 2539 2540 bool VisitStmt(const Stmt *S) { 2541 for (const Stmt *Child : S->children()) 2542 if (Child && this->Visit(Child)) 2543 return true; 2544 return false; 2545 } 2546 }; 2547 2548 // Make sure we're not referencing non-imported vars or functions. 2549 struct DLLImportFunctionVisitor 2550 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2551 bool SafeToInline = true; 2552 2553 bool shouldVisitImplicitCode() const { return true; } 2554 2555 bool VisitVarDecl(VarDecl *VD) { 2556 if (VD->getTLSKind()) { 2557 // A thread-local variable cannot be imported. 2558 SafeToInline = false; 2559 return SafeToInline; 2560 } 2561 2562 // A variable definition might imply a destructor call. 2563 if (VD->isThisDeclarationADefinition()) 2564 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2565 2566 return SafeToInline; 2567 } 2568 2569 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2570 if (const auto *D = E->getTemporary()->getDestructor()) 2571 SafeToInline = D->hasAttr<DLLImportAttr>(); 2572 return SafeToInline; 2573 } 2574 2575 bool VisitDeclRefExpr(DeclRefExpr *E) { 2576 ValueDecl *VD = E->getDecl(); 2577 if (isa<FunctionDecl>(VD)) 2578 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2579 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2580 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2581 return SafeToInline; 2582 } 2583 2584 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2585 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2586 return SafeToInline; 2587 } 2588 2589 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2590 CXXMethodDecl *M = E->getMethodDecl(); 2591 if (!M) { 2592 // Call through a pointer to member function. This is safe to inline. 2593 SafeToInline = true; 2594 } else { 2595 SafeToInline = M->hasAttr<DLLImportAttr>(); 2596 } 2597 return SafeToInline; 2598 } 2599 2600 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2601 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2602 return SafeToInline; 2603 } 2604 2605 bool VisitCXXNewExpr(CXXNewExpr *E) { 2606 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2607 return SafeToInline; 2608 } 2609 }; 2610 } 2611 2612 // isTriviallyRecursive - Check if this function calls another 2613 // decl that, because of the asm attribute or the other decl being a builtin, 2614 // ends up pointing to itself. 2615 bool 2616 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2617 StringRef Name; 2618 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2619 // asm labels are a special kind of mangling we have to support. 2620 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2621 if (!Attr) 2622 return false; 2623 Name = Attr->getLabel(); 2624 } else { 2625 Name = FD->getName(); 2626 } 2627 2628 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2629 const Stmt *Body = FD->getBody(); 2630 return Body ? Walker.Visit(Body) : false; 2631 } 2632 2633 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2634 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2635 return true; 2636 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2637 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2638 return false; 2639 2640 if (F->hasAttr<DLLImportAttr>()) { 2641 // Check whether it would be safe to inline this dllimport function. 2642 DLLImportFunctionVisitor Visitor; 2643 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2644 if (!Visitor.SafeToInline) 2645 return false; 2646 2647 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2648 // Implicit destructor invocations aren't captured in the AST, so the 2649 // check above can't see them. Check for them manually here. 2650 for (const Decl *Member : Dtor->getParent()->decls()) 2651 if (isa<FieldDecl>(Member)) 2652 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2653 return false; 2654 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2655 if (HasNonDllImportDtor(B.getType())) 2656 return false; 2657 } 2658 } 2659 2660 // PR9614. Avoid cases where the source code is lying to us. An available 2661 // externally function should have an equivalent function somewhere else, 2662 // but a function that calls itself is clearly not equivalent to the real 2663 // implementation. 2664 // This happens in glibc's btowc and in some configure checks. 2665 return !isTriviallyRecursive(F); 2666 } 2667 2668 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2669 return CodeGenOpts.OptimizationLevel > 0; 2670 } 2671 2672 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2673 llvm::GlobalValue *GV) { 2674 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2675 2676 if (FD->isCPUSpecificMultiVersion()) { 2677 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2678 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2679 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2680 // Requires multiple emits. 2681 } else 2682 EmitGlobalFunctionDefinition(GD, GV); 2683 } 2684 2685 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2686 const auto *D = cast<ValueDecl>(GD.getDecl()); 2687 2688 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2689 Context.getSourceManager(), 2690 "Generating code for declaration"); 2691 2692 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2693 // At -O0, don't generate IR for functions with available_externally 2694 // linkage. 2695 if (!shouldEmitFunction(GD)) 2696 return; 2697 2698 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2699 std::string Name; 2700 llvm::raw_string_ostream OS(Name); 2701 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2702 /*Qualified=*/true); 2703 return Name; 2704 }); 2705 2706 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2707 // Make sure to emit the definition(s) before we emit the thunks. 2708 // This is necessary for the generation of certain thunks. 2709 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2710 ABI->emitCXXStructor(GD); 2711 else if (FD->isMultiVersion()) 2712 EmitMultiVersionFunctionDefinition(GD, GV); 2713 else 2714 EmitGlobalFunctionDefinition(GD, GV); 2715 2716 if (Method->isVirtual()) 2717 getVTables().EmitThunks(GD); 2718 2719 return; 2720 } 2721 2722 if (FD->isMultiVersion()) 2723 return EmitMultiVersionFunctionDefinition(GD, GV); 2724 return EmitGlobalFunctionDefinition(GD, GV); 2725 } 2726 2727 if (const auto *VD = dyn_cast<VarDecl>(D)) 2728 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2729 2730 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2731 } 2732 2733 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2734 llvm::Function *NewFn); 2735 2736 static unsigned 2737 TargetMVPriority(const TargetInfo &TI, 2738 const CodeGenFunction::MultiVersionResolverOption &RO) { 2739 unsigned Priority = 0; 2740 for (StringRef Feat : RO.Conditions.Features) 2741 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2742 2743 if (!RO.Conditions.Architecture.empty()) 2744 Priority = std::max( 2745 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2746 return Priority; 2747 } 2748 2749 void CodeGenModule::emitMultiVersionFunctions() { 2750 for (GlobalDecl GD : MultiVersionFuncs) { 2751 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2752 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2753 getContext().forEachMultiversionedFunctionVersion( 2754 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2755 GlobalDecl CurGD{ 2756 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2757 StringRef MangledName = getMangledName(CurGD); 2758 llvm::Constant *Func = GetGlobalValue(MangledName); 2759 if (!Func) { 2760 if (CurFD->isDefined()) { 2761 EmitGlobalFunctionDefinition(CurGD, nullptr); 2762 Func = GetGlobalValue(MangledName); 2763 } else { 2764 const CGFunctionInfo &FI = 2765 getTypes().arrangeGlobalDeclaration(GD); 2766 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2767 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2768 /*DontDefer=*/false, ForDefinition); 2769 } 2770 assert(Func && "This should have just been created"); 2771 } 2772 2773 const auto *TA = CurFD->getAttr<TargetAttr>(); 2774 llvm::SmallVector<StringRef, 8> Feats; 2775 TA->getAddedFeatures(Feats); 2776 2777 Options.emplace_back(cast<llvm::Function>(Func), 2778 TA->getArchitecture(), Feats); 2779 }); 2780 2781 llvm::Function *ResolverFunc; 2782 const TargetInfo &TI = getTarget(); 2783 2784 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2785 ResolverFunc = cast<llvm::Function>( 2786 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2787 else 2788 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2789 2790 if (supportsCOMDAT()) 2791 ResolverFunc->setComdat( 2792 getModule().getOrInsertComdat(ResolverFunc->getName())); 2793 2794 llvm::stable_sort( 2795 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2796 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2797 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2798 }); 2799 CodeGenFunction CGF(*this); 2800 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2801 } 2802 } 2803 2804 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2805 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2806 assert(FD && "Not a FunctionDecl?"); 2807 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2808 assert(DD && "Not a cpu_dispatch Function?"); 2809 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2810 2811 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2812 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2813 DeclTy = getTypes().GetFunctionType(FInfo); 2814 } 2815 2816 StringRef ResolverName = getMangledName(GD); 2817 2818 llvm::Type *ResolverType; 2819 GlobalDecl ResolverGD; 2820 if (getTarget().supportsIFunc()) 2821 ResolverType = llvm::FunctionType::get( 2822 llvm::PointerType::get(DeclTy, 2823 Context.getTargetAddressSpace(FD->getType())), 2824 false); 2825 else { 2826 ResolverType = DeclTy; 2827 ResolverGD = GD; 2828 } 2829 2830 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2831 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2832 2833 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2834 const TargetInfo &Target = getTarget(); 2835 unsigned Index = 0; 2836 for (const IdentifierInfo *II : DD->cpus()) { 2837 // Get the name of the target function so we can look it up/create it. 2838 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2839 getCPUSpecificMangling(*this, II->getName()); 2840 2841 llvm::Constant *Func = GetGlobalValue(MangledName); 2842 2843 if (!Func) { 2844 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2845 if (ExistingDecl.getDecl() && 2846 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2847 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2848 Func = GetGlobalValue(MangledName); 2849 } else { 2850 if (!ExistingDecl.getDecl()) 2851 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2852 2853 Func = GetOrCreateLLVMFunction( 2854 MangledName, DeclTy, ExistingDecl, 2855 /*ForVTable=*/false, /*DontDefer=*/true, 2856 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2857 } 2858 } 2859 2860 llvm::SmallVector<StringRef, 32> Features; 2861 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2862 llvm::transform(Features, Features.begin(), 2863 [](StringRef Str) { return Str.substr(1); }); 2864 Features.erase(std::remove_if( 2865 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2866 return !Target.validateCpuSupports(Feat); 2867 }), Features.end()); 2868 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2869 ++Index; 2870 } 2871 2872 llvm::sort( 2873 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2874 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2875 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2876 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2877 }); 2878 2879 // If the list contains multiple 'default' versions, such as when it contains 2880 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2881 // always run on at least a 'pentium'). We do this by deleting the 'least 2882 // advanced' (read, lowest mangling letter). 2883 while (Options.size() > 1 && 2884 CodeGenFunction::GetX86CpuSupportsMask( 2885 (Options.end() - 2)->Conditions.Features) == 0) { 2886 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2887 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2888 if (LHSName.compare(RHSName) < 0) 2889 Options.erase(Options.end() - 2); 2890 else 2891 Options.erase(Options.end() - 1); 2892 } 2893 2894 CodeGenFunction CGF(*this); 2895 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2896 } 2897 2898 /// If a dispatcher for the specified mangled name is not in the module, create 2899 /// and return an llvm Function with the specified type. 2900 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2901 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2902 std::string MangledName = 2903 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2904 2905 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2906 // a separate resolver). 2907 std::string ResolverName = MangledName; 2908 if (getTarget().supportsIFunc()) 2909 ResolverName += ".ifunc"; 2910 else if (FD->isTargetMultiVersion()) 2911 ResolverName += ".resolver"; 2912 2913 // If this already exists, just return that one. 2914 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2915 return ResolverGV; 2916 2917 // Since this is the first time we've created this IFunc, make sure 2918 // that we put this multiversioned function into the list to be 2919 // replaced later if necessary (target multiversioning only). 2920 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2921 MultiVersionFuncs.push_back(GD); 2922 2923 if (getTarget().supportsIFunc()) { 2924 llvm::Type *ResolverType = llvm::FunctionType::get( 2925 llvm::PointerType::get( 2926 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2927 false); 2928 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2929 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2930 /*ForVTable=*/false); 2931 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2932 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2933 GIF->setName(ResolverName); 2934 SetCommonAttributes(FD, GIF); 2935 2936 return GIF; 2937 } 2938 2939 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2940 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2941 assert(isa<llvm::GlobalValue>(Resolver) && 2942 "Resolver should be created for the first time"); 2943 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2944 return Resolver; 2945 } 2946 2947 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2948 /// module, create and return an llvm Function with the specified type. If there 2949 /// is something in the module with the specified name, return it potentially 2950 /// bitcasted to the right type. 2951 /// 2952 /// If D is non-null, it specifies a decl that correspond to this. This is used 2953 /// to set the attributes on the function when it is first created. 2954 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2955 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2956 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2957 ForDefinition_t IsForDefinition) { 2958 const Decl *D = GD.getDecl(); 2959 2960 // Any attempts to use a MultiVersion function should result in retrieving 2961 // the iFunc instead. Name Mangling will handle the rest of the changes. 2962 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2963 // For the device mark the function as one that should be emitted. 2964 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2965 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2966 !DontDefer && !IsForDefinition) { 2967 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2968 GlobalDecl GDDef; 2969 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2970 GDDef = GlobalDecl(CD, GD.getCtorType()); 2971 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2972 GDDef = GlobalDecl(DD, GD.getDtorType()); 2973 else 2974 GDDef = GlobalDecl(FDDef); 2975 EmitGlobal(GDDef); 2976 } 2977 } 2978 2979 if (FD->isMultiVersion()) { 2980 const auto *TA = FD->getAttr<TargetAttr>(); 2981 if (TA && TA->isDefaultVersion()) 2982 UpdateMultiVersionNames(GD, FD); 2983 if (!IsForDefinition) 2984 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2985 } 2986 } 2987 2988 // Lookup the entry, lazily creating it if necessary. 2989 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2990 if (Entry) { 2991 if (WeakRefReferences.erase(Entry)) { 2992 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2993 if (FD && !FD->hasAttr<WeakAttr>()) 2994 Entry->setLinkage(llvm::Function::ExternalLinkage); 2995 } 2996 2997 // Handle dropped DLL attributes. 2998 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2999 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3000 setDSOLocal(Entry); 3001 } 3002 3003 // If there are two attempts to define the same mangled name, issue an 3004 // error. 3005 if (IsForDefinition && !Entry->isDeclaration()) { 3006 GlobalDecl OtherGD; 3007 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3008 // to make sure that we issue an error only once. 3009 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3010 (GD.getCanonicalDecl().getDecl() != 3011 OtherGD.getCanonicalDecl().getDecl()) && 3012 DiagnosedConflictingDefinitions.insert(GD).second) { 3013 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3014 << MangledName; 3015 getDiags().Report(OtherGD.getDecl()->getLocation(), 3016 diag::note_previous_definition); 3017 } 3018 } 3019 3020 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3021 (Entry->getType()->getElementType() == Ty)) { 3022 return Entry; 3023 } 3024 3025 // Make sure the result is of the correct type. 3026 // (If function is requested for a definition, we always need to create a new 3027 // function, not just return a bitcast.) 3028 if (!IsForDefinition) 3029 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3030 } 3031 3032 // This function doesn't have a complete type (for example, the return 3033 // type is an incomplete struct). Use a fake type instead, and make 3034 // sure not to try to set attributes. 3035 bool IsIncompleteFunction = false; 3036 3037 llvm::FunctionType *FTy; 3038 if (isa<llvm::FunctionType>(Ty)) { 3039 FTy = cast<llvm::FunctionType>(Ty); 3040 } else { 3041 FTy = llvm::FunctionType::get(VoidTy, false); 3042 IsIncompleteFunction = true; 3043 } 3044 3045 llvm::Function *F = 3046 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3047 Entry ? StringRef() : MangledName, &getModule()); 3048 3049 // If we already created a function with the same mangled name (but different 3050 // type) before, take its name and add it to the list of functions to be 3051 // replaced with F at the end of CodeGen. 3052 // 3053 // This happens if there is a prototype for a function (e.g. "int f()") and 3054 // then a definition of a different type (e.g. "int f(int x)"). 3055 if (Entry) { 3056 F->takeName(Entry); 3057 3058 // This might be an implementation of a function without a prototype, in 3059 // which case, try to do special replacement of calls which match the new 3060 // prototype. The really key thing here is that we also potentially drop 3061 // arguments from the call site so as to make a direct call, which makes the 3062 // inliner happier and suppresses a number of optimizer warnings (!) about 3063 // dropping arguments. 3064 if (!Entry->use_empty()) { 3065 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3066 Entry->removeDeadConstantUsers(); 3067 } 3068 3069 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3070 F, Entry->getType()->getElementType()->getPointerTo()); 3071 addGlobalValReplacement(Entry, BC); 3072 } 3073 3074 assert(F->getName() == MangledName && "name was uniqued!"); 3075 if (D) 3076 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3077 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3078 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3079 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3080 } 3081 3082 if (!DontDefer) { 3083 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3084 // each other bottoming out with the base dtor. Therefore we emit non-base 3085 // dtors on usage, even if there is no dtor definition in the TU. 3086 if (D && isa<CXXDestructorDecl>(D) && 3087 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3088 GD.getDtorType())) 3089 addDeferredDeclToEmit(GD); 3090 3091 // This is the first use or definition of a mangled name. If there is a 3092 // deferred decl with this name, remember that we need to emit it at the end 3093 // of the file. 3094 auto DDI = DeferredDecls.find(MangledName); 3095 if (DDI != DeferredDecls.end()) { 3096 // Move the potentially referenced deferred decl to the 3097 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3098 // don't need it anymore). 3099 addDeferredDeclToEmit(DDI->second); 3100 DeferredDecls.erase(DDI); 3101 3102 // Otherwise, there are cases we have to worry about where we're 3103 // using a declaration for which we must emit a definition but where 3104 // we might not find a top-level definition: 3105 // - member functions defined inline in their classes 3106 // - friend functions defined inline in some class 3107 // - special member functions with implicit definitions 3108 // If we ever change our AST traversal to walk into class methods, 3109 // this will be unnecessary. 3110 // 3111 // We also don't emit a definition for a function if it's going to be an 3112 // entry in a vtable, unless it's already marked as used. 3113 } else if (getLangOpts().CPlusPlus && D) { 3114 // Look for a declaration that's lexically in a record. 3115 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3116 FD = FD->getPreviousDecl()) { 3117 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3118 if (FD->doesThisDeclarationHaveABody()) { 3119 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3120 break; 3121 } 3122 } 3123 } 3124 } 3125 } 3126 3127 // Make sure the result is of the requested type. 3128 if (!IsIncompleteFunction) { 3129 assert(F->getType()->getElementType() == Ty); 3130 return F; 3131 } 3132 3133 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3134 return llvm::ConstantExpr::getBitCast(F, PTy); 3135 } 3136 3137 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3138 /// non-null, then this function will use the specified type if it has to 3139 /// create it (this occurs when we see a definition of the function). 3140 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3141 llvm::Type *Ty, 3142 bool ForVTable, 3143 bool DontDefer, 3144 ForDefinition_t IsForDefinition) { 3145 // If there was no specific requested type, just convert it now. 3146 if (!Ty) { 3147 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3148 Ty = getTypes().ConvertType(FD->getType()); 3149 } 3150 3151 // Devirtualized destructor calls may come through here instead of via 3152 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3153 // of the complete destructor when necessary. 3154 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3155 if (getTarget().getCXXABI().isMicrosoft() && 3156 GD.getDtorType() == Dtor_Complete && 3157 DD->getParent()->getNumVBases() == 0) 3158 GD = GlobalDecl(DD, Dtor_Base); 3159 } 3160 3161 StringRef MangledName = getMangledName(GD); 3162 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3163 /*IsThunk=*/false, llvm::AttributeList(), 3164 IsForDefinition); 3165 } 3166 3167 static const FunctionDecl * 3168 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3169 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3170 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3171 3172 IdentifierInfo &CII = C.Idents.get(Name); 3173 for (const auto &Result : DC->lookup(&CII)) 3174 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3175 return FD; 3176 3177 if (!C.getLangOpts().CPlusPlus) 3178 return nullptr; 3179 3180 // Demangle the premangled name from getTerminateFn() 3181 IdentifierInfo &CXXII = 3182 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3183 ? C.Idents.get("terminate") 3184 : C.Idents.get(Name); 3185 3186 for (const auto &N : {"__cxxabiv1", "std"}) { 3187 IdentifierInfo &NS = C.Idents.get(N); 3188 for (const auto &Result : DC->lookup(&NS)) { 3189 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3190 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3191 for (const auto &Result : LSD->lookup(&NS)) 3192 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3193 break; 3194 3195 if (ND) 3196 for (const auto &Result : ND->lookup(&CXXII)) 3197 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3198 return FD; 3199 } 3200 } 3201 3202 return nullptr; 3203 } 3204 3205 /// CreateRuntimeFunction - Create a new runtime function with the specified 3206 /// type and name. 3207 llvm::FunctionCallee 3208 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3209 llvm::AttributeList ExtraAttrs, 3210 bool Local) { 3211 llvm::Constant *C = 3212 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3213 /*DontDefer=*/false, /*IsThunk=*/false, 3214 ExtraAttrs); 3215 3216 if (auto *F = dyn_cast<llvm::Function>(C)) { 3217 if (F->empty()) { 3218 F->setCallingConv(getRuntimeCC()); 3219 3220 // In Windows Itanium environments, try to mark runtime functions 3221 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3222 // will link their standard library statically or dynamically. Marking 3223 // functions imported when they are not imported can cause linker errors 3224 // and warnings. 3225 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3226 !getCodeGenOpts().LTOVisibilityPublicStd) { 3227 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3228 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3229 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3230 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3231 } 3232 } 3233 setDSOLocal(F); 3234 } 3235 } 3236 3237 return {FTy, C}; 3238 } 3239 3240 /// isTypeConstant - Determine whether an object of this type can be emitted 3241 /// as a constant. 3242 /// 3243 /// If ExcludeCtor is true, the duration when the object's constructor runs 3244 /// will not be considered. The caller will need to verify that the object is 3245 /// not written to during its construction. 3246 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3247 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3248 return false; 3249 3250 if (Context.getLangOpts().CPlusPlus) { 3251 if (const CXXRecordDecl *Record 3252 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3253 return ExcludeCtor && !Record->hasMutableFields() && 3254 Record->hasTrivialDestructor(); 3255 } 3256 3257 return true; 3258 } 3259 3260 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3261 /// create and return an llvm GlobalVariable with the specified type. If there 3262 /// is something in the module with the specified name, return it potentially 3263 /// bitcasted to the right type. 3264 /// 3265 /// If D is non-null, it specifies a decl that correspond to this. This is used 3266 /// to set the attributes on the global when it is first created. 3267 /// 3268 /// If IsForDefinition is true, it is guaranteed that an actual global with 3269 /// type Ty will be returned, not conversion of a variable with the same 3270 /// mangled name but some other type. 3271 llvm::Constant * 3272 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3273 llvm::PointerType *Ty, 3274 const VarDecl *D, 3275 ForDefinition_t IsForDefinition) { 3276 // Lookup the entry, lazily creating it if necessary. 3277 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3278 if (Entry) { 3279 if (WeakRefReferences.erase(Entry)) { 3280 if (D && !D->hasAttr<WeakAttr>()) 3281 Entry->setLinkage(llvm::Function::ExternalLinkage); 3282 } 3283 3284 // Handle dropped DLL attributes. 3285 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3286 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3287 3288 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3289 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3290 3291 if (Entry->getType() == Ty) 3292 return Entry; 3293 3294 // If there are two attempts to define the same mangled name, issue an 3295 // error. 3296 if (IsForDefinition && !Entry->isDeclaration()) { 3297 GlobalDecl OtherGD; 3298 const VarDecl *OtherD; 3299 3300 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3301 // to make sure that we issue an error only once. 3302 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3303 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3304 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3305 OtherD->hasInit() && 3306 DiagnosedConflictingDefinitions.insert(D).second) { 3307 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3308 << MangledName; 3309 getDiags().Report(OtherGD.getDecl()->getLocation(), 3310 diag::note_previous_definition); 3311 } 3312 } 3313 3314 // Make sure the result is of the correct type. 3315 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3316 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3317 3318 // (If global is requested for a definition, we always need to create a new 3319 // global, not just return a bitcast.) 3320 if (!IsForDefinition) 3321 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3322 } 3323 3324 auto AddrSpace = GetGlobalVarAddressSpace(D); 3325 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3326 3327 auto *GV = new llvm::GlobalVariable( 3328 getModule(), Ty->getElementType(), false, 3329 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3330 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3331 3332 // If we already created a global with the same mangled name (but different 3333 // type) before, take its name and remove it from its parent. 3334 if (Entry) { 3335 GV->takeName(Entry); 3336 3337 if (!Entry->use_empty()) { 3338 llvm::Constant *NewPtrForOldDecl = 3339 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3340 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3341 } 3342 3343 Entry->eraseFromParent(); 3344 } 3345 3346 // This is the first use or definition of a mangled name. If there is a 3347 // deferred decl with this name, remember that we need to emit it at the end 3348 // of the file. 3349 auto DDI = DeferredDecls.find(MangledName); 3350 if (DDI != DeferredDecls.end()) { 3351 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3352 // list, and remove it from DeferredDecls (since we don't need it anymore). 3353 addDeferredDeclToEmit(DDI->second); 3354 DeferredDecls.erase(DDI); 3355 } 3356 3357 // Handle things which are present even on external declarations. 3358 if (D) { 3359 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3360 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3361 3362 // FIXME: This code is overly simple and should be merged with other global 3363 // handling. 3364 GV->setConstant(isTypeConstant(D->getType(), false)); 3365 3366 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3367 3368 setLinkageForGV(GV, D); 3369 3370 if (D->getTLSKind()) { 3371 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3372 CXXThreadLocals.push_back(D); 3373 setTLSMode(GV, *D); 3374 } 3375 3376 setGVProperties(GV, D); 3377 3378 // If required by the ABI, treat declarations of static data members with 3379 // inline initializers as definitions. 3380 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3381 EmitGlobalVarDefinition(D); 3382 } 3383 3384 // Emit section information for extern variables. 3385 if (D->hasExternalStorage()) { 3386 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3387 GV->setSection(SA->getName()); 3388 } 3389 3390 // Handle XCore specific ABI requirements. 3391 if (getTriple().getArch() == llvm::Triple::xcore && 3392 D->getLanguageLinkage() == CLanguageLinkage && 3393 D->getType().isConstant(Context) && 3394 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3395 GV->setSection(".cp.rodata"); 3396 3397 // Check if we a have a const declaration with an initializer, we may be 3398 // able to emit it as available_externally to expose it's value to the 3399 // optimizer. 3400 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3401 D->getType().isConstQualified() && !GV->hasInitializer() && 3402 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3403 const auto *Record = 3404 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3405 bool HasMutableFields = Record && Record->hasMutableFields(); 3406 if (!HasMutableFields) { 3407 const VarDecl *InitDecl; 3408 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3409 if (InitExpr) { 3410 ConstantEmitter emitter(*this); 3411 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3412 if (Init) { 3413 auto *InitType = Init->getType(); 3414 if (GV->getType()->getElementType() != InitType) { 3415 // The type of the initializer does not match the definition. 3416 // This happens when an initializer has a different type from 3417 // the type of the global (because of padding at the end of a 3418 // structure for instance). 3419 GV->setName(StringRef()); 3420 // Make a new global with the correct type, this is now guaranteed 3421 // to work. 3422 auto *NewGV = cast<llvm::GlobalVariable>( 3423 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3424 3425 // Erase the old global, since it is no longer used. 3426 GV->eraseFromParent(); 3427 GV = NewGV; 3428 } else { 3429 GV->setInitializer(Init); 3430 GV->setConstant(true); 3431 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3432 } 3433 emitter.finalize(GV); 3434 } 3435 } 3436 } 3437 } 3438 } 3439 3440 LangAS ExpectedAS = 3441 D ? D->getType().getAddressSpace() 3442 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3443 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3444 Ty->getPointerAddressSpace()); 3445 if (AddrSpace != ExpectedAS) 3446 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3447 ExpectedAS, Ty); 3448 3449 if (GV->isDeclaration()) 3450 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3451 3452 return GV; 3453 } 3454 3455 llvm::Constant * 3456 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3457 ForDefinition_t IsForDefinition) { 3458 const Decl *D = GD.getDecl(); 3459 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3460 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3461 /*DontDefer=*/false, IsForDefinition); 3462 else if (isa<CXXMethodDecl>(D)) { 3463 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3464 cast<CXXMethodDecl>(D)); 3465 auto Ty = getTypes().GetFunctionType(*FInfo); 3466 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3467 IsForDefinition); 3468 } else if (isa<FunctionDecl>(D)) { 3469 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3470 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3471 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3472 IsForDefinition); 3473 } else 3474 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3475 IsForDefinition); 3476 } 3477 3478 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3479 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3480 unsigned Alignment) { 3481 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3482 llvm::GlobalVariable *OldGV = nullptr; 3483 3484 if (GV) { 3485 // Check if the variable has the right type. 3486 if (GV->getType()->getElementType() == Ty) 3487 return GV; 3488 3489 // Because C++ name mangling, the only way we can end up with an already 3490 // existing global with the same name is if it has been declared extern "C". 3491 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3492 OldGV = GV; 3493 } 3494 3495 // Create a new variable. 3496 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3497 Linkage, nullptr, Name); 3498 3499 if (OldGV) { 3500 // Replace occurrences of the old variable if needed. 3501 GV->takeName(OldGV); 3502 3503 if (!OldGV->use_empty()) { 3504 llvm::Constant *NewPtrForOldDecl = 3505 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3506 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3507 } 3508 3509 OldGV->eraseFromParent(); 3510 } 3511 3512 if (supportsCOMDAT() && GV->isWeakForLinker() && 3513 !GV->hasAvailableExternallyLinkage()) 3514 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3515 3516 GV->setAlignment(Alignment); 3517 3518 return GV; 3519 } 3520 3521 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3522 /// given global variable. If Ty is non-null and if the global doesn't exist, 3523 /// then it will be created with the specified type instead of whatever the 3524 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3525 /// that an actual global with type Ty will be returned, not conversion of a 3526 /// variable with the same mangled name but some other type. 3527 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3528 llvm::Type *Ty, 3529 ForDefinition_t IsForDefinition) { 3530 assert(D->hasGlobalStorage() && "Not a global variable"); 3531 QualType ASTTy = D->getType(); 3532 if (!Ty) 3533 Ty = getTypes().ConvertTypeForMem(ASTTy); 3534 3535 llvm::PointerType *PTy = 3536 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3537 3538 StringRef MangledName = getMangledName(D); 3539 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3540 } 3541 3542 /// CreateRuntimeVariable - Create a new runtime global variable with the 3543 /// specified type and name. 3544 llvm::Constant * 3545 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3546 StringRef Name) { 3547 auto *Ret = 3548 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3549 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3550 return Ret; 3551 } 3552 3553 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3554 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3555 3556 StringRef MangledName = getMangledName(D); 3557 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3558 3559 // We already have a definition, not declaration, with the same mangled name. 3560 // Emitting of declaration is not required (and actually overwrites emitted 3561 // definition). 3562 if (GV && !GV->isDeclaration()) 3563 return; 3564 3565 // If we have not seen a reference to this variable yet, place it into the 3566 // deferred declarations table to be emitted if needed later. 3567 if (!MustBeEmitted(D) && !GV) { 3568 DeferredDecls[MangledName] = D; 3569 return; 3570 } 3571 3572 // The tentative definition is the only definition. 3573 EmitGlobalVarDefinition(D); 3574 } 3575 3576 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3577 return Context.toCharUnitsFromBits( 3578 getDataLayout().getTypeStoreSizeInBits(Ty)); 3579 } 3580 3581 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3582 LangAS AddrSpace = LangAS::Default; 3583 if (LangOpts.OpenCL) { 3584 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3585 assert(AddrSpace == LangAS::opencl_global || 3586 AddrSpace == LangAS::opencl_constant || 3587 AddrSpace == LangAS::opencl_local || 3588 AddrSpace >= LangAS::FirstTargetAddressSpace); 3589 return AddrSpace; 3590 } 3591 3592 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3593 if (D && D->hasAttr<CUDAConstantAttr>()) 3594 return LangAS::cuda_constant; 3595 else if (D && D->hasAttr<CUDASharedAttr>()) 3596 return LangAS::cuda_shared; 3597 else if (D && D->hasAttr<CUDADeviceAttr>()) 3598 return LangAS::cuda_device; 3599 else if (D && D->getType().isConstQualified()) 3600 return LangAS::cuda_constant; 3601 else 3602 return LangAS::cuda_device; 3603 } 3604 3605 if (LangOpts.OpenMP) { 3606 LangAS AS; 3607 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3608 return AS; 3609 } 3610 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3611 } 3612 3613 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3614 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3615 if (LangOpts.OpenCL) 3616 return LangAS::opencl_constant; 3617 if (auto AS = getTarget().getConstantAddressSpace()) 3618 return AS.getValue(); 3619 return LangAS::Default; 3620 } 3621 3622 // In address space agnostic languages, string literals are in default address 3623 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3624 // emitted in constant address space in LLVM IR. To be consistent with other 3625 // parts of AST, string literal global variables in constant address space 3626 // need to be casted to default address space before being put into address 3627 // map and referenced by other part of CodeGen. 3628 // In OpenCL, string literals are in constant address space in AST, therefore 3629 // they should not be casted to default address space. 3630 static llvm::Constant * 3631 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3632 llvm::GlobalVariable *GV) { 3633 llvm::Constant *Cast = GV; 3634 if (!CGM.getLangOpts().OpenCL) { 3635 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3636 if (AS != LangAS::Default) 3637 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3638 CGM, GV, AS.getValue(), LangAS::Default, 3639 GV->getValueType()->getPointerTo( 3640 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3641 } 3642 } 3643 return Cast; 3644 } 3645 3646 template<typename SomeDecl> 3647 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3648 llvm::GlobalValue *GV) { 3649 if (!getLangOpts().CPlusPlus) 3650 return; 3651 3652 // Must have 'used' attribute, or else inline assembly can't rely on 3653 // the name existing. 3654 if (!D->template hasAttr<UsedAttr>()) 3655 return; 3656 3657 // Must have internal linkage and an ordinary name. 3658 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3659 return; 3660 3661 // Must be in an extern "C" context. Entities declared directly within 3662 // a record are not extern "C" even if the record is in such a context. 3663 const SomeDecl *First = D->getFirstDecl(); 3664 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3665 return; 3666 3667 // OK, this is an internal linkage entity inside an extern "C" linkage 3668 // specification. Make a note of that so we can give it the "expected" 3669 // mangled name if nothing else is using that name. 3670 std::pair<StaticExternCMap::iterator, bool> R = 3671 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3672 3673 // If we have multiple internal linkage entities with the same name 3674 // in extern "C" regions, none of them gets that name. 3675 if (!R.second) 3676 R.first->second = nullptr; 3677 } 3678 3679 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3680 if (!CGM.supportsCOMDAT()) 3681 return false; 3682 3683 if (D.hasAttr<SelectAnyAttr>()) 3684 return true; 3685 3686 GVALinkage Linkage; 3687 if (auto *VD = dyn_cast<VarDecl>(&D)) 3688 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3689 else 3690 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3691 3692 switch (Linkage) { 3693 case GVA_Internal: 3694 case GVA_AvailableExternally: 3695 case GVA_StrongExternal: 3696 return false; 3697 case GVA_DiscardableODR: 3698 case GVA_StrongODR: 3699 return true; 3700 } 3701 llvm_unreachable("No such linkage"); 3702 } 3703 3704 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3705 llvm::GlobalObject &GO) { 3706 if (!shouldBeInCOMDAT(*this, D)) 3707 return; 3708 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3709 } 3710 3711 /// Pass IsTentative as true if you want to create a tentative definition. 3712 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3713 bool IsTentative) { 3714 // OpenCL global variables of sampler type are translated to function calls, 3715 // therefore no need to be translated. 3716 QualType ASTTy = D->getType(); 3717 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3718 return; 3719 3720 // If this is OpenMP device, check if it is legal to emit this global 3721 // normally. 3722 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3723 OpenMPRuntime->emitTargetGlobalVariable(D)) 3724 return; 3725 3726 llvm::Constant *Init = nullptr; 3727 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3728 bool NeedsGlobalCtor = false; 3729 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3730 3731 const VarDecl *InitDecl; 3732 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3733 3734 Optional<ConstantEmitter> emitter; 3735 3736 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3737 // as part of their declaration." Sema has already checked for 3738 // error cases, so we just need to set Init to UndefValue. 3739 bool IsCUDASharedVar = 3740 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3741 // Shadows of initialized device-side global variables are also left 3742 // undefined. 3743 bool IsCUDAShadowVar = 3744 !getLangOpts().CUDAIsDevice && 3745 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3746 D->hasAttr<CUDASharedAttr>()); 3747 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3748 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3749 else if (!InitExpr) { 3750 // This is a tentative definition; tentative definitions are 3751 // implicitly initialized with { 0 }. 3752 // 3753 // Note that tentative definitions are only emitted at the end of 3754 // a translation unit, so they should never have incomplete 3755 // type. In addition, EmitTentativeDefinition makes sure that we 3756 // never attempt to emit a tentative definition if a real one 3757 // exists. A use may still exists, however, so we still may need 3758 // to do a RAUW. 3759 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3760 Init = EmitNullConstant(D->getType()); 3761 } else { 3762 initializedGlobalDecl = GlobalDecl(D); 3763 emitter.emplace(*this); 3764 Init = emitter->tryEmitForInitializer(*InitDecl); 3765 3766 if (!Init) { 3767 QualType T = InitExpr->getType(); 3768 if (D->getType()->isReferenceType()) 3769 T = D->getType(); 3770 3771 if (getLangOpts().CPlusPlus) { 3772 Init = EmitNullConstant(T); 3773 NeedsGlobalCtor = true; 3774 } else { 3775 ErrorUnsupported(D, "static initializer"); 3776 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3777 } 3778 } else { 3779 // We don't need an initializer, so remove the entry for the delayed 3780 // initializer position (just in case this entry was delayed) if we 3781 // also don't need to register a destructor. 3782 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3783 DelayedCXXInitPosition.erase(D); 3784 } 3785 } 3786 3787 llvm::Type* InitType = Init->getType(); 3788 llvm::Constant *Entry = 3789 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3790 3791 // Strip off a bitcast if we got one back. 3792 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3793 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3794 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3795 // All zero index gep. 3796 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3797 Entry = CE->getOperand(0); 3798 } 3799 3800 // Entry is now either a Function or GlobalVariable. 3801 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3802 3803 // We have a definition after a declaration with the wrong type. 3804 // We must make a new GlobalVariable* and update everything that used OldGV 3805 // (a declaration or tentative definition) with the new GlobalVariable* 3806 // (which will be a definition). 3807 // 3808 // This happens if there is a prototype for a global (e.g. 3809 // "extern int x[];") and then a definition of a different type (e.g. 3810 // "int x[10];"). This also happens when an initializer has a different type 3811 // from the type of the global (this happens with unions). 3812 if (!GV || GV->getType()->getElementType() != InitType || 3813 GV->getType()->getAddressSpace() != 3814 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3815 3816 // Move the old entry aside so that we'll create a new one. 3817 Entry->setName(StringRef()); 3818 3819 // Make a new global with the correct type, this is now guaranteed to work. 3820 GV = cast<llvm::GlobalVariable>( 3821 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3822 3823 // Replace all uses of the old global with the new global 3824 llvm::Constant *NewPtrForOldDecl = 3825 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3826 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3827 3828 // Erase the old global, since it is no longer used. 3829 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3830 } 3831 3832 MaybeHandleStaticInExternC(D, GV); 3833 3834 if (D->hasAttr<AnnotateAttr>()) 3835 AddGlobalAnnotations(D, GV); 3836 3837 // Set the llvm linkage type as appropriate. 3838 llvm::GlobalValue::LinkageTypes Linkage = 3839 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3840 3841 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3842 // the device. [...]" 3843 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3844 // __device__, declares a variable that: [...] 3845 // Is accessible from all the threads within the grid and from the host 3846 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3847 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3848 if (GV && LangOpts.CUDA) { 3849 if (LangOpts.CUDAIsDevice) { 3850 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3851 GV->setExternallyInitialized(true); 3852 } else { 3853 // Host-side shadows of external declarations of device-side 3854 // global variables become internal definitions. These have to 3855 // be internal in order to prevent name conflicts with global 3856 // host variables with the same name in a different TUs. 3857 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3858 Linkage = llvm::GlobalValue::InternalLinkage; 3859 3860 // Shadow variables and their properties must be registered 3861 // with CUDA runtime. 3862 unsigned Flags = 0; 3863 if (!D->hasDefinition()) 3864 Flags |= CGCUDARuntime::ExternDeviceVar; 3865 if (D->hasAttr<CUDAConstantAttr>()) 3866 Flags |= CGCUDARuntime::ConstantDeviceVar; 3867 // Extern global variables will be registered in the TU where they are 3868 // defined. 3869 if (!D->hasExternalStorage()) 3870 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3871 } else if (D->hasAttr<CUDASharedAttr>()) 3872 // __shared__ variables are odd. Shadows do get created, but 3873 // they are not registered with the CUDA runtime, so they 3874 // can't really be used to access their device-side 3875 // counterparts. It's not clear yet whether it's nvcc's bug or 3876 // a feature, but we've got to do the same for compatibility. 3877 Linkage = llvm::GlobalValue::InternalLinkage; 3878 } 3879 } 3880 3881 GV->setInitializer(Init); 3882 if (emitter) emitter->finalize(GV); 3883 3884 // If it is safe to mark the global 'constant', do so now. 3885 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3886 isTypeConstant(D->getType(), true)); 3887 3888 // If it is in a read-only section, mark it 'constant'. 3889 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3890 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3891 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3892 GV->setConstant(true); 3893 } 3894 3895 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3896 3897 3898 // On Darwin, if the normal linkage of a C++ thread_local variable is 3899 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3900 // copies within a linkage unit; otherwise, the backing variable has 3901 // internal linkage and all accesses should just be calls to the 3902 // Itanium-specified entry point, which has the normal linkage of the 3903 // variable. This is to preserve the ability to change the implementation 3904 // behind the scenes. 3905 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3906 Context.getTargetInfo().getTriple().isOSDarwin() && 3907 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3908 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3909 Linkage = llvm::GlobalValue::InternalLinkage; 3910 3911 GV->setLinkage(Linkage); 3912 if (D->hasAttr<DLLImportAttr>()) 3913 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3914 else if (D->hasAttr<DLLExportAttr>()) 3915 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3916 else 3917 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3918 3919 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3920 // common vars aren't constant even if declared const. 3921 GV->setConstant(false); 3922 // Tentative definition of global variables may be initialized with 3923 // non-zero null pointers. In this case they should have weak linkage 3924 // since common linkage must have zero initializer and must not have 3925 // explicit section therefore cannot have non-zero initial value. 3926 if (!GV->getInitializer()->isNullValue()) 3927 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3928 } 3929 3930 setNonAliasAttributes(D, GV); 3931 3932 if (D->getTLSKind() && !GV->isThreadLocal()) { 3933 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3934 CXXThreadLocals.push_back(D); 3935 setTLSMode(GV, *D); 3936 } 3937 3938 maybeSetTrivialComdat(*D, *GV); 3939 3940 // Emit the initializer function if necessary. 3941 if (NeedsGlobalCtor || NeedsGlobalDtor) 3942 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3943 3944 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3945 3946 // Emit global variable debug information. 3947 if (CGDebugInfo *DI = getModuleDebugInfo()) 3948 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3949 DI->EmitGlobalVariable(GV, D); 3950 } 3951 3952 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3953 CodeGenModule &CGM, const VarDecl *D, 3954 bool NoCommon) { 3955 // Don't give variables common linkage if -fno-common was specified unless it 3956 // was overridden by a NoCommon attribute. 3957 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3958 return true; 3959 3960 // C11 6.9.2/2: 3961 // A declaration of an identifier for an object that has file scope without 3962 // an initializer, and without a storage-class specifier or with the 3963 // storage-class specifier static, constitutes a tentative definition. 3964 if (D->getInit() || D->hasExternalStorage()) 3965 return true; 3966 3967 // A variable cannot be both common and exist in a section. 3968 if (D->hasAttr<SectionAttr>()) 3969 return true; 3970 3971 // A variable cannot be both common and exist in a section. 3972 // We don't try to determine which is the right section in the front-end. 3973 // If no specialized section name is applicable, it will resort to default. 3974 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3975 D->hasAttr<PragmaClangDataSectionAttr>() || 3976 D->hasAttr<PragmaClangRodataSectionAttr>()) 3977 return true; 3978 3979 // Thread local vars aren't considered common linkage. 3980 if (D->getTLSKind()) 3981 return true; 3982 3983 // Tentative definitions marked with WeakImportAttr are true definitions. 3984 if (D->hasAttr<WeakImportAttr>()) 3985 return true; 3986 3987 // A variable cannot be both common and exist in a comdat. 3988 if (shouldBeInCOMDAT(CGM, *D)) 3989 return true; 3990 3991 // Declarations with a required alignment do not have common linkage in MSVC 3992 // mode. 3993 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3994 if (D->hasAttr<AlignedAttr>()) 3995 return true; 3996 QualType VarType = D->getType(); 3997 if (Context.isAlignmentRequired(VarType)) 3998 return true; 3999 4000 if (const auto *RT = VarType->getAs<RecordType>()) { 4001 const RecordDecl *RD = RT->getDecl(); 4002 for (const FieldDecl *FD : RD->fields()) { 4003 if (FD->isBitField()) 4004 continue; 4005 if (FD->hasAttr<AlignedAttr>()) 4006 return true; 4007 if (Context.isAlignmentRequired(FD->getType())) 4008 return true; 4009 } 4010 } 4011 } 4012 4013 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4014 // common symbols, so symbols with greater alignment requirements cannot be 4015 // common. 4016 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4017 // alignments for common symbols via the aligncomm directive, so this 4018 // restriction only applies to MSVC environments. 4019 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4020 Context.getTypeAlignIfKnown(D->getType()) > 4021 Context.toBits(CharUnits::fromQuantity(32))) 4022 return true; 4023 4024 return false; 4025 } 4026 4027 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4028 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4029 if (Linkage == GVA_Internal) 4030 return llvm::Function::InternalLinkage; 4031 4032 if (D->hasAttr<WeakAttr>()) { 4033 if (IsConstantVariable) 4034 return llvm::GlobalVariable::WeakODRLinkage; 4035 else 4036 return llvm::GlobalVariable::WeakAnyLinkage; 4037 } 4038 4039 if (const auto *FD = D->getAsFunction()) 4040 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4041 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4042 4043 // We are guaranteed to have a strong definition somewhere else, 4044 // so we can use available_externally linkage. 4045 if (Linkage == GVA_AvailableExternally) 4046 return llvm::GlobalValue::AvailableExternallyLinkage; 4047 4048 // Note that Apple's kernel linker doesn't support symbol 4049 // coalescing, so we need to avoid linkonce and weak linkages there. 4050 // Normally, this means we just map to internal, but for explicit 4051 // instantiations we'll map to external. 4052 4053 // In C++, the compiler has to emit a definition in every translation unit 4054 // that references the function. We should use linkonce_odr because 4055 // a) if all references in this translation unit are optimized away, we 4056 // don't need to codegen it. b) if the function persists, it needs to be 4057 // merged with other definitions. c) C++ has the ODR, so we know the 4058 // definition is dependable. 4059 if (Linkage == GVA_DiscardableODR) 4060 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4061 : llvm::Function::InternalLinkage; 4062 4063 // An explicit instantiation of a template has weak linkage, since 4064 // explicit instantiations can occur in multiple translation units 4065 // and must all be equivalent. However, we are not allowed to 4066 // throw away these explicit instantiations. 4067 // 4068 // We don't currently support CUDA device code spread out across multiple TUs, 4069 // so say that CUDA templates are either external (for kernels) or internal. 4070 // This lets llvm perform aggressive inter-procedural optimizations. 4071 if (Linkage == GVA_StrongODR) { 4072 if (Context.getLangOpts().AppleKext) 4073 return llvm::Function::ExternalLinkage; 4074 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4075 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4076 : llvm::Function::InternalLinkage; 4077 return llvm::Function::WeakODRLinkage; 4078 } 4079 4080 // C++ doesn't have tentative definitions and thus cannot have common 4081 // linkage. 4082 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4083 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4084 CodeGenOpts.NoCommon)) 4085 return llvm::GlobalVariable::CommonLinkage; 4086 4087 // selectany symbols are externally visible, so use weak instead of 4088 // linkonce. MSVC optimizes away references to const selectany globals, so 4089 // all definitions should be the same and ODR linkage should be used. 4090 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4091 if (D->hasAttr<SelectAnyAttr>()) 4092 return llvm::GlobalVariable::WeakODRLinkage; 4093 4094 // Otherwise, we have strong external linkage. 4095 assert(Linkage == GVA_StrongExternal); 4096 return llvm::GlobalVariable::ExternalLinkage; 4097 } 4098 4099 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4100 const VarDecl *VD, bool IsConstant) { 4101 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4102 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4103 } 4104 4105 /// Replace the uses of a function that was declared with a non-proto type. 4106 /// We want to silently drop extra arguments from call sites 4107 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4108 llvm::Function *newFn) { 4109 // Fast path. 4110 if (old->use_empty()) return; 4111 4112 llvm::Type *newRetTy = newFn->getReturnType(); 4113 SmallVector<llvm::Value*, 4> newArgs; 4114 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4115 4116 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4117 ui != ue; ) { 4118 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4119 llvm::User *user = use->getUser(); 4120 4121 // Recognize and replace uses of bitcasts. Most calls to 4122 // unprototyped functions will use bitcasts. 4123 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4124 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4125 replaceUsesOfNonProtoConstant(bitcast, newFn); 4126 continue; 4127 } 4128 4129 // Recognize calls to the function. 4130 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4131 if (!callSite) continue; 4132 if (!callSite->isCallee(&*use)) 4133 continue; 4134 4135 // If the return types don't match exactly, then we can't 4136 // transform this call unless it's dead. 4137 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4138 continue; 4139 4140 // Get the call site's attribute list. 4141 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4142 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4143 4144 // If the function was passed too few arguments, don't transform. 4145 unsigned newNumArgs = newFn->arg_size(); 4146 if (callSite->arg_size() < newNumArgs) 4147 continue; 4148 4149 // If extra arguments were passed, we silently drop them. 4150 // If any of the types mismatch, we don't transform. 4151 unsigned argNo = 0; 4152 bool dontTransform = false; 4153 for (llvm::Argument &A : newFn->args()) { 4154 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4155 dontTransform = true; 4156 break; 4157 } 4158 4159 // Add any parameter attributes. 4160 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4161 argNo++; 4162 } 4163 if (dontTransform) 4164 continue; 4165 4166 // Okay, we can transform this. Create the new call instruction and copy 4167 // over the required information. 4168 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4169 4170 // Copy over any operand bundles. 4171 callSite->getOperandBundlesAsDefs(newBundles); 4172 4173 llvm::CallBase *newCall; 4174 if (dyn_cast<llvm::CallInst>(callSite)) { 4175 newCall = 4176 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4177 } else { 4178 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4179 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4180 oldInvoke->getUnwindDest(), newArgs, 4181 newBundles, "", callSite); 4182 } 4183 newArgs.clear(); // for the next iteration 4184 4185 if (!newCall->getType()->isVoidTy()) 4186 newCall->takeName(callSite); 4187 newCall->setAttributes(llvm::AttributeList::get( 4188 newFn->getContext(), oldAttrs.getFnAttributes(), 4189 oldAttrs.getRetAttributes(), newArgAttrs)); 4190 newCall->setCallingConv(callSite->getCallingConv()); 4191 4192 // Finally, remove the old call, replacing any uses with the new one. 4193 if (!callSite->use_empty()) 4194 callSite->replaceAllUsesWith(newCall); 4195 4196 // Copy debug location attached to CI. 4197 if (callSite->getDebugLoc()) 4198 newCall->setDebugLoc(callSite->getDebugLoc()); 4199 4200 callSite->eraseFromParent(); 4201 } 4202 } 4203 4204 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4205 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4206 /// existing call uses of the old function in the module, this adjusts them to 4207 /// call the new function directly. 4208 /// 4209 /// This is not just a cleanup: the always_inline pass requires direct calls to 4210 /// functions to be able to inline them. If there is a bitcast in the way, it 4211 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4212 /// run at -O0. 4213 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4214 llvm::Function *NewFn) { 4215 // If we're redefining a global as a function, don't transform it. 4216 if (!isa<llvm::Function>(Old)) return; 4217 4218 replaceUsesOfNonProtoConstant(Old, NewFn); 4219 } 4220 4221 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4222 auto DK = VD->isThisDeclarationADefinition(); 4223 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4224 return; 4225 4226 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4227 // If we have a definition, this might be a deferred decl. If the 4228 // instantiation is explicit, make sure we emit it at the end. 4229 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4230 GetAddrOfGlobalVar(VD); 4231 4232 EmitTopLevelDecl(VD); 4233 } 4234 4235 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4236 llvm::GlobalValue *GV) { 4237 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4238 4239 // Compute the function info and LLVM type. 4240 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4241 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4242 4243 // Get or create the prototype for the function. 4244 if (!GV || (GV->getType()->getElementType() != Ty)) 4245 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4246 /*DontDefer=*/true, 4247 ForDefinition)); 4248 4249 // Already emitted. 4250 if (!GV->isDeclaration()) 4251 return; 4252 4253 // We need to set linkage and visibility on the function before 4254 // generating code for it because various parts of IR generation 4255 // want to propagate this information down (e.g. to local static 4256 // declarations). 4257 auto *Fn = cast<llvm::Function>(GV); 4258 setFunctionLinkage(GD, Fn); 4259 4260 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4261 setGVProperties(Fn, GD); 4262 4263 MaybeHandleStaticInExternC(D, Fn); 4264 4265 4266 maybeSetTrivialComdat(*D, *Fn); 4267 4268 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4269 4270 setNonAliasAttributes(GD, Fn); 4271 SetLLVMFunctionAttributesForDefinition(D, Fn); 4272 4273 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4274 AddGlobalCtor(Fn, CA->getPriority()); 4275 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4276 AddGlobalDtor(Fn, DA->getPriority()); 4277 if (D->hasAttr<AnnotateAttr>()) 4278 AddGlobalAnnotations(D, Fn); 4279 } 4280 4281 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4282 const auto *D = cast<ValueDecl>(GD.getDecl()); 4283 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4284 assert(AA && "Not an alias?"); 4285 4286 StringRef MangledName = getMangledName(GD); 4287 4288 if (AA->getAliasee() == MangledName) { 4289 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4290 return; 4291 } 4292 4293 // If there is a definition in the module, then it wins over the alias. 4294 // This is dubious, but allow it to be safe. Just ignore the alias. 4295 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4296 if (Entry && !Entry->isDeclaration()) 4297 return; 4298 4299 Aliases.push_back(GD); 4300 4301 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4302 4303 // Create a reference to the named value. This ensures that it is emitted 4304 // if a deferred decl. 4305 llvm::Constant *Aliasee; 4306 if (isa<llvm::FunctionType>(DeclTy)) 4307 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4308 /*ForVTable=*/false); 4309 else 4310 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4311 llvm::PointerType::getUnqual(DeclTy), 4312 /*D=*/nullptr); 4313 4314 // Create the new alias itself, but don't set a name yet. 4315 auto *GA = llvm::GlobalAlias::create( 4316 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4317 4318 if (Entry) { 4319 if (GA->getAliasee() == Entry) { 4320 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4321 return; 4322 } 4323 4324 assert(Entry->isDeclaration()); 4325 4326 // If there is a declaration in the module, then we had an extern followed 4327 // by the alias, as in: 4328 // extern int test6(); 4329 // ... 4330 // int test6() __attribute__((alias("test7"))); 4331 // 4332 // Remove it and replace uses of it with the alias. 4333 GA->takeName(Entry); 4334 4335 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4336 Entry->getType())); 4337 Entry->eraseFromParent(); 4338 } else { 4339 GA->setName(MangledName); 4340 } 4341 4342 // Set attributes which are particular to an alias; this is a 4343 // specialization of the attributes which may be set on a global 4344 // variable/function. 4345 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4346 D->isWeakImported()) { 4347 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4348 } 4349 4350 if (const auto *VD = dyn_cast<VarDecl>(D)) 4351 if (VD->getTLSKind()) 4352 setTLSMode(GA, *VD); 4353 4354 SetCommonAttributes(GD, GA); 4355 } 4356 4357 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4358 const auto *D = cast<ValueDecl>(GD.getDecl()); 4359 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4360 assert(IFA && "Not an ifunc?"); 4361 4362 StringRef MangledName = getMangledName(GD); 4363 4364 if (IFA->getResolver() == MangledName) { 4365 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4366 return; 4367 } 4368 4369 // Report an error if some definition overrides ifunc. 4370 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4371 if (Entry && !Entry->isDeclaration()) { 4372 GlobalDecl OtherGD; 4373 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4374 DiagnosedConflictingDefinitions.insert(GD).second) { 4375 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4376 << MangledName; 4377 Diags.Report(OtherGD.getDecl()->getLocation(), 4378 diag::note_previous_definition); 4379 } 4380 return; 4381 } 4382 4383 Aliases.push_back(GD); 4384 4385 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4386 llvm::Constant *Resolver = 4387 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4388 /*ForVTable=*/false); 4389 llvm::GlobalIFunc *GIF = 4390 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4391 "", Resolver, &getModule()); 4392 if (Entry) { 4393 if (GIF->getResolver() == Entry) { 4394 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4395 return; 4396 } 4397 assert(Entry->isDeclaration()); 4398 4399 // If there is a declaration in the module, then we had an extern followed 4400 // by the ifunc, as in: 4401 // extern int test(); 4402 // ... 4403 // int test() __attribute__((ifunc("resolver"))); 4404 // 4405 // Remove it and replace uses of it with the ifunc. 4406 GIF->takeName(Entry); 4407 4408 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4409 Entry->getType())); 4410 Entry->eraseFromParent(); 4411 } else 4412 GIF->setName(MangledName); 4413 4414 SetCommonAttributes(GD, GIF); 4415 } 4416 4417 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4418 ArrayRef<llvm::Type*> Tys) { 4419 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4420 Tys); 4421 } 4422 4423 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4424 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4425 const StringLiteral *Literal, bool TargetIsLSB, 4426 bool &IsUTF16, unsigned &StringLength) { 4427 StringRef String = Literal->getString(); 4428 unsigned NumBytes = String.size(); 4429 4430 // Check for simple case. 4431 if (!Literal->containsNonAsciiOrNull()) { 4432 StringLength = NumBytes; 4433 return *Map.insert(std::make_pair(String, nullptr)).first; 4434 } 4435 4436 // Otherwise, convert the UTF8 literals into a string of shorts. 4437 IsUTF16 = true; 4438 4439 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4440 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4441 llvm::UTF16 *ToPtr = &ToBuf[0]; 4442 4443 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4444 ToPtr + NumBytes, llvm::strictConversion); 4445 4446 // ConvertUTF8toUTF16 returns the length in ToPtr. 4447 StringLength = ToPtr - &ToBuf[0]; 4448 4449 // Add an explicit null. 4450 *ToPtr = 0; 4451 return *Map.insert(std::make_pair( 4452 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4453 (StringLength + 1) * 2), 4454 nullptr)).first; 4455 } 4456 4457 ConstantAddress 4458 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4459 unsigned StringLength = 0; 4460 bool isUTF16 = false; 4461 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4462 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4463 getDataLayout().isLittleEndian(), isUTF16, 4464 StringLength); 4465 4466 if (auto *C = Entry.second) 4467 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4468 4469 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4470 llvm::Constant *Zeros[] = { Zero, Zero }; 4471 4472 const ASTContext &Context = getContext(); 4473 const llvm::Triple &Triple = getTriple(); 4474 4475 const auto CFRuntime = getLangOpts().CFRuntime; 4476 const bool IsSwiftABI = 4477 static_cast<unsigned>(CFRuntime) >= 4478 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4479 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4480 4481 // If we don't already have it, get __CFConstantStringClassReference. 4482 if (!CFConstantStringClassRef) { 4483 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4484 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4485 Ty = llvm::ArrayType::get(Ty, 0); 4486 4487 switch (CFRuntime) { 4488 default: break; 4489 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4490 case LangOptions::CoreFoundationABI::Swift5_0: 4491 CFConstantStringClassName = 4492 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4493 : "$s10Foundation19_NSCFConstantStringCN"; 4494 Ty = IntPtrTy; 4495 break; 4496 case LangOptions::CoreFoundationABI::Swift4_2: 4497 CFConstantStringClassName = 4498 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4499 : "$S10Foundation19_NSCFConstantStringCN"; 4500 Ty = IntPtrTy; 4501 break; 4502 case LangOptions::CoreFoundationABI::Swift4_1: 4503 CFConstantStringClassName = 4504 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4505 : "__T010Foundation19_NSCFConstantStringCN"; 4506 Ty = IntPtrTy; 4507 break; 4508 } 4509 4510 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4511 4512 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4513 llvm::GlobalValue *GV = nullptr; 4514 4515 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4516 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4517 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4518 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4519 4520 const VarDecl *VD = nullptr; 4521 for (const auto &Result : DC->lookup(&II)) 4522 if ((VD = dyn_cast<VarDecl>(Result))) 4523 break; 4524 4525 if (Triple.isOSBinFormatELF()) { 4526 if (!VD) 4527 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4528 } else { 4529 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4530 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4531 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4532 else 4533 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4534 } 4535 4536 setDSOLocal(GV); 4537 } 4538 } 4539 4540 // Decay array -> ptr 4541 CFConstantStringClassRef = 4542 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4543 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4544 } 4545 4546 QualType CFTy = Context.getCFConstantStringType(); 4547 4548 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4549 4550 ConstantInitBuilder Builder(*this); 4551 auto Fields = Builder.beginStruct(STy); 4552 4553 // Class pointer. 4554 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4555 4556 // Flags. 4557 if (IsSwiftABI) { 4558 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4559 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4560 } else { 4561 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4562 } 4563 4564 // String pointer. 4565 llvm::Constant *C = nullptr; 4566 if (isUTF16) { 4567 auto Arr = llvm::makeArrayRef( 4568 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4569 Entry.first().size() / 2); 4570 C = llvm::ConstantDataArray::get(VMContext, Arr); 4571 } else { 4572 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4573 } 4574 4575 // Note: -fwritable-strings doesn't make the backing store strings of 4576 // CFStrings writable. (See <rdar://problem/10657500>) 4577 auto *GV = 4578 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4579 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4580 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4581 // Don't enforce the target's minimum global alignment, since the only use 4582 // of the string is via this class initializer. 4583 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4584 : Context.getTypeAlignInChars(Context.CharTy); 4585 GV->setAlignment(Align.getQuantity()); 4586 4587 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4588 // Without it LLVM can merge the string with a non unnamed_addr one during 4589 // LTO. Doing that changes the section it ends in, which surprises ld64. 4590 if (Triple.isOSBinFormatMachO()) 4591 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4592 : "__TEXT,__cstring,cstring_literals"); 4593 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4594 // the static linker to adjust permissions to read-only later on. 4595 else if (Triple.isOSBinFormatELF()) 4596 GV->setSection(".rodata"); 4597 4598 // String. 4599 llvm::Constant *Str = 4600 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4601 4602 if (isUTF16) 4603 // Cast the UTF16 string to the correct type. 4604 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4605 Fields.add(Str); 4606 4607 // String length. 4608 llvm::IntegerType *LengthTy = 4609 llvm::IntegerType::get(getModule().getContext(), 4610 Context.getTargetInfo().getLongWidth()); 4611 if (IsSwiftABI) { 4612 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4613 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4614 LengthTy = Int32Ty; 4615 else 4616 LengthTy = IntPtrTy; 4617 } 4618 Fields.addInt(LengthTy, StringLength); 4619 4620 CharUnits Alignment = getPointerAlign(); 4621 4622 // The struct. 4623 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4624 /*isConstant=*/false, 4625 llvm::GlobalVariable::PrivateLinkage); 4626 switch (Triple.getObjectFormat()) { 4627 case llvm::Triple::UnknownObjectFormat: 4628 llvm_unreachable("unknown file format"); 4629 case llvm::Triple::XCOFF: 4630 llvm_unreachable("XCOFF is not yet implemented"); 4631 case llvm::Triple::COFF: 4632 case llvm::Triple::ELF: 4633 case llvm::Triple::Wasm: 4634 GV->setSection("cfstring"); 4635 break; 4636 case llvm::Triple::MachO: 4637 GV->setSection("__DATA,__cfstring"); 4638 break; 4639 } 4640 Entry.second = GV; 4641 4642 return ConstantAddress(GV, Alignment); 4643 } 4644 4645 bool CodeGenModule::getExpressionLocationsEnabled() const { 4646 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4647 } 4648 4649 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4650 if (ObjCFastEnumerationStateType.isNull()) { 4651 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4652 D->startDefinition(); 4653 4654 QualType FieldTypes[] = { 4655 Context.UnsignedLongTy, 4656 Context.getPointerType(Context.getObjCIdType()), 4657 Context.getPointerType(Context.UnsignedLongTy), 4658 Context.getConstantArrayType(Context.UnsignedLongTy, 4659 llvm::APInt(32, 5), ArrayType::Normal, 0) 4660 }; 4661 4662 for (size_t i = 0; i < 4; ++i) { 4663 FieldDecl *Field = FieldDecl::Create(Context, 4664 D, 4665 SourceLocation(), 4666 SourceLocation(), nullptr, 4667 FieldTypes[i], /*TInfo=*/nullptr, 4668 /*BitWidth=*/nullptr, 4669 /*Mutable=*/false, 4670 ICIS_NoInit); 4671 Field->setAccess(AS_public); 4672 D->addDecl(Field); 4673 } 4674 4675 D->completeDefinition(); 4676 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4677 } 4678 4679 return ObjCFastEnumerationStateType; 4680 } 4681 4682 llvm::Constant * 4683 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4684 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4685 4686 // Don't emit it as the address of the string, emit the string data itself 4687 // as an inline array. 4688 if (E->getCharByteWidth() == 1) { 4689 SmallString<64> Str(E->getString()); 4690 4691 // Resize the string to the right size, which is indicated by its type. 4692 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4693 Str.resize(CAT->getSize().getZExtValue()); 4694 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4695 } 4696 4697 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4698 llvm::Type *ElemTy = AType->getElementType(); 4699 unsigned NumElements = AType->getNumElements(); 4700 4701 // Wide strings have either 2-byte or 4-byte elements. 4702 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4703 SmallVector<uint16_t, 32> Elements; 4704 Elements.reserve(NumElements); 4705 4706 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4707 Elements.push_back(E->getCodeUnit(i)); 4708 Elements.resize(NumElements); 4709 return llvm::ConstantDataArray::get(VMContext, Elements); 4710 } 4711 4712 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4713 SmallVector<uint32_t, 32> Elements; 4714 Elements.reserve(NumElements); 4715 4716 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4717 Elements.push_back(E->getCodeUnit(i)); 4718 Elements.resize(NumElements); 4719 return llvm::ConstantDataArray::get(VMContext, Elements); 4720 } 4721 4722 static llvm::GlobalVariable * 4723 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4724 CodeGenModule &CGM, StringRef GlobalName, 4725 CharUnits Alignment) { 4726 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4727 CGM.getStringLiteralAddressSpace()); 4728 4729 llvm::Module &M = CGM.getModule(); 4730 // Create a global variable for this string 4731 auto *GV = new llvm::GlobalVariable( 4732 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4733 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4734 GV->setAlignment(Alignment.getQuantity()); 4735 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4736 if (GV->isWeakForLinker()) { 4737 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4738 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4739 } 4740 CGM.setDSOLocal(GV); 4741 4742 return GV; 4743 } 4744 4745 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4746 /// constant array for the given string literal. 4747 ConstantAddress 4748 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4749 StringRef Name) { 4750 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4751 4752 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4753 llvm::GlobalVariable **Entry = nullptr; 4754 if (!LangOpts.WritableStrings) { 4755 Entry = &ConstantStringMap[C]; 4756 if (auto GV = *Entry) { 4757 if (Alignment.getQuantity() > GV->getAlignment()) 4758 GV->setAlignment(Alignment.getQuantity()); 4759 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4760 Alignment); 4761 } 4762 } 4763 4764 SmallString<256> MangledNameBuffer; 4765 StringRef GlobalVariableName; 4766 llvm::GlobalValue::LinkageTypes LT; 4767 4768 // Mangle the string literal if that's how the ABI merges duplicate strings. 4769 // Don't do it if they are writable, since we don't want writes in one TU to 4770 // affect strings in another. 4771 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4772 !LangOpts.WritableStrings) { 4773 llvm::raw_svector_ostream Out(MangledNameBuffer); 4774 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4775 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4776 GlobalVariableName = MangledNameBuffer; 4777 } else { 4778 LT = llvm::GlobalValue::PrivateLinkage; 4779 GlobalVariableName = Name; 4780 } 4781 4782 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4783 if (Entry) 4784 *Entry = GV; 4785 4786 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4787 QualType()); 4788 4789 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4790 Alignment); 4791 } 4792 4793 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4794 /// array for the given ObjCEncodeExpr node. 4795 ConstantAddress 4796 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4797 std::string Str; 4798 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4799 4800 return GetAddrOfConstantCString(Str); 4801 } 4802 4803 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4804 /// the literal and a terminating '\0' character. 4805 /// The result has pointer to array type. 4806 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4807 const std::string &Str, const char *GlobalName) { 4808 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4809 CharUnits Alignment = 4810 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4811 4812 llvm::Constant *C = 4813 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4814 4815 // Don't share any string literals if strings aren't constant. 4816 llvm::GlobalVariable **Entry = nullptr; 4817 if (!LangOpts.WritableStrings) { 4818 Entry = &ConstantStringMap[C]; 4819 if (auto GV = *Entry) { 4820 if (Alignment.getQuantity() > GV->getAlignment()) 4821 GV->setAlignment(Alignment.getQuantity()); 4822 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4823 Alignment); 4824 } 4825 } 4826 4827 // Get the default prefix if a name wasn't specified. 4828 if (!GlobalName) 4829 GlobalName = ".str"; 4830 // Create a global variable for this. 4831 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4832 GlobalName, Alignment); 4833 if (Entry) 4834 *Entry = GV; 4835 4836 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4837 Alignment); 4838 } 4839 4840 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4841 const MaterializeTemporaryExpr *E, const Expr *Init) { 4842 assert((E->getStorageDuration() == SD_Static || 4843 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4844 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4845 4846 // If we're not materializing a subobject of the temporary, keep the 4847 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4848 QualType MaterializedType = Init->getType(); 4849 if (Init == E->GetTemporaryExpr()) 4850 MaterializedType = E->getType(); 4851 4852 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4853 4854 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4855 return ConstantAddress(Slot, Align); 4856 4857 // FIXME: If an externally-visible declaration extends multiple temporaries, 4858 // we need to give each temporary the same name in every translation unit (and 4859 // we also need to make the temporaries externally-visible). 4860 SmallString<256> Name; 4861 llvm::raw_svector_ostream Out(Name); 4862 getCXXABI().getMangleContext().mangleReferenceTemporary( 4863 VD, E->getManglingNumber(), Out); 4864 4865 APValue *Value = nullptr; 4866 if (E->getStorageDuration() == SD_Static) { 4867 // We might have a cached constant initializer for this temporary. Note 4868 // that this might have a different value from the value computed by 4869 // evaluating the initializer if the surrounding constant expression 4870 // modifies the temporary. 4871 Value = getContext().getMaterializedTemporaryValue(E, false); 4872 if (Value && Value->isUninit()) 4873 Value = nullptr; 4874 } 4875 4876 // Try evaluating it now, it might have a constant initializer. 4877 Expr::EvalResult EvalResult; 4878 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4879 !EvalResult.hasSideEffects()) 4880 Value = &EvalResult.Val; 4881 4882 LangAS AddrSpace = 4883 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4884 4885 Optional<ConstantEmitter> emitter; 4886 llvm::Constant *InitialValue = nullptr; 4887 bool Constant = false; 4888 llvm::Type *Type; 4889 if (Value) { 4890 // The temporary has a constant initializer, use it. 4891 emitter.emplace(*this); 4892 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4893 MaterializedType); 4894 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4895 Type = InitialValue->getType(); 4896 } else { 4897 // No initializer, the initialization will be provided when we 4898 // initialize the declaration which performed lifetime extension. 4899 Type = getTypes().ConvertTypeForMem(MaterializedType); 4900 } 4901 4902 // Create a global variable for this lifetime-extended temporary. 4903 llvm::GlobalValue::LinkageTypes Linkage = 4904 getLLVMLinkageVarDefinition(VD, Constant); 4905 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4906 const VarDecl *InitVD; 4907 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4908 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4909 // Temporaries defined inside a class get linkonce_odr linkage because the 4910 // class can be defined in multiple translation units. 4911 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4912 } else { 4913 // There is no need for this temporary to have external linkage if the 4914 // VarDecl has external linkage. 4915 Linkage = llvm::GlobalVariable::InternalLinkage; 4916 } 4917 } 4918 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4919 auto *GV = new llvm::GlobalVariable( 4920 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4921 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4922 if (emitter) emitter->finalize(GV); 4923 setGVProperties(GV, VD); 4924 GV->setAlignment(Align.getQuantity()); 4925 if (supportsCOMDAT() && GV->isWeakForLinker()) 4926 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4927 if (VD->getTLSKind()) 4928 setTLSMode(GV, *VD); 4929 llvm::Constant *CV = GV; 4930 if (AddrSpace != LangAS::Default) 4931 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4932 *this, GV, AddrSpace, LangAS::Default, 4933 Type->getPointerTo( 4934 getContext().getTargetAddressSpace(LangAS::Default))); 4935 MaterializedGlobalTemporaryMap[E] = CV; 4936 return ConstantAddress(CV, Align); 4937 } 4938 4939 /// EmitObjCPropertyImplementations - Emit information for synthesized 4940 /// properties for an implementation. 4941 void CodeGenModule::EmitObjCPropertyImplementations(const 4942 ObjCImplementationDecl *D) { 4943 for (const auto *PID : D->property_impls()) { 4944 // Dynamic is just for type-checking. 4945 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4946 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4947 4948 // Determine which methods need to be implemented, some may have 4949 // been overridden. Note that ::isPropertyAccessor is not the method 4950 // we want, that just indicates if the decl came from a 4951 // property. What we want to know is if the method is defined in 4952 // this implementation. 4953 if (!D->getInstanceMethod(PD->getGetterName())) 4954 CodeGenFunction(*this).GenerateObjCGetter( 4955 const_cast<ObjCImplementationDecl *>(D), PID); 4956 if (!PD->isReadOnly() && 4957 !D->getInstanceMethod(PD->getSetterName())) 4958 CodeGenFunction(*this).GenerateObjCSetter( 4959 const_cast<ObjCImplementationDecl *>(D), PID); 4960 } 4961 } 4962 } 4963 4964 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4965 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4966 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4967 ivar; ivar = ivar->getNextIvar()) 4968 if (ivar->getType().isDestructedType()) 4969 return true; 4970 4971 return false; 4972 } 4973 4974 static bool AllTrivialInitializers(CodeGenModule &CGM, 4975 ObjCImplementationDecl *D) { 4976 CodeGenFunction CGF(CGM); 4977 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4978 E = D->init_end(); B != E; ++B) { 4979 CXXCtorInitializer *CtorInitExp = *B; 4980 Expr *Init = CtorInitExp->getInit(); 4981 if (!CGF.isTrivialInitializer(Init)) 4982 return false; 4983 } 4984 return true; 4985 } 4986 4987 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4988 /// for an implementation. 4989 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4990 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4991 if (needsDestructMethod(D)) { 4992 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4993 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4994 ObjCMethodDecl *DTORMethod = 4995 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4996 cxxSelector, getContext().VoidTy, nullptr, D, 4997 /*isInstance=*/true, /*isVariadic=*/false, 4998 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4999 /*isDefined=*/false, ObjCMethodDecl::Required); 5000 D->addInstanceMethod(DTORMethod); 5001 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5002 D->setHasDestructors(true); 5003 } 5004 5005 // If the implementation doesn't have any ivar initializers, we don't need 5006 // a .cxx_construct. 5007 if (D->getNumIvarInitializers() == 0 || 5008 AllTrivialInitializers(*this, D)) 5009 return; 5010 5011 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5012 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5013 // The constructor returns 'self'. 5014 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 5015 D->getLocation(), 5016 D->getLocation(), 5017 cxxSelector, 5018 getContext().getObjCIdType(), 5019 nullptr, D, /*isInstance=*/true, 5020 /*isVariadic=*/false, 5021 /*isPropertyAccessor=*/true, 5022 /*isImplicitlyDeclared=*/true, 5023 /*isDefined=*/false, 5024 ObjCMethodDecl::Required); 5025 D->addInstanceMethod(CTORMethod); 5026 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5027 D->setHasNonZeroConstructors(true); 5028 } 5029 5030 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5031 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5032 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5033 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5034 ErrorUnsupported(LSD, "linkage spec"); 5035 return; 5036 } 5037 5038 EmitDeclContext(LSD); 5039 } 5040 5041 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5042 for (auto *I : DC->decls()) { 5043 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5044 // are themselves considered "top-level", so EmitTopLevelDecl on an 5045 // ObjCImplDecl does not recursively visit them. We need to do that in 5046 // case they're nested inside another construct (LinkageSpecDecl / 5047 // ExportDecl) that does stop them from being considered "top-level". 5048 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5049 for (auto *M : OID->methods()) 5050 EmitTopLevelDecl(M); 5051 } 5052 5053 EmitTopLevelDecl(I); 5054 } 5055 } 5056 5057 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5058 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5059 // Ignore dependent declarations. 5060 if (D->isTemplated()) 5061 return; 5062 5063 switch (D->getKind()) { 5064 case Decl::CXXConversion: 5065 case Decl::CXXMethod: 5066 case Decl::Function: 5067 EmitGlobal(cast<FunctionDecl>(D)); 5068 // Always provide some coverage mapping 5069 // even for the functions that aren't emitted. 5070 AddDeferredUnusedCoverageMapping(D); 5071 break; 5072 5073 case Decl::CXXDeductionGuide: 5074 // Function-like, but does not result in code emission. 5075 break; 5076 5077 case Decl::Var: 5078 case Decl::Decomposition: 5079 case Decl::VarTemplateSpecialization: 5080 EmitGlobal(cast<VarDecl>(D)); 5081 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5082 for (auto *B : DD->bindings()) 5083 if (auto *HD = B->getHoldingVar()) 5084 EmitGlobal(HD); 5085 break; 5086 5087 // Indirect fields from global anonymous structs and unions can be 5088 // ignored; only the actual variable requires IR gen support. 5089 case Decl::IndirectField: 5090 break; 5091 5092 // C++ Decls 5093 case Decl::Namespace: 5094 EmitDeclContext(cast<NamespaceDecl>(D)); 5095 break; 5096 case Decl::ClassTemplateSpecialization: { 5097 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5098 if (DebugInfo && 5099 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5100 Spec->hasDefinition()) 5101 DebugInfo->completeTemplateDefinition(*Spec); 5102 } LLVM_FALLTHROUGH; 5103 case Decl::CXXRecord: 5104 if (DebugInfo) { 5105 if (auto *ES = D->getASTContext().getExternalSource()) 5106 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5107 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5108 } 5109 // Emit any static data members, they may be definitions. 5110 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5111 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5112 EmitTopLevelDecl(I); 5113 break; 5114 // No code generation needed. 5115 case Decl::UsingShadow: 5116 case Decl::ClassTemplate: 5117 case Decl::VarTemplate: 5118 case Decl::VarTemplatePartialSpecialization: 5119 case Decl::FunctionTemplate: 5120 case Decl::TypeAliasTemplate: 5121 case Decl::Block: 5122 case Decl::Empty: 5123 case Decl::Binding: 5124 break; 5125 case Decl::Using: // using X; [C++] 5126 if (CGDebugInfo *DI = getModuleDebugInfo()) 5127 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5128 return; 5129 case Decl::NamespaceAlias: 5130 if (CGDebugInfo *DI = getModuleDebugInfo()) 5131 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5132 return; 5133 case Decl::UsingDirective: // using namespace X; [C++] 5134 if (CGDebugInfo *DI = getModuleDebugInfo()) 5135 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5136 return; 5137 case Decl::CXXConstructor: 5138 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5139 break; 5140 case Decl::CXXDestructor: 5141 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5142 break; 5143 5144 case Decl::StaticAssert: 5145 // Nothing to do. 5146 break; 5147 5148 // Objective-C Decls 5149 5150 // Forward declarations, no (immediate) code generation. 5151 case Decl::ObjCInterface: 5152 case Decl::ObjCCategory: 5153 break; 5154 5155 case Decl::ObjCProtocol: { 5156 auto *Proto = cast<ObjCProtocolDecl>(D); 5157 if (Proto->isThisDeclarationADefinition()) 5158 ObjCRuntime->GenerateProtocol(Proto); 5159 break; 5160 } 5161 5162 case Decl::ObjCCategoryImpl: 5163 // Categories have properties but don't support synthesize so we 5164 // can ignore them here. 5165 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5166 break; 5167 5168 case Decl::ObjCImplementation: { 5169 auto *OMD = cast<ObjCImplementationDecl>(D); 5170 EmitObjCPropertyImplementations(OMD); 5171 EmitObjCIvarInitializations(OMD); 5172 ObjCRuntime->GenerateClass(OMD); 5173 // Emit global variable debug information. 5174 if (CGDebugInfo *DI = getModuleDebugInfo()) 5175 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5176 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5177 OMD->getClassInterface()), OMD->getLocation()); 5178 break; 5179 } 5180 case Decl::ObjCMethod: { 5181 auto *OMD = cast<ObjCMethodDecl>(D); 5182 // If this is not a prototype, emit the body. 5183 if (OMD->getBody()) 5184 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5185 break; 5186 } 5187 case Decl::ObjCCompatibleAlias: 5188 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5189 break; 5190 5191 case Decl::PragmaComment: { 5192 const auto *PCD = cast<PragmaCommentDecl>(D); 5193 switch (PCD->getCommentKind()) { 5194 case PCK_Unknown: 5195 llvm_unreachable("unexpected pragma comment kind"); 5196 case PCK_Linker: 5197 AppendLinkerOptions(PCD->getArg()); 5198 break; 5199 case PCK_Lib: 5200 if (getTarget().getTriple().isOSBinFormatELF() && 5201 !getTarget().getTriple().isPS4()) 5202 AddELFLibDirective(PCD->getArg()); 5203 else 5204 AddDependentLib(PCD->getArg()); 5205 break; 5206 case PCK_Compiler: 5207 case PCK_ExeStr: 5208 case PCK_User: 5209 break; // We ignore all of these. 5210 } 5211 break; 5212 } 5213 5214 case Decl::PragmaDetectMismatch: { 5215 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5216 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5217 break; 5218 } 5219 5220 case Decl::LinkageSpec: 5221 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5222 break; 5223 5224 case Decl::FileScopeAsm: { 5225 // File-scope asm is ignored during device-side CUDA compilation. 5226 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5227 break; 5228 // File-scope asm is ignored during device-side OpenMP compilation. 5229 if (LangOpts.OpenMPIsDevice) 5230 break; 5231 auto *AD = cast<FileScopeAsmDecl>(D); 5232 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5233 break; 5234 } 5235 5236 case Decl::Import: { 5237 auto *Import = cast<ImportDecl>(D); 5238 5239 // If we've already imported this module, we're done. 5240 if (!ImportedModules.insert(Import->getImportedModule())) 5241 break; 5242 5243 // Emit debug information for direct imports. 5244 if (!Import->getImportedOwningModule()) { 5245 if (CGDebugInfo *DI = getModuleDebugInfo()) 5246 DI->EmitImportDecl(*Import); 5247 } 5248 5249 // Find all of the submodules and emit the module initializers. 5250 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5251 SmallVector<clang::Module *, 16> Stack; 5252 Visited.insert(Import->getImportedModule()); 5253 Stack.push_back(Import->getImportedModule()); 5254 5255 while (!Stack.empty()) { 5256 clang::Module *Mod = Stack.pop_back_val(); 5257 if (!EmittedModuleInitializers.insert(Mod).second) 5258 continue; 5259 5260 for (auto *D : Context.getModuleInitializers(Mod)) 5261 EmitTopLevelDecl(D); 5262 5263 // Visit the submodules of this module. 5264 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5265 SubEnd = Mod->submodule_end(); 5266 Sub != SubEnd; ++Sub) { 5267 // Skip explicit children; they need to be explicitly imported to emit 5268 // the initializers. 5269 if ((*Sub)->IsExplicit) 5270 continue; 5271 5272 if (Visited.insert(*Sub).second) 5273 Stack.push_back(*Sub); 5274 } 5275 } 5276 break; 5277 } 5278 5279 case Decl::Export: 5280 EmitDeclContext(cast<ExportDecl>(D)); 5281 break; 5282 5283 case Decl::OMPThreadPrivate: 5284 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5285 break; 5286 5287 case Decl::OMPAllocate: 5288 break; 5289 5290 case Decl::OMPDeclareReduction: 5291 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5292 break; 5293 5294 case Decl::OMPDeclareMapper: 5295 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5296 break; 5297 5298 case Decl::OMPRequires: 5299 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5300 break; 5301 5302 default: 5303 // Make sure we handled everything we should, every other kind is a 5304 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5305 // function. Need to recode Decl::Kind to do that easily. 5306 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5307 break; 5308 } 5309 } 5310 5311 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5312 // Do we need to generate coverage mapping? 5313 if (!CodeGenOpts.CoverageMapping) 5314 return; 5315 switch (D->getKind()) { 5316 case Decl::CXXConversion: 5317 case Decl::CXXMethod: 5318 case Decl::Function: 5319 case Decl::ObjCMethod: 5320 case Decl::CXXConstructor: 5321 case Decl::CXXDestructor: { 5322 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5323 return; 5324 SourceManager &SM = getContext().getSourceManager(); 5325 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5326 return; 5327 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5328 if (I == DeferredEmptyCoverageMappingDecls.end()) 5329 DeferredEmptyCoverageMappingDecls[D] = true; 5330 break; 5331 } 5332 default: 5333 break; 5334 }; 5335 } 5336 5337 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5338 // Do we need to generate coverage mapping? 5339 if (!CodeGenOpts.CoverageMapping) 5340 return; 5341 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5342 if (Fn->isTemplateInstantiation()) 5343 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5344 } 5345 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5346 if (I == DeferredEmptyCoverageMappingDecls.end()) 5347 DeferredEmptyCoverageMappingDecls[D] = false; 5348 else 5349 I->second = false; 5350 } 5351 5352 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5353 // We call takeVector() here to avoid use-after-free. 5354 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5355 // we deserialize function bodies to emit coverage info for them, and that 5356 // deserializes more declarations. How should we handle that case? 5357 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5358 if (!Entry.second) 5359 continue; 5360 const Decl *D = Entry.first; 5361 switch (D->getKind()) { 5362 case Decl::CXXConversion: 5363 case Decl::CXXMethod: 5364 case Decl::Function: 5365 case Decl::ObjCMethod: { 5366 CodeGenPGO PGO(*this); 5367 GlobalDecl GD(cast<FunctionDecl>(D)); 5368 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5369 getFunctionLinkage(GD)); 5370 break; 5371 } 5372 case Decl::CXXConstructor: { 5373 CodeGenPGO PGO(*this); 5374 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5375 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5376 getFunctionLinkage(GD)); 5377 break; 5378 } 5379 case Decl::CXXDestructor: { 5380 CodeGenPGO PGO(*this); 5381 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5382 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5383 getFunctionLinkage(GD)); 5384 break; 5385 } 5386 default: 5387 break; 5388 }; 5389 } 5390 } 5391 5392 /// Turns the given pointer into a constant. 5393 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5394 const void *Ptr) { 5395 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5396 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5397 return llvm::ConstantInt::get(i64, PtrInt); 5398 } 5399 5400 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5401 llvm::NamedMDNode *&GlobalMetadata, 5402 GlobalDecl D, 5403 llvm::GlobalValue *Addr) { 5404 if (!GlobalMetadata) 5405 GlobalMetadata = 5406 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5407 5408 // TODO: should we report variant information for ctors/dtors? 5409 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5410 llvm::ConstantAsMetadata::get(GetPointerConstant( 5411 CGM.getLLVMContext(), D.getDecl()))}; 5412 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5413 } 5414 5415 /// For each function which is declared within an extern "C" region and marked 5416 /// as 'used', but has internal linkage, create an alias from the unmangled 5417 /// name to the mangled name if possible. People expect to be able to refer 5418 /// to such functions with an unmangled name from inline assembly within the 5419 /// same translation unit. 5420 void CodeGenModule::EmitStaticExternCAliases() { 5421 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5422 return; 5423 for (auto &I : StaticExternCValues) { 5424 IdentifierInfo *Name = I.first; 5425 llvm::GlobalValue *Val = I.second; 5426 if (Val && !getModule().getNamedValue(Name->getName())) 5427 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5428 } 5429 } 5430 5431 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5432 GlobalDecl &Result) const { 5433 auto Res = Manglings.find(MangledName); 5434 if (Res == Manglings.end()) 5435 return false; 5436 Result = Res->getValue(); 5437 return true; 5438 } 5439 5440 /// Emits metadata nodes associating all the global values in the 5441 /// current module with the Decls they came from. This is useful for 5442 /// projects using IR gen as a subroutine. 5443 /// 5444 /// Since there's currently no way to associate an MDNode directly 5445 /// with an llvm::GlobalValue, we create a global named metadata 5446 /// with the name 'clang.global.decl.ptrs'. 5447 void CodeGenModule::EmitDeclMetadata() { 5448 llvm::NamedMDNode *GlobalMetadata = nullptr; 5449 5450 for (auto &I : MangledDeclNames) { 5451 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5452 // Some mangled names don't necessarily have an associated GlobalValue 5453 // in this module, e.g. if we mangled it for DebugInfo. 5454 if (Addr) 5455 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5456 } 5457 } 5458 5459 /// Emits metadata nodes for all the local variables in the current 5460 /// function. 5461 void CodeGenFunction::EmitDeclMetadata() { 5462 if (LocalDeclMap.empty()) return; 5463 5464 llvm::LLVMContext &Context = getLLVMContext(); 5465 5466 // Find the unique metadata ID for this name. 5467 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5468 5469 llvm::NamedMDNode *GlobalMetadata = nullptr; 5470 5471 for (auto &I : LocalDeclMap) { 5472 const Decl *D = I.first; 5473 llvm::Value *Addr = I.second.getPointer(); 5474 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5475 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5476 Alloca->setMetadata( 5477 DeclPtrKind, llvm::MDNode::get( 5478 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5479 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5480 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5481 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5482 } 5483 } 5484 } 5485 5486 void CodeGenModule::EmitVersionIdentMetadata() { 5487 llvm::NamedMDNode *IdentMetadata = 5488 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5489 std::string Version = getClangFullVersion(); 5490 llvm::LLVMContext &Ctx = TheModule.getContext(); 5491 5492 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5493 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5494 } 5495 5496 void CodeGenModule::EmitCommandLineMetadata() { 5497 llvm::NamedMDNode *CommandLineMetadata = 5498 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5499 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5500 llvm::LLVMContext &Ctx = TheModule.getContext(); 5501 5502 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5503 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5504 } 5505 5506 void CodeGenModule::EmitTargetMetadata() { 5507 // Warning, new MangledDeclNames may be appended within this loop. 5508 // We rely on MapVector insertions adding new elements to the end 5509 // of the container. 5510 // FIXME: Move this loop into the one target that needs it, and only 5511 // loop over those declarations for which we couldn't emit the target 5512 // metadata when we emitted the declaration. 5513 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5514 auto Val = *(MangledDeclNames.begin() + I); 5515 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5516 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5517 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5518 } 5519 } 5520 5521 void CodeGenModule::EmitCoverageFile() { 5522 if (getCodeGenOpts().CoverageDataFile.empty() && 5523 getCodeGenOpts().CoverageNotesFile.empty()) 5524 return; 5525 5526 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5527 if (!CUNode) 5528 return; 5529 5530 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5531 llvm::LLVMContext &Ctx = TheModule.getContext(); 5532 auto *CoverageDataFile = 5533 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5534 auto *CoverageNotesFile = 5535 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5536 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5537 llvm::MDNode *CU = CUNode->getOperand(i); 5538 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5539 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5540 } 5541 } 5542 5543 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5544 // Sema has checked that all uuid strings are of the form 5545 // "12345678-1234-1234-1234-1234567890ab". 5546 assert(Uuid.size() == 36); 5547 for (unsigned i = 0; i < 36; ++i) { 5548 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5549 else assert(isHexDigit(Uuid[i])); 5550 } 5551 5552 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5553 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5554 5555 llvm::Constant *Field3[8]; 5556 for (unsigned Idx = 0; Idx < 8; ++Idx) 5557 Field3[Idx] = llvm::ConstantInt::get( 5558 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5559 5560 llvm::Constant *Fields[4] = { 5561 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5562 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5563 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5564 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5565 }; 5566 5567 return llvm::ConstantStruct::getAnon(Fields); 5568 } 5569 5570 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5571 bool ForEH) { 5572 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5573 // FIXME: should we even be calling this method if RTTI is disabled 5574 // and it's not for EH? 5575 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5576 return llvm::Constant::getNullValue(Int8PtrTy); 5577 5578 if (ForEH && Ty->isObjCObjectPointerType() && 5579 LangOpts.ObjCRuntime.isGNUFamily()) 5580 return ObjCRuntime->GetEHType(Ty); 5581 5582 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5583 } 5584 5585 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5586 // Do not emit threadprivates in simd-only mode. 5587 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5588 return; 5589 for (auto RefExpr : D->varlists()) { 5590 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5591 bool PerformInit = 5592 VD->getAnyInitializer() && 5593 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5594 /*ForRef=*/false); 5595 5596 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5597 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5598 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5599 CXXGlobalInits.push_back(InitFunction); 5600 } 5601 } 5602 5603 llvm::Metadata * 5604 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5605 StringRef Suffix) { 5606 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5607 if (InternalId) 5608 return InternalId; 5609 5610 if (isExternallyVisible(T->getLinkage())) { 5611 std::string OutName; 5612 llvm::raw_string_ostream Out(OutName); 5613 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5614 Out << Suffix; 5615 5616 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5617 } else { 5618 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5619 llvm::ArrayRef<llvm::Metadata *>()); 5620 } 5621 5622 return InternalId; 5623 } 5624 5625 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5626 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5627 } 5628 5629 llvm::Metadata * 5630 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5631 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5632 } 5633 5634 // Generalize pointer types to a void pointer with the qualifiers of the 5635 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5636 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5637 // 'void *'. 5638 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5639 if (!Ty->isPointerType()) 5640 return Ty; 5641 5642 return Ctx.getPointerType( 5643 QualType(Ctx.VoidTy).withCVRQualifiers( 5644 Ty->getPointeeType().getCVRQualifiers())); 5645 } 5646 5647 // Apply type generalization to a FunctionType's return and argument types 5648 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5649 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5650 SmallVector<QualType, 8> GeneralizedParams; 5651 for (auto &Param : FnType->param_types()) 5652 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5653 5654 return Ctx.getFunctionType( 5655 GeneralizeType(Ctx, FnType->getReturnType()), 5656 GeneralizedParams, FnType->getExtProtoInfo()); 5657 } 5658 5659 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5660 return Ctx.getFunctionNoProtoType( 5661 GeneralizeType(Ctx, FnType->getReturnType())); 5662 5663 llvm_unreachable("Encountered unknown FunctionType"); 5664 } 5665 5666 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5667 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5668 GeneralizedMetadataIdMap, ".generalized"); 5669 } 5670 5671 /// Returns whether this module needs the "all-vtables" type identifier. 5672 bool CodeGenModule::NeedAllVtablesTypeId() const { 5673 // Returns true if at least one of vtable-based CFI checkers is enabled and 5674 // is not in the trapping mode. 5675 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5676 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5677 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5678 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5679 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5680 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5681 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5682 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5683 } 5684 5685 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5686 CharUnits Offset, 5687 const CXXRecordDecl *RD) { 5688 llvm::Metadata *MD = 5689 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5690 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5691 5692 if (CodeGenOpts.SanitizeCfiCrossDso) 5693 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5694 VTable->addTypeMetadata(Offset.getQuantity(), 5695 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5696 5697 if (NeedAllVtablesTypeId()) { 5698 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5699 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5700 } 5701 } 5702 5703 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5704 assert(TD != nullptr); 5705 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5706 5707 ParsedAttr.Features.erase( 5708 llvm::remove_if(ParsedAttr.Features, 5709 [&](const std::string &Feat) { 5710 return !Target.isValidFeatureName( 5711 StringRef{Feat}.substr(1)); 5712 }), 5713 ParsedAttr.Features.end()); 5714 return ParsedAttr; 5715 } 5716 5717 5718 // Fills in the supplied string map with the set of target features for the 5719 // passed in function. 5720 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5721 GlobalDecl GD) { 5722 StringRef TargetCPU = Target.getTargetOpts().CPU; 5723 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5724 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5725 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5726 5727 // Make a copy of the features as passed on the command line into the 5728 // beginning of the additional features from the function to override. 5729 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5730 Target.getTargetOpts().FeaturesAsWritten.begin(), 5731 Target.getTargetOpts().FeaturesAsWritten.end()); 5732 5733 if (ParsedAttr.Architecture != "" && 5734 Target.isValidCPUName(ParsedAttr.Architecture)) 5735 TargetCPU = ParsedAttr.Architecture; 5736 5737 // Now populate the feature map, first with the TargetCPU which is either 5738 // the default or a new one from the target attribute string. Then we'll use 5739 // the passed in features (FeaturesAsWritten) along with the new ones from 5740 // the attribute. 5741 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5742 ParsedAttr.Features); 5743 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5744 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5745 Target.getCPUSpecificCPUDispatchFeatures( 5746 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5747 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5748 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5749 } else { 5750 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5751 Target.getTargetOpts().Features); 5752 } 5753 } 5754 5755 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5756 if (!SanStats) 5757 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5758 5759 return *SanStats; 5760 } 5761 llvm::Value * 5762 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5763 CodeGenFunction &CGF) { 5764 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5765 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5766 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5767 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5768 "__translate_sampler_initializer"), 5769 {C}); 5770 } 5771