1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 73 using namespace clang; 74 using namespace CodeGen; 75 76 static llvm::cl::opt<bool> LimitedCoverage( 77 "limited-coverage-experimental", llvm::cl::Hidden, 78 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 79 80 static const char AnnotationSection[] = "llvm.metadata"; 81 82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 83 switch (CGM.getContext().getCXXABIKind()) { 84 case TargetCXXABI::AppleARM64: 85 case TargetCXXABI::Fuchsia: 86 case TargetCXXABI::GenericAArch64: 87 case TargetCXXABI::GenericARM: 88 case TargetCXXABI::iOS: 89 case TargetCXXABI::WatchOS: 90 case TargetCXXABI::GenericMIPS: 91 case TargetCXXABI::GenericItanium: 92 case TargetCXXABI::WebAssembly: 93 case TargetCXXABI::XL: 94 return CreateItaniumCXXABI(CGM); 95 case TargetCXXABI::Microsoft: 96 return CreateMicrosoftCXXABI(CGM); 97 } 98 99 llvm_unreachable("invalid C++ ABI kind"); 100 } 101 102 CodeGenModule::CodeGenModule(ASTContext &C, 103 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 104 const HeaderSearchOptions &HSO, 105 const PreprocessorOptions &PPO, 106 const CodeGenOptions &CGO, llvm::Module &M, 107 DiagnosticsEngine &diags, 108 CoverageSourceInfo *CoverageInfo) 109 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 110 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 111 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 112 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 113 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 114 115 // Initialize the type cache. 116 llvm::LLVMContext &LLVMContext = M.getContext(); 117 VoidTy = llvm::Type::getVoidTy(LLVMContext); 118 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 119 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 120 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 121 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 122 HalfTy = llvm::Type::getHalfTy(LLVMContext); 123 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 124 FloatTy = llvm::Type::getFloatTy(LLVMContext); 125 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 126 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 127 PointerAlignInBytes = 128 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 129 SizeSizeInBytes = 130 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 131 IntAlignInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 133 CharTy = 134 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 135 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 136 IntPtrTy = llvm::IntegerType::get(LLVMContext, 137 C.getTargetInfo().getMaxPointerWidth()); 138 Int8PtrTy = Int8Ty->getPointerTo(0); 139 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 140 const llvm::DataLayout &DL = M.getDataLayout(); 141 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 142 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 143 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 144 145 // Build C++20 Module initializers. 146 // TODO: Add Microsoft here once we know the mangling required for the 147 // initializers. 148 CXX20ModuleInits = 149 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 150 ItaniumMangleContext::MK_Itanium; 151 152 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 153 154 if (LangOpts.ObjC) 155 createObjCRuntime(); 156 if (LangOpts.OpenCL) 157 createOpenCLRuntime(); 158 if (LangOpts.OpenMP) 159 createOpenMPRuntime(); 160 if (LangOpts.CUDA) 161 createCUDARuntime(); 162 if (LangOpts.HLSL) 163 createHLSLRuntime(); 164 165 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 166 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 167 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 168 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 169 getCXXABI().getMangleContext())); 170 171 // If debug info or coverage generation is enabled, create the CGDebugInfo 172 // object. 173 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 174 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 175 DebugInfo.reset(new CGDebugInfo(*this)); 176 177 Block.GlobalUniqueCount = 0; 178 179 if (C.getLangOpts().ObjC) 180 ObjCData.reset(new ObjCEntrypoints()); 181 182 if (CodeGenOpts.hasProfileClangUse()) { 183 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 184 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 185 if (auto E = ReaderOrErr.takeError()) { 186 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 187 "Could not read profile %0: %1"); 188 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 189 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 190 << EI.message(); 191 }); 192 } else 193 PGOReader = std::move(ReaderOrErr.get()); 194 } 195 196 // If coverage mapping generation is enabled, create the 197 // CoverageMappingModuleGen object. 198 if (CodeGenOpts.CoverageMapping) 199 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 200 201 // Generate the module name hash here if needed. 202 if (CodeGenOpts.UniqueInternalLinkageNames && 203 !getModule().getSourceFileName().empty()) { 204 std::string Path = getModule().getSourceFileName(); 205 // Check if a path substitution is needed from the MacroPrefixMap. 206 for (const auto &Entry : LangOpts.MacroPrefixMap) 207 if (Path.rfind(Entry.first, 0) != std::string::npos) { 208 Path = Entry.second + Path.substr(Entry.first.size()); 209 break; 210 } 211 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 case llvm::Triple::amdgcn: 248 assert(getLangOpts().OpenMPIsDevice && 249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 251 break; 252 default: 253 if (LangOpts.OpenMPSimd) 254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 255 else 256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 257 break; 258 } 259 } 260 261 void CodeGenModule::createCUDARuntime() { 262 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 263 } 264 265 void CodeGenModule::createHLSLRuntime() { 266 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 267 } 268 269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 270 Replacements[Name] = C; 271 } 272 273 void CodeGenModule::applyReplacements() { 274 for (auto &I : Replacements) { 275 StringRef MangledName = I.first(); 276 llvm::Constant *Replacement = I.second; 277 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 278 if (!Entry) 279 continue; 280 auto *OldF = cast<llvm::Function>(Entry); 281 auto *NewF = dyn_cast<llvm::Function>(Replacement); 282 if (!NewF) { 283 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 284 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 285 } else { 286 auto *CE = cast<llvm::ConstantExpr>(Replacement); 287 assert(CE->getOpcode() == llvm::Instruction::BitCast || 288 CE->getOpcode() == llvm::Instruction::GetElementPtr); 289 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 290 } 291 } 292 293 // Replace old with new, but keep the old order. 294 OldF->replaceAllUsesWith(Replacement); 295 if (NewF) { 296 NewF->removeFromParent(); 297 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 298 NewF); 299 } 300 OldF->eraseFromParent(); 301 } 302 } 303 304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 305 GlobalValReplacements.push_back(std::make_pair(GV, C)); 306 } 307 308 void CodeGenModule::applyGlobalValReplacements() { 309 for (auto &I : GlobalValReplacements) { 310 llvm::GlobalValue *GV = I.first; 311 llvm::Constant *C = I.second; 312 313 GV->replaceAllUsesWith(C); 314 GV->eraseFromParent(); 315 } 316 } 317 318 // This is only used in aliases that we created and we know they have a 319 // linear structure. 320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 321 const llvm::Constant *C; 322 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 323 C = GA->getAliasee(); 324 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 325 C = GI->getResolver(); 326 else 327 return GV; 328 329 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 330 if (!AliaseeGV) 331 return nullptr; 332 333 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 334 if (FinalGV == GV) 335 return nullptr; 336 337 return FinalGV; 338 } 339 340 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 341 SourceLocation Location, bool IsIFunc, 342 const llvm::GlobalValue *Alias, 343 const llvm::GlobalValue *&GV) { 344 GV = getAliasedGlobal(Alias); 345 if (!GV) { 346 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 347 return false; 348 } 349 350 if (GV->isDeclaration()) { 351 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 352 return false; 353 } 354 355 if (IsIFunc) { 356 // Check resolver function type. 357 const auto *F = dyn_cast<llvm::Function>(GV); 358 if (!F) { 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 return false; 362 } 363 364 llvm::FunctionType *FTy = F->getFunctionType(); 365 if (!FTy->getReturnType()->isPointerTy()) { 366 Diags.Report(Location, diag::err_ifunc_resolver_return); 367 return false; 368 } 369 } 370 371 return true; 372 } 373 374 void CodeGenModule::checkAliases() { 375 // Check if the constructed aliases are well formed. It is really unfortunate 376 // that we have to do this in CodeGen, but we only construct mangled names 377 // and aliases during codegen. 378 bool Error = false; 379 DiagnosticsEngine &Diags = getDiags(); 380 for (const GlobalDecl &GD : Aliases) { 381 const auto *D = cast<ValueDecl>(GD.getDecl()); 382 SourceLocation Location; 383 bool IsIFunc = D->hasAttr<IFuncAttr>(); 384 if (const Attr *A = D->getDefiningAttr()) 385 Location = A->getLocation(); 386 else 387 llvm_unreachable("Not an alias or ifunc?"); 388 389 StringRef MangledName = getMangledName(GD); 390 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 391 const llvm::GlobalValue *GV = nullptr; 392 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 393 Error = true; 394 continue; 395 } 396 397 llvm::Constant *Aliasee = 398 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 399 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 400 401 llvm::GlobalValue *AliaseeGV; 402 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 403 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 404 else 405 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 406 407 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 408 StringRef AliasSection = SA->getName(); 409 if (AliasSection != AliaseeGV->getSection()) 410 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 411 << AliasSection << IsIFunc << IsIFunc; 412 } 413 414 // We have to handle alias to weak aliases in here. LLVM itself disallows 415 // this since the object semantics would not match the IL one. For 416 // compatibility with gcc we implement it by just pointing the alias 417 // to its aliasee's aliasee. We also warn, since the user is probably 418 // expecting the link to be weak. 419 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 420 if (GA->isInterposable()) { 421 Diags.Report(Location, diag::warn_alias_to_weak_alias) 422 << GV->getName() << GA->getName() << IsIFunc; 423 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 424 GA->getAliasee(), Alias->getType()); 425 426 if (IsIFunc) 427 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 428 else 429 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 430 } 431 } 432 } 433 if (!Error) 434 return; 435 436 for (const GlobalDecl &GD : Aliases) { 437 StringRef MangledName = getMangledName(GD); 438 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 439 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 440 Alias->eraseFromParent(); 441 } 442 } 443 444 void CodeGenModule::clear() { 445 DeferredDeclsToEmit.clear(); 446 EmittedDeferredDecls.clear(); 447 if (OpenMPRuntime) 448 OpenMPRuntime->clear(); 449 } 450 451 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 452 StringRef MainFile) { 453 if (!hasDiagnostics()) 454 return; 455 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 456 if (MainFile.empty()) 457 MainFile = "<stdin>"; 458 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 459 } else { 460 if (Mismatched > 0) 461 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 462 463 if (Missing > 0) 464 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 465 } 466 } 467 468 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 469 llvm::Module &M) { 470 if (!LO.VisibilityFromDLLStorageClass) 471 return; 472 473 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 474 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 475 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 476 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 477 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 478 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 479 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 480 CodeGenModule::GetLLVMVisibility( 481 LO.getExternDeclNoDLLStorageClassVisibility()); 482 483 for (llvm::GlobalValue &GV : M.global_values()) { 484 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 485 continue; 486 487 // Reset DSO locality before setting the visibility. This removes 488 // any effects that visibility options and annotations may have 489 // had on the DSO locality. Setting the visibility will implicitly set 490 // appropriate globals to DSO Local; however, this will be pessimistic 491 // w.r.t. to the normal compiler IRGen. 492 GV.setDSOLocal(false); 493 494 if (GV.isDeclarationForLinker()) { 495 GV.setVisibility(GV.getDLLStorageClass() == 496 llvm::GlobalValue::DLLImportStorageClass 497 ? ExternDeclDLLImportVisibility 498 : ExternDeclNoDLLStorageClassVisibility); 499 } else { 500 GV.setVisibility(GV.getDLLStorageClass() == 501 llvm::GlobalValue::DLLExportStorageClass 502 ? DLLExportVisibility 503 : NoDLLStorageClassVisibility); 504 } 505 506 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 507 } 508 } 509 510 void CodeGenModule::Release() { 511 Module *Primary = getContext().getModuleForCodeGen(); 512 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 513 EmitModuleInitializers(Primary); 514 EmitDeferred(); 515 DeferredDecls.insert(EmittedDeferredDecls.begin(), 516 EmittedDeferredDecls.end()); 517 EmittedDeferredDecls.clear(); 518 EmitVTablesOpportunistically(); 519 applyGlobalValReplacements(); 520 applyReplacements(); 521 emitMultiVersionFunctions(); 522 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 523 EmitCXXModuleInitFunc(Primary); 524 else 525 EmitCXXGlobalInitFunc(); 526 EmitCXXGlobalCleanUpFunc(); 527 registerGlobalDtorsWithAtExit(); 528 EmitCXXThreadLocalInitFunc(); 529 if (ObjCRuntime) 530 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 531 AddGlobalCtor(ObjCInitFunction); 532 if (Context.getLangOpts().CUDA && CUDARuntime) { 533 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 534 AddGlobalCtor(CudaCtorFunction); 535 } 536 if (OpenMPRuntime) { 537 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 538 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 539 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 540 } 541 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 542 OpenMPRuntime->clear(); 543 } 544 if (PGOReader) { 545 getModule().setProfileSummary( 546 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 547 llvm::ProfileSummary::PSK_Instr); 548 if (PGOStats.hasDiagnostics()) 549 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 550 } 551 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 552 return L.LexOrder < R.LexOrder; 553 }); 554 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 555 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 556 EmitGlobalAnnotations(); 557 EmitStaticExternCAliases(); 558 checkAliases(); 559 EmitDeferredUnusedCoverageMappings(); 560 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 561 if (CoverageMapping) 562 CoverageMapping->emit(); 563 if (CodeGenOpts.SanitizeCfiCrossDso) { 564 CodeGenFunction(*this).EmitCfiCheckFail(); 565 CodeGenFunction(*this).EmitCfiCheckStub(); 566 } 567 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 568 finalizeKCFITypes(); 569 emitAtAvailableLinkGuard(); 570 if (Context.getTargetInfo().getTriple().isWasm()) 571 EmitMainVoidAlias(); 572 573 if (getTriple().isAMDGPU()) { 574 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 575 // preserve ASAN functions in bitcode libraries. 576 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 577 auto *FT = llvm::FunctionType::get(VoidTy, {}); 578 auto *F = llvm::Function::Create( 579 FT, llvm::GlobalValue::ExternalLinkage, 580 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 581 auto *Var = new llvm::GlobalVariable( 582 getModule(), FT->getPointerTo(), 583 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 584 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 585 llvm::GlobalVariable::NotThreadLocal); 586 addCompilerUsedGlobal(Var); 587 } 588 // Emit amdgpu_code_object_version module flag, which is code object version 589 // times 100. 590 // ToDo: Enable module flag for all code object version when ROCm device 591 // library is ready. 592 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 593 getModule().addModuleFlag(llvm::Module::Error, 594 "amdgpu_code_object_version", 595 getTarget().getTargetOpts().CodeObjectVersion); 596 } 597 } 598 599 // Emit a global array containing all external kernels or device variables 600 // used by host functions and mark it as used for CUDA/HIP. This is necessary 601 // to get kernels or device variables in archives linked in even if these 602 // kernels or device variables are only used in host functions. 603 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 604 SmallVector<llvm::Constant *, 8> UsedArray; 605 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 606 GlobalDecl GD; 607 if (auto *FD = dyn_cast<FunctionDecl>(D)) 608 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 609 else 610 GD = GlobalDecl(D); 611 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 612 GetAddrOfGlobal(GD), Int8PtrTy)); 613 } 614 615 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 616 617 auto *GV = new llvm::GlobalVariable( 618 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 619 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 620 addCompilerUsedGlobal(GV); 621 } 622 623 emitLLVMUsed(); 624 if (SanStats) 625 SanStats->finish(); 626 627 if (CodeGenOpts.Autolink && 628 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 629 EmitModuleLinkOptions(); 630 } 631 632 // On ELF we pass the dependent library specifiers directly to the linker 633 // without manipulating them. This is in contrast to other platforms where 634 // they are mapped to a specific linker option by the compiler. This 635 // difference is a result of the greater variety of ELF linkers and the fact 636 // that ELF linkers tend to handle libraries in a more complicated fashion 637 // than on other platforms. This forces us to defer handling the dependent 638 // libs to the linker. 639 // 640 // CUDA/HIP device and host libraries are different. Currently there is no 641 // way to differentiate dependent libraries for host or device. Existing 642 // usage of #pragma comment(lib, *) is intended for host libraries on 643 // Windows. Therefore emit llvm.dependent-libraries only for host. 644 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 645 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 646 for (auto *MD : ELFDependentLibraries) 647 NMD->addOperand(MD); 648 } 649 650 // Record mregparm value now so it is visible through rest of codegen. 651 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 652 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 653 CodeGenOpts.NumRegisterParameters); 654 655 if (CodeGenOpts.DwarfVersion) { 656 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 657 CodeGenOpts.DwarfVersion); 658 } 659 660 if (CodeGenOpts.Dwarf64) 661 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 662 663 if (Context.getLangOpts().SemanticInterposition) 664 // Require various optimization to respect semantic interposition. 665 getModule().setSemanticInterposition(true); 666 667 if (CodeGenOpts.EmitCodeView) { 668 // Indicate that we want CodeView in the metadata. 669 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 670 } 671 if (CodeGenOpts.CodeViewGHash) { 672 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 673 } 674 if (CodeGenOpts.ControlFlowGuard) { 675 // Function ID tables and checks for Control Flow Guard (cfguard=2). 676 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 677 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 678 // Function ID tables for Control Flow Guard (cfguard=1). 679 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 680 } 681 if (CodeGenOpts.EHContGuard) { 682 // Function ID tables for EH Continuation Guard. 683 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 684 } 685 if (Context.getLangOpts().Kernel) { 686 // Note if we are compiling with /kernel. 687 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 688 } 689 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 690 // We don't support LTO with 2 with different StrictVTablePointers 691 // FIXME: we could support it by stripping all the information introduced 692 // by StrictVTablePointers. 693 694 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 695 696 llvm::Metadata *Ops[2] = { 697 llvm::MDString::get(VMContext, "StrictVTablePointers"), 698 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 699 llvm::Type::getInt32Ty(VMContext), 1))}; 700 701 getModule().addModuleFlag(llvm::Module::Require, 702 "StrictVTablePointersRequirement", 703 llvm::MDNode::get(VMContext, Ops)); 704 } 705 if (getModuleDebugInfo()) 706 // We support a single version in the linked module. The LLVM 707 // parser will drop debug info with a different version number 708 // (and warn about it, too). 709 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 710 llvm::DEBUG_METADATA_VERSION); 711 712 // We need to record the widths of enums and wchar_t, so that we can generate 713 // the correct build attributes in the ARM backend. wchar_size is also used by 714 // TargetLibraryInfo. 715 uint64_t WCharWidth = 716 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 717 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 718 719 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 720 if ( Arch == llvm::Triple::arm 721 || Arch == llvm::Triple::armeb 722 || Arch == llvm::Triple::thumb 723 || Arch == llvm::Triple::thumbeb) { 724 // The minimum width of an enum in bytes 725 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 726 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 727 } 728 729 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 730 StringRef ABIStr = Target.getABI(); 731 llvm::LLVMContext &Ctx = TheModule.getContext(); 732 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 733 llvm::MDString::get(Ctx, ABIStr)); 734 } 735 736 if (CodeGenOpts.SanitizeCfiCrossDso) { 737 // Indicate that we want cross-DSO control flow integrity checks. 738 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 739 } 740 741 if (CodeGenOpts.WholeProgramVTables) { 742 // Indicate whether VFE was enabled for this module, so that the 743 // vcall_visibility metadata added under whole program vtables is handled 744 // appropriately in the optimizer. 745 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 746 CodeGenOpts.VirtualFunctionElimination); 747 } 748 749 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 750 getModule().addModuleFlag(llvm::Module::Override, 751 "CFI Canonical Jump Tables", 752 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 753 } 754 755 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 756 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 757 758 if (CodeGenOpts.CFProtectionReturn && 759 Target.checkCFProtectionReturnSupported(getDiags())) { 760 // Indicate that we want to instrument return control flow protection. 761 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 762 1); 763 } 764 765 if (CodeGenOpts.CFProtectionBranch && 766 Target.checkCFProtectionBranchSupported(getDiags())) { 767 // Indicate that we want to instrument branch control flow protection. 768 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 769 1); 770 } 771 772 if (CodeGenOpts.IBTSeal) 773 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1); 774 775 if (CodeGenOpts.FunctionReturnThunks) 776 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 777 778 if (CodeGenOpts.IndirectBranchCSPrefix) 779 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 780 781 // Add module metadata for return address signing (ignoring 782 // non-leaf/all) and stack tagging. These are actually turned on by function 783 // attributes, but we use module metadata to emit build attributes. This is 784 // needed for LTO, where the function attributes are inside bitcode 785 // serialised into a global variable by the time build attributes are 786 // emitted, so we can't access them. LTO objects could be compiled with 787 // different flags therefore module flags are set to "Min" behavior to achieve 788 // the same end result of the normal build where e.g BTI is off if any object 789 // doesn't support it. 790 if (Context.getTargetInfo().hasFeature("ptrauth") && 791 LangOpts.getSignReturnAddressScope() != 792 LangOptions::SignReturnAddressScopeKind::None) 793 getModule().addModuleFlag(llvm::Module::Override, 794 "sign-return-address-buildattr", 1); 795 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 796 getModule().addModuleFlag(llvm::Module::Override, 797 "tag-stack-memory-buildattr", 1); 798 799 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 800 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 801 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 802 Arch == llvm::Triple::aarch64_be) { 803 if (LangOpts.BranchTargetEnforcement) 804 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 805 1); 806 if (LangOpts.hasSignReturnAddress()) 807 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 808 if (LangOpts.isSignReturnAddressScopeAll()) 809 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 810 1); 811 if (!LangOpts.isSignReturnAddressWithAKey()) 812 getModule().addModuleFlag(llvm::Module::Min, 813 "sign-return-address-with-bkey", 1); 814 } 815 816 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 817 llvm::LLVMContext &Ctx = TheModule.getContext(); 818 getModule().addModuleFlag( 819 llvm::Module::Error, "MemProfProfileFilename", 820 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 821 } 822 823 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 824 // Indicate whether __nvvm_reflect should be configured to flush denormal 825 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 826 // property.) 827 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 828 CodeGenOpts.FP32DenormalMode.Output != 829 llvm::DenormalMode::IEEE); 830 } 831 832 if (LangOpts.EHAsynch) 833 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 834 835 // Indicate whether this Module was compiled with -fopenmp 836 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 837 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 838 if (getLangOpts().OpenMPIsDevice) 839 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 840 LangOpts.OpenMP); 841 842 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 843 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 844 EmitOpenCLMetadata(); 845 // Emit SPIR version. 846 if (getTriple().isSPIR()) { 847 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 848 // opencl.spir.version named metadata. 849 // C++ for OpenCL has a distinct mapping for version compatibility with 850 // OpenCL. 851 auto Version = LangOpts.getOpenCLCompatibleVersion(); 852 llvm::Metadata *SPIRVerElts[] = { 853 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 854 Int32Ty, Version / 100)), 855 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 856 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 857 llvm::NamedMDNode *SPIRVerMD = 858 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 859 llvm::LLVMContext &Ctx = TheModule.getContext(); 860 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 861 } 862 } 863 864 // HLSL related end of code gen work items. 865 if (LangOpts.HLSL) 866 getHLSLRuntime().finishCodeGen(); 867 868 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 869 assert(PLevel < 3 && "Invalid PIC Level"); 870 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 871 if (Context.getLangOpts().PIE) 872 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 873 } 874 875 if (getCodeGenOpts().CodeModel.size() > 0) { 876 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 877 .Case("tiny", llvm::CodeModel::Tiny) 878 .Case("small", llvm::CodeModel::Small) 879 .Case("kernel", llvm::CodeModel::Kernel) 880 .Case("medium", llvm::CodeModel::Medium) 881 .Case("large", llvm::CodeModel::Large) 882 .Default(~0u); 883 if (CM != ~0u) { 884 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 885 getModule().setCodeModel(codeModel); 886 } 887 } 888 889 if (CodeGenOpts.NoPLT) 890 getModule().setRtLibUseGOT(); 891 if (CodeGenOpts.UnwindTables) 892 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 893 894 switch (CodeGenOpts.getFramePointer()) { 895 case CodeGenOptions::FramePointerKind::None: 896 // 0 ("none") is the default. 897 break; 898 case CodeGenOptions::FramePointerKind::NonLeaf: 899 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 900 break; 901 case CodeGenOptions::FramePointerKind::All: 902 getModule().setFramePointer(llvm::FramePointerKind::All); 903 break; 904 } 905 906 SimplifyPersonality(); 907 908 if (getCodeGenOpts().EmitDeclMetadata) 909 EmitDeclMetadata(); 910 911 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 912 EmitCoverageFile(); 913 914 if (CGDebugInfo *DI = getModuleDebugInfo()) 915 DI->finalize(); 916 917 if (getCodeGenOpts().EmitVersionIdentMetadata) 918 EmitVersionIdentMetadata(); 919 920 if (!getCodeGenOpts().RecordCommandLine.empty()) 921 EmitCommandLineMetadata(); 922 923 if (!getCodeGenOpts().StackProtectorGuard.empty()) 924 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 925 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 926 getModule().setStackProtectorGuardReg( 927 getCodeGenOpts().StackProtectorGuardReg); 928 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 929 getModule().setStackProtectorGuardSymbol( 930 getCodeGenOpts().StackProtectorGuardSymbol); 931 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 932 getModule().setStackProtectorGuardOffset( 933 getCodeGenOpts().StackProtectorGuardOffset); 934 if (getCodeGenOpts().StackAlignment) 935 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 936 if (getCodeGenOpts().SkipRaxSetup) 937 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 938 939 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 940 941 EmitBackendOptionsMetadata(getCodeGenOpts()); 942 943 // If there is device offloading code embed it in the host now. 944 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 945 946 // Set visibility from DLL storage class 947 // We do this at the end of LLVM IR generation; after any operation 948 // that might affect the DLL storage class or the visibility, and 949 // before anything that might act on these. 950 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 951 } 952 953 void CodeGenModule::EmitOpenCLMetadata() { 954 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 955 // opencl.ocl.version named metadata node. 956 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 957 auto Version = LangOpts.getOpenCLCompatibleVersion(); 958 llvm::Metadata *OCLVerElts[] = { 959 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 960 Int32Ty, Version / 100)), 961 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 962 Int32Ty, (Version % 100) / 10))}; 963 llvm::NamedMDNode *OCLVerMD = 964 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 965 llvm::LLVMContext &Ctx = TheModule.getContext(); 966 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 967 } 968 969 void CodeGenModule::EmitBackendOptionsMetadata( 970 const CodeGenOptions CodeGenOpts) { 971 if (getTriple().isRISCV()) { 972 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 973 CodeGenOpts.SmallDataLimit); 974 } 975 } 976 977 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 978 // Make sure that this type is translated. 979 Types.UpdateCompletedType(TD); 980 } 981 982 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 983 // Make sure that this type is translated. 984 Types.RefreshTypeCacheForClass(RD); 985 } 986 987 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 988 if (!TBAA) 989 return nullptr; 990 return TBAA->getTypeInfo(QTy); 991 } 992 993 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 994 if (!TBAA) 995 return TBAAAccessInfo(); 996 if (getLangOpts().CUDAIsDevice) { 997 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 998 // access info. 999 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1000 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1001 nullptr) 1002 return TBAAAccessInfo(); 1003 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1004 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1005 nullptr) 1006 return TBAAAccessInfo(); 1007 } 1008 } 1009 return TBAA->getAccessInfo(AccessType); 1010 } 1011 1012 TBAAAccessInfo 1013 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1014 if (!TBAA) 1015 return TBAAAccessInfo(); 1016 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1017 } 1018 1019 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1020 if (!TBAA) 1021 return nullptr; 1022 return TBAA->getTBAAStructInfo(QTy); 1023 } 1024 1025 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1026 if (!TBAA) 1027 return nullptr; 1028 return TBAA->getBaseTypeInfo(QTy); 1029 } 1030 1031 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1032 if (!TBAA) 1033 return nullptr; 1034 return TBAA->getAccessTagInfo(Info); 1035 } 1036 1037 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1038 TBAAAccessInfo TargetInfo) { 1039 if (!TBAA) 1040 return TBAAAccessInfo(); 1041 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1042 } 1043 1044 TBAAAccessInfo 1045 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1046 TBAAAccessInfo InfoB) { 1047 if (!TBAA) 1048 return TBAAAccessInfo(); 1049 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1050 } 1051 1052 TBAAAccessInfo 1053 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1054 TBAAAccessInfo SrcInfo) { 1055 if (!TBAA) 1056 return TBAAAccessInfo(); 1057 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1058 } 1059 1060 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1061 TBAAAccessInfo TBAAInfo) { 1062 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1063 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1064 } 1065 1066 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1067 llvm::Instruction *I, const CXXRecordDecl *RD) { 1068 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1069 llvm::MDNode::get(getLLVMContext(), {})); 1070 } 1071 1072 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1073 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1074 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1075 } 1076 1077 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1078 /// specified stmt yet. 1079 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1080 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1081 "cannot compile this %0 yet"); 1082 std::string Msg = Type; 1083 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1084 << Msg << S->getSourceRange(); 1085 } 1086 1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1088 /// specified decl yet. 1089 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1090 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1091 "cannot compile this %0 yet"); 1092 std::string Msg = Type; 1093 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1094 } 1095 1096 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1097 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1098 } 1099 1100 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1101 const NamedDecl *D) const { 1102 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) 1103 return; 1104 // Internal definitions always have default visibility. 1105 if (GV->hasLocalLinkage()) { 1106 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1107 return; 1108 } 1109 if (!D) 1110 return; 1111 // Set visibility for definitions, and for declarations if requested globally 1112 // or set explicitly. 1113 LinkageInfo LV = D->getLinkageAndVisibility(); 1114 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1115 !GV->isDeclarationForLinker()) 1116 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1117 } 1118 1119 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1120 llvm::GlobalValue *GV) { 1121 if (GV->hasLocalLinkage()) 1122 return true; 1123 1124 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1125 return true; 1126 1127 // DLLImport explicitly marks the GV as external. 1128 if (GV->hasDLLImportStorageClass()) 1129 return false; 1130 1131 const llvm::Triple &TT = CGM.getTriple(); 1132 if (TT.isWindowsGNUEnvironment()) { 1133 // In MinGW, variables without DLLImport can still be automatically 1134 // imported from a DLL by the linker; don't mark variables that 1135 // potentially could come from another DLL as DSO local. 1136 1137 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1138 // (and this actually happens in the public interface of libstdc++), so 1139 // such variables can't be marked as DSO local. (Native TLS variables 1140 // can't be dllimported at all, though.) 1141 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1142 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1143 return false; 1144 } 1145 1146 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1147 // remain unresolved in the link, they can be resolved to zero, which is 1148 // outside the current DSO. 1149 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1150 return false; 1151 1152 // Every other GV is local on COFF. 1153 // Make an exception for windows OS in the triple: Some firmware builds use 1154 // *-win32-macho triples. This (accidentally?) produced windows relocations 1155 // without GOT tables in older clang versions; Keep this behaviour. 1156 // FIXME: even thread local variables? 1157 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1158 return true; 1159 1160 // Only handle COFF and ELF for now. 1161 if (!TT.isOSBinFormatELF()) 1162 return false; 1163 1164 // If this is not an executable, don't assume anything is local. 1165 const auto &CGOpts = CGM.getCodeGenOpts(); 1166 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1167 const auto &LOpts = CGM.getLangOpts(); 1168 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1169 // On ELF, if -fno-semantic-interposition is specified and the target 1170 // supports local aliases, there will be neither CC1 1171 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1172 // dso_local on the function if using a local alias is preferable (can avoid 1173 // PLT indirection). 1174 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1175 return false; 1176 return !(CGM.getLangOpts().SemanticInterposition || 1177 CGM.getLangOpts().HalfNoSemanticInterposition); 1178 } 1179 1180 // A definition cannot be preempted from an executable. 1181 if (!GV->isDeclarationForLinker()) 1182 return true; 1183 1184 // Most PIC code sequences that assume that a symbol is local cannot produce a 1185 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1186 // depended, it seems worth it to handle it here. 1187 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1188 return false; 1189 1190 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1191 if (TT.isPPC64()) 1192 return false; 1193 1194 if (CGOpts.DirectAccessExternalData) { 1195 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1196 // for non-thread-local variables. If the symbol is not defined in the 1197 // executable, a copy relocation will be needed at link time. dso_local is 1198 // excluded for thread-local variables because they generally don't support 1199 // copy relocations. 1200 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1201 if (!Var->isThreadLocal()) 1202 return true; 1203 1204 // -fno-pic sets dso_local on a function declaration to allow direct 1205 // accesses when taking its address (similar to a data symbol). If the 1206 // function is not defined in the executable, a canonical PLT entry will be 1207 // needed at link time. -fno-direct-access-external-data can avoid the 1208 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1209 // it could just cause trouble without providing perceptible benefits. 1210 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1211 return true; 1212 } 1213 1214 // If we can use copy relocations we can assume it is local. 1215 1216 // Otherwise don't assume it is local. 1217 return false; 1218 } 1219 1220 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1221 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1222 } 1223 1224 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1225 GlobalDecl GD) const { 1226 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1227 // C++ destructors have a few C++ ABI specific special cases. 1228 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1229 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1230 return; 1231 } 1232 setDLLImportDLLExport(GV, D); 1233 } 1234 1235 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1236 const NamedDecl *D) const { 1237 if (D && D->isExternallyVisible()) { 1238 if (D->hasAttr<DLLImportAttr>()) 1239 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1240 else if ((D->hasAttr<DLLExportAttr>() || 1241 shouldMapVisibilityToDLLExport(D)) && 1242 !GV->isDeclarationForLinker()) 1243 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1244 } 1245 } 1246 1247 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1248 GlobalDecl GD) const { 1249 setDLLImportDLLExport(GV, GD); 1250 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1251 } 1252 1253 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1254 const NamedDecl *D) const { 1255 setDLLImportDLLExport(GV, D); 1256 setGVPropertiesAux(GV, D); 1257 } 1258 1259 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1260 const NamedDecl *D) const { 1261 setGlobalVisibility(GV, D); 1262 setDSOLocal(GV); 1263 GV->setPartition(CodeGenOpts.SymbolPartition); 1264 } 1265 1266 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1267 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1268 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1269 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1270 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1271 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1272 } 1273 1274 llvm::GlobalVariable::ThreadLocalMode 1275 CodeGenModule::GetDefaultLLVMTLSModel() const { 1276 switch (CodeGenOpts.getDefaultTLSModel()) { 1277 case CodeGenOptions::GeneralDynamicTLSModel: 1278 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1279 case CodeGenOptions::LocalDynamicTLSModel: 1280 return llvm::GlobalVariable::LocalDynamicTLSModel; 1281 case CodeGenOptions::InitialExecTLSModel: 1282 return llvm::GlobalVariable::InitialExecTLSModel; 1283 case CodeGenOptions::LocalExecTLSModel: 1284 return llvm::GlobalVariable::LocalExecTLSModel; 1285 } 1286 llvm_unreachable("Invalid TLS model!"); 1287 } 1288 1289 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1290 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1291 1292 llvm::GlobalValue::ThreadLocalMode TLM; 1293 TLM = GetDefaultLLVMTLSModel(); 1294 1295 // Override the TLS model if it is explicitly specified. 1296 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1297 TLM = GetLLVMTLSModel(Attr->getModel()); 1298 } 1299 1300 GV->setThreadLocalMode(TLM); 1301 } 1302 1303 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1304 StringRef Name) { 1305 const TargetInfo &Target = CGM.getTarget(); 1306 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1307 } 1308 1309 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1310 const CPUSpecificAttr *Attr, 1311 unsigned CPUIndex, 1312 raw_ostream &Out) { 1313 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1314 // supported. 1315 if (Attr) 1316 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1317 else if (CGM.getTarget().supportsIFunc()) 1318 Out << ".resolver"; 1319 } 1320 1321 static void AppendTargetMangling(const CodeGenModule &CGM, 1322 const TargetAttr *Attr, raw_ostream &Out) { 1323 if (Attr->isDefaultVersion()) 1324 return; 1325 1326 Out << '.'; 1327 const TargetInfo &Target = CGM.getTarget(); 1328 ParsedTargetAttr Info = 1329 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1330 // Multiversioning doesn't allow "no-${feature}", so we can 1331 // only have "+" prefixes here. 1332 assert(LHS.startswith("+") && RHS.startswith("+") && 1333 "Features should always have a prefix."); 1334 return Target.multiVersionSortPriority(LHS.substr(1)) > 1335 Target.multiVersionSortPriority(RHS.substr(1)); 1336 }); 1337 1338 bool IsFirst = true; 1339 1340 if (!Info.Architecture.empty()) { 1341 IsFirst = false; 1342 Out << "arch_" << Info.Architecture; 1343 } 1344 1345 for (StringRef Feat : Info.Features) { 1346 if (!IsFirst) 1347 Out << '_'; 1348 IsFirst = false; 1349 Out << Feat.substr(1); 1350 } 1351 } 1352 1353 // Returns true if GD is a function decl with internal linkage and 1354 // needs a unique suffix after the mangled name. 1355 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1356 CodeGenModule &CGM) { 1357 const Decl *D = GD.getDecl(); 1358 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1359 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1360 } 1361 1362 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1363 const TargetClonesAttr *Attr, 1364 unsigned VersionIndex, 1365 raw_ostream &Out) { 1366 Out << '.'; 1367 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1368 if (FeatureStr.startswith("arch=")) 1369 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1370 else 1371 Out << FeatureStr; 1372 1373 Out << '.' << Attr->getMangledIndex(VersionIndex); 1374 } 1375 1376 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1377 const NamedDecl *ND, 1378 bool OmitMultiVersionMangling = false) { 1379 SmallString<256> Buffer; 1380 llvm::raw_svector_ostream Out(Buffer); 1381 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1382 if (!CGM.getModuleNameHash().empty()) 1383 MC.needsUniqueInternalLinkageNames(); 1384 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1385 if (ShouldMangle) 1386 MC.mangleName(GD.getWithDecl(ND), Out); 1387 else { 1388 IdentifierInfo *II = ND->getIdentifier(); 1389 assert(II && "Attempt to mangle unnamed decl."); 1390 const auto *FD = dyn_cast<FunctionDecl>(ND); 1391 1392 if (FD && 1393 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1394 Out << "__regcall3__" << II->getName(); 1395 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1396 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1397 Out << "__device_stub__" << II->getName(); 1398 } else { 1399 Out << II->getName(); 1400 } 1401 } 1402 1403 // Check if the module name hash should be appended for internal linkage 1404 // symbols. This should come before multi-version target suffixes are 1405 // appended. This is to keep the name and module hash suffix of the 1406 // internal linkage function together. The unique suffix should only be 1407 // added when name mangling is done to make sure that the final name can 1408 // be properly demangled. For example, for C functions without prototypes, 1409 // name mangling is not done and the unique suffix should not be appeneded 1410 // then. 1411 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1412 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1413 "Hash computed when not explicitly requested"); 1414 Out << CGM.getModuleNameHash(); 1415 } 1416 1417 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1418 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1419 switch (FD->getMultiVersionKind()) { 1420 case MultiVersionKind::CPUDispatch: 1421 case MultiVersionKind::CPUSpecific: 1422 AppendCPUSpecificCPUDispatchMangling(CGM, 1423 FD->getAttr<CPUSpecificAttr>(), 1424 GD.getMultiVersionIndex(), Out); 1425 break; 1426 case MultiVersionKind::Target: 1427 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1428 break; 1429 case MultiVersionKind::TargetClones: 1430 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1431 GD.getMultiVersionIndex(), Out); 1432 break; 1433 case MultiVersionKind::None: 1434 llvm_unreachable("None multiversion type isn't valid here"); 1435 } 1436 } 1437 1438 // Make unique name for device side static file-scope variable for HIP. 1439 if (CGM.getContext().shouldExternalize(ND) && 1440 CGM.getLangOpts().GPURelocatableDeviceCode && 1441 CGM.getLangOpts().CUDAIsDevice) 1442 CGM.printPostfixForExternalizedDecl(Out, ND); 1443 1444 return std::string(Out.str()); 1445 } 1446 1447 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1448 const FunctionDecl *FD, 1449 StringRef &CurName) { 1450 if (!FD->isMultiVersion()) 1451 return; 1452 1453 // Get the name of what this would be without the 'target' attribute. This 1454 // allows us to lookup the version that was emitted when this wasn't a 1455 // multiversion function. 1456 std::string NonTargetName = 1457 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1458 GlobalDecl OtherGD; 1459 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1460 assert(OtherGD.getCanonicalDecl() 1461 .getDecl() 1462 ->getAsFunction() 1463 ->isMultiVersion() && 1464 "Other GD should now be a multiversioned function"); 1465 // OtherFD is the version of this function that was mangled BEFORE 1466 // becoming a MultiVersion function. It potentially needs to be updated. 1467 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1468 .getDecl() 1469 ->getAsFunction() 1470 ->getMostRecentDecl(); 1471 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1472 // This is so that if the initial version was already the 'default' 1473 // version, we don't try to update it. 1474 if (OtherName != NonTargetName) { 1475 // Remove instead of erase, since others may have stored the StringRef 1476 // to this. 1477 const auto ExistingRecord = Manglings.find(NonTargetName); 1478 if (ExistingRecord != std::end(Manglings)) 1479 Manglings.remove(&(*ExistingRecord)); 1480 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1481 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1482 Result.first->first(); 1483 // If this is the current decl is being created, make sure we update the name. 1484 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1485 CurName = OtherNameRef; 1486 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1487 Entry->setName(OtherName); 1488 } 1489 } 1490 } 1491 1492 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1493 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1494 1495 // Some ABIs don't have constructor variants. Make sure that base and 1496 // complete constructors get mangled the same. 1497 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1498 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1499 CXXCtorType OrigCtorType = GD.getCtorType(); 1500 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1501 if (OrigCtorType == Ctor_Base) 1502 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1503 } 1504 } 1505 1506 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1507 // static device variable depends on whether the variable is referenced by 1508 // a host or device host function. Therefore the mangled name cannot be 1509 // cached. 1510 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1511 auto FoundName = MangledDeclNames.find(CanonicalGD); 1512 if (FoundName != MangledDeclNames.end()) 1513 return FoundName->second; 1514 } 1515 1516 // Keep the first result in the case of a mangling collision. 1517 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1518 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1519 1520 // Ensure either we have different ABIs between host and device compilations, 1521 // says host compilation following MSVC ABI but device compilation follows 1522 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1523 // mangling should be the same after name stubbing. The later checking is 1524 // very important as the device kernel name being mangled in host-compilation 1525 // is used to resolve the device binaries to be executed. Inconsistent naming 1526 // result in undefined behavior. Even though we cannot check that naming 1527 // directly between host- and device-compilations, the host- and 1528 // device-mangling in host compilation could help catching certain ones. 1529 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1530 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1531 (getContext().getAuxTargetInfo() && 1532 (getContext().getAuxTargetInfo()->getCXXABI() != 1533 getContext().getTargetInfo().getCXXABI())) || 1534 getCUDARuntime().getDeviceSideName(ND) == 1535 getMangledNameImpl( 1536 *this, 1537 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1538 ND)); 1539 1540 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1541 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1542 } 1543 1544 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1545 const BlockDecl *BD) { 1546 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1547 const Decl *D = GD.getDecl(); 1548 1549 SmallString<256> Buffer; 1550 llvm::raw_svector_ostream Out(Buffer); 1551 if (!D) 1552 MangleCtx.mangleGlobalBlock(BD, 1553 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1554 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1555 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1556 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1557 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1558 else 1559 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1560 1561 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1562 return Result.first->first(); 1563 } 1564 1565 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1566 auto it = MangledDeclNames.begin(); 1567 while (it != MangledDeclNames.end()) { 1568 if (it->second == Name) 1569 return it->first; 1570 it++; 1571 } 1572 return GlobalDecl(); 1573 } 1574 1575 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1576 return getModule().getNamedValue(Name); 1577 } 1578 1579 /// AddGlobalCtor - Add a function to the list that will be called before 1580 /// main() runs. 1581 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1582 unsigned LexOrder, 1583 llvm::Constant *AssociatedData) { 1584 // FIXME: Type coercion of void()* types. 1585 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1586 } 1587 1588 /// AddGlobalDtor - Add a function to the list that will be called 1589 /// when the module is unloaded. 1590 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1591 bool IsDtorAttrFunc) { 1592 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1593 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1594 DtorsUsingAtExit[Priority].push_back(Dtor); 1595 return; 1596 } 1597 1598 // FIXME: Type coercion of void()* types. 1599 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1600 } 1601 1602 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1603 if (Fns.empty()) return; 1604 1605 // Ctor function type is void()*. 1606 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1607 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1608 TheModule.getDataLayout().getProgramAddressSpace()); 1609 1610 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1611 llvm::StructType *CtorStructTy = llvm::StructType::get( 1612 Int32Ty, CtorPFTy, VoidPtrTy); 1613 1614 // Construct the constructor and destructor arrays. 1615 ConstantInitBuilder builder(*this); 1616 auto ctors = builder.beginArray(CtorStructTy); 1617 for (const auto &I : Fns) { 1618 auto ctor = ctors.beginStruct(CtorStructTy); 1619 ctor.addInt(Int32Ty, I.Priority); 1620 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1621 if (I.AssociatedData) 1622 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1623 else 1624 ctor.addNullPointer(VoidPtrTy); 1625 ctor.finishAndAddTo(ctors); 1626 } 1627 1628 auto list = 1629 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1630 /*constant*/ false, 1631 llvm::GlobalValue::AppendingLinkage); 1632 1633 // The LTO linker doesn't seem to like it when we set an alignment 1634 // on appending variables. Take it off as a workaround. 1635 list->setAlignment(llvm::None); 1636 1637 Fns.clear(); 1638 } 1639 1640 llvm::GlobalValue::LinkageTypes 1641 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1642 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1643 1644 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1645 1646 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1647 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1648 1649 if (isa<CXXConstructorDecl>(D) && 1650 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1651 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1652 // Our approach to inheriting constructors is fundamentally different from 1653 // that used by the MS ABI, so keep our inheriting constructor thunks 1654 // internal rather than trying to pick an unambiguous mangling for them. 1655 return llvm::GlobalValue::InternalLinkage; 1656 } 1657 1658 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1659 } 1660 1661 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1662 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1663 if (!MDS) return nullptr; 1664 1665 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1666 } 1667 1668 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1669 if (auto *FnType = T->getAs<FunctionProtoType>()) 1670 T = getContext().getFunctionType( 1671 FnType->getReturnType(), FnType->getParamTypes(), 1672 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1673 1674 std::string OutName; 1675 llvm::raw_string_ostream Out(OutName); 1676 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1677 1678 return llvm::ConstantInt::get(Int32Ty, 1679 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1680 } 1681 1682 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1683 const CGFunctionInfo &Info, 1684 llvm::Function *F, bool IsThunk) { 1685 unsigned CallingConv; 1686 llvm::AttributeList PAL; 1687 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1688 /*AttrOnCallSite=*/false, IsThunk); 1689 F->setAttributes(PAL); 1690 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1691 } 1692 1693 static void removeImageAccessQualifier(std::string& TyName) { 1694 std::string ReadOnlyQual("__read_only"); 1695 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1696 if (ReadOnlyPos != std::string::npos) 1697 // "+ 1" for the space after access qualifier. 1698 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1699 else { 1700 std::string WriteOnlyQual("__write_only"); 1701 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1702 if (WriteOnlyPos != std::string::npos) 1703 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1704 else { 1705 std::string ReadWriteQual("__read_write"); 1706 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1707 if (ReadWritePos != std::string::npos) 1708 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1709 } 1710 } 1711 } 1712 1713 // Returns the address space id that should be produced to the 1714 // kernel_arg_addr_space metadata. This is always fixed to the ids 1715 // as specified in the SPIR 2.0 specification in order to differentiate 1716 // for example in clGetKernelArgInfo() implementation between the address 1717 // spaces with targets without unique mapping to the OpenCL address spaces 1718 // (basically all single AS CPUs). 1719 static unsigned ArgInfoAddressSpace(LangAS AS) { 1720 switch (AS) { 1721 case LangAS::opencl_global: 1722 return 1; 1723 case LangAS::opencl_constant: 1724 return 2; 1725 case LangAS::opencl_local: 1726 return 3; 1727 case LangAS::opencl_generic: 1728 return 4; // Not in SPIR 2.0 specs. 1729 case LangAS::opencl_global_device: 1730 return 5; 1731 case LangAS::opencl_global_host: 1732 return 6; 1733 default: 1734 return 0; // Assume private. 1735 } 1736 } 1737 1738 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1739 const FunctionDecl *FD, 1740 CodeGenFunction *CGF) { 1741 assert(((FD && CGF) || (!FD && !CGF)) && 1742 "Incorrect use - FD and CGF should either be both null or not!"); 1743 // Create MDNodes that represent the kernel arg metadata. 1744 // Each MDNode is a list in the form of "key", N number of values which is 1745 // the same number of values as their are kernel arguments. 1746 1747 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1748 1749 // MDNode for the kernel argument address space qualifiers. 1750 SmallVector<llvm::Metadata *, 8> addressQuals; 1751 1752 // MDNode for the kernel argument access qualifiers (images only). 1753 SmallVector<llvm::Metadata *, 8> accessQuals; 1754 1755 // MDNode for the kernel argument type names. 1756 SmallVector<llvm::Metadata *, 8> argTypeNames; 1757 1758 // MDNode for the kernel argument base type names. 1759 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1760 1761 // MDNode for the kernel argument type qualifiers. 1762 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1763 1764 // MDNode for the kernel argument names. 1765 SmallVector<llvm::Metadata *, 8> argNames; 1766 1767 if (FD && CGF) 1768 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1769 const ParmVarDecl *parm = FD->getParamDecl(i); 1770 // Get argument name. 1771 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1772 1773 if (!getLangOpts().OpenCL) 1774 continue; 1775 QualType ty = parm->getType(); 1776 std::string typeQuals; 1777 1778 // Get image and pipe access qualifier: 1779 if (ty->isImageType() || ty->isPipeType()) { 1780 const Decl *PDecl = parm; 1781 if (const auto *TD = ty->getAs<TypedefType>()) 1782 PDecl = TD->getDecl(); 1783 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1784 if (A && A->isWriteOnly()) 1785 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1786 else if (A && A->isReadWrite()) 1787 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1788 else 1789 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1790 } else 1791 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1792 1793 auto getTypeSpelling = [&](QualType Ty) { 1794 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1795 1796 if (Ty.isCanonical()) { 1797 StringRef typeNameRef = typeName; 1798 // Turn "unsigned type" to "utype" 1799 if (typeNameRef.consume_front("unsigned ")) 1800 return std::string("u") + typeNameRef.str(); 1801 if (typeNameRef.consume_front("signed ")) 1802 return typeNameRef.str(); 1803 } 1804 1805 return typeName; 1806 }; 1807 1808 if (ty->isPointerType()) { 1809 QualType pointeeTy = ty->getPointeeType(); 1810 1811 // Get address qualifier. 1812 addressQuals.push_back( 1813 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1814 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1815 1816 // Get argument type name. 1817 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1818 std::string baseTypeName = 1819 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1820 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1821 argBaseTypeNames.push_back( 1822 llvm::MDString::get(VMContext, baseTypeName)); 1823 1824 // Get argument type qualifiers: 1825 if (ty.isRestrictQualified()) 1826 typeQuals = "restrict"; 1827 if (pointeeTy.isConstQualified() || 1828 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1829 typeQuals += typeQuals.empty() ? "const" : " const"; 1830 if (pointeeTy.isVolatileQualified()) 1831 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1832 } else { 1833 uint32_t AddrSpc = 0; 1834 bool isPipe = ty->isPipeType(); 1835 if (ty->isImageType() || isPipe) 1836 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1837 1838 addressQuals.push_back( 1839 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1840 1841 // Get argument type name. 1842 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1843 std::string typeName = getTypeSpelling(ty); 1844 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1845 1846 // Remove access qualifiers on images 1847 // (as they are inseparable from type in clang implementation, 1848 // but OpenCL spec provides a special query to get access qualifier 1849 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1850 if (ty->isImageType()) { 1851 removeImageAccessQualifier(typeName); 1852 removeImageAccessQualifier(baseTypeName); 1853 } 1854 1855 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1856 argBaseTypeNames.push_back( 1857 llvm::MDString::get(VMContext, baseTypeName)); 1858 1859 if (isPipe) 1860 typeQuals = "pipe"; 1861 } 1862 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1863 } 1864 1865 if (getLangOpts().OpenCL) { 1866 Fn->setMetadata("kernel_arg_addr_space", 1867 llvm::MDNode::get(VMContext, addressQuals)); 1868 Fn->setMetadata("kernel_arg_access_qual", 1869 llvm::MDNode::get(VMContext, accessQuals)); 1870 Fn->setMetadata("kernel_arg_type", 1871 llvm::MDNode::get(VMContext, argTypeNames)); 1872 Fn->setMetadata("kernel_arg_base_type", 1873 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1874 Fn->setMetadata("kernel_arg_type_qual", 1875 llvm::MDNode::get(VMContext, argTypeQuals)); 1876 } 1877 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1878 getCodeGenOpts().HIPSaveKernelArgName) 1879 Fn->setMetadata("kernel_arg_name", 1880 llvm::MDNode::get(VMContext, argNames)); 1881 } 1882 1883 /// Determines whether the language options require us to model 1884 /// unwind exceptions. We treat -fexceptions as mandating this 1885 /// except under the fragile ObjC ABI with only ObjC exceptions 1886 /// enabled. This means, for example, that C with -fexceptions 1887 /// enables this. 1888 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1889 // If exceptions are completely disabled, obviously this is false. 1890 if (!LangOpts.Exceptions) return false; 1891 1892 // If C++ exceptions are enabled, this is true. 1893 if (LangOpts.CXXExceptions) return true; 1894 1895 // If ObjC exceptions are enabled, this depends on the ABI. 1896 if (LangOpts.ObjCExceptions) { 1897 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1898 } 1899 1900 return true; 1901 } 1902 1903 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1904 const CXXMethodDecl *MD) { 1905 // Check that the type metadata can ever actually be used by a call. 1906 if (!CGM.getCodeGenOpts().LTOUnit || 1907 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1908 return false; 1909 1910 // Only functions whose address can be taken with a member function pointer 1911 // need this sort of type metadata. 1912 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1913 !isa<CXXDestructorDecl>(MD); 1914 } 1915 1916 std::vector<const CXXRecordDecl *> 1917 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1918 llvm::SetVector<const CXXRecordDecl *> MostBases; 1919 1920 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1921 CollectMostBases = [&](const CXXRecordDecl *RD) { 1922 if (RD->getNumBases() == 0) 1923 MostBases.insert(RD); 1924 for (const CXXBaseSpecifier &B : RD->bases()) 1925 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1926 }; 1927 CollectMostBases(RD); 1928 return MostBases.takeVector(); 1929 } 1930 1931 llvm::GlobalVariable * 1932 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1933 auto It = RTTIProxyMap.find(Addr); 1934 if (It != RTTIProxyMap.end()) 1935 return It->second; 1936 1937 auto *FTRTTIProxy = new llvm::GlobalVariable( 1938 TheModule, Addr->getType(), 1939 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1940 "__llvm_rtti_proxy"); 1941 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1942 1943 RTTIProxyMap[Addr] = FTRTTIProxy; 1944 return FTRTTIProxy; 1945 } 1946 1947 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1948 llvm::Function *F) { 1949 llvm::AttrBuilder B(F->getContext()); 1950 1951 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 1952 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1953 1954 if (CodeGenOpts.StackClashProtector) 1955 B.addAttribute("probe-stack", "inline-asm"); 1956 1957 if (!hasUnwindExceptions(LangOpts)) 1958 B.addAttribute(llvm::Attribute::NoUnwind); 1959 1960 if (D && D->hasAttr<NoStackProtectorAttr>()) 1961 ; // Do nothing. 1962 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 1963 LangOpts.getStackProtector() == LangOptions::SSPOn) 1964 B.addAttribute(llvm::Attribute::StackProtectStrong); 1965 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1966 B.addAttribute(llvm::Attribute::StackProtect); 1967 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1968 B.addAttribute(llvm::Attribute::StackProtectStrong); 1969 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1970 B.addAttribute(llvm::Attribute::StackProtectReq); 1971 1972 if (!D) { 1973 // If we don't have a declaration to control inlining, the function isn't 1974 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1975 // disabled, mark the function as noinline. 1976 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1977 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1978 B.addAttribute(llvm::Attribute::NoInline); 1979 1980 F->addFnAttrs(B); 1981 return; 1982 } 1983 1984 // Track whether we need to add the optnone LLVM attribute, 1985 // starting with the default for this optimization level. 1986 bool ShouldAddOptNone = 1987 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1988 // We can't add optnone in the following cases, it won't pass the verifier. 1989 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1990 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1991 1992 // Add optnone, but do so only if the function isn't always_inline. 1993 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1994 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1995 B.addAttribute(llvm::Attribute::OptimizeNone); 1996 1997 // OptimizeNone implies noinline; we should not be inlining such functions. 1998 B.addAttribute(llvm::Attribute::NoInline); 1999 2000 // We still need to handle naked functions even though optnone subsumes 2001 // much of their semantics. 2002 if (D->hasAttr<NakedAttr>()) 2003 B.addAttribute(llvm::Attribute::Naked); 2004 2005 // OptimizeNone wins over OptimizeForSize and MinSize. 2006 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2007 F->removeFnAttr(llvm::Attribute::MinSize); 2008 } else if (D->hasAttr<NakedAttr>()) { 2009 // Naked implies noinline: we should not be inlining such functions. 2010 B.addAttribute(llvm::Attribute::Naked); 2011 B.addAttribute(llvm::Attribute::NoInline); 2012 } else if (D->hasAttr<NoDuplicateAttr>()) { 2013 B.addAttribute(llvm::Attribute::NoDuplicate); 2014 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2015 // Add noinline if the function isn't always_inline. 2016 B.addAttribute(llvm::Attribute::NoInline); 2017 } else if (D->hasAttr<AlwaysInlineAttr>() && 2018 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2019 // (noinline wins over always_inline, and we can't specify both in IR) 2020 B.addAttribute(llvm::Attribute::AlwaysInline); 2021 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2022 // If we're not inlining, then force everything that isn't always_inline to 2023 // carry an explicit noinline attribute. 2024 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2025 B.addAttribute(llvm::Attribute::NoInline); 2026 } else { 2027 // Otherwise, propagate the inline hint attribute and potentially use its 2028 // absence to mark things as noinline. 2029 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2030 // Search function and template pattern redeclarations for inline. 2031 auto CheckForInline = [](const FunctionDecl *FD) { 2032 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2033 return Redecl->isInlineSpecified(); 2034 }; 2035 if (any_of(FD->redecls(), CheckRedeclForInline)) 2036 return true; 2037 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2038 if (!Pattern) 2039 return false; 2040 return any_of(Pattern->redecls(), CheckRedeclForInline); 2041 }; 2042 if (CheckForInline(FD)) { 2043 B.addAttribute(llvm::Attribute::InlineHint); 2044 } else if (CodeGenOpts.getInlining() == 2045 CodeGenOptions::OnlyHintInlining && 2046 !FD->isInlined() && 2047 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2048 B.addAttribute(llvm::Attribute::NoInline); 2049 } 2050 } 2051 } 2052 2053 // Add other optimization related attributes if we are optimizing this 2054 // function. 2055 if (!D->hasAttr<OptimizeNoneAttr>()) { 2056 if (D->hasAttr<ColdAttr>()) { 2057 if (!ShouldAddOptNone) 2058 B.addAttribute(llvm::Attribute::OptimizeForSize); 2059 B.addAttribute(llvm::Attribute::Cold); 2060 } 2061 if (D->hasAttr<HotAttr>()) 2062 B.addAttribute(llvm::Attribute::Hot); 2063 if (D->hasAttr<MinSizeAttr>()) 2064 B.addAttribute(llvm::Attribute::MinSize); 2065 } 2066 2067 F->addFnAttrs(B); 2068 2069 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2070 if (alignment) 2071 F->setAlignment(llvm::Align(alignment)); 2072 2073 if (!D->hasAttr<AlignedAttr>()) 2074 if (LangOpts.FunctionAlignment) 2075 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2076 2077 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2078 // reserve a bit for differentiating between virtual and non-virtual member 2079 // functions. If the current target's C++ ABI requires this and this is a 2080 // member function, set its alignment accordingly. 2081 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2082 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2083 F->setAlignment(llvm::Align(2)); 2084 } 2085 2086 // In the cross-dso CFI mode with canonical jump tables, we want !type 2087 // attributes on definitions only. 2088 if (CodeGenOpts.SanitizeCfiCrossDso && 2089 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2090 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2091 // Skip available_externally functions. They won't be codegen'ed in the 2092 // current module anyway. 2093 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2094 CreateFunctionTypeMetadataForIcall(FD, F); 2095 } 2096 } 2097 2098 // Emit type metadata on member functions for member function pointer checks. 2099 // These are only ever necessary on definitions; we're guaranteed that the 2100 // definition will be present in the LTO unit as a result of LTO visibility. 2101 auto *MD = dyn_cast<CXXMethodDecl>(D); 2102 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2103 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2104 llvm::Metadata *Id = 2105 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2106 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2107 F->addTypeMetadata(0, Id); 2108 } 2109 } 2110 } 2111 2112 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2113 llvm::Function *F) { 2114 if (D->hasAttr<StrictFPAttr>()) { 2115 llvm::AttrBuilder FuncAttrs(F->getContext()); 2116 FuncAttrs.addAttribute("strictfp"); 2117 F->addFnAttrs(FuncAttrs); 2118 } 2119 } 2120 2121 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2122 const Decl *D = GD.getDecl(); 2123 if (isa_and_nonnull<NamedDecl>(D)) 2124 setGVProperties(GV, GD); 2125 else 2126 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2127 2128 if (D && D->hasAttr<UsedAttr>()) 2129 addUsedOrCompilerUsedGlobal(GV); 2130 2131 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2132 const auto *VD = cast<VarDecl>(D); 2133 if (VD->getType().isConstQualified() && 2134 VD->getStorageDuration() == SD_Static) 2135 addUsedOrCompilerUsedGlobal(GV); 2136 } 2137 } 2138 2139 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2140 llvm::AttrBuilder &Attrs) { 2141 // Add target-cpu and target-features attributes to functions. If 2142 // we have a decl for the function and it has a target attribute then 2143 // parse that and add it to the feature set. 2144 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2145 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2146 std::vector<std::string> Features; 2147 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2148 FD = FD ? FD->getMostRecentDecl() : FD; 2149 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2150 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2151 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2152 bool AddedAttr = false; 2153 if (TD || SD || TC) { 2154 llvm::StringMap<bool> FeatureMap; 2155 getContext().getFunctionFeatureMap(FeatureMap, GD); 2156 2157 // Produce the canonical string for this set of features. 2158 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2159 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2160 2161 // Now add the target-cpu and target-features to the function. 2162 // While we populated the feature map above, we still need to 2163 // get and parse the target attribute so we can get the cpu for 2164 // the function. 2165 if (TD) { 2166 ParsedTargetAttr ParsedAttr = TD->parse(); 2167 if (!ParsedAttr.Architecture.empty() && 2168 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2169 TargetCPU = ParsedAttr.Architecture; 2170 TuneCPU = ""; // Clear the tune CPU. 2171 } 2172 if (!ParsedAttr.Tune.empty() && 2173 getTarget().isValidCPUName(ParsedAttr.Tune)) 2174 TuneCPU = ParsedAttr.Tune; 2175 } 2176 2177 if (SD) { 2178 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2179 // favor this processor. 2180 TuneCPU = getTarget().getCPUSpecificTuneName( 2181 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2182 } 2183 } else { 2184 // Otherwise just add the existing target cpu and target features to the 2185 // function. 2186 Features = getTarget().getTargetOpts().Features; 2187 } 2188 2189 if (!TargetCPU.empty()) { 2190 Attrs.addAttribute("target-cpu", TargetCPU); 2191 AddedAttr = true; 2192 } 2193 if (!TuneCPU.empty()) { 2194 Attrs.addAttribute("tune-cpu", TuneCPU); 2195 AddedAttr = true; 2196 } 2197 if (!Features.empty()) { 2198 llvm::sort(Features); 2199 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2200 AddedAttr = true; 2201 } 2202 2203 return AddedAttr; 2204 } 2205 2206 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2207 llvm::GlobalObject *GO) { 2208 const Decl *D = GD.getDecl(); 2209 SetCommonAttributes(GD, GO); 2210 2211 if (D) { 2212 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2213 if (D->hasAttr<RetainAttr>()) 2214 addUsedGlobal(GV); 2215 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2216 GV->addAttribute("bss-section", SA->getName()); 2217 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2218 GV->addAttribute("data-section", SA->getName()); 2219 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2220 GV->addAttribute("rodata-section", SA->getName()); 2221 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2222 GV->addAttribute("relro-section", SA->getName()); 2223 } 2224 2225 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2226 if (D->hasAttr<RetainAttr>()) 2227 addUsedGlobal(F); 2228 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2229 if (!D->getAttr<SectionAttr>()) 2230 F->addFnAttr("implicit-section-name", SA->getName()); 2231 2232 llvm::AttrBuilder Attrs(F->getContext()); 2233 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2234 // We know that GetCPUAndFeaturesAttributes will always have the 2235 // newest set, since it has the newest possible FunctionDecl, so the 2236 // new ones should replace the old. 2237 llvm::AttributeMask RemoveAttrs; 2238 RemoveAttrs.addAttribute("target-cpu"); 2239 RemoveAttrs.addAttribute("target-features"); 2240 RemoveAttrs.addAttribute("tune-cpu"); 2241 F->removeFnAttrs(RemoveAttrs); 2242 F->addFnAttrs(Attrs); 2243 } 2244 } 2245 2246 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2247 GO->setSection(CSA->getName()); 2248 else if (const auto *SA = D->getAttr<SectionAttr>()) 2249 GO->setSection(SA->getName()); 2250 } 2251 2252 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2253 } 2254 2255 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2256 llvm::Function *F, 2257 const CGFunctionInfo &FI) { 2258 const Decl *D = GD.getDecl(); 2259 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2260 SetLLVMFunctionAttributesForDefinition(D, F); 2261 2262 F->setLinkage(llvm::Function::InternalLinkage); 2263 2264 setNonAliasAttributes(GD, F); 2265 } 2266 2267 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2268 // Set linkage and visibility in case we never see a definition. 2269 LinkageInfo LV = ND->getLinkageAndVisibility(); 2270 // Don't set internal linkage on declarations. 2271 // "extern_weak" is overloaded in LLVM; we probably should have 2272 // separate linkage types for this. 2273 if (isExternallyVisible(LV.getLinkage()) && 2274 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2275 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2276 } 2277 2278 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2279 llvm::Function *F) { 2280 // Only if we are checking indirect calls. 2281 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2282 return; 2283 2284 // Non-static class methods are handled via vtable or member function pointer 2285 // checks elsewhere. 2286 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2287 return; 2288 2289 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2290 F->addTypeMetadata(0, MD); 2291 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2292 2293 // Emit a hash-based bit set entry for cross-DSO calls. 2294 if (CodeGenOpts.SanitizeCfiCrossDso) 2295 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2296 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2297 } 2298 2299 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2300 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2301 return; 2302 2303 llvm::LLVMContext &Ctx = F->getContext(); 2304 llvm::MDBuilder MDB(Ctx); 2305 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2306 llvm::MDNode::get( 2307 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2308 } 2309 2310 static bool allowKCFIIdentifier(StringRef Name) { 2311 // KCFI type identifier constants are only necessary for external assembly 2312 // functions, which means it's safe to skip unusual names. Subset of 2313 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2314 return llvm::all_of(Name, [](const char &C) { 2315 return llvm::isAlnum(C) || C == '_' || C == '.'; 2316 }); 2317 } 2318 2319 void CodeGenModule::finalizeKCFITypes() { 2320 llvm::Module &M = getModule(); 2321 for (auto &F : M.functions()) { 2322 // Remove KCFI type metadata from non-address-taken local functions. 2323 bool AddressTaken = F.hasAddressTaken(); 2324 if (!AddressTaken && F.hasLocalLinkage()) 2325 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2326 2327 // Generate a constant with the expected KCFI type identifier for all 2328 // address-taken function declarations to support annotating indirectly 2329 // called assembly functions. 2330 if (!AddressTaken || !F.isDeclaration()) 2331 continue; 2332 2333 const llvm::ConstantInt *Type; 2334 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2335 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2336 else 2337 continue; 2338 2339 StringRef Name = F.getName(); 2340 if (!allowKCFIIdentifier(Name)) 2341 continue; 2342 2343 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2344 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2345 .str(); 2346 M.appendModuleInlineAsm(Asm); 2347 } 2348 } 2349 2350 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2351 bool IsIncompleteFunction, 2352 bool IsThunk) { 2353 2354 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2355 // If this is an intrinsic function, set the function's attributes 2356 // to the intrinsic's attributes. 2357 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2358 return; 2359 } 2360 2361 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2362 2363 if (!IsIncompleteFunction) 2364 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2365 IsThunk); 2366 2367 // Add the Returned attribute for "this", except for iOS 5 and earlier 2368 // where substantial code, including the libstdc++ dylib, was compiled with 2369 // GCC and does not actually return "this". 2370 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2371 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2372 assert(!F->arg_empty() && 2373 F->arg_begin()->getType() 2374 ->canLosslesslyBitCastTo(F->getReturnType()) && 2375 "unexpected this return"); 2376 F->addParamAttr(0, llvm::Attribute::Returned); 2377 } 2378 2379 // Only a few attributes are set on declarations; these may later be 2380 // overridden by a definition. 2381 2382 setLinkageForGV(F, FD); 2383 setGVProperties(F, FD); 2384 2385 // Setup target-specific attributes. 2386 if (!IsIncompleteFunction && F->isDeclaration()) 2387 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2388 2389 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2390 F->setSection(CSA->getName()); 2391 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2392 F->setSection(SA->getName()); 2393 2394 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2395 if (EA->isError()) 2396 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2397 else if (EA->isWarning()) 2398 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2399 } 2400 2401 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2402 if (FD->isInlineBuiltinDeclaration()) { 2403 const FunctionDecl *FDBody; 2404 bool HasBody = FD->hasBody(FDBody); 2405 (void)HasBody; 2406 assert(HasBody && "Inline builtin declarations should always have an " 2407 "available body!"); 2408 if (shouldEmitFunction(FDBody)) 2409 F->addFnAttr(llvm::Attribute::NoBuiltin); 2410 } 2411 2412 if (FD->isReplaceableGlobalAllocationFunction()) { 2413 // A replaceable global allocation function does not act like a builtin by 2414 // default, only if it is invoked by a new-expression or delete-expression. 2415 F->addFnAttr(llvm::Attribute::NoBuiltin); 2416 } 2417 2418 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2419 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2420 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2421 if (MD->isVirtual()) 2422 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2423 2424 // Don't emit entries for function declarations in the cross-DSO mode. This 2425 // is handled with better precision by the receiving DSO. But if jump tables 2426 // are non-canonical then we need type metadata in order to produce the local 2427 // jump table. 2428 if (!CodeGenOpts.SanitizeCfiCrossDso || 2429 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2430 CreateFunctionTypeMetadataForIcall(FD, F); 2431 2432 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2433 setKCFIType(FD, F); 2434 2435 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2436 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2437 2438 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2439 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2440 2441 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2442 // Annotate the callback behavior as metadata: 2443 // - The callback callee (as argument number). 2444 // - The callback payloads (as argument numbers). 2445 llvm::LLVMContext &Ctx = F->getContext(); 2446 llvm::MDBuilder MDB(Ctx); 2447 2448 // The payload indices are all but the first one in the encoding. The first 2449 // identifies the callback callee. 2450 int CalleeIdx = *CB->encoding_begin(); 2451 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2452 F->addMetadata(llvm::LLVMContext::MD_callback, 2453 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2454 CalleeIdx, PayloadIndices, 2455 /* VarArgsArePassed */ false)})); 2456 } 2457 } 2458 2459 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2460 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2461 "Only globals with definition can force usage."); 2462 LLVMUsed.emplace_back(GV); 2463 } 2464 2465 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2466 assert(!GV->isDeclaration() && 2467 "Only globals with definition can force usage."); 2468 LLVMCompilerUsed.emplace_back(GV); 2469 } 2470 2471 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2472 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2473 "Only globals with definition can force usage."); 2474 if (getTriple().isOSBinFormatELF()) 2475 LLVMCompilerUsed.emplace_back(GV); 2476 else 2477 LLVMUsed.emplace_back(GV); 2478 } 2479 2480 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2481 std::vector<llvm::WeakTrackingVH> &List) { 2482 // Don't create llvm.used if there is no need. 2483 if (List.empty()) 2484 return; 2485 2486 // Convert List to what ConstantArray needs. 2487 SmallVector<llvm::Constant*, 8> UsedArray; 2488 UsedArray.resize(List.size()); 2489 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2490 UsedArray[i] = 2491 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2492 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2493 } 2494 2495 if (UsedArray.empty()) 2496 return; 2497 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2498 2499 auto *GV = new llvm::GlobalVariable( 2500 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2501 llvm::ConstantArray::get(ATy, UsedArray), Name); 2502 2503 GV->setSection("llvm.metadata"); 2504 } 2505 2506 void CodeGenModule::emitLLVMUsed() { 2507 emitUsed(*this, "llvm.used", LLVMUsed); 2508 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2509 } 2510 2511 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2512 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2513 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2514 } 2515 2516 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2517 llvm::SmallString<32> Opt; 2518 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2519 if (Opt.empty()) 2520 return; 2521 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2522 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2523 } 2524 2525 void CodeGenModule::AddDependentLib(StringRef Lib) { 2526 auto &C = getLLVMContext(); 2527 if (getTarget().getTriple().isOSBinFormatELF()) { 2528 ELFDependentLibraries.push_back( 2529 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2530 return; 2531 } 2532 2533 llvm::SmallString<24> Opt; 2534 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2535 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2536 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2537 } 2538 2539 /// Add link options implied by the given module, including modules 2540 /// it depends on, using a postorder walk. 2541 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2542 SmallVectorImpl<llvm::MDNode *> &Metadata, 2543 llvm::SmallPtrSet<Module *, 16> &Visited) { 2544 // Import this module's parent. 2545 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2546 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2547 } 2548 2549 // Import this module's dependencies. 2550 for (Module *Import : llvm::reverse(Mod->Imports)) { 2551 if (Visited.insert(Import).second) 2552 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2553 } 2554 2555 // Add linker options to link against the libraries/frameworks 2556 // described by this module. 2557 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2558 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2559 2560 // For modules that use export_as for linking, use that module 2561 // name instead. 2562 if (Mod->UseExportAsModuleLinkName) 2563 return; 2564 2565 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2566 // Link against a framework. Frameworks are currently Darwin only, so we 2567 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2568 if (LL.IsFramework) { 2569 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2570 llvm::MDString::get(Context, LL.Library)}; 2571 2572 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2573 continue; 2574 } 2575 2576 // Link against a library. 2577 if (IsELF) { 2578 llvm::Metadata *Args[2] = { 2579 llvm::MDString::get(Context, "lib"), 2580 llvm::MDString::get(Context, LL.Library), 2581 }; 2582 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2583 } else { 2584 llvm::SmallString<24> Opt; 2585 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2586 auto *OptString = llvm::MDString::get(Context, Opt); 2587 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2588 } 2589 } 2590 } 2591 2592 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2593 // Emit the initializers in the order that sub-modules appear in the 2594 // source, first Global Module Fragments, if present. 2595 if (auto GMF = Primary->getGlobalModuleFragment()) { 2596 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2597 if (isa<ImportDecl>(D)) 2598 continue; 2599 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2600 EmitTopLevelDecl(D); 2601 } 2602 } 2603 // Second any associated with the module, itself. 2604 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2605 // Skip import decls, the inits for those are called explicitly. 2606 if (isa<ImportDecl>(D)) 2607 continue; 2608 EmitTopLevelDecl(D); 2609 } 2610 // Third any associated with the Privat eMOdule Fragment, if present. 2611 if (auto PMF = Primary->getPrivateModuleFragment()) { 2612 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2613 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2614 EmitTopLevelDecl(D); 2615 } 2616 } 2617 } 2618 2619 void CodeGenModule::EmitModuleLinkOptions() { 2620 // Collect the set of all of the modules we want to visit to emit link 2621 // options, which is essentially the imported modules and all of their 2622 // non-explicit child modules. 2623 llvm::SetVector<clang::Module *> LinkModules; 2624 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2625 SmallVector<clang::Module *, 16> Stack; 2626 2627 // Seed the stack with imported modules. 2628 for (Module *M : ImportedModules) { 2629 // Do not add any link flags when an implementation TU of a module imports 2630 // a header of that same module. 2631 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2632 !getLangOpts().isCompilingModule()) 2633 continue; 2634 if (Visited.insert(M).second) 2635 Stack.push_back(M); 2636 } 2637 2638 // Find all of the modules to import, making a little effort to prune 2639 // non-leaf modules. 2640 while (!Stack.empty()) { 2641 clang::Module *Mod = Stack.pop_back_val(); 2642 2643 bool AnyChildren = false; 2644 2645 // Visit the submodules of this module. 2646 for (const auto &SM : Mod->submodules()) { 2647 // Skip explicit children; they need to be explicitly imported to be 2648 // linked against. 2649 if (SM->IsExplicit) 2650 continue; 2651 2652 if (Visited.insert(SM).second) { 2653 Stack.push_back(SM); 2654 AnyChildren = true; 2655 } 2656 } 2657 2658 // We didn't find any children, so add this module to the list of 2659 // modules to link against. 2660 if (!AnyChildren) { 2661 LinkModules.insert(Mod); 2662 } 2663 } 2664 2665 // Add link options for all of the imported modules in reverse topological 2666 // order. We don't do anything to try to order import link flags with respect 2667 // to linker options inserted by things like #pragma comment(). 2668 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2669 Visited.clear(); 2670 for (Module *M : LinkModules) 2671 if (Visited.insert(M).second) 2672 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2673 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2674 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2675 2676 // Add the linker options metadata flag. 2677 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2678 for (auto *MD : LinkerOptionsMetadata) 2679 NMD->addOperand(MD); 2680 } 2681 2682 void CodeGenModule::EmitDeferred() { 2683 // Emit deferred declare target declarations. 2684 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2685 getOpenMPRuntime().emitDeferredTargetDecls(); 2686 2687 // Emit code for any potentially referenced deferred decls. Since a 2688 // previously unused static decl may become used during the generation of code 2689 // for a static function, iterate until no changes are made. 2690 2691 if (!DeferredVTables.empty()) { 2692 EmitDeferredVTables(); 2693 2694 // Emitting a vtable doesn't directly cause more vtables to 2695 // become deferred, although it can cause functions to be 2696 // emitted that then need those vtables. 2697 assert(DeferredVTables.empty()); 2698 } 2699 2700 // Emit CUDA/HIP static device variables referenced by host code only. 2701 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2702 // needed for further handling. 2703 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2704 llvm::append_range(DeferredDeclsToEmit, 2705 getContext().CUDADeviceVarODRUsedByHost); 2706 2707 // Stop if we're out of both deferred vtables and deferred declarations. 2708 if (DeferredDeclsToEmit.empty()) 2709 return; 2710 2711 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2712 // work, it will not interfere with this. 2713 std::vector<GlobalDecl> CurDeclsToEmit; 2714 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2715 2716 for (GlobalDecl &D : CurDeclsToEmit) { 2717 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2718 // to get GlobalValue with exactly the type we need, not something that 2719 // might had been created for another decl with the same mangled name but 2720 // different type. 2721 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2722 GetAddrOfGlobal(D, ForDefinition)); 2723 2724 // In case of different address spaces, we may still get a cast, even with 2725 // IsForDefinition equal to true. Query mangled names table to get 2726 // GlobalValue. 2727 if (!GV) 2728 GV = GetGlobalValue(getMangledName(D)); 2729 2730 // Make sure GetGlobalValue returned non-null. 2731 assert(GV); 2732 2733 // Check to see if we've already emitted this. This is necessary 2734 // for a couple of reasons: first, decls can end up in the 2735 // deferred-decls queue multiple times, and second, decls can end 2736 // up with definitions in unusual ways (e.g. by an extern inline 2737 // function acquiring a strong function redefinition). Just 2738 // ignore these cases. 2739 if (!GV->isDeclaration()) 2740 continue; 2741 2742 // If this is OpenMP, check if it is legal to emit this global normally. 2743 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2744 continue; 2745 2746 // Otherwise, emit the definition and move on to the next one. 2747 EmitGlobalDefinition(D, GV); 2748 2749 // If we found out that we need to emit more decls, do that recursively. 2750 // This has the advantage that the decls are emitted in a DFS and related 2751 // ones are close together, which is convenient for testing. 2752 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2753 EmitDeferred(); 2754 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2755 } 2756 } 2757 } 2758 2759 void CodeGenModule::EmitVTablesOpportunistically() { 2760 // Try to emit external vtables as available_externally if they have emitted 2761 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2762 // is not allowed to create new references to things that need to be emitted 2763 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2764 2765 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2766 && "Only emit opportunistic vtables with optimizations"); 2767 2768 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2769 assert(getVTables().isVTableExternal(RD) && 2770 "This queue should only contain external vtables"); 2771 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2772 VTables.GenerateClassData(RD); 2773 } 2774 OpportunisticVTables.clear(); 2775 } 2776 2777 void CodeGenModule::EmitGlobalAnnotations() { 2778 if (Annotations.empty()) 2779 return; 2780 2781 // Create a new global variable for the ConstantStruct in the Module. 2782 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2783 Annotations[0]->getType(), Annotations.size()), Annotations); 2784 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2785 llvm::GlobalValue::AppendingLinkage, 2786 Array, "llvm.global.annotations"); 2787 gv->setSection(AnnotationSection); 2788 } 2789 2790 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2791 llvm::Constant *&AStr = AnnotationStrings[Str]; 2792 if (AStr) 2793 return AStr; 2794 2795 // Not found yet, create a new global. 2796 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2797 auto *gv = 2798 new llvm::GlobalVariable(getModule(), s->getType(), true, 2799 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2800 gv->setSection(AnnotationSection); 2801 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2802 AStr = gv; 2803 return gv; 2804 } 2805 2806 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2807 SourceManager &SM = getContext().getSourceManager(); 2808 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2809 if (PLoc.isValid()) 2810 return EmitAnnotationString(PLoc.getFilename()); 2811 return EmitAnnotationString(SM.getBufferName(Loc)); 2812 } 2813 2814 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2815 SourceManager &SM = getContext().getSourceManager(); 2816 PresumedLoc PLoc = SM.getPresumedLoc(L); 2817 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2818 SM.getExpansionLineNumber(L); 2819 return llvm::ConstantInt::get(Int32Ty, LineNo); 2820 } 2821 2822 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2823 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2824 if (Exprs.empty()) 2825 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2826 2827 llvm::FoldingSetNodeID ID; 2828 for (Expr *E : Exprs) { 2829 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2830 } 2831 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2832 if (Lookup) 2833 return Lookup; 2834 2835 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2836 LLVMArgs.reserve(Exprs.size()); 2837 ConstantEmitter ConstEmiter(*this); 2838 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2839 const auto *CE = cast<clang::ConstantExpr>(E); 2840 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2841 CE->getType()); 2842 }); 2843 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2844 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2845 llvm::GlobalValue::PrivateLinkage, Struct, 2846 ".args"); 2847 GV->setSection(AnnotationSection); 2848 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2849 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2850 2851 Lookup = Bitcasted; 2852 return Bitcasted; 2853 } 2854 2855 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2856 const AnnotateAttr *AA, 2857 SourceLocation L) { 2858 // Get the globals for file name, annotation, and the line number. 2859 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2860 *UnitGV = EmitAnnotationUnit(L), 2861 *LineNoCst = EmitAnnotationLineNo(L), 2862 *Args = EmitAnnotationArgs(AA); 2863 2864 llvm::Constant *GVInGlobalsAS = GV; 2865 if (GV->getAddressSpace() != 2866 getDataLayout().getDefaultGlobalsAddressSpace()) { 2867 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2868 GV, GV->getValueType()->getPointerTo( 2869 getDataLayout().getDefaultGlobalsAddressSpace())); 2870 } 2871 2872 // Create the ConstantStruct for the global annotation. 2873 llvm::Constant *Fields[] = { 2874 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2875 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2876 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2877 LineNoCst, 2878 Args, 2879 }; 2880 return llvm::ConstantStruct::getAnon(Fields); 2881 } 2882 2883 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2884 llvm::GlobalValue *GV) { 2885 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2886 // Get the struct elements for these annotations. 2887 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2888 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2889 } 2890 2891 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2892 SourceLocation Loc) const { 2893 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2894 // NoSanitize by function name. 2895 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2896 return true; 2897 // NoSanitize by location. Check "mainfile" prefix. 2898 auto &SM = Context.getSourceManager(); 2899 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2900 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2901 return true; 2902 2903 // Check "src" prefix. 2904 if (Loc.isValid()) 2905 return NoSanitizeL.containsLocation(Kind, Loc); 2906 // If location is unknown, this may be a compiler-generated function. Assume 2907 // it's located in the main file. 2908 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2909 } 2910 2911 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2912 llvm::GlobalVariable *GV, 2913 SourceLocation Loc, QualType Ty, 2914 StringRef Category) const { 2915 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2916 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2917 return true; 2918 auto &SM = Context.getSourceManager(); 2919 if (NoSanitizeL.containsMainFile( 2920 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2921 return true; 2922 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2923 return true; 2924 2925 // Check global type. 2926 if (!Ty.isNull()) { 2927 // Drill down the array types: if global variable of a fixed type is 2928 // not sanitized, we also don't instrument arrays of them. 2929 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2930 Ty = AT->getElementType(); 2931 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2932 // Only record types (classes, structs etc.) are ignored. 2933 if (Ty->isRecordType()) { 2934 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2935 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2936 return true; 2937 } 2938 } 2939 return false; 2940 } 2941 2942 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2943 StringRef Category) const { 2944 const auto &XRayFilter = getContext().getXRayFilter(); 2945 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2946 auto Attr = ImbueAttr::NONE; 2947 if (Loc.isValid()) 2948 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2949 if (Attr == ImbueAttr::NONE) 2950 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2951 switch (Attr) { 2952 case ImbueAttr::NONE: 2953 return false; 2954 case ImbueAttr::ALWAYS: 2955 Fn->addFnAttr("function-instrument", "xray-always"); 2956 break; 2957 case ImbueAttr::ALWAYS_ARG1: 2958 Fn->addFnAttr("function-instrument", "xray-always"); 2959 Fn->addFnAttr("xray-log-args", "1"); 2960 break; 2961 case ImbueAttr::NEVER: 2962 Fn->addFnAttr("function-instrument", "xray-never"); 2963 break; 2964 } 2965 return true; 2966 } 2967 2968 ProfileList::ExclusionType 2969 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2970 SourceLocation Loc) const { 2971 const auto &ProfileList = getContext().getProfileList(); 2972 // If the profile list is empty, then instrument everything. 2973 if (ProfileList.isEmpty()) 2974 return ProfileList::Allow; 2975 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2976 // First, check the function name. 2977 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 2978 return *V; 2979 // Next, check the source location. 2980 if (Loc.isValid()) 2981 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 2982 return *V; 2983 // If location is unknown, this may be a compiler-generated function. Assume 2984 // it's located in the main file. 2985 auto &SM = Context.getSourceManager(); 2986 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 2987 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 2988 return *V; 2989 return ProfileList.getDefault(Kind); 2990 } 2991 2992 ProfileList::ExclusionType 2993 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 2994 SourceLocation Loc) const { 2995 auto V = isFunctionBlockedByProfileList(Fn, Loc); 2996 if (V != ProfileList::Allow) 2997 return V; 2998 2999 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3000 if (NumGroups > 1) { 3001 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3002 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3003 return ProfileList::Skip; 3004 } 3005 return ProfileList::Allow; 3006 } 3007 3008 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3009 // Never defer when EmitAllDecls is specified. 3010 if (LangOpts.EmitAllDecls) 3011 return true; 3012 3013 if (CodeGenOpts.KeepStaticConsts) { 3014 const auto *VD = dyn_cast<VarDecl>(Global); 3015 if (VD && VD->getType().isConstQualified() && 3016 VD->getStorageDuration() == SD_Static) 3017 return true; 3018 } 3019 3020 return getContext().DeclMustBeEmitted(Global); 3021 } 3022 3023 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3024 // In OpenMP 5.0 variables and function may be marked as 3025 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3026 // that they must be emitted on the host/device. To be sure we need to have 3027 // seen a declare target with an explicit mentioning of the function, we know 3028 // we have if the level of the declare target attribute is -1. Note that we 3029 // check somewhere else if we should emit this at all. 3030 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3031 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3032 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3033 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3034 return false; 3035 } 3036 3037 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3038 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3039 // Implicit template instantiations may change linkage if they are later 3040 // explicitly instantiated, so they should not be emitted eagerly. 3041 return false; 3042 } 3043 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3044 if (Context.getInlineVariableDefinitionKind(VD) == 3045 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3046 // A definition of an inline constexpr static data member may change 3047 // linkage later if it's redeclared outside the class. 3048 return false; 3049 if (CXX20ModuleInits && VD->getOwningModule() && 3050 !VD->getOwningModule()->isModuleMapModule()) { 3051 // For CXX20, module-owned initializers need to be deferred, since it is 3052 // not known at this point if they will be run for the current module or 3053 // as part of the initializer for an imported one. 3054 return false; 3055 } 3056 } 3057 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3058 // codegen for global variables, because they may be marked as threadprivate. 3059 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3060 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3061 !isTypeConstant(Global->getType(), false) && 3062 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3063 return false; 3064 3065 return true; 3066 } 3067 3068 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3069 StringRef Name = getMangledName(GD); 3070 3071 // The UUID descriptor should be pointer aligned. 3072 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3073 3074 // Look for an existing global. 3075 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3076 return ConstantAddress(GV, GV->getValueType(), Alignment); 3077 3078 ConstantEmitter Emitter(*this); 3079 llvm::Constant *Init; 3080 3081 APValue &V = GD->getAsAPValue(); 3082 if (!V.isAbsent()) { 3083 // If possible, emit the APValue version of the initializer. In particular, 3084 // this gets the type of the constant right. 3085 Init = Emitter.emitForInitializer( 3086 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3087 } else { 3088 // As a fallback, directly construct the constant. 3089 // FIXME: This may get padding wrong under esoteric struct layout rules. 3090 // MSVC appears to create a complete type 'struct __s_GUID' that it 3091 // presumably uses to represent these constants. 3092 MSGuidDecl::Parts Parts = GD->getParts(); 3093 llvm::Constant *Fields[4] = { 3094 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3095 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3096 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3097 llvm::ConstantDataArray::getRaw( 3098 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3099 Int8Ty)}; 3100 Init = llvm::ConstantStruct::getAnon(Fields); 3101 } 3102 3103 auto *GV = new llvm::GlobalVariable( 3104 getModule(), Init->getType(), 3105 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3106 if (supportsCOMDAT()) 3107 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3108 setDSOLocal(GV); 3109 3110 if (!V.isAbsent()) { 3111 Emitter.finalize(GV); 3112 return ConstantAddress(GV, GV->getValueType(), Alignment); 3113 } 3114 3115 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3116 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3117 GV, Ty->getPointerTo(GV->getAddressSpace())); 3118 return ConstantAddress(Addr, Ty, Alignment); 3119 } 3120 3121 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3122 const UnnamedGlobalConstantDecl *GCD) { 3123 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3124 3125 llvm::GlobalVariable **Entry = nullptr; 3126 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3127 if (*Entry) 3128 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3129 3130 ConstantEmitter Emitter(*this); 3131 llvm::Constant *Init; 3132 3133 const APValue &V = GCD->getValue(); 3134 3135 assert(!V.isAbsent()); 3136 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3137 GCD->getType()); 3138 3139 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3140 /*isConstant=*/true, 3141 llvm::GlobalValue::PrivateLinkage, Init, 3142 ".constant"); 3143 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3144 GV->setAlignment(Alignment.getAsAlign()); 3145 3146 Emitter.finalize(GV); 3147 3148 *Entry = GV; 3149 return ConstantAddress(GV, GV->getValueType(), Alignment); 3150 } 3151 3152 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3153 const TemplateParamObjectDecl *TPO) { 3154 StringRef Name = getMangledName(TPO); 3155 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3156 3157 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3158 return ConstantAddress(GV, GV->getValueType(), Alignment); 3159 3160 ConstantEmitter Emitter(*this); 3161 llvm::Constant *Init = Emitter.emitForInitializer( 3162 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3163 3164 if (!Init) { 3165 ErrorUnsupported(TPO, "template parameter object"); 3166 return ConstantAddress::invalid(); 3167 } 3168 3169 auto *GV = new llvm::GlobalVariable( 3170 getModule(), Init->getType(), 3171 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3172 if (supportsCOMDAT()) 3173 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3174 Emitter.finalize(GV); 3175 3176 return ConstantAddress(GV, GV->getValueType(), Alignment); 3177 } 3178 3179 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3180 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3181 assert(AA && "No alias?"); 3182 3183 CharUnits Alignment = getContext().getDeclAlign(VD); 3184 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3185 3186 // See if there is already something with the target's name in the module. 3187 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3188 if (Entry) { 3189 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3190 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3191 return ConstantAddress(Ptr, DeclTy, Alignment); 3192 } 3193 3194 llvm::Constant *Aliasee; 3195 if (isa<llvm::FunctionType>(DeclTy)) 3196 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3197 GlobalDecl(cast<FunctionDecl>(VD)), 3198 /*ForVTable=*/false); 3199 else 3200 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3201 nullptr); 3202 3203 auto *F = cast<llvm::GlobalValue>(Aliasee); 3204 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3205 WeakRefReferences.insert(F); 3206 3207 return ConstantAddress(Aliasee, DeclTy, Alignment); 3208 } 3209 3210 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3211 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3212 3213 // Weak references don't produce any output by themselves. 3214 if (Global->hasAttr<WeakRefAttr>()) 3215 return; 3216 3217 // If this is an alias definition (which otherwise looks like a declaration) 3218 // emit it now. 3219 if (Global->hasAttr<AliasAttr>()) 3220 return EmitAliasDefinition(GD); 3221 3222 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3223 if (Global->hasAttr<IFuncAttr>()) 3224 return emitIFuncDefinition(GD); 3225 3226 // If this is a cpu_dispatch multiversion function, emit the resolver. 3227 if (Global->hasAttr<CPUDispatchAttr>()) 3228 return emitCPUDispatchDefinition(GD); 3229 3230 // If this is CUDA, be selective about which declarations we emit. 3231 if (LangOpts.CUDA) { 3232 if (LangOpts.CUDAIsDevice) { 3233 if (!Global->hasAttr<CUDADeviceAttr>() && 3234 !Global->hasAttr<CUDAGlobalAttr>() && 3235 !Global->hasAttr<CUDAConstantAttr>() && 3236 !Global->hasAttr<CUDASharedAttr>() && 3237 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3238 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3239 return; 3240 } else { 3241 // We need to emit host-side 'shadows' for all global 3242 // device-side variables because the CUDA runtime needs their 3243 // size and host-side address in order to provide access to 3244 // their device-side incarnations. 3245 3246 // So device-only functions are the only things we skip. 3247 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3248 Global->hasAttr<CUDADeviceAttr>()) 3249 return; 3250 3251 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3252 "Expected Variable or Function"); 3253 } 3254 } 3255 3256 if (LangOpts.OpenMP) { 3257 // If this is OpenMP, check if it is legal to emit this global normally. 3258 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3259 return; 3260 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3261 if (MustBeEmitted(Global)) 3262 EmitOMPDeclareReduction(DRD); 3263 return; 3264 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3265 if (MustBeEmitted(Global)) 3266 EmitOMPDeclareMapper(DMD); 3267 return; 3268 } 3269 } 3270 3271 // Ignore declarations, they will be emitted on their first use. 3272 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3273 // Forward declarations are emitted lazily on first use. 3274 if (!FD->doesThisDeclarationHaveABody()) { 3275 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3276 return; 3277 3278 StringRef MangledName = getMangledName(GD); 3279 3280 // Compute the function info and LLVM type. 3281 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3282 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3283 3284 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3285 /*DontDefer=*/false); 3286 return; 3287 } 3288 } else { 3289 const auto *VD = cast<VarDecl>(Global); 3290 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3291 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3292 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3293 if (LangOpts.OpenMP) { 3294 // Emit declaration of the must-be-emitted declare target variable. 3295 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3296 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3297 bool UnifiedMemoryEnabled = 3298 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3299 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3300 !UnifiedMemoryEnabled) { 3301 (void)GetAddrOfGlobalVar(VD); 3302 } else { 3303 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3304 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3305 UnifiedMemoryEnabled)) && 3306 "Link clause or to clause with unified memory expected."); 3307 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3308 } 3309 3310 return; 3311 } 3312 } 3313 // If this declaration may have caused an inline variable definition to 3314 // change linkage, make sure that it's emitted. 3315 if (Context.getInlineVariableDefinitionKind(VD) == 3316 ASTContext::InlineVariableDefinitionKind::Strong) 3317 GetAddrOfGlobalVar(VD); 3318 return; 3319 } 3320 } 3321 3322 // Defer code generation to first use when possible, e.g. if this is an inline 3323 // function. If the global must always be emitted, do it eagerly if possible 3324 // to benefit from cache locality. 3325 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3326 // Emit the definition if it can't be deferred. 3327 EmitGlobalDefinition(GD); 3328 return; 3329 } 3330 3331 // If we're deferring emission of a C++ variable with an 3332 // initializer, remember the order in which it appeared in the file. 3333 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3334 cast<VarDecl>(Global)->hasInit()) { 3335 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3336 CXXGlobalInits.push_back(nullptr); 3337 } 3338 3339 StringRef MangledName = getMangledName(GD); 3340 if (GetGlobalValue(MangledName) != nullptr) { 3341 // The value has already been used and should therefore be emitted. 3342 addDeferredDeclToEmit(GD); 3343 } else if (MustBeEmitted(Global)) { 3344 // The value must be emitted, but cannot be emitted eagerly. 3345 assert(!MayBeEmittedEagerly(Global)); 3346 addDeferredDeclToEmit(GD); 3347 EmittedDeferredDecls[MangledName] = GD; 3348 } else { 3349 // Otherwise, remember that we saw a deferred decl with this name. The 3350 // first use of the mangled name will cause it to move into 3351 // DeferredDeclsToEmit. 3352 DeferredDecls[MangledName] = GD; 3353 } 3354 } 3355 3356 // Check if T is a class type with a destructor that's not dllimport. 3357 static bool HasNonDllImportDtor(QualType T) { 3358 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3359 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3360 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3361 return true; 3362 3363 return false; 3364 } 3365 3366 namespace { 3367 struct FunctionIsDirectlyRecursive 3368 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3369 const StringRef Name; 3370 const Builtin::Context &BI; 3371 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3372 : Name(N), BI(C) {} 3373 3374 bool VisitCallExpr(const CallExpr *E) { 3375 const FunctionDecl *FD = E->getDirectCallee(); 3376 if (!FD) 3377 return false; 3378 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3379 if (Attr && Name == Attr->getLabel()) 3380 return true; 3381 unsigned BuiltinID = FD->getBuiltinID(); 3382 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3383 return false; 3384 StringRef BuiltinName = BI.getName(BuiltinID); 3385 if (BuiltinName.startswith("__builtin_") && 3386 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3387 return true; 3388 } 3389 return false; 3390 } 3391 3392 bool VisitStmt(const Stmt *S) { 3393 for (const Stmt *Child : S->children()) 3394 if (Child && this->Visit(Child)) 3395 return true; 3396 return false; 3397 } 3398 }; 3399 3400 // Make sure we're not referencing non-imported vars or functions. 3401 struct DLLImportFunctionVisitor 3402 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3403 bool SafeToInline = true; 3404 3405 bool shouldVisitImplicitCode() const { return true; } 3406 3407 bool VisitVarDecl(VarDecl *VD) { 3408 if (VD->getTLSKind()) { 3409 // A thread-local variable cannot be imported. 3410 SafeToInline = false; 3411 return SafeToInline; 3412 } 3413 3414 // A variable definition might imply a destructor call. 3415 if (VD->isThisDeclarationADefinition()) 3416 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3417 3418 return SafeToInline; 3419 } 3420 3421 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3422 if (const auto *D = E->getTemporary()->getDestructor()) 3423 SafeToInline = D->hasAttr<DLLImportAttr>(); 3424 return SafeToInline; 3425 } 3426 3427 bool VisitDeclRefExpr(DeclRefExpr *E) { 3428 ValueDecl *VD = E->getDecl(); 3429 if (isa<FunctionDecl>(VD)) 3430 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3431 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3432 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3433 return SafeToInline; 3434 } 3435 3436 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3437 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3438 return SafeToInline; 3439 } 3440 3441 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3442 CXXMethodDecl *M = E->getMethodDecl(); 3443 if (!M) { 3444 // Call through a pointer to member function. This is safe to inline. 3445 SafeToInline = true; 3446 } else { 3447 SafeToInline = M->hasAttr<DLLImportAttr>(); 3448 } 3449 return SafeToInline; 3450 } 3451 3452 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3453 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3454 return SafeToInline; 3455 } 3456 3457 bool VisitCXXNewExpr(CXXNewExpr *E) { 3458 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3459 return SafeToInline; 3460 } 3461 }; 3462 } 3463 3464 // isTriviallyRecursive - Check if this function calls another 3465 // decl that, because of the asm attribute or the other decl being a builtin, 3466 // ends up pointing to itself. 3467 bool 3468 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3469 StringRef Name; 3470 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3471 // asm labels are a special kind of mangling we have to support. 3472 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3473 if (!Attr) 3474 return false; 3475 Name = Attr->getLabel(); 3476 } else { 3477 Name = FD->getName(); 3478 } 3479 3480 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3481 const Stmt *Body = FD->getBody(); 3482 return Body ? Walker.Visit(Body) : false; 3483 } 3484 3485 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3486 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3487 return true; 3488 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3489 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3490 return false; 3491 3492 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3493 // Check whether it would be safe to inline this dllimport function. 3494 DLLImportFunctionVisitor Visitor; 3495 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3496 if (!Visitor.SafeToInline) 3497 return false; 3498 3499 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3500 // Implicit destructor invocations aren't captured in the AST, so the 3501 // check above can't see them. Check for them manually here. 3502 for (const Decl *Member : Dtor->getParent()->decls()) 3503 if (isa<FieldDecl>(Member)) 3504 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3505 return false; 3506 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3507 if (HasNonDllImportDtor(B.getType())) 3508 return false; 3509 } 3510 } 3511 3512 // Inline builtins declaration must be emitted. They often are fortified 3513 // functions. 3514 if (F->isInlineBuiltinDeclaration()) 3515 return true; 3516 3517 // PR9614. Avoid cases where the source code is lying to us. An available 3518 // externally function should have an equivalent function somewhere else, 3519 // but a function that calls itself through asm label/`__builtin_` trickery is 3520 // clearly not equivalent to the real implementation. 3521 // This happens in glibc's btowc and in some configure checks. 3522 return !isTriviallyRecursive(F); 3523 } 3524 3525 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3526 return CodeGenOpts.OptimizationLevel > 0; 3527 } 3528 3529 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3530 llvm::GlobalValue *GV) { 3531 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3532 3533 if (FD->isCPUSpecificMultiVersion()) { 3534 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3535 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3536 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3537 } else if (FD->isTargetClonesMultiVersion()) { 3538 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3539 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3540 if (Clone->isFirstOfVersion(I)) 3541 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3542 // Ensure that the resolver function is also emitted. 3543 GetOrCreateMultiVersionResolver(GD); 3544 } else 3545 EmitGlobalFunctionDefinition(GD, GV); 3546 } 3547 3548 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3549 const auto *D = cast<ValueDecl>(GD.getDecl()); 3550 3551 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3552 Context.getSourceManager(), 3553 "Generating code for declaration"); 3554 3555 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3556 // At -O0, don't generate IR for functions with available_externally 3557 // linkage. 3558 if (!shouldEmitFunction(GD)) 3559 return; 3560 3561 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3562 std::string Name; 3563 llvm::raw_string_ostream OS(Name); 3564 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3565 /*Qualified=*/true); 3566 return Name; 3567 }); 3568 3569 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3570 // Make sure to emit the definition(s) before we emit the thunks. 3571 // This is necessary for the generation of certain thunks. 3572 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3573 ABI->emitCXXStructor(GD); 3574 else if (FD->isMultiVersion()) 3575 EmitMultiVersionFunctionDefinition(GD, GV); 3576 else 3577 EmitGlobalFunctionDefinition(GD, GV); 3578 3579 if (Method->isVirtual()) 3580 getVTables().EmitThunks(GD); 3581 3582 return; 3583 } 3584 3585 if (FD->isMultiVersion()) 3586 return EmitMultiVersionFunctionDefinition(GD, GV); 3587 return EmitGlobalFunctionDefinition(GD, GV); 3588 } 3589 3590 if (const auto *VD = dyn_cast<VarDecl>(D)) 3591 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3592 3593 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3594 } 3595 3596 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3597 llvm::Function *NewFn); 3598 3599 static unsigned 3600 TargetMVPriority(const TargetInfo &TI, 3601 const CodeGenFunction::MultiVersionResolverOption &RO) { 3602 unsigned Priority = 0; 3603 for (StringRef Feat : RO.Conditions.Features) 3604 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3605 3606 if (!RO.Conditions.Architecture.empty()) 3607 Priority = std::max( 3608 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3609 return Priority; 3610 } 3611 3612 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3613 // TU can forward declare the function without causing problems. Particularly 3614 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3615 // work with internal linkage functions, so that the same function name can be 3616 // used with internal linkage in multiple TUs. 3617 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3618 GlobalDecl GD) { 3619 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3620 if (FD->getFormalLinkage() == InternalLinkage) 3621 return llvm::GlobalValue::InternalLinkage; 3622 return llvm::GlobalValue::WeakODRLinkage; 3623 } 3624 3625 void CodeGenModule::emitMultiVersionFunctions() { 3626 std::vector<GlobalDecl> MVFuncsToEmit; 3627 MultiVersionFuncs.swap(MVFuncsToEmit); 3628 for (GlobalDecl GD : MVFuncsToEmit) { 3629 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3630 assert(FD && "Expected a FunctionDecl"); 3631 3632 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3633 if (FD->isTargetMultiVersion()) { 3634 getContext().forEachMultiversionedFunctionVersion( 3635 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3636 GlobalDecl CurGD{ 3637 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3638 StringRef MangledName = getMangledName(CurGD); 3639 llvm::Constant *Func = GetGlobalValue(MangledName); 3640 if (!Func) { 3641 if (CurFD->isDefined()) { 3642 EmitGlobalFunctionDefinition(CurGD, nullptr); 3643 Func = GetGlobalValue(MangledName); 3644 } else { 3645 const CGFunctionInfo &FI = 3646 getTypes().arrangeGlobalDeclaration(GD); 3647 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3648 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3649 /*DontDefer=*/false, ForDefinition); 3650 } 3651 assert(Func && "This should have just been created"); 3652 } 3653 3654 const auto *TA = CurFD->getAttr<TargetAttr>(); 3655 llvm::SmallVector<StringRef, 8> Feats; 3656 TA->getAddedFeatures(Feats); 3657 3658 Options.emplace_back(cast<llvm::Function>(Func), 3659 TA->getArchitecture(), Feats); 3660 }); 3661 } else if (FD->isTargetClonesMultiVersion()) { 3662 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3663 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3664 ++VersionIndex) { 3665 if (!TC->isFirstOfVersion(VersionIndex)) 3666 continue; 3667 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3668 VersionIndex}; 3669 StringRef Version = TC->getFeatureStr(VersionIndex); 3670 StringRef MangledName = getMangledName(CurGD); 3671 llvm::Constant *Func = GetGlobalValue(MangledName); 3672 if (!Func) { 3673 if (FD->isDefined()) { 3674 EmitGlobalFunctionDefinition(CurGD, nullptr); 3675 Func = GetGlobalValue(MangledName); 3676 } else { 3677 const CGFunctionInfo &FI = 3678 getTypes().arrangeGlobalDeclaration(CurGD); 3679 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3680 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3681 /*DontDefer=*/false, ForDefinition); 3682 } 3683 assert(Func && "This should have just been created"); 3684 } 3685 3686 StringRef Architecture; 3687 llvm::SmallVector<StringRef, 1> Feature; 3688 3689 if (Version.startswith("arch=")) 3690 Architecture = Version.drop_front(sizeof("arch=") - 1); 3691 else if (Version != "default") 3692 Feature.push_back(Version); 3693 3694 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3695 } 3696 } else { 3697 assert(0 && "Expected a target or target_clones multiversion function"); 3698 continue; 3699 } 3700 3701 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3702 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3703 ResolverConstant = IFunc->getResolver(); 3704 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3705 3706 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3707 3708 if (supportsCOMDAT()) 3709 ResolverFunc->setComdat( 3710 getModule().getOrInsertComdat(ResolverFunc->getName())); 3711 3712 const TargetInfo &TI = getTarget(); 3713 llvm::stable_sort( 3714 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3715 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3716 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3717 }); 3718 CodeGenFunction CGF(*this); 3719 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3720 } 3721 3722 // Ensure that any additions to the deferred decls list caused by emitting a 3723 // variant are emitted. This can happen when the variant itself is inline and 3724 // calls a function without linkage. 3725 if (!MVFuncsToEmit.empty()) 3726 EmitDeferred(); 3727 3728 // Ensure that any additions to the multiversion funcs list from either the 3729 // deferred decls or the multiversion functions themselves are emitted. 3730 if (!MultiVersionFuncs.empty()) 3731 emitMultiVersionFunctions(); 3732 } 3733 3734 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3735 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3736 assert(FD && "Not a FunctionDecl?"); 3737 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3738 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3739 assert(DD && "Not a cpu_dispatch Function?"); 3740 3741 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3742 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3743 3744 StringRef ResolverName = getMangledName(GD); 3745 UpdateMultiVersionNames(GD, FD, ResolverName); 3746 3747 llvm::Type *ResolverType; 3748 GlobalDecl ResolverGD; 3749 if (getTarget().supportsIFunc()) { 3750 ResolverType = llvm::FunctionType::get( 3751 llvm::PointerType::get(DeclTy, 3752 Context.getTargetAddressSpace(FD->getType())), 3753 false); 3754 } 3755 else { 3756 ResolverType = DeclTy; 3757 ResolverGD = GD; 3758 } 3759 3760 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3761 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3762 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3763 if (supportsCOMDAT()) 3764 ResolverFunc->setComdat( 3765 getModule().getOrInsertComdat(ResolverFunc->getName())); 3766 3767 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3768 const TargetInfo &Target = getTarget(); 3769 unsigned Index = 0; 3770 for (const IdentifierInfo *II : DD->cpus()) { 3771 // Get the name of the target function so we can look it up/create it. 3772 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3773 getCPUSpecificMangling(*this, II->getName()); 3774 3775 llvm::Constant *Func = GetGlobalValue(MangledName); 3776 3777 if (!Func) { 3778 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3779 if (ExistingDecl.getDecl() && 3780 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3781 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3782 Func = GetGlobalValue(MangledName); 3783 } else { 3784 if (!ExistingDecl.getDecl()) 3785 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3786 3787 Func = GetOrCreateLLVMFunction( 3788 MangledName, DeclTy, ExistingDecl, 3789 /*ForVTable=*/false, /*DontDefer=*/true, 3790 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3791 } 3792 } 3793 3794 llvm::SmallVector<StringRef, 32> Features; 3795 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3796 llvm::transform(Features, Features.begin(), 3797 [](StringRef Str) { return Str.substr(1); }); 3798 llvm::erase_if(Features, [&Target](StringRef Feat) { 3799 return !Target.validateCpuSupports(Feat); 3800 }); 3801 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3802 ++Index; 3803 } 3804 3805 llvm::stable_sort( 3806 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3807 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3808 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3809 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3810 }); 3811 3812 // If the list contains multiple 'default' versions, such as when it contains 3813 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3814 // always run on at least a 'pentium'). We do this by deleting the 'least 3815 // advanced' (read, lowest mangling letter). 3816 while (Options.size() > 1 && 3817 llvm::X86::getCpuSupportsMask( 3818 (Options.end() - 2)->Conditions.Features) == 0) { 3819 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3820 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3821 if (LHSName.compare(RHSName) < 0) 3822 Options.erase(Options.end() - 2); 3823 else 3824 Options.erase(Options.end() - 1); 3825 } 3826 3827 CodeGenFunction CGF(*this); 3828 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3829 3830 if (getTarget().supportsIFunc()) { 3831 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3832 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3833 3834 // Fix up function declarations that were created for cpu_specific before 3835 // cpu_dispatch was known 3836 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3837 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3838 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3839 &getModule()); 3840 GI->takeName(IFunc); 3841 IFunc->replaceAllUsesWith(GI); 3842 IFunc->eraseFromParent(); 3843 IFunc = GI; 3844 } 3845 3846 std::string AliasName = getMangledNameImpl( 3847 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3848 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3849 if (!AliasFunc) { 3850 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3851 &getModule()); 3852 SetCommonAttributes(GD, GA); 3853 } 3854 } 3855 } 3856 3857 /// If a dispatcher for the specified mangled name is not in the module, create 3858 /// and return an llvm Function with the specified type. 3859 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3860 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3861 assert(FD && "Not a FunctionDecl?"); 3862 3863 std::string MangledName = 3864 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3865 3866 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3867 // a separate resolver). 3868 std::string ResolverName = MangledName; 3869 if (getTarget().supportsIFunc()) 3870 ResolverName += ".ifunc"; 3871 else if (FD->isTargetMultiVersion()) 3872 ResolverName += ".resolver"; 3873 3874 // If the resolver has already been created, just return it. 3875 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3876 return ResolverGV; 3877 3878 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3879 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3880 3881 // The resolver needs to be created. For target and target_clones, defer 3882 // creation until the end of the TU. 3883 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3884 MultiVersionFuncs.push_back(GD); 3885 3886 // For cpu_specific, don't create an ifunc yet because we don't know if the 3887 // cpu_dispatch will be emitted in this translation unit. 3888 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3889 llvm::Type *ResolverType = llvm::FunctionType::get( 3890 llvm::PointerType::get( 3891 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3892 false); 3893 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3894 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3895 /*ForVTable=*/false); 3896 llvm::GlobalIFunc *GIF = 3897 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3898 "", Resolver, &getModule()); 3899 GIF->setName(ResolverName); 3900 SetCommonAttributes(FD, GIF); 3901 3902 return GIF; 3903 } 3904 3905 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3906 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3907 assert(isa<llvm::GlobalValue>(Resolver) && 3908 "Resolver should be created for the first time"); 3909 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3910 return Resolver; 3911 } 3912 3913 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3914 /// module, create and return an llvm Function with the specified type. If there 3915 /// is something in the module with the specified name, return it potentially 3916 /// bitcasted to the right type. 3917 /// 3918 /// If D is non-null, it specifies a decl that correspond to this. This is used 3919 /// to set the attributes on the function when it is first created. 3920 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3921 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3922 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3923 ForDefinition_t IsForDefinition) { 3924 const Decl *D = GD.getDecl(); 3925 3926 // Any attempts to use a MultiVersion function should result in retrieving 3927 // the iFunc instead. Name Mangling will handle the rest of the changes. 3928 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3929 // For the device mark the function as one that should be emitted. 3930 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3931 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3932 !DontDefer && !IsForDefinition) { 3933 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3934 GlobalDecl GDDef; 3935 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3936 GDDef = GlobalDecl(CD, GD.getCtorType()); 3937 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3938 GDDef = GlobalDecl(DD, GD.getDtorType()); 3939 else 3940 GDDef = GlobalDecl(FDDef); 3941 EmitGlobal(GDDef); 3942 } 3943 } 3944 3945 if (FD->isMultiVersion()) { 3946 UpdateMultiVersionNames(GD, FD, MangledName); 3947 if (!IsForDefinition) 3948 return GetOrCreateMultiVersionResolver(GD); 3949 } 3950 } 3951 3952 // Lookup the entry, lazily creating it if necessary. 3953 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3954 if (Entry) { 3955 if (WeakRefReferences.erase(Entry)) { 3956 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3957 if (FD && !FD->hasAttr<WeakAttr>()) 3958 Entry->setLinkage(llvm::Function::ExternalLinkage); 3959 } 3960 3961 // Handle dropped DLL attributes. 3962 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3963 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3964 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3965 setDSOLocal(Entry); 3966 } 3967 3968 // If there are two attempts to define the same mangled name, issue an 3969 // error. 3970 if (IsForDefinition && !Entry->isDeclaration()) { 3971 GlobalDecl OtherGD; 3972 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3973 // to make sure that we issue an error only once. 3974 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3975 (GD.getCanonicalDecl().getDecl() != 3976 OtherGD.getCanonicalDecl().getDecl()) && 3977 DiagnosedConflictingDefinitions.insert(GD).second) { 3978 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3979 << MangledName; 3980 getDiags().Report(OtherGD.getDecl()->getLocation(), 3981 diag::note_previous_definition); 3982 } 3983 } 3984 3985 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3986 (Entry->getValueType() == Ty)) { 3987 return Entry; 3988 } 3989 3990 // Make sure the result is of the correct type. 3991 // (If function is requested for a definition, we always need to create a new 3992 // function, not just return a bitcast.) 3993 if (!IsForDefinition) 3994 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3995 } 3996 3997 // This function doesn't have a complete type (for example, the return 3998 // type is an incomplete struct). Use a fake type instead, and make 3999 // sure not to try to set attributes. 4000 bool IsIncompleteFunction = false; 4001 4002 llvm::FunctionType *FTy; 4003 if (isa<llvm::FunctionType>(Ty)) { 4004 FTy = cast<llvm::FunctionType>(Ty); 4005 } else { 4006 FTy = llvm::FunctionType::get(VoidTy, false); 4007 IsIncompleteFunction = true; 4008 } 4009 4010 llvm::Function *F = 4011 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4012 Entry ? StringRef() : MangledName, &getModule()); 4013 4014 // If we already created a function with the same mangled name (but different 4015 // type) before, take its name and add it to the list of functions to be 4016 // replaced with F at the end of CodeGen. 4017 // 4018 // This happens if there is a prototype for a function (e.g. "int f()") and 4019 // then a definition of a different type (e.g. "int f(int x)"). 4020 if (Entry) { 4021 F->takeName(Entry); 4022 4023 // This might be an implementation of a function without a prototype, in 4024 // which case, try to do special replacement of calls which match the new 4025 // prototype. The really key thing here is that we also potentially drop 4026 // arguments from the call site so as to make a direct call, which makes the 4027 // inliner happier and suppresses a number of optimizer warnings (!) about 4028 // dropping arguments. 4029 if (!Entry->use_empty()) { 4030 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4031 Entry->removeDeadConstantUsers(); 4032 } 4033 4034 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4035 F, Entry->getValueType()->getPointerTo()); 4036 addGlobalValReplacement(Entry, BC); 4037 } 4038 4039 assert(F->getName() == MangledName && "name was uniqued!"); 4040 if (D) 4041 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4042 if (ExtraAttrs.hasFnAttrs()) { 4043 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4044 F->addFnAttrs(B); 4045 } 4046 4047 if (!DontDefer) { 4048 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4049 // each other bottoming out with the base dtor. Therefore we emit non-base 4050 // dtors on usage, even if there is no dtor definition in the TU. 4051 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4052 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4053 GD.getDtorType())) 4054 addDeferredDeclToEmit(GD); 4055 4056 // This is the first use or definition of a mangled name. If there is a 4057 // deferred decl with this name, remember that we need to emit it at the end 4058 // of the file. 4059 auto DDI = DeferredDecls.find(MangledName); 4060 if (DDI != DeferredDecls.end()) { 4061 // Move the potentially referenced deferred decl to the 4062 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4063 // don't need it anymore). 4064 addDeferredDeclToEmit(DDI->second); 4065 EmittedDeferredDecls[DDI->first] = DDI->second; 4066 DeferredDecls.erase(DDI); 4067 4068 // Otherwise, there are cases we have to worry about where we're 4069 // using a declaration for which we must emit a definition but where 4070 // we might not find a top-level definition: 4071 // - member functions defined inline in their classes 4072 // - friend functions defined inline in some class 4073 // - special member functions with implicit definitions 4074 // If we ever change our AST traversal to walk into class methods, 4075 // this will be unnecessary. 4076 // 4077 // We also don't emit a definition for a function if it's going to be an 4078 // entry in a vtable, unless it's already marked as used. 4079 } else if (getLangOpts().CPlusPlus && D) { 4080 // Look for a declaration that's lexically in a record. 4081 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4082 FD = FD->getPreviousDecl()) { 4083 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4084 if (FD->doesThisDeclarationHaveABody()) { 4085 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4086 break; 4087 } 4088 } 4089 } 4090 } 4091 } 4092 4093 // Make sure the result is of the requested type. 4094 if (!IsIncompleteFunction) { 4095 assert(F->getFunctionType() == Ty); 4096 return F; 4097 } 4098 4099 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 4100 return llvm::ConstantExpr::getBitCast(F, PTy); 4101 } 4102 4103 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4104 /// non-null, then this function will use the specified type if it has to 4105 /// create it (this occurs when we see a definition of the function). 4106 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4107 llvm::Type *Ty, 4108 bool ForVTable, 4109 bool DontDefer, 4110 ForDefinition_t IsForDefinition) { 4111 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4112 "consteval function should never be emitted"); 4113 // If there was no specific requested type, just convert it now. 4114 if (!Ty) { 4115 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4116 Ty = getTypes().ConvertType(FD->getType()); 4117 } 4118 4119 // Devirtualized destructor calls may come through here instead of via 4120 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4121 // of the complete destructor when necessary. 4122 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4123 if (getTarget().getCXXABI().isMicrosoft() && 4124 GD.getDtorType() == Dtor_Complete && 4125 DD->getParent()->getNumVBases() == 0) 4126 GD = GlobalDecl(DD, Dtor_Base); 4127 } 4128 4129 StringRef MangledName = getMangledName(GD); 4130 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4131 /*IsThunk=*/false, llvm::AttributeList(), 4132 IsForDefinition); 4133 // Returns kernel handle for HIP kernel stub function. 4134 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4135 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4136 auto *Handle = getCUDARuntime().getKernelHandle( 4137 cast<llvm::Function>(F->stripPointerCasts()), GD); 4138 if (IsForDefinition) 4139 return F; 4140 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4141 } 4142 return F; 4143 } 4144 4145 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4146 llvm::GlobalValue *F = 4147 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4148 4149 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4150 llvm::Type::getInt8PtrTy(VMContext)); 4151 } 4152 4153 static const FunctionDecl * 4154 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4155 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4156 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4157 4158 IdentifierInfo &CII = C.Idents.get(Name); 4159 for (const auto *Result : DC->lookup(&CII)) 4160 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4161 return FD; 4162 4163 if (!C.getLangOpts().CPlusPlus) 4164 return nullptr; 4165 4166 // Demangle the premangled name from getTerminateFn() 4167 IdentifierInfo &CXXII = 4168 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4169 ? C.Idents.get("terminate") 4170 : C.Idents.get(Name); 4171 4172 for (const auto &N : {"__cxxabiv1", "std"}) { 4173 IdentifierInfo &NS = C.Idents.get(N); 4174 for (const auto *Result : DC->lookup(&NS)) { 4175 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4176 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4177 for (const auto *Result : LSD->lookup(&NS)) 4178 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4179 break; 4180 4181 if (ND) 4182 for (const auto *Result : ND->lookup(&CXXII)) 4183 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4184 return FD; 4185 } 4186 } 4187 4188 return nullptr; 4189 } 4190 4191 /// CreateRuntimeFunction - Create a new runtime function with the specified 4192 /// type and name. 4193 llvm::FunctionCallee 4194 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4195 llvm::AttributeList ExtraAttrs, bool Local, 4196 bool AssumeConvergent) { 4197 if (AssumeConvergent) { 4198 ExtraAttrs = 4199 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4200 } 4201 4202 llvm::Constant *C = 4203 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4204 /*DontDefer=*/false, /*IsThunk=*/false, 4205 ExtraAttrs); 4206 4207 if (auto *F = dyn_cast<llvm::Function>(C)) { 4208 if (F->empty()) { 4209 F->setCallingConv(getRuntimeCC()); 4210 4211 // In Windows Itanium environments, try to mark runtime functions 4212 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4213 // will link their standard library statically or dynamically. Marking 4214 // functions imported when they are not imported can cause linker errors 4215 // and warnings. 4216 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4217 !getCodeGenOpts().LTOVisibilityPublicStd) { 4218 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4219 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4220 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4221 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4222 } 4223 } 4224 setDSOLocal(F); 4225 } 4226 } 4227 4228 return {FTy, C}; 4229 } 4230 4231 /// isTypeConstant - Determine whether an object of this type can be emitted 4232 /// as a constant. 4233 /// 4234 /// If ExcludeCtor is true, the duration when the object's constructor runs 4235 /// will not be considered. The caller will need to verify that the object is 4236 /// not written to during its construction. 4237 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4238 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4239 return false; 4240 4241 if (Context.getLangOpts().CPlusPlus) { 4242 if (const CXXRecordDecl *Record 4243 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4244 return ExcludeCtor && !Record->hasMutableFields() && 4245 Record->hasTrivialDestructor(); 4246 } 4247 4248 return true; 4249 } 4250 4251 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4252 /// create and return an llvm GlobalVariable with the specified type and address 4253 /// space. If there is something in the module with the specified name, return 4254 /// it potentially bitcasted to the right type. 4255 /// 4256 /// If D is non-null, it specifies a decl that correspond to this. This is used 4257 /// to set the attributes on the global when it is first created. 4258 /// 4259 /// If IsForDefinition is true, it is guaranteed that an actual global with 4260 /// type Ty will be returned, not conversion of a variable with the same 4261 /// mangled name but some other type. 4262 llvm::Constant * 4263 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4264 LangAS AddrSpace, const VarDecl *D, 4265 ForDefinition_t IsForDefinition) { 4266 // Lookup the entry, lazily creating it if necessary. 4267 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4268 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4269 if (Entry) { 4270 if (WeakRefReferences.erase(Entry)) { 4271 if (D && !D->hasAttr<WeakAttr>()) 4272 Entry->setLinkage(llvm::Function::ExternalLinkage); 4273 } 4274 4275 // Handle dropped DLL attributes. 4276 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4277 !shouldMapVisibilityToDLLExport(D)) 4278 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4279 4280 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4281 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4282 4283 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4284 return Entry; 4285 4286 // If there are two attempts to define the same mangled name, issue an 4287 // error. 4288 if (IsForDefinition && !Entry->isDeclaration()) { 4289 GlobalDecl OtherGD; 4290 const VarDecl *OtherD; 4291 4292 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4293 // to make sure that we issue an error only once. 4294 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4295 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4296 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4297 OtherD->hasInit() && 4298 DiagnosedConflictingDefinitions.insert(D).second) { 4299 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4300 << MangledName; 4301 getDiags().Report(OtherGD.getDecl()->getLocation(), 4302 diag::note_previous_definition); 4303 } 4304 } 4305 4306 // Make sure the result is of the correct type. 4307 if (Entry->getType()->getAddressSpace() != TargetAS) { 4308 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4309 Ty->getPointerTo(TargetAS)); 4310 } 4311 4312 // (If global is requested for a definition, we always need to create a new 4313 // global, not just return a bitcast.) 4314 if (!IsForDefinition) 4315 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4316 } 4317 4318 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4319 4320 auto *GV = new llvm::GlobalVariable( 4321 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4322 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4323 getContext().getTargetAddressSpace(DAddrSpace)); 4324 4325 // If we already created a global with the same mangled name (but different 4326 // type) before, take its name and remove it from its parent. 4327 if (Entry) { 4328 GV->takeName(Entry); 4329 4330 if (!Entry->use_empty()) { 4331 llvm::Constant *NewPtrForOldDecl = 4332 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4333 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4334 } 4335 4336 Entry->eraseFromParent(); 4337 } 4338 4339 // This is the first use or definition of a mangled name. If there is a 4340 // deferred decl with this name, remember that we need to emit it at the end 4341 // of the file. 4342 auto DDI = DeferredDecls.find(MangledName); 4343 if (DDI != DeferredDecls.end()) { 4344 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4345 // list, and remove it from DeferredDecls (since we don't need it anymore). 4346 addDeferredDeclToEmit(DDI->second); 4347 EmittedDeferredDecls[DDI->first] = DDI->second; 4348 DeferredDecls.erase(DDI); 4349 } 4350 4351 // Handle things which are present even on external declarations. 4352 if (D) { 4353 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4354 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4355 4356 // FIXME: This code is overly simple and should be merged with other global 4357 // handling. 4358 GV->setConstant(isTypeConstant(D->getType(), false)); 4359 4360 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4361 4362 setLinkageForGV(GV, D); 4363 4364 if (D->getTLSKind()) { 4365 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4366 CXXThreadLocals.push_back(D); 4367 setTLSMode(GV, *D); 4368 } 4369 4370 setGVProperties(GV, D); 4371 4372 // If required by the ABI, treat declarations of static data members with 4373 // inline initializers as definitions. 4374 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4375 EmitGlobalVarDefinition(D); 4376 } 4377 4378 // Emit section information for extern variables. 4379 if (D->hasExternalStorage()) { 4380 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4381 GV->setSection(SA->getName()); 4382 } 4383 4384 // Handle XCore specific ABI requirements. 4385 if (getTriple().getArch() == llvm::Triple::xcore && 4386 D->getLanguageLinkage() == CLanguageLinkage && 4387 D->getType().isConstant(Context) && 4388 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4389 GV->setSection(".cp.rodata"); 4390 4391 // Check if we a have a const declaration with an initializer, we may be 4392 // able to emit it as available_externally to expose it's value to the 4393 // optimizer. 4394 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4395 D->getType().isConstQualified() && !GV->hasInitializer() && 4396 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4397 const auto *Record = 4398 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4399 bool HasMutableFields = Record && Record->hasMutableFields(); 4400 if (!HasMutableFields) { 4401 const VarDecl *InitDecl; 4402 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4403 if (InitExpr) { 4404 ConstantEmitter emitter(*this); 4405 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4406 if (Init) { 4407 auto *InitType = Init->getType(); 4408 if (GV->getValueType() != InitType) { 4409 // The type of the initializer does not match the definition. 4410 // This happens when an initializer has a different type from 4411 // the type of the global (because of padding at the end of a 4412 // structure for instance). 4413 GV->setName(StringRef()); 4414 // Make a new global with the correct type, this is now guaranteed 4415 // to work. 4416 auto *NewGV = cast<llvm::GlobalVariable>( 4417 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4418 ->stripPointerCasts()); 4419 4420 // Erase the old global, since it is no longer used. 4421 GV->eraseFromParent(); 4422 GV = NewGV; 4423 } else { 4424 GV->setInitializer(Init); 4425 GV->setConstant(true); 4426 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4427 } 4428 emitter.finalize(GV); 4429 } 4430 } 4431 } 4432 } 4433 } 4434 4435 if (GV->isDeclaration()) { 4436 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4437 // External HIP managed variables needed to be recorded for transformation 4438 // in both device and host compilations. 4439 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4440 D->hasExternalStorage()) 4441 getCUDARuntime().handleVarRegistration(D, *GV); 4442 } 4443 4444 if (D) 4445 SanitizerMD->reportGlobal(GV, *D); 4446 4447 LangAS ExpectedAS = 4448 D ? D->getType().getAddressSpace() 4449 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4450 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4451 if (DAddrSpace != ExpectedAS) { 4452 return getTargetCodeGenInfo().performAddrSpaceCast( 4453 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4454 } 4455 4456 return GV; 4457 } 4458 4459 llvm::Constant * 4460 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4461 const Decl *D = GD.getDecl(); 4462 4463 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4464 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4465 /*DontDefer=*/false, IsForDefinition); 4466 4467 if (isa<CXXMethodDecl>(D)) { 4468 auto FInfo = 4469 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4470 auto Ty = getTypes().GetFunctionType(*FInfo); 4471 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4472 IsForDefinition); 4473 } 4474 4475 if (isa<FunctionDecl>(D)) { 4476 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4477 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4478 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4479 IsForDefinition); 4480 } 4481 4482 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4483 } 4484 4485 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4486 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4487 unsigned Alignment) { 4488 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4489 llvm::GlobalVariable *OldGV = nullptr; 4490 4491 if (GV) { 4492 // Check if the variable has the right type. 4493 if (GV->getValueType() == Ty) 4494 return GV; 4495 4496 // Because C++ name mangling, the only way we can end up with an already 4497 // existing global with the same name is if it has been declared extern "C". 4498 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4499 OldGV = GV; 4500 } 4501 4502 // Create a new variable. 4503 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4504 Linkage, nullptr, Name); 4505 4506 if (OldGV) { 4507 // Replace occurrences of the old variable if needed. 4508 GV->takeName(OldGV); 4509 4510 if (!OldGV->use_empty()) { 4511 llvm::Constant *NewPtrForOldDecl = 4512 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4513 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4514 } 4515 4516 OldGV->eraseFromParent(); 4517 } 4518 4519 if (supportsCOMDAT() && GV->isWeakForLinker() && 4520 !GV->hasAvailableExternallyLinkage()) 4521 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4522 4523 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4524 4525 return GV; 4526 } 4527 4528 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4529 /// given global variable. If Ty is non-null and if the global doesn't exist, 4530 /// then it will be created with the specified type instead of whatever the 4531 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4532 /// that an actual global with type Ty will be returned, not conversion of a 4533 /// variable with the same mangled name but some other type. 4534 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4535 llvm::Type *Ty, 4536 ForDefinition_t IsForDefinition) { 4537 assert(D->hasGlobalStorage() && "Not a global variable"); 4538 QualType ASTTy = D->getType(); 4539 if (!Ty) 4540 Ty = getTypes().ConvertTypeForMem(ASTTy); 4541 4542 StringRef MangledName = getMangledName(D); 4543 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4544 IsForDefinition); 4545 } 4546 4547 /// CreateRuntimeVariable - Create a new runtime global variable with the 4548 /// specified type and name. 4549 llvm::Constant * 4550 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4551 StringRef Name) { 4552 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4553 : LangAS::Default; 4554 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4555 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4556 return Ret; 4557 } 4558 4559 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4560 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4561 4562 StringRef MangledName = getMangledName(D); 4563 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4564 4565 // We already have a definition, not declaration, with the same mangled name. 4566 // Emitting of declaration is not required (and actually overwrites emitted 4567 // definition). 4568 if (GV && !GV->isDeclaration()) 4569 return; 4570 4571 // If we have not seen a reference to this variable yet, place it into the 4572 // deferred declarations table to be emitted if needed later. 4573 if (!MustBeEmitted(D) && !GV) { 4574 DeferredDecls[MangledName] = D; 4575 return; 4576 } 4577 4578 // The tentative definition is the only definition. 4579 EmitGlobalVarDefinition(D); 4580 } 4581 4582 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4583 EmitExternalVarDeclaration(D); 4584 } 4585 4586 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4587 return Context.toCharUnitsFromBits( 4588 getDataLayout().getTypeStoreSizeInBits(Ty)); 4589 } 4590 4591 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4592 if (LangOpts.OpenCL) { 4593 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4594 assert(AS == LangAS::opencl_global || 4595 AS == LangAS::opencl_global_device || 4596 AS == LangAS::opencl_global_host || 4597 AS == LangAS::opencl_constant || 4598 AS == LangAS::opencl_local || 4599 AS >= LangAS::FirstTargetAddressSpace); 4600 return AS; 4601 } 4602 4603 if (LangOpts.SYCLIsDevice && 4604 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4605 return LangAS::sycl_global; 4606 4607 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4608 if (D && D->hasAttr<CUDAConstantAttr>()) 4609 return LangAS::cuda_constant; 4610 else if (D && D->hasAttr<CUDASharedAttr>()) 4611 return LangAS::cuda_shared; 4612 else if (D && D->hasAttr<CUDADeviceAttr>()) 4613 return LangAS::cuda_device; 4614 else if (D && D->getType().isConstQualified()) 4615 return LangAS::cuda_constant; 4616 else 4617 return LangAS::cuda_device; 4618 } 4619 4620 if (LangOpts.OpenMP) { 4621 LangAS AS; 4622 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4623 return AS; 4624 } 4625 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4626 } 4627 4628 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4629 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4630 if (LangOpts.OpenCL) 4631 return LangAS::opencl_constant; 4632 if (LangOpts.SYCLIsDevice) 4633 return LangAS::sycl_global; 4634 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4635 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4636 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4637 // with OpVariable instructions with Generic storage class which is not 4638 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4639 // UniformConstant storage class is not viable as pointers to it may not be 4640 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4641 return LangAS::cuda_device; 4642 if (auto AS = getTarget().getConstantAddressSpace()) 4643 return *AS; 4644 return LangAS::Default; 4645 } 4646 4647 // In address space agnostic languages, string literals are in default address 4648 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4649 // emitted in constant address space in LLVM IR. To be consistent with other 4650 // parts of AST, string literal global variables in constant address space 4651 // need to be casted to default address space before being put into address 4652 // map and referenced by other part of CodeGen. 4653 // In OpenCL, string literals are in constant address space in AST, therefore 4654 // they should not be casted to default address space. 4655 static llvm::Constant * 4656 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4657 llvm::GlobalVariable *GV) { 4658 llvm::Constant *Cast = GV; 4659 if (!CGM.getLangOpts().OpenCL) { 4660 auto AS = CGM.GetGlobalConstantAddressSpace(); 4661 if (AS != LangAS::Default) 4662 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4663 CGM, GV, AS, LangAS::Default, 4664 GV->getValueType()->getPointerTo( 4665 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4666 } 4667 return Cast; 4668 } 4669 4670 template<typename SomeDecl> 4671 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4672 llvm::GlobalValue *GV) { 4673 if (!getLangOpts().CPlusPlus) 4674 return; 4675 4676 // Must have 'used' attribute, or else inline assembly can't rely on 4677 // the name existing. 4678 if (!D->template hasAttr<UsedAttr>()) 4679 return; 4680 4681 // Must have internal linkage and an ordinary name. 4682 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4683 return; 4684 4685 // Must be in an extern "C" context. Entities declared directly within 4686 // a record are not extern "C" even if the record is in such a context. 4687 const SomeDecl *First = D->getFirstDecl(); 4688 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4689 return; 4690 4691 // OK, this is an internal linkage entity inside an extern "C" linkage 4692 // specification. Make a note of that so we can give it the "expected" 4693 // mangled name if nothing else is using that name. 4694 std::pair<StaticExternCMap::iterator, bool> R = 4695 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4696 4697 // If we have multiple internal linkage entities with the same name 4698 // in extern "C" regions, none of them gets that name. 4699 if (!R.second) 4700 R.first->second = nullptr; 4701 } 4702 4703 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4704 if (!CGM.supportsCOMDAT()) 4705 return false; 4706 4707 if (D.hasAttr<SelectAnyAttr>()) 4708 return true; 4709 4710 GVALinkage Linkage; 4711 if (auto *VD = dyn_cast<VarDecl>(&D)) 4712 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4713 else 4714 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4715 4716 switch (Linkage) { 4717 case GVA_Internal: 4718 case GVA_AvailableExternally: 4719 case GVA_StrongExternal: 4720 return false; 4721 case GVA_DiscardableODR: 4722 case GVA_StrongODR: 4723 return true; 4724 } 4725 llvm_unreachable("No such linkage"); 4726 } 4727 4728 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4729 llvm::GlobalObject &GO) { 4730 if (!shouldBeInCOMDAT(*this, D)) 4731 return; 4732 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4733 } 4734 4735 /// Pass IsTentative as true if you want to create a tentative definition. 4736 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4737 bool IsTentative) { 4738 // OpenCL global variables of sampler type are translated to function calls, 4739 // therefore no need to be translated. 4740 QualType ASTTy = D->getType(); 4741 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4742 return; 4743 4744 // If this is OpenMP device, check if it is legal to emit this global 4745 // normally. 4746 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4747 OpenMPRuntime->emitTargetGlobalVariable(D)) 4748 return; 4749 4750 llvm::TrackingVH<llvm::Constant> Init; 4751 bool NeedsGlobalCtor = false; 4752 bool NeedsGlobalDtor = 4753 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4754 4755 const VarDecl *InitDecl; 4756 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4757 4758 Optional<ConstantEmitter> emitter; 4759 4760 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4761 // as part of their declaration." Sema has already checked for 4762 // error cases, so we just need to set Init to UndefValue. 4763 bool IsCUDASharedVar = 4764 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4765 // Shadows of initialized device-side global variables are also left 4766 // undefined. 4767 // Managed Variables should be initialized on both host side and device side. 4768 bool IsCUDAShadowVar = 4769 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4770 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4771 D->hasAttr<CUDASharedAttr>()); 4772 bool IsCUDADeviceShadowVar = 4773 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4774 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4775 D->getType()->isCUDADeviceBuiltinTextureType()); 4776 if (getLangOpts().CUDA && 4777 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4778 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4779 else if (D->hasAttr<LoaderUninitializedAttr>()) 4780 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4781 else if (!InitExpr) { 4782 // This is a tentative definition; tentative definitions are 4783 // implicitly initialized with { 0 }. 4784 // 4785 // Note that tentative definitions are only emitted at the end of 4786 // a translation unit, so they should never have incomplete 4787 // type. In addition, EmitTentativeDefinition makes sure that we 4788 // never attempt to emit a tentative definition if a real one 4789 // exists. A use may still exists, however, so we still may need 4790 // to do a RAUW. 4791 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4792 Init = EmitNullConstant(D->getType()); 4793 } else { 4794 initializedGlobalDecl = GlobalDecl(D); 4795 emitter.emplace(*this); 4796 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4797 if (!Initializer) { 4798 QualType T = InitExpr->getType(); 4799 if (D->getType()->isReferenceType()) 4800 T = D->getType(); 4801 4802 if (getLangOpts().CPlusPlus) { 4803 if (InitDecl->hasFlexibleArrayInit(getContext())) 4804 ErrorUnsupported(D, "flexible array initializer"); 4805 Init = EmitNullConstant(T); 4806 NeedsGlobalCtor = true; 4807 } else { 4808 ErrorUnsupported(D, "static initializer"); 4809 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4810 } 4811 } else { 4812 Init = Initializer; 4813 // We don't need an initializer, so remove the entry for the delayed 4814 // initializer position (just in case this entry was delayed) if we 4815 // also don't need to register a destructor. 4816 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4817 DelayedCXXInitPosition.erase(D); 4818 4819 #ifndef NDEBUG 4820 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4821 InitDecl->getFlexibleArrayInitChars(getContext()); 4822 CharUnits CstSize = CharUnits::fromQuantity( 4823 getDataLayout().getTypeAllocSize(Init->getType())); 4824 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4825 #endif 4826 } 4827 } 4828 4829 llvm::Type* InitType = Init->getType(); 4830 llvm::Constant *Entry = 4831 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4832 4833 // Strip off pointer casts if we got them. 4834 Entry = Entry->stripPointerCasts(); 4835 4836 // Entry is now either a Function or GlobalVariable. 4837 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4838 4839 // We have a definition after a declaration with the wrong type. 4840 // We must make a new GlobalVariable* and update everything that used OldGV 4841 // (a declaration or tentative definition) with the new GlobalVariable* 4842 // (which will be a definition). 4843 // 4844 // This happens if there is a prototype for a global (e.g. 4845 // "extern int x[];") and then a definition of a different type (e.g. 4846 // "int x[10];"). This also happens when an initializer has a different type 4847 // from the type of the global (this happens with unions). 4848 if (!GV || GV->getValueType() != InitType || 4849 GV->getType()->getAddressSpace() != 4850 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4851 4852 // Move the old entry aside so that we'll create a new one. 4853 Entry->setName(StringRef()); 4854 4855 // Make a new global with the correct type, this is now guaranteed to work. 4856 GV = cast<llvm::GlobalVariable>( 4857 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4858 ->stripPointerCasts()); 4859 4860 // Replace all uses of the old global with the new global 4861 llvm::Constant *NewPtrForOldDecl = 4862 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4863 Entry->getType()); 4864 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4865 4866 // Erase the old global, since it is no longer used. 4867 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4868 } 4869 4870 MaybeHandleStaticInExternC(D, GV); 4871 4872 if (D->hasAttr<AnnotateAttr>()) 4873 AddGlobalAnnotations(D, GV); 4874 4875 // Set the llvm linkage type as appropriate. 4876 llvm::GlobalValue::LinkageTypes Linkage = 4877 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4878 4879 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4880 // the device. [...]" 4881 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4882 // __device__, declares a variable that: [...] 4883 // Is accessible from all the threads within the grid and from the host 4884 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4885 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4886 if (GV && LangOpts.CUDA) { 4887 if (LangOpts.CUDAIsDevice) { 4888 if (Linkage != llvm::GlobalValue::InternalLinkage && 4889 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4890 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4891 D->getType()->isCUDADeviceBuiltinTextureType())) 4892 GV->setExternallyInitialized(true); 4893 } else { 4894 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4895 } 4896 getCUDARuntime().handleVarRegistration(D, *GV); 4897 } 4898 4899 GV->setInitializer(Init); 4900 if (emitter) 4901 emitter->finalize(GV); 4902 4903 // If it is safe to mark the global 'constant', do so now. 4904 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4905 isTypeConstant(D->getType(), true)); 4906 4907 // If it is in a read-only section, mark it 'constant'. 4908 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4909 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4910 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4911 GV->setConstant(true); 4912 } 4913 4914 CharUnits AlignVal = getContext().getDeclAlign(D); 4915 // Check for alignment specifed in an 'omp allocate' directive. 4916 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4917 getOMPAllocateAlignment(D)) 4918 AlignVal = *AlignValFromAllocate; 4919 GV->setAlignment(AlignVal.getAsAlign()); 4920 4921 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4922 // function is only defined alongside the variable, not also alongside 4923 // callers. Normally, all accesses to a thread_local go through the 4924 // thread-wrapper in order to ensure initialization has occurred, underlying 4925 // variable will never be used other than the thread-wrapper, so it can be 4926 // converted to internal linkage. 4927 // 4928 // However, if the variable has the 'constinit' attribute, it _can_ be 4929 // referenced directly, without calling the thread-wrapper, so the linkage 4930 // must not be changed. 4931 // 4932 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4933 // weak or linkonce, the de-duplication semantics are important to preserve, 4934 // so we don't change the linkage. 4935 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4936 Linkage == llvm::GlobalValue::ExternalLinkage && 4937 Context.getTargetInfo().getTriple().isOSDarwin() && 4938 !D->hasAttr<ConstInitAttr>()) 4939 Linkage = llvm::GlobalValue::InternalLinkage; 4940 4941 GV->setLinkage(Linkage); 4942 if (D->hasAttr<DLLImportAttr>()) 4943 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4944 else if (D->hasAttr<DLLExportAttr>()) 4945 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4946 else 4947 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4948 4949 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4950 // common vars aren't constant even if declared const. 4951 GV->setConstant(false); 4952 // Tentative definition of global variables may be initialized with 4953 // non-zero null pointers. In this case they should have weak linkage 4954 // since common linkage must have zero initializer and must not have 4955 // explicit section therefore cannot have non-zero initial value. 4956 if (!GV->getInitializer()->isNullValue()) 4957 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4958 } 4959 4960 setNonAliasAttributes(D, GV); 4961 4962 if (D->getTLSKind() && !GV->isThreadLocal()) { 4963 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4964 CXXThreadLocals.push_back(D); 4965 setTLSMode(GV, *D); 4966 } 4967 4968 maybeSetTrivialComdat(*D, *GV); 4969 4970 // Emit the initializer function if necessary. 4971 if (NeedsGlobalCtor || NeedsGlobalDtor) 4972 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4973 4974 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4975 4976 // Emit global variable debug information. 4977 if (CGDebugInfo *DI = getModuleDebugInfo()) 4978 if (getCodeGenOpts().hasReducedDebugInfo()) 4979 DI->EmitGlobalVariable(GV, D); 4980 } 4981 4982 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4983 if (CGDebugInfo *DI = getModuleDebugInfo()) 4984 if (getCodeGenOpts().hasReducedDebugInfo()) { 4985 QualType ASTTy = D->getType(); 4986 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4987 llvm::Constant *GV = 4988 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4989 DI->EmitExternalVariable( 4990 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4991 } 4992 } 4993 4994 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4995 CodeGenModule &CGM, const VarDecl *D, 4996 bool NoCommon) { 4997 // Don't give variables common linkage if -fno-common was specified unless it 4998 // was overridden by a NoCommon attribute. 4999 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5000 return true; 5001 5002 // C11 6.9.2/2: 5003 // A declaration of an identifier for an object that has file scope without 5004 // an initializer, and without a storage-class specifier or with the 5005 // storage-class specifier static, constitutes a tentative definition. 5006 if (D->getInit() || D->hasExternalStorage()) 5007 return true; 5008 5009 // A variable cannot be both common and exist in a section. 5010 if (D->hasAttr<SectionAttr>()) 5011 return true; 5012 5013 // A variable cannot be both common and exist in a section. 5014 // We don't try to determine which is the right section in the front-end. 5015 // If no specialized section name is applicable, it will resort to default. 5016 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5017 D->hasAttr<PragmaClangDataSectionAttr>() || 5018 D->hasAttr<PragmaClangRelroSectionAttr>() || 5019 D->hasAttr<PragmaClangRodataSectionAttr>()) 5020 return true; 5021 5022 // Thread local vars aren't considered common linkage. 5023 if (D->getTLSKind()) 5024 return true; 5025 5026 // Tentative definitions marked with WeakImportAttr are true definitions. 5027 if (D->hasAttr<WeakImportAttr>()) 5028 return true; 5029 5030 // A variable cannot be both common and exist in a comdat. 5031 if (shouldBeInCOMDAT(CGM, *D)) 5032 return true; 5033 5034 // Declarations with a required alignment do not have common linkage in MSVC 5035 // mode. 5036 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5037 if (D->hasAttr<AlignedAttr>()) 5038 return true; 5039 QualType VarType = D->getType(); 5040 if (Context.isAlignmentRequired(VarType)) 5041 return true; 5042 5043 if (const auto *RT = VarType->getAs<RecordType>()) { 5044 const RecordDecl *RD = RT->getDecl(); 5045 for (const FieldDecl *FD : RD->fields()) { 5046 if (FD->isBitField()) 5047 continue; 5048 if (FD->hasAttr<AlignedAttr>()) 5049 return true; 5050 if (Context.isAlignmentRequired(FD->getType())) 5051 return true; 5052 } 5053 } 5054 } 5055 5056 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5057 // common symbols, so symbols with greater alignment requirements cannot be 5058 // common. 5059 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5060 // alignments for common symbols via the aligncomm directive, so this 5061 // restriction only applies to MSVC environments. 5062 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5063 Context.getTypeAlignIfKnown(D->getType()) > 5064 Context.toBits(CharUnits::fromQuantity(32))) 5065 return true; 5066 5067 return false; 5068 } 5069 5070 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5071 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5072 if (Linkage == GVA_Internal) 5073 return llvm::Function::InternalLinkage; 5074 5075 if (D->hasAttr<WeakAttr>()) 5076 return llvm::GlobalVariable::WeakAnyLinkage; 5077 5078 if (const auto *FD = D->getAsFunction()) 5079 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5080 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5081 5082 // We are guaranteed to have a strong definition somewhere else, 5083 // so we can use available_externally linkage. 5084 if (Linkage == GVA_AvailableExternally) 5085 return llvm::GlobalValue::AvailableExternallyLinkage; 5086 5087 // Note that Apple's kernel linker doesn't support symbol 5088 // coalescing, so we need to avoid linkonce and weak linkages there. 5089 // Normally, this means we just map to internal, but for explicit 5090 // instantiations we'll map to external. 5091 5092 // In C++, the compiler has to emit a definition in every translation unit 5093 // that references the function. We should use linkonce_odr because 5094 // a) if all references in this translation unit are optimized away, we 5095 // don't need to codegen it. b) if the function persists, it needs to be 5096 // merged with other definitions. c) C++ has the ODR, so we know the 5097 // definition is dependable. 5098 if (Linkage == GVA_DiscardableODR) 5099 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5100 : llvm::Function::InternalLinkage; 5101 5102 // An explicit instantiation of a template has weak linkage, since 5103 // explicit instantiations can occur in multiple translation units 5104 // and must all be equivalent. However, we are not allowed to 5105 // throw away these explicit instantiations. 5106 // 5107 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5108 // so say that CUDA templates are either external (for kernels) or internal. 5109 // This lets llvm perform aggressive inter-procedural optimizations. For 5110 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5111 // therefore we need to follow the normal linkage paradigm. 5112 if (Linkage == GVA_StrongODR) { 5113 if (getLangOpts().AppleKext) 5114 return llvm::Function::ExternalLinkage; 5115 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5116 !getLangOpts().GPURelocatableDeviceCode) 5117 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5118 : llvm::Function::InternalLinkage; 5119 return llvm::Function::WeakODRLinkage; 5120 } 5121 5122 // C++ doesn't have tentative definitions and thus cannot have common 5123 // linkage. 5124 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5125 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5126 CodeGenOpts.NoCommon)) 5127 return llvm::GlobalVariable::CommonLinkage; 5128 5129 // selectany symbols are externally visible, so use weak instead of 5130 // linkonce. MSVC optimizes away references to const selectany globals, so 5131 // all definitions should be the same and ODR linkage should be used. 5132 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5133 if (D->hasAttr<SelectAnyAttr>()) 5134 return llvm::GlobalVariable::WeakODRLinkage; 5135 5136 // Otherwise, we have strong external linkage. 5137 assert(Linkage == GVA_StrongExternal); 5138 return llvm::GlobalVariable::ExternalLinkage; 5139 } 5140 5141 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5142 const VarDecl *VD, bool IsConstant) { 5143 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5144 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5145 } 5146 5147 /// Replace the uses of a function that was declared with a non-proto type. 5148 /// We want to silently drop extra arguments from call sites 5149 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5150 llvm::Function *newFn) { 5151 // Fast path. 5152 if (old->use_empty()) return; 5153 5154 llvm::Type *newRetTy = newFn->getReturnType(); 5155 SmallVector<llvm::Value*, 4> newArgs; 5156 5157 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5158 ui != ue; ) { 5159 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5160 llvm::User *user = use->getUser(); 5161 5162 // Recognize and replace uses of bitcasts. Most calls to 5163 // unprototyped functions will use bitcasts. 5164 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5165 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5166 replaceUsesOfNonProtoConstant(bitcast, newFn); 5167 continue; 5168 } 5169 5170 // Recognize calls to the function. 5171 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5172 if (!callSite) continue; 5173 if (!callSite->isCallee(&*use)) 5174 continue; 5175 5176 // If the return types don't match exactly, then we can't 5177 // transform this call unless it's dead. 5178 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5179 continue; 5180 5181 // Get the call site's attribute list. 5182 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5183 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5184 5185 // If the function was passed too few arguments, don't transform. 5186 unsigned newNumArgs = newFn->arg_size(); 5187 if (callSite->arg_size() < newNumArgs) 5188 continue; 5189 5190 // If extra arguments were passed, we silently drop them. 5191 // If any of the types mismatch, we don't transform. 5192 unsigned argNo = 0; 5193 bool dontTransform = false; 5194 for (llvm::Argument &A : newFn->args()) { 5195 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5196 dontTransform = true; 5197 break; 5198 } 5199 5200 // Add any parameter attributes. 5201 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5202 argNo++; 5203 } 5204 if (dontTransform) 5205 continue; 5206 5207 // Okay, we can transform this. Create the new call instruction and copy 5208 // over the required information. 5209 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5210 5211 // Copy over any operand bundles. 5212 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5213 callSite->getOperandBundlesAsDefs(newBundles); 5214 5215 llvm::CallBase *newCall; 5216 if (isa<llvm::CallInst>(callSite)) { 5217 newCall = 5218 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5219 } else { 5220 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5221 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5222 oldInvoke->getUnwindDest(), newArgs, 5223 newBundles, "", callSite); 5224 } 5225 newArgs.clear(); // for the next iteration 5226 5227 if (!newCall->getType()->isVoidTy()) 5228 newCall->takeName(callSite); 5229 newCall->setAttributes( 5230 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5231 oldAttrs.getRetAttrs(), newArgAttrs)); 5232 newCall->setCallingConv(callSite->getCallingConv()); 5233 5234 // Finally, remove the old call, replacing any uses with the new one. 5235 if (!callSite->use_empty()) 5236 callSite->replaceAllUsesWith(newCall); 5237 5238 // Copy debug location attached to CI. 5239 if (callSite->getDebugLoc()) 5240 newCall->setDebugLoc(callSite->getDebugLoc()); 5241 5242 callSite->eraseFromParent(); 5243 } 5244 } 5245 5246 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5247 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5248 /// existing call uses of the old function in the module, this adjusts them to 5249 /// call the new function directly. 5250 /// 5251 /// This is not just a cleanup: the always_inline pass requires direct calls to 5252 /// functions to be able to inline them. If there is a bitcast in the way, it 5253 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5254 /// run at -O0. 5255 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5256 llvm::Function *NewFn) { 5257 // If we're redefining a global as a function, don't transform it. 5258 if (!isa<llvm::Function>(Old)) return; 5259 5260 replaceUsesOfNonProtoConstant(Old, NewFn); 5261 } 5262 5263 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5264 auto DK = VD->isThisDeclarationADefinition(); 5265 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5266 return; 5267 5268 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5269 // If we have a definition, this might be a deferred decl. If the 5270 // instantiation is explicit, make sure we emit it at the end. 5271 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5272 GetAddrOfGlobalVar(VD); 5273 5274 EmitTopLevelDecl(VD); 5275 } 5276 5277 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5278 llvm::GlobalValue *GV) { 5279 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5280 5281 // Compute the function info and LLVM type. 5282 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5283 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5284 5285 // Get or create the prototype for the function. 5286 if (!GV || (GV->getValueType() != Ty)) 5287 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5288 /*DontDefer=*/true, 5289 ForDefinition)); 5290 5291 // Already emitted. 5292 if (!GV->isDeclaration()) 5293 return; 5294 5295 // We need to set linkage and visibility on the function before 5296 // generating code for it because various parts of IR generation 5297 // want to propagate this information down (e.g. to local static 5298 // declarations). 5299 auto *Fn = cast<llvm::Function>(GV); 5300 setFunctionLinkage(GD, Fn); 5301 5302 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5303 setGVProperties(Fn, GD); 5304 5305 MaybeHandleStaticInExternC(D, Fn); 5306 5307 maybeSetTrivialComdat(*D, *Fn); 5308 5309 // Set CodeGen attributes that represent floating point environment. 5310 setLLVMFunctionFEnvAttributes(D, Fn); 5311 5312 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5313 5314 setNonAliasAttributes(GD, Fn); 5315 SetLLVMFunctionAttributesForDefinition(D, Fn); 5316 5317 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5318 AddGlobalCtor(Fn, CA->getPriority()); 5319 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5320 AddGlobalDtor(Fn, DA->getPriority(), true); 5321 if (D->hasAttr<AnnotateAttr>()) 5322 AddGlobalAnnotations(D, Fn); 5323 } 5324 5325 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5326 const auto *D = cast<ValueDecl>(GD.getDecl()); 5327 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5328 assert(AA && "Not an alias?"); 5329 5330 StringRef MangledName = getMangledName(GD); 5331 5332 if (AA->getAliasee() == MangledName) { 5333 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5334 return; 5335 } 5336 5337 // If there is a definition in the module, then it wins over the alias. 5338 // This is dubious, but allow it to be safe. Just ignore the alias. 5339 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5340 if (Entry && !Entry->isDeclaration()) 5341 return; 5342 5343 Aliases.push_back(GD); 5344 5345 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5346 5347 // Create a reference to the named value. This ensures that it is emitted 5348 // if a deferred decl. 5349 llvm::Constant *Aliasee; 5350 llvm::GlobalValue::LinkageTypes LT; 5351 if (isa<llvm::FunctionType>(DeclTy)) { 5352 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5353 /*ForVTable=*/false); 5354 LT = getFunctionLinkage(GD); 5355 } else { 5356 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5357 /*D=*/nullptr); 5358 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5359 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5360 else 5361 LT = getFunctionLinkage(GD); 5362 } 5363 5364 // Create the new alias itself, but don't set a name yet. 5365 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5366 auto *GA = 5367 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5368 5369 if (Entry) { 5370 if (GA->getAliasee() == Entry) { 5371 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5372 return; 5373 } 5374 5375 assert(Entry->isDeclaration()); 5376 5377 // If there is a declaration in the module, then we had an extern followed 5378 // by the alias, as in: 5379 // extern int test6(); 5380 // ... 5381 // int test6() __attribute__((alias("test7"))); 5382 // 5383 // Remove it and replace uses of it with the alias. 5384 GA->takeName(Entry); 5385 5386 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5387 Entry->getType())); 5388 Entry->eraseFromParent(); 5389 } else { 5390 GA->setName(MangledName); 5391 } 5392 5393 // Set attributes which are particular to an alias; this is a 5394 // specialization of the attributes which may be set on a global 5395 // variable/function. 5396 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5397 D->isWeakImported()) { 5398 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5399 } 5400 5401 if (const auto *VD = dyn_cast<VarDecl>(D)) 5402 if (VD->getTLSKind()) 5403 setTLSMode(GA, *VD); 5404 5405 SetCommonAttributes(GD, GA); 5406 5407 // Emit global alias debug information. 5408 if (isa<VarDecl>(D)) 5409 if (CGDebugInfo *DI = getModuleDebugInfo()) 5410 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5411 } 5412 5413 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5414 const auto *D = cast<ValueDecl>(GD.getDecl()); 5415 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5416 assert(IFA && "Not an ifunc?"); 5417 5418 StringRef MangledName = getMangledName(GD); 5419 5420 if (IFA->getResolver() == MangledName) { 5421 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5422 return; 5423 } 5424 5425 // Report an error if some definition overrides ifunc. 5426 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5427 if (Entry && !Entry->isDeclaration()) { 5428 GlobalDecl OtherGD; 5429 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5430 DiagnosedConflictingDefinitions.insert(GD).second) { 5431 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5432 << MangledName; 5433 Diags.Report(OtherGD.getDecl()->getLocation(), 5434 diag::note_previous_definition); 5435 } 5436 return; 5437 } 5438 5439 Aliases.push_back(GD); 5440 5441 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5442 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5443 llvm::Constant *Resolver = 5444 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5445 /*ForVTable=*/false); 5446 llvm::GlobalIFunc *GIF = 5447 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5448 "", Resolver, &getModule()); 5449 if (Entry) { 5450 if (GIF->getResolver() == Entry) { 5451 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5452 return; 5453 } 5454 assert(Entry->isDeclaration()); 5455 5456 // If there is a declaration in the module, then we had an extern followed 5457 // by the ifunc, as in: 5458 // extern int test(); 5459 // ... 5460 // int test() __attribute__((ifunc("resolver"))); 5461 // 5462 // Remove it and replace uses of it with the ifunc. 5463 GIF->takeName(Entry); 5464 5465 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5466 Entry->getType())); 5467 Entry->eraseFromParent(); 5468 } else 5469 GIF->setName(MangledName); 5470 5471 SetCommonAttributes(GD, GIF); 5472 } 5473 5474 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5475 ArrayRef<llvm::Type*> Tys) { 5476 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5477 Tys); 5478 } 5479 5480 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5481 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5482 const StringLiteral *Literal, bool TargetIsLSB, 5483 bool &IsUTF16, unsigned &StringLength) { 5484 StringRef String = Literal->getString(); 5485 unsigned NumBytes = String.size(); 5486 5487 // Check for simple case. 5488 if (!Literal->containsNonAsciiOrNull()) { 5489 StringLength = NumBytes; 5490 return *Map.insert(std::make_pair(String, nullptr)).first; 5491 } 5492 5493 // Otherwise, convert the UTF8 literals into a string of shorts. 5494 IsUTF16 = true; 5495 5496 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5497 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5498 llvm::UTF16 *ToPtr = &ToBuf[0]; 5499 5500 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5501 ToPtr + NumBytes, llvm::strictConversion); 5502 5503 // ConvertUTF8toUTF16 returns the length in ToPtr. 5504 StringLength = ToPtr - &ToBuf[0]; 5505 5506 // Add an explicit null. 5507 *ToPtr = 0; 5508 return *Map.insert(std::make_pair( 5509 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5510 (StringLength + 1) * 2), 5511 nullptr)).first; 5512 } 5513 5514 ConstantAddress 5515 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5516 unsigned StringLength = 0; 5517 bool isUTF16 = false; 5518 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5519 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5520 getDataLayout().isLittleEndian(), isUTF16, 5521 StringLength); 5522 5523 if (auto *C = Entry.second) 5524 return ConstantAddress( 5525 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5526 5527 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5528 llvm::Constant *Zeros[] = { Zero, Zero }; 5529 5530 const ASTContext &Context = getContext(); 5531 const llvm::Triple &Triple = getTriple(); 5532 5533 const auto CFRuntime = getLangOpts().CFRuntime; 5534 const bool IsSwiftABI = 5535 static_cast<unsigned>(CFRuntime) >= 5536 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5537 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5538 5539 // If we don't already have it, get __CFConstantStringClassReference. 5540 if (!CFConstantStringClassRef) { 5541 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5542 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5543 Ty = llvm::ArrayType::get(Ty, 0); 5544 5545 switch (CFRuntime) { 5546 default: break; 5547 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5548 case LangOptions::CoreFoundationABI::Swift5_0: 5549 CFConstantStringClassName = 5550 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5551 : "$s10Foundation19_NSCFConstantStringCN"; 5552 Ty = IntPtrTy; 5553 break; 5554 case LangOptions::CoreFoundationABI::Swift4_2: 5555 CFConstantStringClassName = 5556 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5557 : "$S10Foundation19_NSCFConstantStringCN"; 5558 Ty = IntPtrTy; 5559 break; 5560 case LangOptions::CoreFoundationABI::Swift4_1: 5561 CFConstantStringClassName = 5562 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5563 : "__T010Foundation19_NSCFConstantStringCN"; 5564 Ty = IntPtrTy; 5565 break; 5566 } 5567 5568 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5569 5570 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5571 llvm::GlobalValue *GV = nullptr; 5572 5573 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5574 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5575 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5576 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5577 5578 const VarDecl *VD = nullptr; 5579 for (const auto *Result : DC->lookup(&II)) 5580 if ((VD = dyn_cast<VarDecl>(Result))) 5581 break; 5582 5583 if (Triple.isOSBinFormatELF()) { 5584 if (!VD) 5585 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5586 } else { 5587 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5588 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5589 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5590 else 5591 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5592 } 5593 5594 setDSOLocal(GV); 5595 } 5596 } 5597 5598 // Decay array -> ptr 5599 CFConstantStringClassRef = 5600 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5601 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5602 } 5603 5604 QualType CFTy = Context.getCFConstantStringType(); 5605 5606 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5607 5608 ConstantInitBuilder Builder(*this); 5609 auto Fields = Builder.beginStruct(STy); 5610 5611 // Class pointer. 5612 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5613 5614 // Flags. 5615 if (IsSwiftABI) { 5616 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5617 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5618 } else { 5619 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5620 } 5621 5622 // String pointer. 5623 llvm::Constant *C = nullptr; 5624 if (isUTF16) { 5625 auto Arr = llvm::makeArrayRef( 5626 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5627 Entry.first().size() / 2); 5628 C = llvm::ConstantDataArray::get(VMContext, Arr); 5629 } else { 5630 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5631 } 5632 5633 // Note: -fwritable-strings doesn't make the backing store strings of 5634 // CFStrings writable. (See <rdar://problem/10657500>) 5635 auto *GV = 5636 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5637 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5638 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5639 // Don't enforce the target's minimum global alignment, since the only use 5640 // of the string is via this class initializer. 5641 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5642 : Context.getTypeAlignInChars(Context.CharTy); 5643 GV->setAlignment(Align.getAsAlign()); 5644 5645 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5646 // Without it LLVM can merge the string with a non unnamed_addr one during 5647 // LTO. Doing that changes the section it ends in, which surprises ld64. 5648 if (Triple.isOSBinFormatMachO()) 5649 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5650 : "__TEXT,__cstring,cstring_literals"); 5651 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5652 // the static linker to adjust permissions to read-only later on. 5653 else if (Triple.isOSBinFormatELF()) 5654 GV->setSection(".rodata"); 5655 5656 // String. 5657 llvm::Constant *Str = 5658 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5659 5660 if (isUTF16) 5661 // Cast the UTF16 string to the correct type. 5662 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5663 Fields.add(Str); 5664 5665 // String length. 5666 llvm::IntegerType *LengthTy = 5667 llvm::IntegerType::get(getModule().getContext(), 5668 Context.getTargetInfo().getLongWidth()); 5669 if (IsSwiftABI) { 5670 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5671 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5672 LengthTy = Int32Ty; 5673 else 5674 LengthTy = IntPtrTy; 5675 } 5676 Fields.addInt(LengthTy, StringLength); 5677 5678 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5679 // properly aligned on 32-bit platforms. 5680 CharUnits Alignment = 5681 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5682 5683 // The struct. 5684 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5685 /*isConstant=*/false, 5686 llvm::GlobalVariable::PrivateLinkage); 5687 GV->addAttribute("objc_arc_inert"); 5688 switch (Triple.getObjectFormat()) { 5689 case llvm::Triple::UnknownObjectFormat: 5690 llvm_unreachable("unknown file format"); 5691 case llvm::Triple::DXContainer: 5692 case llvm::Triple::GOFF: 5693 case llvm::Triple::SPIRV: 5694 case llvm::Triple::XCOFF: 5695 llvm_unreachable("unimplemented"); 5696 case llvm::Triple::COFF: 5697 case llvm::Triple::ELF: 5698 case llvm::Triple::Wasm: 5699 GV->setSection("cfstring"); 5700 break; 5701 case llvm::Triple::MachO: 5702 GV->setSection("__DATA,__cfstring"); 5703 break; 5704 } 5705 Entry.second = GV; 5706 5707 return ConstantAddress(GV, GV->getValueType(), Alignment); 5708 } 5709 5710 bool CodeGenModule::getExpressionLocationsEnabled() const { 5711 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5712 } 5713 5714 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5715 if (ObjCFastEnumerationStateType.isNull()) { 5716 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5717 D->startDefinition(); 5718 5719 QualType FieldTypes[] = { 5720 Context.UnsignedLongTy, 5721 Context.getPointerType(Context.getObjCIdType()), 5722 Context.getPointerType(Context.UnsignedLongTy), 5723 Context.getConstantArrayType(Context.UnsignedLongTy, 5724 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5725 }; 5726 5727 for (size_t i = 0; i < 4; ++i) { 5728 FieldDecl *Field = FieldDecl::Create(Context, 5729 D, 5730 SourceLocation(), 5731 SourceLocation(), nullptr, 5732 FieldTypes[i], /*TInfo=*/nullptr, 5733 /*BitWidth=*/nullptr, 5734 /*Mutable=*/false, 5735 ICIS_NoInit); 5736 Field->setAccess(AS_public); 5737 D->addDecl(Field); 5738 } 5739 5740 D->completeDefinition(); 5741 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5742 } 5743 5744 return ObjCFastEnumerationStateType; 5745 } 5746 5747 llvm::Constant * 5748 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5749 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5750 5751 // Don't emit it as the address of the string, emit the string data itself 5752 // as an inline array. 5753 if (E->getCharByteWidth() == 1) { 5754 SmallString<64> Str(E->getString()); 5755 5756 // Resize the string to the right size, which is indicated by its type. 5757 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5758 Str.resize(CAT->getSize().getZExtValue()); 5759 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5760 } 5761 5762 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5763 llvm::Type *ElemTy = AType->getElementType(); 5764 unsigned NumElements = AType->getNumElements(); 5765 5766 // Wide strings have either 2-byte or 4-byte elements. 5767 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5768 SmallVector<uint16_t, 32> Elements; 5769 Elements.reserve(NumElements); 5770 5771 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5772 Elements.push_back(E->getCodeUnit(i)); 5773 Elements.resize(NumElements); 5774 return llvm::ConstantDataArray::get(VMContext, Elements); 5775 } 5776 5777 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5778 SmallVector<uint32_t, 32> Elements; 5779 Elements.reserve(NumElements); 5780 5781 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5782 Elements.push_back(E->getCodeUnit(i)); 5783 Elements.resize(NumElements); 5784 return llvm::ConstantDataArray::get(VMContext, Elements); 5785 } 5786 5787 static llvm::GlobalVariable * 5788 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5789 CodeGenModule &CGM, StringRef GlobalName, 5790 CharUnits Alignment) { 5791 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5792 CGM.GetGlobalConstantAddressSpace()); 5793 5794 llvm::Module &M = CGM.getModule(); 5795 // Create a global variable for this string 5796 auto *GV = new llvm::GlobalVariable( 5797 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5798 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5799 GV->setAlignment(Alignment.getAsAlign()); 5800 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5801 if (GV->isWeakForLinker()) { 5802 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5803 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5804 } 5805 CGM.setDSOLocal(GV); 5806 5807 return GV; 5808 } 5809 5810 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5811 /// constant array for the given string literal. 5812 ConstantAddress 5813 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5814 StringRef Name) { 5815 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5816 5817 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5818 llvm::GlobalVariable **Entry = nullptr; 5819 if (!LangOpts.WritableStrings) { 5820 Entry = &ConstantStringMap[C]; 5821 if (auto GV = *Entry) { 5822 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5823 GV->setAlignment(Alignment.getAsAlign()); 5824 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5825 GV->getValueType(), Alignment); 5826 } 5827 } 5828 5829 SmallString<256> MangledNameBuffer; 5830 StringRef GlobalVariableName; 5831 llvm::GlobalValue::LinkageTypes LT; 5832 5833 // Mangle the string literal if that's how the ABI merges duplicate strings. 5834 // Don't do it if they are writable, since we don't want writes in one TU to 5835 // affect strings in another. 5836 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5837 !LangOpts.WritableStrings) { 5838 llvm::raw_svector_ostream Out(MangledNameBuffer); 5839 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5840 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5841 GlobalVariableName = MangledNameBuffer; 5842 } else { 5843 LT = llvm::GlobalValue::PrivateLinkage; 5844 GlobalVariableName = Name; 5845 } 5846 5847 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5848 5849 CGDebugInfo *DI = getModuleDebugInfo(); 5850 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5851 DI->AddStringLiteralDebugInfo(GV, S); 5852 5853 if (Entry) 5854 *Entry = GV; 5855 5856 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5857 5858 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5859 GV->getValueType(), Alignment); 5860 } 5861 5862 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5863 /// array for the given ObjCEncodeExpr node. 5864 ConstantAddress 5865 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5866 std::string Str; 5867 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5868 5869 return GetAddrOfConstantCString(Str); 5870 } 5871 5872 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5873 /// the literal and a terminating '\0' character. 5874 /// The result has pointer to array type. 5875 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5876 const std::string &Str, const char *GlobalName) { 5877 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5878 CharUnits Alignment = 5879 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5880 5881 llvm::Constant *C = 5882 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5883 5884 // Don't share any string literals if strings aren't constant. 5885 llvm::GlobalVariable **Entry = nullptr; 5886 if (!LangOpts.WritableStrings) { 5887 Entry = &ConstantStringMap[C]; 5888 if (auto GV = *Entry) { 5889 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5890 GV->setAlignment(Alignment.getAsAlign()); 5891 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5892 GV->getValueType(), Alignment); 5893 } 5894 } 5895 5896 // Get the default prefix if a name wasn't specified. 5897 if (!GlobalName) 5898 GlobalName = ".str"; 5899 // Create a global variable for this. 5900 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5901 GlobalName, Alignment); 5902 if (Entry) 5903 *Entry = GV; 5904 5905 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5906 GV->getValueType(), Alignment); 5907 } 5908 5909 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5910 const MaterializeTemporaryExpr *E, const Expr *Init) { 5911 assert((E->getStorageDuration() == SD_Static || 5912 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5913 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5914 5915 // If we're not materializing a subobject of the temporary, keep the 5916 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5917 QualType MaterializedType = Init->getType(); 5918 if (Init == E->getSubExpr()) 5919 MaterializedType = E->getType(); 5920 5921 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5922 5923 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5924 if (!InsertResult.second) { 5925 // We've seen this before: either we already created it or we're in the 5926 // process of doing so. 5927 if (!InsertResult.first->second) { 5928 // We recursively re-entered this function, probably during emission of 5929 // the initializer. Create a placeholder. We'll clean this up in the 5930 // outer call, at the end of this function. 5931 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5932 InsertResult.first->second = new llvm::GlobalVariable( 5933 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5934 nullptr); 5935 } 5936 return ConstantAddress(InsertResult.first->second, 5937 llvm::cast<llvm::GlobalVariable>( 5938 InsertResult.first->second->stripPointerCasts()) 5939 ->getValueType(), 5940 Align); 5941 } 5942 5943 // FIXME: If an externally-visible declaration extends multiple temporaries, 5944 // we need to give each temporary the same name in every translation unit (and 5945 // we also need to make the temporaries externally-visible). 5946 SmallString<256> Name; 5947 llvm::raw_svector_ostream Out(Name); 5948 getCXXABI().getMangleContext().mangleReferenceTemporary( 5949 VD, E->getManglingNumber(), Out); 5950 5951 APValue *Value = nullptr; 5952 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5953 // If the initializer of the extending declaration is a constant 5954 // initializer, we should have a cached constant initializer for this 5955 // temporary. Note that this might have a different value from the value 5956 // computed by evaluating the initializer if the surrounding constant 5957 // expression modifies the temporary. 5958 Value = E->getOrCreateValue(false); 5959 } 5960 5961 // Try evaluating it now, it might have a constant initializer. 5962 Expr::EvalResult EvalResult; 5963 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5964 !EvalResult.hasSideEffects()) 5965 Value = &EvalResult.Val; 5966 5967 LangAS AddrSpace = 5968 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5969 5970 Optional<ConstantEmitter> emitter; 5971 llvm::Constant *InitialValue = nullptr; 5972 bool Constant = false; 5973 llvm::Type *Type; 5974 if (Value) { 5975 // The temporary has a constant initializer, use it. 5976 emitter.emplace(*this); 5977 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5978 MaterializedType); 5979 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5980 Type = InitialValue->getType(); 5981 } else { 5982 // No initializer, the initialization will be provided when we 5983 // initialize the declaration which performed lifetime extension. 5984 Type = getTypes().ConvertTypeForMem(MaterializedType); 5985 } 5986 5987 // Create a global variable for this lifetime-extended temporary. 5988 llvm::GlobalValue::LinkageTypes Linkage = 5989 getLLVMLinkageVarDefinition(VD, Constant); 5990 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5991 const VarDecl *InitVD; 5992 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5993 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5994 // Temporaries defined inside a class get linkonce_odr linkage because the 5995 // class can be defined in multiple translation units. 5996 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5997 } else { 5998 // There is no need for this temporary to have external linkage if the 5999 // VarDecl has external linkage. 6000 Linkage = llvm::GlobalVariable::InternalLinkage; 6001 } 6002 } 6003 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6004 auto *GV = new llvm::GlobalVariable( 6005 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6006 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6007 if (emitter) emitter->finalize(GV); 6008 setGVProperties(GV, VD); 6009 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6010 // The reference temporary should never be dllexport. 6011 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6012 GV->setAlignment(Align.getAsAlign()); 6013 if (supportsCOMDAT() && GV->isWeakForLinker()) 6014 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6015 if (VD->getTLSKind()) 6016 setTLSMode(GV, *VD); 6017 llvm::Constant *CV = GV; 6018 if (AddrSpace != LangAS::Default) 6019 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6020 *this, GV, AddrSpace, LangAS::Default, 6021 Type->getPointerTo( 6022 getContext().getTargetAddressSpace(LangAS::Default))); 6023 6024 // Update the map with the new temporary. If we created a placeholder above, 6025 // replace it with the new global now. 6026 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6027 if (Entry) { 6028 Entry->replaceAllUsesWith( 6029 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6030 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6031 } 6032 Entry = CV; 6033 6034 return ConstantAddress(CV, Type, Align); 6035 } 6036 6037 /// EmitObjCPropertyImplementations - Emit information for synthesized 6038 /// properties for an implementation. 6039 void CodeGenModule::EmitObjCPropertyImplementations(const 6040 ObjCImplementationDecl *D) { 6041 for (const auto *PID : D->property_impls()) { 6042 // Dynamic is just for type-checking. 6043 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6044 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6045 6046 // Determine which methods need to be implemented, some may have 6047 // been overridden. Note that ::isPropertyAccessor is not the method 6048 // we want, that just indicates if the decl came from a 6049 // property. What we want to know is if the method is defined in 6050 // this implementation. 6051 auto *Getter = PID->getGetterMethodDecl(); 6052 if (!Getter || Getter->isSynthesizedAccessorStub()) 6053 CodeGenFunction(*this).GenerateObjCGetter( 6054 const_cast<ObjCImplementationDecl *>(D), PID); 6055 auto *Setter = PID->getSetterMethodDecl(); 6056 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6057 CodeGenFunction(*this).GenerateObjCSetter( 6058 const_cast<ObjCImplementationDecl *>(D), PID); 6059 } 6060 } 6061 } 6062 6063 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6064 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6065 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6066 ivar; ivar = ivar->getNextIvar()) 6067 if (ivar->getType().isDestructedType()) 6068 return true; 6069 6070 return false; 6071 } 6072 6073 static bool AllTrivialInitializers(CodeGenModule &CGM, 6074 ObjCImplementationDecl *D) { 6075 CodeGenFunction CGF(CGM); 6076 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6077 E = D->init_end(); B != E; ++B) { 6078 CXXCtorInitializer *CtorInitExp = *B; 6079 Expr *Init = CtorInitExp->getInit(); 6080 if (!CGF.isTrivialInitializer(Init)) 6081 return false; 6082 } 6083 return true; 6084 } 6085 6086 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6087 /// for an implementation. 6088 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6089 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6090 if (needsDestructMethod(D)) { 6091 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6092 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6093 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6094 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6095 getContext().VoidTy, nullptr, D, 6096 /*isInstance=*/true, /*isVariadic=*/false, 6097 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6098 /*isImplicitlyDeclared=*/true, 6099 /*isDefined=*/false, ObjCMethodDecl::Required); 6100 D->addInstanceMethod(DTORMethod); 6101 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6102 D->setHasDestructors(true); 6103 } 6104 6105 // If the implementation doesn't have any ivar initializers, we don't need 6106 // a .cxx_construct. 6107 if (D->getNumIvarInitializers() == 0 || 6108 AllTrivialInitializers(*this, D)) 6109 return; 6110 6111 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6112 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6113 // The constructor returns 'self'. 6114 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6115 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6116 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6117 /*isVariadic=*/false, 6118 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6119 /*isImplicitlyDeclared=*/true, 6120 /*isDefined=*/false, ObjCMethodDecl::Required); 6121 D->addInstanceMethod(CTORMethod); 6122 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6123 D->setHasNonZeroConstructors(true); 6124 } 6125 6126 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6127 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6128 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6129 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6130 ErrorUnsupported(LSD, "linkage spec"); 6131 return; 6132 } 6133 6134 EmitDeclContext(LSD); 6135 } 6136 6137 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6138 for (auto *I : DC->decls()) { 6139 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6140 // are themselves considered "top-level", so EmitTopLevelDecl on an 6141 // ObjCImplDecl does not recursively visit them. We need to do that in 6142 // case they're nested inside another construct (LinkageSpecDecl / 6143 // ExportDecl) that does stop them from being considered "top-level". 6144 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6145 for (auto *M : OID->methods()) 6146 EmitTopLevelDecl(M); 6147 } 6148 6149 EmitTopLevelDecl(I); 6150 } 6151 } 6152 6153 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6154 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6155 // Ignore dependent declarations. 6156 if (D->isTemplated()) 6157 return; 6158 6159 // Consteval function shouldn't be emitted. 6160 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6161 if (FD->isConsteval()) 6162 return; 6163 6164 switch (D->getKind()) { 6165 case Decl::CXXConversion: 6166 case Decl::CXXMethod: 6167 case Decl::Function: 6168 EmitGlobal(cast<FunctionDecl>(D)); 6169 // Always provide some coverage mapping 6170 // even for the functions that aren't emitted. 6171 AddDeferredUnusedCoverageMapping(D); 6172 break; 6173 6174 case Decl::CXXDeductionGuide: 6175 // Function-like, but does not result in code emission. 6176 break; 6177 6178 case Decl::Var: 6179 case Decl::Decomposition: 6180 case Decl::VarTemplateSpecialization: 6181 EmitGlobal(cast<VarDecl>(D)); 6182 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6183 for (auto *B : DD->bindings()) 6184 if (auto *HD = B->getHoldingVar()) 6185 EmitGlobal(HD); 6186 break; 6187 6188 // Indirect fields from global anonymous structs and unions can be 6189 // ignored; only the actual variable requires IR gen support. 6190 case Decl::IndirectField: 6191 break; 6192 6193 // C++ Decls 6194 case Decl::Namespace: 6195 EmitDeclContext(cast<NamespaceDecl>(D)); 6196 break; 6197 case Decl::ClassTemplateSpecialization: { 6198 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6199 if (CGDebugInfo *DI = getModuleDebugInfo()) 6200 if (Spec->getSpecializationKind() == 6201 TSK_ExplicitInstantiationDefinition && 6202 Spec->hasDefinition()) 6203 DI->completeTemplateDefinition(*Spec); 6204 } [[fallthrough]]; 6205 case Decl::CXXRecord: { 6206 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6207 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6208 if (CRD->hasDefinition()) 6209 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6210 if (auto *ES = D->getASTContext().getExternalSource()) 6211 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6212 DI->completeUnusedClass(*CRD); 6213 } 6214 // Emit any static data members, they may be definitions. 6215 for (auto *I : CRD->decls()) 6216 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6217 EmitTopLevelDecl(I); 6218 break; 6219 } 6220 // No code generation needed. 6221 case Decl::UsingShadow: 6222 case Decl::ClassTemplate: 6223 case Decl::VarTemplate: 6224 case Decl::Concept: 6225 case Decl::VarTemplatePartialSpecialization: 6226 case Decl::FunctionTemplate: 6227 case Decl::TypeAliasTemplate: 6228 case Decl::Block: 6229 case Decl::Empty: 6230 case Decl::Binding: 6231 break; 6232 case Decl::Using: // using X; [C++] 6233 if (CGDebugInfo *DI = getModuleDebugInfo()) 6234 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6235 break; 6236 case Decl::UsingEnum: // using enum X; [C++] 6237 if (CGDebugInfo *DI = getModuleDebugInfo()) 6238 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6239 break; 6240 case Decl::NamespaceAlias: 6241 if (CGDebugInfo *DI = getModuleDebugInfo()) 6242 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6243 break; 6244 case Decl::UsingDirective: // using namespace X; [C++] 6245 if (CGDebugInfo *DI = getModuleDebugInfo()) 6246 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6247 break; 6248 case Decl::CXXConstructor: 6249 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6250 break; 6251 case Decl::CXXDestructor: 6252 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6253 break; 6254 6255 case Decl::StaticAssert: 6256 // Nothing to do. 6257 break; 6258 6259 // Objective-C Decls 6260 6261 // Forward declarations, no (immediate) code generation. 6262 case Decl::ObjCInterface: 6263 case Decl::ObjCCategory: 6264 break; 6265 6266 case Decl::ObjCProtocol: { 6267 auto *Proto = cast<ObjCProtocolDecl>(D); 6268 if (Proto->isThisDeclarationADefinition()) 6269 ObjCRuntime->GenerateProtocol(Proto); 6270 break; 6271 } 6272 6273 case Decl::ObjCCategoryImpl: 6274 // Categories have properties but don't support synthesize so we 6275 // can ignore them here. 6276 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6277 break; 6278 6279 case Decl::ObjCImplementation: { 6280 auto *OMD = cast<ObjCImplementationDecl>(D); 6281 EmitObjCPropertyImplementations(OMD); 6282 EmitObjCIvarInitializations(OMD); 6283 ObjCRuntime->GenerateClass(OMD); 6284 // Emit global variable debug information. 6285 if (CGDebugInfo *DI = getModuleDebugInfo()) 6286 if (getCodeGenOpts().hasReducedDebugInfo()) 6287 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6288 OMD->getClassInterface()), OMD->getLocation()); 6289 break; 6290 } 6291 case Decl::ObjCMethod: { 6292 auto *OMD = cast<ObjCMethodDecl>(D); 6293 // If this is not a prototype, emit the body. 6294 if (OMD->getBody()) 6295 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6296 break; 6297 } 6298 case Decl::ObjCCompatibleAlias: 6299 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6300 break; 6301 6302 case Decl::PragmaComment: { 6303 const auto *PCD = cast<PragmaCommentDecl>(D); 6304 switch (PCD->getCommentKind()) { 6305 case PCK_Unknown: 6306 llvm_unreachable("unexpected pragma comment kind"); 6307 case PCK_Linker: 6308 AppendLinkerOptions(PCD->getArg()); 6309 break; 6310 case PCK_Lib: 6311 AddDependentLib(PCD->getArg()); 6312 break; 6313 case PCK_Compiler: 6314 case PCK_ExeStr: 6315 case PCK_User: 6316 break; // We ignore all of these. 6317 } 6318 break; 6319 } 6320 6321 case Decl::PragmaDetectMismatch: { 6322 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6323 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6324 break; 6325 } 6326 6327 case Decl::LinkageSpec: 6328 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6329 break; 6330 6331 case Decl::FileScopeAsm: { 6332 // File-scope asm is ignored during device-side CUDA compilation. 6333 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6334 break; 6335 // File-scope asm is ignored during device-side OpenMP compilation. 6336 if (LangOpts.OpenMPIsDevice) 6337 break; 6338 // File-scope asm is ignored during device-side SYCL compilation. 6339 if (LangOpts.SYCLIsDevice) 6340 break; 6341 auto *AD = cast<FileScopeAsmDecl>(D); 6342 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6343 break; 6344 } 6345 6346 case Decl::Import: { 6347 auto *Import = cast<ImportDecl>(D); 6348 6349 // If we've already imported this module, we're done. 6350 if (!ImportedModules.insert(Import->getImportedModule())) 6351 break; 6352 6353 // Emit debug information for direct imports. 6354 if (!Import->getImportedOwningModule()) { 6355 if (CGDebugInfo *DI = getModuleDebugInfo()) 6356 DI->EmitImportDecl(*Import); 6357 } 6358 6359 // For C++ standard modules we are done - we will call the module 6360 // initializer for imported modules, and that will likewise call those for 6361 // any imports it has. 6362 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6363 !Import->getImportedOwningModule()->isModuleMapModule()) 6364 break; 6365 6366 // For clang C++ module map modules the initializers for sub-modules are 6367 // emitted here. 6368 6369 // Find all of the submodules and emit the module initializers. 6370 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6371 SmallVector<clang::Module *, 16> Stack; 6372 Visited.insert(Import->getImportedModule()); 6373 Stack.push_back(Import->getImportedModule()); 6374 6375 while (!Stack.empty()) { 6376 clang::Module *Mod = Stack.pop_back_val(); 6377 if (!EmittedModuleInitializers.insert(Mod).second) 6378 continue; 6379 6380 for (auto *D : Context.getModuleInitializers(Mod)) 6381 EmitTopLevelDecl(D); 6382 6383 // Visit the submodules of this module. 6384 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6385 SubEnd = Mod->submodule_end(); 6386 Sub != SubEnd; ++Sub) { 6387 // Skip explicit children; they need to be explicitly imported to emit 6388 // the initializers. 6389 if ((*Sub)->IsExplicit) 6390 continue; 6391 6392 if (Visited.insert(*Sub).second) 6393 Stack.push_back(*Sub); 6394 } 6395 } 6396 break; 6397 } 6398 6399 case Decl::Export: 6400 EmitDeclContext(cast<ExportDecl>(D)); 6401 break; 6402 6403 case Decl::OMPThreadPrivate: 6404 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6405 break; 6406 6407 case Decl::OMPAllocate: 6408 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6409 break; 6410 6411 case Decl::OMPDeclareReduction: 6412 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6413 break; 6414 6415 case Decl::OMPDeclareMapper: 6416 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6417 break; 6418 6419 case Decl::OMPRequires: 6420 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6421 break; 6422 6423 case Decl::Typedef: 6424 case Decl::TypeAlias: // using foo = bar; [C++11] 6425 if (CGDebugInfo *DI = getModuleDebugInfo()) 6426 DI->EmitAndRetainType( 6427 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6428 break; 6429 6430 case Decl::Record: 6431 if (CGDebugInfo *DI = getModuleDebugInfo()) 6432 if (cast<RecordDecl>(D)->getDefinition()) 6433 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6434 break; 6435 6436 case Decl::Enum: 6437 if (CGDebugInfo *DI = getModuleDebugInfo()) 6438 if (cast<EnumDecl>(D)->getDefinition()) 6439 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6440 break; 6441 6442 default: 6443 // Make sure we handled everything we should, every other kind is a 6444 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6445 // function. Need to recode Decl::Kind to do that easily. 6446 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6447 break; 6448 } 6449 } 6450 6451 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6452 // Do we need to generate coverage mapping? 6453 if (!CodeGenOpts.CoverageMapping) 6454 return; 6455 switch (D->getKind()) { 6456 case Decl::CXXConversion: 6457 case Decl::CXXMethod: 6458 case Decl::Function: 6459 case Decl::ObjCMethod: 6460 case Decl::CXXConstructor: 6461 case Decl::CXXDestructor: { 6462 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6463 break; 6464 SourceManager &SM = getContext().getSourceManager(); 6465 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6466 break; 6467 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6468 if (I == DeferredEmptyCoverageMappingDecls.end()) 6469 DeferredEmptyCoverageMappingDecls[D] = true; 6470 break; 6471 } 6472 default: 6473 break; 6474 }; 6475 } 6476 6477 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6478 // Do we need to generate coverage mapping? 6479 if (!CodeGenOpts.CoverageMapping) 6480 return; 6481 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6482 if (Fn->isTemplateInstantiation()) 6483 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6484 } 6485 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6486 if (I == DeferredEmptyCoverageMappingDecls.end()) 6487 DeferredEmptyCoverageMappingDecls[D] = false; 6488 else 6489 I->second = false; 6490 } 6491 6492 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6493 // We call takeVector() here to avoid use-after-free. 6494 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6495 // we deserialize function bodies to emit coverage info for them, and that 6496 // deserializes more declarations. How should we handle that case? 6497 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6498 if (!Entry.second) 6499 continue; 6500 const Decl *D = Entry.first; 6501 switch (D->getKind()) { 6502 case Decl::CXXConversion: 6503 case Decl::CXXMethod: 6504 case Decl::Function: 6505 case Decl::ObjCMethod: { 6506 CodeGenPGO PGO(*this); 6507 GlobalDecl GD(cast<FunctionDecl>(D)); 6508 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6509 getFunctionLinkage(GD)); 6510 break; 6511 } 6512 case Decl::CXXConstructor: { 6513 CodeGenPGO PGO(*this); 6514 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6515 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6516 getFunctionLinkage(GD)); 6517 break; 6518 } 6519 case Decl::CXXDestructor: { 6520 CodeGenPGO PGO(*this); 6521 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6522 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6523 getFunctionLinkage(GD)); 6524 break; 6525 } 6526 default: 6527 break; 6528 }; 6529 } 6530 } 6531 6532 void CodeGenModule::EmitMainVoidAlias() { 6533 // In order to transition away from "__original_main" gracefully, emit an 6534 // alias for "main" in the no-argument case so that libc can detect when 6535 // new-style no-argument main is in used. 6536 if (llvm::Function *F = getModule().getFunction("main")) { 6537 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6538 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6539 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6540 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6541 } 6542 } 6543 } 6544 6545 /// Turns the given pointer into a constant. 6546 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6547 const void *Ptr) { 6548 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6549 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6550 return llvm::ConstantInt::get(i64, PtrInt); 6551 } 6552 6553 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6554 llvm::NamedMDNode *&GlobalMetadata, 6555 GlobalDecl D, 6556 llvm::GlobalValue *Addr) { 6557 if (!GlobalMetadata) 6558 GlobalMetadata = 6559 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6560 6561 // TODO: should we report variant information for ctors/dtors? 6562 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6563 llvm::ConstantAsMetadata::get(GetPointerConstant( 6564 CGM.getLLVMContext(), D.getDecl()))}; 6565 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6566 } 6567 6568 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6569 llvm::GlobalValue *CppFunc) { 6570 // Store the list of ifuncs we need to replace uses in. 6571 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6572 // List of ConstantExprs that we should be able to delete when we're done 6573 // here. 6574 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6575 6576 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6577 if (Elem == CppFunc) 6578 return false; 6579 6580 // First make sure that all users of this are ifuncs (or ifuncs via a 6581 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6582 // later. 6583 for (llvm::User *User : Elem->users()) { 6584 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6585 // ifunc directly. In any other case, just give up, as we don't know what we 6586 // could break by changing those. 6587 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6588 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6589 return false; 6590 6591 for (llvm::User *CEUser : ConstExpr->users()) { 6592 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6593 IFuncs.push_back(IFunc); 6594 } else { 6595 return false; 6596 } 6597 } 6598 CEs.push_back(ConstExpr); 6599 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6600 IFuncs.push_back(IFunc); 6601 } else { 6602 // This user is one we don't know how to handle, so fail redirection. This 6603 // will result in an ifunc retaining a resolver name that will ultimately 6604 // fail to be resolved to a defined function. 6605 return false; 6606 } 6607 } 6608 6609 // Now we know this is a valid case where we can do this alias replacement, we 6610 // need to remove all of the references to Elem (and the bitcasts!) so we can 6611 // delete it. 6612 for (llvm::GlobalIFunc *IFunc : IFuncs) 6613 IFunc->setResolver(nullptr); 6614 for (llvm::ConstantExpr *ConstExpr : CEs) 6615 ConstExpr->destroyConstant(); 6616 6617 // We should now be out of uses for the 'old' version of this function, so we 6618 // can erase it as well. 6619 Elem->eraseFromParent(); 6620 6621 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6622 // The type of the resolver is always just a function-type that returns the 6623 // type of the IFunc, so create that here. If the type of the actual 6624 // resolver doesn't match, it just gets bitcast to the right thing. 6625 auto *ResolverTy = 6626 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6627 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6628 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6629 IFunc->setResolver(Resolver); 6630 } 6631 return true; 6632 } 6633 6634 /// For each function which is declared within an extern "C" region and marked 6635 /// as 'used', but has internal linkage, create an alias from the unmangled 6636 /// name to the mangled name if possible. People expect to be able to refer 6637 /// to such functions with an unmangled name from inline assembly within the 6638 /// same translation unit. 6639 void CodeGenModule::EmitStaticExternCAliases() { 6640 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6641 return; 6642 for (auto &I : StaticExternCValues) { 6643 IdentifierInfo *Name = I.first; 6644 llvm::GlobalValue *Val = I.second; 6645 6646 // If Val is null, that implies there were multiple declarations that each 6647 // had a claim to the unmangled name. In this case, generation of the alias 6648 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6649 if (!Val) 6650 break; 6651 6652 llvm::GlobalValue *ExistingElem = 6653 getModule().getNamedValue(Name->getName()); 6654 6655 // If there is either not something already by this name, or we were able to 6656 // replace all uses from IFuncs, create the alias. 6657 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6658 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6659 } 6660 } 6661 6662 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6663 GlobalDecl &Result) const { 6664 auto Res = Manglings.find(MangledName); 6665 if (Res == Manglings.end()) 6666 return false; 6667 Result = Res->getValue(); 6668 return true; 6669 } 6670 6671 /// Emits metadata nodes associating all the global values in the 6672 /// current module with the Decls they came from. This is useful for 6673 /// projects using IR gen as a subroutine. 6674 /// 6675 /// Since there's currently no way to associate an MDNode directly 6676 /// with an llvm::GlobalValue, we create a global named metadata 6677 /// with the name 'clang.global.decl.ptrs'. 6678 void CodeGenModule::EmitDeclMetadata() { 6679 llvm::NamedMDNode *GlobalMetadata = nullptr; 6680 6681 for (auto &I : MangledDeclNames) { 6682 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6683 // Some mangled names don't necessarily have an associated GlobalValue 6684 // in this module, e.g. if we mangled it for DebugInfo. 6685 if (Addr) 6686 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6687 } 6688 } 6689 6690 /// Emits metadata nodes for all the local variables in the current 6691 /// function. 6692 void CodeGenFunction::EmitDeclMetadata() { 6693 if (LocalDeclMap.empty()) return; 6694 6695 llvm::LLVMContext &Context = getLLVMContext(); 6696 6697 // Find the unique metadata ID for this name. 6698 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6699 6700 llvm::NamedMDNode *GlobalMetadata = nullptr; 6701 6702 for (auto &I : LocalDeclMap) { 6703 const Decl *D = I.first; 6704 llvm::Value *Addr = I.second.getPointer(); 6705 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6706 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6707 Alloca->setMetadata( 6708 DeclPtrKind, llvm::MDNode::get( 6709 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6710 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6711 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6712 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6713 } 6714 } 6715 } 6716 6717 void CodeGenModule::EmitVersionIdentMetadata() { 6718 llvm::NamedMDNode *IdentMetadata = 6719 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6720 std::string Version = getClangFullVersion(); 6721 llvm::LLVMContext &Ctx = TheModule.getContext(); 6722 6723 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6724 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6725 } 6726 6727 void CodeGenModule::EmitCommandLineMetadata() { 6728 llvm::NamedMDNode *CommandLineMetadata = 6729 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6730 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6731 llvm::LLVMContext &Ctx = TheModule.getContext(); 6732 6733 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6734 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6735 } 6736 6737 void CodeGenModule::EmitCoverageFile() { 6738 if (getCodeGenOpts().CoverageDataFile.empty() && 6739 getCodeGenOpts().CoverageNotesFile.empty()) 6740 return; 6741 6742 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6743 if (!CUNode) 6744 return; 6745 6746 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6747 llvm::LLVMContext &Ctx = TheModule.getContext(); 6748 auto *CoverageDataFile = 6749 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6750 auto *CoverageNotesFile = 6751 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6752 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6753 llvm::MDNode *CU = CUNode->getOperand(i); 6754 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6755 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6756 } 6757 } 6758 6759 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6760 bool ForEH) { 6761 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6762 // FIXME: should we even be calling this method if RTTI is disabled 6763 // and it's not for EH? 6764 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6765 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6766 getTriple().isNVPTX())) 6767 return llvm::Constant::getNullValue(Int8PtrTy); 6768 6769 if (ForEH && Ty->isObjCObjectPointerType() && 6770 LangOpts.ObjCRuntime.isGNUFamily()) 6771 return ObjCRuntime->GetEHType(Ty); 6772 6773 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6774 } 6775 6776 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6777 // Do not emit threadprivates in simd-only mode. 6778 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6779 return; 6780 for (auto RefExpr : D->varlists()) { 6781 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6782 bool PerformInit = 6783 VD->getAnyInitializer() && 6784 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6785 /*ForRef=*/false); 6786 6787 Address Addr(GetAddrOfGlobalVar(VD), 6788 getTypes().ConvertTypeForMem(VD->getType()), 6789 getContext().getDeclAlign(VD)); 6790 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6791 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6792 CXXGlobalInits.push_back(InitFunction); 6793 } 6794 } 6795 6796 llvm::Metadata * 6797 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6798 StringRef Suffix) { 6799 if (auto *FnType = T->getAs<FunctionProtoType>()) 6800 T = getContext().getFunctionType( 6801 FnType->getReturnType(), FnType->getParamTypes(), 6802 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6803 6804 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6805 if (InternalId) 6806 return InternalId; 6807 6808 if (isExternallyVisible(T->getLinkage())) { 6809 std::string OutName; 6810 llvm::raw_string_ostream Out(OutName); 6811 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6812 Out << Suffix; 6813 6814 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6815 } else { 6816 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6817 llvm::ArrayRef<llvm::Metadata *>()); 6818 } 6819 6820 return InternalId; 6821 } 6822 6823 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6824 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6825 } 6826 6827 llvm::Metadata * 6828 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6829 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6830 } 6831 6832 // Generalize pointer types to a void pointer with the qualifiers of the 6833 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6834 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6835 // 'void *'. 6836 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6837 if (!Ty->isPointerType()) 6838 return Ty; 6839 6840 return Ctx.getPointerType( 6841 QualType(Ctx.VoidTy).withCVRQualifiers( 6842 Ty->getPointeeType().getCVRQualifiers())); 6843 } 6844 6845 // Apply type generalization to a FunctionType's return and argument types 6846 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6847 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6848 SmallVector<QualType, 8> GeneralizedParams; 6849 for (auto &Param : FnType->param_types()) 6850 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6851 6852 return Ctx.getFunctionType( 6853 GeneralizeType(Ctx, FnType->getReturnType()), 6854 GeneralizedParams, FnType->getExtProtoInfo()); 6855 } 6856 6857 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6858 return Ctx.getFunctionNoProtoType( 6859 GeneralizeType(Ctx, FnType->getReturnType())); 6860 6861 llvm_unreachable("Encountered unknown FunctionType"); 6862 } 6863 6864 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6865 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6866 GeneralizedMetadataIdMap, ".generalized"); 6867 } 6868 6869 /// Returns whether this module needs the "all-vtables" type identifier. 6870 bool CodeGenModule::NeedAllVtablesTypeId() const { 6871 // Returns true if at least one of vtable-based CFI checkers is enabled and 6872 // is not in the trapping mode. 6873 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6874 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6875 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6876 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6877 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6878 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6879 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6880 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6881 } 6882 6883 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6884 CharUnits Offset, 6885 const CXXRecordDecl *RD) { 6886 llvm::Metadata *MD = 6887 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6888 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6889 6890 if (CodeGenOpts.SanitizeCfiCrossDso) 6891 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6892 VTable->addTypeMetadata(Offset.getQuantity(), 6893 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6894 6895 if (NeedAllVtablesTypeId()) { 6896 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6897 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6898 } 6899 } 6900 6901 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6902 if (!SanStats) 6903 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6904 6905 return *SanStats; 6906 } 6907 6908 llvm::Value * 6909 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6910 CodeGenFunction &CGF) { 6911 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6912 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6913 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6914 auto *Call = CGF.EmitRuntimeCall( 6915 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6916 return Call; 6917 } 6918 6919 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6920 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6921 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6922 /* forPointeeType= */ true); 6923 } 6924 6925 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6926 LValueBaseInfo *BaseInfo, 6927 TBAAAccessInfo *TBAAInfo, 6928 bool forPointeeType) { 6929 if (TBAAInfo) 6930 *TBAAInfo = getTBAAAccessInfo(T); 6931 6932 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6933 // that doesn't return the information we need to compute BaseInfo. 6934 6935 // Honor alignment typedef attributes even on incomplete types. 6936 // We also honor them straight for C++ class types, even as pointees; 6937 // there's an expressivity gap here. 6938 if (auto TT = T->getAs<TypedefType>()) { 6939 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6940 if (BaseInfo) 6941 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6942 return getContext().toCharUnitsFromBits(Align); 6943 } 6944 } 6945 6946 bool AlignForArray = T->isArrayType(); 6947 6948 // Analyze the base element type, so we don't get confused by incomplete 6949 // array types. 6950 T = getContext().getBaseElementType(T); 6951 6952 if (T->isIncompleteType()) { 6953 // We could try to replicate the logic from 6954 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6955 // type is incomplete, so it's impossible to test. We could try to reuse 6956 // getTypeAlignIfKnown, but that doesn't return the information we need 6957 // to set BaseInfo. So just ignore the possibility that the alignment is 6958 // greater than one. 6959 if (BaseInfo) 6960 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6961 return CharUnits::One(); 6962 } 6963 6964 if (BaseInfo) 6965 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6966 6967 CharUnits Alignment; 6968 const CXXRecordDecl *RD; 6969 if (T.getQualifiers().hasUnaligned()) { 6970 Alignment = CharUnits::One(); 6971 } else if (forPointeeType && !AlignForArray && 6972 (RD = T->getAsCXXRecordDecl())) { 6973 // For C++ class pointees, we don't know whether we're pointing at a 6974 // base or a complete object, so we generally need to use the 6975 // non-virtual alignment. 6976 Alignment = getClassPointerAlignment(RD); 6977 } else { 6978 Alignment = getContext().getTypeAlignInChars(T); 6979 } 6980 6981 // Cap to the global maximum type alignment unless the alignment 6982 // was somehow explicit on the type. 6983 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6984 if (Alignment.getQuantity() > MaxAlign && 6985 !getContext().isAlignmentRequired(T)) 6986 Alignment = CharUnits::fromQuantity(MaxAlign); 6987 } 6988 return Alignment; 6989 } 6990 6991 bool CodeGenModule::stopAutoInit() { 6992 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6993 if (StopAfter) { 6994 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6995 // used 6996 if (NumAutoVarInit >= StopAfter) { 6997 return true; 6998 } 6999 if (!NumAutoVarInit) { 7000 unsigned DiagID = getDiags().getCustomDiagID( 7001 DiagnosticsEngine::Warning, 7002 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7003 "number of times ftrivial-auto-var-init=%1 gets applied."); 7004 getDiags().Report(DiagID) 7005 << StopAfter 7006 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7007 LangOptions::TrivialAutoVarInitKind::Zero 7008 ? "zero" 7009 : "pattern"); 7010 } 7011 ++NumAutoVarInit; 7012 } 7013 return false; 7014 } 7015 7016 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7017 const Decl *D) const { 7018 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7019 // postfix beginning with '.' since the symbol name can be demangled. 7020 if (LangOpts.HIP) 7021 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7022 else 7023 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7024 7025 // If the CUID is not specified we try to generate a unique postfix. 7026 if (getLangOpts().CUID.empty()) { 7027 SourceManager &SM = getContext().getSourceManager(); 7028 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7029 assert(PLoc.isValid() && "Source location is expected to be valid."); 7030 7031 // Get the hash of the user defined macros. 7032 llvm::MD5 Hash; 7033 llvm::MD5::MD5Result Result; 7034 for (const auto &Arg : PreprocessorOpts.Macros) 7035 Hash.update(Arg.first); 7036 Hash.final(Result); 7037 7038 // Get the UniqueID for the file containing the decl. 7039 llvm::sys::fs::UniqueID ID; 7040 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7041 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7042 assert(PLoc.isValid() && "Source location is expected to be valid."); 7043 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7044 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7045 << PLoc.getFilename() << EC.message(); 7046 } 7047 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7048 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7049 } else { 7050 OS << getContext().getCUIDHash(); 7051 } 7052 } 7053 7054 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7055 assert(DeferredDeclsToEmit.empty() && 7056 "Should have emitted all decls deferred to emit."); 7057 assert(NewBuilder->DeferredDecls.empty() && 7058 "Newly created module should not have deferred decls"); 7059 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7060 7061 assert(NewBuilder->DeferredVTables.empty() && 7062 "Newly created module should not have deferred vtables"); 7063 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7064 7065 assert(NewBuilder->MangledDeclNames.empty() && 7066 "Newly created module should not have mangled decl names"); 7067 assert(NewBuilder->Manglings.empty() && 7068 "Newly created module should not have manglings"); 7069 NewBuilder->Manglings = std::move(Manglings); 7070 7071 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7072 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7073 7074 NewBuilder->TBAA = std::move(TBAA); 7075 7076 assert(NewBuilder->EmittedDeferredDecls.empty() && 7077 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7078 7079 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7080 7081 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7082 } 7083