xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision aa842896299b014dc1837f1a01dfccbd94242c84)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 }
184 
185 CodeGenModule::~CodeGenModule() {}
186 
187 void CodeGenModule::createObjCRuntime() {
188   // This is just isGNUFamily(), but we want to force implementors of
189   // new ABIs to decide how best to do this.
190   switch (LangOpts.ObjCRuntime.getKind()) {
191   case ObjCRuntime::GNUstep:
192   case ObjCRuntime::GCC:
193   case ObjCRuntime::ObjFW:
194     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
195     return;
196 
197   case ObjCRuntime::FragileMacOSX:
198   case ObjCRuntime::MacOSX:
199   case ObjCRuntime::iOS:
200   case ObjCRuntime::WatchOS:
201     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
202     return;
203   }
204   llvm_unreachable("bad runtime kind");
205 }
206 
207 void CodeGenModule::createOpenCLRuntime() {
208   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
209 }
210 
211 void CodeGenModule::createOpenMPRuntime() {
212   // Select a specialized code generation class based on the target, if any.
213   // If it does not exist use the default implementation.
214   switch (getTriple().getArch()) {
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     assert(getLangOpts().OpenMPIsDevice &&
218            "OpenMP NVPTX is only prepared to deal with device code.");
219     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
220     break;
221   case llvm::Triple::amdgcn:
222     assert(getLangOpts().OpenMPIsDevice &&
223            "OpenMP AMDGCN is only prepared to deal with device code.");
224     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
225     break;
226   default:
227     if (LangOpts.OpenMPSimd)
228       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
229     else
230       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
231     break;
232   }
233 }
234 
235 void CodeGenModule::createCUDARuntime() {
236   CUDARuntime.reset(CreateNVCUDARuntime(*this));
237 }
238 
239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
240   Replacements[Name] = C;
241 }
242 
243 void CodeGenModule::applyReplacements() {
244   for (auto &I : Replacements) {
245     StringRef MangledName = I.first();
246     llvm::Constant *Replacement = I.second;
247     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
248     if (!Entry)
249       continue;
250     auto *OldF = cast<llvm::Function>(Entry);
251     auto *NewF = dyn_cast<llvm::Function>(Replacement);
252     if (!NewF) {
253       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
254         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
255       } else {
256         auto *CE = cast<llvm::ConstantExpr>(Replacement);
257         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
258                CE->getOpcode() == llvm::Instruction::GetElementPtr);
259         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
260       }
261     }
262 
263     // Replace old with new, but keep the old order.
264     OldF->replaceAllUsesWith(Replacement);
265     if (NewF) {
266       NewF->removeFromParent();
267       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
268                                                        NewF);
269     }
270     OldF->eraseFromParent();
271   }
272 }
273 
274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
275   GlobalValReplacements.push_back(std::make_pair(GV, C));
276 }
277 
278 void CodeGenModule::applyGlobalValReplacements() {
279   for (auto &I : GlobalValReplacements) {
280     llvm::GlobalValue *GV = I.first;
281     llvm::Constant *C = I.second;
282 
283     GV->replaceAllUsesWith(C);
284     GV->eraseFromParent();
285   }
286 }
287 
288 // This is only used in aliases that we created and we know they have a
289 // linear structure.
290 static const llvm::GlobalObject *getAliasedGlobal(
291     const llvm::GlobalIndirectSymbol &GIS) {
292   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
293   const llvm::Constant *C = &GIS;
294   for (;;) {
295     C = C->stripPointerCasts();
296     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
297       return GO;
298     // stripPointerCasts will not walk over weak aliases.
299     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
300     if (!GIS2)
301       return nullptr;
302     if (!Visited.insert(GIS2).second)
303       return nullptr;
304     C = GIS2->getIndirectSymbol();
305   }
306 }
307 
308 void CodeGenModule::checkAliases() {
309   // Check if the constructed aliases are well formed. It is really unfortunate
310   // that we have to do this in CodeGen, but we only construct mangled names
311   // and aliases during codegen.
312   bool Error = false;
313   DiagnosticsEngine &Diags = getDiags();
314   for (const GlobalDecl &GD : Aliases) {
315     const auto *D = cast<ValueDecl>(GD.getDecl());
316     SourceLocation Location;
317     bool IsIFunc = D->hasAttr<IFuncAttr>();
318     if (const Attr *A = D->getDefiningAttr())
319       Location = A->getLocation();
320     else
321       llvm_unreachable("Not an alias or ifunc?");
322     StringRef MangledName = getMangledName(GD);
323     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
324     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
325     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
326     if (!GV) {
327       Error = true;
328       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
329     } else if (GV->isDeclaration()) {
330       Error = true;
331       Diags.Report(Location, diag::err_alias_to_undefined)
332           << IsIFunc << IsIFunc;
333     } else if (IsIFunc) {
334       // Check resolver function type.
335       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
336           GV->getType()->getPointerElementType());
337       assert(FTy);
338       if (!FTy->getReturnType()->isPointerTy())
339         Diags.Report(Location, diag::err_ifunc_resolver_return);
340     }
341 
342     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
343     llvm::GlobalValue *AliaseeGV;
344     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
345       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
346     else
347       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
348 
349     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
350       StringRef AliasSection = SA->getName();
351       if (AliasSection != AliaseeGV->getSection())
352         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
353             << AliasSection << IsIFunc << IsIFunc;
354     }
355 
356     // We have to handle alias to weak aliases in here. LLVM itself disallows
357     // this since the object semantics would not match the IL one. For
358     // compatibility with gcc we implement it by just pointing the alias
359     // to its aliasee's aliasee. We also warn, since the user is probably
360     // expecting the link to be weak.
361     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
362       if (GA->isInterposable()) {
363         Diags.Report(Location, diag::warn_alias_to_weak_alias)
364             << GV->getName() << GA->getName() << IsIFunc;
365         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
366             GA->getIndirectSymbol(), Alias->getType());
367         Alias->setIndirectSymbol(Aliasee);
368       }
369     }
370   }
371   if (!Error)
372     return;
373 
374   for (const GlobalDecl &GD : Aliases) {
375     StringRef MangledName = getMangledName(GD);
376     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
377     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
378     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
379     Alias->eraseFromParent();
380   }
381 }
382 
383 void CodeGenModule::clear() {
384   DeferredDeclsToEmit.clear();
385   if (OpenMPRuntime)
386     OpenMPRuntime->clear();
387 }
388 
389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
390                                        StringRef MainFile) {
391   if (!hasDiagnostics())
392     return;
393   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
394     if (MainFile.empty())
395       MainFile = "<stdin>";
396     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
397   } else {
398     if (Mismatched > 0)
399       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
400 
401     if (Missing > 0)
402       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
403   }
404 }
405 
406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
407                                              llvm::Module &M) {
408   if (!LO.VisibilityFromDLLStorageClass)
409     return;
410 
411   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
413   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
416       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
417   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
418       CodeGenModule::GetLLVMVisibility(
419           LO.getExternDeclNoDLLStorageClassVisibility());
420 
421   for (llvm::GlobalValue &GV : M.global_values()) {
422     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
423       continue;
424 
425     // Reset DSO locality before setting the visibility. This removes
426     // any effects that visibility options and annotations may have
427     // had on the DSO locality. Setting the visibility will implicitly set
428     // appropriate globals to DSO Local; however, this will be pessimistic
429     // w.r.t. to the normal compiler IRGen.
430     GV.setDSOLocal(false);
431 
432     if (GV.isDeclarationForLinker()) {
433       GV.setVisibility(GV.getDLLStorageClass() ==
434                                llvm::GlobalValue::DLLImportStorageClass
435                            ? ExternDeclDLLImportVisibility
436                            : ExternDeclNoDLLStorageClassVisibility);
437     } else {
438       GV.setVisibility(GV.getDLLStorageClass() ==
439                                llvm::GlobalValue::DLLExportStorageClass
440                            ? DLLExportVisibility
441                            : NoDLLStorageClassVisibility);
442     }
443 
444     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
445   }
446 }
447 
448 void CodeGenModule::Release() {
449   EmitDeferred();
450   EmitVTablesOpportunistically();
451   applyGlobalValReplacements();
452   applyReplacements();
453   checkAliases();
454   emitMultiVersionFunctions();
455   EmitCXXGlobalInitFunc();
456   EmitCXXGlobalCleanUpFunc();
457   registerGlobalDtorsWithAtExit();
458   EmitCXXThreadLocalInitFunc();
459   if (ObjCRuntime)
460     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
461       AddGlobalCtor(ObjCInitFunction);
462   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
463       CUDARuntime) {
464     if (llvm::Function *CudaCtorFunction =
465             CUDARuntime->makeModuleCtorFunction())
466       AddGlobalCtor(CudaCtorFunction);
467   }
468   if (OpenMPRuntime) {
469     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
470             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
471       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
472     }
473     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
474     OpenMPRuntime->clear();
475   }
476   if (PGOReader) {
477     getModule().setProfileSummary(
478         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
479         llvm::ProfileSummary::PSK_Instr);
480     if (PGOStats.hasDiagnostics())
481       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
482   }
483   EmitCtorList(GlobalCtors, "llvm.global_ctors");
484   EmitCtorList(GlobalDtors, "llvm.global_dtors");
485   EmitGlobalAnnotations();
486   EmitStaticExternCAliases();
487   EmitDeferredUnusedCoverageMappings();
488   if (CoverageMapping)
489     CoverageMapping->emit();
490   if (CodeGenOpts.SanitizeCfiCrossDso) {
491     CodeGenFunction(*this).EmitCfiCheckFail();
492     CodeGenFunction(*this).EmitCfiCheckStub();
493   }
494   emitAtAvailableLinkGuard();
495   if (Context.getTargetInfo().getTriple().isWasm() &&
496       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
497     EmitMainVoidAlias();
498   }
499   emitLLVMUsed();
500   if (SanStats)
501     SanStats->finish();
502 
503   if (CodeGenOpts.Autolink &&
504       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
505     EmitModuleLinkOptions();
506   }
507 
508   // On ELF we pass the dependent library specifiers directly to the linker
509   // without manipulating them. This is in contrast to other platforms where
510   // they are mapped to a specific linker option by the compiler. This
511   // difference is a result of the greater variety of ELF linkers and the fact
512   // that ELF linkers tend to handle libraries in a more complicated fashion
513   // than on other platforms. This forces us to defer handling the dependent
514   // libs to the linker.
515   //
516   // CUDA/HIP device and host libraries are different. Currently there is no
517   // way to differentiate dependent libraries for host or device. Existing
518   // usage of #pragma comment(lib, *) is intended for host libraries on
519   // Windows. Therefore emit llvm.dependent-libraries only for host.
520   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
521     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
522     for (auto *MD : ELFDependentLibraries)
523       NMD->addOperand(MD);
524   }
525 
526   // Record mregparm value now so it is visible through rest of codegen.
527   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
528     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
529                               CodeGenOpts.NumRegisterParameters);
530 
531   if (CodeGenOpts.DwarfVersion) {
532     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
533                               CodeGenOpts.DwarfVersion);
534   }
535 
536   if (CodeGenOpts.Dwarf64)
537     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
538 
539   if (Context.getLangOpts().SemanticInterposition)
540     // Require various optimization to respect semantic interposition.
541     getModule().setSemanticInterposition(1);
542 
543   if (CodeGenOpts.EmitCodeView) {
544     // Indicate that we want CodeView in the metadata.
545     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
546   }
547   if (CodeGenOpts.CodeViewGHash) {
548     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
549   }
550   if (CodeGenOpts.ControlFlowGuard) {
551     // Function ID tables and checks for Control Flow Guard (cfguard=2).
552     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
553   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
554     // Function ID tables for Control Flow Guard (cfguard=1).
555     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
556   }
557   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
558     // We don't support LTO with 2 with different StrictVTablePointers
559     // FIXME: we could support it by stripping all the information introduced
560     // by StrictVTablePointers.
561 
562     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
563 
564     llvm::Metadata *Ops[2] = {
565               llvm::MDString::get(VMContext, "StrictVTablePointers"),
566               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
567                   llvm::Type::getInt32Ty(VMContext), 1))};
568 
569     getModule().addModuleFlag(llvm::Module::Require,
570                               "StrictVTablePointersRequirement",
571                               llvm::MDNode::get(VMContext, Ops));
572   }
573   if (getModuleDebugInfo())
574     // We support a single version in the linked module. The LLVM
575     // parser will drop debug info with a different version number
576     // (and warn about it, too).
577     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
578                               llvm::DEBUG_METADATA_VERSION);
579 
580   // We need to record the widths of enums and wchar_t, so that we can generate
581   // the correct build attributes in the ARM backend. wchar_size is also used by
582   // TargetLibraryInfo.
583   uint64_t WCharWidth =
584       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
585   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
586 
587   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
588   if (   Arch == llvm::Triple::arm
589       || Arch == llvm::Triple::armeb
590       || Arch == llvm::Triple::thumb
591       || Arch == llvm::Triple::thumbeb) {
592     // The minimum width of an enum in bytes
593     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
594     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
595   }
596 
597   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
598     StringRef ABIStr = Target.getABI();
599     llvm::LLVMContext &Ctx = TheModule.getContext();
600     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
601                               llvm::MDString::get(Ctx, ABIStr));
602   }
603 
604   if (CodeGenOpts.SanitizeCfiCrossDso) {
605     // Indicate that we want cross-DSO control flow integrity checks.
606     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
607   }
608 
609   if (CodeGenOpts.WholeProgramVTables) {
610     // Indicate whether VFE was enabled for this module, so that the
611     // vcall_visibility metadata added under whole program vtables is handled
612     // appropriately in the optimizer.
613     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
614                               CodeGenOpts.VirtualFunctionElimination);
615   }
616 
617   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
618     getModule().addModuleFlag(llvm::Module::Override,
619                               "CFI Canonical Jump Tables",
620                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
621   }
622 
623   if (CodeGenOpts.CFProtectionReturn &&
624       Target.checkCFProtectionReturnSupported(getDiags())) {
625     // Indicate that we want to instrument return control flow protection.
626     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
627                               1);
628   }
629 
630   if (CodeGenOpts.CFProtectionBranch &&
631       Target.checkCFProtectionBranchSupported(getDiags())) {
632     // Indicate that we want to instrument branch control flow protection.
633     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
634                               1);
635   }
636 
637   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
638       Arch == llvm::Triple::aarch64_be) {
639     getModule().addModuleFlag(llvm::Module::Error,
640                               "branch-target-enforcement",
641                               LangOpts.BranchTargetEnforcement);
642 
643     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
644                               LangOpts.hasSignReturnAddress());
645 
646     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
647                               LangOpts.isSignReturnAddressScopeAll());
648 
649     getModule().addModuleFlag(llvm::Module::Error,
650                               "sign-return-address-with-bkey",
651                               !LangOpts.isSignReturnAddressWithAKey());
652   }
653 
654   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
655     llvm::LLVMContext &Ctx = TheModule.getContext();
656     getModule().addModuleFlag(
657         llvm::Module::Error, "MemProfProfileFilename",
658         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
659   }
660 
661   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
662     // Indicate whether __nvvm_reflect should be configured to flush denormal
663     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
664     // property.)
665     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
666                               CodeGenOpts.FP32DenormalMode.Output !=
667                                   llvm::DenormalMode::IEEE);
668   }
669 
670   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
671   if (LangOpts.OpenCL) {
672     EmitOpenCLMetadata();
673     // Emit SPIR version.
674     if (getTriple().isSPIR()) {
675       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
676       // opencl.spir.version named metadata.
677       // C++ is backwards compatible with OpenCL v2.0.
678       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
679       llvm::Metadata *SPIRVerElts[] = {
680           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681               Int32Ty, Version / 100)),
682           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
683               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
684       llvm::NamedMDNode *SPIRVerMD =
685           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
686       llvm::LLVMContext &Ctx = TheModule.getContext();
687       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
688     }
689   }
690 
691   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
692     assert(PLevel < 3 && "Invalid PIC Level");
693     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
694     if (Context.getLangOpts().PIE)
695       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
696   }
697 
698   if (getCodeGenOpts().CodeModel.size() > 0) {
699     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
700                   .Case("tiny", llvm::CodeModel::Tiny)
701                   .Case("small", llvm::CodeModel::Small)
702                   .Case("kernel", llvm::CodeModel::Kernel)
703                   .Case("medium", llvm::CodeModel::Medium)
704                   .Case("large", llvm::CodeModel::Large)
705                   .Default(~0u);
706     if (CM != ~0u) {
707       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
708       getModule().setCodeModel(codeModel);
709     }
710   }
711 
712   if (CodeGenOpts.NoPLT)
713     getModule().setRtLibUseGOT();
714 
715   SimplifyPersonality();
716 
717   if (getCodeGenOpts().EmitDeclMetadata)
718     EmitDeclMetadata();
719 
720   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
721     EmitCoverageFile();
722 
723   if (CGDebugInfo *DI = getModuleDebugInfo())
724     DI->finalize();
725 
726   if (getCodeGenOpts().EmitVersionIdentMetadata)
727     EmitVersionIdentMetadata();
728 
729   if (!getCodeGenOpts().RecordCommandLine.empty())
730     EmitCommandLineMetadata();
731 
732   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
733 
734   EmitBackendOptionsMetadata(getCodeGenOpts());
735 
736   // Set visibility from DLL storage class
737   // We do this at the end of LLVM IR generation; after any operation
738   // that might affect the DLL storage class or the visibility, and
739   // before anything that might act on these.
740   setVisibilityFromDLLStorageClass(LangOpts, getModule());
741 }
742 
743 void CodeGenModule::EmitOpenCLMetadata() {
744   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
745   // opencl.ocl.version named metadata node.
746   // C++ is backwards compatible with OpenCL v2.0.
747   // FIXME: We might need to add CXX version at some point too?
748   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
749   llvm::Metadata *OCLVerElts[] = {
750       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751           Int32Ty, Version / 100)),
752       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
753           Int32Ty, (Version % 100) / 10))};
754   llvm::NamedMDNode *OCLVerMD =
755       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
756   llvm::LLVMContext &Ctx = TheModule.getContext();
757   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
758 }
759 
760 void CodeGenModule::EmitBackendOptionsMetadata(
761     const CodeGenOptions CodeGenOpts) {
762   switch (getTriple().getArch()) {
763   default:
764     break;
765   case llvm::Triple::riscv32:
766   case llvm::Triple::riscv64:
767     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
768                               CodeGenOpts.SmallDataLimit);
769     break;
770   }
771 }
772 
773 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
774   // Make sure that this type is translated.
775   Types.UpdateCompletedType(TD);
776 }
777 
778 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
779   // Make sure that this type is translated.
780   Types.RefreshTypeCacheForClass(RD);
781 }
782 
783 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
784   if (!TBAA)
785     return nullptr;
786   return TBAA->getTypeInfo(QTy);
787 }
788 
789 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
790   if (!TBAA)
791     return TBAAAccessInfo();
792   if (getLangOpts().CUDAIsDevice) {
793     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
794     // access info.
795     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
796       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
797           nullptr)
798         return TBAAAccessInfo();
799     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
800       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
801           nullptr)
802         return TBAAAccessInfo();
803     }
804   }
805   return TBAA->getAccessInfo(AccessType);
806 }
807 
808 TBAAAccessInfo
809 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
810   if (!TBAA)
811     return TBAAAccessInfo();
812   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
813 }
814 
815 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
816   if (!TBAA)
817     return nullptr;
818   return TBAA->getTBAAStructInfo(QTy);
819 }
820 
821 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
822   if (!TBAA)
823     return nullptr;
824   return TBAA->getBaseTypeInfo(QTy);
825 }
826 
827 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
828   if (!TBAA)
829     return nullptr;
830   return TBAA->getAccessTagInfo(Info);
831 }
832 
833 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
834                                                    TBAAAccessInfo TargetInfo) {
835   if (!TBAA)
836     return TBAAAccessInfo();
837   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
838 }
839 
840 TBAAAccessInfo
841 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
842                                                    TBAAAccessInfo InfoB) {
843   if (!TBAA)
844     return TBAAAccessInfo();
845   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
846 }
847 
848 TBAAAccessInfo
849 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
850                                               TBAAAccessInfo SrcInfo) {
851   if (!TBAA)
852     return TBAAAccessInfo();
853   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
854 }
855 
856 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
857                                                 TBAAAccessInfo TBAAInfo) {
858   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
859     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
860 }
861 
862 void CodeGenModule::DecorateInstructionWithInvariantGroup(
863     llvm::Instruction *I, const CXXRecordDecl *RD) {
864   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
865                  llvm::MDNode::get(getLLVMContext(), {}));
866 }
867 
868 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
869   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
870   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
871 }
872 
873 /// ErrorUnsupported - Print out an error that codegen doesn't support the
874 /// specified stmt yet.
875 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
876   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
877                                                "cannot compile this %0 yet");
878   std::string Msg = Type;
879   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
880       << Msg << S->getSourceRange();
881 }
882 
883 /// ErrorUnsupported - Print out an error that codegen doesn't support the
884 /// specified decl yet.
885 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
886   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
887                                                "cannot compile this %0 yet");
888   std::string Msg = Type;
889   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
890 }
891 
892 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
893   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
894 }
895 
896 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
897                                         const NamedDecl *D) const {
898   if (GV->hasDLLImportStorageClass())
899     return;
900   // Internal definitions always have default visibility.
901   if (GV->hasLocalLinkage()) {
902     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
903     return;
904   }
905   if (!D)
906     return;
907   // Set visibility for definitions, and for declarations if requested globally
908   // or set explicitly.
909   LinkageInfo LV = D->getLinkageAndVisibility();
910   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
911       !GV->isDeclarationForLinker())
912     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
913 }
914 
915 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
916                                  llvm::GlobalValue *GV) {
917   if (GV->hasLocalLinkage())
918     return true;
919 
920   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
921     return true;
922 
923   // DLLImport explicitly marks the GV as external.
924   if (GV->hasDLLImportStorageClass())
925     return false;
926 
927   const llvm::Triple &TT = CGM.getTriple();
928   if (TT.isWindowsGNUEnvironment()) {
929     // In MinGW, variables without DLLImport can still be automatically
930     // imported from a DLL by the linker; don't mark variables that
931     // potentially could come from another DLL as DSO local.
932     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
933         !GV->isThreadLocal())
934       return false;
935   }
936 
937   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
938   // remain unresolved in the link, they can be resolved to zero, which is
939   // outside the current DSO.
940   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
941     return false;
942 
943   // Every other GV is local on COFF.
944   // Make an exception for windows OS in the triple: Some firmware builds use
945   // *-win32-macho triples. This (accidentally?) produced windows relocations
946   // without GOT tables in older clang versions; Keep this behaviour.
947   // FIXME: even thread local variables?
948   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
949     return true;
950 
951   const auto &CGOpts = CGM.getCodeGenOpts();
952   llvm::Reloc::Model RM = CGOpts.RelocationModel;
953   const auto &LOpts = CGM.getLangOpts();
954 
955   if (TT.isOSBinFormatMachO()) {
956     if (RM == llvm::Reloc::Static)
957       return true;
958     return GV->isStrongDefinitionForLinker();
959   }
960 
961   // Only handle COFF and ELF for now.
962   if (!TT.isOSBinFormatELF())
963     return false;
964 
965   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
966     // On ELF, if -fno-semantic-interposition is specified and the target
967     // supports local aliases, there will be neither CC1
968     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
969     // dso_local if using a local alias is preferable (can avoid GOT
970     // indirection).
971     if (!GV->canBenefitFromLocalAlias())
972       return false;
973     return !(CGM.getLangOpts().SemanticInterposition ||
974              CGM.getLangOpts().HalfNoSemanticInterposition);
975   }
976 
977   // A definition cannot be preempted from an executable.
978   if (!GV->isDeclarationForLinker())
979     return true;
980 
981   // Most PIC code sequences that assume that a symbol is local cannot produce a
982   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
983   // depended, it seems worth it to handle it here.
984   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
985     return false;
986 
987   // PowerPC64 prefers TOC indirection to avoid copy relocations.
988   if (TT.isPPC64())
989     return false;
990 
991   if (CGOpts.DirectAccessExternalData) {
992     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
993     // for non-thread-local variables. If the symbol is not defined in the
994     // executable, a copy relocation will be needed at link time. dso_local is
995     // excluded for thread-local variables because they generally don't support
996     // copy relocations.
997     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
998       if (!Var->isThreadLocal())
999         return true;
1000 
1001     // -fno-pic sets dso_local on a function declaration to allow direct
1002     // accesses when taking its address (similar to a data symbol). If the
1003     // function is not defined in the executable, a canonical PLT entry will be
1004     // needed at link time. -fno-direct-access-external-data can avoid the
1005     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1006     // it could just cause trouble without providing perceptible benefits.
1007     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1008       return true;
1009   }
1010 
1011   // If we can use copy relocations we can assume it is local.
1012 
1013   // Otherwise don't assume it is local.
1014   return false;
1015 }
1016 
1017 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1018   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1019 }
1020 
1021 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1022                                           GlobalDecl GD) const {
1023   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1024   // C++ destructors have a few C++ ABI specific special cases.
1025   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1026     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1027     return;
1028   }
1029   setDLLImportDLLExport(GV, D);
1030 }
1031 
1032 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1033                                           const NamedDecl *D) const {
1034   if (D && D->isExternallyVisible()) {
1035     if (D->hasAttr<DLLImportAttr>())
1036       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1037     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1038       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1039   }
1040 }
1041 
1042 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1043                                     GlobalDecl GD) const {
1044   setDLLImportDLLExport(GV, GD);
1045   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1046 }
1047 
1048 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1049                                     const NamedDecl *D) const {
1050   setDLLImportDLLExport(GV, D);
1051   setGVPropertiesAux(GV, D);
1052 }
1053 
1054 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1055                                        const NamedDecl *D) const {
1056   setGlobalVisibility(GV, D);
1057   setDSOLocal(GV);
1058   GV->setPartition(CodeGenOpts.SymbolPartition);
1059 }
1060 
1061 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1062   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1063       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1064       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1065       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1066       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1067 }
1068 
1069 llvm::GlobalVariable::ThreadLocalMode
1070 CodeGenModule::GetDefaultLLVMTLSModel() const {
1071   switch (CodeGenOpts.getDefaultTLSModel()) {
1072   case CodeGenOptions::GeneralDynamicTLSModel:
1073     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1074   case CodeGenOptions::LocalDynamicTLSModel:
1075     return llvm::GlobalVariable::LocalDynamicTLSModel;
1076   case CodeGenOptions::InitialExecTLSModel:
1077     return llvm::GlobalVariable::InitialExecTLSModel;
1078   case CodeGenOptions::LocalExecTLSModel:
1079     return llvm::GlobalVariable::LocalExecTLSModel;
1080   }
1081   llvm_unreachable("Invalid TLS model!");
1082 }
1083 
1084 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1085   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1086 
1087   llvm::GlobalValue::ThreadLocalMode TLM;
1088   TLM = GetDefaultLLVMTLSModel();
1089 
1090   // Override the TLS model if it is explicitly specified.
1091   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1092     TLM = GetLLVMTLSModel(Attr->getModel());
1093   }
1094 
1095   GV->setThreadLocalMode(TLM);
1096 }
1097 
1098 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1099                                           StringRef Name) {
1100   const TargetInfo &Target = CGM.getTarget();
1101   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1102 }
1103 
1104 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1105                                                  const CPUSpecificAttr *Attr,
1106                                                  unsigned CPUIndex,
1107                                                  raw_ostream &Out) {
1108   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1109   // supported.
1110   if (Attr)
1111     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1112   else if (CGM.getTarget().supportsIFunc())
1113     Out << ".resolver";
1114 }
1115 
1116 static void AppendTargetMangling(const CodeGenModule &CGM,
1117                                  const TargetAttr *Attr, raw_ostream &Out) {
1118   if (Attr->isDefaultVersion())
1119     return;
1120 
1121   Out << '.';
1122   const TargetInfo &Target = CGM.getTarget();
1123   ParsedTargetAttr Info =
1124       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1125         // Multiversioning doesn't allow "no-${feature}", so we can
1126         // only have "+" prefixes here.
1127         assert(LHS.startswith("+") && RHS.startswith("+") &&
1128                "Features should always have a prefix.");
1129         return Target.multiVersionSortPriority(LHS.substr(1)) >
1130                Target.multiVersionSortPriority(RHS.substr(1));
1131       });
1132 
1133   bool IsFirst = true;
1134 
1135   if (!Info.Architecture.empty()) {
1136     IsFirst = false;
1137     Out << "arch_" << Info.Architecture;
1138   }
1139 
1140   for (StringRef Feat : Info.Features) {
1141     if (!IsFirst)
1142       Out << '_';
1143     IsFirst = false;
1144     Out << Feat.substr(1);
1145   }
1146 }
1147 
1148 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1149                                       const NamedDecl *ND,
1150                                       bool OmitMultiVersionMangling = false) {
1151   SmallString<256> Buffer;
1152   llvm::raw_svector_ostream Out(Buffer);
1153   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1154   if (MC.shouldMangleDeclName(ND))
1155     MC.mangleName(GD.getWithDecl(ND), Out);
1156   else {
1157     IdentifierInfo *II = ND->getIdentifier();
1158     assert(II && "Attempt to mangle unnamed decl.");
1159     const auto *FD = dyn_cast<FunctionDecl>(ND);
1160 
1161     if (FD &&
1162         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1163       Out << "__regcall3__" << II->getName();
1164     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1165                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1166       Out << "__device_stub__" << II->getName();
1167     } else {
1168       Out << II->getName();
1169     }
1170   }
1171 
1172   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1173     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1174       switch (FD->getMultiVersionKind()) {
1175       case MultiVersionKind::CPUDispatch:
1176       case MultiVersionKind::CPUSpecific:
1177         AppendCPUSpecificCPUDispatchMangling(CGM,
1178                                              FD->getAttr<CPUSpecificAttr>(),
1179                                              GD.getMultiVersionIndex(), Out);
1180         break;
1181       case MultiVersionKind::Target:
1182         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1183         break;
1184       case MultiVersionKind::None:
1185         llvm_unreachable("None multiversion type isn't valid here");
1186       }
1187     }
1188 
1189   return std::string(Out.str());
1190 }
1191 
1192 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1193                                             const FunctionDecl *FD) {
1194   if (!FD->isMultiVersion())
1195     return;
1196 
1197   // Get the name of what this would be without the 'target' attribute.  This
1198   // allows us to lookup the version that was emitted when this wasn't a
1199   // multiversion function.
1200   std::string NonTargetName =
1201       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1202   GlobalDecl OtherGD;
1203   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1204     assert(OtherGD.getCanonicalDecl()
1205                .getDecl()
1206                ->getAsFunction()
1207                ->isMultiVersion() &&
1208            "Other GD should now be a multiversioned function");
1209     // OtherFD is the version of this function that was mangled BEFORE
1210     // becoming a MultiVersion function.  It potentially needs to be updated.
1211     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1212                                       .getDecl()
1213                                       ->getAsFunction()
1214                                       ->getMostRecentDecl();
1215     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1216     // This is so that if the initial version was already the 'default'
1217     // version, we don't try to update it.
1218     if (OtherName != NonTargetName) {
1219       // Remove instead of erase, since others may have stored the StringRef
1220       // to this.
1221       const auto ExistingRecord = Manglings.find(NonTargetName);
1222       if (ExistingRecord != std::end(Manglings))
1223         Manglings.remove(&(*ExistingRecord));
1224       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1225       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1226       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1227         Entry->setName(OtherName);
1228     }
1229   }
1230 }
1231 
1232 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1233   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1234 
1235   // Some ABIs don't have constructor variants.  Make sure that base and
1236   // complete constructors get mangled the same.
1237   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1238     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1239       CXXCtorType OrigCtorType = GD.getCtorType();
1240       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1241       if (OrigCtorType == Ctor_Base)
1242         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1243     }
1244   }
1245 
1246   auto FoundName = MangledDeclNames.find(CanonicalGD);
1247   if (FoundName != MangledDeclNames.end())
1248     return FoundName->second;
1249 
1250   // Keep the first result in the case of a mangling collision.
1251   const auto *ND = cast<NamedDecl>(GD.getDecl());
1252   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1253 
1254   // Ensure either we have different ABIs between host and device compilations,
1255   // says host compilation following MSVC ABI but device compilation follows
1256   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1257   // mangling should be the same after name stubbing. The later checking is
1258   // very important as the device kernel name being mangled in host-compilation
1259   // is used to resolve the device binaries to be executed. Inconsistent naming
1260   // result in undefined behavior. Even though we cannot check that naming
1261   // directly between host- and device-compilations, the host- and
1262   // device-mangling in host compilation could help catching certain ones.
1263   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1264          getLangOpts().CUDAIsDevice ||
1265          (getContext().getAuxTargetInfo() &&
1266           (getContext().getAuxTargetInfo()->getCXXABI() !=
1267            getContext().getTargetInfo().getCXXABI())) ||
1268          getCUDARuntime().getDeviceSideName(ND) ==
1269              getMangledNameImpl(
1270                  *this,
1271                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1272                  ND));
1273 
1274   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1275   return MangledDeclNames[CanonicalGD] = Result.first->first();
1276 }
1277 
1278 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1279                                              const BlockDecl *BD) {
1280   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1281   const Decl *D = GD.getDecl();
1282 
1283   SmallString<256> Buffer;
1284   llvm::raw_svector_ostream Out(Buffer);
1285   if (!D)
1286     MangleCtx.mangleGlobalBlock(BD,
1287       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1288   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1289     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1290   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1291     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1292   else
1293     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1294 
1295   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1296   return Result.first->first();
1297 }
1298 
1299 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1300   return getModule().getNamedValue(Name);
1301 }
1302 
1303 /// AddGlobalCtor - Add a function to the list that will be called before
1304 /// main() runs.
1305 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1306                                   llvm::Constant *AssociatedData) {
1307   // FIXME: Type coercion of void()* types.
1308   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1309 }
1310 
1311 /// AddGlobalDtor - Add a function to the list that will be called
1312 /// when the module is unloaded.
1313 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1314                                   bool IsDtorAttrFunc) {
1315   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1316       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1317     DtorsUsingAtExit[Priority].push_back(Dtor);
1318     return;
1319   }
1320 
1321   // FIXME: Type coercion of void()* types.
1322   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1323 }
1324 
1325 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1326   if (Fns.empty()) return;
1327 
1328   // Ctor function type is void()*.
1329   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1330   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1331       TheModule.getDataLayout().getProgramAddressSpace());
1332 
1333   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1334   llvm::StructType *CtorStructTy = llvm::StructType::get(
1335       Int32Ty, CtorPFTy, VoidPtrTy);
1336 
1337   // Construct the constructor and destructor arrays.
1338   ConstantInitBuilder builder(*this);
1339   auto ctors = builder.beginArray(CtorStructTy);
1340   for (const auto &I : Fns) {
1341     auto ctor = ctors.beginStruct(CtorStructTy);
1342     ctor.addInt(Int32Ty, I.Priority);
1343     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1344     if (I.AssociatedData)
1345       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1346     else
1347       ctor.addNullPointer(VoidPtrTy);
1348     ctor.finishAndAddTo(ctors);
1349   }
1350 
1351   auto list =
1352     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1353                                 /*constant*/ false,
1354                                 llvm::GlobalValue::AppendingLinkage);
1355 
1356   // The LTO linker doesn't seem to like it when we set an alignment
1357   // on appending variables.  Take it off as a workaround.
1358   list->setAlignment(llvm::None);
1359 
1360   Fns.clear();
1361 }
1362 
1363 llvm::GlobalValue::LinkageTypes
1364 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1365   const auto *D = cast<FunctionDecl>(GD.getDecl());
1366 
1367   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1368 
1369   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1370     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1371 
1372   if (isa<CXXConstructorDecl>(D) &&
1373       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1374       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1375     // Our approach to inheriting constructors is fundamentally different from
1376     // that used by the MS ABI, so keep our inheriting constructor thunks
1377     // internal rather than trying to pick an unambiguous mangling for them.
1378     return llvm::GlobalValue::InternalLinkage;
1379   }
1380 
1381   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1382 }
1383 
1384 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1385   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1386   if (!MDS) return nullptr;
1387 
1388   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1389 }
1390 
1391 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1392                                               const CGFunctionInfo &Info,
1393                                               llvm::Function *F) {
1394   unsigned CallingConv;
1395   llvm::AttributeList PAL;
1396   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1397   F->setAttributes(PAL);
1398   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1399 }
1400 
1401 static void removeImageAccessQualifier(std::string& TyName) {
1402   std::string ReadOnlyQual("__read_only");
1403   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1404   if (ReadOnlyPos != std::string::npos)
1405     // "+ 1" for the space after access qualifier.
1406     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1407   else {
1408     std::string WriteOnlyQual("__write_only");
1409     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1410     if (WriteOnlyPos != std::string::npos)
1411       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1412     else {
1413       std::string ReadWriteQual("__read_write");
1414       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1415       if (ReadWritePos != std::string::npos)
1416         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1417     }
1418   }
1419 }
1420 
1421 // Returns the address space id that should be produced to the
1422 // kernel_arg_addr_space metadata. This is always fixed to the ids
1423 // as specified in the SPIR 2.0 specification in order to differentiate
1424 // for example in clGetKernelArgInfo() implementation between the address
1425 // spaces with targets without unique mapping to the OpenCL address spaces
1426 // (basically all single AS CPUs).
1427 static unsigned ArgInfoAddressSpace(LangAS AS) {
1428   switch (AS) {
1429   case LangAS::opencl_global:
1430     return 1;
1431   case LangAS::opencl_constant:
1432     return 2;
1433   case LangAS::opencl_local:
1434     return 3;
1435   case LangAS::opencl_generic:
1436     return 4; // Not in SPIR 2.0 specs.
1437   case LangAS::opencl_global_device:
1438     return 5;
1439   case LangAS::opencl_global_host:
1440     return 6;
1441   default:
1442     return 0; // Assume private.
1443   }
1444 }
1445 
1446 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1447                                          const FunctionDecl *FD,
1448                                          CodeGenFunction *CGF) {
1449   assert(((FD && CGF) || (!FD && !CGF)) &&
1450          "Incorrect use - FD and CGF should either be both null or not!");
1451   // Create MDNodes that represent the kernel arg metadata.
1452   // Each MDNode is a list in the form of "key", N number of values which is
1453   // the same number of values as their are kernel arguments.
1454 
1455   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1456 
1457   // MDNode for the kernel argument address space qualifiers.
1458   SmallVector<llvm::Metadata *, 8> addressQuals;
1459 
1460   // MDNode for the kernel argument access qualifiers (images only).
1461   SmallVector<llvm::Metadata *, 8> accessQuals;
1462 
1463   // MDNode for the kernel argument type names.
1464   SmallVector<llvm::Metadata *, 8> argTypeNames;
1465 
1466   // MDNode for the kernel argument base type names.
1467   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1468 
1469   // MDNode for the kernel argument type qualifiers.
1470   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1471 
1472   // MDNode for the kernel argument names.
1473   SmallVector<llvm::Metadata *, 8> argNames;
1474 
1475   if (FD && CGF)
1476     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1477       const ParmVarDecl *parm = FD->getParamDecl(i);
1478       QualType ty = parm->getType();
1479       std::string typeQuals;
1480 
1481       // Get image and pipe access qualifier:
1482       if (ty->isImageType() || ty->isPipeType()) {
1483         const Decl *PDecl = parm;
1484         if (auto *TD = dyn_cast<TypedefType>(ty))
1485           PDecl = TD->getDecl();
1486         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1487         if (A && A->isWriteOnly())
1488           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1489         else if (A && A->isReadWrite())
1490           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1491         else
1492           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1493       } else
1494         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1495 
1496       // Get argument name.
1497       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1498 
1499       auto getTypeSpelling = [&](QualType Ty) {
1500         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1501 
1502         if (Ty.isCanonical()) {
1503           StringRef typeNameRef = typeName;
1504           // Turn "unsigned type" to "utype"
1505           if (typeNameRef.consume_front("unsigned "))
1506             return std::string("u") + typeNameRef.str();
1507           if (typeNameRef.consume_front("signed "))
1508             return typeNameRef.str();
1509         }
1510 
1511         return typeName;
1512       };
1513 
1514       if (ty->isPointerType()) {
1515         QualType pointeeTy = ty->getPointeeType();
1516 
1517         // Get address qualifier.
1518         addressQuals.push_back(
1519             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1520                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1521 
1522         // Get argument type name.
1523         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1524         std::string baseTypeName =
1525             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1526         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1527         argBaseTypeNames.push_back(
1528             llvm::MDString::get(VMContext, baseTypeName));
1529 
1530         // Get argument type qualifiers:
1531         if (ty.isRestrictQualified())
1532           typeQuals = "restrict";
1533         if (pointeeTy.isConstQualified() ||
1534             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1535           typeQuals += typeQuals.empty() ? "const" : " const";
1536         if (pointeeTy.isVolatileQualified())
1537           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1538       } else {
1539         uint32_t AddrSpc = 0;
1540         bool isPipe = ty->isPipeType();
1541         if (ty->isImageType() || isPipe)
1542           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1543 
1544         addressQuals.push_back(
1545             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1546 
1547         // Get argument type name.
1548         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1549         std::string typeName = getTypeSpelling(ty);
1550         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1551 
1552         // Remove access qualifiers on images
1553         // (as they are inseparable from type in clang implementation,
1554         // but OpenCL spec provides a special query to get access qualifier
1555         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1556         if (ty->isImageType()) {
1557           removeImageAccessQualifier(typeName);
1558           removeImageAccessQualifier(baseTypeName);
1559         }
1560 
1561         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1562         argBaseTypeNames.push_back(
1563             llvm::MDString::get(VMContext, baseTypeName));
1564 
1565         if (isPipe)
1566           typeQuals = "pipe";
1567       }
1568       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1569     }
1570 
1571   Fn->setMetadata("kernel_arg_addr_space",
1572                   llvm::MDNode::get(VMContext, addressQuals));
1573   Fn->setMetadata("kernel_arg_access_qual",
1574                   llvm::MDNode::get(VMContext, accessQuals));
1575   Fn->setMetadata("kernel_arg_type",
1576                   llvm::MDNode::get(VMContext, argTypeNames));
1577   Fn->setMetadata("kernel_arg_base_type",
1578                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1579   Fn->setMetadata("kernel_arg_type_qual",
1580                   llvm::MDNode::get(VMContext, argTypeQuals));
1581   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1582     Fn->setMetadata("kernel_arg_name",
1583                     llvm::MDNode::get(VMContext, argNames));
1584 }
1585 
1586 /// Determines whether the language options require us to model
1587 /// unwind exceptions.  We treat -fexceptions as mandating this
1588 /// except under the fragile ObjC ABI with only ObjC exceptions
1589 /// enabled.  This means, for example, that C with -fexceptions
1590 /// enables this.
1591 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1592   // If exceptions are completely disabled, obviously this is false.
1593   if (!LangOpts.Exceptions) return false;
1594 
1595   // If C++ exceptions are enabled, this is true.
1596   if (LangOpts.CXXExceptions) return true;
1597 
1598   // If ObjC exceptions are enabled, this depends on the ABI.
1599   if (LangOpts.ObjCExceptions) {
1600     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1601   }
1602 
1603   return true;
1604 }
1605 
1606 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1607                                                       const CXXMethodDecl *MD) {
1608   // Check that the type metadata can ever actually be used by a call.
1609   if (!CGM.getCodeGenOpts().LTOUnit ||
1610       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1611     return false;
1612 
1613   // Only functions whose address can be taken with a member function pointer
1614   // need this sort of type metadata.
1615   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1616          !isa<CXXDestructorDecl>(MD);
1617 }
1618 
1619 std::vector<const CXXRecordDecl *>
1620 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1621   llvm::SetVector<const CXXRecordDecl *> MostBases;
1622 
1623   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1624   CollectMostBases = [&](const CXXRecordDecl *RD) {
1625     if (RD->getNumBases() == 0)
1626       MostBases.insert(RD);
1627     for (const CXXBaseSpecifier &B : RD->bases())
1628       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1629   };
1630   CollectMostBases(RD);
1631   return MostBases.takeVector();
1632 }
1633 
1634 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1635                                                            llvm::Function *F) {
1636   llvm::AttrBuilder B;
1637 
1638   if (CodeGenOpts.UnwindTables)
1639     B.addAttribute(llvm::Attribute::UWTable);
1640 
1641   if (CodeGenOpts.StackClashProtector)
1642     B.addAttribute("probe-stack", "inline-asm");
1643 
1644   if (!hasUnwindExceptions(LangOpts))
1645     B.addAttribute(llvm::Attribute::NoUnwind);
1646 
1647   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1648     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1649       B.addAttribute(llvm::Attribute::StackProtect);
1650     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1651       B.addAttribute(llvm::Attribute::StackProtectStrong);
1652     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1653       B.addAttribute(llvm::Attribute::StackProtectReq);
1654   }
1655 
1656   if (!D) {
1657     // If we don't have a declaration to control inlining, the function isn't
1658     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1659     // disabled, mark the function as noinline.
1660     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1661         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1662       B.addAttribute(llvm::Attribute::NoInline);
1663 
1664     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1665     return;
1666   }
1667 
1668   // Track whether we need to add the optnone LLVM attribute,
1669   // starting with the default for this optimization level.
1670   bool ShouldAddOptNone =
1671       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1672   // We can't add optnone in the following cases, it won't pass the verifier.
1673   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1674   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1675 
1676   // Add optnone, but do so only if the function isn't always_inline.
1677   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1678       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1679     B.addAttribute(llvm::Attribute::OptimizeNone);
1680 
1681     // OptimizeNone implies noinline; we should not be inlining such functions.
1682     B.addAttribute(llvm::Attribute::NoInline);
1683 
1684     // We still need to handle naked functions even though optnone subsumes
1685     // much of their semantics.
1686     if (D->hasAttr<NakedAttr>())
1687       B.addAttribute(llvm::Attribute::Naked);
1688 
1689     // OptimizeNone wins over OptimizeForSize and MinSize.
1690     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1691     F->removeFnAttr(llvm::Attribute::MinSize);
1692   } else if (D->hasAttr<NakedAttr>()) {
1693     // Naked implies noinline: we should not be inlining such functions.
1694     B.addAttribute(llvm::Attribute::Naked);
1695     B.addAttribute(llvm::Attribute::NoInline);
1696   } else if (D->hasAttr<NoDuplicateAttr>()) {
1697     B.addAttribute(llvm::Attribute::NoDuplicate);
1698   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1699     // Add noinline if the function isn't always_inline.
1700     B.addAttribute(llvm::Attribute::NoInline);
1701   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1702              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1703     // (noinline wins over always_inline, and we can't specify both in IR)
1704     B.addAttribute(llvm::Attribute::AlwaysInline);
1705   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1706     // If we're not inlining, then force everything that isn't always_inline to
1707     // carry an explicit noinline attribute.
1708     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1709       B.addAttribute(llvm::Attribute::NoInline);
1710   } else {
1711     // Otherwise, propagate the inline hint attribute and potentially use its
1712     // absence to mark things as noinline.
1713     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1714       // Search function and template pattern redeclarations for inline.
1715       auto CheckForInline = [](const FunctionDecl *FD) {
1716         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1717           return Redecl->isInlineSpecified();
1718         };
1719         if (any_of(FD->redecls(), CheckRedeclForInline))
1720           return true;
1721         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1722         if (!Pattern)
1723           return false;
1724         return any_of(Pattern->redecls(), CheckRedeclForInline);
1725       };
1726       if (CheckForInline(FD)) {
1727         B.addAttribute(llvm::Attribute::InlineHint);
1728       } else if (CodeGenOpts.getInlining() ==
1729                      CodeGenOptions::OnlyHintInlining &&
1730                  !FD->isInlined() &&
1731                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1732         B.addAttribute(llvm::Attribute::NoInline);
1733       }
1734     }
1735   }
1736 
1737   // Add other optimization related attributes if we are optimizing this
1738   // function.
1739   if (!D->hasAttr<OptimizeNoneAttr>()) {
1740     if (D->hasAttr<ColdAttr>()) {
1741       if (!ShouldAddOptNone)
1742         B.addAttribute(llvm::Attribute::OptimizeForSize);
1743       B.addAttribute(llvm::Attribute::Cold);
1744     }
1745     if (D->hasAttr<HotAttr>())
1746       B.addAttribute(llvm::Attribute::Hot);
1747     if (D->hasAttr<MinSizeAttr>())
1748       B.addAttribute(llvm::Attribute::MinSize);
1749   }
1750 
1751   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1752 
1753   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1754   if (alignment)
1755     F->setAlignment(llvm::Align(alignment));
1756 
1757   if (!D->hasAttr<AlignedAttr>())
1758     if (LangOpts.FunctionAlignment)
1759       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1760 
1761   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1762   // reserve a bit for differentiating between virtual and non-virtual member
1763   // functions. If the current target's C++ ABI requires this and this is a
1764   // member function, set its alignment accordingly.
1765   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1766     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1767       F->setAlignment(llvm::Align(2));
1768   }
1769 
1770   // In the cross-dso CFI mode with canonical jump tables, we want !type
1771   // attributes on definitions only.
1772   if (CodeGenOpts.SanitizeCfiCrossDso &&
1773       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1774     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1775       // Skip available_externally functions. They won't be codegen'ed in the
1776       // current module anyway.
1777       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1778         CreateFunctionTypeMetadataForIcall(FD, F);
1779     }
1780   }
1781 
1782   // Emit type metadata on member functions for member function pointer checks.
1783   // These are only ever necessary on definitions; we're guaranteed that the
1784   // definition will be present in the LTO unit as a result of LTO visibility.
1785   auto *MD = dyn_cast<CXXMethodDecl>(D);
1786   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1787     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1788       llvm::Metadata *Id =
1789           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1790               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1791       F->addTypeMetadata(0, Id);
1792     }
1793   }
1794 }
1795 
1796 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1797                                                   llvm::Function *F) {
1798   if (D->hasAttr<StrictFPAttr>()) {
1799     llvm::AttrBuilder FuncAttrs;
1800     FuncAttrs.addAttribute("strictfp");
1801     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1802   }
1803 }
1804 
1805 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1806   const Decl *D = GD.getDecl();
1807   if (dyn_cast_or_null<NamedDecl>(D))
1808     setGVProperties(GV, GD);
1809   else
1810     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1811 
1812   if (D && D->hasAttr<UsedAttr>())
1813     addUsedGlobal(GV);
1814 
1815   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1816     const auto *VD = cast<VarDecl>(D);
1817     if (VD->getType().isConstQualified() &&
1818         VD->getStorageDuration() == SD_Static)
1819       addUsedGlobal(GV);
1820   }
1821 }
1822 
1823 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1824                                                 llvm::AttrBuilder &Attrs) {
1825   // Add target-cpu and target-features attributes to functions. If
1826   // we have a decl for the function and it has a target attribute then
1827   // parse that and add it to the feature set.
1828   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1829   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1830   std::vector<std::string> Features;
1831   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1832   FD = FD ? FD->getMostRecentDecl() : FD;
1833   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1834   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1835   bool AddedAttr = false;
1836   if (TD || SD) {
1837     llvm::StringMap<bool> FeatureMap;
1838     getContext().getFunctionFeatureMap(FeatureMap, GD);
1839 
1840     // Produce the canonical string for this set of features.
1841     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1842       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1843 
1844     // Now add the target-cpu and target-features to the function.
1845     // While we populated the feature map above, we still need to
1846     // get and parse the target attribute so we can get the cpu for
1847     // the function.
1848     if (TD) {
1849       ParsedTargetAttr ParsedAttr = TD->parse();
1850       if (!ParsedAttr.Architecture.empty() &&
1851           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1852         TargetCPU = ParsedAttr.Architecture;
1853         TuneCPU = ""; // Clear the tune CPU.
1854       }
1855       if (!ParsedAttr.Tune.empty() &&
1856           getTarget().isValidCPUName(ParsedAttr.Tune))
1857         TuneCPU = ParsedAttr.Tune;
1858     }
1859   } else {
1860     // Otherwise just add the existing target cpu and target features to the
1861     // function.
1862     Features = getTarget().getTargetOpts().Features;
1863   }
1864 
1865   if (!TargetCPU.empty()) {
1866     Attrs.addAttribute("target-cpu", TargetCPU);
1867     AddedAttr = true;
1868   }
1869   if (!TuneCPU.empty()) {
1870     Attrs.addAttribute("tune-cpu", TuneCPU);
1871     AddedAttr = true;
1872   }
1873   if (!Features.empty()) {
1874     llvm::sort(Features);
1875     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1876     AddedAttr = true;
1877   }
1878 
1879   return AddedAttr;
1880 }
1881 
1882 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1883                                           llvm::GlobalObject *GO) {
1884   const Decl *D = GD.getDecl();
1885   SetCommonAttributes(GD, GO);
1886 
1887   if (D) {
1888     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1889       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1890         GV->addAttribute("bss-section", SA->getName());
1891       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1892         GV->addAttribute("data-section", SA->getName());
1893       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1894         GV->addAttribute("rodata-section", SA->getName());
1895       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1896         GV->addAttribute("relro-section", SA->getName());
1897     }
1898 
1899     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1900       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1901         if (!D->getAttr<SectionAttr>())
1902           F->addFnAttr("implicit-section-name", SA->getName());
1903 
1904       llvm::AttrBuilder Attrs;
1905       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1906         // We know that GetCPUAndFeaturesAttributes will always have the
1907         // newest set, since it has the newest possible FunctionDecl, so the
1908         // new ones should replace the old.
1909         llvm::AttrBuilder RemoveAttrs;
1910         RemoveAttrs.addAttribute("target-cpu");
1911         RemoveAttrs.addAttribute("target-features");
1912         RemoveAttrs.addAttribute("tune-cpu");
1913         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1914         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1915       }
1916     }
1917 
1918     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1919       GO->setSection(CSA->getName());
1920     else if (const auto *SA = D->getAttr<SectionAttr>())
1921       GO->setSection(SA->getName());
1922   }
1923 
1924   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1925 }
1926 
1927 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1928                                                   llvm::Function *F,
1929                                                   const CGFunctionInfo &FI) {
1930   const Decl *D = GD.getDecl();
1931   SetLLVMFunctionAttributes(GD, FI, F);
1932   SetLLVMFunctionAttributesForDefinition(D, F);
1933 
1934   F->setLinkage(llvm::Function::InternalLinkage);
1935 
1936   setNonAliasAttributes(GD, F);
1937 }
1938 
1939 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1940   // Set linkage and visibility in case we never see a definition.
1941   LinkageInfo LV = ND->getLinkageAndVisibility();
1942   // Don't set internal linkage on declarations.
1943   // "extern_weak" is overloaded in LLVM; we probably should have
1944   // separate linkage types for this.
1945   if (isExternallyVisible(LV.getLinkage()) &&
1946       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1947     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1948 }
1949 
1950 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1951                                                        llvm::Function *F) {
1952   // Only if we are checking indirect calls.
1953   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1954     return;
1955 
1956   // Non-static class methods are handled via vtable or member function pointer
1957   // checks elsewhere.
1958   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1959     return;
1960 
1961   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1962   F->addTypeMetadata(0, MD);
1963   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1964 
1965   // Emit a hash-based bit set entry for cross-DSO calls.
1966   if (CodeGenOpts.SanitizeCfiCrossDso)
1967     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1968       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1969 }
1970 
1971 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1972                                           bool IsIncompleteFunction,
1973                                           bool IsThunk) {
1974 
1975   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1976     // If this is an intrinsic function, set the function's attributes
1977     // to the intrinsic's attributes.
1978     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1979     return;
1980   }
1981 
1982   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1983 
1984   if (!IsIncompleteFunction)
1985     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1986 
1987   // Add the Returned attribute for "this", except for iOS 5 and earlier
1988   // where substantial code, including the libstdc++ dylib, was compiled with
1989   // GCC and does not actually return "this".
1990   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1991       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1992     assert(!F->arg_empty() &&
1993            F->arg_begin()->getType()
1994              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1995            "unexpected this return");
1996     F->addAttribute(1, llvm::Attribute::Returned);
1997   }
1998 
1999   // Only a few attributes are set on declarations; these may later be
2000   // overridden by a definition.
2001 
2002   setLinkageForGV(F, FD);
2003   setGVProperties(F, FD);
2004 
2005   // Setup target-specific attributes.
2006   if (!IsIncompleteFunction && F->isDeclaration())
2007     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2008 
2009   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2010     F->setSection(CSA->getName());
2011   else if (const auto *SA = FD->getAttr<SectionAttr>())
2012      F->setSection(SA->getName());
2013 
2014   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2015   if (FD->isInlineBuiltinDeclaration()) {
2016     const FunctionDecl *FDBody;
2017     bool HasBody = FD->hasBody(FDBody);
2018     (void)HasBody;
2019     assert(HasBody && "Inline builtin declarations should always have an "
2020                       "available body!");
2021     if (shouldEmitFunction(FDBody))
2022       F->addAttribute(llvm::AttributeList::FunctionIndex,
2023                       llvm::Attribute::NoBuiltin);
2024   }
2025 
2026   if (FD->isReplaceableGlobalAllocationFunction()) {
2027     // A replaceable global allocation function does not act like a builtin by
2028     // default, only if it is invoked by a new-expression or delete-expression.
2029     F->addAttribute(llvm::AttributeList::FunctionIndex,
2030                     llvm::Attribute::NoBuiltin);
2031   }
2032 
2033   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2034     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2035   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2036     if (MD->isVirtual())
2037       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2038 
2039   // Don't emit entries for function declarations in the cross-DSO mode. This
2040   // is handled with better precision by the receiving DSO. But if jump tables
2041   // are non-canonical then we need type metadata in order to produce the local
2042   // jump table.
2043   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2044       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2045     CreateFunctionTypeMetadataForIcall(FD, F);
2046 
2047   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2048     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2049 
2050   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2051     // Annotate the callback behavior as metadata:
2052     //  - The callback callee (as argument number).
2053     //  - The callback payloads (as argument numbers).
2054     llvm::LLVMContext &Ctx = F->getContext();
2055     llvm::MDBuilder MDB(Ctx);
2056 
2057     // The payload indices are all but the first one in the encoding. The first
2058     // identifies the callback callee.
2059     int CalleeIdx = *CB->encoding_begin();
2060     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2061     F->addMetadata(llvm::LLVMContext::MD_callback,
2062                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2063                                                CalleeIdx, PayloadIndices,
2064                                                /* VarArgsArePassed */ false)}));
2065   }
2066 }
2067 
2068 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2069   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2070          "Only globals with definition can force usage.");
2071   LLVMUsed.emplace_back(GV);
2072 }
2073 
2074 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2075   assert(!GV->isDeclaration() &&
2076          "Only globals with definition can force usage.");
2077   LLVMCompilerUsed.emplace_back(GV);
2078 }
2079 
2080 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2081                      std::vector<llvm::WeakTrackingVH> &List) {
2082   // Don't create llvm.used if there is no need.
2083   if (List.empty())
2084     return;
2085 
2086   // Convert List to what ConstantArray needs.
2087   SmallVector<llvm::Constant*, 8> UsedArray;
2088   UsedArray.resize(List.size());
2089   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2090     UsedArray[i] =
2091         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2092             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2093   }
2094 
2095   if (UsedArray.empty())
2096     return;
2097   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2098 
2099   auto *GV = new llvm::GlobalVariable(
2100       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2101       llvm::ConstantArray::get(ATy, UsedArray), Name);
2102 
2103   GV->setSection("llvm.metadata");
2104 }
2105 
2106 void CodeGenModule::emitLLVMUsed() {
2107   emitUsed(*this, "llvm.used", LLVMUsed);
2108   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2109 }
2110 
2111 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2112   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2113   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2114 }
2115 
2116 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2117   llvm::SmallString<32> Opt;
2118   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2119   if (Opt.empty())
2120     return;
2121   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2122   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2123 }
2124 
2125 void CodeGenModule::AddDependentLib(StringRef Lib) {
2126   auto &C = getLLVMContext();
2127   if (getTarget().getTriple().isOSBinFormatELF()) {
2128       ELFDependentLibraries.push_back(
2129         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2130     return;
2131   }
2132 
2133   llvm::SmallString<24> Opt;
2134   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2135   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2136   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2137 }
2138 
2139 /// Add link options implied by the given module, including modules
2140 /// it depends on, using a postorder walk.
2141 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2142                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2143                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2144   // Import this module's parent.
2145   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2146     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2147   }
2148 
2149   // Import this module's dependencies.
2150   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2151     if (Visited.insert(Mod->Imports[I - 1]).second)
2152       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2153   }
2154 
2155   // Add linker options to link against the libraries/frameworks
2156   // described by this module.
2157   llvm::LLVMContext &Context = CGM.getLLVMContext();
2158   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2159 
2160   // For modules that use export_as for linking, use that module
2161   // name instead.
2162   if (Mod->UseExportAsModuleLinkName)
2163     return;
2164 
2165   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2166     // Link against a framework.  Frameworks are currently Darwin only, so we
2167     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2168     if (Mod->LinkLibraries[I-1].IsFramework) {
2169       llvm::Metadata *Args[2] = {
2170           llvm::MDString::get(Context, "-framework"),
2171           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2172 
2173       Metadata.push_back(llvm::MDNode::get(Context, Args));
2174       continue;
2175     }
2176 
2177     // Link against a library.
2178     if (IsELF) {
2179       llvm::Metadata *Args[2] = {
2180           llvm::MDString::get(Context, "lib"),
2181           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2182       };
2183       Metadata.push_back(llvm::MDNode::get(Context, Args));
2184     } else {
2185       llvm::SmallString<24> Opt;
2186       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2187           Mod->LinkLibraries[I - 1].Library, Opt);
2188       auto *OptString = llvm::MDString::get(Context, Opt);
2189       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2190     }
2191   }
2192 }
2193 
2194 void CodeGenModule::EmitModuleLinkOptions() {
2195   // Collect the set of all of the modules we want to visit to emit link
2196   // options, which is essentially the imported modules and all of their
2197   // non-explicit child modules.
2198   llvm::SetVector<clang::Module *> LinkModules;
2199   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2200   SmallVector<clang::Module *, 16> Stack;
2201 
2202   // Seed the stack with imported modules.
2203   for (Module *M : ImportedModules) {
2204     // Do not add any link flags when an implementation TU of a module imports
2205     // a header of that same module.
2206     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2207         !getLangOpts().isCompilingModule())
2208       continue;
2209     if (Visited.insert(M).second)
2210       Stack.push_back(M);
2211   }
2212 
2213   // Find all of the modules to import, making a little effort to prune
2214   // non-leaf modules.
2215   while (!Stack.empty()) {
2216     clang::Module *Mod = Stack.pop_back_val();
2217 
2218     bool AnyChildren = false;
2219 
2220     // Visit the submodules of this module.
2221     for (const auto &SM : Mod->submodules()) {
2222       // Skip explicit children; they need to be explicitly imported to be
2223       // linked against.
2224       if (SM->IsExplicit)
2225         continue;
2226 
2227       if (Visited.insert(SM).second) {
2228         Stack.push_back(SM);
2229         AnyChildren = true;
2230       }
2231     }
2232 
2233     // We didn't find any children, so add this module to the list of
2234     // modules to link against.
2235     if (!AnyChildren) {
2236       LinkModules.insert(Mod);
2237     }
2238   }
2239 
2240   // Add link options for all of the imported modules in reverse topological
2241   // order.  We don't do anything to try to order import link flags with respect
2242   // to linker options inserted by things like #pragma comment().
2243   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2244   Visited.clear();
2245   for (Module *M : LinkModules)
2246     if (Visited.insert(M).second)
2247       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2248   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2249   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2250 
2251   // Add the linker options metadata flag.
2252   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2253   for (auto *MD : LinkerOptionsMetadata)
2254     NMD->addOperand(MD);
2255 }
2256 
2257 void CodeGenModule::EmitDeferred() {
2258   // Emit deferred declare target declarations.
2259   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2260     getOpenMPRuntime().emitDeferredTargetDecls();
2261 
2262   // Emit code for any potentially referenced deferred decls.  Since a
2263   // previously unused static decl may become used during the generation of code
2264   // for a static function, iterate until no changes are made.
2265 
2266   if (!DeferredVTables.empty()) {
2267     EmitDeferredVTables();
2268 
2269     // Emitting a vtable doesn't directly cause more vtables to
2270     // become deferred, although it can cause functions to be
2271     // emitted that then need those vtables.
2272     assert(DeferredVTables.empty());
2273   }
2274 
2275   // Emit CUDA/HIP static device variables referenced by host code only.
2276   if (getLangOpts().CUDA)
2277     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2278       DeferredDeclsToEmit.push_back(V);
2279 
2280   // Stop if we're out of both deferred vtables and deferred declarations.
2281   if (DeferredDeclsToEmit.empty())
2282     return;
2283 
2284   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2285   // work, it will not interfere with this.
2286   std::vector<GlobalDecl> CurDeclsToEmit;
2287   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2288 
2289   for (GlobalDecl &D : CurDeclsToEmit) {
2290     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2291     // to get GlobalValue with exactly the type we need, not something that
2292     // might had been created for another decl with the same mangled name but
2293     // different type.
2294     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2295         GetAddrOfGlobal(D, ForDefinition));
2296 
2297     // In case of different address spaces, we may still get a cast, even with
2298     // IsForDefinition equal to true. Query mangled names table to get
2299     // GlobalValue.
2300     if (!GV)
2301       GV = GetGlobalValue(getMangledName(D));
2302 
2303     // Make sure GetGlobalValue returned non-null.
2304     assert(GV);
2305 
2306     // Check to see if we've already emitted this.  This is necessary
2307     // for a couple of reasons: first, decls can end up in the
2308     // deferred-decls queue multiple times, and second, decls can end
2309     // up with definitions in unusual ways (e.g. by an extern inline
2310     // function acquiring a strong function redefinition).  Just
2311     // ignore these cases.
2312     if (!GV->isDeclaration())
2313       continue;
2314 
2315     // If this is OpenMP, check if it is legal to emit this global normally.
2316     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2317       continue;
2318 
2319     // Otherwise, emit the definition and move on to the next one.
2320     EmitGlobalDefinition(D, GV);
2321 
2322     // If we found out that we need to emit more decls, do that recursively.
2323     // This has the advantage that the decls are emitted in a DFS and related
2324     // ones are close together, which is convenient for testing.
2325     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2326       EmitDeferred();
2327       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2328     }
2329   }
2330 }
2331 
2332 void CodeGenModule::EmitVTablesOpportunistically() {
2333   // Try to emit external vtables as available_externally if they have emitted
2334   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2335   // is not allowed to create new references to things that need to be emitted
2336   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2337 
2338   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2339          && "Only emit opportunistic vtables with optimizations");
2340 
2341   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2342     assert(getVTables().isVTableExternal(RD) &&
2343            "This queue should only contain external vtables");
2344     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2345       VTables.GenerateClassData(RD);
2346   }
2347   OpportunisticVTables.clear();
2348 }
2349 
2350 void CodeGenModule::EmitGlobalAnnotations() {
2351   if (Annotations.empty())
2352     return;
2353 
2354   // Create a new global variable for the ConstantStruct in the Module.
2355   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2356     Annotations[0]->getType(), Annotations.size()), Annotations);
2357   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2358                                       llvm::GlobalValue::AppendingLinkage,
2359                                       Array, "llvm.global.annotations");
2360   gv->setSection(AnnotationSection);
2361 }
2362 
2363 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2364   llvm::Constant *&AStr = AnnotationStrings[Str];
2365   if (AStr)
2366     return AStr;
2367 
2368   // Not found yet, create a new global.
2369   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2370   auto *gv =
2371       new llvm::GlobalVariable(getModule(), s->getType(), true,
2372                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2373   gv->setSection(AnnotationSection);
2374   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2375   AStr = gv;
2376   return gv;
2377 }
2378 
2379 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2380   SourceManager &SM = getContext().getSourceManager();
2381   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2382   if (PLoc.isValid())
2383     return EmitAnnotationString(PLoc.getFilename());
2384   return EmitAnnotationString(SM.getBufferName(Loc));
2385 }
2386 
2387 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2388   SourceManager &SM = getContext().getSourceManager();
2389   PresumedLoc PLoc = SM.getPresumedLoc(L);
2390   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2391     SM.getExpansionLineNumber(L);
2392   return llvm::ConstantInt::get(Int32Ty, LineNo);
2393 }
2394 
2395 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2396   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2397   if (Exprs.empty())
2398     return llvm::ConstantPointerNull::get(Int8PtrTy);
2399 
2400   llvm::FoldingSetNodeID ID;
2401   for (Expr *E : Exprs) {
2402     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2403   }
2404   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2405   if (Lookup)
2406     return Lookup;
2407 
2408   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2409   LLVMArgs.reserve(Exprs.size());
2410   ConstantEmitter ConstEmiter(*this);
2411   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2412     const auto *CE = cast<clang::ConstantExpr>(E);
2413     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2414                                     CE->getType());
2415   });
2416   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2417   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2418                                       llvm::GlobalValue::PrivateLinkage, Struct,
2419                                       ".args");
2420   GV->setSection(AnnotationSection);
2421   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2422   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2423 
2424   Lookup = Bitcasted;
2425   return Bitcasted;
2426 }
2427 
2428 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2429                                                 const AnnotateAttr *AA,
2430                                                 SourceLocation L) {
2431   // Get the globals for file name, annotation, and the line number.
2432   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2433                  *UnitGV = EmitAnnotationUnit(L),
2434                  *LineNoCst = EmitAnnotationLineNo(L),
2435                  *Args = EmitAnnotationArgs(AA);
2436 
2437   llvm::Constant *ASZeroGV = GV;
2438   if (GV->getAddressSpace() != 0) {
2439     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2440                    GV, GV->getValueType()->getPointerTo(0));
2441   }
2442 
2443   // Create the ConstantStruct for the global annotation.
2444   llvm::Constant *Fields[] = {
2445       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2446       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2447       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2448       LineNoCst,
2449       Args,
2450   };
2451   return llvm::ConstantStruct::getAnon(Fields);
2452 }
2453 
2454 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2455                                          llvm::GlobalValue *GV) {
2456   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2457   // Get the struct elements for these annotations.
2458   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2459     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2460 }
2461 
2462 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2463                                            llvm::Function *Fn,
2464                                            SourceLocation Loc) const {
2465   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2466   // Blacklist by function name.
2467   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2468     return true;
2469   // Blacklist by location.
2470   if (Loc.isValid())
2471     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2472   // If location is unknown, this may be a compiler-generated function. Assume
2473   // it's located in the main file.
2474   auto &SM = Context.getSourceManager();
2475   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2476     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2477   }
2478   return false;
2479 }
2480 
2481 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2482                                            SourceLocation Loc, QualType Ty,
2483                                            StringRef Category) const {
2484   // For now globals can be blacklisted only in ASan and KASan.
2485   const SanitizerMask EnabledAsanMask =
2486       LangOpts.Sanitize.Mask &
2487       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2488        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2489        SanitizerKind::MemTag);
2490   if (!EnabledAsanMask)
2491     return false;
2492   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2493   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2494     return true;
2495   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2496     return true;
2497   // Check global type.
2498   if (!Ty.isNull()) {
2499     // Drill down the array types: if global variable of a fixed type is
2500     // blacklisted, we also don't instrument arrays of them.
2501     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2502       Ty = AT->getElementType();
2503     Ty = Ty.getCanonicalType().getUnqualifiedType();
2504     // We allow to blacklist only record types (classes, structs etc.)
2505     if (Ty->isRecordType()) {
2506       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2507       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2508         return true;
2509     }
2510   }
2511   return false;
2512 }
2513 
2514 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2515                                    StringRef Category) const {
2516   const auto &XRayFilter = getContext().getXRayFilter();
2517   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2518   auto Attr = ImbueAttr::NONE;
2519   if (Loc.isValid())
2520     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2521   if (Attr == ImbueAttr::NONE)
2522     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2523   switch (Attr) {
2524   case ImbueAttr::NONE:
2525     return false;
2526   case ImbueAttr::ALWAYS:
2527     Fn->addFnAttr("function-instrument", "xray-always");
2528     break;
2529   case ImbueAttr::ALWAYS_ARG1:
2530     Fn->addFnAttr("function-instrument", "xray-always");
2531     Fn->addFnAttr("xray-log-args", "1");
2532     break;
2533   case ImbueAttr::NEVER:
2534     Fn->addFnAttr("function-instrument", "xray-never");
2535     break;
2536   }
2537   return true;
2538 }
2539 
2540 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2541                                            SourceLocation Loc) const {
2542   const auto &ProfileList = getContext().getProfileList();
2543   // If the profile list is empty, then instrument everything.
2544   if (ProfileList.isEmpty())
2545     return false;
2546   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2547   // First, check the function name.
2548   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2549   if (V.hasValue())
2550     return *V;
2551   // Next, check the source location.
2552   if (Loc.isValid()) {
2553     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2554     if (V.hasValue())
2555       return *V;
2556   }
2557   // If location is unknown, this may be a compiler-generated function. Assume
2558   // it's located in the main file.
2559   auto &SM = Context.getSourceManager();
2560   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2561     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2562     if (V.hasValue())
2563       return *V;
2564   }
2565   return ProfileList.getDefault();
2566 }
2567 
2568 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2569   // Never defer when EmitAllDecls is specified.
2570   if (LangOpts.EmitAllDecls)
2571     return true;
2572 
2573   if (CodeGenOpts.KeepStaticConsts) {
2574     const auto *VD = dyn_cast<VarDecl>(Global);
2575     if (VD && VD->getType().isConstQualified() &&
2576         VD->getStorageDuration() == SD_Static)
2577       return true;
2578   }
2579 
2580   return getContext().DeclMustBeEmitted(Global);
2581 }
2582 
2583 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2584   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2585     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2586       // Implicit template instantiations may change linkage if they are later
2587       // explicitly instantiated, so they should not be emitted eagerly.
2588       return false;
2589     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2590     // not emit them eagerly unless we sure that the function must be emitted on
2591     // the host.
2592     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2593         !LangOpts.OpenMPIsDevice &&
2594         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2595         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2596       return false;
2597   }
2598   if (const auto *VD = dyn_cast<VarDecl>(Global))
2599     if (Context.getInlineVariableDefinitionKind(VD) ==
2600         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2601       // A definition of an inline constexpr static data member may change
2602       // linkage later if it's redeclared outside the class.
2603       return false;
2604   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2605   // codegen for global variables, because they may be marked as threadprivate.
2606   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2607       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2608       !isTypeConstant(Global->getType(), false) &&
2609       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2610     return false;
2611 
2612   return true;
2613 }
2614 
2615 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2616   StringRef Name = getMangledName(GD);
2617 
2618   // The UUID descriptor should be pointer aligned.
2619   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2620 
2621   // Look for an existing global.
2622   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2623     return ConstantAddress(GV, Alignment);
2624 
2625   ConstantEmitter Emitter(*this);
2626   llvm::Constant *Init;
2627 
2628   APValue &V = GD->getAsAPValue();
2629   if (!V.isAbsent()) {
2630     // If possible, emit the APValue version of the initializer. In particular,
2631     // this gets the type of the constant right.
2632     Init = Emitter.emitForInitializer(
2633         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2634   } else {
2635     // As a fallback, directly construct the constant.
2636     // FIXME: This may get padding wrong under esoteric struct layout rules.
2637     // MSVC appears to create a complete type 'struct __s_GUID' that it
2638     // presumably uses to represent these constants.
2639     MSGuidDecl::Parts Parts = GD->getParts();
2640     llvm::Constant *Fields[4] = {
2641         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2642         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2643         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2644         llvm::ConstantDataArray::getRaw(
2645             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2646             Int8Ty)};
2647     Init = llvm::ConstantStruct::getAnon(Fields);
2648   }
2649 
2650   auto *GV = new llvm::GlobalVariable(
2651       getModule(), Init->getType(),
2652       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2653   if (supportsCOMDAT())
2654     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2655   setDSOLocal(GV);
2656 
2657   llvm::Constant *Addr = GV;
2658   if (!V.isAbsent()) {
2659     Emitter.finalize(GV);
2660   } else {
2661     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2662     Addr = llvm::ConstantExpr::getBitCast(
2663         GV, Ty->getPointerTo(GV->getAddressSpace()));
2664   }
2665   return ConstantAddress(Addr, Alignment);
2666 }
2667 
2668 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2669     const TemplateParamObjectDecl *TPO) {
2670   StringRef Name = getMangledName(TPO);
2671   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2672 
2673   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2674     return ConstantAddress(GV, Alignment);
2675 
2676   ConstantEmitter Emitter(*this);
2677   llvm::Constant *Init = Emitter.emitForInitializer(
2678         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2679 
2680   if (!Init) {
2681     ErrorUnsupported(TPO, "template parameter object");
2682     return ConstantAddress::invalid();
2683   }
2684 
2685   auto *GV = new llvm::GlobalVariable(
2686       getModule(), Init->getType(),
2687       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2688   if (supportsCOMDAT())
2689     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2690   Emitter.finalize(GV);
2691 
2692   return ConstantAddress(GV, Alignment);
2693 }
2694 
2695 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2696   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2697   assert(AA && "No alias?");
2698 
2699   CharUnits Alignment = getContext().getDeclAlign(VD);
2700   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2701 
2702   // See if there is already something with the target's name in the module.
2703   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2704   if (Entry) {
2705     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2706     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2707     return ConstantAddress(Ptr, Alignment);
2708   }
2709 
2710   llvm::Constant *Aliasee;
2711   if (isa<llvm::FunctionType>(DeclTy))
2712     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2713                                       GlobalDecl(cast<FunctionDecl>(VD)),
2714                                       /*ForVTable=*/false);
2715   else
2716     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2717                                     llvm::PointerType::getUnqual(DeclTy),
2718                                     nullptr);
2719 
2720   auto *F = cast<llvm::GlobalValue>(Aliasee);
2721   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2722   WeakRefReferences.insert(F);
2723 
2724   return ConstantAddress(Aliasee, Alignment);
2725 }
2726 
2727 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2728   const auto *Global = cast<ValueDecl>(GD.getDecl());
2729 
2730   // Weak references don't produce any output by themselves.
2731   if (Global->hasAttr<WeakRefAttr>())
2732     return;
2733 
2734   // If this is an alias definition (which otherwise looks like a declaration)
2735   // emit it now.
2736   if (Global->hasAttr<AliasAttr>())
2737     return EmitAliasDefinition(GD);
2738 
2739   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2740   if (Global->hasAttr<IFuncAttr>())
2741     return emitIFuncDefinition(GD);
2742 
2743   // If this is a cpu_dispatch multiversion function, emit the resolver.
2744   if (Global->hasAttr<CPUDispatchAttr>())
2745     return emitCPUDispatchDefinition(GD);
2746 
2747   // If this is CUDA, be selective about which declarations we emit.
2748   if (LangOpts.CUDA) {
2749     if (LangOpts.CUDAIsDevice) {
2750       if (!Global->hasAttr<CUDADeviceAttr>() &&
2751           !Global->hasAttr<CUDAGlobalAttr>() &&
2752           !Global->hasAttr<CUDAConstantAttr>() &&
2753           !Global->hasAttr<CUDASharedAttr>() &&
2754           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2755           !Global->getType()->isCUDADeviceBuiltinTextureType())
2756         return;
2757     } else {
2758       // We need to emit host-side 'shadows' for all global
2759       // device-side variables because the CUDA runtime needs their
2760       // size and host-side address in order to provide access to
2761       // their device-side incarnations.
2762 
2763       // So device-only functions are the only things we skip.
2764       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2765           Global->hasAttr<CUDADeviceAttr>())
2766         return;
2767 
2768       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2769              "Expected Variable or Function");
2770     }
2771   }
2772 
2773   if (LangOpts.OpenMP) {
2774     // If this is OpenMP, check if it is legal to emit this global normally.
2775     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2776       return;
2777     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2778       if (MustBeEmitted(Global))
2779         EmitOMPDeclareReduction(DRD);
2780       return;
2781     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2782       if (MustBeEmitted(Global))
2783         EmitOMPDeclareMapper(DMD);
2784       return;
2785     }
2786   }
2787 
2788   // Ignore declarations, they will be emitted on their first use.
2789   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2790     // Forward declarations are emitted lazily on first use.
2791     if (!FD->doesThisDeclarationHaveABody()) {
2792       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2793         return;
2794 
2795       StringRef MangledName = getMangledName(GD);
2796 
2797       // Compute the function info and LLVM type.
2798       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2799       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2800 
2801       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2802                               /*DontDefer=*/false);
2803       return;
2804     }
2805   } else {
2806     const auto *VD = cast<VarDecl>(Global);
2807     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2808     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2809         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2810       if (LangOpts.OpenMP) {
2811         // Emit declaration of the must-be-emitted declare target variable.
2812         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2813                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2814           bool UnifiedMemoryEnabled =
2815               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2816           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2817               !UnifiedMemoryEnabled) {
2818             (void)GetAddrOfGlobalVar(VD);
2819           } else {
2820             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2821                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2822                      UnifiedMemoryEnabled)) &&
2823                    "Link clause or to clause with unified memory expected.");
2824             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2825           }
2826 
2827           return;
2828         }
2829       }
2830       // If this declaration may have caused an inline variable definition to
2831       // change linkage, make sure that it's emitted.
2832       if (Context.getInlineVariableDefinitionKind(VD) ==
2833           ASTContext::InlineVariableDefinitionKind::Strong)
2834         GetAddrOfGlobalVar(VD);
2835       return;
2836     }
2837   }
2838 
2839   // Defer code generation to first use when possible, e.g. if this is an inline
2840   // function. If the global must always be emitted, do it eagerly if possible
2841   // to benefit from cache locality.
2842   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2843     // Emit the definition if it can't be deferred.
2844     EmitGlobalDefinition(GD);
2845     return;
2846   }
2847 
2848   // If we're deferring emission of a C++ variable with an
2849   // initializer, remember the order in which it appeared in the file.
2850   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2851       cast<VarDecl>(Global)->hasInit()) {
2852     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2853     CXXGlobalInits.push_back(nullptr);
2854   }
2855 
2856   StringRef MangledName = getMangledName(GD);
2857   if (GetGlobalValue(MangledName) != nullptr) {
2858     // The value has already been used and should therefore be emitted.
2859     addDeferredDeclToEmit(GD);
2860   } else if (MustBeEmitted(Global)) {
2861     // The value must be emitted, but cannot be emitted eagerly.
2862     assert(!MayBeEmittedEagerly(Global));
2863     addDeferredDeclToEmit(GD);
2864   } else {
2865     // Otherwise, remember that we saw a deferred decl with this name.  The
2866     // first use of the mangled name will cause it to move into
2867     // DeferredDeclsToEmit.
2868     DeferredDecls[MangledName] = GD;
2869   }
2870 }
2871 
2872 // Check if T is a class type with a destructor that's not dllimport.
2873 static bool HasNonDllImportDtor(QualType T) {
2874   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2875     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2876       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2877         return true;
2878 
2879   return false;
2880 }
2881 
2882 namespace {
2883   struct FunctionIsDirectlyRecursive
2884       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2885     const StringRef Name;
2886     const Builtin::Context &BI;
2887     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2888         : Name(N), BI(C) {}
2889 
2890     bool VisitCallExpr(const CallExpr *E) {
2891       const FunctionDecl *FD = E->getDirectCallee();
2892       if (!FD)
2893         return false;
2894       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2895       if (Attr && Name == Attr->getLabel())
2896         return true;
2897       unsigned BuiltinID = FD->getBuiltinID();
2898       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2899         return false;
2900       StringRef BuiltinName = BI.getName(BuiltinID);
2901       if (BuiltinName.startswith("__builtin_") &&
2902           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2903         return true;
2904       }
2905       return false;
2906     }
2907 
2908     bool VisitStmt(const Stmt *S) {
2909       for (const Stmt *Child : S->children())
2910         if (Child && this->Visit(Child))
2911           return true;
2912       return false;
2913     }
2914   };
2915 
2916   // Make sure we're not referencing non-imported vars or functions.
2917   struct DLLImportFunctionVisitor
2918       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2919     bool SafeToInline = true;
2920 
2921     bool shouldVisitImplicitCode() const { return true; }
2922 
2923     bool VisitVarDecl(VarDecl *VD) {
2924       if (VD->getTLSKind()) {
2925         // A thread-local variable cannot be imported.
2926         SafeToInline = false;
2927         return SafeToInline;
2928       }
2929 
2930       // A variable definition might imply a destructor call.
2931       if (VD->isThisDeclarationADefinition())
2932         SafeToInline = !HasNonDllImportDtor(VD->getType());
2933 
2934       return SafeToInline;
2935     }
2936 
2937     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2938       if (const auto *D = E->getTemporary()->getDestructor())
2939         SafeToInline = D->hasAttr<DLLImportAttr>();
2940       return SafeToInline;
2941     }
2942 
2943     bool VisitDeclRefExpr(DeclRefExpr *E) {
2944       ValueDecl *VD = E->getDecl();
2945       if (isa<FunctionDecl>(VD))
2946         SafeToInline = VD->hasAttr<DLLImportAttr>();
2947       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2948         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2949       return SafeToInline;
2950     }
2951 
2952     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2953       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2954       return SafeToInline;
2955     }
2956 
2957     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2958       CXXMethodDecl *M = E->getMethodDecl();
2959       if (!M) {
2960         // Call through a pointer to member function. This is safe to inline.
2961         SafeToInline = true;
2962       } else {
2963         SafeToInline = M->hasAttr<DLLImportAttr>();
2964       }
2965       return SafeToInline;
2966     }
2967 
2968     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2969       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2970       return SafeToInline;
2971     }
2972 
2973     bool VisitCXXNewExpr(CXXNewExpr *E) {
2974       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2975       return SafeToInline;
2976     }
2977   };
2978 }
2979 
2980 // isTriviallyRecursive - Check if this function calls another
2981 // decl that, because of the asm attribute or the other decl being a builtin,
2982 // ends up pointing to itself.
2983 bool
2984 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2985   StringRef Name;
2986   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2987     // asm labels are a special kind of mangling we have to support.
2988     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2989     if (!Attr)
2990       return false;
2991     Name = Attr->getLabel();
2992   } else {
2993     Name = FD->getName();
2994   }
2995 
2996   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2997   const Stmt *Body = FD->getBody();
2998   return Body ? Walker.Visit(Body) : false;
2999 }
3000 
3001 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3002   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3003     return true;
3004   const auto *F = cast<FunctionDecl>(GD.getDecl());
3005   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3006     return false;
3007 
3008   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3009     // Check whether it would be safe to inline this dllimport function.
3010     DLLImportFunctionVisitor Visitor;
3011     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3012     if (!Visitor.SafeToInline)
3013       return false;
3014 
3015     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3016       // Implicit destructor invocations aren't captured in the AST, so the
3017       // check above can't see them. Check for them manually here.
3018       for (const Decl *Member : Dtor->getParent()->decls())
3019         if (isa<FieldDecl>(Member))
3020           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3021             return false;
3022       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3023         if (HasNonDllImportDtor(B.getType()))
3024           return false;
3025     }
3026   }
3027 
3028   // PR9614. Avoid cases where the source code is lying to us. An available
3029   // externally function should have an equivalent function somewhere else,
3030   // but a function that calls itself through asm label/`__builtin_` trickery is
3031   // clearly not equivalent to the real implementation.
3032   // This happens in glibc's btowc and in some configure checks.
3033   return !isTriviallyRecursive(F);
3034 }
3035 
3036 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3037   return CodeGenOpts.OptimizationLevel > 0;
3038 }
3039 
3040 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3041                                                        llvm::GlobalValue *GV) {
3042   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3043 
3044   if (FD->isCPUSpecificMultiVersion()) {
3045     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3046     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3047       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3048     // Requires multiple emits.
3049   } else
3050     EmitGlobalFunctionDefinition(GD, GV);
3051 }
3052 
3053 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3054   const auto *D = cast<ValueDecl>(GD.getDecl());
3055 
3056   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3057                                  Context.getSourceManager(),
3058                                  "Generating code for declaration");
3059 
3060   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3061     // At -O0, don't generate IR for functions with available_externally
3062     // linkage.
3063     if (!shouldEmitFunction(GD))
3064       return;
3065 
3066     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3067       std::string Name;
3068       llvm::raw_string_ostream OS(Name);
3069       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3070                                /*Qualified=*/true);
3071       return Name;
3072     });
3073 
3074     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3075       // Make sure to emit the definition(s) before we emit the thunks.
3076       // This is necessary for the generation of certain thunks.
3077       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3078         ABI->emitCXXStructor(GD);
3079       else if (FD->isMultiVersion())
3080         EmitMultiVersionFunctionDefinition(GD, GV);
3081       else
3082         EmitGlobalFunctionDefinition(GD, GV);
3083 
3084       if (Method->isVirtual())
3085         getVTables().EmitThunks(GD);
3086 
3087       return;
3088     }
3089 
3090     if (FD->isMultiVersion())
3091       return EmitMultiVersionFunctionDefinition(GD, GV);
3092     return EmitGlobalFunctionDefinition(GD, GV);
3093   }
3094 
3095   if (const auto *VD = dyn_cast<VarDecl>(D))
3096     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3097 
3098   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3099 }
3100 
3101 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3102                                                       llvm::Function *NewFn);
3103 
3104 static unsigned
3105 TargetMVPriority(const TargetInfo &TI,
3106                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3107   unsigned Priority = 0;
3108   for (StringRef Feat : RO.Conditions.Features)
3109     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3110 
3111   if (!RO.Conditions.Architecture.empty())
3112     Priority = std::max(
3113         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3114   return Priority;
3115 }
3116 
3117 void CodeGenModule::emitMultiVersionFunctions() {
3118   for (GlobalDecl GD : MultiVersionFuncs) {
3119     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3120     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3121     getContext().forEachMultiversionedFunctionVersion(
3122         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3123           GlobalDecl CurGD{
3124               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3125           StringRef MangledName = getMangledName(CurGD);
3126           llvm::Constant *Func = GetGlobalValue(MangledName);
3127           if (!Func) {
3128             if (CurFD->isDefined()) {
3129               EmitGlobalFunctionDefinition(CurGD, nullptr);
3130               Func = GetGlobalValue(MangledName);
3131             } else {
3132               const CGFunctionInfo &FI =
3133                   getTypes().arrangeGlobalDeclaration(GD);
3134               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3135               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3136                                        /*DontDefer=*/false, ForDefinition);
3137             }
3138             assert(Func && "This should have just been created");
3139           }
3140 
3141           const auto *TA = CurFD->getAttr<TargetAttr>();
3142           llvm::SmallVector<StringRef, 8> Feats;
3143           TA->getAddedFeatures(Feats);
3144 
3145           Options.emplace_back(cast<llvm::Function>(Func),
3146                                TA->getArchitecture(), Feats);
3147         });
3148 
3149     llvm::Function *ResolverFunc;
3150     const TargetInfo &TI = getTarget();
3151 
3152     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3153       ResolverFunc = cast<llvm::Function>(
3154           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3155       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3156     } else {
3157       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3158     }
3159 
3160     if (supportsCOMDAT())
3161       ResolverFunc->setComdat(
3162           getModule().getOrInsertComdat(ResolverFunc->getName()));
3163 
3164     llvm::stable_sort(
3165         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3166                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3167           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3168         });
3169     CodeGenFunction CGF(*this);
3170     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3171   }
3172 }
3173 
3174 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3175   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3176   assert(FD && "Not a FunctionDecl?");
3177   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3178   assert(DD && "Not a cpu_dispatch Function?");
3179   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3180 
3181   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3182     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3183     DeclTy = getTypes().GetFunctionType(FInfo);
3184   }
3185 
3186   StringRef ResolverName = getMangledName(GD);
3187 
3188   llvm::Type *ResolverType;
3189   GlobalDecl ResolverGD;
3190   if (getTarget().supportsIFunc())
3191     ResolverType = llvm::FunctionType::get(
3192         llvm::PointerType::get(DeclTy,
3193                                Context.getTargetAddressSpace(FD->getType())),
3194         false);
3195   else {
3196     ResolverType = DeclTy;
3197     ResolverGD = GD;
3198   }
3199 
3200   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3201       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3202   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3203   if (supportsCOMDAT())
3204     ResolverFunc->setComdat(
3205         getModule().getOrInsertComdat(ResolverFunc->getName()));
3206 
3207   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3208   const TargetInfo &Target = getTarget();
3209   unsigned Index = 0;
3210   for (const IdentifierInfo *II : DD->cpus()) {
3211     // Get the name of the target function so we can look it up/create it.
3212     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3213                               getCPUSpecificMangling(*this, II->getName());
3214 
3215     llvm::Constant *Func = GetGlobalValue(MangledName);
3216 
3217     if (!Func) {
3218       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3219       if (ExistingDecl.getDecl() &&
3220           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3221         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3222         Func = GetGlobalValue(MangledName);
3223       } else {
3224         if (!ExistingDecl.getDecl())
3225           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3226 
3227       Func = GetOrCreateLLVMFunction(
3228           MangledName, DeclTy, ExistingDecl,
3229           /*ForVTable=*/false, /*DontDefer=*/true,
3230           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3231       }
3232     }
3233 
3234     llvm::SmallVector<StringRef, 32> Features;
3235     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3236     llvm::transform(Features, Features.begin(),
3237                     [](StringRef Str) { return Str.substr(1); });
3238     Features.erase(std::remove_if(
3239         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3240           return !Target.validateCpuSupports(Feat);
3241         }), Features.end());
3242     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3243     ++Index;
3244   }
3245 
3246   llvm::sort(
3247       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3248                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3249         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3250                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3251       });
3252 
3253   // If the list contains multiple 'default' versions, such as when it contains
3254   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3255   // always run on at least a 'pentium'). We do this by deleting the 'least
3256   // advanced' (read, lowest mangling letter).
3257   while (Options.size() > 1 &&
3258          CodeGenFunction::GetX86CpuSupportsMask(
3259              (Options.end() - 2)->Conditions.Features) == 0) {
3260     StringRef LHSName = (Options.end() - 2)->Function->getName();
3261     StringRef RHSName = (Options.end() - 1)->Function->getName();
3262     if (LHSName.compare(RHSName) < 0)
3263       Options.erase(Options.end() - 2);
3264     else
3265       Options.erase(Options.end() - 1);
3266   }
3267 
3268   CodeGenFunction CGF(*this);
3269   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3270 
3271   if (getTarget().supportsIFunc()) {
3272     std::string AliasName = getMangledNameImpl(
3273         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3274     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3275     if (!AliasFunc) {
3276       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3277           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3278           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3279       auto *GA = llvm::GlobalAlias::create(
3280          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3281       GA->setLinkage(llvm::Function::WeakODRLinkage);
3282       SetCommonAttributes(GD, GA);
3283     }
3284   }
3285 }
3286 
3287 /// If a dispatcher for the specified mangled name is not in the module, create
3288 /// and return an llvm Function with the specified type.
3289 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3290     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3291   std::string MangledName =
3292       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3293 
3294   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3295   // a separate resolver).
3296   std::string ResolverName = MangledName;
3297   if (getTarget().supportsIFunc())
3298     ResolverName += ".ifunc";
3299   else if (FD->isTargetMultiVersion())
3300     ResolverName += ".resolver";
3301 
3302   // If this already exists, just return that one.
3303   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3304     return ResolverGV;
3305 
3306   // Since this is the first time we've created this IFunc, make sure
3307   // that we put this multiversioned function into the list to be
3308   // replaced later if necessary (target multiversioning only).
3309   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3310     MultiVersionFuncs.push_back(GD);
3311 
3312   if (getTarget().supportsIFunc()) {
3313     llvm::Type *ResolverType = llvm::FunctionType::get(
3314         llvm::PointerType::get(
3315             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3316         false);
3317     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3318         MangledName + ".resolver", ResolverType, GlobalDecl{},
3319         /*ForVTable=*/false);
3320     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3321         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3322     GIF->setName(ResolverName);
3323     SetCommonAttributes(FD, GIF);
3324 
3325     return GIF;
3326   }
3327 
3328   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3329       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3330   assert(isa<llvm::GlobalValue>(Resolver) &&
3331          "Resolver should be created for the first time");
3332   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3333   return Resolver;
3334 }
3335 
3336 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3337 /// module, create and return an llvm Function with the specified type. If there
3338 /// is something in the module with the specified name, return it potentially
3339 /// bitcasted to the right type.
3340 ///
3341 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3342 /// to set the attributes on the function when it is first created.
3343 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3344     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3345     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3346     ForDefinition_t IsForDefinition) {
3347   const Decl *D = GD.getDecl();
3348 
3349   // Any attempts to use a MultiVersion function should result in retrieving
3350   // the iFunc instead. Name Mangling will handle the rest of the changes.
3351   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3352     // For the device mark the function as one that should be emitted.
3353     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3354         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3355         !DontDefer && !IsForDefinition) {
3356       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3357         GlobalDecl GDDef;
3358         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3359           GDDef = GlobalDecl(CD, GD.getCtorType());
3360         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3361           GDDef = GlobalDecl(DD, GD.getDtorType());
3362         else
3363           GDDef = GlobalDecl(FDDef);
3364         EmitGlobal(GDDef);
3365       }
3366     }
3367 
3368     if (FD->isMultiVersion()) {
3369       if (FD->hasAttr<TargetAttr>())
3370         UpdateMultiVersionNames(GD, FD);
3371       if (!IsForDefinition)
3372         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3373     }
3374   }
3375 
3376   // Lookup the entry, lazily creating it if necessary.
3377   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3378   if (Entry) {
3379     if (WeakRefReferences.erase(Entry)) {
3380       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3381       if (FD && !FD->hasAttr<WeakAttr>())
3382         Entry->setLinkage(llvm::Function::ExternalLinkage);
3383     }
3384 
3385     // Handle dropped DLL attributes.
3386     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3387       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3388       setDSOLocal(Entry);
3389     }
3390 
3391     // If there are two attempts to define the same mangled name, issue an
3392     // error.
3393     if (IsForDefinition && !Entry->isDeclaration()) {
3394       GlobalDecl OtherGD;
3395       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3396       // to make sure that we issue an error only once.
3397       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3398           (GD.getCanonicalDecl().getDecl() !=
3399            OtherGD.getCanonicalDecl().getDecl()) &&
3400           DiagnosedConflictingDefinitions.insert(GD).second) {
3401         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3402             << MangledName;
3403         getDiags().Report(OtherGD.getDecl()->getLocation(),
3404                           diag::note_previous_definition);
3405       }
3406     }
3407 
3408     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3409         (Entry->getValueType() == Ty)) {
3410       return Entry;
3411     }
3412 
3413     // Make sure the result is of the correct type.
3414     // (If function is requested for a definition, we always need to create a new
3415     // function, not just return a bitcast.)
3416     if (!IsForDefinition)
3417       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3418   }
3419 
3420   // This function doesn't have a complete type (for example, the return
3421   // type is an incomplete struct). Use a fake type instead, and make
3422   // sure not to try to set attributes.
3423   bool IsIncompleteFunction = false;
3424 
3425   llvm::FunctionType *FTy;
3426   if (isa<llvm::FunctionType>(Ty)) {
3427     FTy = cast<llvm::FunctionType>(Ty);
3428   } else {
3429     FTy = llvm::FunctionType::get(VoidTy, false);
3430     IsIncompleteFunction = true;
3431   }
3432 
3433   llvm::Function *F =
3434       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3435                              Entry ? StringRef() : MangledName, &getModule());
3436 
3437   // If we already created a function with the same mangled name (but different
3438   // type) before, take its name and add it to the list of functions to be
3439   // replaced with F at the end of CodeGen.
3440   //
3441   // This happens if there is a prototype for a function (e.g. "int f()") and
3442   // then a definition of a different type (e.g. "int f(int x)").
3443   if (Entry) {
3444     F->takeName(Entry);
3445 
3446     // This might be an implementation of a function without a prototype, in
3447     // which case, try to do special replacement of calls which match the new
3448     // prototype.  The really key thing here is that we also potentially drop
3449     // arguments from the call site so as to make a direct call, which makes the
3450     // inliner happier and suppresses a number of optimizer warnings (!) about
3451     // dropping arguments.
3452     if (!Entry->use_empty()) {
3453       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3454       Entry->removeDeadConstantUsers();
3455     }
3456 
3457     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3458         F, Entry->getValueType()->getPointerTo());
3459     addGlobalValReplacement(Entry, BC);
3460   }
3461 
3462   assert(F->getName() == MangledName && "name was uniqued!");
3463   if (D)
3464     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3465   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3466     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3467     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3468   }
3469 
3470   if (!DontDefer) {
3471     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3472     // each other bottoming out with the base dtor.  Therefore we emit non-base
3473     // dtors on usage, even if there is no dtor definition in the TU.
3474     if (D && isa<CXXDestructorDecl>(D) &&
3475         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3476                                            GD.getDtorType()))
3477       addDeferredDeclToEmit(GD);
3478 
3479     // This is the first use or definition of a mangled name.  If there is a
3480     // deferred decl with this name, remember that we need to emit it at the end
3481     // of the file.
3482     auto DDI = DeferredDecls.find(MangledName);
3483     if (DDI != DeferredDecls.end()) {
3484       // Move the potentially referenced deferred decl to the
3485       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3486       // don't need it anymore).
3487       addDeferredDeclToEmit(DDI->second);
3488       DeferredDecls.erase(DDI);
3489 
3490       // Otherwise, there are cases we have to worry about where we're
3491       // using a declaration for which we must emit a definition but where
3492       // we might not find a top-level definition:
3493       //   - member functions defined inline in their classes
3494       //   - friend functions defined inline in some class
3495       //   - special member functions with implicit definitions
3496       // If we ever change our AST traversal to walk into class methods,
3497       // this will be unnecessary.
3498       //
3499       // We also don't emit a definition for a function if it's going to be an
3500       // entry in a vtable, unless it's already marked as used.
3501     } else if (getLangOpts().CPlusPlus && D) {
3502       // Look for a declaration that's lexically in a record.
3503       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3504            FD = FD->getPreviousDecl()) {
3505         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3506           if (FD->doesThisDeclarationHaveABody()) {
3507             addDeferredDeclToEmit(GD.getWithDecl(FD));
3508             break;
3509           }
3510         }
3511       }
3512     }
3513   }
3514 
3515   // Make sure the result is of the requested type.
3516   if (!IsIncompleteFunction) {
3517     assert(F->getFunctionType() == Ty);
3518     return F;
3519   }
3520 
3521   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3522   return llvm::ConstantExpr::getBitCast(F, PTy);
3523 }
3524 
3525 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3526 /// non-null, then this function will use the specified type if it has to
3527 /// create it (this occurs when we see a definition of the function).
3528 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3529                                                  llvm::Type *Ty,
3530                                                  bool ForVTable,
3531                                                  bool DontDefer,
3532                                               ForDefinition_t IsForDefinition) {
3533   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3534          "consteval function should never be emitted");
3535   // If there was no specific requested type, just convert it now.
3536   if (!Ty) {
3537     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3538     Ty = getTypes().ConvertType(FD->getType());
3539   }
3540 
3541   // Devirtualized destructor calls may come through here instead of via
3542   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3543   // of the complete destructor when necessary.
3544   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3545     if (getTarget().getCXXABI().isMicrosoft() &&
3546         GD.getDtorType() == Dtor_Complete &&
3547         DD->getParent()->getNumVBases() == 0)
3548       GD = GlobalDecl(DD, Dtor_Base);
3549   }
3550 
3551   StringRef MangledName = getMangledName(GD);
3552   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3553                                  /*IsThunk=*/false, llvm::AttributeList(),
3554                                  IsForDefinition);
3555 }
3556 
3557 static const FunctionDecl *
3558 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3559   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3560   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3561 
3562   IdentifierInfo &CII = C.Idents.get(Name);
3563   for (const auto &Result : DC->lookup(&CII))
3564     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3565       return FD;
3566 
3567   if (!C.getLangOpts().CPlusPlus)
3568     return nullptr;
3569 
3570   // Demangle the premangled name from getTerminateFn()
3571   IdentifierInfo &CXXII =
3572       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3573           ? C.Idents.get("terminate")
3574           : C.Idents.get(Name);
3575 
3576   for (const auto &N : {"__cxxabiv1", "std"}) {
3577     IdentifierInfo &NS = C.Idents.get(N);
3578     for (const auto &Result : DC->lookup(&NS)) {
3579       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3580       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3581         for (const auto &Result : LSD->lookup(&NS))
3582           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3583             break;
3584 
3585       if (ND)
3586         for (const auto &Result : ND->lookup(&CXXII))
3587           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3588             return FD;
3589     }
3590   }
3591 
3592   return nullptr;
3593 }
3594 
3595 /// CreateRuntimeFunction - Create a new runtime function with the specified
3596 /// type and name.
3597 llvm::FunctionCallee
3598 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3599                                      llvm::AttributeList ExtraAttrs, bool Local,
3600                                      bool AssumeConvergent) {
3601   if (AssumeConvergent) {
3602     ExtraAttrs =
3603         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3604                                 llvm::Attribute::Convergent);
3605   }
3606 
3607   llvm::Constant *C =
3608       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3609                               /*DontDefer=*/false, /*IsThunk=*/false,
3610                               ExtraAttrs);
3611 
3612   if (auto *F = dyn_cast<llvm::Function>(C)) {
3613     if (F->empty()) {
3614       F->setCallingConv(getRuntimeCC());
3615 
3616       // In Windows Itanium environments, try to mark runtime functions
3617       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3618       // will link their standard library statically or dynamically. Marking
3619       // functions imported when they are not imported can cause linker errors
3620       // and warnings.
3621       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3622           !getCodeGenOpts().LTOVisibilityPublicStd) {
3623         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3624         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3625           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3626           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3627         }
3628       }
3629       setDSOLocal(F);
3630     }
3631   }
3632 
3633   return {FTy, C};
3634 }
3635 
3636 /// isTypeConstant - Determine whether an object of this type can be emitted
3637 /// as a constant.
3638 ///
3639 /// If ExcludeCtor is true, the duration when the object's constructor runs
3640 /// will not be considered. The caller will need to verify that the object is
3641 /// not written to during its construction.
3642 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3643   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3644     return false;
3645 
3646   if (Context.getLangOpts().CPlusPlus) {
3647     if (const CXXRecordDecl *Record
3648           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3649       return ExcludeCtor && !Record->hasMutableFields() &&
3650              Record->hasTrivialDestructor();
3651   }
3652 
3653   return true;
3654 }
3655 
3656 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3657 /// create and return an llvm GlobalVariable with the specified type.  If there
3658 /// is something in the module with the specified name, return it potentially
3659 /// bitcasted to the right type.
3660 ///
3661 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3662 /// to set the attributes on the global when it is first created.
3663 ///
3664 /// If IsForDefinition is true, it is guaranteed that an actual global with
3665 /// type Ty will be returned, not conversion of a variable with the same
3666 /// mangled name but some other type.
3667 llvm::Constant *
3668 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3669                                      llvm::PointerType *Ty,
3670                                      const VarDecl *D,
3671                                      ForDefinition_t IsForDefinition) {
3672   // Lookup the entry, lazily creating it if necessary.
3673   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3674   if (Entry) {
3675     if (WeakRefReferences.erase(Entry)) {
3676       if (D && !D->hasAttr<WeakAttr>())
3677         Entry->setLinkage(llvm::Function::ExternalLinkage);
3678     }
3679 
3680     // Handle dropped DLL attributes.
3681     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3682       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3683 
3684     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3685       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3686 
3687     if (Entry->getType() == Ty)
3688       return Entry;
3689 
3690     // If there are two attempts to define the same mangled name, issue an
3691     // error.
3692     if (IsForDefinition && !Entry->isDeclaration()) {
3693       GlobalDecl OtherGD;
3694       const VarDecl *OtherD;
3695 
3696       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3697       // to make sure that we issue an error only once.
3698       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3699           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3700           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3701           OtherD->hasInit() &&
3702           DiagnosedConflictingDefinitions.insert(D).second) {
3703         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3704             << MangledName;
3705         getDiags().Report(OtherGD.getDecl()->getLocation(),
3706                           diag::note_previous_definition);
3707       }
3708     }
3709 
3710     // Make sure the result is of the correct type.
3711     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3712       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3713 
3714     // (If global is requested for a definition, we always need to create a new
3715     // global, not just return a bitcast.)
3716     if (!IsForDefinition)
3717       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3718   }
3719 
3720   auto AddrSpace = GetGlobalVarAddressSpace(D);
3721   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3722 
3723   auto *GV = new llvm::GlobalVariable(
3724       getModule(), Ty->getElementType(), false,
3725       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3726       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3727 
3728   // If we already created a global with the same mangled name (but different
3729   // type) before, take its name and remove it from its parent.
3730   if (Entry) {
3731     GV->takeName(Entry);
3732 
3733     if (!Entry->use_empty()) {
3734       llvm::Constant *NewPtrForOldDecl =
3735           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3736       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3737     }
3738 
3739     Entry->eraseFromParent();
3740   }
3741 
3742   // This is the first use or definition of a mangled name.  If there is a
3743   // deferred decl with this name, remember that we need to emit it at the end
3744   // of the file.
3745   auto DDI = DeferredDecls.find(MangledName);
3746   if (DDI != DeferredDecls.end()) {
3747     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3748     // list, and remove it from DeferredDecls (since we don't need it anymore).
3749     addDeferredDeclToEmit(DDI->second);
3750     DeferredDecls.erase(DDI);
3751   }
3752 
3753   // Handle things which are present even on external declarations.
3754   if (D) {
3755     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3756       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3757 
3758     // FIXME: This code is overly simple and should be merged with other global
3759     // handling.
3760     GV->setConstant(isTypeConstant(D->getType(), false));
3761 
3762     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3763 
3764     setLinkageForGV(GV, D);
3765 
3766     if (D->getTLSKind()) {
3767       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3768         CXXThreadLocals.push_back(D);
3769       setTLSMode(GV, *D);
3770     }
3771 
3772     setGVProperties(GV, D);
3773 
3774     // If required by the ABI, treat declarations of static data members with
3775     // inline initializers as definitions.
3776     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3777       EmitGlobalVarDefinition(D);
3778     }
3779 
3780     // Emit section information for extern variables.
3781     if (D->hasExternalStorage()) {
3782       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3783         GV->setSection(SA->getName());
3784     }
3785 
3786     // Handle XCore specific ABI requirements.
3787     if (getTriple().getArch() == llvm::Triple::xcore &&
3788         D->getLanguageLinkage() == CLanguageLinkage &&
3789         D->getType().isConstant(Context) &&
3790         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3791       GV->setSection(".cp.rodata");
3792 
3793     // Check if we a have a const declaration with an initializer, we may be
3794     // able to emit it as available_externally to expose it's value to the
3795     // optimizer.
3796     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3797         D->getType().isConstQualified() && !GV->hasInitializer() &&
3798         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3799       const auto *Record =
3800           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3801       bool HasMutableFields = Record && Record->hasMutableFields();
3802       if (!HasMutableFields) {
3803         const VarDecl *InitDecl;
3804         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3805         if (InitExpr) {
3806           ConstantEmitter emitter(*this);
3807           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3808           if (Init) {
3809             auto *InitType = Init->getType();
3810             if (GV->getValueType() != InitType) {
3811               // The type of the initializer does not match the definition.
3812               // This happens when an initializer has a different type from
3813               // the type of the global (because of padding at the end of a
3814               // structure for instance).
3815               GV->setName(StringRef());
3816               // Make a new global with the correct type, this is now guaranteed
3817               // to work.
3818               auto *NewGV = cast<llvm::GlobalVariable>(
3819                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3820                       ->stripPointerCasts());
3821 
3822               // Erase the old global, since it is no longer used.
3823               GV->eraseFromParent();
3824               GV = NewGV;
3825             } else {
3826               GV->setInitializer(Init);
3827               GV->setConstant(true);
3828               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3829             }
3830             emitter.finalize(GV);
3831           }
3832         }
3833       }
3834     }
3835   }
3836 
3837   if (GV->isDeclaration())
3838     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3839 
3840   LangAS ExpectedAS =
3841       D ? D->getType().getAddressSpace()
3842         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3843   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3844          Ty->getPointerAddressSpace());
3845   if (AddrSpace != ExpectedAS)
3846     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3847                                                        ExpectedAS, Ty);
3848 
3849   return GV;
3850 }
3851 
3852 llvm::Constant *
3853 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3854   const Decl *D = GD.getDecl();
3855 
3856   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3857     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3858                                 /*DontDefer=*/false, IsForDefinition);
3859 
3860   if (isa<CXXMethodDecl>(D)) {
3861     auto FInfo =
3862         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3863     auto Ty = getTypes().GetFunctionType(*FInfo);
3864     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3865                              IsForDefinition);
3866   }
3867 
3868   if (isa<FunctionDecl>(D)) {
3869     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3870     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3871     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3872                              IsForDefinition);
3873   }
3874 
3875   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3876 }
3877 
3878 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3879     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3880     unsigned Alignment) {
3881   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3882   llvm::GlobalVariable *OldGV = nullptr;
3883 
3884   if (GV) {
3885     // Check if the variable has the right type.
3886     if (GV->getValueType() == Ty)
3887       return GV;
3888 
3889     // Because C++ name mangling, the only way we can end up with an already
3890     // existing global with the same name is if it has been declared extern "C".
3891     assert(GV->isDeclaration() && "Declaration has wrong type!");
3892     OldGV = GV;
3893   }
3894 
3895   // Create a new variable.
3896   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3897                                 Linkage, nullptr, Name);
3898 
3899   if (OldGV) {
3900     // Replace occurrences of the old variable if needed.
3901     GV->takeName(OldGV);
3902 
3903     if (!OldGV->use_empty()) {
3904       llvm::Constant *NewPtrForOldDecl =
3905       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3906       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3907     }
3908 
3909     OldGV->eraseFromParent();
3910   }
3911 
3912   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3913       !GV->hasAvailableExternallyLinkage())
3914     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3915 
3916   GV->setAlignment(llvm::MaybeAlign(Alignment));
3917 
3918   return GV;
3919 }
3920 
3921 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3922 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3923 /// then it will be created with the specified type instead of whatever the
3924 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3925 /// that an actual global with type Ty will be returned, not conversion of a
3926 /// variable with the same mangled name but some other type.
3927 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3928                                                   llvm::Type *Ty,
3929                                            ForDefinition_t IsForDefinition) {
3930   assert(D->hasGlobalStorage() && "Not a global variable");
3931   QualType ASTTy = D->getType();
3932   if (!Ty)
3933     Ty = getTypes().ConvertTypeForMem(ASTTy);
3934 
3935   llvm::PointerType *PTy =
3936     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3937 
3938   StringRef MangledName = getMangledName(D);
3939   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3940 }
3941 
3942 /// CreateRuntimeVariable - Create a new runtime global variable with the
3943 /// specified type and name.
3944 llvm::Constant *
3945 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3946                                      StringRef Name) {
3947   auto PtrTy =
3948       getContext().getLangOpts().OpenCL
3949           ? llvm::PointerType::get(
3950                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3951           : llvm::PointerType::getUnqual(Ty);
3952   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3953   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3954   return Ret;
3955 }
3956 
3957 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3958   assert(!D->getInit() && "Cannot emit definite definitions here!");
3959 
3960   StringRef MangledName = getMangledName(D);
3961   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3962 
3963   // We already have a definition, not declaration, with the same mangled name.
3964   // Emitting of declaration is not required (and actually overwrites emitted
3965   // definition).
3966   if (GV && !GV->isDeclaration())
3967     return;
3968 
3969   // If we have not seen a reference to this variable yet, place it into the
3970   // deferred declarations table to be emitted if needed later.
3971   if (!MustBeEmitted(D) && !GV) {
3972       DeferredDecls[MangledName] = D;
3973       return;
3974   }
3975 
3976   // The tentative definition is the only definition.
3977   EmitGlobalVarDefinition(D);
3978 }
3979 
3980 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3981   EmitExternalVarDeclaration(D);
3982 }
3983 
3984 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3985   return Context.toCharUnitsFromBits(
3986       getDataLayout().getTypeStoreSizeInBits(Ty));
3987 }
3988 
3989 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3990   LangAS AddrSpace = LangAS::Default;
3991   if (LangOpts.OpenCL) {
3992     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3993     assert(AddrSpace == LangAS::opencl_global ||
3994            AddrSpace == LangAS::opencl_global_device ||
3995            AddrSpace == LangAS::opencl_global_host ||
3996            AddrSpace == LangAS::opencl_constant ||
3997            AddrSpace == LangAS::opencl_local ||
3998            AddrSpace >= LangAS::FirstTargetAddressSpace);
3999     return AddrSpace;
4000   }
4001 
4002   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4003     if (D && D->hasAttr<CUDAConstantAttr>())
4004       return LangAS::cuda_constant;
4005     else if (D && D->hasAttr<CUDASharedAttr>())
4006       return LangAS::cuda_shared;
4007     else if (D && D->hasAttr<CUDADeviceAttr>())
4008       return LangAS::cuda_device;
4009     else if (D && D->getType().isConstQualified())
4010       return LangAS::cuda_constant;
4011     else
4012       return LangAS::cuda_device;
4013   }
4014 
4015   if (LangOpts.OpenMP) {
4016     LangAS AS;
4017     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4018       return AS;
4019   }
4020   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4021 }
4022 
4023 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4024   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4025   if (LangOpts.OpenCL)
4026     return LangAS::opencl_constant;
4027   if (auto AS = getTarget().getConstantAddressSpace())
4028     return AS.getValue();
4029   return LangAS::Default;
4030 }
4031 
4032 // In address space agnostic languages, string literals are in default address
4033 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4034 // emitted in constant address space in LLVM IR. To be consistent with other
4035 // parts of AST, string literal global variables in constant address space
4036 // need to be casted to default address space before being put into address
4037 // map and referenced by other part of CodeGen.
4038 // In OpenCL, string literals are in constant address space in AST, therefore
4039 // they should not be casted to default address space.
4040 static llvm::Constant *
4041 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4042                                        llvm::GlobalVariable *GV) {
4043   llvm::Constant *Cast = GV;
4044   if (!CGM.getLangOpts().OpenCL) {
4045     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4046       if (AS != LangAS::Default)
4047         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4048             CGM, GV, AS.getValue(), LangAS::Default,
4049             GV->getValueType()->getPointerTo(
4050                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4051     }
4052   }
4053   return Cast;
4054 }
4055 
4056 template<typename SomeDecl>
4057 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4058                                                llvm::GlobalValue *GV) {
4059   if (!getLangOpts().CPlusPlus)
4060     return;
4061 
4062   // Must have 'used' attribute, or else inline assembly can't rely on
4063   // the name existing.
4064   if (!D->template hasAttr<UsedAttr>())
4065     return;
4066 
4067   // Must have internal linkage and an ordinary name.
4068   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4069     return;
4070 
4071   // Must be in an extern "C" context. Entities declared directly within
4072   // a record are not extern "C" even if the record is in such a context.
4073   const SomeDecl *First = D->getFirstDecl();
4074   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4075     return;
4076 
4077   // OK, this is an internal linkage entity inside an extern "C" linkage
4078   // specification. Make a note of that so we can give it the "expected"
4079   // mangled name if nothing else is using that name.
4080   std::pair<StaticExternCMap::iterator, bool> R =
4081       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4082 
4083   // If we have multiple internal linkage entities with the same name
4084   // in extern "C" regions, none of them gets that name.
4085   if (!R.second)
4086     R.first->second = nullptr;
4087 }
4088 
4089 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4090   if (!CGM.supportsCOMDAT())
4091     return false;
4092 
4093   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4094   // them being "merged" by the COMDAT Folding linker optimization.
4095   if (D.hasAttr<CUDAGlobalAttr>())
4096     return false;
4097 
4098   if (D.hasAttr<SelectAnyAttr>())
4099     return true;
4100 
4101   GVALinkage Linkage;
4102   if (auto *VD = dyn_cast<VarDecl>(&D))
4103     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4104   else
4105     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4106 
4107   switch (Linkage) {
4108   case GVA_Internal:
4109   case GVA_AvailableExternally:
4110   case GVA_StrongExternal:
4111     return false;
4112   case GVA_DiscardableODR:
4113   case GVA_StrongODR:
4114     return true;
4115   }
4116   llvm_unreachable("No such linkage");
4117 }
4118 
4119 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4120                                           llvm::GlobalObject &GO) {
4121   if (!shouldBeInCOMDAT(*this, D))
4122     return;
4123   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4124 }
4125 
4126 /// Pass IsTentative as true if you want to create a tentative definition.
4127 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4128                                             bool IsTentative) {
4129   // OpenCL global variables of sampler type are translated to function calls,
4130   // therefore no need to be translated.
4131   QualType ASTTy = D->getType();
4132   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4133     return;
4134 
4135   // If this is OpenMP device, check if it is legal to emit this global
4136   // normally.
4137   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4138       OpenMPRuntime->emitTargetGlobalVariable(D))
4139     return;
4140 
4141   llvm::Constant *Init = nullptr;
4142   bool NeedsGlobalCtor = false;
4143   bool NeedsGlobalDtor =
4144       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4145 
4146   bool IsHIPManagedVarOnDevice =
4147       getLangOpts().CUDAIsDevice && D->hasAttr<HIPManagedAttr>();
4148 
4149   const VarDecl *InitDecl;
4150   const Expr *InitExpr =
4151       IsHIPManagedVarOnDevice ? nullptr : D->getAnyInitializer(InitDecl);
4152 
4153   Optional<ConstantEmitter> emitter;
4154 
4155   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4156   // as part of their declaration."  Sema has already checked for
4157   // error cases, so we just need to set Init to UndefValue.
4158   bool IsCUDASharedVar =
4159       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4160   // Shadows of initialized device-side global variables are also left
4161   // undefined.
4162   bool IsCUDAShadowVar =
4163       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4164       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4165        D->hasAttr<CUDASharedAttr>());
4166   bool IsCUDADeviceShadowVar =
4167       getLangOpts().CUDAIsDevice &&
4168       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4169        D->getType()->isCUDADeviceBuiltinTextureType() ||
4170        D->hasAttr<HIPManagedAttr>());
4171   if (getLangOpts().CUDA &&
4172       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4173     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4174   else if (D->hasAttr<LoaderUninitializedAttr>())
4175     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4176   else if (!InitExpr) {
4177     // This is a tentative definition; tentative definitions are
4178     // implicitly initialized with { 0 }.
4179     //
4180     // Note that tentative definitions are only emitted at the end of
4181     // a translation unit, so they should never have incomplete
4182     // type. In addition, EmitTentativeDefinition makes sure that we
4183     // never attempt to emit a tentative definition if a real one
4184     // exists. A use may still exists, however, so we still may need
4185     // to do a RAUW.
4186     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4187     Init = EmitNullConstant(D->getType());
4188   } else {
4189     initializedGlobalDecl = GlobalDecl(D);
4190     emitter.emplace(*this);
4191     Init = emitter->tryEmitForInitializer(*InitDecl);
4192 
4193     if (!Init) {
4194       QualType T = InitExpr->getType();
4195       if (D->getType()->isReferenceType())
4196         T = D->getType();
4197 
4198       if (getLangOpts().CPlusPlus) {
4199         Init = EmitNullConstant(T);
4200         NeedsGlobalCtor = true;
4201       } else {
4202         ErrorUnsupported(D, "static initializer");
4203         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4204       }
4205     } else {
4206       // We don't need an initializer, so remove the entry for the delayed
4207       // initializer position (just in case this entry was delayed) if we
4208       // also don't need to register a destructor.
4209       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4210         DelayedCXXInitPosition.erase(D);
4211     }
4212   }
4213 
4214   llvm::Type* InitType = Init->getType();
4215   llvm::Constant *Entry =
4216       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4217 
4218   // Strip off pointer casts if we got them.
4219   Entry = Entry->stripPointerCasts();
4220 
4221   // Entry is now either a Function or GlobalVariable.
4222   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4223 
4224   // We have a definition after a declaration with the wrong type.
4225   // We must make a new GlobalVariable* and update everything that used OldGV
4226   // (a declaration or tentative definition) with the new GlobalVariable*
4227   // (which will be a definition).
4228   //
4229   // This happens if there is a prototype for a global (e.g.
4230   // "extern int x[];") and then a definition of a different type (e.g.
4231   // "int x[10];"). This also happens when an initializer has a different type
4232   // from the type of the global (this happens with unions).
4233   if (!GV || GV->getValueType() != InitType ||
4234       GV->getType()->getAddressSpace() !=
4235           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4236 
4237     // Move the old entry aside so that we'll create a new one.
4238     Entry->setName(StringRef());
4239 
4240     // Make a new global with the correct type, this is now guaranteed to work.
4241     GV = cast<llvm::GlobalVariable>(
4242         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4243             ->stripPointerCasts());
4244 
4245     // Replace all uses of the old global with the new global
4246     llvm::Constant *NewPtrForOldDecl =
4247         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4248     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4249 
4250     // Erase the old global, since it is no longer used.
4251     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4252   }
4253 
4254   MaybeHandleStaticInExternC(D, GV);
4255 
4256   if (D->hasAttr<AnnotateAttr>())
4257     AddGlobalAnnotations(D, GV);
4258 
4259   // Set the llvm linkage type as appropriate.
4260   llvm::GlobalValue::LinkageTypes Linkage =
4261       getLLVMLinkageVarDefinition(D, GV->isConstant());
4262 
4263   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4264   // the device. [...]"
4265   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4266   // __device__, declares a variable that: [...]
4267   // Is accessible from all the threads within the grid and from the host
4268   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4269   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4270   if (GV && LangOpts.CUDA) {
4271     if (LangOpts.CUDAIsDevice) {
4272       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4273           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4274         GV->setExternallyInitialized(true);
4275     } else {
4276       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4277       getCUDARuntime().handleVarRegistration(D, *GV);
4278     }
4279   }
4280 
4281   // HIP managed variables need to be emitted as declarations in device
4282   // compilation.
4283   if (!IsHIPManagedVarOnDevice)
4284     GV->setInitializer(Init);
4285   if (emitter)
4286     emitter->finalize(GV);
4287 
4288   // If it is safe to mark the global 'constant', do so now.
4289   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4290                   isTypeConstant(D->getType(), true));
4291 
4292   // If it is in a read-only section, mark it 'constant'.
4293   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4294     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4295     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4296       GV->setConstant(true);
4297   }
4298 
4299   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4300 
4301   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4302   // function is only defined alongside the variable, not also alongside
4303   // callers. Normally, all accesses to a thread_local go through the
4304   // thread-wrapper in order to ensure initialization has occurred, underlying
4305   // variable will never be used other than the thread-wrapper, so it can be
4306   // converted to internal linkage.
4307   //
4308   // However, if the variable has the 'constinit' attribute, it _can_ be
4309   // referenced directly, without calling the thread-wrapper, so the linkage
4310   // must not be changed.
4311   //
4312   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4313   // weak or linkonce, the de-duplication semantics are important to preserve,
4314   // so we don't change the linkage.
4315   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4316       Linkage == llvm::GlobalValue::ExternalLinkage &&
4317       Context.getTargetInfo().getTriple().isOSDarwin() &&
4318       !D->hasAttr<ConstInitAttr>())
4319     Linkage = llvm::GlobalValue::InternalLinkage;
4320 
4321   GV->setLinkage(Linkage);
4322   if (D->hasAttr<DLLImportAttr>())
4323     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4324   else if (D->hasAttr<DLLExportAttr>())
4325     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4326   else
4327     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4328 
4329   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4330     // common vars aren't constant even if declared const.
4331     GV->setConstant(false);
4332     // Tentative definition of global variables may be initialized with
4333     // non-zero null pointers. In this case they should have weak linkage
4334     // since common linkage must have zero initializer and must not have
4335     // explicit section therefore cannot have non-zero initial value.
4336     if (!GV->getInitializer()->isNullValue())
4337       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4338   }
4339 
4340   setNonAliasAttributes(D, GV);
4341 
4342   if (D->getTLSKind() && !GV->isThreadLocal()) {
4343     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4344       CXXThreadLocals.push_back(D);
4345     setTLSMode(GV, *D);
4346   }
4347 
4348   maybeSetTrivialComdat(*D, *GV);
4349 
4350   // Emit the initializer function if necessary.
4351   if (NeedsGlobalCtor || NeedsGlobalDtor)
4352     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4353 
4354   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4355 
4356   // Emit global variable debug information.
4357   if (CGDebugInfo *DI = getModuleDebugInfo())
4358     if (getCodeGenOpts().hasReducedDebugInfo())
4359       DI->EmitGlobalVariable(GV, D);
4360 }
4361 
4362 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4363   if (CGDebugInfo *DI = getModuleDebugInfo())
4364     if (getCodeGenOpts().hasReducedDebugInfo()) {
4365       QualType ASTTy = D->getType();
4366       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4367       llvm::PointerType *PTy =
4368           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4369       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4370       DI->EmitExternalVariable(
4371           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4372     }
4373 }
4374 
4375 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4376                                       CodeGenModule &CGM, const VarDecl *D,
4377                                       bool NoCommon) {
4378   // Don't give variables common linkage if -fno-common was specified unless it
4379   // was overridden by a NoCommon attribute.
4380   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4381     return true;
4382 
4383   // C11 6.9.2/2:
4384   //   A declaration of an identifier for an object that has file scope without
4385   //   an initializer, and without a storage-class specifier or with the
4386   //   storage-class specifier static, constitutes a tentative definition.
4387   if (D->getInit() || D->hasExternalStorage())
4388     return true;
4389 
4390   // A variable cannot be both common and exist in a section.
4391   if (D->hasAttr<SectionAttr>())
4392     return true;
4393 
4394   // A variable cannot be both common and exist in a section.
4395   // We don't try to determine which is the right section in the front-end.
4396   // If no specialized section name is applicable, it will resort to default.
4397   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4398       D->hasAttr<PragmaClangDataSectionAttr>() ||
4399       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4400       D->hasAttr<PragmaClangRodataSectionAttr>())
4401     return true;
4402 
4403   // Thread local vars aren't considered common linkage.
4404   if (D->getTLSKind())
4405     return true;
4406 
4407   // Tentative definitions marked with WeakImportAttr are true definitions.
4408   if (D->hasAttr<WeakImportAttr>())
4409     return true;
4410 
4411   // A variable cannot be both common and exist in a comdat.
4412   if (shouldBeInCOMDAT(CGM, *D))
4413     return true;
4414 
4415   // Declarations with a required alignment do not have common linkage in MSVC
4416   // mode.
4417   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4418     if (D->hasAttr<AlignedAttr>())
4419       return true;
4420     QualType VarType = D->getType();
4421     if (Context.isAlignmentRequired(VarType))
4422       return true;
4423 
4424     if (const auto *RT = VarType->getAs<RecordType>()) {
4425       const RecordDecl *RD = RT->getDecl();
4426       for (const FieldDecl *FD : RD->fields()) {
4427         if (FD->isBitField())
4428           continue;
4429         if (FD->hasAttr<AlignedAttr>())
4430           return true;
4431         if (Context.isAlignmentRequired(FD->getType()))
4432           return true;
4433       }
4434     }
4435   }
4436 
4437   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4438   // common symbols, so symbols with greater alignment requirements cannot be
4439   // common.
4440   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4441   // alignments for common symbols via the aligncomm directive, so this
4442   // restriction only applies to MSVC environments.
4443   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4444       Context.getTypeAlignIfKnown(D->getType()) >
4445           Context.toBits(CharUnits::fromQuantity(32)))
4446     return true;
4447 
4448   return false;
4449 }
4450 
4451 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4452     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4453   if (Linkage == GVA_Internal)
4454     return llvm::Function::InternalLinkage;
4455 
4456   if (D->hasAttr<WeakAttr>()) {
4457     if (IsConstantVariable)
4458       return llvm::GlobalVariable::WeakODRLinkage;
4459     else
4460       return llvm::GlobalVariable::WeakAnyLinkage;
4461   }
4462 
4463   if (const auto *FD = D->getAsFunction())
4464     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4465       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4466 
4467   // We are guaranteed to have a strong definition somewhere else,
4468   // so we can use available_externally linkage.
4469   if (Linkage == GVA_AvailableExternally)
4470     return llvm::GlobalValue::AvailableExternallyLinkage;
4471 
4472   // Note that Apple's kernel linker doesn't support symbol
4473   // coalescing, so we need to avoid linkonce and weak linkages there.
4474   // Normally, this means we just map to internal, but for explicit
4475   // instantiations we'll map to external.
4476 
4477   // In C++, the compiler has to emit a definition in every translation unit
4478   // that references the function.  We should use linkonce_odr because
4479   // a) if all references in this translation unit are optimized away, we
4480   // don't need to codegen it.  b) if the function persists, it needs to be
4481   // merged with other definitions. c) C++ has the ODR, so we know the
4482   // definition is dependable.
4483   if (Linkage == GVA_DiscardableODR)
4484     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4485                                             : llvm::Function::InternalLinkage;
4486 
4487   // An explicit instantiation of a template has weak linkage, since
4488   // explicit instantiations can occur in multiple translation units
4489   // and must all be equivalent. However, we are not allowed to
4490   // throw away these explicit instantiations.
4491   //
4492   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4493   // so say that CUDA templates are either external (for kernels) or internal.
4494   // This lets llvm perform aggressive inter-procedural optimizations. For
4495   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4496   // therefore we need to follow the normal linkage paradigm.
4497   if (Linkage == GVA_StrongODR) {
4498     if (getLangOpts().AppleKext)
4499       return llvm::Function::ExternalLinkage;
4500     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4501         !getLangOpts().GPURelocatableDeviceCode)
4502       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4503                                           : llvm::Function::InternalLinkage;
4504     return llvm::Function::WeakODRLinkage;
4505   }
4506 
4507   // C++ doesn't have tentative definitions and thus cannot have common
4508   // linkage.
4509   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4510       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4511                                  CodeGenOpts.NoCommon))
4512     return llvm::GlobalVariable::CommonLinkage;
4513 
4514   // selectany symbols are externally visible, so use weak instead of
4515   // linkonce.  MSVC optimizes away references to const selectany globals, so
4516   // all definitions should be the same and ODR linkage should be used.
4517   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4518   if (D->hasAttr<SelectAnyAttr>())
4519     return llvm::GlobalVariable::WeakODRLinkage;
4520 
4521   // Otherwise, we have strong external linkage.
4522   assert(Linkage == GVA_StrongExternal);
4523   return llvm::GlobalVariable::ExternalLinkage;
4524 }
4525 
4526 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4527     const VarDecl *VD, bool IsConstant) {
4528   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4529   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4530 }
4531 
4532 /// Replace the uses of a function that was declared with a non-proto type.
4533 /// We want to silently drop extra arguments from call sites
4534 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4535                                           llvm::Function *newFn) {
4536   // Fast path.
4537   if (old->use_empty()) return;
4538 
4539   llvm::Type *newRetTy = newFn->getReturnType();
4540   SmallVector<llvm::Value*, 4> newArgs;
4541 
4542   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4543          ui != ue; ) {
4544     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4545     llvm::User *user = use->getUser();
4546 
4547     // Recognize and replace uses of bitcasts.  Most calls to
4548     // unprototyped functions will use bitcasts.
4549     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4550       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4551         replaceUsesOfNonProtoConstant(bitcast, newFn);
4552       continue;
4553     }
4554 
4555     // Recognize calls to the function.
4556     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4557     if (!callSite) continue;
4558     if (!callSite->isCallee(&*use))
4559       continue;
4560 
4561     // If the return types don't match exactly, then we can't
4562     // transform this call unless it's dead.
4563     if (callSite->getType() != newRetTy && !callSite->use_empty())
4564       continue;
4565 
4566     // Get the call site's attribute list.
4567     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4568     llvm::AttributeList oldAttrs = callSite->getAttributes();
4569 
4570     // If the function was passed too few arguments, don't transform.
4571     unsigned newNumArgs = newFn->arg_size();
4572     if (callSite->arg_size() < newNumArgs)
4573       continue;
4574 
4575     // If extra arguments were passed, we silently drop them.
4576     // If any of the types mismatch, we don't transform.
4577     unsigned argNo = 0;
4578     bool dontTransform = false;
4579     for (llvm::Argument &A : newFn->args()) {
4580       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4581         dontTransform = true;
4582         break;
4583       }
4584 
4585       // Add any parameter attributes.
4586       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4587       argNo++;
4588     }
4589     if (dontTransform)
4590       continue;
4591 
4592     // Okay, we can transform this.  Create the new call instruction and copy
4593     // over the required information.
4594     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4595 
4596     // Copy over any operand bundles.
4597     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4598     callSite->getOperandBundlesAsDefs(newBundles);
4599 
4600     llvm::CallBase *newCall;
4601     if (dyn_cast<llvm::CallInst>(callSite)) {
4602       newCall =
4603           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4604     } else {
4605       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4606       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4607                                          oldInvoke->getUnwindDest(), newArgs,
4608                                          newBundles, "", callSite);
4609     }
4610     newArgs.clear(); // for the next iteration
4611 
4612     if (!newCall->getType()->isVoidTy())
4613       newCall->takeName(callSite);
4614     newCall->setAttributes(llvm::AttributeList::get(
4615         newFn->getContext(), oldAttrs.getFnAttributes(),
4616         oldAttrs.getRetAttributes(), newArgAttrs));
4617     newCall->setCallingConv(callSite->getCallingConv());
4618 
4619     // Finally, remove the old call, replacing any uses with the new one.
4620     if (!callSite->use_empty())
4621       callSite->replaceAllUsesWith(newCall);
4622 
4623     // Copy debug location attached to CI.
4624     if (callSite->getDebugLoc())
4625       newCall->setDebugLoc(callSite->getDebugLoc());
4626 
4627     callSite->eraseFromParent();
4628   }
4629 }
4630 
4631 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4632 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4633 /// existing call uses of the old function in the module, this adjusts them to
4634 /// call the new function directly.
4635 ///
4636 /// This is not just a cleanup: the always_inline pass requires direct calls to
4637 /// functions to be able to inline them.  If there is a bitcast in the way, it
4638 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4639 /// run at -O0.
4640 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4641                                                       llvm::Function *NewFn) {
4642   // If we're redefining a global as a function, don't transform it.
4643   if (!isa<llvm::Function>(Old)) return;
4644 
4645   replaceUsesOfNonProtoConstant(Old, NewFn);
4646 }
4647 
4648 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4649   auto DK = VD->isThisDeclarationADefinition();
4650   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4651     return;
4652 
4653   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4654   // If we have a definition, this might be a deferred decl. If the
4655   // instantiation is explicit, make sure we emit it at the end.
4656   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4657     GetAddrOfGlobalVar(VD);
4658 
4659   EmitTopLevelDecl(VD);
4660 }
4661 
4662 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4663                                                  llvm::GlobalValue *GV) {
4664   const auto *D = cast<FunctionDecl>(GD.getDecl());
4665 
4666   // Compute the function info and LLVM type.
4667   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4668   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4669 
4670   // Get or create the prototype for the function.
4671   if (!GV || (GV->getValueType() != Ty))
4672     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4673                                                    /*DontDefer=*/true,
4674                                                    ForDefinition));
4675 
4676   // Already emitted.
4677   if (!GV->isDeclaration())
4678     return;
4679 
4680   // We need to set linkage and visibility on the function before
4681   // generating code for it because various parts of IR generation
4682   // want to propagate this information down (e.g. to local static
4683   // declarations).
4684   auto *Fn = cast<llvm::Function>(GV);
4685   setFunctionLinkage(GD, Fn);
4686 
4687   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4688   setGVProperties(Fn, GD);
4689 
4690   MaybeHandleStaticInExternC(D, Fn);
4691 
4692   maybeSetTrivialComdat(*D, *Fn);
4693 
4694   // Set CodeGen attributes that represent floating point environment.
4695   setLLVMFunctionFEnvAttributes(D, Fn);
4696 
4697   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4698 
4699   setNonAliasAttributes(GD, Fn);
4700   SetLLVMFunctionAttributesForDefinition(D, Fn);
4701 
4702   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4703     AddGlobalCtor(Fn, CA->getPriority());
4704   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4705     AddGlobalDtor(Fn, DA->getPriority(), true);
4706   if (D->hasAttr<AnnotateAttr>())
4707     AddGlobalAnnotations(D, Fn);
4708 }
4709 
4710 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4711   const auto *D = cast<ValueDecl>(GD.getDecl());
4712   const AliasAttr *AA = D->getAttr<AliasAttr>();
4713   assert(AA && "Not an alias?");
4714 
4715   StringRef MangledName = getMangledName(GD);
4716 
4717   if (AA->getAliasee() == MangledName) {
4718     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4719     return;
4720   }
4721 
4722   // If there is a definition in the module, then it wins over the alias.
4723   // This is dubious, but allow it to be safe.  Just ignore the alias.
4724   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4725   if (Entry && !Entry->isDeclaration())
4726     return;
4727 
4728   Aliases.push_back(GD);
4729 
4730   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4731 
4732   // Create a reference to the named value.  This ensures that it is emitted
4733   // if a deferred decl.
4734   llvm::Constant *Aliasee;
4735   llvm::GlobalValue::LinkageTypes LT;
4736   if (isa<llvm::FunctionType>(DeclTy)) {
4737     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4738                                       /*ForVTable=*/false);
4739     LT = getFunctionLinkage(GD);
4740   } else {
4741     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4742                                     llvm::PointerType::getUnqual(DeclTy),
4743                                     /*D=*/nullptr);
4744     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4745       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4746     else
4747       LT = getFunctionLinkage(GD);
4748   }
4749 
4750   // Create the new alias itself, but don't set a name yet.
4751   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4752   auto *GA =
4753       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4754 
4755   if (Entry) {
4756     if (GA->getAliasee() == Entry) {
4757       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4758       return;
4759     }
4760 
4761     assert(Entry->isDeclaration());
4762 
4763     // If there is a declaration in the module, then we had an extern followed
4764     // by the alias, as in:
4765     //   extern int test6();
4766     //   ...
4767     //   int test6() __attribute__((alias("test7")));
4768     //
4769     // Remove it and replace uses of it with the alias.
4770     GA->takeName(Entry);
4771 
4772     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4773                                                           Entry->getType()));
4774     Entry->eraseFromParent();
4775   } else {
4776     GA->setName(MangledName);
4777   }
4778 
4779   // Set attributes which are particular to an alias; this is a
4780   // specialization of the attributes which may be set on a global
4781   // variable/function.
4782   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4783       D->isWeakImported()) {
4784     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4785   }
4786 
4787   if (const auto *VD = dyn_cast<VarDecl>(D))
4788     if (VD->getTLSKind())
4789       setTLSMode(GA, *VD);
4790 
4791   SetCommonAttributes(GD, GA);
4792 }
4793 
4794 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4795   const auto *D = cast<ValueDecl>(GD.getDecl());
4796   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4797   assert(IFA && "Not an ifunc?");
4798 
4799   StringRef MangledName = getMangledName(GD);
4800 
4801   if (IFA->getResolver() == MangledName) {
4802     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4803     return;
4804   }
4805 
4806   // Report an error if some definition overrides ifunc.
4807   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4808   if (Entry && !Entry->isDeclaration()) {
4809     GlobalDecl OtherGD;
4810     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4811         DiagnosedConflictingDefinitions.insert(GD).second) {
4812       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4813           << MangledName;
4814       Diags.Report(OtherGD.getDecl()->getLocation(),
4815                    diag::note_previous_definition);
4816     }
4817     return;
4818   }
4819 
4820   Aliases.push_back(GD);
4821 
4822   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4823   llvm::Constant *Resolver =
4824       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4825                               /*ForVTable=*/false);
4826   llvm::GlobalIFunc *GIF =
4827       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4828                                 "", Resolver, &getModule());
4829   if (Entry) {
4830     if (GIF->getResolver() == Entry) {
4831       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4832       return;
4833     }
4834     assert(Entry->isDeclaration());
4835 
4836     // If there is a declaration in the module, then we had an extern followed
4837     // by the ifunc, as in:
4838     //   extern int test();
4839     //   ...
4840     //   int test() __attribute__((ifunc("resolver")));
4841     //
4842     // Remove it and replace uses of it with the ifunc.
4843     GIF->takeName(Entry);
4844 
4845     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4846                                                           Entry->getType()));
4847     Entry->eraseFromParent();
4848   } else
4849     GIF->setName(MangledName);
4850 
4851   SetCommonAttributes(GD, GIF);
4852 }
4853 
4854 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4855                                             ArrayRef<llvm::Type*> Tys) {
4856   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4857                                          Tys);
4858 }
4859 
4860 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4861 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4862                          const StringLiteral *Literal, bool TargetIsLSB,
4863                          bool &IsUTF16, unsigned &StringLength) {
4864   StringRef String = Literal->getString();
4865   unsigned NumBytes = String.size();
4866 
4867   // Check for simple case.
4868   if (!Literal->containsNonAsciiOrNull()) {
4869     StringLength = NumBytes;
4870     return *Map.insert(std::make_pair(String, nullptr)).first;
4871   }
4872 
4873   // Otherwise, convert the UTF8 literals into a string of shorts.
4874   IsUTF16 = true;
4875 
4876   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4877   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4878   llvm::UTF16 *ToPtr = &ToBuf[0];
4879 
4880   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4881                                  ToPtr + NumBytes, llvm::strictConversion);
4882 
4883   // ConvertUTF8toUTF16 returns the length in ToPtr.
4884   StringLength = ToPtr - &ToBuf[0];
4885 
4886   // Add an explicit null.
4887   *ToPtr = 0;
4888   return *Map.insert(std::make_pair(
4889                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4890                                    (StringLength + 1) * 2),
4891                          nullptr)).first;
4892 }
4893 
4894 ConstantAddress
4895 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4896   unsigned StringLength = 0;
4897   bool isUTF16 = false;
4898   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4899       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4900                                getDataLayout().isLittleEndian(), isUTF16,
4901                                StringLength);
4902 
4903   if (auto *C = Entry.second)
4904     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4905 
4906   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4907   llvm::Constant *Zeros[] = { Zero, Zero };
4908 
4909   const ASTContext &Context = getContext();
4910   const llvm::Triple &Triple = getTriple();
4911 
4912   const auto CFRuntime = getLangOpts().CFRuntime;
4913   const bool IsSwiftABI =
4914       static_cast<unsigned>(CFRuntime) >=
4915       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4916   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4917 
4918   // If we don't already have it, get __CFConstantStringClassReference.
4919   if (!CFConstantStringClassRef) {
4920     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4921     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4922     Ty = llvm::ArrayType::get(Ty, 0);
4923 
4924     switch (CFRuntime) {
4925     default: break;
4926     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4927     case LangOptions::CoreFoundationABI::Swift5_0:
4928       CFConstantStringClassName =
4929           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4930                               : "$s10Foundation19_NSCFConstantStringCN";
4931       Ty = IntPtrTy;
4932       break;
4933     case LangOptions::CoreFoundationABI::Swift4_2:
4934       CFConstantStringClassName =
4935           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4936                               : "$S10Foundation19_NSCFConstantStringCN";
4937       Ty = IntPtrTy;
4938       break;
4939     case LangOptions::CoreFoundationABI::Swift4_1:
4940       CFConstantStringClassName =
4941           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4942                               : "__T010Foundation19_NSCFConstantStringCN";
4943       Ty = IntPtrTy;
4944       break;
4945     }
4946 
4947     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4948 
4949     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4950       llvm::GlobalValue *GV = nullptr;
4951 
4952       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4953         IdentifierInfo &II = Context.Idents.get(GV->getName());
4954         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4955         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4956 
4957         const VarDecl *VD = nullptr;
4958         for (const auto &Result : DC->lookup(&II))
4959           if ((VD = dyn_cast<VarDecl>(Result)))
4960             break;
4961 
4962         if (Triple.isOSBinFormatELF()) {
4963           if (!VD)
4964             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4965         } else {
4966           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4967           if (!VD || !VD->hasAttr<DLLExportAttr>())
4968             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4969           else
4970             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4971         }
4972 
4973         setDSOLocal(GV);
4974       }
4975     }
4976 
4977     // Decay array -> ptr
4978     CFConstantStringClassRef =
4979         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4980                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4981   }
4982 
4983   QualType CFTy = Context.getCFConstantStringType();
4984 
4985   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4986 
4987   ConstantInitBuilder Builder(*this);
4988   auto Fields = Builder.beginStruct(STy);
4989 
4990   // Class pointer.
4991   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4992 
4993   // Flags.
4994   if (IsSwiftABI) {
4995     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4996     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4997   } else {
4998     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4999   }
5000 
5001   // String pointer.
5002   llvm::Constant *C = nullptr;
5003   if (isUTF16) {
5004     auto Arr = llvm::makeArrayRef(
5005         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5006         Entry.first().size() / 2);
5007     C = llvm::ConstantDataArray::get(VMContext, Arr);
5008   } else {
5009     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5010   }
5011 
5012   // Note: -fwritable-strings doesn't make the backing store strings of
5013   // CFStrings writable. (See <rdar://problem/10657500>)
5014   auto *GV =
5015       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5016                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5017   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5018   // Don't enforce the target's minimum global alignment, since the only use
5019   // of the string is via this class initializer.
5020   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5021                             : Context.getTypeAlignInChars(Context.CharTy);
5022   GV->setAlignment(Align.getAsAlign());
5023 
5024   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5025   // Without it LLVM can merge the string with a non unnamed_addr one during
5026   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5027   if (Triple.isOSBinFormatMachO())
5028     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5029                            : "__TEXT,__cstring,cstring_literals");
5030   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5031   // the static linker to adjust permissions to read-only later on.
5032   else if (Triple.isOSBinFormatELF())
5033     GV->setSection(".rodata");
5034 
5035   // String.
5036   llvm::Constant *Str =
5037       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5038 
5039   if (isUTF16)
5040     // Cast the UTF16 string to the correct type.
5041     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5042   Fields.add(Str);
5043 
5044   // String length.
5045   llvm::IntegerType *LengthTy =
5046       llvm::IntegerType::get(getModule().getContext(),
5047                              Context.getTargetInfo().getLongWidth());
5048   if (IsSwiftABI) {
5049     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5050         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5051       LengthTy = Int32Ty;
5052     else
5053       LengthTy = IntPtrTy;
5054   }
5055   Fields.addInt(LengthTy, StringLength);
5056 
5057   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5058   // properly aligned on 32-bit platforms.
5059   CharUnits Alignment =
5060       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5061 
5062   // The struct.
5063   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5064                                     /*isConstant=*/false,
5065                                     llvm::GlobalVariable::PrivateLinkage);
5066   GV->addAttribute("objc_arc_inert");
5067   switch (Triple.getObjectFormat()) {
5068   case llvm::Triple::UnknownObjectFormat:
5069     llvm_unreachable("unknown file format");
5070   case llvm::Triple::GOFF:
5071     llvm_unreachable("GOFF is not yet implemented");
5072   case llvm::Triple::XCOFF:
5073     llvm_unreachable("XCOFF is not yet implemented");
5074   case llvm::Triple::COFF:
5075   case llvm::Triple::ELF:
5076   case llvm::Triple::Wasm:
5077     GV->setSection("cfstring");
5078     break;
5079   case llvm::Triple::MachO:
5080     GV->setSection("__DATA,__cfstring");
5081     break;
5082   }
5083   Entry.second = GV;
5084 
5085   return ConstantAddress(GV, Alignment);
5086 }
5087 
5088 bool CodeGenModule::getExpressionLocationsEnabled() const {
5089   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5090 }
5091 
5092 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5093   if (ObjCFastEnumerationStateType.isNull()) {
5094     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5095     D->startDefinition();
5096 
5097     QualType FieldTypes[] = {
5098       Context.UnsignedLongTy,
5099       Context.getPointerType(Context.getObjCIdType()),
5100       Context.getPointerType(Context.UnsignedLongTy),
5101       Context.getConstantArrayType(Context.UnsignedLongTy,
5102                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5103     };
5104 
5105     for (size_t i = 0; i < 4; ++i) {
5106       FieldDecl *Field = FieldDecl::Create(Context,
5107                                            D,
5108                                            SourceLocation(),
5109                                            SourceLocation(), nullptr,
5110                                            FieldTypes[i], /*TInfo=*/nullptr,
5111                                            /*BitWidth=*/nullptr,
5112                                            /*Mutable=*/false,
5113                                            ICIS_NoInit);
5114       Field->setAccess(AS_public);
5115       D->addDecl(Field);
5116     }
5117 
5118     D->completeDefinition();
5119     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5120   }
5121 
5122   return ObjCFastEnumerationStateType;
5123 }
5124 
5125 llvm::Constant *
5126 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5127   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5128 
5129   // Don't emit it as the address of the string, emit the string data itself
5130   // as an inline array.
5131   if (E->getCharByteWidth() == 1) {
5132     SmallString<64> Str(E->getString());
5133 
5134     // Resize the string to the right size, which is indicated by its type.
5135     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5136     Str.resize(CAT->getSize().getZExtValue());
5137     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5138   }
5139 
5140   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5141   llvm::Type *ElemTy = AType->getElementType();
5142   unsigned NumElements = AType->getNumElements();
5143 
5144   // Wide strings have either 2-byte or 4-byte elements.
5145   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5146     SmallVector<uint16_t, 32> Elements;
5147     Elements.reserve(NumElements);
5148 
5149     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5150       Elements.push_back(E->getCodeUnit(i));
5151     Elements.resize(NumElements);
5152     return llvm::ConstantDataArray::get(VMContext, Elements);
5153   }
5154 
5155   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5156   SmallVector<uint32_t, 32> Elements;
5157   Elements.reserve(NumElements);
5158 
5159   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5160     Elements.push_back(E->getCodeUnit(i));
5161   Elements.resize(NumElements);
5162   return llvm::ConstantDataArray::get(VMContext, Elements);
5163 }
5164 
5165 static llvm::GlobalVariable *
5166 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5167                       CodeGenModule &CGM, StringRef GlobalName,
5168                       CharUnits Alignment) {
5169   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5170       CGM.getStringLiteralAddressSpace());
5171 
5172   llvm::Module &M = CGM.getModule();
5173   // Create a global variable for this string
5174   auto *GV = new llvm::GlobalVariable(
5175       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5176       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5177   GV->setAlignment(Alignment.getAsAlign());
5178   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5179   if (GV->isWeakForLinker()) {
5180     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5181     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5182   }
5183   CGM.setDSOLocal(GV);
5184 
5185   return GV;
5186 }
5187 
5188 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5189 /// constant array for the given string literal.
5190 ConstantAddress
5191 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5192                                                   StringRef Name) {
5193   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5194 
5195   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5196   llvm::GlobalVariable **Entry = nullptr;
5197   if (!LangOpts.WritableStrings) {
5198     Entry = &ConstantStringMap[C];
5199     if (auto GV = *Entry) {
5200       if (Alignment.getQuantity() > GV->getAlignment())
5201         GV->setAlignment(Alignment.getAsAlign());
5202       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5203                              Alignment);
5204     }
5205   }
5206 
5207   SmallString<256> MangledNameBuffer;
5208   StringRef GlobalVariableName;
5209   llvm::GlobalValue::LinkageTypes LT;
5210 
5211   // Mangle the string literal if that's how the ABI merges duplicate strings.
5212   // Don't do it if they are writable, since we don't want writes in one TU to
5213   // affect strings in another.
5214   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5215       !LangOpts.WritableStrings) {
5216     llvm::raw_svector_ostream Out(MangledNameBuffer);
5217     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5218     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5219     GlobalVariableName = MangledNameBuffer;
5220   } else {
5221     LT = llvm::GlobalValue::PrivateLinkage;
5222     GlobalVariableName = Name;
5223   }
5224 
5225   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5226   if (Entry)
5227     *Entry = GV;
5228 
5229   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5230                                   QualType());
5231 
5232   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5233                          Alignment);
5234 }
5235 
5236 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5237 /// array for the given ObjCEncodeExpr node.
5238 ConstantAddress
5239 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5240   std::string Str;
5241   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5242 
5243   return GetAddrOfConstantCString(Str);
5244 }
5245 
5246 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5247 /// the literal and a terminating '\0' character.
5248 /// The result has pointer to array type.
5249 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5250     const std::string &Str, const char *GlobalName) {
5251   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5252   CharUnits Alignment =
5253     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5254 
5255   llvm::Constant *C =
5256       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5257 
5258   // Don't share any string literals if strings aren't constant.
5259   llvm::GlobalVariable **Entry = nullptr;
5260   if (!LangOpts.WritableStrings) {
5261     Entry = &ConstantStringMap[C];
5262     if (auto GV = *Entry) {
5263       if (Alignment.getQuantity() > GV->getAlignment())
5264         GV->setAlignment(Alignment.getAsAlign());
5265       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5266                              Alignment);
5267     }
5268   }
5269 
5270   // Get the default prefix if a name wasn't specified.
5271   if (!GlobalName)
5272     GlobalName = ".str";
5273   // Create a global variable for this.
5274   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5275                                   GlobalName, Alignment);
5276   if (Entry)
5277     *Entry = GV;
5278 
5279   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5280                          Alignment);
5281 }
5282 
5283 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5284     const MaterializeTemporaryExpr *E, const Expr *Init) {
5285   assert((E->getStorageDuration() == SD_Static ||
5286           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5287   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5288 
5289   // If we're not materializing a subobject of the temporary, keep the
5290   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5291   QualType MaterializedType = Init->getType();
5292   if (Init == E->getSubExpr())
5293     MaterializedType = E->getType();
5294 
5295   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5296 
5297   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5298     return ConstantAddress(Slot, Align);
5299 
5300   // FIXME: If an externally-visible declaration extends multiple temporaries,
5301   // we need to give each temporary the same name in every translation unit (and
5302   // we also need to make the temporaries externally-visible).
5303   SmallString<256> Name;
5304   llvm::raw_svector_ostream Out(Name);
5305   getCXXABI().getMangleContext().mangleReferenceTemporary(
5306       VD, E->getManglingNumber(), Out);
5307 
5308   APValue *Value = nullptr;
5309   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5310     // If the initializer of the extending declaration is a constant
5311     // initializer, we should have a cached constant initializer for this
5312     // temporary. Note that this might have a different value from the value
5313     // computed by evaluating the initializer if the surrounding constant
5314     // expression modifies the temporary.
5315     Value = E->getOrCreateValue(false);
5316   }
5317 
5318   // Try evaluating it now, it might have a constant initializer.
5319   Expr::EvalResult EvalResult;
5320   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5321       !EvalResult.hasSideEffects())
5322     Value = &EvalResult.Val;
5323 
5324   LangAS AddrSpace =
5325       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5326 
5327   Optional<ConstantEmitter> emitter;
5328   llvm::Constant *InitialValue = nullptr;
5329   bool Constant = false;
5330   llvm::Type *Type;
5331   if (Value) {
5332     // The temporary has a constant initializer, use it.
5333     emitter.emplace(*this);
5334     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5335                                                MaterializedType);
5336     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5337     Type = InitialValue->getType();
5338   } else {
5339     // No initializer, the initialization will be provided when we
5340     // initialize the declaration which performed lifetime extension.
5341     Type = getTypes().ConvertTypeForMem(MaterializedType);
5342   }
5343 
5344   // Create a global variable for this lifetime-extended temporary.
5345   llvm::GlobalValue::LinkageTypes Linkage =
5346       getLLVMLinkageVarDefinition(VD, Constant);
5347   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5348     const VarDecl *InitVD;
5349     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5350         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5351       // Temporaries defined inside a class get linkonce_odr linkage because the
5352       // class can be defined in multiple translation units.
5353       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5354     } else {
5355       // There is no need for this temporary to have external linkage if the
5356       // VarDecl has external linkage.
5357       Linkage = llvm::GlobalVariable::InternalLinkage;
5358     }
5359   }
5360   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5361   auto *GV = new llvm::GlobalVariable(
5362       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5363       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5364   if (emitter) emitter->finalize(GV);
5365   setGVProperties(GV, VD);
5366   GV->setAlignment(Align.getAsAlign());
5367   if (supportsCOMDAT() && GV->isWeakForLinker())
5368     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5369   if (VD->getTLSKind())
5370     setTLSMode(GV, *VD);
5371   llvm::Constant *CV = GV;
5372   if (AddrSpace != LangAS::Default)
5373     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5374         *this, GV, AddrSpace, LangAS::Default,
5375         Type->getPointerTo(
5376             getContext().getTargetAddressSpace(LangAS::Default)));
5377   MaterializedGlobalTemporaryMap[E] = CV;
5378   return ConstantAddress(CV, Align);
5379 }
5380 
5381 /// EmitObjCPropertyImplementations - Emit information for synthesized
5382 /// properties for an implementation.
5383 void CodeGenModule::EmitObjCPropertyImplementations(const
5384                                                     ObjCImplementationDecl *D) {
5385   for (const auto *PID : D->property_impls()) {
5386     // Dynamic is just for type-checking.
5387     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5388       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5389 
5390       // Determine which methods need to be implemented, some may have
5391       // been overridden. Note that ::isPropertyAccessor is not the method
5392       // we want, that just indicates if the decl came from a
5393       // property. What we want to know is if the method is defined in
5394       // this implementation.
5395       auto *Getter = PID->getGetterMethodDecl();
5396       if (!Getter || Getter->isSynthesizedAccessorStub())
5397         CodeGenFunction(*this).GenerateObjCGetter(
5398             const_cast<ObjCImplementationDecl *>(D), PID);
5399       auto *Setter = PID->getSetterMethodDecl();
5400       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5401         CodeGenFunction(*this).GenerateObjCSetter(
5402                                  const_cast<ObjCImplementationDecl *>(D), PID);
5403     }
5404   }
5405 }
5406 
5407 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5408   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5409   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5410        ivar; ivar = ivar->getNextIvar())
5411     if (ivar->getType().isDestructedType())
5412       return true;
5413 
5414   return false;
5415 }
5416 
5417 static bool AllTrivialInitializers(CodeGenModule &CGM,
5418                                    ObjCImplementationDecl *D) {
5419   CodeGenFunction CGF(CGM);
5420   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5421        E = D->init_end(); B != E; ++B) {
5422     CXXCtorInitializer *CtorInitExp = *B;
5423     Expr *Init = CtorInitExp->getInit();
5424     if (!CGF.isTrivialInitializer(Init))
5425       return false;
5426   }
5427   return true;
5428 }
5429 
5430 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5431 /// for an implementation.
5432 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5433   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5434   if (needsDestructMethod(D)) {
5435     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5436     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5437     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5438         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5439         getContext().VoidTy, nullptr, D,
5440         /*isInstance=*/true, /*isVariadic=*/false,
5441         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5442         /*isImplicitlyDeclared=*/true,
5443         /*isDefined=*/false, ObjCMethodDecl::Required);
5444     D->addInstanceMethod(DTORMethod);
5445     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5446     D->setHasDestructors(true);
5447   }
5448 
5449   // If the implementation doesn't have any ivar initializers, we don't need
5450   // a .cxx_construct.
5451   if (D->getNumIvarInitializers() == 0 ||
5452       AllTrivialInitializers(*this, D))
5453     return;
5454 
5455   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5456   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5457   // The constructor returns 'self'.
5458   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5459       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5460       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5461       /*isVariadic=*/false,
5462       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5463       /*isImplicitlyDeclared=*/true,
5464       /*isDefined=*/false, ObjCMethodDecl::Required);
5465   D->addInstanceMethod(CTORMethod);
5466   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5467   D->setHasNonZeroConstructors(true);
5468 }
5469 
5470 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5471 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5472   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5473       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5474     ErrorUnsupported(LSD, "linkage spec");
5475     return;
5476   }
5477 
5478   EmitDeclContext(LSD);
5479 }
5480 
5481 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5482   for (auto *I : DC->decls()) {
5483     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5484     // are themselves considered "top-level", so EmitTopLevelDecl on an
5485     // ObjCImplDecl does not recursively visit them. We need to do that in
5486     // case they're nested inside another construct (LinkageSpecDecl /
5487     // ExportDecl) that does stop them from being considered "top-level".
5488     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5489       for (auto *M : OID->methods())
5490         EmitTopLevelDecl(M);
5491     }
5492 
5493     EmitTopLevelDecl(I);
5494   }
5495 }
5496 
5497 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5498 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5499   // Ignore dependent declarations.
5500   if (D->isTemplated())
5501     return;
5502 
5503   // Consteval function shouldn't be emitted.
5504   if (auto *FD = dyn_cast<FunctionDecl>(D))
5505     if (FD->isConsteval())
5506       return;
5507 
5508   switch (D->getKind()) {
5509   case Decl::CXXConversion:
5510   case Decl::CXXMethod:
5511   case Decl::Function:
5512     EmitGlobal(cast<FunctionDecl>(D));
5513     // Always provide some coverage mapping
5514     // even for the functions that aren't emitted.
5515     AddDeferredUnusedCoverageMapping(D);
5516     break;
5517 
5518   case Decl::CXXDeductionGuide:
5519     // Function-like, but does not result in code emission.
5520     break;
5521 
5522   case Decl::Var:
5523   case Decl::Decomposition:
5524   case Decl::VarTemplateSpecialization:
5525     EmitGlobal(cast<VarDecl>(D));
5526     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5527       for (auto *B : DD->bindings())
5528         if (auto *HD = B->getHoldingVar())
5529           EmitGlobal(HD);
5530     break;
5531 
5532   // Indirect fields from global anonymous structs and unions can be
5533   // ignored; only the actual variable requires IR gen support.
5534   case Decl::IndirectField:
5535     break;
5536 
5537   // C++ Decls
5538   case Decl::Namespace:
5539     EmitDeclContext(cast<NamespaceDecl>(D));
5540     break;
5541   case Decl::ClassTemplateSpecialization: {
5542     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5543     if (CGDebugInfo *DI = getModuleDebugInfo())
5544       if (Spec->getSpecializationKind() ==
5545               TSK_ExplicitInstantiationDefinition &&
5546           Spec->hasDefinition())
5547         DI->completeTemplateDefinition(*Spec);
5548   } LLVM_FALLTHROUGH;
5549   case Decl::CXXRecord: {
5550     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5551     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5552       if (CRD->hasDefinition())
5553         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5554       if (auto *ES = D->getASTContext().getExternalSource())
5555         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5556           DI->completeUnusedClass(*CRD);
5557     }
5558     // Emit any static data members, they may be definitions.
5559     for (auto *I : CRD->decls())
5560       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5561         EmitTopLevelDecl(I);
5562     break;
5563   }
5564     // No code generation needed.
5565   case Decl::UsingShadow:
5566   case Decl::ClassTemplate:
5567   case Decl::VarTemplate:
5568   case Decl::Concept:
5569   case Decl::VarTemplatePartialSpecialization:
5570   case Decl::FunctionTemplate:
5571   case Decl::TypeAliasTemplate:
5572   case Decl::Block:
5573   case Decl::Empty:
5574   case Decl::Binding:
5575     break;
5576   case Decl::Using:          // using X; [C++]
5577     if (CGDebugInfo *DI = getModuleDebugInfo())
5578         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5579     break;
5580   case Decl::NamespaceAlias:
5581     if (CGDebugInfo *DI = getModuleDebugInfo())
5582         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5583     break;
5584   case Decl::UsingDirective: // using namespace X; [C++]
5585     if (CGDebugInfo *DI = getModuleDebugInfo())
5586       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5587     break;
5588   case Decl::CXXConstructor:
5589     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5590     break;
5591   case Decl::CXXDestructor:
5592     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5593     break;
5594 
5595   case Decl::StaticAssert:
5596     // Nothing to do.
5597     break;
5598 
5599   // Objective-C Decls
5600 
5601   // Forward declarations, no (immediate) code generation.
5602   case Decl::ObjCInterface:
5603   case Decl::ObjCCategory:
5604     break;
5605 
5606   case Decl::ObjCProtocol: {
5607     auto *Proto = cast<ObjCProtocolDecl>(D);
5608     if (Proto->isThisDeclarationADefinition())
5609       ObjCRuntime->GenerateProtocol(Proto);
5610     break;
5611   }
5612 
5613   case Decl::ObjCCategoryImpl:
5614     // Categories have properties but don't support synthesize so we
5615     // can ignore them here.
5616     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5617     break;
5618 
5619   case Decl::ObjCImplementation: {
5620     auto *OMD = cast<ObjCImplementationDecl>(D);
5621     EmitObjCPropertyImplementations(OMD);
5622     EmitObjCIvarInitializations(OMD);
5623     ObjCRuntime->GenerateClass(OMD);
5624     // Emit global variable debug information.
5625     if (CGDebugInfo *DI = getModuleDebugInfo())
5626       if (getCodeGenOpts().hasReducedDebugInfo())
5627         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5628             OMD->getClassInterface()), OMD->getLocation());
5629     break;
5630   }
5631   case Decl::ObjCMethod: {
5632     auto *OMD = cast<ObjCMethodDecl>(D);
5633     // If this is not a prototype, emit the body.
5634     if (OMD->getBody())
5635       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5636     break;
5637   }
5638   case Decl::ObjCCompatibleAlias:
5639     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5640     break;
5641 
5642   case Decl::PragmaComment: {
5643     const auto *PCD = cast<PragmaCommentDecl>(D);
5644     switch (PCD->getCommentKind()) {
5645     case PCK_Unknown:
5646       llvm_unreachable("unexpected pragma comment kind");
5647     case PCK_Linker:
5648       AppendLinkerOptions(PCD->getArg());
5649       break;
5650     case PCK_Lib:
5651         AddDependentLib(PCD->getArg());
5652       break;
5653     case PCK_Compiler:
5654     case PCK_ExeStr:
5655     case PCK_User:
5656       break; // We ignore all of these.
5657     }
5658     break;
5659   }
5660 
5661   case Decl::PragmaDetectMismatch: {
5662     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5663     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5664     break;
5665   }
5666 
5667   case Decl::LinkageSpec:
5668     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5669     break;
5670 
5671   case Decl::FileScopeAsm: {
5672     // File-scope asm is ignored during device-side CUDA compilation.
5673     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5674       break;
5675     // File-scope asm is ignored during device-side OpenMP compilation.
5676     if (LangOpts.OpenMPIsDevice)
5677       break;
5678     // File-scope asm is ignored during device-side SYCL compilation.
5679     if (LangOpts.SYCLIsDevice)
5680       break;
5681     auto *AD = cast<FileScopeAsmDecl>(D);
5682     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5683     break;
5684   }
5685 
5686   case Decl::Import: {
5687     auto *Import = cast<ImportDecl>(D);
5688 
5689     // If we've already imported this module, we're done.
5690     if (!ImportedModules.insert(Import->getImportedModule()))
5691       break;
5692 
5693     // Emit debug information for direct imports.
5694     if (!Import->getImportedOwningModule()) {
5695       if (CGDebugInfo *DI = getModuleDebugInfo())
5696         DI->EmitImportDecl(*Import);
5697     }
5698 
5699     // Find all of the submodules and emit the module initializers.
5700     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5701     SmallVector<clang::Module *, 16> Stack;
5702     Visited.insert(Import->getImportedModule());
5703     Stack.push_back(Import->getImportedModule());
5704 
5705     while (!Stack.empty()) {
5706       clang::Module *Mod = Stack.pop_back_val();
5707       if (!EmittedModuleInitializers.insert(Mod).second)
5708         continue;
5709 
5710       for (auto *D : Context.getModuleInitializers(Mod))
5711         EmitTopLevelDecl(D);
5712 
5713       // Visit the submodules of this module.
5714       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5715                                              SubEnd = Mod->submodule_end();
5716            Sub != SubEnd; ++Sub) {
5717         // Skip explicit children; they need to be explicitly imported to emit
5718         // the initializers.
5719         if ((*Sub)->IsExplicit)
5720           continue;
5721 
5722         if (Visited.insert(*Sub).second)
5723           Stack.push_back(*Sub);
5724       }
5725     }
5726     break;
5727   }
5728 
5729   case Decl::Export:
5730     EmitDeclContext(cast<ExportDecl>(D));
5731     break;
5732 
5733   case Decl::OMPThreadPrivate:
5734     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5735     break;
5736 
5737   case Decl::OMPAllocate:
5738     break;
5739 
5740   case Decl::OMPDeclareReduction:
5741     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5742     break;
5743 
5744   case Decl::OMPDeclareMapper:
5745     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5746     break;
5747 
5748   case Decl::OMPRequires:
5749     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5750     break;
5751 
5752   case Decl::Typedef:
5753   case Decl::TypeAlias: // using foo = bar; [C++11]
5754     if (CGDebugInfo *DI = getModuleDebugInfo())
5755       DI->EmitAndRetainType(
5756           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5757     break;
5758 
5759   case Decl::Record:
5760     if (CGDebugInfo *DI = getModuleDebugInfo())
5761       if (cast<RecordDecl>(D)->getDefinition())
5762         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5763     break;
5764 
5765   case Decl::Enum:
5766     if (CGDebugInfo *DI = getModuleDebugInfo())
5767       if (cast<EnumDecl>(D)->getDefinition())
5768         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5769     break;
5770 
5771   default:
5772     // Make sure we handled everything we should, every other kind is a
5773     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5774     // function. Need to recode Decl::Kind to do that easily.
5775     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5776     break;
5777   }
5778 }
5779 
5780 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5781   // Do we need to generate coverage mapping?
5782   if (!CodeGenOpts.CoverageMapping)
5783     return;
5784   switch (D->getKind()) {
5785   case Decl::CXXConversion:
5786   case Decl::CXXMethod:
5787   case Decl::Function:
5788   case Decl::ObjCMethod:
5789   case Decl::CXXConstructor:
5790   case Decl::CXXDestructor: {
5791     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5792       break;
5793     SourceManager &SM = getContext().getSourceManager();
5794     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5795       break;
5796     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5797     if (I == DeferredEmptyCoverageMappingDecls.end())
5798       DeferredEmptyCoverageMappingDecls[D] = true;
5799     break;
5800   }
5801   default:
5802     break;
5803   };
5804 }
5805 
5806 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5807   // Do we need to generate coverage mapping?
5808   if (!CodeGenOpts.CoverageMapping)
5809     return;
5810   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5811     if (Fn->isTemplateInstantiation())
5812       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5813   }
5814   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5815   if (I == DeferredEmptyCoverageMappingDecls.end())
5816     DeferredEmptyCoverageMappingDecls[D] = false;
5817   else
5818     I->second = false;
5819 }
5820 
5821 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5822   // We call takeVector() here to avoid use-after-free.
5823   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5824   // we deserialize function bodies to emit coverage info for them, and that
5825   // deserializes more declarations. How should we handle that case?
5826   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5827     if (!Entry.second)
5828       continue;
5829     const Decl *D = Entry.first;
5830     switch (D->getKind()) {
5831     case Decl::CXXConversion:
5832     case Decl::CXXMethod:
5833     case Decl::Function:
5834     case Decl::ObjCMethod: {
5835       CodeGenPGO PGO(*this);
5836       GlobalDecl GD(cast<FunctionDecl>(D));
5837       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5838                                   getFunctionLinkage(GD));
5839       break;
5840     }
5841     case Decl::CXXConstructor: {
5842       CodeGenPGO PGO(*this);
5843       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5844       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5845                                   getFunctionLinkage(GD));
5846       break;
5847     }
5848     case Decl::CXXDestructor: {
5849       CodeGenPGO PGO(*this);
5850       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5851       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5852                                   getFunctionLinkage(GD));
5853       break;
5854     }
5855     default:
5856       break;
5857     };
5858   }
5859 }
5860 
5861 void CodeGenModule::EmitMainVoidAlias() {
5862   // In order to transition away from "__original_main" gracefully, emit an
5863   // alias for "main" in the no-argument case so that libc can detect when
5864   // new-style no-argument main is in used.
5865   if (llvm::Function *F = getModule().getFunction("main")) {
5866     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5867         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5868       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5869   }
5870 }
5871 
5872 /// Turns the given pointer into a constant.
5873 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5874                                           const void *Ptr) {
5875   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5876   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5877   return llvm::ConstantInt::get(i64, PtrInt);
5878 }
5879 
5880 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5881                                    llvm::NamedMDNode *&GlobalMetadata,
5882                                    GlobalDecl D,
5883                                    llvm::GlobalValue *Addr) {
5884   if (!GlobalMetadata)
5885     GlobalMetadata =
5886       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5887 
5888   // TODO: should we report variant information for ctors/dtors?
5889   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5890                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5891                                CGM.getLLVMContext(), D.getDecl()))};
5892   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5893 }
5894 
5895 /// For each function which is declared within an extern "C" region and marked
5896 /// as 'used', but has internal linkage, create an alias from the unmangled
5897 /// name to the mangled name if possible. People expect to be able to refer
5898 /// to such functions with an unmangled name from inline assembly within the
5899 /// same translation unit.
5900 void CodeGenModule::EmitStaticExternCAliases() {
5901   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5902     return;
5903   for (auto &I : StaticExternCValues) {
5904     IdentifierInfo *Name = I.first;
5905     llvm::GlobalValue *Val = I.second;
5906     if (Val && !getModule().getNamedValue(Name->getName()))
5907       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5908   }
5909 }
5910 
5911 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5912                                              GlobalDecl &Result) const {
5913   auto Res = Manglings.find(MangledName);
5914   if (Res == Manglings.end())
5915     return false;
5916   Result = Res->getValue();
5917   return true;
5918 }
5919 
5920 /// Emits metadata nodes associating all the global values in the
5921 /// current module with the Decls they came from.  This is useful for
5922 /// projects using IR gen as a subroutine.
5923 ///
5924 /// Since there's currently no way to associate an MDNode directly
5925 /// with an llvm::GlobalValue, we create a global named metadata
5926 /// with the name 'clang.global.decl.ptrs'.
5927 void CodeGenModule::EmitDeclMetadata() {
5928   llvm::NamedMDNode *GlobalMetadata = nullptr;
5929 
5930   for (auto &I : MangledDeclNames) {
5931     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5932     // Some mangled names don't necessarily have an associated GlobalValue
5933     // in this module, e.g. if we mangled it for DebugInfo.
5934     if (Addr)
5935       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5936   }
5937 }
5938 
5939 /// Emits metadata nodes for all the local variables in the current
5940 /// function.
5941 void CodeGenFunction::EmitDeclMetadata() {
5942   if (LocalDeclMap.empty()) return;
5943 
5944   llvm::LLVMContext &Context = getLLVMContext();
5945 
5946   // Find the unique metadata ID for this name.
5947   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5948 
5949   llvm::NamedMDNode *GlobalMetadata = nullptr;
5950 
5951   for (auto &I : LocalDeclMap) {
5952     const Decl *D = I.first;
5953     llvm::Value *Addr = I.second.getPointer();
5954     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5955       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5956       Alloca->setMetadata(
5957           DeclPtrKind, llvm::MDNode::get(
5958                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5959     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5960       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5961       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5962     }
5963   }
5964 }
5965 
5966 void CodeGenModule::EmitVersionIdentMetadata() {
5967   llvm::NamedMDNode *IdentMetadata =
5968     TheModule.getOrInsertNamedMetadata("llvm.ident");
5969   std::string Version = getClangFullVersion();
5970   llvm::LLVMContext &Ctx = TheModule.getContext();
5971 
5972   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5973   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5974 }
5975 
5976 void CodeGenModule::EmitCommandLineMetadata() {
5977   llvm::NamedMDNode *CommandLineMetadata =
5978     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5979   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5980   llvm::LLVMContext &Ctx = TheModule.getContext();
5981 
5982   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5983   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5984 }
5985 
5986 void CodeGenModule::EmitCoverageFile() {
5987   if (getCodeGenOpts().CoverageDataFile.empty() &&
5988       getCodeGenOpts().CoverageNotesFile.empty())
5989     return;
5990 
5991   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5992   if (!CUNode)
5993     return;
5994 
5995   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5996   llvm::LLVMContext &Ctx = TheModule.getContext();
5997   auto *CoverageDataFile =
5998       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5999   auto *CoverageNotesFile =
6000       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6001   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6002     llvm::MDNode *CU = CUNode->getOperand(i);
6003     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6004     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6005   }
6006 }
6007 
6008 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6009                                                        bool ForEH) {
6010   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6011   // FIXME: should we even be calling this method if RTTI is disabled
6012   // and it's not for EH?
6013   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6014       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6015        getTriple().isNVPTX()))
6016     return llvm::Constant::getNullValue(Int8PtrTy);
6017 
6018   if (ForEH && Ty->isObjCObjectPointerType() &&
6019       LangOpts.ObjCRuntime.isGNUFamily())
6020     return ObjCRuntime->GetEHType(Ty);
6021 
6022   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6023 }
6024 
6025 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6026   // Do not emit threadprivates in simd-only mode.
6027   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6028     return;
6029   for (auto RefExpr : D->varlists()) {
6030     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6031     bool PerformInit =
6032         VD->getAnyInitializer() &&
6033         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6034                                                         /*ForRef=*/false);
6035 
6036     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6037     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6038             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6039       CXXGlobalInits.push_back(InitFunction);
6040   }
6041 }
6042 
6043 llvm::Metadata *
6044 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6045                                             StringRef Suffix) {
6046   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6047   if (InternalId)
6048     return InternalId;
6049 
6050   if (isExternallyVisible(T->getLinkage())) {
6051     std::string OutName;
6052     llvm::raw_string_ostream Out(OutName);
6053     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6054     Out << Suffix;
6055 
6056     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6057   } else {
6058     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6059                                            llvm::ArrayRef<llvm::Metadata *>());
6060   }
6061 
6062   return InternalId;
6063 }
6064 
6065 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6066   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6067 }
6068 
6069 llvm::Metadata *
6070 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6071   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6072 }
6073 
6074 // Generalize pointer types to a void pointer with the qualifiers of the
6075 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6076 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6077 // 'void *'.
6078 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6079   if (!Ty->isPointerType())
6080     return Ty;
6081 
6082   return Ctx.getPointerType(
6083       QualType(Ctx.VoidTy).withCVRQualifiers(
6084           Ty->getPointeeType().getCVRQualifiers()));
6085 }
6086 
6087 // Apply type generalization to a FunctionType's return and argument types
6088 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6089   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6090     SmallVector<QualType, 8> GeneralizedParams;
6091     for (auto &Param : FnType->param_types())
6092       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6093 
6094     return Ctx.getFunctionType(
6095         GeneralizeType(Ctx, FnType->getReturnType()),
6096         GeneralizedParams, FnType->getExtProtoInfo());
6097   }
6098 
6099   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6100     return Ctx.getFunctionNoProtoType(
6101         GeneralizeType(Ctx, FnType->getReturnType()));
6102 
6103   llvm_unreachable("Encountered unknown FunctionType");
6104 }
6105 
6106 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6107   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6108                                       GeneralizedMetadataIdMap, ".generalized");
6109 }
6110 
6111 /// Returns whether this module needs the "all-vtables" type identifier.
6112 bool CodeGenModule::NeedAllVtablesTypeId() const {
6113   // Returns true if at least one of vtable-based CFI checkers is enabled and
6114   // is not in the trapping mode.
6115   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6116            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6117           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6118            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6119           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6120            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6121           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6122            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6123 }
6124 
6125 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6126                                           CharUnits Offset,
6127                                           const CXXRecordDecl *RD) {
6128   llvm::Metadata *MD =
6129       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6130   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6131 
6132   if (CodeGenOpts.SanitizeCfiCrossDso)
6133     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6134       VTable->addTypeMetadata(Offset.getQuantity(),
6135                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6136 
6137   if (NeedAllVtablesTypeId()) {
6138     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6139     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6140   }
6141 }
6142 
6143 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6144   if (!SanStats)
6145     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6146 
6147   return *SanStats;
6148 }
6149 llvm::Value *
6150 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6151                                                   CodeGenFunction &CGF) {
6152   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6153   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6154   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6155   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6156                                 "__translate_sampler_initializer"),
6157                                 {C});
6158 }
6159 
6160 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6161     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6162   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6163                                  /* forPointeeType= */ true);
6164 }
6165 
6166 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6167                                                  LValueBaseInfo *BaseInfo,
6168                                                  TBAAAccessInfo *TBAAInfo,
6169                                                  bool forPointeeType) {
6170   if (TBAAInfo)
6171     *TBAAInfo = getTBAAAccessInfo(T);
6172 
6173   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6174   // that doesn't return the information we need to compute BaseInfo.
6175 
6176   // Honor alignment typedef attributes even on incomplete types.
6177   // We also honor them straight for C++ class types, even as pointees;
6178   // there's an expressivity gap here.
6179   if (auto TT = T->getAs<TypedefType>()) {
6180     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6181       if (BaseInfo)
6182         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6183       return getContext().toCharUnitsFromBits(Align);
6184     }
6185   }
6186 
6187   bool AlignForArray = T->isArrayType();
6188 
6189   // Analyze the base element type, so we don't get confused by incomplete
6190   // array types.
6191   T = getContext().getBaseElementType(T);
6192 
6193   if (T->isIncompleteType()) {
6194     // We could try to replicate the logic from
6195     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6196     // type is incomplete, so it's impossible to test. We could try to reuse
6197     // getTypeAlignIfKnown, but that doesn't return the information we need
6198     // to set BaseInfo.  So just ignore the possibility that the alignment is
6199     // greater than one.
6200     if (BaseInfo)
6201       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6202     return CharUnits::One();
6203   }
6204 
6205   if (BaseInfo)
6206     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6207 
6208   CharUnits Alignment;
6209   const CXXRecordDecl *RD;
6210   if (T.getQualifiers().hasUnaligned()) {
6211     Alignment = CharUnits::One();
6212   } else if (forPointeeType && !AlignForArray &&
6213              (RD = T->getAsCXXRecordDecl())) {
6214     // For C++ class pointees, we don't know whether we're pointing at a
6215     // base or a complete object, so we generally need to use the
6216     // non-virtual alignment.
6217     Alignment = getClassPointerAlignment(RD);
6218   } else {
6219     Alignment = getContext().getTypeAlignInChars(T);
6220   }
6221 
6222   // Cap to the global maximum type alignment unless the alignment
6223   // was somehow explicit on the type.
6224   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6225     if (Alignment.getQuantity() > MaxAlign &&
6226         !getContext().isAlignmentRequired(T))
6227       Alignment = CharUnits::fromQuantity(MaxAlign);
6228   }
6229   return Alignment;
6230 }
6231 
6232 bool CodeGenModule::stopAutoInit() {
6233   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6234   if (StopAfter) {
6235     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6236     // used
6237     if (NumAutoVarInit >= StopAfter) {
6238       return true;
6239     }
6240     if (!NumAutoVarInit) {
6241       unsigned DiagID = getDiags().getCustomDiagID(
6242           DiagnosticsEngine::Warning,
6243           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6244           "number of times ftrivial-auto-var-init=%1 gets applied.");
6245       getDiags().Report(DiagID)
6246           << StopAfter
6247           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6248                       LangOptions::TrivialAutoVarInitKind::Zero
6249                   ? "zero"
6250                   : "pattern");
6251     }
6252     ++NumAutoVarInit;
6253   }
6254   return false;
6255 }
6256