1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/Basic/Diagnostic.h" 33 #include "clang/Basic/SourceManager.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/Basic/ConvertUTF.h" 36 #include "llvm/CallingConv.h" 37 #include "llvm/Module.h" 38 #include "llvm/Intrinsics.h" 39 #include "llvm/LLVMContext.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/Target/Mangler.h" 42 #include "llvm/Target/TargetData.h" 43 #include "llvm/Support/CallSite.h" 44 #include "llvm/Support/ErrorHandling.h" 45 using namespace clang; 46 using namespace CodeGen; 47 48 static const char AnnotationSection[] = "llvm.metadata"; 49 50 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 51 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 52 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 53 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 54 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 55 } 56 57 llvm_unreachable("invalid C++ ABI kind"); 58 return *CreateItaniumCXXABI(CGM); 59 } 60 61 62 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 63 llvm::Module &M, const llvm::TargetData &TD, 64 DiagnosticsEngine &diags) 65 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 66 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 67 ABI(createCXXABI(*this)), 68 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 69 TBAA(0), 70 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 71 DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0), 72 ConstantStringClassRef(0), NSConstantStringType(0), 73 VMContext(M.getContext()), 74 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 75 BlockObjectAssign(0), BlockObjectDispose(0), 76 BlockDescriptorType(0), GenericBlockLiteralType(0) { 77 if (Features.ObjC1) 78 createObjCRuntime(); 79 if (Features.OpenCL) 80 createOpenCLRuntime(); 81 if (Features.CUDA) 82 createCUDARuntime(); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info or coverage generation is enabled, create the CGDebugInfo 90 // object. 91 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 92 CodeGenOpts.EmitGcovNotes) 93 DebugInfo = new CGDebugInfo(*this); 94 95 Block.GlobalUniqueCount = 0; 96 97 if (C.getLangOptions().ObjCAutoRefCount) 98 ARCData = new ARCEntrypoints(); 99 RRData = new RREntrypoints(); 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 106 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 107 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 108 PointerAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 } 115 116 CodeGenModule::~CodeGenModule() { 117 delete ObjCRuntime; 118 delete OpenCLRuntime; 119 delete CUDARuntime; 120 delete &ABI; 121 delete TBAA; 122 delete DebugInfo; 123 delete ARCData; 124 delete RRData; 125 } 126 127 void CodeGenModule::createObjCRuntime() { 128 if (!Features.NeXTRuntime) 129 ObjCRuntime = CreateGNUObjCRuntime(*this); 130 else 131 ObjCRuntime = CreateMacObjCRuntime(*this); 132 } 133 134 void CodeGenModule::createOpenCLRuntime() { 135 OpenCLRuntime = new CGOpenCLRuntime(*this); 136 } 137 138 void CodeGenModule::createCUDARuntime() { 139 CUDARuntime = CreateNVCUDARuntime(*this); 140 } 141 142 void CodeGenModule::Release() { 143 EmitDeferred(); 144 EmitCXXGlobalInitFunc(); 145 EmitCXXGlobalDtorFunc(); 146 if (ObjCRuntime) 147 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 148 AddGlobalCtor(ObjCInitFunction); 149 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 150 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 151 EmitGlobalAnnotations(); 152 EmitLLVMUsed(); 153 154 SimplifyPersonality(); 155 156 if (getCodeGenOpts().EmitDeclMetadata) 157 EmitDeclMetadata(); 158 159 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 160 EmitCoverageFile(); 161 162 if (DebugInfo) 163 DebugInfo->finalize(); 164 } 165 166 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 167 // Make sure that this type is translated. 168 Types.UpdateCompletedType(TD); 169 if (DebugInfo) 170 DebugInfo->UpdateCompletedType(TD); 171 } 172 173 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 174 if (!TBAA) 175 return 0; 176 return TBAA->getTBAAInfo(QTy); 177 } 178 179 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 180 llvm::MDNode *TBAAInfo) { 181 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 182 } 183 184 bool CodeGenModule::isTargetDarwin() const { 185 return getContext().getTargetInfo().getTriple().isOSDarwin(); 186 } 187 188 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 189 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 190 getDiags().Report(Context.getFullLoc(loc), diagID); 191 } 192 193 /// ErrorUnsupported - Print out an error that codegen doesn't support the 194 /// specified stmt yet. 195 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 196 bool OmitOnError) { 197 if (OmitOnError && getDiags().hasErrorOccurred()) 198 return; 199 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 200 "cannot compile this %0 yet"); 201 std::string Msg = Type; 202 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 203 << Msg << S->getSourceRange(); 204 } 205 206 /// ErrorUnsupported - Print out an error that codegen doesn't support the 207 /// specified decl yet. 208 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 209 bool OmitOnError) { 210 if (OmitOnError && getDiags().hasErrorOccurred()) 211 return; 212 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 213 "cannot compile this %0 yet"); 214 std::string Msg = Type; 215 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 216 } 217 218 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 219 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 220 } 221 222 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 223 const NamedDecl *D) const { 224 // Internal definitions always have default visibility. 225 if (GV->hasLocalLinkage()) { 226 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 227 return; 228 } 229 230 // Set visibility for definitions. 231 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 232 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 233 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 234 } 235 236 /// Set the symbol visibility of type information (vtable and RTTI) 237 /// associated with the given type. 238 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 239 const CXXRecordDecl *RD, 240 TypeVisibilityKind TVK) const { 241 setGlobalVisibility(GV, RD); 242 243 if (!CodeGenOpts.HiddenWeakVTables) 244 return; 245 246 // We never want to drop the visibility for RTTI names. 247 if (TVK == TVK_ForRTTIName) 248 return; 249 250 // We want to drop the visibility to hidden for weak type symbols. 251 // This isn't possible if there might be unresolved references 252 // elsewhere that rely on this symbol being visible. 253 254 // This should be kept roughly in sync with setThunkVisibility 255 // in CGVTables.cpp. 256 257 // Preconditions. 258 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 259 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 260 return; 261 262 // Don't override an explicit visibility attribute. 263 if (RD->getExplicitVisibility()) 264 return; 265 266 switch (RD->getTemplateSpecializationKind()) { 267 // We have to disable the optimization if this is an EI definition 268 // because there might be EI declarations in other shared objects. 269 case TSK_ExplicitInstantiationDefinition: 270 case TSK_ExplicitInstantiationDeclaration: 271 return; 272 273 // Every use of a non-template class's type information has to emit it. 274 case TSK_Undeclared: 275 break; 276 277 // In theory, implicit instantiations can ignore the possibility of 278 // an explicit instantiation declaration because there necessarily 279 // must be an EI definition somewhere with default visibility. In 280 // practice, it's possible to have an explicit instantiation for 281 // an arbitrary template class, and linkers aren't necessarily able 282 // to deal with mixed-visibility symbols. 283 case TSK_ExplicitSpecialization: 284 case TSK_ImplicitInstantiation: 285 if (!CodeGenOpts.HiddenWeakTemplateVTables) 286 return; 287 break; 288 } 289 290 // If there's a key function, there may be translation units 291 // that don't have the key function's definition. But ignore 292 // this if we're emitting RTTI under -fno-rtti. 293 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 294 if (Context.getKeyFunction(RD)) 295 return; 296 } 297 298 // Otherwise, drop the visibility to hidden. 299 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 300 GV->setUnnamedAddr(true); 301 } 302 303 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 304 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 305 306 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 307 if (!Str.empty()) 308 return Str; 309 310 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 311 IdentifierInfo *II = ND->getIdentifier(); 312 assert(II && "Attempt to mangle unnamed decl."); 313 314 Str = II->getName(); 315 return Str; 316 } 317 318 llvm::SmallString<256> Buffer; 319 llvm::raw_svector_ostream Out(Buffer); 320 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 321 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 322 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 323 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 324 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 325 getCXXABI().getMangleContext().mangleBlock(BD, Out); 326 else 327 getCXXABI().getMangleContext().mangleName(ND, Out); 328 329 // Allocate space for the mangled name. 330 Out.flush(); 331 size_t Length = Buffer.size(); 332 char *Name = MangledNamesAllocator.Allocate<char>(Length); 333 std::copy(Buffer.begin(), Buffer.end(), Name); 334 335 Str = StringRef(Name, Length); 336 337 return Str; 338 } 339 340 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 341 const BlockDecl *BD) { 342 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 343 const Decl *D = GD.getDecl(); 344 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 345 if (D == 0) 346 MangleCtx.mangleGlobalBlock(BD, Out); 347 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 348 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 349 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 350 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 351 else 352 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 353 } 354 355 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 356 return getModule().getNamedValue(Name); 357 } 358 359 /// AddGlobalCtor - Add a function to the list that will be called before 360 /// main() runs. 361 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 362 // FIXME: Type coercion of void()* types. 363 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 364 } 365 366 /// AddGlobalDtor - Add a function to the list that will be called 367 /// when the module is unloaded. 368 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 369 // FIXME: Type coercion of void()* types. 370 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 371 } 372 373 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 374 // Ctor function type is void()*. 375 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 376 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 377 378 // Get the type of a ctor entry, { i32, void ()* }. 379 llvm::StructType *CtorStructTy = 380 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 381 llvm::PointerType::getUnqual(CtorFTy), NULL); 382 383 // Construct the constructor and destructor arrays. 384 std::vector<llvm::Constant*> Ctors; 385 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 386 std::vector<llvm::Constant*> S; 387 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 388 I->second, false)); 389 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 390 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 391 } 392 393 if (!Ctors.empty()) { 394 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 395 new llvm::GlobalVariable(TheModule, AT, false, 396 llvm::GlobalValue::AppendingLinkage, 397 llvm::ConstantArray::get(AT, Ctors), 398 GlobalName); 399 } 400 } 401 402 llvm::GlobalValue::LinkageTypes 403 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 404 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 405 406 if (Linkage == GVA_Internal) 407 return llvm::Function::InternalLinkage; 408 409 if (D->hasAttr<DLLExportAttr>()) 410 return llvm::Function::DLLExportLinkage; 411 412 if (D->hasAttr<WeakAttr>()) 413 return llvm::Function::WeakAnyLinkage; 414 415 // In C99 mode, 'inline' functions are guaranteed to have a strong 416 // definition somewhere else, so we can use available_externally linkage. 417 if (Linkage == GVA_C99Inline) 418 return llvm::Function::AvailableExternallyLinkage; 419 420 // Note that Apple's kernel linker doesn't support symbol 421 // coalescing, so we need to avoid linkonce and weak linkages there. 422 // Normally, this means we just map to internal, but for explicit 423 // instantiations we'll map to external. 424 425 // In C++, the compiler has to emit a definition in every translation unit 426 // that references the function. We should use linkonce_odr because 427 // a) if all references in this translation unit are optimized away, we 428 // don't need to codegen it. b) if the function persists, it needs to be 429 // merged with other definitions. c) C++ has the ODR, so we know the 430 // definition is dependable. 431 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 432 return !Context.getLangOptions().AppleKext 433 ? llvm::Function::LinkOnceODRLinkage 434 : llvm::Function::InternalLinkage; 435 436 // An explicit instantiation of a template has weak linkage, since 437 // explicit instantiations can occur in multiple translation units 438 // and must all be equivalent. However, we are not allowed to 439 // throw away these explicit instantiations. 440 if (Linkage == GVA_ExplicitTemplateInstantiation) 441 return !Context.getLangOptions().AppleKext 442 ? llvm::Function::WeakODRLinkage 443 : llvm::Function::ExternalLinkage; 444 445 // Otherwise, we have strong external linkage. 446 assert(Linkage == GVA_StrongExternal); 447 return llvm::Function::ExternalLinkage; 448 } 449 450 451 /// SetFunctionDefinitionAttributes - Set attributes for a global. 452 /// 453 /// FIXME: This is currently only done for aliases and functions, but not for 454 /// variables (these details are set in EmitGlobalVarDefinition for variables). 455 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 456 llvm::GlobalValue *GV) { 457 SetCommonAttributes(D, GV); 458 } 459 460 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 461 const CGFunctionInfo &Info, 462 llvm::Function *F) { 463 unsigned CallingConv; 464 AttributeListType AttributeList; 465 ConstructAttributeList(Info, D, AttributeList, CallingConv); 466 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 467 AttributeList.size())); 468 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 469 } 470 471 /// Determines whether the language options require us to model 472 /// unwind exceptions. We treat -fexceptions as mandating this 473 /// except under the fragile ObjC ABI with only ObjC exceptions 474 /// enabled. This means, for example, that C with -fexceptions 475 /// enables this. 476 static bool hasUnwindExceptions(const LangOptions &Features) { 477 // If exceptions are completely disabled, obviously this is false. 478 if (!Features.Exceptions) return false; 479 480 // If C++ exceptions are enabled, this is true. 481 if (Features.CXXExceptions) return true; 482 483 // If ObjC exceptions are enabled, this depends on the ABI. 484 if (Features.ObjCExceptions) { 485 if (!Features.ObjCNonFragileABI) return false; 486 } 487 488 return true; 489 } 490 491 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 492 llvm::Function *F) { 493 if (CodeGenOpts.UnwindTables) 494 F->setHasUWTable(); 495 496 if (!hasUnwindExceptions(Features)) 497 F->addFnAttr(llvm::Attribute::NoUnwind); 498 499 if (D->hasAttr<NakedAttr>()) { 500 // Naked implies noinline: we should not be inlining such functions. 501 F->addFnAttr(llvm::Attribute::Naked); 502 F->addFnAttr(llvm::Attribute::NoInline); 503 } 504 505 if (D->hasAttr<NoInlineAttr>()) 506 F->addFnAttr(llvm::Attribute::NoInline); 507 508 // (noinline wins over always_inline, and we can't specify both in IR) 509 if (D->hasAttr<AlwaysInlineAttr>() && 510 !F->hasFnAttr(llvm::Attribute::NoInline)) 511 F->addFnAttr(llvm::Attribute::AlwaysInline); 512 513 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 514 F->setUnnamedAddr(true); 515 516 if (Features.getStackProtector() == LangOptions::SSPOn) 517 F->addFnAttr(llvm::Attribute::StackProtect); 518 else if (Features.getStackProtector() == LangOptions::SSPReq) 519 F->addFnAttr(llvm::Attribute::StackProtectReq); 520 521 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 522 if (alignment) 523 F->setAlignment(alignment); 524 525 // C++ ABI requires 2-byte alignment for member functions. 526 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 527 F->setAlignment(2); 528 } 529 530 void CodeGenModule::SetCommonAttributes(const Decl *D, 531 llvm::GlobalValue *GV) { 532 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 533 setGlobalVisibility(GV, ND); 534 else 535 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 536 537 if (D->hasAttr<UsedAttr>()) 538 AddUsedGlobal(GV); 539 540 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 541 GV->setSection(SA->getName()); 542 543 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 544 } 545 546 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 547 llvm::Function *F, 548 const CGFunctionInfo &FI) { 549 SetLLVMFunctionAttributes(D, FI, F); 550 SetLLVMFunctionAttributesForDefinition(D, F); 551 552 F->setLinkage(llvm::Function::InternalLinkage); 553 554 SetCommonAttributes(D, F); 555 } 556 557 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 558 llvm::Function *F, 559 bool IsIncompleteFunction) { 560 if (unsigned IID = F->getIntrinsicID()) { 561 // If this is an intrinsic function, set the function's attributes 562 // to the intrinsic's attributes. 563 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 564 return; 565 } 566 567 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 568 569 if (!IsIncompleteFunction) 570 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 571 572 // Only a few attributes are set on declarations; these may later be 573 // overridden by a definition. 574 575 if (FD->hasAttr<DLLImportAttr>()) { 576 F->setLinkage(llvm::Function::DLLImportLinkage); 577 } else if (FD->hasAttr<WeakAttr>() || 578 FD->isWeakImported()) { 579 // "extern_weak" is overloaded in LLVM; we probably should have 580 // separate linkage types for this. 581 F->setLinkage(llvm::Function::ExternalWeakLinkage); 582 } else { 583 F->setLinkage(llvm::Function::ExternalLinkage); 584 585 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 586 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 587 F->setVisibility(GetLLVMVisibility(LV.visibility())); 588 } 589 } 590 591 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 592 F->setSection(SA->getName()); 593 } 594 595 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 596 assert(!GV->isDeclaration() && 597 "Only globals with definition can force usage."); 598 LLVMUsed.push_back(GV); 599 } 600 601 void CodeGenModule::EmitLLVMUsed() { 602 // Don't create llvm.used if there is no need. 603 if (LLVMUsed.empty()) 604 return; 605 606 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 607 608 // Convert LLVMUsed to what ConstantArray needs. 609 std::vector<llvm::Constant*> UsedArray; 610 UsedArray.resize(LLVMUsed.size()); 611 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 612 UsedArray[i] = 613 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 614 i8PTy); 615 } 616 617 if (UsedArray.empty()) 618 return; 619 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 620 621 llvm::GlobalVariable *GV = 622 new llvm::GlobalVariable(getModule(), ATy, false, 623 llvm::GlobalValue::AppendingLinkage, 624 llvm::ConstantArray::get(ATy, UsedArray), 625 "llvm.used"); 626 627 GV->setSection("llvm.metadata"); 628 } 629 630 void CodeGenModule::EmitDeferred() { 631 // Emit code for any potentially referenced deferred decls. Since a 632 // previously unused static decl may become used during the generation of code 633 // for a static function, iterate until no changes are made. 634 635 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 636 if (!DeferredVTables.empty()) { 637 const CXXRecordDecl *RD = DeferredVTables.back(); 638 DeferredVTables.pop_back(); 639 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 640 continue; 641 } 642 643 GlobalDecl D = DeferredDeclsToEmit.back(); 644 DeferredDeclsToEmit.pop_back(); 645 646 // Check to see if we've already emitted this. This is necessary 647 // for a couple of reasons: first, decls can end up in the 648 // deferred-decls queue multiple times, and second, decls can end 649 // up with definitions in unusual ways (e.g. by an extern inline 650 // function acquiring a strong function redefinition). Just 651 // ignore these cases. 652 // 653 // TODO: That said, looking this up multiple times is very wasteful. 654 StringRef Name = getMangledName(D); 655 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 656 assert(CGRef && "Deferred decl wasn't referenced?"); 657 658 if (!CGRef->isDeclaration()) 659 continue; 660 661 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 662 // purposes an alias counts as a definition. 663 if (isa<llvm::GlobalAlias>(CGRef)) 664 continue; 665 666 // Otherwise, emit the definition and move on to the next one. 667 EmitGlobalDefinition(D); 668 } 669 } 670 671 void CodeGenModule::EmitGlobalAnnotations() { 672 if (Annotations.empty()) 673 return; 674 675 // Create a new global variable for the ConstantStruct in the Module. 676 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 677 Annotations[0]->getType(), Annotations.size()), Annotations); 678 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 679 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 680 "llvm.global.annotations"); 681 gv->setSection(AnnotationSection); 682 } 683 684 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 685 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 686 if (i != AnnotationStrings.end()) 687 return i->second; 688 689 // Not found yet, create a new global. 690 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 691 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 692 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 693 gv->setSection(AnnotationSection); 694 gv->setUnnamedAddr(true); 695 AnnotationStrings[Str] = gv; 696 return gv; 697 } 698 699 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 700 SourceManager &SM = getContext().getSourceManager(); 701 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 702 if (PLoc.isValid()) 703 return EmitAnnotationString(PLoc.getFilename()); 704 return EmitAnnotationString(SM.getBufferName(Loc)); 705 } 706 707 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 708 SourceManager &SM = getContext().getSourceManager(); 709 PresumedLoc PLoc = SM.getPresumedLoc(L); 710 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 711 SM.getExpansionLineNumber(L); 712 return llvm::ConstantInt::get(Int32Ty, LineNo); 713 } 714 715 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 716 const AnnotateAttr *AA, 717 SourceLocation L) { 718 // Get the globals for file name, annotation, and the line number. 719 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 720 *UnitGV = EmitAnnotationUnit(L), 721 *LineNoCst = EmitAnnotationLineNo(L); 722 723 // Create the ConstantStruct for the global annotation. 724 llvm::Constant *Fields[4] = { 725 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 726 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 727 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 728 LineNoCst 729 }; 730 return llvm::ConstantStruct::getAnon(Fields); 731 } 732 733 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 734 llvm::GlobalValue *GV) { 735 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 736 // Get the struct elements for these annotations. 737 for (specific_attr_iterator<AnnotateAttr> 738 ai = D->specific_attr_begin<AnnotateAttr>(), 739 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 740 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 741 } 742 743 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 744 // Never defer when EmitAllDecls is specified. 745 if (Features.EmitAllDecls) 746 return false; 747 748 return !getContext().DeclMustBeEmitted(Global); 749 } 750 751 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 752 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 753 assert(AA && "No alias?"); 754 755 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 756 757 // See if there is already something with the target's name in the module. 758 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 759 760 llvm::Constant *Aliasee; 761 if (isa<llvm::FunctionType>(DeclTy)) 762 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 763 /*ForVTable=*/false); 764 else 765 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 766 llvm::PointerType::getUnqual(DeclTy), 0); 767 if (!Entry) { 768 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 769 F->setLinkage(llvm::Function::ExternalWeakLinkage); 770 WeakRefReferences.insert(F); 771 } 772 773 return Aliasee; 774 } 775 776 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 777 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 778 779 // Weak references don't produce any output by themselves. 780 if (Global->hasAttr<WeakRefAttr>()) 781 return; 782 783 // If this is an alias definition (which otherwise looks like a declaration) 784 // emit it now. 785 if (Global->hasAttr<AliasAttr>()) 786 return EmitAliasDefinition(GD); 787 788 // If this is CUDA, be selective about which declarations we emit. 789 if (Features.CUDA) { 790 if (CodeGenOpts.CUDAIsDevice) { 791 if (!Global->hasAttr<CUDADeviceAttr>() && 792 !Global->hasAttr<CUDAGlobalAttr>() && 793 !Global->hasAttr<CUDAConstantAttr>() && 794 !Global->hasAttr<CUDASharedAttr>()) 795 return; 796 } else { 797 if (!Global->hasAttr<CUDAHostAttr>() && ( 798 Global->hasAttr<CUDADeviceAttr>() || 799 Global->hasAttr<CUDAConstantAttr>() || 800 Global->hasAttr<CUDASharedAttr>())) 801 return; 802 } 803 } 804 805 // Ignore declarations, they will be emitted on their first use. 806 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 807 // Forward declarations are emitted lazily on first use. 808 if (!FD->doesThisDeclarationHaveABody()) { 809 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 810 return; 811 812 const FunctionDecl *InlineDefinition = 0; 813 FD->getBody(InlineDefinition); 814 815 StringRef MangledName = getMangledName(GD); 816 llvm::StringMap<GlobalDecl>::iterator DDI = 817 DeferredDecls.find(MangledName); 818 if (DDI != DeferredDecls.end()) 819 DeferredDecls.erase(DDI); 820 EmitGlobalDefinition(InlineDefinition); 821 return; 822 } 823 } else { 824 const VarDecl *VD = cast<VarDecl>(Global); 825 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 826 827 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 828 return; 829 } 830 831 // Defer code generation when possible if this is a static definition, inline 832 // function etc. These we only want to emit if they are used. 833 if (!MayDeferGeneration(Global)) { 834 // Emit the definition if it can't be deferred. 835 EmitGlobalDefinition(GD); 836 return; 837 } 838 839 // If we're deferring emission of a C++ variable with an 840 // initializer, remember the order in which it appeared in the file. 841 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 842 cast<VarDecl>(Global)->hasInit()) { 843 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 844 CXXGlobalInits.push_back(0); 845 } 846 847 // If the value has already been used, add it directly to the 848 // DeferredDeclsToEmit list. 849 StringRef MangledName = getMangledName(GD); 850 if (GetGlobalValue(MangledName)) 851 DeferredDeclsToEmit.push_back(GD); 852 else { 853 // Otherwise, remember that we saw a deferred decl with this name. The 854 // first use of the mangled name will cause it to move into 855 // DeferredDeclsToEmit. 856 DeferredDecls[MangledName] = GD; 857 } 858 } 859 860 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 861 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 862 863 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 864 Context.getSourceManager(), 865 "Generating code for declaration"); 866 867 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 868 // At -O0, don't generate IR for functions with available_externally 869 // linkage. 870 if (CodeGenOpts.OptimizationLevel == 0 && 871 !Function->hasAttr<AlwaysInlineAttr>() && 872 getFunctionLinkage(Function) 873 == llvm::Function::AvailableExternallyLinkage) 874 return; 875 876 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 877 // Make sure to emit the definition(s) before we emit the thunks. 878 // This is necessary for the generation of certain thunks. 879 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 880 EmitCXXConstructor(CD, GD.getCtorType()); 881 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 882 EmitCXXDestructor(DD, GD.getDtorType()); 883 else 884 EmitGlobalFunctionDefinition(GD); 885 886 if (Method->isVirtual()) 887 getVTables().EmitThunks(GD); 888 889 return; 890 } 891 892 return EmitGlobalFunctionDefinition(GD); 893 } 894 895 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 896 return EmitGlobalVarDefinition(VD); 897 898 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 899 } 900 901 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 902 /// module, create and return an llvm Function with the specified type. If there 903 /// is something in the module with the specified name, return it potentially 904 /// bitcasted to the right type. 905 /// 906 /// If D is non-null, it specifies a decl that correspond to this. This is used 907 /// to set the attributes on the function when it is first created. 908 llvm::Constant * 909 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 910 llvm::Type *Ty, 911 GlobalDecl D, bool ForVTable, 912 llvm::Attributes ExtraAttrs) { 913 // Lookup the entry, lazily creating it if necessary. 914 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 915 if (Entry) { 916 if (WeakRefReferences.count(Entry)) { 917 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 918 if (FD && !FD->hasAttr<WeakAttr>()) 919 Entry->setLinkage(llvm::Function::ExternalLinkage); 920 921 WeakRefReferences.erase(Entry); 922 } 923 924 if (Entry->getType()->getElementType() == Ty) 925 return Entry; 926 927 // Make sure the result is of the correct type. 928 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 929 } 930 931 // This function doesn't have a complete type (for example, the return 932 // type is an incomplete struct). Use a fake type instead, and make 933 // sure not to try to set attributes. 934 bool IsIncompleteFunction = false; 935 936 llvm::FunctionType *FTy; 937 if (isa<llvm::FunctionType>(Ty)) { 938 FTy = cast<llvm::FunctionType>(Ty); 939 } else { 940 FTy = llvm::FunctionType::get(VoidTy, false); 941 IsIncompleteFunction = true; 942 } 943 944 llvm::Function *F = llvm::Function::Create(FTy, 945 llvm::Function::ExternalLinkage, 946 MangledName, &getModule()); 947 assert(F->getName() == MangledName && "name was uniqued!"); 948 if (D.getDecl()) 949 SetFunctionAttributes(D, F, IsIncompleteFunction); 950 if (ExtraAttrs != llvm::Attribute::None) 951 F->addFnAttr(ExtraAttrs); 952 953 // This is the first use or definition of a mangled name. If there is a 954 // deferred decl with this name, remember that we need to emit it at the end 955 // of the file. 956 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 957 if (DDI != DeferredDecls.end()) { 958 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 959 // list, and remove it from DeferredDecls (since we don't need it anymore). 960 DeferredDeclsToEmit.push_back(DDI->second); 961 DeferredDecls.erase(DDI); 962 963 // Otherwise, there are cases we have to worry about where we're 964 // using a declaration for which we must emit a definition but where 965 // we might not find a top-level definition: 966 // - member functions defined inline in their classes 967 // - friend functions defined inline in some class 968 // - special member functions with implicit definitions 969 // If we ever change our AST traversal to walk into class methods, 970 // this will be unnecessary. 971 // 972 // We also don't emit a definition for a function if it's going to be an entry 973 // in a vtable, unless it's already marked as used. 974 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 975 // Look for a declaration that's lexically in a record. 976 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 977 do { 978 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 979 if (FD->isImplicit() && !ForVTable) { 980 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 981 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 982 break; 983 } else if (FD->doesThisDeclarationHaveABody()) { 984 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 985 break; 986 } 987 } 988 FD = FD->getPreviousDeclaration(); 989 } while (FD); 990 } 991 992 // Make sure the result is of the requested type. 993 if (!IsIncompleteFunction) { 994 assert(F->getType()->getElementType() == Ty); 995 return F; 996 } 997 998 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 999 return llvm::ConstantExpr::getBitCast(F, PTy); 1000 } 1001 1002 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1003 /// non-null, then this function will use the specified type if it has to 1004 /// create it (this occurs when we see a definition of the function). 1005 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1006 llvm::Type *Ty, 1007 bool ForVTable) { 1008 // If there was no specific requested type, just convert it now. 1009 if (!Ty) 1010 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1011 1012 StringRef MangledName = getMangledName(GD); 1013 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1014 } 1015 1016 /// CreateRuntimeFunction - Create a new runtime function with the specified 1017 /// type and name. 1018 llvm::Constant * 1019 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1020 StringRef Name, 1021 llvm::Attributes ExtraAttrs) { 1022 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1023 ExtraAttrs); 1024 } 1025 1026 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 1027 bool ConstantInit) { 1028 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 1029 return false; 1030 1031 if (Context.getLangOptions().CPlusPlus) { 1032 if (const RecordType *Record 1033 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 1034 return ConstantInit && 1035 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 1036 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 1037 } 1038 1039 return true; 1040 } 1041 1042 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1043 /// create and return an llvm GlobalVariable with the specified type. If there 1044 /// is something in the module with the specified name, return it potentially 1045 /// bitcasted to the right type. 1046 /// 1047 /// If D is non-null, it specifies a decl that correspond to this. This is used 1048 /// to set the attributes on the global when it is first created. 1049 llvm::Constant * 1050 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1051 llvm::PointerType *Ty, 1052 const VarDecl *D, 1053 bool UnnamedAddr) { 1054 // Lookup the entry, lazily creating it if necessary. 1055 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1056 if (Entry) { 1057 if (WeakRefReferences.count(Entry)) { 1058 if (D && !D->hasAttr<WeakAttr>()) 1059 Entry->setLinkage(llvm::Function::ExternalLinkage); 1060 1061 WeakRefReferences.erase(Entry); 1062 } 1063 1064 if (UnnamedAddr) 1065 Entry->setUnnamedAddr(true); 1066 1067 if (Entry->getType() == Ty) 1068 return Entry; 1069 1070 // Make sure the result is of the correct type. 1071 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1072 } 1073 1074 // This is the first use or definition of a mangled name. If there is a 1075 // deferred decl with this name, remember that we need to emit it at the end 1076 // of the file. 1077 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1078 if (DDI != DeferredDecls.end()) { 1079 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1080 // list, and remove it from DeferredDecls (since we don't need it anymore). 1081 DeferredDeclsToEmit.push_back(DDI->second); 1082 DeferredDecls.erase(DDI); 1083 } 1084 1085 llvm::GlobalVariable *GV = 1086 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1087 llvm::GlobalValue::ExternalLinkage, 1088 0, MangledName, 0, 1089 false, Ty->getAddressSpace()); 1090 1091 // Handle things which are present even on external declarations. 1092 if (D) { 1093 // FIXME: This code is overly simple and should be merged with other global 1094 // handling. 1095 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1096 1097 // Set linkage and visibility in case we never see a definition. 1098 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1099 if (LV.linkage() != ExternalLinkage) { 1100 // Don't set internal linkage on declarations. 1101 } else { 1102 if (D->hasAttr<DLLImportAttr>()) 1103 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1104 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1105 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1106 1107 // Set visibility on a declaration only if it's explicit. 1108 if (LV.visibilityExplicit()) 1109 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1110 } 1111 1112 GV->setThreadLocal(D->isThreadSpecified()); 1113 } 1114 1115 return GV; 1116 } 1117 1118 1119 llvm::GlobalVariable * 1120 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1121 llvm::Type *Ty, 1122 llvm::GlobalValue::LinkageTypes Linkage) { 1123 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1124 llvm::GlobalVariable *OldGV = 0; 1125 1126 1127 if (GV) { 1128 // Check if the variable has the right type. 1129 if (GV->getType()->getElementType() == Ty) 1130 return GV; 1131 1132 // Because C++ name mangling, the only way we can end up with an already 1133 // existing global with the same name is if it has been declared extern "C". 1134 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1135 OldGV = GV; 1136 } 1137 1138 // Create a new variable. 1139 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1140 Linkage, 0, Name); 1141 1142 if (OldGV) { 1143 // Replace occurrences of the old variable if needed. 1144 GV->takeName(OldGV); 1145 1146 if (!OldGV->use_empty()) { 1147 llvm::Constant *NewPtrForOldDecl = 1148 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1149 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1150 } 1151 1152 OldGV->eraseFromParent(); 1153 } 1154 1155 return GV; 1156 } 1157 1158 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1159 /// given global variable. If Ty is non-null and if the global doesn't exist, 1160 /// then it will be greated with the specified type instead of whatever the 1161 /// normal requested type would be. 1162 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1163 llvm::Type *Ty) { 1164 assert(D->hasGlobalStorage() && "Not a global variable"); 1165 QualType ASTTy = D->getType(); 1166 if (Ty == 0) 1167 Ty = getTypes().ConvertTypeForMem(ASTTy); 1168 1169 llvm::PointerType *PTy = 1170 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1171 1172 StringRef MangledName = getMangledName(D); 1173 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1174 } 1175 1176 /// CreateRuntimeVariable - Create a new runtime global variable with the 1177 /// specified type and name. 1178 llvm::Constant * 1179 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1180 StringRef Name) { 1181 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1182 true); 1183 } 1184 1185 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1186 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1187 1188 if (MayDeferGeneration(D)) { 1189 // If we have not seen a reference to this variable yet, place it 1190 // into the deferred declarations table to be emitted if needed 1191 // later. 1192 StringRef MangledName = getMangledName(D); 1193 if (!GetGlobalValue(MangledName)) { 1194 DeferredDecls[MangledName] = D; 1195 return; 1196 } 1197 } 1198 1199 // The tentative definition is the only definition. 1200 EmitGlobalVarDefinition(D); 1201 } 1202 1203 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1204 if (DefinitionRequired) 1205 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1206 } 1207 1208 llvm::GlobalVariable::LinkageTypes 1209 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1210 if (RD->getLinkage() != ExternalLinkage) 1211 return llvm::GlobalVariable::InternalLinkage; 1212 1213 if (const CXXMethodDecl *KeyFunction 1214 = RD->getASTContext().getKeyFunction(RD)) { 1215 // If this class has a key function, use that to determine the linkage of 1216 // the vtable. 1217 const FunctionDecl *Def = 0; 1218 if (KeyFunction->hasBody(Def)) 1219 KeyFunction = cast<CXXMethodDecl>(Def); 1220 1221 switch (KeyFunction->getTemplateSpecializationKind()) { 1222 case TSK_Undeclared: 1223 case TSK_ExplicitSpecialization: 1224 // When compiling with optimizations turned on, we emit all vtables, 1225 // even if the key function is not defined in the current translation 1226 // unit. If this is the case, use available_externally linkage. 1227 if (!Def && CodeGenOpts.OptimizationLevel) 1228 return llvm::GlobalVariable::AvailableExternallyLinkage; 1229 1230 if (KeyFunction->isInlined()) 1231 return !Context.getLangOptions().AppleKext ? 1232 llvm::GlobalVariable::LinkOnceODRLinkage : 1233 llvm::Function::InternalLinkage; 1234 1235 return llvm::GlobalVariable::ExternalLinkage; 1236 1237 case TSK_ImplicitInstantiation: 1238 return !Context.getLangOptions().AppleKext ? 1239 llvm::GlobalVariable::LinkOnceODRLinkage : 1240 llvm::Function::InternalLinkage; 1241 1242 case TSK_ExplicitInstantiationDefinition: 1243 return !Context.getLangOptions().AppleKext ? 1244 llvm::GlobalVariable::WeakODRLinkage : 1245 llvm::Function::InternalLinkage; 1246 1247 case TSK_ExplicitInstantiationDeclaration: 1248 // FIXME: Use available_externally linkage. However, this currently 1249 // breaks LLVM's build due to undefined symbols. 1250 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1251 return !Context.getLangOptions().AppleKext ? 1252 llvm::GlobalVariable::LinkOnceODRLinkage : 1253 llvm::Function::InternalLinkage; 1254 } 1255 } 1256 1257 if (Context.getLangOptions().AppleKext) 1258 return llvm::Function::InternalLinkage; 1259 1260 switch (RD->getTemplateSpecializationKind()) { 1261 case TSK_Undeclared: 1262 case TSK_ExplicitSpecialization: 1263 case TSK_ImplicitInstantiation: 1264 // FIXME: Use available_externally linkage. However, this currently 1265 // breaks LLVM's build due to undefined symbols. 1266 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1267 case TSK_ExplicitInstantiationDeclaration: 1268 return llvm::GlobalVariable::LinkOnceODRLinkage; 1269 1270 case TSK_ExplicitInstantiationDefinition: 1271 return llvm::GlobalVariable::WeakODRLinkage; 1272 } 1273 1274 // Silence GCC warning. 1275 return llvm::GlobalVariable::LinkOnceODRLinkage; 1276 } 1277 1278 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1279 return Context.toCharUnitsFromBits( 1280 TheTargetData.getTypeStoreSizeInBits(Ty)); 1281 } 1282 1283 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1284 llvm::Constant *Init = 0; 1285 QualType ASTTy = D->getType(); 1286 bool NonConstInit = false; 1287 1288 const Expr *InitExpr = D->getAnyInitializer(); 1289 1290 if (!InitExpr) { 1291 // This is a tentative definition; tentative definitions are 1292 // implicitly initialized with { 0 }. 1293 // 1294 // Note that tentative definitions are only emitted at the end of 1295 // a translation unit, so they should never have incomplete 1296 // type. In addition, EmitTentativeDefinition makes sure that we 1297 // never attempt to emit a tentative definition if a real one 1298 // exists. A use may still exists, however, so we still may need 1299 // to do a RAUW. 1300 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1301 Init = EmitNullConstant(D->getType()); 1302 } else { 1303 Init = EmitConstantExpr(InitExpr, D->getType()); 1304 if (!Init) { 1305 QualType T = InitExpr->getType(); 1306 if (D->getType()->isReferenceType()) 1307 T = D->getType(); 1308 1309 if (getLangOptions().CPlusPlus) { 1310 Init = EmitNullConstant(T); 1311 NonConstInit = true; 1312 } else { 1313 ErrorUnsupported(D, "static initializer"); 1314 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1315 } 1316 } else { 1317 // We don't need an initializer, so remove the entry for the delayed 1318 // initializer position (just in case this entry was delayed). 1319 if (getLangOptions().CPlusPlus) 1320 DelayedCXXInitPosition.erase(D); 1321 } 1322 } 1323 1324 llvm::Type* InitType = Init->getType(); 1325 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1326 1327 // Strip off a bitcast if we got one back. 1328 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1329 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1330 // all zero index gep. 1331 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1332 Entry = CE->getOperand(0); 1333 } 1334 1335 // Entry is now either a Function or GlobalVariable. 1336 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1337 1338 // We have a definition after a declaration with the wrong type. 1339 // We must make a new GlobalVariable* and update everything that used OldGV 1340 // (a declaration or tentative definition) with the new GlobalVariable* 1341 // (which will be a definition). 1342 // 1343 // This happens if there is a prototype for a global (e.g. 1344 // "extern int x[];") and then a definition of a different type (e.g. 1345 // "int x[10];"). This also happens when an initializer has a different type 1346 // from the type of the global (this happens with unions). 1347 if (GV == 0 || 1348 GV->getType()->getElementType() != InitType || 1349 GV->getType()->getAddressSpace() != 1350 getContext().getTargetAddressSpace(ASTTy)) { 1351 1352 // Move the old entry aside so that we'll create a new one. 1353 Entry->setName(StringRef()); 1354 1355 // Make a new global with the correct type, this is now guaranteed to work. 1356 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1357 1358 // Replace all uses of the old global with the new global 1359 llvm::Constant *NewPtrForOldDecl = 1360 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1361 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1362 1363 // Erase the old global, since it is no longer used. 1364 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1365 } 1366 1367 if (D->hasAttr<AnnotateAttr>()) 1368 AddGlobalAnnotations(D, GV); 1369 1370 GV->setInitializer(Init); 1371 1372 // If it is safe to mark the global 'constant', do so now. 1373 GV->setConstant(false); 1374 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1375 GV->setConstant(true); 1376 1377 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1378 1379 // Set the llvm linkage type as appropriate. 1380 llvm::GlobalValue::LinkageTypes Linkage = 1381 GetLLVMLinkageVarDefinition(D, GV); 1382 GV->setLinkage(Linkage); 1383 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1384 // common vars aren't constant even if declared const. 1385 GV->setConstant(false); 1386 1387 SetCommonAttributes(D, GV); 1388 1389 // Emit the initializer function if necessary. 1390 if (NonConstInit) 1391 EmitCXXGlobalVarDeclInitFunc(D, GV); 1392 1393 // Emit global variable debug information. 1394 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1395 DI->setLocation(D->getLocation()); 1396 DI->EmitGlobalVariable(GV, D); 1397 } 1398 } 1399 1400 llvm::GlobalValue::LinkageTypes 1401 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1402 llvm::GlobalVariable *GV) { 1403 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1404 if (Linkage == GVA_Internal) 1405 return llvm::Function::InternalLinkage; 1406 else if (D->hasAttr<DLLImportAttr>()) 1407 return llvm::Function::DLLImportLinkage; 1408 else if (D->hasAttr<DLLExportAttr>()) 1409 return llvm::Function::DLLExportLinkage; 1410 else if (D->hasAttr<WeakAttr>()) { 1411 if (GV->isConstant()) 1412 return llvm::GlobalVariable::WeakODRLinkage; 1413 else 1414 return llvm::GlobalVariable::WeakAnyLinkage; 1415 } else if (Linkage == GVA_TemplateInstantiation || 1416 Linkage == GVA_ExplicitTemplateInstantiation) 1417 return llvm::GlobalVariable::WeakODRLinkage; 1418 else if (!getLangOptions().CPlusPlus && 1419 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1420 D->getAttr<CommonAttr>()) && 1421 !D->hasExternalStorage() && !D->getInit() && 1422 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1423 !D->getAttr<WeakImportAttr>()) { 1424 // Thread local vars aren't considered common linkage. 1425 return llvm::GlobalVariable::CommonLinkage; 1426 } 1427 return llvm::GlobalVariable::ExternalLinkage; 1428 } 1429 1430 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1431 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1432 /// existing call uses of the old function in the module, this adjusts them to 1433 /// call the new function directly. 1434 /// 1435 /// This is not just a cleanup: the always_inline pass requires direct calls to 1436 /// functions to be able to inline them. If there is a bitcast in the way, it 1437 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1438 /// run at -O0. 1439 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1440 llvm::Function *NewFn) { 1441 // If we're redefining a global as a function, don't transform it. 1442 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1443 if (OldFn == 0) return; 1444 1445 llvm::Type *NewRetTy = NewFn->getReturnType(); 1446 SmallVector<llvm::Value*, 4> ArgList; 1447 1448 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1449 UI != E; ) { 1450 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1451 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1452 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1453 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1454 llvm::CallSite CS(CI); 1455 if (!CI || !CS.isCallee(I)) continue; 1456 1457 // If the return types don't match exactly, and if the call isn't dead, then 1458 // we can't transform this call. 1459 if (CI->getType() != NewRetTy && !CI->use_empty()) 1460 continue; 1461 1462 // Get the attribute list. 1463 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1464 llvm::AttrListPtr AttrList = CI->getAttributes(); 1465 1466 // Get any return attributes. 1467 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1468 1469 // Add the return attributes. 1470 if (RAttrs) 1471 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1472 1473 // If the function was passed too few arguments, don't transform. If extra 1474 // arguments were passed, we silently drop them. If any of the types 1475 // mismatch, we don't transform. 1476 unsigned ArgNo = 0; 1477 bool DontTransform = false; 1478 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1479 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1480 if (CS.arg_size() == ArgNo || 1481 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1482 DontTransform = true; 1483 break; 1484 } 1485 1486 // Add any parameter attributes. 1487 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1488 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1489 } 1490 if (DontTransform) 1491 continue; 1492 1493 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1494 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1495 1496 // Okay, we can transform this. Create the new call instruction and copy 1497 // over the required information. 1498 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1499 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1500 ArgList.clear(); 1501 if (!NewCall->getType()->isVoidTy()) 1502 NewCall->takeName(CI); 1503 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1504 AttrVec.end())); 1505 NewCall->setCallingConv(CI->getCallingConv()); 1506 1507 // Finally, remove the old call, replacing any uses with the new one. 1508 if (!CI->use_empty()) 1509 CI->replaceAllUsesWith(NewCall); 1510 1511 // Copy debug location attached to CI. 1512 if (!CI->getDebugLoc().isUnknown()) 1513 NewCall->setDebugLoc(CI->getDebugLoc()); 1514 CI->eraseFromParent(); 1515 } 1516 } 1517 1518 1519 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1520 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1521 1522 // Compute the function info and LLVM type. 1523 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1524 bool variadic = false; 1525 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1526 variadic = fpt->isVariadic(); 1527 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1528 1529 // Get or create the prototype for the function. 1530 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1531 1532 // Strip off a bitcast if we got one back. 1533 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1534 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1535 Entry = CE->getOperand(0); 1536 } 1537 1538 1539 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1540 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1541 1542 // If the types mismatch then we have to rewrite the definition. 1543 assert(OldFn->isDeclaration() && 1544 "Shouldn't replace non-declaration"); 1545 1546 // F is the Function* for the one with the wrong type, we must make a new 1547 // Function* and update everything that used F (a declaration) with the new 1548 // Function* (which will be a definition). 1549 // 1550 // This happens if there is a prototype for a function 1551 // (e.g. "int f()") and then a definition of a different type 1552 // (e.g. "int f(int x)"). Move the old function aside so that it 1553 // doesn't interfere with GetAddrOfFunction. 1554 OldFn->setName(StringRef()); 1555 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1556 1557 // If this is an implementation of a function without a prototype, try to 1558 // replace any existing uses of the function (which may be calls) with uses 1559 // of the new function 1560 if (D->getType()->isFunctionNoProtoType()) { 1561 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1562 OldFn->removeDeadConstantUsers(); 1563 } 1564 1565 // Replace uses of F with the Function we will endow with a body. 1566 if (!Entry->use_empty()) { 1567 llvm::Constant *NewPtrForOldDecl = 1568 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1569 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1570 } 1571 1572 // Ok, delete the old function now, which is dead. 1573 OldFn->eraseFromParent(); 1574 1575 Entry = NewFn; 1576 } 1577 1578 // We need to set linkage and visibility on the function before 1579 // generating code for it because various parts of IR generation 1580 // want to propagate this information down (e.g. to local static 1581 // declarations). 1582 llvm::Function *Fn = cast<llvm::Function>(Entry); 1583 setFunctionLinkage(D, Fn); 1584 1585 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1586 setGlobalVisibility(Fn, D); 1587 1588 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1589 1590 SetFunctionDefinitionAttributes(D, Fn); 1591 SetLLVMFunctionAttributesForDefinition(D, Fn); 1592 1593 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1594 AddGlobalCtor(Fn, CA->getPriority()); 1595 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1596 AddGlobalDtor(Fn, DA->getPriority()); 1597 if (D->hasAttr<AnnotateAttr>()) 1598 AddGlobalAnnotations(D, Fn); 1599 } 1600 1601 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1602 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1603 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1604 assert(AA && "Not an alias?"); 1605 1606 StringRef MangledName = getMangledName(GD); 1607 1608 // If there is a definition in the module, then it wins over the alias. 1609 // This is dubious, but allow it to be safe. Just ignore the alias. 1610 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1611 if (Entry && !Entry->isDeclaration()) 1612 return; 1613 1614 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1615 1616 // Create a reference to the named value. This ensures that it is emitted 1617 // if a deferred decl. 1618 llvm::Constant *Aliasee; 1619 if (isa<llvm::FunctionType>(DeclTy)) 1620 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1621 /*ForVTable=*/false); 1622 else 1623 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1624 llvm::PointerType::getUnqual(DeclTy), 0); 1625 1626 // Create the new alias itself, but don't set a name yet. 1627 llvm::GlobalValue *GA = 1628 new llvm::GlobalAlias(Aliasee->getType(), 1629 llvm::Function::ExternalLinkage, 1630 "", Aliasee, &getModule()); 1631 1632 if (Entry) { 1633 assert(Entry->isDeclaration()); 1634 1635 // If there is a declaration in the module, then we had an extern followed 1636 // by the alias, as in: 1637 // extern int test6(); 1638 // ... 1639 // int test6() __attribute__((alias("test7"))); 1640 // 1641 // Remove it and replace uses of it with the alias. 1642 GA->takeName(Entry); 1643 1644 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1645 Entry->getType())); 1646 Entry->eraseFromParent(); 1647 } else { 1648 GA->setName(MangledName); 1649 } 1650 1651 // Set attributes which are particular to an alias; this is a 1652 // specialization of the attributes which may be set on a global 1653 // variable/function. 1654 if (D->hasAttr<DLLExportAttr>()) { 1655 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1656 // The dllexport attribute is ignored for undefined symbols. 1657 if (FD->hasBody()) 1658 GA->setLinkage(llvm::Function::DLLExportLinkage); 1659 } else { 1660 GA->setLinkage(llvm::Function::DLLExportLinkage); 1661 } 1662 } else if (D->hasAttr<WeakAttr>() || 1663 D->hasAttr<WeakRefAttr>() || 1664 D->isWeakImported()) { 1665 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1666 } 1667 1668 SetCommonAttributes(D, GA); 1669 } 1670 1671 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1672 ArrayRef<llvm::Type*> Tys) { 1673 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1674 Tys); 1675 } 1676 1677 static llvm::StringMapEntry<llvm::Constant*> & 1678 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1679 const StringLiteral *Literal, 1680 bool TargetIsLSB, 1681 bool &IsUTF16, 1682 unsigned &StringLength) { 1683 StringRef String = Literal->getString(); 1684 unsigned NumBytes = String.size(); 1685 1686 // Check for simple case. 1687 if (!Literal->containsNonAsciiOrNull()) { 1688 StringLength = NumBytes; 1689 return Map.GetOrCreateValue(String); 1690 } 1691 1692 // Otherwise, convert the UTF8 literals into a byte string. 1693 SmallVector<UTF16, 128> ToBuf(NumBytes); 1694 const UTF8 *FromPtr = (UTF8 *)String.data(); 1695 UTF16 *ToPtr = &ToBuf[0]; 1696 1697 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1698 &ToPtr, ToPtr + NumBytes, 1699 strictConversion); 1700 1701 // ConvertUTF8toUTF16 returns the length in ToPtr. 1702 StringLength = ToPtr - &ToBuf[0]; 1703 1704 // Render the UTF-16 string into a byte array and convert to the target byte 1705 // order. 1706 // 1707 // FIXME: This isn't something we should need to do here. 1708 llvm::SmallString<128> AsBytes; 1709 AsBytes.reserve(StringLength * 2); 1710 for (unsigned i = 0; i != StringLength; ++i) { 1711 unsigned short Val = ToBuf[i]; 1712 if (TargetIsLSB) { 1713 AsBytes.push_back(Val & 0xFF); 1714 AsBytes.push_back(Val >> 8); 1715 } else { 1716 AsBytes.push_back(Val >> 8); 1717 AsBytes.push_back(Val & 0xFF); 1718 } 1719 } 1720 // Append one extra null character, the second is automatically added by our 1721 // caller. 1722 AsBytes.push_back(0); 1723 1724 IsUTF16 = true; 1725 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1726 } 1727 1728 static llvm::StringMapEntry<llvm::Constant*> & 1729 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1730 const StringLiteral *Literal, 1731 unsigned &StringLength) 1732 { 1733 StringRef String = Literal->getString(); 1734 StringLength = String.size(); 1735 return Map.GetOrCreateValue(String); 1736 } 1737 1738 llvm::Constant * 1739 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1740 unsigned StringLength = 0; 1741 bool isUTF16 = false; 1742 llvm::StringMapEntry<llvm::Constant*> &Entry = 1743 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1744 getTargetData().isLittleEndian(), 1745 isUTF16, StringLength); 1746 1747 if (llvm::Constant *C = Entry.getValue()) 1748 return C; 1749 1750 llvm::Constant *Zero = 1751 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1752 llvm::Constant *Zeros[] = { Zero, Zero }; 1753 1754 // If we don't already have it, get __CFConstantStringClassReference. 1755 if (!CFConstantStringClassRef) { 1756 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1757 Ty = llvm::ArrayType::get(Ty, 0); 1758 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1759 "__CFConstantStringClassReference"); 1760 // Decay array -> ptr 1761 CFConstantStringClassRef = 1762 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1763 } 1764 1765 QualType CFTy = getContext().getCFConstantStringType(); 1766 1767 llvm::StructType *STy = 1768 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1769 1770 std::vector<llvm::Constant*> Fields(4); 1771 1772 // Class pointer. 1773 Fields[0] = CFConstantStringClassRef; 1774 1775 // Flags. 1776 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1777 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1778 llvm::ConstantInt::get(Ty, 0x07C8); 1779 1780 // String pointer. 1781 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1782 1783 llvm::GlobalValue::LinkageTypes Linkage; 1784 bool isConstant; 1785 if (isUTF16) { 1786 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1787 Linkage = llvm::GlobalValue::InternalLinkage; 1788 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1789 // does make plain ascii ones writable. 1790 isConstant = true; 1791 } else { 1792 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1793 // when using private linkage. It is not clear if this is a bug in ld 1794 // or a reasonable new restriction. 1795 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1796 isConstant = !Features.WritableStrings; 1797 } 1798 1799 llvm::GlobalVariable *GV = 1800 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1801 ".str"); 1802 GV->setUnnamedAddr(true); 1803 if (isUTF16) { 1804 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1805 GV->setAlignment(Align.getQuantity()); 1806 } else { 1807 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1808 GV->setAlignment(Align.getQuantity()); 1809 } 1810 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1811 1812 // String length. 1813 Ty = getTypes().ConvertType(getContext().LongTy); 1814 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1815 1816 // The struct. 1817 C = llvm::ConstantStruct::get(STy, Fields); 1818 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1819 llvm::GlobalVariable::PrivateLinkage, C, 1820 "_unnamed_cfstring_"); 1821 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1822 GV->setSection(Sect); 1823 Entry.setValue(GV); 1824 1825 return GV; 1826 } 1827 1828 static RecordDecl * 1829 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1830 DeclContext *DC, IdentifierInfo *Id) { 1831 SourceLocation Loc; 1832 if (Ctx.getLangOptions().CPlusPlus) 1833 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1834 else 1835 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1836 } 1837 1838 llvm::Constant * 1839 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1840 unsigned StringLength = 0; 1841 llvm::StringMapEntry<llvm::Constant*> &Entry = 1842 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1843 1844 if (llvm::Constant *C = Entry.getValue()) 1845 return C; 1846 1847 llvm::Constant *Zero = 1848 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1849 llvm::Constant *Zeros[] = { Zero, Zero }; 1850 1851 // If we don't already have it, get _NSConstantStringClassReference. 1852 if (!ConstantStringClassRef) { 1853 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1854 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1855 llvm::Constant *GV; 1856 if (Features.ObjCNonFragileABI) { 1857 std::string str = 1858 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1859 : "OBJC_CLASS_$_" + StringClass; 1860 GV = getObjCRuntime().GetClassGlobal(str); 1861 // Make sure the result is of the correct type. 1862 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1863 ConstantStringClassRef = 1864 llvm::ConstantExpr::getBitCast(GV, PTy); 1865 } else { 1866 std::string str = 1867 StringClass.empty() ? "_NSConstantStringClassReference" 1868 : "_" + StringClass + "ClassReference"; 1869 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1870 GV = CreateRuntimeVariable(PTy, str); 1871 // Decay array -> ptr 1872 ConstantStringClassRef = 1873 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1874 } 1875 } 1876 1877 if (!NSConstantStringType) { 1878 // Construct the type for a constant NSString. 1879 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1880 Context.getTranslationUnitDecl(), 1881 &Context.Idents.get("__builtin_NSString")); 1882 D->startDefinition(); 1883 1884 QualType FieldTypes[3]; 1885 1886 // const int *isa; 1887 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1888 // const char *str; 1889 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1890 // unsigned int length; 1891 FieldTypes[2] = Context.UnsignedIntTy; 1892 1893 // Create fields 1894 for (unsigned i = 0; i < 3; ++i) { 1895 FieldDecl *Field = FieldDecl::Create(Context, D, 1896 SourceLocation(), 1897 SourceLocation(), 0, 1898 FieldTypes[i], /*TInfo=*/0, 1899 /*BitWidth=*/0, 1900 /*Mutable=*/false, 1901 /*HasInit=*/false); 1902 Field->setAccess(AS_public); 1903 D->addDecl(Field); 1904 } 1905 1906 D->completeDefinition(); 1907 QualType NSTy = Context.getTagDeclType(D); 1908 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1909 } 1910 1911 std::vector<llvm::Constant*> Fields(3); 1912 1913 // Class pointer. 1914 Fields[0] = ConstantStringClassRef; 1915 1916 // String pointer. 1917 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1918 1919 llvm::GlobalValue::LinkageTypes Linkage; 1920 bool isConstant; 1921 Linkage = llvm::GlobalValue::PrivateLinkage; 1922 isConstant = !Features.WritableStrings; 1923 1924 llvm::GlobalVariable *GV = 1925 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1926 ".str"); 1927 GV->setUnnamedAddr(true); 1928 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1929 GV->setAlignment(Align.getQuantity()); 1930 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1931 1932 // String length. 1933 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1934 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1935 1936 // The struct. 1937 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1938 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1939 llvm::GlobalVariable::PrivateLinkage, C, 1940 "_unnamed_nsstring_"); 1941 // FIXME. Fix section. 1942 if (const char *Sect = 1943 Features.ObjCNonFragileABI 1944 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 1945 : getContext().getTargetInfo().getNSStringSection()) 1946 GV->setSection(Sect); 1947 Entry.setValue(GV); 1948 1949 return GV; 1950 } 1951 1952 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1953 if (ObjCFastEnumerationStateType.isNull()) { 1954 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1955 Context.getTranslationUnitDecl(), 1956 &Context.Idents.get("__objcFastEnumerationState")); 1957 D->startDefinition(); 1958 1959 QualType FieldTypes[] = { 1960 Context.UnsignedLongTy, 1961 Context.getPointerType(Context.getObjCIdType()), 1962 Context.getPointerType(Context.UnsignedLongTy), 1963 Context.getConstantArrayType(Context.UnsignedLongTy, 1964 llvm::APInt(32, 5), ArrayType::Normal, 0) 1965 }; 1966 1967 for (size_t i = 0; i < 4; ++i) { 1968 FieldDecl *Field = FieldDecl::Create(Context, 1969 D, 1970 SourceLocation(), 1971 SourceLocation(), 0, 1972 FieldTypes[i], /*TInfo=*/0, 1973 /*BitWidth=*/0, 1974 /*Mutable=*/false, 1975 /*HasInit=*/false); 1976 Field->setAccess(AS_public); 1977 D->addDecl(Field); 1978 } 1979 1980 D->completeDefinition(); 1981 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1982 } 1983 1984 return ObjCFastEnumerationStateType; 1985 } 1986 1987 /// GetStringForStringLiteral - Return the appropriate bytes for a 1988 /// string literal, properly padded to match the literal type. 1989 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1990 const ASTContext &Context = getContext(); 1991 const ConstantArrayType *CAT = 1992 Context.getAsConstantArrayType(E->getType()); 1993 assert(CAT && "String isn't pointer or array!"); 1994 1995 // Resize the string to the right size. 1996 uint64_t RealLen = CAT->getSize().getZExtValue(); 1997 1998 switch (E->getKind()) { 1999 case StringLiteral::Ascii: 2000 case StringLiteral::UTF8: 2001 break; 2002 case StringLiteral::Wide: 2003 RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth(); 2004 break; 2005 case StringLiteral::UTF16: 2006 RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth(); 2007 break; 2008 case StringLiteral::UTF32: 2009 RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth(); 2010 break; 2011 } 2012 2013 std::string Str = E->getString().str(); 2014 Str.resize(RealLen, '\0'); 2015 2016 return Str; 2017 } 2018 2019 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2020 /// constant array for the given string literal. 2021 llvm::Constant * 2022 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2023 // FIXME: This can be more efficient. 2024 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2025 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2026 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 2027 /* GlobalName */ 0, 2028 Align.getQuantity()); 2029 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 2030 llvm::Type *DestTy = 2031 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 2032 C = llvm::ConstantExpr::getBitCast(C, DestTy); 2033 } 2034 return C; 2035 } 2036 2037 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2038 /// array for the given ObjCEncodeExpr node. 2039 llvm::Constant * 2040 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2041 std::string Str; 2042 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2043 2044 return GetAddrOfConstantCString(Str); 2045 } 2046 2047 2048 /// GenerateWritableString -- Creates storage for a string literal. 2049 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2050 bool constant, 2051 CodeGenModule &CGM, 2052 const char *GlobalName, 2053 unsigned Alignment) { 2054 // Create Constant for this string literal. Don't add a '\0'. 2055 llvm::Constant *C = 2056 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2057 2058 // Create a global variable for this string 2059 llvm::GlobalVariable *GV = 2060 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2061 llvm::GlobalValue::PrivateLinkage, 2062 C, GlobalName); 2063 GV->setAlignment(Alignment); 2064 GV->setUnnamedAddr(true); 2065 return GV; 2066 } 2067 2068 /// GetAddrOfConstantString - Returns a pointer to a character array 2069 /// containing the literal. This contents are exactly that of the 2070 /// given string, i.e. it will not be null terminated automatically; 2071 /// see GetAddrOfConstantCString. Note that whether the result is 2072 /// actually a pointer to an LLVM constant depends on 2073 /// Feature.WriteableStrings. 2074 /// 2075 /// The result has pointer to array type. 2076 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2077 const char *GlobalName, 2078 unsigned Alignment) { 2079 bool IsConstant = !Features.WritableStrings; 2080 2081 // Get the default prefix if a name wasn't specified. 2082 if (!GlobalName) 2083 GlobalName = ".str"; 2084 2085 // Don't share any string literals if strings aren't constant. 2086 if (!IsConstant) 2087 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2088 2089 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2090 ConstantStringMap.GetOrCreateValue(Str); 2091 2092 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2093 if (Alignment > GV->getAlignment()) { 2094 GV->setAlignment(Alignment); 2095 } 2096 return GV; 2097 } 2098 2099 // Create a global variable for this. 2100 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2101 Entry.setValue(GV); 2102 return GV; 2103 } 2104 2105 /// GetAddrOfConstantCString - Returns a pointer to a character 2106 /// array containing the literal and a terminating '\0' 2107 /// character. The result has pointer to array type. 2108 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2109 const char *GlobalName, 2110 unsigned Alignment) { 2111 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2112 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2113 } 2114 2115 /// EmitObjCPropertyImplementations - Emit information for synthesized 2116 /// properties for an implementation. 2117 void CodeGenModule::EmitObjCPropertyImplementations(const 2118 ObjCImplementationDecl *D) { 2119 for (ObjCImplementationDecl::propimpl_iterator 2120 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2121 ObjCPropertyImplDecl *PID = *i; 2122 2123 // Dynamic is just for type-checking. 2124 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2125 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2126 2127 // Determine which methods need to be implemented, some may have 2128 // been overridden. Note that ::isSynthesized is not the method 2129 // we want, that just indicates if the decl came from a 2130 // property. What we want to know is if the method is defined in 2131 // this implementation. 2132 if (!D->getInstanceMethod(PD->getGetterName())) 2133 CodeGenFunction(*this).GenerateObjCGetter( 2134 const_cast<ObjCImplementationDecl *>(D), PID); 2135 if (!PD->isReadOnly() && 2136 !D->getInstanceMethod(PD->getSetterName())) 2137 CodeGenFunction(*this).GenerateObjCSetter( 2138 const_cast<ObjCImplementationDecl *>(D), PID); 2139 } 2140 } 2141 } 2142 2143 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2144 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2145 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2146 ivar; ivar = ivar->getNextIvar()) 2147 if (ivar->getType().isDestructedType()) 2148 return true; 2149 2150 return false; 2151 } 2152 2153 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2154 /// for an implementation. 2155 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2156 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2157 if (needsDestructMethod(D)) { 2158 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2159 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2160 ObjCMethodDecl *DTORMethod = 2161 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2162 cxxSelector, getContext().VoidTy, 0, D, 2163 /*isInstance=*/true, /*isVariadic=*/false, 2164 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2165 /*isDefined=*/false, ObjCMethodDecl::Required); 2166 D->addInstanceMethod(DTORMethod); 2167 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2168 D->setHasCXXStructors(true); 2169 } 2170 2171 // If the implementation doesn't have any ivar initializers, we don't need 2172 // a .cxx_construct. 2173 if (D->getNumIvarInitializers() == 0) 2174 return; 2175 2176 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2177 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2178 // The constructor returns 'self'. 2179 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2180 D->getLocation(), 2181 D->getLocation(), 2182 cxxSelector, 2183 getContext().getObjCIdType(), 0, 2184 D, /*isInstance=*/true, 2185 /*isVariadic=*/false, 2186 /*isSynthesized=*/true, 2187 /*isImplicitlyDeclared=*/true, 2188 /*isDefined=*/false, 2189 ObjCMethodDecl::Required); 2190 D->addInstanceMethod(CTORMethod); 2191 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2192 D->setHasCXXStructors(true); 2193 } 2194 2195 /// EmitNamespace - Emit all declarations in a namespace. 2196 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2197 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2198 I != E; ++I) 2199 EmitTopLevelDecl(*I); 2200 } 2201 2202 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2203 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2204 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2205 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2206 ErrorUnsupported(LSD, "linkage spec"); 2207 return; 2208 } 2209 2210 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2211 I != E; ++I) 2212 EmitTopLevelDecl(*I); 2213 } 2214 2215 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2216 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2217 // If an error has occurred, stop code generation, but continue 2218 // parsing and semantic analysis (to ensure all warnings and errors 2219 // are emitted). 2220 if (Diags.hasErrorOccurred()) 2221 return; 2222 2223 // Ignore dependent declarations. 2224 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2225 return; 2226 2227 switch (D->getKind()) { 2228 case Decl::CXXConversion: 2229 case Decl::CXXMethod: 2230 case Decl::Function: 2231 // Skip function templates 2232 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2233 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2234 return; 2235 2236 EmitGlobal(cast<FunctionDecl>(D)); 2237 break; 2238 2239 case Decl::Var: 2240 EmitGlobal(cast<VarDecl>(D)); 2241 break; 2242 2243 // Indirect fields from global anonymous structs and unions can be 2244 // ignored; only the actual variable requires IR gen support. 2245 case Decl::IndirectField: 2246 break; 2247 2248 // C++ Decls 2249 case Decl::Namespace: 2250 EmitNamespace(cast<NamespaceDecl>(D)); 2251 break; 2252 // No code generation needed. 2253 case Decl::UsingShadow: 2254 case Decl::Using: 2255 case Decl::UsingDirective: 2256 case Decl::ClassTemplate: 2257 case Decl::FunctionTemplate: 2258 case Decl::TypeAliasTemplate: 2259 case Decl::NamespaceAlias: 2260 case Decl::Block: 2261 break; 2262 case Decl::CXXConstructor: 2263 // Skip function templates 2264 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2265 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2266 return; 2267 2268 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2269 break; 2270 case Decl::CXXDestructor: 2271 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2272 return; 2273 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2274 break; 2275 2276 case Decl::StaticAssert: 2277 // Nothing to do. 2278 break; 2279 2280 // Objective-C Decls 2281 2282 // Forward declarations, no (immediate) code generation. 2283 case Decl::ObjCClass: 2284 case Decl::ObjCForwardProtocol: 2285 case Decl::ObjCInterface: 2286 break; 2287 2288 case Decl::ObjCCategory: { 2289 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2290 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2291 Context.ResetObjCLayout(CD->getClassInterface()); 2292 break; 2293 } 2294 2295 case Decl::ObjCProtocol: 2296 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2297 break; 2298 2299 case Decl::ObjCCategoryImpl: 2300 // Categories have properties but don't support synthesize so we 2301 // can ignore them here. 2302 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2303 break; 2304 2305 case Decl::ObjCImplementation: { 2306 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2307 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2308 Context.ResetObjCLayout(OMD->getClassInterface()); 2309 EmitObjCPropertyImplementations(OMD); 2310 EmitObjCIvarInitializations(OMD); 2311 ObjCRuntime->GenerateClass(OMD); 2312 break; 2313 } 2314 case Decl::ObjCMethod: { 2315 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2316 // If this is not a prototype, emit the body. 2317 if (OMD->getBody()) 2318 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2319 break; 2320 } 2321 case Decl::ObjCCompatibleAlias: 2322 // compatibility-alias is a directive and has no code gen. 2323 break; 2324 2325 case Decl::LinkageSpec: 2326 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2327 break; 2328 2329 case Decl::FileScopeAsm: { 2330 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2331 StringRef AsmString = AD->getAsmString()->getString(); 2332 2333 const std::string &S = getModule().getModuleInlineAsm(); 2334 if (S.empty()) 2335 getModule().setModuleInlineAsm(AsmString); 2336 else if (*--S.end() == '\n') 2337 getModule().setModuleInlineAsm(S + AsmString.str()); 2338 else 2339 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2340 break; 2341 } 2342 2343 default: 2344 // Make sure we handled everything we should, every other kind is a 2345 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2346 // function. Need to recode Decl::Kind to do that easily. 2347 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2348 } 2349 } 2350 2351 /// Turns the given pointer into a constant. 2352 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2353 const void *Ptr) { 2354 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2355 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2356 return llvm::ConstantInt::get(i64, PtrInt); 2357 } 2358 2359 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2360 llvm::NamedMDNode *&GlobalMetadata, 2361 GlobalDecl D, 2362 llvm::GlobalValue *Addr) { 2363 if (!GlobalMetadata) 2364 GlobalMetadata = 2365 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2366 2367 // TODO: should we report variant information for ctors/dtors? 2368 llvm::Value *Ops[] = { 2369 Addr, 2370 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2371 }; 2372 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2373 } 2374 2375 /// Emits metadata nodes associating all the global values in the 2376 /// current module with the Decls they came from. This is useful for 2377 /// projects using IR gen as a subroutine. 2378 /// 2379 /// Since there's currently no way to associate an MDNode directly 2380 /// with an llvm::GlobalValue, we create a global named metadata 2381 /// with the name 'clang.global.decl.ptrs'. 2382 void CodeGenModule::EmitDeclMetadata() { 2383 llvm::NamedMDNode *GlobalMetadata = 0; 2384 2385 // StaticLocalDeclMap 2386 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2387 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2388 I != E; ++I) { 2389 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2390 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2391 } 2392 } 2393 2394 /// Emits metadata nodes for all the local variables in the current 2395 /// function. 2396 void CodeGenFunction::EmitDeclMetadata() { 2397 if (LocalDeclMap.empty()) return; 2398 2399 llvm::LLVMContext &Context = getLLVMContext(); 2400 2401 // Find the unique metadata ID for this name. 2402 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2403 2404 llvm::NamedMDNode *GlobalMetadata = 0; 2405 2406 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2407 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2408 const Decl *D = I->first; 2409 llvm::Value *Addr = I->second; 2410 2411 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2412 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2413 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2414 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2415 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2416 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2417 } 2418 } 2419 } 2420 2421 void CodeGenModule::EmitCoverageFile() { 2422 if (!getCodeGenOpts().CoverageFile.empty()) { 2423 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2424 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2425 llvm::LLVMContext &Ctx = TheModule.getContext(); 2426 llvm::MDString *CoverageFile = 2427 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2428 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2429 llvm::MDNode *CU = CUNode->getOperand(i); 2430 llvm::Value *node[] = { CoverageFile, CU }; 2431 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2432 GCov->addOperand(N); 2433 } 2434 } 2435 } 2436 } 2437