xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a934f9da411056d9c54a693f8e45ba9485aa1cd0)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (CodeGenOpts.NoPLT)
560     getModule().setRtLibUseGOT();
561 
562   SimplifyPersonality();
563 
564   if (getCodeGenOpts().EmitDeclMetadata)
565     EmitDeclMetadata();
566 
567   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568     EmitCoverageFile();
569 
570   if (DebugInfo)
571     DebugInfo->finalize();
572 
573   if (getCodeGenOpts().EmitVersionIdentMetadata)
574     EmitVersionIdentMetadata();
575 
576   EmitTargetMetadata();
577 }
578 
579 void CodeGenModule::EmitOpenCLMetadata() {
580   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
581   // opencl.ocl.version named metadata node.
582   llvm::Metadata *OCLVerElts[] = {
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, LangOpts.OpenCLVersion / 100)),
585       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
587   llvm::NamedMDNode *OCLVerMD =
588       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
589   llvm::LLVMContext &Ctx = TheModule.getContext();
590   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
591 }
592 
593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
594   // Make sure that this type is translated.
595   Types.UpdateCompletedType(TD);
596 }
597 
598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
599   // Make sure that this type is translated.
600   Types.RefreshTypeCacheForClass(RD);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getTypeInfo(QTy);
607 }
608 
609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
610   if (!TBAA)
611     return TBAAAccessInfo();
612   return TBAA->getAccessInfo(AccessType);
613 }
614 
615 TBAAAccessInfo
616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
617   if (!TBAA)
618     return TBAAAccessInfo();
619   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
620 }
621 
622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
623   if (!TBAA)
624     return nullptr;
625   return TBAA->getTBAAStructInfo(QTy);
626 }
627 
628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
629   if (!TBAA)
630     return nullptr;
631   return TBAA->getBaseTypeInfo(QTy);
632 }
633 
634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
635   if (!TBAA)
636     return nullptr;
637   return TBAA->getAccessTagInfo(Info);
638 }
639 
640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
641                                                    TBAAAccessInfo TargetInfo) {
642   if (!TBAA)
643     return TBAAAccessInfo();
644   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
645 }
646 
647 TBAAAccessInfo
648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
649                                                    TBAAAccessInfo InfoB) {
650   if (!TBAA)
651     return TBAAAccessInfo();
652   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
653 }
654 
655 TBAAAccessInfo
656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
657                                               TBAAAccessInfo SrcInfo) {
658   if (!TBAA)
659     return TBAAAccessInfo();
660   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
661 }
662 
663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
664                                                 TBAAAccessInfo TBAAInfo) {
665   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
666     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
667 }
668 
669 void CodeGenModule::DecorateInstructionWithInvariantGroup(
670     llvm::Instruction *I, const CXXRecordDecl *RD) {
671   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
672                  llvm::MDNode::get(getLLVMContext(), {}));
673 }
674 
675 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
676   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
677   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
678 }
679 
680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
681 /// specified stmt yet.
682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
683   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
684                                                "cannot compile this %0 yet");
685   std::string Msg = Type;
686   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
687     << Msg << S->getSourceRange();
688 }
689 
690 /// ErrorUnsupported - Print out an error that codegen doesn't support the
691 /// specified decl yet.
692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
693   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
694                                                "cannot compile this %0 yet");
695   std::string Msg = Type;
696   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
697 }
698 
699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
700   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
701 }
702 
703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
704                                         const NamedDecl *D) const {
705   if (GV->hasDLLImportStorageClass())
706     return;
707   // Internal definitions always have default visibility.
708   if (GV->hasLocalLinkage()) {
709     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710     return;
711   }
712   if (!D)
713     return;
714   // Set visibility for definitions.
715   LinkageInfo LV = D->getLinkageAndVisibility();
716   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
717     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718 }
719 
720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721                                  llvm::GlobalValue *GV) {
722   if (GV->hasLocalLinkage())
723     return true;
724 
725   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
726     return true;
727 
728   // DLLImport explicitly marks the GV as external.
729   if (GV->hasDLLImportStorageClass())
730     return false;
731 
732   const llvm::Triple &TT = CGM.getTriple();
733   // Every other GV is local on COFF.
734   // Make an exception for windows OS in the triple: Some firmware builds use
735   // *-win32-macho triples. This (accidentally?) produced windows relocations
736   // without GOT tables in older clang versions; Keep this behaviour.
737   // FIXME: even thread local variables?
738   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
739     return true;
740 
741   // Only handle COFF and ELF for now.
742   if (!TT.isOSBinFormatELF())
743     return false;
744 
745   // If this is not an executable, don't assume anything is local.
746   const auto &CGOpts = CGM.getCodeGenOpts();
747   llvm::Reloc::Model RM = CGOpts.RelocationModel;
748   const auto &LOpts = CGM.getLangOpts();
749   if (RM != llvm::Reloc::Static && !LOpts.PIE)
750     return false;
751 
752   // A definition cannot be preempted from an executable.
753   if (!GV->isDeclarationForLinker())
754     return true;
755 
756   // Most PIC code sequences that assume that a symbol is local cannot produce a
757   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
758   // depended, it seems worth it to handle it here.
759   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
760     return false;
761 
762   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
763   llvm::Triple::ArchType Arch = TT.getArch();
764   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
765       Arch == llvm::Triple::ppc64le)
766     return false;
767 
768   // If we can use copy relocations we can assume it is local.
769   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
770     if (!Var->isThreadLocal() &&
771         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
772       return true;
773 
774   // If we can use a plt entry as the symbol address we can assume it
775   // is local.
776   // FIXME: This should work for PIE, but the gold linker doesn't support it.
777   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
778     return true;
779 
780   // Otherwise don't assue it is local.
781   return false;
782 }
783 
784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
785   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
786 }
787 
788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
789                                           GlobalDecl GD) const {
790   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
791   // C++ destructors have a few C++ ABI specific special cases.
792   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
793     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
794     return;
795   }
796   setDLLImportDLLExport(GV, D);
797 }
798 
799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800                                           const NamedDecl *D) const {
801   if (D && D->isExternallyVisible()) {
802     if (D->hasAttr<DLLImportAttr>())
803       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806   }
807 }
808 
809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810                                     GlobalDecl GD) const {
811   setDLLImportDLLExport(GV, GD);
812   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813 }
814 
815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816                                     const NamedDecl *D) const {
817   setDLLImportDLLExport(GV, D);
818   setGlobalVisibilityAndLocal(GV, D);
819 }
820 
821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822                                                 const NamedDecl *D) const {
823   setGlobalVisibility(GV, D);
824   setDSOLocal(GV);
825 }
826 
827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833 }
834 
835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836     CodeGenOptions::TLSModel M) {
837   switch (M) {
838   case CodeGenOptions::GeneralDynamicTLSModel:
839     return llvm::GlobalVariable::GeneralDynamicTLSModel;
840   case CodeGenOptions::LocalDynamicTLSModel:
841     return llvm::GlobalVariable::LocalDynamicTLSModel;
842   case CodeGenOptions::InitialExecTLSModel:
843     return llvm::GlobalVariable::InitialExecTLSModel;
844   case CodeGenOptions::LocalExecTLSModel:
845     return llvm::GlobalVariable::LocalExecTLSModel;
846   }
847   llvm_unreachable("Invalid TLS model!");
848 }
849 
850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
852 
853   llvm::GlobalValue::ThreadLocalMode TLM;
854   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855 
856   // Override the TLS model if it is explicitly specified.
857   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858     TLM = GetLLVMTLSModel(Attr->getModel());
859   }
860 
861   GV->setThreadLocalMode(TLM);
862 }
863 
864 static void AppendTargetMangling(const CodeGenModule &CGM,
865                                  const TargetAttr *Attr, raw_ostream &Out) {
866   if (Attr->isDefaultVersion())
867     return;
868 
869   Out << '.';
870   const auto &Target = CGM.getTarget();
871   TargetAttr::ParsedTargetAttr Info =
872       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
873                     // Multiversioning doesn't allow "no-${feature}", so we can
874                     // only have "+" prefixes here.
875                     assert(LHS.startswith("+") && RHS.startswith("+") &&
876                            "Features should always have a prefix.");
877                     return Target.multiVersionSortPriority(LHS.substr(1)) >
878                            Target.multiVersionSortPriority(RHS.substr(1));
879                   });
880 
881   bool IsFirst = true;
882 
883   if (!Info.Architecture.empty()) {
884     IsFirst = false;
885     Out << "arch_" << Info.Architecture;
886   }
887 
888   for (StringRef Feat : Info.Features) {
889     if (!IsFirst)
890       Out << '_';
891     IsFirst = false;
892     Out << Feat.substr(1);
893   }
894 }
895 
896 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
897                                       const NamedDecl *ND,
898                                       bool OmitTargetMangling = false) {
899   SmallString<256> Buffer;
900   llvm::raw_svector_ostream Out(Buffer);
901   MangleContext &MC = CGM.getCXXABI().getMangleContext();
902   if (MC.shouldMangleDeclName(ND)) {
903     llvm::raw_svector_ostream Out(Buffer);
904     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
905       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
906     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
907       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
908     else
909       MC.mangleName(ND, Out);
910   } else {
911     IdentifierInfo *II = ND->getIdentifier();
912     assert(II && "Attempt to mangle unnamed decl.");
913     const auto *FD = dyn_cast<FunctionDecl>(ND);
914 
915     if (FD &&
916         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
917       llvm::raw_svector_ostream Out(Buffer);
918       Out << "__regcall3__" << II->getName();
919     } else {
920       Out << II->getName();
921     }
922   }
923 
924   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
925     if (FD->isMultiVersion() && !OmitTargetMangling)
926       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
927   return Out.str();
928 }
929 
930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
931                                             const FunctionDecl *FD) {
932   if (!FD->isMultiVersion())
933     return;
934 
935   // Get the name of what this would be without the 'target' attribute.  This
936   // allows us to lookup the version that was emitted when this wasn't a
937   // multiversion function.
938   std::string NonTargetName =
939       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
940   GlobalDecl OtherGD;
941   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
942     assert(OtherGD.getCanonicalDecl()
943                .getDecl()
944                ->getAsFunction()
945                ->isMultiVersion() &&
946            "Other GD should now be a multiversioned function");
947     // OtherFD is the version of this function that was mangled BEFORE
948     // becoming a MultiVersion function.  It potentially needs to be updated.
949     const FunctionDecl *OtherFD =
950         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
951     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
952     // This is so that if the initial version was already the 'default'
953     // version, we don't try to update it.
954     if (OtherName != NonTargetName) {
955       // Remove instead of erase, since others may have stored the StringRef
956       // to this.
957       const auto ExistingRecord = Manglings.find(NonTargetName);
958       if (ExistingRecord != std::end(Manglings))
959         Manglings.remove(&(*ExistingRecord));
960       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
961       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
962       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
963         Entry->setName(OtherName);
964     }
965   }
966 }
967 
968 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
969   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
970 
971   // Some ABIs don't have constructor variants.  Make sure that base and
972   // complete constructors get mangled the same.
973   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
974     if (!getTarget().getCXXABI().hasConstructorVariants()) {
975       CXXCtorType OrigCtorType = GD.getCtorType();
976       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
977       if (OrigCtorType == Ctor_Base)
978         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
979     }
980   }
981 
982   auto FoundName = MangledDeclNames.find(CanonicalGD);
983   if (FoundName != MangledDeclNames.end())
984     return FoundName->second;
985 
986 
987   // Keep the first result in the case of a mangling collision.
988   const auto *ND = cast<NamedDecl>(GD.getDecl());
989   auto Result =
990       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
991   return MangledDeclNames[CanonicalGD] = Result.first->first();
992 }
993 
994 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
995                                              const BlockDecl *BD) {
996   MangleContext &MangleCtx = getCXXABI().getMangleContext();
997   const Decl *D = GD.getDecl();
998 
999   SmallString<256> Buffer;
1000   llvm::raw_svector_ostream Out(Buffer);
1001   if (!D)
1002     MangleCtx.mangleGlobalBlock(BD,
1003       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1004   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1005     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1006   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1007     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1008   else
1009     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1010 
1011   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1012   return Result.first->first();
1013 }
1014 
1015 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1016   return getModule().getNamedValue(Name);
1017 }
1018 
1019 /// AddGlobalCtor - Add a function to the list that will be called before
1020 /// main() runs.
1021 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1022                                   llvm::Constant *AssociatedData) {
1023   // FIXME: Type coercion of void()* types.
1024   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1025 }
1026 
1027 /// AddGlobalDtor - Add a function to the list that will be called
1028 /// when the module is unloaded.
1029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1030   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1031     DtorsUsingAtExit[Priority].push_back(Dtor);
1032     return;
1033   }
1034 
1035   // FIXME: Type coercion of void()* types.
1036   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1037 }
1038 
1039 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1040   if (Fns.empty()) return;
1041 
1042   // Ctor function type is void()*.
1043   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1044   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1045 
1046   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1047   llvm::StructType *CtorStructTy = llvm::StructType::get(
1048       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1049 
1050   // Construct the constructor and destructor arrays.
1051   ConstantInitBuilder builder(*this);
1052   auto ctors = builder.beginArray(CtorStructTy);
1053   for (const auto &I : Fns) {
1054     auto ctor = ctors.beginStruct(CtorStructTy);
1055     ctor.addInt(Int32Ty, I.Priority);
1056     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1057     if (I.AssociatedData)
1058       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1059     else
1060       ctor.addNullPointer(VoidPtrTy);
1061     ctor.finishAndAddTo(ctors);
1062   }
1063 
1064   auto list =
1065     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1066                                 /*constant*/ false,
1067                                 llvm::GlobalValue::AppendingLinkage);
1068 
1069   // The LTO linker doesn't seem to like it when we set an alignment
1070   // on appending variables.  Take it off as a workaround.
1071   list->setAlignment(0);
1072 
1073   Fns.clear();
1074 }
1075 
1076 llvm::GlobalValue::LinkageTypes
1077 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1078   const auto *D = cast<FunctionDecl>(GD.getDecl());
1079 
1080   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1081 
1082   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1083     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1084 
1085   if (isa<CXXConstructorDecl>(D) &&
1086       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1087       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1088     // Our approach to inheriting constructors is fundamentally different from
1089     // that used by the MS ABI, so keep our inheriting constructor thunks
1090     // internal rather than trying to pick an unambiguous mangling for them.
1091     return llvm::GlobalValue::InternalLinkage;
1092   }
1093 
1094   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1095 }
1096 
1097 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1098   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1099   if (!MDS) return nullptr;
1100 
1101   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1102 }
1103 
1104 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1105                                               const CGFunctionInfo &Info,
1106                                               llvm::Function *F) {
1107   unsigned CallingConv;
1108   llvm::AttributeList PAL;
1109   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1110   F->setAttributes(PAL);
1111   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1112 }
1113 
1114 /// Determines whether the language options require us to model
1115 /// unwind exceptions.  We treat -fexceptions as mandating this
1116 /// except under the fragile ObjC ABI with only ObjC exceptions
1117 /// enabled.  This means, for example, that C with -fexceptions
1118 /// enables this.
1119 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1120   // If exceptions are completely disabled, obviously this is false.
1121   if (!LangOpts.Exceptions) return false;
1122 
1123   // If C++ exceptions are enabled, this is true.
1124   if (LangOpts.CXXExceptions) return true;
1125 
1126   // If ObjC exceptions are enabled, this depends on the ABI.
1127   if (LangOpts.ObjCExceptions) {
1128     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1129   }
1130 
1131   return true;
1132 }
1133 
1134 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1135                                                       const CXXMethodDecl *MD) {
1136   // Check that the type metadata can ever actually be used by a call.
1137   if (!CGM.getCodeGenOpts().LTOUnit ||
1138       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1139     return false;
1140 
1141   // Only functions whose address can be taken with a member function pointer
1142   // need this sort of type metadata.
1143   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1144          !isa<CXXDestructorDecl>(MD);
1145 }
1146 
1147 std::vector<const CXXRecordDecl *>
1148 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1149   llvm::SetVector<const CXXRecordDecl *> MostBases;
1150 
1151   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1152   CollectMostBases = [&](const CXXRecordDecl *RD) {
1153     if (RD->getNumBases() == 0)
1154       MostBases.insert(RD);
1155     for (const CXXBaseSpecifier &B : RD->bases())
1156       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1157   };
1158   CollectMostBases(RD);
1159   return MostBases.takeVector();
1160 }
1161 
1162 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1163                                                            llvm::Function *F) {
1164   llvm::AttrBuilder B;
1165 
1166   if (CodeGenOpts.UnwindTables)
1167     B.addAttribute(llvm::Attribute::UWTable);
1168 
1169   if (!hasUnwindExceptions(LangOpts))
1170     B.addAttribute(llvm::Attribute::NoUnwind);
1171 
1172   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1173     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1174       B.addAttribute(llvm::Attribute::StackProtect);
1175     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1176       B.addAttribute(llvm::Attribute::StackProtectStrong);
1177     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1178       B.addAttribute(llvm::Attribute::StackProtectReq);
1179   }
1180 
1181   if (!D) {
1182     // If we don't have a declaration to control inlining, the function isn't
1183     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1184     // disabled, mark the function as noinline.
1185     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1186         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1187       B.addAttribute(llvm::Attribute::NoInline);
1188 
1189     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1190     return;
1191   }
1192 
1193   // Track whether we need to add the optnone LLVM attribute,
1194   // starting with the default for this optimization level.
1195   bool ShouldAddOptNone =
1196       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1197   // We can't add optnone in the following cases, it won't pass the verifier.
1198   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1199   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1200   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1201 
1202   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1203     B.addAttribute(llvm::Attribute::OptimizeNone);
1204 
1205     // OptimizeNone implies noinline; we should not be inlining such functions.
1206     B.addAttribute(llvm::Attribute::NoInline);
1207     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1208            "OptimizeNone and AlwaysInline on same function!");
1209 
1210     // We still need to handle naked functions even though optnone subsumes
1211     // much of their semantics.
1212     if (D->hasAttr<NakedAttr>())
1213       B.addAttribute(llvm::Attribute::Naked);
1214 
1215     // OptimizeNone wins over OptimizeForSize and MinSize.
1216     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1217     F->removeFnAttr(llvm::Attribute::MinSize);
1218   } else if (D->hasAttr<NakedAttr>()) {
1219     // Naked implies noinline: we should not be inlining such functions.
1220     B.addAttribute(llvm::Attribute::Naked);
1221     B.addAttribute(llvm::Attribute::NoInline);
1222   } else if (D->hasAttr<NoDuplicateAttr>()) {
1223     B.addAttribute(llvm::Attribute::NoDuplicate);
1224   } else if (D->hasAttr<NoInlineAttr>()) {
1225     B.addAttribute(llvm::Attribute::NoInline);
1226   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1227              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1228     // (noinline wins over always_inline, and we can't specify both in IR)
1229     B.addAttribute(llvm::Attribute::AlwaysInline);
1230   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1231     // If we're not inlining, then force everything that isn't always_inline to
1232     // carry an explicit noinline attribute.
1233     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1234       B.addAttribute(llvm::Attribute::NoInline);
1235   } else {
1236     // Otherwise, propagate the inline hint attribute and potentially use its
1237     // absence to mark things as noinline.
1238     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1239       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1240             return Redecl->isInlineSpecified();
1241           })) {
1242         B.addAttribute(llvm::Attribute::InlineHint);
1243       } else if (CodeGenOpts.getInlining() ==
1244                      CodeGenOptions::OnlyHintInlining &&
1245                  !FD->isInlined() &&
1246                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1247         B.addAttribute(llvm::Attribute::NoInline);
1248       }
1249     }
1250   }
1251 
1252   // Add other optimization related attributes if we are optimizing this
1253   // function.
1254   if (!D->hasAttr<OptimizeNoneAttr>()) {
1255     if (D->hasAttr<ColdAttr>()) {
1256       if (!ShouldAddOptNone)
1257         B.addAttribute(llvm::Attribute::OptimizeForSize);
1258       B.addAttribute(llvm::Attribute::Cold);
1259     }
1260 
1261     if (D->hasAttr<MinSizeAttr>())
1262       B.addAttribute(llvm::Attribute::MinSize);
1263   }
1264 
1265   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1266 
1267   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1268   if (alignment)
1269     F->setAlignment(alignment);
1270 
1271   if (!D->hasAttr<AlignedAttr>())
1272     if (LangOpts.FunctionAlignment)
1273       F->setAlignment(1 << LangOpts.FunctionAlignment);
1274 
1275   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1276   // reserve a bit for differentiating between virtual and non-virtual member
1277   // functions. If the current target's C++ ABI requires this and this is a
1278   // member function, set its alignment accordingly.
1279   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1280     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1281       F->setAlignment(2);
1282   }
1283 
1284   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1285   if (CodeGenOpts.SanitizeCfiCrossDso)
1286     if (auto *FD = dyn_cast<FunctionDecl>(D))
1287       CreateFunctionTypeMetadataForIcall(FD, F);
1288 
1289   // Emit type metadata on member functions for member function pointer checks.
1290   // These are only ever necessary on definitions; we're guaranteed that the
1291   // definition will be present in the LTO unit as a result of LTO visibility.
1292   auto *MD = dyn_cast<CXXMethodDecl>(D);
1293   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1294     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1295       llvm::Metadata *Id =
1296           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1297               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1298       F->addTypeMetadata(0, Id);
1299     }
1300   }
1301 }
1302 
1303 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1304   const Decl *D = GD.getDecl();
1305   if (dyn_cast_or_null<NamedDecl>(D))
1306     setGVProperties(GV, GD);
1307   else
1308     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1309 
1310   if (D && D->hasAttr<UsedAttr>())
1311     addUsedGlobal(GV);
1312 }
1313 
1314 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1315                                                 llvm::AttrBuilder &Attrs) {
1316   // Add target-cpu and target-features attributes to functions. If
1317   // we have a decl for the function and it has a target attribute then
1318   // parse that and add it to the feature set.
1319   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1320   std::vector<std::string> Features;
1321   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1322   FD = FD ? FD->getMostRecentDecl() : FD;
1323   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1324   bool AddedAttr = false;
1325   if (TD) {
1326     llvm::StringMap<bool> FeatureMap;
1327     getFunctionFeatureMap(FeatureMap, FD);
1328 
1329     // Produce the canonical string for this set of features.
1330     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1331       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1332 
1333     // Now add the target-cpu and target-features to the function.
1334     // While we populated the feature map above, we still need to
1335     // get and parse the target attribute so we can get the cpu for
1336     // the function.
1337     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1338     if (ParsedAttr.Architecture != "" &&
1339         getTarget().isValidCPUName(ParsedAttr.Architecture))
1340       TargetCPU = ParsedAttr.Architecture;
1341   } else {
1342     // Otherwise just add the existing target cpu and target features to the
1343     // function.
1344     Features = getTarget().getTargetOpts().Features;
1345   }
1346 
1347   if (TargetCPU != "") {
1348     Attrs.addAttribute("target-cpu", TargetCPU);
1349     AddedAttr = true;
1350   }
1351   if (!Features.empty()) {
1352     llvm::sort(Features.begin(), Features.end());
1353     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1354     AddedAttr = true;
1355   }
1356 
1357   return AddedAttr;
1358 }
1359 
1360 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1361                                           llvm::GlobalObject *GO) {
1362   const Decl *D = GD.getDecl();
1363   SetCommonAttributes(GD, GO);
1364 
1365   if (D) {
1366     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1367       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1368         GV->addAttribute("bss-section", SA->getName());
1369       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1370         GV->addAttribute("data-section", SA->getName());
1371       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1372         GV->addAttribute("rodata-section", SA->getName());
1373     }
1374 
1375     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1376       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1377         if (!D->getAttr<SectionAttr>())
1378           F->addFnAttr("implicit-section-name", SA->getName());
1379 
1380       llvm::AttrBuilder Attrs;
1381       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1382         // We know that GetCPUAndFeaturesAttributes will always have the
1383         // newest set, since it has the newest possible FunctionDecl, so the
1384         // new ones should replace the old.
1385         F->removeFnAttr("target-cpu");
1386         F->removeFnAttr("target-features");
1387         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1388       }
1389     }
1390 
1391     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1392       GO->setSection(SA->getName());
1393   }
1394 
1395   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1396 }
1397 
1398 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1399                                                   llvm::Function *F,
1400                                                   const CGFunctionInfo &FI) {
1401   const Decl *D = GD.getDecl();
1402   SetLLVMFunctionAttributes(D, FI, F);
1403   SetLLVMFunctionAttributesForDefinition(D, F);
1404 
1405   F->setLinkage(llvm::Function::InternalLinkage);
1406 
1407   setNonAliasAttributes(GD, F);
1408 }
1409 
1410 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1411   // Set linkage and visibility in case we never see a definition.
1412   LinkageInfo LV = ND->getLinkageAndVisibility();
1413   // Don't set internal linkage on declarations.
1414   // "extern_weak" is overloaded in LLVM; we probably should have
1415   // separate linkage types for this.
1416   if (isExternallyVisible(LV.getLinkage()) &&
1417       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1418     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1419 }
1420 
1421 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1422                                                        llvm::Function *F) {
1423   // Only if we are checking indirect calls.
1424   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1425     return;
1426 
1427   // Non-static class methods are handled via vtable or member function pointer
1428   // checks elsewhere.
1429   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1430     return;
1431 
1432   // Additionally, if building with cross-DSO support...
1433   if (CodeGenOpts.SanitizeCfiCrossDso) {
1434     // Skip available_externally functions. They won't be codegen'ed in the
1435     // current module anyway.
1436     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1437       return;
1438   }
1439 
1440   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1441   F->addTypeMetadata(0, MD);
1442   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1443 
1444   // Emit a hash-based bit set entry for cross-DSO calls.
1445   if (CodeGenOpts.SanitizeCfiCrossDso)
1446     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1447       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1448 }
1449 
1450 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1451                                           bool IsIncompleteFunction,
1452                                           bool IsThunk) {
1453 
1454   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1455     // If this is an intrinsic function, set the function's attributes
1456     // to the intrinsic's attributes.
1457     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1458     return;
1459   }
1460 
1461   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1462 
1463   if (!IsIncompleteFunction) {
1464     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1465     // Setup target-specific attributes.
1466     if (F->isDeclaration())
1467       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1468   }
1469 
1470   // Add the Returned attribute for "this", except for iOS 5 and earlier
1471   // where substantial code, including the libstdc++ dylib, was compiled with
1472   // GCC and does not actually return "this".
1473   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1474       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1475     assert(!F->arg_empty() &&
1476            F->arg_begin()->getType()
1477              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1478            "unexpected this return");
1479     F->addAttribute(1, llvm::Attribute::Returned);
1480   }
1481 
1482   // Only a few attributes are set on declarations; these may later be
1483   // overridden by a definition.
1484 
1485   setLinkageForGV(F, FD);
1486   setGVProperties(F, FD);
1487 
1488   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1489     F->setSection(SA->getName());
1490 
1491   if (FD->isReplaceableGlobalAllocationFunction()) {
1492     // A replaceable global allocation function does not act like a builtin by
1493     // default, only if it is invoked by a new-expression or delete-expression.
1494     F->addAttribute(llvm::AttributeList::FunctionIndex,
1495                     llvm::Attribute::NoBuiltin);
1496 
1497     // A sane operator new returns a non-aliasing pointer.
1498     // FIXME: Also add NonNull attribute to the return value
1499     // for the non-nothrow forms?
1500     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1501     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1502         (Kind == OO_New || Kind == OO_Array_New))
1503       F->addAttribute(llvm::AttributeList::ReturnIndex,
1504                       llvm::Attribute::NoAlias);
1505   }
1506 
1507   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1508     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1509   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1510     if (MD->isVirtual())
1511       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1512 
1513   // Don't emit entries for function declarations in the cross-DSO mode. This
1514   // is handled with better precision by the receiving DSO.
1515   if (!CodeGenOpts.SanitizeCfiCrossDso)
1516     CreateFunctionTypeMetadataForIcall(FD, F);
1517 
1518   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1519     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1520 }
1521 
1522 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1523   assert(!GV->isDeclaration() &&
1524          "Only globals with definition can force usage.");
1525   LLVMUsed.emplace_back(GV);
1526 }
1527 
1528 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1529   assert(!GV->isDeclaration() &&
1530          "Only globals with definition can force usage.");
1531   LLVMCompilerUsed.emplace_back(GV);
1532 }
1533 
1534 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1535                      std::vector<llvm::WeakTrackingVH> &List) {
1536   // Don't create llvm.used if there is no need.
1537   if (List.empty())
1538     return;
1539 
1540   // Convert List to what ConstantArray needs.
1541   SmallVector<llvm::Constant*, 8> UsedArray;
1542   UsedArray.resize(List.size());
1543   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1544     UsedArray[i] =
1545         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1546             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1547   }
1548 
1549   if (UsedArray.empty())
1550     return;
1551   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1552 
1553   auto *GV = new llvm::GlobalVariable(
1554       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1555       llvm::ConstantArray::get(ATy, UsedArray), Name);
1556 
1557   GV->setSection("llvm.metadata");
1558 }
1559 
1560 void CodeGenModule::emitLLVMUsed() {
1561   emitUsed(*this, "llvm.used", LLVMUsed);
1562   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1563 }
1564 
1565 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1566   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1567   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1568 }
1569 
1570 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1571   llvm::SmallString<32> Opt;
1572   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1573   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1574   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1575 }
1576 
1577 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1578   auto &C = getLLVMContext();
1579   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1580       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1581 }
1582 
1583 void CodeGenModule::AddDependentLib(StringRef Lib) {
1584   llvm::SmallString<24> Opt;
1585   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1586   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1587   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1588 }
1589 
1590 /// Add link options implied by the given module, including modules
1591 /// it depends on, using a postorder walk.
1592 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1593                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1594                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1595   // Import this module's parent.
1596   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1597     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1598   }
1599 
1600   // Import this module's dependencies.
1601   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1602     if (Visited.insert(Mod->Imports[I - 1]).second)
1603       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1604   }
1605 
1606   // Add linker options to link against the libraries/frameworks
1607   // described by this module.
1608   llvm::LLVMContext &Context = CGM.getLLVMContext();
1609 
1610   // For modules that use export_as for linking, use that module
1611   // name instead.
1612   if (Mod->UseExportAsModuleLinkName)
1613     return;
1614 
1615   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1616     // Link against a framework.  Frameworks are currently Darwin only, so we
1617     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1618     if (Mod->LinkLibraries[I-1].IsFramework) {
1619       llvm::Metadata *Args[2] = {
1620           llvm::MDString::get(Context, "-framework"),
1621           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1622 
1623       Metadata.push_back(llvm::MDNode::get(Context, Args));
1624       continue;
1625     }
1626 
1627     // Link against a library.
1628     llvm::SmallString<24> Opt;
1629     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1630       Mod->LinkLibraries[I-1].Library, Opt);
1631     auto *OptString = llvm::MDString::get(Context, Opt);
1632     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1633   }
1634 }
1635 
1636 void CodeGenModule::EmitModuleLinkOptions() {
1637   // Collect the set of all of the modules we want to visit to emit link
1638   // options, which is essentially the imported modules and all of their
1639   // non-explicit child modules.
1640   llvm::SetVector<clang::Module *> LinkModules;
1641   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1642   SmallVector<clang::Module *, 16> Stack;
1643 
1644   // Seed the stack with imported modules.
1645   for (Module *M : ImportedModules) {
1646     // Do not add any link flags when an implementation TU of a module imports
1647     // a header of that same module.
1648     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1649         !getLangOpts().isCompilingModule())
1650       continue;
1651     if (Visited.insert(M).second)
1652       Stack.push_back(M);
1653   }
1654 
1655   // Find all of the modules to import, making a little effort to prune
1656   // non-leaf modules.
1657   while (!Stack.empty()) {
1658     clang::Module *Mod = Stack.pop_back_val();
1659 
1660     bool AnyChildren = false;
1661 
1662     // Visit the submodules of this module.
1663     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1664                                         SubEnd = Mod->submodule_end();
1665          Sub != SubEnd; ++Sub) {
1666       // Skip explicit children; they need to be explicitly imported to be
1667       // linked against.
1668       if ((*Sub)->IsExplicit)
1669         continue;
1670 
1671       if (Visited.insert(*Sub).second) {
1672         Stack.push_back(*Sub);
1673         AnyChildren = true;
1674       }
1675     }
1676 
1677     // We didn't find any children, so add this module to the list of
1678     // modules to link against.
1679     if (!AnyChildren) {
1680       LinkModules.insert(Mod);
1681     }
1682   }
1683 
1684   // Add link options for all of the imported modules in reverse topological
1685   // order.  We don't do anything to try to order import link flags with respect
1686   // to linker options inserted by things like #pragma comment().
1687   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1688   Visited.clear();
1689   for (Module *M : LinkModules)
1690     if (Visited.insert(M).second)
1691       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1692   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1693   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1694 
1695   // Add the linker options metadata flag.
1696   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1697   for (auto *MD : LinkerOptionsMetadata)
1698     NMD->addOperand(MD);
1699 }
1700 
1701 void CodeGenModule::EmitDeferred() {
1702   // Emit code for any potentially referenced deferred decls.  Since a
1703   // previously unused static decl may become used during the generation of code
1704   // for a static function, iterate until no changes are made.
1705 
1706   if (!DeferredVTables.empty()) {
1707     EmitDeferredVTables();
1708 
1709     // Emitting a vtable doesn't directly cause more vtables to
1710     // become deferred, although it can cause functions to be
1711     // emitted that then need those vtables.
1712     assert(DeferredVTables.empty());
1713   }
1714 
1715   // Stop if we're out of both deferred vtables and deferred declarations.
1716   if (DeferredDeclsToEmit.empty())
1717     return;
1718 
1719   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1720   // work, it will not interfere with this.
1721   std::vector<GlobalDecl> CurDeclsToEmit;
1722   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1723 
1724   for (GlobalDecl &D : CurDeclsToEmit) {
1725     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1726     // to get GlobalValue with exactly the type we need, not something that
1727     // might had been created for another decl with the same mangled name but
1728     // different type.
1729     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1730         GetAddrOfGlobal(D, ForDefinition));
1731 
1732     // In case of different address spaces, we may still get a cast, even with
1733     // IsForDefinition equal to true. Query mangled names table to get
1734     // GlobalValue.
1735     if (!GV)
1736       GV = GetGlobalValue(getMangledName(D));
1737 
1738     // Make sure GetGlobalValue returned non-null.
1739     assert(GV);
1740 
1741     // Check to see if we've already emitted this.  This is necessary
1742     // for a couple of reasons: first, decls can end up in the
1743     // deferred-decls queue multiple times, and second, decls can end
1744     // up with definitions in unusual ways (e.g. by an extern inline
1745     // function acquiring a strong function redefinition).  Just
1746     // ignore these cases.
1747     if (!GV->isDeclaration())
1748       continue;
1749 
1750     // Otherwise, emit the definition and move on to the next one.
1751     EmitGlobalDefinition(D, GV);
1752 
1753     // If we found out that we need to emit more decls, do that recursively.
1754     // This has the advantage that the decls are emitted in a DFS and related
1755     // ones are close together, which is convenient for testing.
1756     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1757       EmitDeferred();
1758       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1759     }
1760   }
1761 }
1762 
1763 void CodeGenModule::EmitVTablesOpportunistically() {
1764   // Try to emit external vtables as available_externally if they have emitted
1765   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1766   // is not allowed to create new references to things that need to be emitted
1767   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1768 
1769   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1770          && "Only emit opportunistic vtables with optimizations");
1771 
1772   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1773     assert(getVTables().isVTableExternal(RD) &&
1774            "This queue should only contain external vtables");
1775     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1776       VTables.GenerateClassData(RD);
1777   }
1778   OpportunisticVTables.clear();
1779 }
1780 
1781 void CodeGenModule::EmitGlobalAnnotations() {
1782   if (Annotations.empty())
1783     return;
1784 
1785   // Create a new global variable for the ConstantStruct in the Module.
1786   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1787     Annotations[0]->getType(), Annotations.size()), Annotations);
1788   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1789                                       llvm::GlobalValue::AppendingLinkage,
1790                                       Array, "llvm.global.annotations");
1791   gv->setSection(AnnotationSection);
1792 }
1793 
1794 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1795   llvm::Constant *&AStr = AnnotationStrings[Str];
1796   if (AStr)
1797     return AStr;
1798 
1799   // Not found yet, create a new global.
1800   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1801   auto *gv =
1802       new llvm::GlobalVariable(getModule(), s->getType(), true,
1803                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1804   gv->setSection(AnnotationSection);
1805   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1806   AStr = gv;
1807   return gv;
1808 }
1809 
1810 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1811   SourceManager &SM = getContext().getSourceManager();
1812   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1813   if (PLoc.isValid())
1814     return EmitAnnotationString(PLoc.getFilename());
1815   return EmitAnnotationString(SM.getBufferName(Loc));
1816 }
1817 
1818 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1819   SourceManager &SM = getContext().getSourceManager();
1820   PresumedLoc PLoc = SM.getPresumedLoc(L);
1821   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1822     SM.getExpansionLineNumber(L);
1823   return llvm::ConstantInt::get(Int32Ty, LineNo);
1824 }
1825 
1826 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1827                                                 const AnnotateAttr *AA,
1828                                                 SourceLocation L) {
1829   // Get the globals for file name, annotation, and the line number.
1830   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1831                  *UnitGV = EmitAnnotationUnit(L),
1832                  *LineNoCst = EmitAnnotationLineNo(L);
1833 
1834   // Create the ConstantStruct for the global annotation.
1835   llvm::Constant *Fields[4] = {
1836     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1837     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1838     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1839     LineNoCst
1840   };
1841   return llvm::ConstantStruct::getAnon(Fields);
1842 }
1843 
1844 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1845                                          llvm::GlobalValue *GV) {
1846   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1847   // Get the struct elements for these annotations.
1848   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1849     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1850 }
1851 
1852 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1853                                            llvm::Function *Fn,
1854                                            SourceLocation Loc) const {
1855   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1856   // Blacklist by function name.
1857   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1858     return true;
1859   // Blacklist by location.
1860   if (Loc.isValid())
1861     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1862   // If location is unknown, this may be a compiler-generated function. Assume
1863   // it's located in the main file.
1864   auto &SM = Context.getSourceManager();
1865   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1866     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1867   }
1868   return false;
1869 }
1870 
1871 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1872                                            SourceLocation Loc, QualType Ty,
1873                                            StringRef Category) const {
1874   // For now globals can be blacklisted only in ASan and KASan.
1875   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1876       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1877        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1878   if (!EnabledAsanMask)
1879     return false;
1880   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1881   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1882     return true;
1883   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1884     return true;
1885   // Check global type.
1886   if (!Ty.isNull()) {
1887     // Drill down the array types: if global variable of a fixed type is
1888     // blacklisted, we also don't instrument arrays of them.
1889     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1890       Ty = AT->getElementType();
1891     Ty = Ty.getCanonicalType().getUnqualifiedType();
1892     // We allow to blacklist only record types (classes, structs etc.)
1893     if (Ty->isRecordType()) {
1894       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1895       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1896         return true;
1897     }
1898   }
1899   return false;
1900 }
1901 
1902 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1903                                    StringRef Category) const {
1904   if (!LangOpts.XRayInstrument)
1905     return false;
1906 
1907   const auto &XRayFilter = getContext().getXRayFilter();
1908   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1909   auto Attr = ImbueAttr::NONE;
1910   if (Loc.isValid())
1911     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1912   if (Attr == ImbueAttr::NONE)
1913     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1914   switch (Attr) {
1915   case ImbueAttr::NONE:
1916     return false;
1917   case ImbueAttr::ALWAYS:
1918     Fn->addFnAttr("function-instrument", "xray-always");
1919     break;
1920   case ImbueAttr::ALWAYS_ARG1:
1921     Fn->addFnAttr("function-instrument", "xray-always");
1922     Fn->addFnAttr("xray-log-args", "1");
1923     break;
1924   case ImbueAttr::NEVER:
1925     Fn->addFnAttr("function-instrument", "xray-never");
1926     break;
1927   }
1928   return true;
1929 }
1930 
1931 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1932   // Never defer when EmitAllDecls is specified.
1933   if (LangOpts.EmitAllDecls)
1934     return true;
1935 
1936   return getContext().DeclMustBeEmitted(Global);
1937 }
1938 
1939 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1940   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1941     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1942       // Implicit template instantiations may change linkage if they are later
1943       // explicitly instantiated, so they should not be emitted eagerly.
1944       return false;
1945   if (const auto *VD = dyn_cast<VarDecl>(Global))
1946     if (Context.getInlineVariableDefinitionKind(VD) ==
1947         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1948       // A definition of an inline constexpr static data member may change
1949       // linkage later if it's redeclared outside the class.
1950       return false;
1951   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1952   // codegen for global variables, because they may be marked as threadprivate.
1953   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1954       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
1955       !isTypeConstant(Global->getType(), false))
1956     return false;
1957 
1958   return true;
1959 }
1960 
1961 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1962     const CXXUuidofExpr* E) {
1963   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1964   // well-formed.
1965   StringRef Uuid = E->getUuidStr();
1966   std::string Name = "_GUID_" + Uuid.lower();
1967   std::replace(Name.begin(), Name.end(), '-', '_');
1968 
1969   // The UUID descriptor should be pointer aligned.
1970   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1971 
1972   // Look for an existing global.
1973   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1974     return ConstantAddress(GV, Alignment);
1975 
1976   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1977   assert(Init && "failed to initialize as constant");
1978 
1979   auto *GV = new llvm::GlobalVariable(
1980       getModule(), Init->getType(),
1981       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1982   if (supportsCOMDAT())
1983     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1984   setDSOLocal(GV);
1985   return ConstantAddress(GV, Alignment);
1986 }
1987 
1988 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1989   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1990   assert(AA && "No alias?");
1991 
1992   CharUnits Alignment = getContext().getDeclAlign(VD);
1993   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1994 
1995   // See if there is already something with the target's name in the module.
1996   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1997   if (Entry) {
1998     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1999     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2000     return ConstantAddress(Ptr, Alignment);
2001   }
2002 
2003   llvm::Constant *Aliasee;
2004   if (isa<llvm::FunctionType>(DeclTy))
2005     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2006                                       GlobalDecl(cast<FunctionDecl>(VD)),
2007                                       /*ForVTable=*/false);
2008   else
2009     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2010                                     llvm::PointerType::getUnqual(DeclTy),
2011                                     nullptr);
2012 
2013   auto *F = cast<llvm::GlobalValue>(Aliasee);
2014   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2015   WeakRefReferences.insert(F);
2016 
2017   return ConstantAddress(Aliasee, Alignment);
2018 }
2019 
2020 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2021   const auto *Global = cast<ValueDecl>(GD.getDecl());
2022 
2023   // Weak references don't produce any output by themselves.
2024   if (Global->hasAttr<WeakRefAttr>())
2025     return;
2026 
2027   // If this is an alias definition (which otherwise looks like a declaration)
2028   // emit it now.
2029   if (Global->hasAttr<AliasAttr>())
2030     return EmitAliasDefinition(GD);
2031 
2032   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2033   if (Global->hasAttr<IFuncAttr>())
2034     return emitIFuncDefinition(GD);
2035 
2036   // If this is CUDA, be selective about which declarations we emit.
2037   if (LangOpts.CUDA) {
2038     if (LangOpts.CUDAIsDevice) {
2039       if (!Global->hasAttr<CUDADeviceAttr>() &&
2040           !Global->hasAttr<CUDAGlobalAttr>() &&
2041           !Global->hasAttr<CUDAConstantAttr>() &&
2042           !Global->hasAttr<CUDASharedAttr>())
2043         return;
2044     } else {
2045       // We need to emit host-side 'shadows' for all global
2046       // device-side variables because the CUDA runtime needs their
2047       // size and host-side address in order to provide access to
2048       // their device-side incarnations.
2049 
2050       // So device-only functions are the only things we skip.
2051       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2052           Global->hasAttr<CUDADeviceAttr>())
2053         return;
2054 
2055       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2056              "Expected Variable or Function");
2057     }
2058   }
2059 
2060   if (LangOpts.OpenMP) {
2061     // If this is OpenMP device, check if it is legal to emit this global
2062     // normally.
2063     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2064       return;
2065     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2066       if (MustBeEmitted(Global))
2067         EmitOMPDeclareReduction(DRD);
2068       return;
2069     }
2070   }
2071 
2072   // Ignore declarations, they will be emitted on their first use.
2073   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2074     // Forward declarations are emitted lazily on first use.
2075     if (!FD->doesThisDeclarationHaveABody()) {
2076       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2077         return;
2078 
2079       StringRef MangledName = getMangledName(GD);
2080 
2081       // Compute the function info and LLVM type.
2082       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2083       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2084 
2085       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2086                               /*DontDefer=*/false);
2087       return;
2088     }
2089   } else {
2090     const auto *VD = cast<VarDecl>(Global);
2091     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2092     // We need to emit device-side global CUDA variables even if a
2093     // variable does not have a definition -- we still need to define
2094     // host-side shadow for it.
2095     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2096                            !VD->hasDefinition() &&
2097                            (VD->hasAttr<CUDAConstantAttr>() ||
2098                             VD->hasAttr<CUDADeviceAttr>());
2099     if (!MustEmitForCuda &&
2100         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2101         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2102       // If this declaration may have caused an inline variable definition to
2103       // change linkage, make sure that it's emitted.
2104       if (Context.getInlineVariableDefinitionKind(VD) ==
2105           ASTContext::InlineVariableDefinitionKind::Strong)
2106         GetAddrOfGlobalVar(VD);
2107       return;
2108     }
2109   }
2110 
2111   // Defer code generation to first use when possible, e.g. if this is an inline
2112   // function. If the global must always be emitted, do it eagerly if possible
2113   // to benefit from cache locality.
2114   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2115     // Emit the definition if it can't be deferred.
2116     EmitGlobalDefinition(GD);
2117     return;
2118   }
2119 
2120   // If we're deferring emission of a C++ variable with an
2121   // initializer, remember the order in which it appeared in the file.
2122   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2123       cast<VarDecl>(Global)->hasInit()) {
2124     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2125     CXXGlobalInits.push_back(nullptr);
2126   }
2127 
2128   StringRef MangledName = getMangledName(GD);
2129   if (GetGlobalValue(MangledName) != nullptr) {
2130     // The value has already been used and should therefore be emitted.
2131     addDeferredDeclToEmit(GD);
2132   } else if (MustBeEmitted(Global)) {
2133     // The value must be emitted, but cannot be emitted eagerly.
2134     assert(!MayBeEmittedEagerly(Global));
2135     addDeferredDeclToEmit(GD);
2136   } else {
2137     // Otherwise, remember that we saw a deferred decl with this name.  The
2138     // first use of the mangled name will cause it to move into
2139     // DeferredDeclsToEmit.
2140     DeferredDecls[MangledName] = GD;
2141   }
2142 }
2143 
2144 // Check if T is a class type with a destructor that's not dllimport.
2145 static bool HasNonDllImportDtor(QualType T) {
2146   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2147     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2148       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2149         return true;
2150 
2151   return false;
2152 }
2153 
2154 namespace {
2155   struct FunctionIsDirectlyRecursive :
2156     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2157     const StringRef Name;
2158     const Builtin::Context &BI;
2159     bool Result;
2160     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2161       Name(N), BI(C), Result(false) {
2162     }
2163     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2164 
2165     bool TraverseCallExpr(CallExpr *E) {
2166       const FunctionDecl *FD = E->getDirectCallee();
2167       if (!FD)
2168         return true;
2169       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2170       if (Attr && Name == Attr->getLabel()) {
2171         Result = true;
2172         return false;
2173       }
2174       unsigned BuiltinID = FD->getBuiltinID();
2175       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2176         return true;
2177       StringRef BuiltinName = BI.getName(BuiltinID);
2178       if (BuiltinName.startswith("__builtin_") &&
2179           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2180         Result = true;
2181         return false;
2182       }
2183       return true;
2184     }
2185   };
2186 
2187   // Make sure we're not referencing non-imported vars or functions.
2188   struct DLLImportFunctionVisitor
2189       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2190     bool SafeToInline = true;
2191 
2192     bool shouldVisitImplicitCode() const { return true; }
2193 
2194     bool VisitVarDecl(VarDecl *VD) {
2195       if (VD->getTLSKind()) {
2196         // A thread-local variable cannot be imported.
2197         SafeToInline = false;
2198         return SafeToInline;
2199       }
2200 
2201       // A variable definition might imply a destructor call.
2202       if (VD->isThisDeclarationADefinition())
2203         SafeToInline = !HasNonDllImportDtor(VD->getType());
2204 
2205       return SafeToInline;
2206     }
2207 
2208     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2209       if (const auto *D = E->getTemporary()->getDestructor())
2210         SafeToInline = D->hasAttr<DLLImportAttr>();
2211       return SafeToInline;
2212     }
2213 
2214     bool VisitDeclRefExpr(DeclRefExpr *E) {
2215       ValueDecl *VD = E->getDecl();
2216       if (isa<FunctionDecl>(VD))
2217         SafeToInline = VD->hasAttr<DLLImportAttr>();
2218       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2219         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2220       return SafeToInline;
2221     }
2222 
2223     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2224       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2225       return SafeToInline;
2226     }
2227 
2228     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2229       CXXMethodDecl *M = E->getMethodDecl();
2230       if (!M) {
2231         // Call through a pointer to member function. This is safe to inline.
2232         SafeToInline = true;
2233       } else {
2234         SafeToInline = M->hasAttr<DLLImportAttr>();
2235       }
2236       return SafeToInline;
2237     }
2238 
2239     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2240       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2241       return SafeToInline;
2242     }
2243 
2244     bool VisitCXXNewExpr(CXXNewExpr *E) {
2245       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2246       return SafeToInline;
2247     }
2248   };
2249 }
2250 
2251 // isTriviallyRecursive - Check if this function calls another
2252 // decl that, because of the asm attribute or the other decl being a builtin,
2253 // ends up pointing to itself.
2254 bool
2255 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2256   StringRef Name;
2257   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2258     // asm labels are a special kind of mangling we have to support.
2259     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2260     if (!Attr)
2261       return false;
2262     Name = Attr->getLabel();
2263   } else {
2264     Name = FD->getName();
2265   }
2266 
2267   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2268   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2269   return Walker.Result;
2270 }
2271 
2272 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2273   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2274     return true;
2275   const auto *F = cast<FunctionDecl>(GD.getDecl());
2276   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2277     return false;
2278 
2279   if (F->hasAttr<DLLImportAttr>()) {
2280     // Check whether it would be safe to inline this dllimport function.
2281     DLLImportFunctionVisitor Visitor;
2282     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2283     if (!Visitor.SafeToInline)
2284       return false;
2285 
2286     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2287       // Implicit destructor invocations aren't captured in the AST, so the
2288       // check above can't see them. Check for them manually here.
2289       for (const Decl *Member : Dtor->getParent()->decls())
2290         if (isa<FieldDecl>(Member))
2291           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2292             return false;
2293       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2294         if (HasNonDllImportDtor(B.getType()))
2295           return false;
2296     }
2297   }
2298 
2299   // PR9614. Avoid cases where the source code is lying to us. An available
2300   // externally function should have an equivalent function somewhere else,
2301   // but a function that calls itself is clearly not equivalent to the real
2302   // implementation.
2303   // This happens in glibc's btowc and in some configure checks.
2304   return !isTriviallyRecursive(F);
2305 }
2306 
2307 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2308   return CodeGenOpts.OptimizationLevel > 0;
2309 }
2310 
2311 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2312   const auto *D = cast<ValueDecl>(GD.getDecl());
2313 
2314   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2315                                  Context.getSourceManager(),
2316                                  "Generating code for declaration");
2317 
2318   if (isa<FunctionDecl>(D)) {
2319     // At -O0, don't generate IR for functions with available_externally
2320     // linkage.
2321     if (!shouldEmitFunction(GD))
2322       return;
2323 
2324     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2325       // Make sure to emit the definition(s) before we emit the thunks.
2326       // This is necessary for the generation of certain thunks.
2327       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2328         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2329       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2330         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2331       else
2332         EmitGlobalFunctionDefinition(GD, GV);
2333 
2334       if (Method->isVirtual())
2335         getVTables().EmitThunks(GD);
2336 
2337       return;
2338     }
2339 
2340     return EmitGlobalFunctionDefinition(GD, GV);
2341   }
2342 
2343   if (const auto *VD = dyn_cast<VarDecl>(D))
2344     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2345 
2346   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2347 }
2348 
2349 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2350                                                       llvm::Function *NewFn);
2351 
2352 void CodeGenModule::emitMultiVersionFunctions() {
2353   for (GlobalDecl GD : MultiVersionFuncs) {
2354     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2355     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2356     getContext().forEachMultiversionedFunctionVersion(
2357         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2358           GlobalDecl CurGD{
2359               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2360           StringRef MangledName = getMangledName(CurGD);
2361           llvm::Constant *Func = GetGlobalValue(MangledName);
2362           if (!Func) {
2363             if (CurFD->isDefined()) {
2364               EmitGlobalFunctionDefinition(CurGD, nullptr);
2365               Func = GetGlobalValue(MangledName);
2366             } else {
2367               const CGFunctionInfo &FI =
2368                   getTypes().arrangeGlobalDeclaration(GD);
2369               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2370               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2371                                        /*DontDefer=*/false, ForDefinition);
2372             }
2373             assert(Func && "This should have just been created");
2374           }
2375           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2376                                CurFD->getAttr<TargetAttr>()->parse());
2377         });
2378 
2379     llvm::Function *ResolverFunc = cast<llvm::Function>(
2380         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2381     if (supportsCOMDAT())
2382       ResolverFunc->setComdat(
2383           getModule().getOrInsertComdat(ResolverFunc->getName()));
2384     std::stable_sort(
2385         Options.begin(), Options.end(),
2386         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2387     CodeGenFunction CGF(*this);
2388     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2389   }
2390 }
2391 
2392 /// If an ifunc for the specified mangled name is not in the module, create and
2393 /// return an llvm IFunc Function with the specified type.
2394 llvm::Constant *
2395 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2396                                             StringRef MangledName,
2397                                             const FunctionDecl *FD) {
2398   std::string IFuncName = (MangledName + ".ifunc").str();
2399   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2400     return IFuncGV;
2401 
2402   // Since this is the first time we've created this IFunc, make sure
2403   // that we put this multiversioned function into the list to be
2404   // replaced later.
2405   MultiVersionFuncs.push_back(GD);
2406 
2407   std::string ResolverName = (MangledName + ".resolver").str();
2408   llvm::Type *ResolverType = llvm::FunctionType::get(
2409       llvm::PointerType::get(DeclTy,
2410                              Context.getTargetAddressSpace(FD->getType())),
2411       false);
2412   llvm::Constant *Resolver =
2413       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2414                               /*ForVTable=*/false);
2415   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2416       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2417   GIF->setName(IFuncName);
2418   SetCommonAttributes(FD, GIF);
2419 
2420   return GIF;
2421 }
2422 
2423 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2424 /// module, create and return an llvm Function with the specified type. If there
2425 /// is something in the module with the specified name, return it potentially
2426 /// bitcasted to the right type.
2427 ///
2428 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2429 /// to set the attributes on the function when it is first created.
2430 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2431     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2432     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2433     ForDefinition_t IsForDefinition) {
2434   const Decl *D = GD.getDecl();
2435 
2436   // Any attempts to use a MultiVersion function should result in retrieving
2437   // the iFunc instead. Name Mangling will handle the rest of the changes.
2438   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2439     // For the device mark the function as one that should be emitted.
2440     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2441         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2442         !DontDefer && !IsForDefinition) {
2443       const FunctionDecl *FDDef = FD->getDefinition();
2444       GlobalDecl GDDef;
2445       if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2446         GDDef = GlobalDecl(CD, GD.getCtorType());
2447       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2448         GDDef = GlobalDecl(DD, GD.getDtorType());
2449       else
2450         GDDef = GlobalDecl(FDDef);
2451       addDeferredDeclToEmit(GDDef);
2452     }
2453 
2454     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2455       UpdateMultiVersionNames(GD, FD);
2456       if (!IsForDefinition)
2457         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2458     }
2459   }
2460 
2461   // Lookup the entry, lazily creating it if necessary.
2462   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2463   if (Entry) {
2464     if (WeakRefReferences.erase(Entry)) {
2465       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2466       if (FD && !FD->hasAttr<WeakAttr>())
2467         Entry->setLinkage(llvm::Function::ExternalLinkage);
2468     }
2469 
2470     // Handle dropped DLL attributes.
2471     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2472       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2473       setDSOLocal(Entry);
2474     }
2475 
2476     // If there are two attempts to define the same mangled name, issue an
2477     // error.
2478     if (IsForDefinition && !Entry->isDeclaration()) {
2479       GlobalDecl OtherGD;
2480       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2481       // to make sure that we issue an error only once.
2482       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2483           (GD.getCanonicalDecl().getDecl() !=
2484            OtherGD.getCanonicalDecl().getDecl()) &&
2485           DiagnosedConflictingDefinitions.insert(GD).second) {
2486         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2487             << MangledName;
2488         getDiags().Report(OtherGD.getDecl()->getLocation(),
2489                           diag::note_previous_definition);
2490       }
2491     }
2492 
2493     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2494         (Entry->getType()->getElementType() == Ty)) {
2495       return Entry;
2496     }
2497 
2498     // Make sure the result is of the correct type.
2499     // (If function is requested for a definition, we always need to create a new
2500     // function, not just return a bitcast.)
2501     if (!IsForDefinition)
2502       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2503   }
2504 
2505   // This function doesn't have a complete type (for example, the return
2506   // type is an incomplete struct). Use a fake type instead, and make
2507   // sure not to try to set attributes.
2508   bool IsIncompleteFunction = false;
2509 
2510   llvm::FunctionType *FTy;
2511   if (isa<llvm::FunctionType>(Ty)) {
2512     FTy = cast<llvm::FunctionType>(Ty);
2513   } else {
2514     FTy = llvm::FunctionType::get(VoidTy, false);
2515     IsIncompleteFunction = true;
2516   }
2517 
2518   llvm::Function *F =
2519       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2520                              Entry ? StringRef() : MangledName, &getModule());
2521 
2522   // If we already created a function with the same mangled name (but different
2523   // type) before, take its name and add it to the list of functions to be
2524   // replaced with F at the end of CodeGen.
2525   //
2526   // This happens if there is a prototype for a function (e.g. "int f()") and
2527   // then a definition of a different type (e.g. "int f(int x)").
2528   if (Entry) {
2529     F->takeName(Entry);
2530 
2531     // This might be an implementation of a function without a prototype, in
2532     // which case, try to do special replacement of calls which match the new
2533     // prototype.  The really key thing here is that we also potentially drop
2534     // arguments from the call site so as to make a direct call, which makes the
2535     // inliner happier and suppresses a number of optimizer warnings (!) about
2536     // dropping arguments.
2537     if (!Entry->use_empty()) {
2538       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2539       Entry->removeDeadConstantUsers();
2540     }
2541 
2542     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2543         F, Entry->getType()->getElementType()->getPointerTo());
2544     addGlobalValReplacement(Entry, BC);
2545   }
2546 
2547   assert(F->getName() == MangledName && "name was uniqued!");
2548   if (D)
2549     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2550   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2551     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2552     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2553   }
2554 
2555   if (!DontDefer) {
2556     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2557     // each other bottoming out with the base dtor.  Therefore we emit non-base
2558     // dtors on usage, even if there is no dtor definition in the TU.
2559     if (D && isa<CXXDestructorDecl>(D) &&
2560         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2561                                            GD.getDtorType()))
2562       addDeferredDeclToEmit(GD);
2563 
2564     // This is the first use or definition of a mangled name.  If there is a
2565     // deferred decl with this name, remember that we need to emit it at the end
2566     // of the file.
2567     auto DDI = DeferredDecls.find(MangledName);
2568     if (DDI != DeferredDecls.end()) {
2569       // Move the potentially referenced deferred decl to the
2570       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2571       // don't need it anymore).
2572       addDeferredDeclToEmit(DDI->second);
2573       DeferredDecls.erase(DDI);
2574 
2575       // Otherwise, there are cases we have to worry about where we're
2576       // using a declaration for which we must emit a definition but where
2577       // we might not find a top-level definition:
2578       //   - member functions defined inline in their classes
2579       //   - friend functions defined inline in some class
2580       //   - special member functions with implicit definitions
2581       // If we ever change our AST traversal to walk into class methods,
2582       // this will be unnecessary.
2583       //
2584       // We also don't emit a definition for a function if it's going to be an
2585       // entry in a vtable, unless it's already marked as used.
2586     } else if (getLangOpts().CPlusPlus && D) {
2587       // Look for a declaration that's lexically in a record.
2588       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2589            FD = FD->getPreviousDecl()) {
2590         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2591           if (FD->doesThisDeclarationHaveABody()) {
2592             addDeferredDeclToEmit(GD.getWithDecl(FD));
2593             break;
2594           }
2595         }
2596       }
2597     }
2598   }
2599 
2600   // Make sure the result is of the requested type.
2601   if (!IsIncompleteFunction) {
2602     assert(F->getType()->getElementType() == Ty);
2603     return F;
2604   }
2605 
2606   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2607   return llvm::ConstantExpr::getBitCast(F, PTy);
2608 }
2609 
2610 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2611 /// non-null, then this function will use the specified type if it has to
2612 /// create it (this occurs when we see a definition of the function).
2613 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2614                                                  llvm::Type *Ty,
2615                                                  bool ForVTable,
2616                                                  bool DontDefer,
2617                                               ForDefinition_t IsForDefinition) {
2618   // If there was no specific requested type, just convert it now.
2619   if (!Ty) {
2620     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2621     auto CanonTy = Context.getCanonicalType(FD->getType());
2622     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2623   }
2624 
2625   // Devirtualized destructor calls may come through here instead of via
2626   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2627   // of the complete destructor when necessary.
2628   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2629     if (getTarget().getCXXABI().isMicrosoft() &&
2630         GD.getDtorType() == Dtor_Complete &&
2631         DD->getParent()->getNumVBases() == 0)
2632       GD = GlobalDecl(DD, Dtor_Base);
2633   }
2634 
2635   StringRef MangledName = getMangledName(GD);
2636   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2637                                  /*IsThunk=*/false, llvm::AttributeList(),
2638                                  IsForDefinition);
2639 }
2640 
2641 static const FunctionDecl *
2642 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2643   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2644   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2645 
2646   IdentifierInfo &CII = C.Idents.get(Name);
2647   for (const auto &Result : DC->lookup(&CII))
2648     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2649       return FD;
2650 
2651   if (!C.getLangOpts().CPlusPlus)
2652     return nullptr;
2653 
2654   // Demangle the premangled name from getTerminateFn()
2655   IdentifierInfo &CXXII =
2656       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2657           ? C.Idents.get("terminate")
2658           : C.Idents.get(Name);
2659 
2660   for (const auto &N : {"__cxxabiv1", "std"}) {
2661     IdentifierInfo &NS = C.Idents.get(N);
2662     for (const auto &Result : DC->lookup(&NS)) {
2663       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2664       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2665         for (const auto &Result : LSD->lookup(&NS))
2666           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2667             break;
2668 
2669       if (ND)
2670         for (const auto &Result : ND->lookup(&CXXII))
2671           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2672             return FD;
2673     }
2674   }
2675 
2676   return nullptr;
2677 }
2678 
2679 /// CreateRuntimeFunction - Create a new runtime function with the specified
2680 /// type and name.
2681 llvm::Constant *
2682 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2683                                      llvm::AttributeList ExtraAttrs,
2684                                      bool Local) {
2685   llvm::Constant *C =
2686       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2687                               /*DontDefer=*/false, /*IsThunk=*/false,
2688                               ExtraAttrs);
2689 
2690   if (auto *F = dyn_cast<llvm::Function>(C)) {
2691     if (F->empty()) {
2692       F->setCallingConv(getRuntimeCC());
2693 
2694       if (!Local && getTriple().isOSBinFormatCOFF() &&
2695           !getCodeGenOpts().LTOVisibilityPublicStd &&
2696           !getTriple().isWindowsGNUEnvironment()) {
2697         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2698         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2699           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2700           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2701         }
2702       }
2703       setDSOLocal(F);
2704     }
2705   }
2706 
2707   return C;
2708 }
2709 
2710 /// CreateBuiltinFunction - Create a new builtin function with the specified
2711 /// type and name.
2712 llvm::Constant *
2713 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2714                                      llvm::AttributeList ExtraAttrs) {
2715   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2716 }
2717 
2718 /// isTypeConstant - Determine whether an object of this type can be emitted
2719 /// as a constant.
2720 ///
2721 /// If ExcludeCtor is true, the duration when the object's constructor runs
2722 /// will not be considered. The caller will need to verify that the object is
2723 /// not written to during its construction.
2724 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2725   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2726     return false;
2727 
2728   if (Context.getLangOpts().CPlusPlus) {
2729     if (const CXXRecordDecl *Record
2730           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2731       return ExcludeCtor && !Record->hasMutableFields() &&
2732              Record->hasTrivialDestructor();
2733   }
2734 
2735   return true;
2736 }
2737 
2738 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2739 /// create and return an llvm GlobalVariable with the specified type.  If there
2740 /// is something in the module with the specified name, return it potentially
2741 /// bitcasted to the right type.
2742 ///
2743 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2744 /// to set the attributes on the global when it is first created.
2745 ///
2746 /// If IsForDefinition is true, it is guaranteed that an actual global with
2747 /// type Ty will be returned, not conversion of a variable with the same
2748 /// mangled name but some other type.
2749 llvm::Constant *
2750 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2751                                      llvm::PointerType *Ty,
2752                                      const VarDecl *D,
2753                                      ForDefinition_t IsForDefinition) {
2754   // Lookup the entry, lazily creating it if necessary.
2755   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2756   if (Entry) {
2757     if (WeakRefReferences.erase(Entry)) {
2758       if (D && !D->hasAttr<WeakAttr>())
2759         Entry->setLinkage(llvm::Function::ExternalLinkage);
2760     }
2761 
2762     // Handle dropped DLL attributes.
2763     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2764       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2765 
2766     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2767       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2768 
2769     if (Entry->getType() == Ty)
2770       return Entry;
2771 
2772     // If there are two attempts to define the same mangled name, issue an
2773     // error.
2774     if (IsForDefinition && !Entry->isDeclaration()) {
2775       GlobalDecl OtherGD;
2776       const VarDecl *OtherD;
2777 
2778       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2779       // to make sure that we issue an error only once.
2780       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2781           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2782           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2783           OtherD->hasInit() &&
2784           DiagnosedConflictingDefinitions.insert(D).second) {
2785         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2786             << MangledName;
2787         getDiags().Report(OtherGD.getDecl()->getLocation(),
2788                           diag::note_previous_definition);
2789       }
2790     }
2791 
2792     // Make sure the result is of the correct type.
2793     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2794       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2795 
2796     // (If global is requested for a definition, we always need to create a new
2797     // global, not just return a bitcast.)
2798     if (!IsForDefinition)
2799       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2800   }
2801 
2802   auto AddrSpace = GetGlobalVarAddressSpace(D);
2803   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2804 
2805   auto *GV = new llvm::GlobalVariable(
2806       getModule(), Ty->getElementType(), false,
2807       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2808       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2809 
2810   // If we already created a global with the same mangled name (but different
2811   // type) before, take its name and remove it from its parent.
2812   if (Entry) {
2813     GV->takeName(Entry);
2814 
2815     if (!Entry->use_empty()) {
2816       llvm::Constant *NewPtrForOldDecl =
2817           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2818       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2819     }
2820 
2821     Entry->eraseFromParent();
2822   }
2823 
2824   // This is the first use or definition of a mangled name.  If there is a
2825   // deferred decl with this name, remember that we need to emit it at the end
2826   // of the file.
2827   auto DDI = DeferredDecls.find(MangledName);
2828   if (DDI != DeferredDecls.end()) {
2829     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2830     // list, and remove it from DeferredDecls (since we don't need it anymore).
2831     addDeferredDeclToEmit(DDI->second);
2832     DeferredDecls.erase(DDI);
2833   }
2834 
2835   // Handle things which are present even on external declarations.
2836   if (D) {
2837     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2838       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2839 
2840     // FIXME: This code is overly simple and should be merged with other global
2841     // handling.
2842     GV->setConstant(isTypeConstant(D->getType(), false));
2843 
2844     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2845 
2846     setLinkageForGV(GV, D);
2847 
2848     if (D->getTLSKind()) {
2849       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2850         CXXThreadLocals.push_back(D);
2851       setTLSMode(GV, *D);
2852     }
2853 
2854     setGVProperties(GV, D);
2855 
2856     // If required by the ABI, treat declarations of static data members with
2857     // inline initializers as definitions.
2858     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2859       EmitGlobalVarDefinition(D);
2860     }
2861 
2862     // Emit section information for extern variables.
2863     if (D->hasExternalStorage()) {
2864       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2865         GV->setSection(SA->getName());
2866     }
2867 
2868     // Handle XCore specific ABI requirements.
2869     if (getTriple().getArch() == llvm::Triple::xcore &&
2870         D->getLanguageLinkage() == CLanguageLinkage &&
2871         D->getType().isConstant(Context) &&
2872         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2873       GV->setSection(".cp.rodata");
2874 
2875     // Check if we a have a const declaration with an initializer, we may be
2876     // able to emit it as available_externally to expose it's value to the
2877     // optimizer.
2878     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2879         D->getType().isConstQualified() && !GV->hasInitializer() &&
2880         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2881       const auto *Record =
2882           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2883       bool HasMutableFields = Record && Record->hasMutableFields();
2884       if (!HasMutableFields) {
2885         const VarDecl *InitDecl;
2886         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2887         if (InitExpr) {
2888           ConstantEmitter emitter(*this);
2889           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2890           if (Init) {
2891             auto *InitType = Init->getType();
2892             if (GV->getType()->getElementType() != InitType) {
2893               // The type of the initializer does not match the definition.
2894               // This happens when an initializer has a different type from
2895               // the type of the global (because of padding at the end of a
2896               // structure for instance).
2897               GV->setName(StringRef());
2898               // Make a new global with the correct type, this is now guaranteed
2899               // to work.
2900               auto *NewGV = cast<llvm::GlobalVariable>(
2901                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2902 
2903               // Erase the old global, since it is no longer used.
2904               GV->eraseFromParent();
2905               GV = NewGV;
2906             } else {
2907               GV->setInitializer(Init);
2908               GV->setConstant(true);
2909               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2910             }
2911             emitter.finalize(GV);
2912           }
2913         }
2914       }
2915     }
2916   }
2917 
2918   LangAS ExpectedAS =
2919       D ? D->getType().getAddressSpace()
2920         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2921   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2922          Ty->getPointerAddressSpace());
2923   if (AddrSpace != ExpectedAS)
2924     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2925                                                        ExpectedAS, Ty);
2926 
2927   return GV;
2928 }
2929 
2930 llvm::Constant *
2931 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2932                                ForDefinition_t IsForDefinition) {
2933   const Decl *D = GD.getDecl();
2934   if (isa<CXXConstructorDecl>(D))
2935     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2936                                 getFromCtorType(GD.getCtorType()),
2937                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2938                                 /*DontDefer=*/false, IsForDefinition);
2939   else if (isa<CXXDestructorDecl>(D))
2940     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2941                                 getFromDtorType(GD.getDtorType()),
2942                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2943                                 /*DontDefer=*/false, IsForDefinition);
2944   else if (isa<CXXMethodDecl>(D)) {
2945     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2946         cast<CXXMethodDecl>(D));
2947     auto Ty = getTypes().GetFunctionType(*FInfo);
2948     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2949                              IsForDefinition);
2950   } else if (isa<FunctionDecl>(D)) {
2951     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2952     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2953     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2954                              IsForDefinition);
2955   } else
2956     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2957                               IsForDefinition);
2958 }
2959 
2960 llvm::GlobalVariable *
2961 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2962                                       llvm::Type *Ty,
2963                                       llvm::GlobalValue::LinkageTypes Linkage) {
2964   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2965   llvm::GlobalVariable *OldGV = nullptr;
2966 
2967   if (GV) {
2968     // Check if the variable has the right type.
2969     if (GV->getType()->getElementType() == Ty)
2970       return GV;
2971 
2972     // Because C++ name mangling, the only way we can end up with an already
2973     // existing global with the same name is if it has been declared extern "C".
2974     assert(GV->isDeclaration() && "Declaration has wrong type!");
2975     OldGV = GV;
2976   }
2977 
2978   // Create a new variable.
2979   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2980                                 Linkage, nullptr, Name);
2981 
2982   if (OldGV) {
2983     // Replace occurrences of the old variable if needed.
2984     GV->takeName(OldGV);
2985 
2986     if (!OldGV->use_empty()) {
2987       llvm::Constant *NewPtrForOldDecl =
2988       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2989       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2990     }
2991 
2992     OldGV->eraseFromParent();
2993   }
2994 
2995   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2996       !GV->hasAvailableExternallyLinkage())
2997     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2998 
2999   return GV;
3000 }
3001 
3002 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3003 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3004 /// then it will be created with the specified type instead of whatever the
3005 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3006 /// that an actual global with type Ty will be returned, not conversion of a
3007 /// variable with the same mangled name but some other type.
3008 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3009                                                   llvm::Type *Ty,
3010                                            ForDefinition_t IsForDefinition) {
3011   assert(D->hasGlobalStorage() && "Not a global variable");
3012   QualType ASTTy = D->getType();
3013   if (!Ty)
3014     Ty = getTypes().ConvertTypeForMem(ASTTy);
3015 
3016   llvm::PointerType *PTy =
3017     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3018 
3019   StringRef MangledName = getMangledName(D);
3020   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3021 }
3022 
3023 /// CreateRuntimeVariable - Create a new runtime global variable with the
3024 /// specified type and name.
3025 llvm::Constant *
3026 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3027                                      StringRef Name) {
3028   auto *Ret =
3029       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3030   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3031   return Ret;
3032 }
3033 
3034 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3035   assert(!D->getInit() && "Cannot emit definite definitions here!");
3036 
3037   StringRef MangledName = getMangledName(D);
3038   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3039 
3040   // We already have a definition, not declaration, with the same mangled name.
3041   // Emitting of declaration is not required (and actually overwrites emitted
3042   // definition).
3043   if (GV && !GV->isDeclaration())
3044     return;
3045 
3046   // If we have not seen a reference to this variable yet, place it into the
3047   // deferred declarations table to be emitted if needed later.
3048   if (!MustBeEmitted(D) && !GV) {
3049       DeferredDecls[MangledName] = D;
3050       return;
3051   }
3052 
3053   // The tentative definition is the only definition.
3054   EmitGlobalVarDefinition(D);
3055 }
3056 
3057 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3058   return Context.toCharUnitsFromBits(
3059       getDataLayout().getTypeStoreSizeInBits(Ty));
3060 }
3061 
3062 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3063   LangAS AddrSpace = LangAS::Default;
3064   if (LangOpts.OpenCL) {
3065     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3066     assert(AddrSpace == LangAS::opencl_global ||
3067            AddrSpace == LangAS::opencl_constant ||
3068            AddrSpace == LangAS::opencl_local ||
3069            AddrSpace >= LangAS::FirstTargetAddressSpace);
3070     return AddrSpace;
3071   }
3072 
3073   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3074     if (D && D->hasAttr<CUDAConstantAttr>())
3075       return LangAS::cuda_constant;
3076     else if (D && D->hasAttr<CUDASharedAttr>())
3077       return LangAS::cuda_shared;
3078     else
3079       return LangAS::cuda_device;
3080   }
3081 
3082   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3083 }
3084 
3085 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3086   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3087   if (LangOpts.OpenCL)
3088     return LangAS::opencl_constant;
3089   if (auto AS = getTarget().getConstantAddressSpace())
3090     return AS.getValue();
3091   return LangAS::Default;
3092 }
3093 
3094 // In address space agnostic languages, string literals are in default address
3095 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3096 // emitted in constant address space in LLVM IR. To be consistent with other
3097 // parts of AST, string literal global variables in constant address space
3098 // need to be casted to default address space before being put into address
3099 // map and referenced by other part of CodeGen.
3100 // In OpenCL, string literals are in constant address space in AST, therefore
3101 // they should not be casted to default address space.
3102 static llvm::Constant *
3103 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3104                                        llvm::GlobalVariable *GV) {
3105   llvm::Constant *Cast = GV;
3106   if (!CGM.getLangOpts().OpenCL) {
3107     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3108       if (AS != LangAS::Default)
3109         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3110             CGM, GV, AS.getValue(), LangAS::Default,
3111             GV->getValueType()->getPointerTo(
3112                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3113     }
3114   }
3115   return Cast;
3116 }
3117 
3118 template<typename SomeDecl>
3119 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3120                                                llvm::GlobalValue *GV) {
3121   if (!getLangOpts().CPlusPlus)
3122     return;
3123 
3124   // Must have 'used' attribute, or else inline assembly can't rely on
3125   // the name existing.
3126   if (!D->template hasAttr<UsedAttr>())
3127     return;
3128 
3129   // Must have internal linkage and an ordinary name.
3130   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3131     return;
3132 
3133   // Must be in an extern "C" context. Entities declared directly within
3134   // a record are not extern "C" even if the record is in such a context.
3135   const SomeDecl *First = D->getFirstDecl();
3136   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3137     return;
3138 
3139   // OK, this is an internal linkage entity inside an extern "C" linkage
3140   // specification. Make a note of that so we can give it the "expected"
3141   // mangled name if nothing else is using that name.
3142   std::pair<StaticExternCMap::iterator, bool> R =
3143       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3144 
3145   // If we have multiple internal linkage entities with the same name
3146   // in extern "C" regions, none of them gets that name.
3147   if (!R.second)
3148     R.first->second = nullptr;
3149 }
3150 
3151 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3152   if (!CGM.supportsCOMDAT())
3153     return false;
3154 
3155   if (D.hasAttr<SelectAnyAttr>())
3156     return true;
3157 
3158   GVALinkage Linkage;
3159   if (auto *VD = dyn_cast<VarDecl>(&D))
3160     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3161   else
3162     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3163 
3164   switch (Linkage) {
3165   case GVA_Internal:
3166   case GVA_AvailableExternally:
3167   case GVA_StrongExternal:
3168     return false;
3169   case GVA_DiscardableODR:
3170   case GVA_StrongODR:
3171     return true;
3172   }
3173   llvm_unreachable("No such linkage");
3174 }
3175 
3176 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3177                                           llvm::GlobalObject &GO) {
3178   if (!shouldBeInCOMDAT(*this, D))
3179     return;
3180   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3181 }
3182 
3183 /// Pass IsTentative as true if you want to create a tentative definition.
3184 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3185                                             bool IsTentative) {
3186   // OpenCL global variables of sampler type are translated to function calls,
3187   // therefore no need to be translated.
3188   QualType ASTTy = D->getType();
3189   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3190     return;
3191 
3192   // If this is OpenMP device, check if it is legal to emit this global
3193   // normally.
3194   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3195       OpenMPRuntime->emitTargetGlobalVariable(D))
3196     return;
3197 
3198   llvm::Constant *Init = nullptr;
3199   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3200   bool NeedsGlobalCtor = false;
3201   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3202 
3203   const VarDecl *InitDecl;
3204   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3205 
3206   Optional<ConstantEmitter> emitter;
3207 
3208   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3209   // as part of their declaration."  Sema has already checked for
3210   // error cases, so we just need to set Init to UndefValue.
3211   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3212       D->hasAttr<CUDASharedAttr>())
3213     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3214   else if (!InitExpr) {
3215     // This is a tentative definition; tentative definitions are
3216     // implicitly initialized with { 0 }.
3217     //
3218     // Note that tentative definitions are only emitted at the end of
3219     // a translation unit, so they should never have incomplete
3220     // type. In addition, EmitTentativeDefinition makes sure that we
3221     // never attempt to emit a tentative definition if a real one
3222     // exists. A use may still exists, however, so we still may need
3223     // to do a RAUW.
3224     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3225     Init = EmitNullConstant(D->getType());
3226   } else {
3227     initializedGlobalDecl = GlobalDecl(D);
3228     emitter.emplace(*this);
3229     Init = emitter->tryEmitForInitializer(*InitDecl);
3230 
3231     if (!Init) {
3232       QualType T = InitExpr->getType();
3233       if (D->getType()->isReferenceType())
3234         T = D->getType();
3235 
3236       if (getLangOpts().CPlusPlus) {
3237         Init = EmitNullConstant(T);
3238         NeedsGlobalCtor = true;
3239       } else {
3240         ErrorUnsupported(D, "static initializer");
3241         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3242       }
3243     } else {
3244       // We don't need an initializer, so remove the entry for the delayed
3245       // initializer position (just in case this entry was delayed) if we
3246       // also don't need to register a destructor.
3247       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3248         DelayedCXXInitPosition.erase(D);
3249     }
3250   }
3251 
3252   llvm::Type* InitType = Init->getType();
3253   llvm::Constant *Entry =
3254       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3255 
3256   // Strip off a bitcast if we got one back.
3257   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3258     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3259            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3260            // All zero index gep.
3261            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3262     Entry = CE->getOperand(0);
3263   }
3264 
3265   // Entry is now either a Function or GlobalVariable.
3266   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3267 
3268   // We have a definition after a declaration with the wrong type.
3269   // We must make a new GlobalVariable* and update everything that used OldGV
3270   // (a declaration or tentative definition) with the new GlobalVariable*
3271   // (which will be a definition).
3272   //
3273   // This happens if there is a prototype for a global (e.g.
3274   // "extern int x[];") and then a definition of a different type (e.g.
3275   // "int x[10];"). This also happens when an initializer has a different type
3276   // from the type of the global (this happens with unions).
3277   if (!GV || GV->getType()->getElementType() != InitType ||
3278       GV->getType()->getAddressSpace() !=
3279           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3280 
3281     // Move the old entry aside so that we'll create a new one.
3282     Entry->setName(StringRef());
3283 
3284     // Make a new global with the correct type, this is now guaranteed to work.
3285     GV = cast<llvm::GlobalVariable>(
3286         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3287 
3288     // Replace all uses of the old global with the new global
3289     llvm::Constant *NewPtrForOldDecl =
3290         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3291     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3292 
3293     // Erase the old global, since it is no longer used.
3294     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3295   }
3296 
3297   MaybeHandleStaticInExternC(D, GV);
3298 
3299   if (D->hasAttr<AnnotateAttr>())
3300     AddGlobalAnnotations(D, GV);
3301 
3302   // Set the llvm linkage type as appropriate.
3303   llvm::GlobalValue::LinkageTypes Linkage =
3304       getLLVMLinkageVarDefinition(D, GV->isConstant());
3305 
3306   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3307   // the device. [...]"
3308   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3309   // __device__, declares a variable that: [...]
3310   // Is accessible from all the threads within the grid and from the host
3311   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3312   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3313   if (GV && LangOpts.CUDA) {
3314     if (LangOpts.CUDAIsDevice) {
3315       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3316         GV->setExternallyInitialized(true);
3317     } else {
3318       // Host-side shadows of external declarations of device-side
3319       // global variables become internal definitions. These have to
3320       // be internal in order to prevent name conflicts with global
3321       // host variables with the same name in a different TUs.
3322       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3323         Linkage = llvm::GlobalValue::InternalLinkage;
3324 
3325         // Shadow variables and their properties must be registered
3326         // with CUDA runtime.
3327         unsigned Flags = 0;
3328         if (!D->hasDefinition())
3329           Flags |= CGCUDARuntime::ExternDeviceVar;
3330         if (D->hasAttr<CUDAConstantAttr>())
3331           Flags |= CGCUDARuntime::ConstantDeviceVar;
3332         getCUDARuntime().registerDeviceVar(*GV, Flags);
3333       } else if (D->hasAttr<CUDASharedAttr>())
3334         // __shared__ variables are odd. Shadows do get created, but
3335         // they are not registered with the CUDA runtime, so they
3336         // can't really be used to access their device-side
3337         // counterparts. It's not clear yet whether it's nvcc's bug or
3338         // a feature, but we've got to do the same for compatibility.
3339         Linkage = llvm::GlobalValue::InternalLinkage;
3340     }
3341   }
3342 
3343   GV->setInitializer(Init);
3344   if (emitter) emitter->finalize(GV);
3345 
3346   // If it is safe to mark the global 'constant', do so now.
3347   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3348                   isTypeConstant(D->getType(), true));
3349 
3350   // If it is in a read-only section, mark it 'constant'.
3351   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3352     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3353     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3354       GV->setConstant(true);
3355   }
3356 
3357   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3358 
3359 
3360   // On Darwin, if the normal linkage of a C++ thread_local variable is
3361   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3362   // copies within a linkage unit; otherwise, the backing variable has
3363   // internal linkage and all accesses should just be calls to the
3364   // Itanium-specified entry point, which has the normal linkage of the
3365   // variable. This is to preserve the ability to change the implementation
3366   // behind the scenes.
3367   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3368       Context.getTargetInfo().getTriple().isOSDarwin() &&
3369       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3370       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3371     Linkage = llvm::GlobalValue::InternalLinkage;
3372 
3373   GV->setLinkage(Linkage);
3374   if (D->hasAttr<DLLImportAttr>())
3375     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3376   else if (D->hasAttr<DLLExportAttr>())
3377     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3378   else
3379     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3380 
3381   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3382     // common vars aren't constant even if declared const.
3383     GV->setConstant(false);
3384     // Tentative definition of global variables may be initialized with
3385     // non-zero null pointers. In this case they should have weak linkage
3386     // since common linkage must have zero initializer and must not have
3387     // explicit section therefore cannot have non-zero initial value.
3388     if (!GV->getInitializer()->isNullValue())
3389       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3390   }
3391 
3392   setNonAliasAttributes(D, GV);
3393 
3394   if (D->getTLSKind() && !GV->isThreadLocal()) {
3395     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3396       CXXThreadLocals.push_back(D);
3397     setTLSMode(GV, *D);
3398   }
3399 
3400   maybeSetTrivialComdat(*D, *GV);
3401 
3402   // Emit the initializer function if necessary.
3403   if (NeedsGlobalCtor || NeedsGlobalDtor)
3404     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3405 
3406   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3407 
3408   // Emit global variable debug information.
3409   if (CGDebugInfo *DI = getModuleDebugInfo())
3410     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3411       DI->EmitGlobalVariable(GV, D);
3412 }
3413 
3414 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3415                                       CodeGenModule &CGM, const VarDecl *D,
3416                                       bool NoCommon) {
3417   // Don't give variables common linkage if -fno-common was specified unless it
3418   // was overridden by a NoCommon attribute.
3419   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3420     return true;
3421 
3422   // C11 6.9.2/2:
3423   //   A declaration of an identifier for an object that has file scope without
3424   //   an initializer, and without a storage-class specifier or with the
3425   //   storage-class specifier static, constitutes a tentative definition.
3426   if (D->getInit() || D->hasExternalStorage())
3427     return true;
3428 
3429   // A variable cannot be both common and exist in a section.
3430   if (D->hasAttr<SectionAttr>())
3431     return true;
3432 
3433   // A variable cannot be both common and exist in a section.
3434   // We don't try to determine which is the right section in the front-end.
3435   // If no specialized section name is applicable, it will resort to default.
3436   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3437       D->hasAttr<PragmaClangDataSectionAttr>() ||
3438       D->hasAttr<PragmaClangRodataSectionAttr>())
3439     return true;
3440 
3441   // Thread local vars aren't considered common linkage.
3442   if (D->getTLSKind())
3443     return true;
3444 
3445   // Tentative definitions marked with WeakImportAttr are true definitions.
3446   if (D->hasAttr<WeakImportAttr>())
3447     return true;
3448 
3449   // A variable cannot be both common and exist in a comdat.
3450   if (shouldBeInCOMDAT(CGM, *D))
3451     return true;
3452 
3453   // Declarations with a required alignment do not have common linkage in MSVC
3454   // mode.
3455   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3456     if (D->hasAttr<AlignedAttr>())
3457       return true;
3458     QualType VarType = D->getType();
3459     if (Context.isAlignmentRequired(VarType))
3460       return true;
3461 
3462     if (const auto *RT = VarType->getAs<RecordType>()) {
3463       const RecordDecl *RD = RT->getDecl();
3464       for (const FieldDecl *FD : RD->fields()) {
3465         if (FD->isBitField())
3466           continue;
3467         if (FD->hasAttr<AlignedAttr>())
3468           return true;
3469         if (Context.isAlignmentRequired(FD->getType()))
3470           return true;
3471       }
3472     }
3473   }
3474 
3475   return false;
3476 }
3477 
3478 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3479     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3480   if (Linkage == GVA_Internal)
3481     return llvm::Function::InternalLinkage;
3482 
3483   if (D->hasAttr<WeakAttr>()) {
3484     if (IsConstantVariable)
3485       return llvm::GlobalVariable::WeakODRLinkage;
3486     else
3487       return llvm::GlobalVariable::WeakAnyLinkage;
3488   }
3489 
3490   // We are guaranteed to have a strong definition somewhere else,
3491   // so we can use available_externally linkage.
3492   if (Linkage == GVA_AvailableExternally)
3493     return llvm::GlobalValue::AvailableExternallyLinkage;
3494 
3495   // Note that Apple's kernel linker doesn't support symbol
3496   // coalescing, so we need to avoid linkonce and weak linkages there.
3497   // Normally, this means we just map to internal, but for explicit
3498   // instantiations we'll map to external.
3499 
3500   // In C++, the compiler has to emit a definition in every translation unit
3501   // that references the function.  We should use linkonce_odr because
3502   // a) if all references in this translation unit are optimized away, we
3503   // don't need to codegen it.  b) if the function persists, it needs to be
3504   // merged with other definitions. c) C++ has the ODR, so we know the
3505   // definition is dependable.
3506   if (Linkage == GVA_DiscardableODR)
3507     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3508                                             : llvm::Function::InternalLinkage;
3509 
3510   // An explicit instantiation of a template has weak linkage, since
3511   // explicit instantiations can occur in multiple translation units
3512   // and must all be equivalent. However, we are not allowed to
3513   // throw away these explicit instantiations.
3514   //
3515   // We don't currently support CUDA device code spread out across multiple TUs,
3516   // so say that CUDA templates are either external (for kernels) or internal.
3517   // This lets llvm perform aggressive inter-procedural optimizations.
3518   if (Linkage == GVA_StrongODR) {
3519     if (Context.getLangOpts().AppleKext)
3520       return llvm::Function::ExternalLinkage;
3521     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3522       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3523                                           : llvm::Function::InternalLinkage;
3524     return llvm::Function::WeakODRLinkage;
3525   }
3526 
3527   // C++ doesn't have tentative definitions and thus cannot have common
3528   // linkage.
3529   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3530       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3531                                  CodeGenOpts.NoCommon))
3532     return llvm::GlobalVariable::CommonLinkage;
3533 
3534   // selectany symbols are externally visible, so use weak instead of
3535   // linkonce.  MSVC optimizes away references to const selectany globals, so
3536   // all definitions should be the same and ODR linkage should be used.
3537   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3538   if (D->hasAttr<SelectAnyAttr>())
3539     return llvm::GlobalVariable::WeakODRLinkage;
3540 
3541   // Otherwise, we have strong external linkage.
3542   assert(Linkage == GVA_StrongExternal);
3543   return llvm::GlobalVariable::ExternalLinkage;
3544 }
3545 
3546 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3547     const VarDecl *VD, bool IsConstant) {
3548   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3549   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3550 }
3551 
3552 /// Replace the uses of a function that was declared with a non-proto type.
3553 /// We want to silently drop extra arguments from call sites
3554 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3555                                           llvm::Function *newFn) {
3556   // Fast path.
3557   if (old->use_empty()) return;
3558 
3559   llvm::Type *newRetTy = newFn->getReturnType();
3560   SmallVector<llvm::Value*, 4> newArgs;
3561   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3562 
3563   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3564          ui != ue; ) {
3565     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3566     llvm::User *user = use->getUser();
3567 
3568     // Recognize and replace uses of bitcasts.  Most calls to
3569     // unprototyped functions will use bitcasts.
3570     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3571       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3572         replaceUsesOfNonProtoConstant(bitcast, newFn);
3573       continue;
3574     }
3575 
3576     // Recognize calls to the function.
3577     llvm::CallSite callSite(user);
3578     if (!callSite) continue;
3579     if (!callSite.isCallee(&*use)) continue;
3580 
3581     // If the return types don't match exactly, then we can't
3582     // transform this call unless it's dead.
3583     if (callSite->getType() != newRetTy && !callSite->use_empty())
3584       continue;
3585 
3586     // Get the call site's attribute list.
3587     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3588     llvm::AttributeList oldAttrs = callSite.getAttributes();
3589 
3590     // If the function was passed too few arguments, don't transform.
3591     unsigned newNumArgs = newFn->arg_size();
3592     if (callSite.arg_size() < newNumArgs) continue;
3593 
3594     // If extra arguments were passed, we silently drop them.
3595     // If any of the types mismatch, we don't transform.
3596     unsigned argNo = 0;
3597     bool dontTransform = false;
3598     for (llvm::Argument &A : newFn->args()) {
3599       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3600         dontTransform = true;
3601         break;
3602       }
3603 
3604       // Add any parameter attributes.
3605       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3606       argNo++;
3607     }
3608     if (dontTransform)
3609       continue;
3610 
3611     // Okay, we can transform this.  Create the new call instruction and copy
3612     // over the required information.
3613     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3614 
3615     // Copy over any operand bundles.
3616     callSite.getOperandBundlesAsDefs(newBundles);
3617 
3618     llvm::CallSite newCall;
3619     if (callSite.isCall()) {
3620       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3621                                        callSite.getInstruction());
3622     } else {
3623       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3624       newCall = llvm::InvokeInst::Create(newFn,
3625                                          oldInvoke->getNormalDest(),
3626                                          oldInvoke->getUnwindDest(),
3627                                          newArgs, newBundles, "",
3628                                          callSite.getInstruction());
3629     }
3630     newArgs.clear(); // for the next iteration
3631 
3632     if (!newCall->getType()->isVoidTy())
3633       newCall->takeName(callSite.getInstruction());
3634     newCall.setAttributes(llvm::AttributeList::get(
3635         newFn->getContext(), oldAttrs.getFnAttributes(),
3636         oldAttrs.getRetAttributes(), newArgAttrs));
3637     newCall.setCallingConv(callSite.getCallingConv());
3638 
3639     // Finally, remove the old call, replacing any uses with the new one.
3640     if (!callSite->use_empty())
3641       callSite->replaceAllUsesWith(newCall.getInstruction());
3642 
3643     // Copy debug location attached to CI.
3644     if (callSite->getDebugLoc())
3645       newCall->setDebugLoc(callSite->getDebugLoc());
3646 
3647     callSite->eraseFromParent();
3648   }
3649 }
3650 
3651 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3652 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3653 /// existing call uses of the old function in the module, this adjusts them to
3654 /// call the new function directly.
3655 ///
3656 /// This is not just a cleanup: the always_inline pass requires direct calls to
3657 /// functions to be able to inline them.  If there is a bitcast in the way, it
3658 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3659 /// run at -O0.
3660 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3661                                                       llvm::Function *NewFn) {
3662   // If we're redefining a global as a function, don't transform it.
3663   if (!isa<llvm::Function>(Old)) return;
3664 
3665   replaceUsesOfNonProtoConstant(Old, NewFn);
3666 }
3667 
3668 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3669   auto DK = VD->isThisDeclarationADefinition();
3670   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3671     return;
3672 
3673   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3674   // If we have a definition, this might be a deferred decl. If the
3675   // instantiation is explicit, make sure we emit it at the end.
3676   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3677     GetAddrOfGlobalVar(VD);
3678 
3679   EmitTopLevelDecl(VD);
3680 }
3681 
3682 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3683                                                  llvm::GlobalValue *GV) {
3684   const auto *D = cast<FunctionDecl>(GD.getDecl());
3685 
3686   // Compute the function info and LLVM type.
3687   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3688   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3689 
3690   // Get or create the prototype for the function.
3691   if (!GV || (GV->getType()->getElementType() != Ty))
3692     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3693                                                    /*DontDefer=*/true,
3694                                                    ForDefinition));
3695 
3696   // Already emitted.
3697   if (!GV->isDeclaration())
3698     return;
3699 
3700   // We need to set linkage and visibility on the function before
3701   // generating code for it because various parts of IR generation
3702   // want to propagate this information down (e.g. to local static
3703   // declarations).
3704   auto *Fn = cast<llvm::Function>(GV);
3705   setFunctionLinkage(GD, Fn);
3706 
3707   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3708   setGVProperties(Fn, GD);
3709 
3710   MaybeHandleStaticInExternC(D, Fn);
3711 
3712 
3713   maybeSetTrivialComdat(*D, *Fn);
3714 
3715   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3716 
3717   setNonAliasAttributes(GD, Fn);
3718   SetLLVMFunctionAttributesForDefinition(D, Fn);
3719 
3720   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3721     AddGlobalCtor(Fn, CA->getPriority());
3722   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3723     AddGlobalDtor(Fn, DA->getPriority());
3724   if (D->hasAttr<AnnotateAttr>())
3725     AddGlobalAnnotations(D, Fn);
3726 }
3727 
3728 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3729   const auto *D = cast<ValueDecl>(GD.getDecl());
3730   const AliasAttr *AA = D->getAttr<AliasAttr>();
3731   assert(AA && "Not an alias?");
3732 
3733   StringRef MangledName = getMangledName(GD);
3734 
3735   if (AA->getAliasee() == MangledName) {
3736     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3737     return;
3738   }
3739 
3740   // If there is a definition in the module, then it wins over the alias.
3741   // This is dubious, but allow it to be safe.  Just ignore the alias.
3742   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3743   if (Entry && !Entry->isDeclaration())
3744     return;
3745 
3746   Aliases.push_back(GD);
3747 
3748   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3749 
3750   // Create a reference to the named value.  This ensures that it is emitted
3751   // if a deferred decl.
3752   llvm::Constant *Aliasee;
3753   if (isa<llvm::FunctionType>(DeclTy))
3754     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3755                                       /*ForVTable=*/false);
3756   else
3757     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3758                                     llvm::PointerType::getUnqual(DeclTy),
3759                                     /*D=*/nullptr);
3760 
3761   // Create the new alias itself, but don't set a name yet.
3762   auto *GA = llvm::GlobalAlias::create(
3763       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3764 
3765   if (Entry) {
3766     if (GA->getAliasee() == Entry) {
3767       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3768       return;
3769     }
3770 
3771     assert(Entry->isDeclaration());
3772 
3773     // If there is a declaration in the module, then we had an extern followed
3774     // by the alias, as in:
3775     //   extern int test6();
3776     //   ...
3777     //   int test6() __attribute__((alias("test7")));
3778     //
3779     // Remove it and replace uses of it with the alias.
3780     GA->takeName(Entry);
3781 
3782     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3783                                                           Entry->getType()));
3784     Entry->eraseFromParent();
3785   } else {
3786     GA->setName(MangledName);
3787   }
3788 
3789   // Set attributes which are particular to an alias; this is a
3790   // specialization of the attributes which may be set on a global
3791   // variable/function.
3792   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3793       D->isWeakImported()) {
3794     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3795   }
3796 
3797   if (const auto *VD = dyn_cast<VarDecl>(D))
3798     if (VD->getTLSKind())
3799       setTLSMode(GA, *VD);
3800 
3801   SetCommonAttributes(GD, GA);
3802 }
3803 
3804 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3805   const auto *D = cast<ValueDecl>(GD.getDecl());
3806   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3807   assert(IFA && "Not an ifunc?");
3808 
3809   StringRef MangledName = getMangledName(GD);
3810 
3811   if (IFA->getResolver() == MangledName) {
3812     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3813     return;
3814   }
3815 
3816   // Report an error if some definition overrides ifunc.
3817   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3818   if (Entry && !Entry->isDeclaration()) {
3819     GlobalDecl OtherGD;
3820     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3821         DiagnosedConflictingDefinitions.insert(GD).second) {
3822       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3823           << MangledName;
3824       Diags.Report(OtherGD.getDecl()->getLocation(),
3825                    diag::note_previous_definition);
3826     }
3827     return;
3828   }
3829 
3830   Aliases.push_back(GD);
3831 
3832   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3833   llvm::Constant *Resolver =
3834       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3835                               /*ForVTable=*/false);
3836   llvm::GlobalIFunc *GIF =
3837       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3838                                 "", Resolver, &getModule());
3839   if (Entry) {
3840     if (GIF->getResolver() == Entry) {
3841       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3842       return;
3843     }
3844     assert(Entry->isDeclaration());
3845 
3846     // If there is a declaration in the module, then we had an extern followed
3847     // by the ifunc, as in:
3848     //   extern int test();
3849     //   ...
3850     //   int test() __attribute__((ifunc("resolver")));
3851     //
3852     // Remove it and replace uses of it with the ifunc.
3853     GIF->takeName(Entry);
3854 
3855     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3856                                                           Entry->getType()));
3857     Entry->eraseFromParent();
3858   } else
3859     GIF->setName(MangledName);
3860 
3861   SetCommonAttributes(GD, GIF);
3862 }
3863 
3864 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3865                                             ArrayRef<llvm::Type*> Tys) {
3866   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3867                                          Tys);
3868 }
3869 
3870 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3871 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3872                          const StringLiteral *Literal, bool TargetIsLSB,
3873                          bool &IsUTF16, unsigned &StringLength) {
3874   StringRef String = Literal->getString();
3875   unsigned NumBytes = String.size();
3876 
3877   // Check for simple case.
3878   if (!Literal->containsNonAsciiOrNull()) {
3879     StringLength = NumBytes;
3880     return *Map.insert(std::make_pair(String, nullptr)).first;
3881   }
3882 
3883   // Otherwise, convert the UTF8 literals into a string of shorts.
3884   IsUTF16 = true;
3885 
3886   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3887   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3888   llvm::UTF16 *ToPtr = &ToBuf[0];
3889 
3890   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3891                                  ToPtr + NumBytes, llvm::strictConversion);
3892 
3893   // ConvertUTF8toUTF16 returns the length in ToPtr.
3894   StringLength = ToPtr - &ToBuf[0];
3895 
3896   // Add an explicit null.
3897   *ToPtr = 0;
3898   return *Map.insert(std::make_pair(
3899                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3900                                    (StringLength + 1) * 2),
3901                          nullptr)).first;
3902 }
3903 
3904 ConstantAddress
3905 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3906   unsigned StringLength = 0;
3907   bool isUTF16 = false;
3908   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3909       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3910                                getDataLayout().isLittleEndian(), isUTF16,
3911                                StringLength);
3912 
3913   if (auto *C = Entry.second)
3914     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3915 
3916   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3917   llvm::Constant *Zeros[] = { Zero, Zero };
3918 
3919   // If we don't already have it, get __CFConstantStringClassReference.
3920   if (!CFConstantStringClassRef) {
3921     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3922     Ty = llvm::ArrayType::get(Ty, 0);
3923     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3924         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3925 
3926     if (getTriple().isOSBinFormatCOFF()) {
3927       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3928       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3929       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3930 
3931       const VarDecl *VD = nullptr;
3932       for (const auto &Result : DC->lookup(&II))
3933         if ((VD = dyn_cast<VarDecl>(Result)))
3934           break;
3935 
3936       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3937         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3938         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3939       } else {
3940         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3941         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3942       }
3943     }
3944     setDSOLocal(GV);
3945 
3946     // Decay array -> ptr
3947     CFConstantStringClassRef =
3948         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3949   }
3950 
3951   QualType CFTy = getContext().getCFConstantStringType();
3952 
3953   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3954 
3955   ConstantInitBuilder Builder(*this);
3956   auto Fields = Builder.beginStruct(STy);
3957 
3958   // Class pointer.
3959   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3960 
3961   // Flags.
3962   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3963 
3964   // String pointer.
3965   llvm::Constant *C = nullptr;
3966   if (isUTF16) {
3967     auto Arr = llvm::makeArrayRef(
3968         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3969         Entry.first().size() / 2);
3970     C = llvm::ConstantDataArray::get(VMContext, Arr);
3971   } else {
3972     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3973   }
3974 
3975   // Note: -fwritable-strings doesn't make the backing store strings of
3976   // CFStrings writable. (See <rdar://problem/10657500>)
3977   auto *GV =
3978       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3979                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3980   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3981   // Don't enforce the target's minimum global alignment, since the only use
3982   // of the string is via this class initializer.
3983   CharUnits Align = isUTF16
3984                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3985                         : getContext().getTypeAlignInChars(getContext().CharTy);
3986   GV->setAlignment(Align.getQuantity());
3987 
3988   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3989   // Without it LLVM can merge the string with a non unnamed_addr one during
3990   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3991   if (getTriple().isOSBinFormatMachO())
3992     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3993                            : "__TEXT,__cstring,cstring_literals");
3994 
3995   // String.
3996   llvm::Constant *Str =
3997       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3998 
3999   if (isUTF16)
4000     // Cast the UTF16 string to the correct type.
4001     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4002   Fields.add(Str);
4003 
4004   // String length.
4005   auto Ty = getTypes().ConvertType(getContext().LongTy);
4006   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4007 
4008   CharUnits Alignment = getPointerAlign();
4009 
4010   // The struct.
4011   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4012                                     /*isConstant=*/false,
4013                                     llvm::GlobalVariable::PrivateLinkage);
4014   switch (getTriple().getObjectFormat()) {
4015   case llvm::Triple::UnknownObjectFormat:
4016     llvm_unreachable("unknown file format");
4017   case llvm::Triple::COFF:
4018   case llvm::Triple::ELF:
4019   case llvm::Triple::Wasm:
4020     GV->setSection("cfstring");
4021     break;
4022   case llvm::Triple::MachO:
4023     GV->setSection("__DATA,__cfstring");
4024     break;
4025   }
4026   Entry.second = GV;
4027 
4028   return ConstantAddress(GV, Alignment);
4029 }
4030 
4031 bool CodeGenModule::getExpressionLocationsEnabled() const {
4032   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4033 }
4034 
4035 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4036   if (ObjCFastEnumerationStateType.isNull()) {
4037     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4038     D->startDefinition();
4039 
4040     QualType FieldTypes[] = {
4041       Context.UnsignedLongTy,
4042       Context.getPointerType(Context.getObjCIdType()),
4043       Context.getPointerType(Context.UnsignedLongTy),
4044       Context.getConstantArrayType(Context.UnsignedLongTy,
4045                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4046     };
4047 
4048     for (size_t i = 0; i < 4; ++i) {
4049       FieldDecl *Field = FieldDecl::Create(Context,
4050                                            D,
4051                                            SourceLocation(),
4052                                            SourceLocation(), nullptr,
4053                                            FieldTypes[i], /*TInfo=*/nullptr,
4054                                            /*BitWidth=*/nullptr,
4055                                            /*Mutable=*/false,
4056                                            ICIS_NoInit);
4057       Field->setAccess(AS_public);
4058       D->addDecl(Field);
4059     }
4060 
4061     D->completeDefinition();
4062     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4063   }
4064 
4065   return ObjCFastEnumerationStateType;
4066 }
4067 
4068 llvm::Constant *
4069 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4070   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4071 
4072   // Don't emit it as the address of the string, emit the string data itself
4073   // as an inline array.
4074   if (E->getCharByteWidth() == 1) {
4075     SmallString<64> Str(E->getString());
4076 
4077     // Resize the string to the right size, which is indicated by its type.
4078     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4079     Str.resize(CAT->getSize().getZExtValue());
4080     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4081   }
4082 
4083   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4084   llvm::Type *ElemTy = AType->getElementType();
4085   unsigned NumElements = AType->getNumElements();
4086 
4087   // Wide strings have either 2-byte or 4-byte elements.
4088   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4089     SmallVector<uint16_t, 32> Elements;
4090     Elements.reserve(NumElements);
4091 
4092     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4093       Elements.push_back(E->getCodeUnit(i));
4094     Elements.resize(NumElements);
4095     return llvm::ConstantDataArray::get(VMContext, Elements);
4096   }
4097 
4098   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4099   SmallVector<uint32_t, 32> Elements;
4100   Elements.reserve(NumElements);
4101 
4102   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4103     Elements.push_back(E->getCodeUnit(i));
4104   Elements.resize(NumElements);
4105   return llvm::ConstantDataArray::get(VMContext, Elements);
4106 }
4107 
4108 static llvm::GlobalVariable *
4109 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4110                       CodeGenModule &CGM, StringRef GlobalName,
4111                       CharUnits Alignment) {
4112   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4113       CGM.getStringLiteralAddressSpace());
4114 
4115   llvm::Module &M = CGM.getModule();
4116   // Create a global variable for this string
4117   auto *GV = new llvm::GlobalVariable(
4118       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4119       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4120   GV->setAlignment(Alignment.getQuantity());
4121   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4122   if (GV->isWeakForLinker()) {
4123     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4124     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4125   }
4126   CGM.setDSOLocal(GV);
4127 
4128   return GV;
4129 }
4130 
4131 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4132 /// constant array for the given string literal.
4133 ConstantAddress
4134 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4135                                                   StringRef Name) {
4136   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4137 
4138   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4139   llvm::GlobalVariable **Entry = nullptr;
4140   if (!LangOpts.WritableStrings) {
4141     Entry = &ConstantStringMap[C];
4142     if (auto GV = *Entry) {
4143       if (Alignment.getQuantity() > GV->getAlignment())
4144         GV->setAlignment(Alignment.getQuantity());
4145       return ConstantAddress(GV, Alignment);
4146     }
4147   }
4148 
4149   SmallString<256> MangledNameBuffer;
4150   StringRef GlobalVariableName;
4151   llvm::GlobalValue::LinkageTypes LT;
4152 
4153   // Mangle the string literal if the ABI allows for it.  However, we cannot
4154   // do this if  we are compiling with ASan or -fwritable-strings because they
4155   // rely on strings having normal linkage.
4156   if (!LangOpts.WritableStrings &&
4157       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4158       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4159     llvm::raw_svector_ostream Out(MangledNameBuffer);
4160     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4161 
4162     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4163     GlobalVariableName = MangledNameBuffer;
4164   } else {
4165     LT = llvm::GlobalValue::PrivateLinkage;
4166     GlobalVariableName = Name;
4167   }
4168 
4169   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4170   if (Entry)
4171     *Entry = GV;
4172 
4173   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4174                                   QualType());
4175 
4176   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4177                          Alignment);
4178 }
4179 
4180 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4181 /// array for the given ObjCEncodeExpr node.
4182 ConstantAddress
4183 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4184   std::string Str;
4185   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4186 
4187   return GetAddrOfConstantCString(Str);
4188 }
4189 
4190 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4191 /// the literal and a terminating '\0' character.
4192 /// The result has pointer to array type.
4193 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4194     const std::string &Str, const char *GlobalName) {
4195   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4196   CharUnits Alignment =
4197     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4198 
4199   llvm::Constant *C =
4200       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4201 
4202   // Don't share any string literals if strings aren't constant.
4203   llvm::GlobalVariable **Entry = nullptr;
4204   if (!LangOpts.WritableStrings) {
4205     Entry = &ConstantStringMap[C];
4206     if (auto GV = *Entry) {
4207       if (Alignment.getQuantity() > GV->getAlignment())
4208         GV->setAlignment(Alignment.getQuantity());
4209       return ConstantAddress(GV, Alignment);
4210     }
4211   }
4212 
4213   // Get the default prefix if a name wasn't specified.
4214   if (!GlobalName)
4215     GlobalName = ".str";
4216   // Create a global variable for this.
4217   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4218                                   GlobalName, Alignment);
4219   if (Entry)
4220     *Entry = GV;
4221 
4222   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4223                          Alignment);
4224 }
4225 
4226 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4227     const MaterializeTemporaryExpr *E, const Expr *Init) {
4228   assert((E->getStorageDuration() == SD_Static ||
4229           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4230   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4231 
4232   // If we're not materializing a subobject of the temporary, keep the
4233   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4234   QualType MaterializedType = Init->getType();
4235   if (Init == E->GetTemporaryExpr())
4236     MaterializedType = E->getType();
4237 
4238   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4239 
4240   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4241     return ConstantAddress(Slot, Align);
4242 
4243   // FIXME: If an externally-visible declaration extends multiple temporaries,
4244   // we need to give each temporary the same name in every translation unit (and
4245   // we also need to make the temporaries externally-visible).
4246   SmallString<256> Name;
4247   llvm::raw_svector_ostream Out(Name);
4248   getCXXABI().getMangleContext().mangleReferenceTemporary(
4249       VD, E->getManglingNumber(), Out);
4250 
4251   APValue *Value = nullptr;
4252   if (E->getStorageDuration() == SD_Static) {
4253     // We might have a cached constant initializer for this temporary. Note
4254     // that this might have a different value from the value computed by
4255     // evaluating the initializer if the surrounding constant expression
4256     // modifies the temporary.
4257     Value = getContext().getMaterializedTemporaryValue(E, false);
4258     if (Value && Value->isUninit())
4259       Value = nullptr;
4260   }
4261 
4262   // Try evaluating it now, it might have a constant initializer.
4263   Expr::EvalResult EvalResult;
4264   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4265       !EvalResult.hasSideEffects())
4266     Value = &EvalResult.Val;
4267 
4268   LangAS AddrSpace =
4269       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4270 
4271   Optional<ConstantEmitter> emitter;
4272   llvm::Constant *InitialValue = nullptr;
4273   bool Constant = false;
4274   llvm::Type *Type;
4275   if (Value) {
4276     // The temporary has a constant initializer, use it.
4277     emitter.emplace(*this);
4278     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4279                                                MaterializedType);
4280     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4281     Type = InitialValue->getType();
4282   } else {
4283     // No initializer, the initialization will be provided when we
4284     // initialize the declaration which performed lifetime extension.
4285     Type = getTypes().ConvertTypeForMem(MaterializedType);
4286   }
4287 
4288   // Create a global variable for this lifetime-extended temporary.
4289   llvm::GlobalValue::LinkageTypes Linkage =
4290       getLLVMLinkageVarDefinition(VD, Constant);
4291   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4292     const VarDecl *InitVD;
4293     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4294         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4295       // Temporaries defined inside a class get linkonce_odr linkage because the
4296       // class can be defined in multiple translation units.
4297       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4298     } else {
4299       // There is no need for this temporary to have external linkage if the
4300       // VarDecl has external linkage.
4301       Linkage = llvm::GlobalVariable::InternalLinkage;
4302     }
4303   }
4304   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4305   auto *GV = new llvm::GlobalVariable(
4306       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4307       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4308   if (emitter) emitter->finalize(GV);
4309   setGVProperties(GV, VD);
4310   GV->setAlignment(Align.getQuantity());
4311   if (supportsCOMDAT() && GV->isWeakForLinker())
4312     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4313   if (VD->getTLSKind())
4314     setTLSMode(GV, *VD);
4315   llvm::Constant *CV = GV;
4316   if (AddrSpace != LangAS::Default)
4317     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4318         *this, GV, AddrSpace, LangAS::Default,
4319         Type->getPointerTo(
4320             getContext().getTargetAddressSpace(LangAS::Default)));
4321   MaterializedGlobalTemporaryMap[E] = CV;
4322   return ConstantAddress(CV, Align);
4323 }
4324 
4325 /// EmitObjCPropertyImplementations - Emit information for synthesized
4326 /// properties for an implementation.
4327 void CodeGenModule::EmitObjCPropertyImplementations(const
4328                                                     ObjCImplementationDecl *D) {
4329   for (const auto *PID : D->property_impls()) {
4330     // Dynamic is just for type-checking.
4331     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4332       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4333 
4334       // Determine which methods need to be implemented, some may have
4335       // been overridden. Note that ::isPropertyAccessor is not the method
4336       // we want, that just indicates if the decl came from a
4337       // property. What we want to know is if the method is defined in
4338       // this implementation.
4339       if (!D->getInstanceMethod(PD->getGetterName()))
4340         CodeGenFunction(*this).GenerateObjCGetter(
4341                                  const_cast<ObjCImplementationDecl *>(D), PID);
4342       if (!PD->isReadOnly() &&
4343           !D->getInstanceMethod(PD->getSetterName()))
4344         CodeGenFunction(*this).GenerateObjCSetter(
4345                                  const_cast<ObjCImplementationDecl *>(D), PID);
4346     }
4347   }
4348 }
4349 
4350 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4351   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4352   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4353        ivar; ivar = ivar->getNextIvar())
4354     if (ivar->getType().isDestructedType())
4355       return true;
4356 
4357   return false;
4358 }
4359 
4360 static bool AllTrivialInitializers(CodeGenModule &CGM,
4361                                    ObjCImplementationDecl *D) {
4362   CodeGenFunction CGF(CGM);
4363   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4364        E = D->init_end(); B != E; ++B) {
4365     CXXCtorInitializer *CtorInitExp = *B;
4366     Expr *Init = CtorInitExp->getInit();
4367     if (!CGF.isTrivialInitializer(Init))
4368       return false;
4369   }
4370   return true;
4371 }
4372 
4373 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4374 /// for an implementation.
4375 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4376   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4377   if (needsDestructMethod(D)) {
4378     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4379     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4380     ObjCMethodDecl *DTORMethod =
4381       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4382                              cxxSelector, getContext().VoidTy, nullptr, D,
4383                              /*isInstance=*/true, /*isVariadic=*/false,
4384                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4385                              /*isDefined=*/false, ObjCMethodDecl::Required);
4386     D->addInstanceMethod(DTORMethod);
4387     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4388     D->setHasDestructors(true);
4389   }
4390 
4391   // If the implementation doesn't have any ivar initializers, we don't need
4392   // a .cxx_construct.
4393   if (D->getNumIvarInitializers() == 0 ||
4394       AllTrivialInitializers(*this, D))
4395     return;
4396 
4397   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4398   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4399   // The constructor returns 'self'.
4400   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4401                                                 D->getLocation(),
4402                                                 D->getLocation(),
4403                                                 cxxSelector,
4404                                                 getContext().getObjCIdType(),
4405                                                 nullptr, D, /*isInstance=*/true,
4406                                                 /*isVariadic=*/false,
4407                                                 /*isPropertyAccessor=*/true,
4408                                                 /*isImplicitlyDeclared=*/true,
4409                                                 /*isDefined=*/false,
4410                                                 ObjCMethodDecl::Required);
4411   D->addInstanceMethod(CTORMethod);
4412   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4413   D->setHasNonZeroConstructors(true);
4414 }
4415 
4416 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4417 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4418   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4419       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4420     ErrorUnsupported(LSD, "linkage spec");
4421     return;
4422   }
4423 
4424   EmitDeclContext(LSD);
4425 }
4426 
4427 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4428   for (auto *I : DC->decls()) {
4429     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4430     // are themselves considered "top-level", so EmitTopLevelDecl on an
4431     // ObjCImplDecl does not recursively visit them. We need to do that in
4432     // case they're nested inside another construct (LinkageSpecDecl /
4433     // ExportDecl) that does stop them from being considered "top-level".
4434     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4435       for (auto *M : OID->methods())
4436         EmitTopLevelDecl(M);
4437     }
4438 
4439     EmitTopLevelDecl(I);
4440   }
4441 }
4442 
4443 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4444 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4445   // Ignore dependent declarations.
4446   if (D->isTemplated())
4447     return;
4448 
4449   switch (D->getKind()) {
4450   case Decl::CXXConversion:
4451   case Decl::CXXMethod:
4452   case Decl::Function:
4453     EmitGlobal(cast<FunctionDecl>(D));
4454     // Always provide some coverage mapping
4455     // even for the functions that aren't emitted.
4456     AddDeferredUnusedCoverageMapping(D);
4457     break;
4458 
4459   case Decl::CXXDeductionGuide:
4460     // Function-like, but does not result in code emission.
4461     break;
4462 
4463   case Decl::Var:
4464   case Decl::Decomposition:
4465   case Decl::VarTemplateSpecialization:
4466     EmitGlobal(cast<VarDecl>(D));
4467     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4468       for (auto *B : DD->bindings())
4469         if (auto *HD = B->getHoldingVar())
4470           EmitGlobal(HD);
4471     break;
4472 
4473   // Indirect fields from global anonymous structs and unions can be
4474   // ignored; only the actual variable requires IR gen support.
4475   case Decl::IndirectField:
4476     break;
4477 
4478   // C++ Decls
4479   case Decl::Namespace:
4480     EmitDeclContext(cast<NamespaceDecl>(D));
4481     break;
4482   case Decl::ClassTemplateSpecialization: {
4483     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4484     if (DebugInfo &&
4485         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4486         Spec->hasDefinition())
4487       DebugInfo->completeTemplateDefinition(*Spec);
4488   } LLVM_FALLTHROUGH;
4489   case Decl::CXXRecord:
4490     if (DebugInfo) {
4491       if (auto *ES = D->getASTContext().getExternalSource())
4492         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4493           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4494     }
4495     // Emit any static data members, they may be definitions.
4496     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4497       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4498         EmitTopLevelDecl(I);
4499     break;
4500     // No code generation needed.
4501   case Decl::UsingShadow:
4502   case Decl::ClassTemplate:
4503   case Decl::VarTemplate:
4504   case Decl::VarTemplatePartialSpecialization:
4505   case Decl::FunctionTemplate:
4506   case Decl::TypeAliasTemplate:
4507   case Decl::Block:
4508   case Decl::Empty:
4509     break;
4510   case Decl::Using:          // using X; [C++]
4511     if (CGDebugInfo *DI = getModuleDebugInfo())
4512         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4513     return;
4514   case Decl::NamespaceAlias:
4515     if (CGDebugInfo *DI = getModuleDebugInfo())
4516         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4517     return;
4518   case Decl::UsingDirective: // using namespace X; [C++]
4519     if (CGDebugInfo *DI = getModuleDebugInfo())
4520       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4521     return;
4522   case Decl::CXXConstructor:
4523     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4524     break;
4525   case Decl::CXXDestructor:
4526     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4527     break;
4528 
4529   case Decl::StaticAssert:
4530     // Nothing to do.
4531     break;
4532 
4533   // Objective-C Decls
4534 
4535   // Forward declarations, no (immediate) code generation.
4536   case Decl::ObjCInterface:
4537   case Decl::ObjCCategory:
4538     break;
4539 
4540   case Decl::ObjCProtocol: {
4541     auto *Proto = cast<ObjCProtocolDecl>(D);
4542     if (Proto->isThisDeclarationADefinition())
4543       ObjCRuntime->GenerateProtocol(Proto);
4544     break;
4545   }
4546 
4547   case Decl::ObjCCategoryImpl:
4548     // Categories have properties but don't support synthesize so we
4549     // can ignore them here.
4550     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4551     break;
4552 
4553   case Decl::ObjCImplementation: {
4554     auto *OMD = cast<ObjCImplementationDecl>(D);
4555     EmitObjCPropertyImplementations(OMD);
4556     EmitObjCIvarInitializations(OMD);
4557     ObjCRuntime->GenerateClass(OMD);
4558     // Emit global variable debug information.
4559     if (CGDebugInfo *DI = getModuleDebugInfo())
4560       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4561         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4562             OMD->getClassInterface()), OMD->getLocation());
4563     break;
4564   }
4565   case Decl::ObjCMethod: {
4566     auto *OMD = cast<ObjCMethodDecl>(D);
4567     // If this is not a prototype, emit the body.
4568     if (OMD->getBody())
4569       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4570     break;
4571   }
4572   case Decl::ObjCCompatibleAlias:
4573     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4574     break;
4575 
4576   case Decl::PragmaComment: {
4577     const auto *PCD = cast<PragmaCommentDecl>(D);
4578     switch (PCD->getCommentKind()) {
4579     case PCK_Unknown:
4580       llvm_unreachable("unexpected pragma comment kind");
4581     case PCK_Linker:
4582       AppendLinkerOptions(PCD->getArg());
4583       break;
4584     case PCK_Lib:
4585       if (getTarget().getTriple().isOSBinFormatELF() &&
4586           !getTarget().getTriple().isPS4())
4587         AddELFLibDirective(PCD->getArg());
4588       else
4589         AddDependentLib(PCD->getArg());
4590       break;
4591     case PCK_Compiler:
4592     case PCK_ExeStr:
4593     case PCK_User:
4594       break; // We ignore all of these.
4595     }
4596     break;
4597   }
4598 
4599   case Decl::PragmaDetectMismatch: {
4600     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4601     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4602     break;
4603   }
4604 
4605   case Decl::LinkageSpec:
4606     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4607     break;
4608 
4609   case Decl::FileScopeAsm: {
4610     // File-scope asm is ignored during device-side CUDA compilation.
4611     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4612       break;
4613     // File-scope asm is ignored during device-side OpenMP compilation.
4614     if (LangOpts.OpenMPIsDevice)
4615       break;
4616     auto *AD = cast<FileScopeAsmDecl>(D);
4617     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4618     break;
4619   }
4620 
4621   case Decl::Import: {
4622     auto *Import = cast<ImportDecl>(D);
4623 
4624     // If we've already imported this module, we're done.
4625     if (!ImportedModules.insert(Import->getImportedModule()))
4626       break;
4627 
4628     // Emit debug information for direct imports.
4629     if (!Import->getImportedOwningModule()) {
4630       if (CGDebugInfo *DI = getModuleDebugInfo())
4631         DI->EmitImportDecl(*Import);
4632     }
4633 
4634     // Find all of the submodules and emit the module initializers.
4635     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4636     SmallVector<clang::Module *, 16> Stack;
4637     Visited.insert(Import->getImportedModule());
4638     Stack.push_back(Import->getImportedModule());
4639 
4640     while (!Stack.empty()) {
4641       clang::Module *Mod = Stack.pop_back_val();
4642       if (!EmittedModuleInitializers.insert(Mod).second)
4643         continue;
4644 
4645       for (auto *D : Context.getModuleInitializers(Mod))
4646         EmitTopLevelDecl(D);
4647 
4648       // Visit the submodules of this module.
4649       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4650                                              SubEnd = Mod->submodule_end();
4651            Sub != SubEnd; ++Sub) {
4652         // Skip explicit children; they need to be explicitly imported to emit
4653         // the initializers.
4654         if ((*Sub)->IsExplicit)
4655           continue;
4656 
4657         if (Visited.insert(*Sub).second)
4658           Stack.push_back(*Sub);
4659       }
4660     }
4661     break;
4662   }
4663 
4664   case Decl::Export:
4665     EmitDeclContext(cast<ExportDecl>(D));
4666     break;
4667 
4668   case Decl::OMPThreadPrivate:
4669     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4670     break;
4671 
4672   case Decl::OMPDeclareReduction:
4673     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4674     break;
4675 
4676   default:
4677     // Make sure we handled everything we should, every other kind is a
4678     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4679     // function. Need to recode Decl::Kind to do that easily.
4680     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4681     break;
4682   }
4683 }
4684 
4685 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4686   // Do we need to generate coverage mapping?
4687   if (!CodeGenOpts.CoverageMapping)
4688     return;
4689   switch (D->getKind()) {
4690   case Decl::CXXConversion:
4691   case Decl::CXXMethod:
4692   case Decl::Function:
4693   case Decl::ObjCMethod:
4694   case Decl::CXXConstructor:
4695   case Decl::CXXDestructor: {
4696     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4697       return;
4698     SourceManager &SM = getContext().getSourceManager();
4699     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4700       return;
4701     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4702     if (I == DeferredEmptyCoverageMappingDecls.end())
4703       DeferredEmptyCoverageMappingDecls[D] = true;
4704     break;
4705   }
4706   default:
4707     break;
4708   };
4709 }
4710 
4711 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4712   // Do we need to generate coverage mapping?
4713   if (!CodeGenOpts.CoverageMapping)
4714     return;
4715   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4716     if (Fn->isTemplateInstantiation())
4717       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4718   }
4719   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4720   if (I == DeferredEmptyCoverageMappingDecls.end())
4721     DeferredEmptyCoverageMappingDecls[D] = false;
4722   else
4723     I->second = false;
4724 }
4725 
4726 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4727   // We call takeVector() here to avoid use-after-free.
4728   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4729   // we deserialize function bodies to emit coverage info for them, and that
4730   // deserializes more declarations. How should we handle that case?
4731   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4732     if (!Entry.second)
4733       continue;
4734     const Decl *D = Entry.first;
4735     switch (D->getKind()) {
4736     case Decl::CXXConversion:
4737     case Decl::CXXMethod:
4738     case Decl::Function:
4739     case Decl::ObjCMethod: {
4740       CodeGenPGO PGO(*this);
4741       GlobalDecl GD(cast<FunctionDecl>(D));
4742       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4743                                   getFunctionLinkage(GD));
4744       break;
4745     }
4746     case Decl::CXXConstructor: {
4747       CodeGenPGO PGO(*this);
4748       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4749       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4750                                   getFunctionLinkage(GD));
4751       break;
4752     }
4753     case Decl::CXXDestructor: {
4754       CodeGenPGO PGO(*this);
4755       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4756       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4757                                   getFunctionLinkage(GD));
4758       break;
4759     }
4760     default:
4761       break;
4762     };
4763   }
4764 }
4765 
4766 /// Turns the given pointer into a constant.
4767 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4768                                           const void *Ptr) {
4769   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4770   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4771   return llvm::ConstantInt::get(i64, PtrInt);
4772 }
4773 
4774 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4775                                    llvm::NamedMDNode *&GlobalMetadata,
4776                                    GlobalDecl D,
4777                                    llvm::GlobalValue *Addr) {
4778   if (!GlobalMetadata)
4779     GlobalMetadata =
4780       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4781 
4782   // TODO: should we report variant information for ctors/dtors?
4783   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4784                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4785                                CGM.getLLVMContext(), D.getDecl()))};
4786   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4787 }
4788 
4789 /// For each function which is declared within an extern "C" region and marked
4790 /// as 'used', but has internal linkage, create an alias from the unmangled
4791 /// name to the mangled name if possible. People expect to be able to refer
4792 /// to such functions with an unmangled name from inline assembly within the
4793 /// same translation unit.
4794 void CodeGenModule::EmitStaticExternCAliases() {
4795   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4796     return;
4797   for (auto &I : StaticExternCValues) {
4798     IdentifierInfo *Name = I.first;
4799     llvm::GlobalValue *Val = I.second;
4800     if (Val && !getModule().getNamedValue(Name->getName()))
4801       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4802   }
4803 }
4804 
4805 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4806                                              GlobalDecl &Result) const {
4807   auto Res = Manglings.find(MangledName);
4808   if (Res == Manglings.end())
4809     return false;
4810   Result = Res->getValue();
4811   return true;
4812 }
4813 
4814 /// Emits metadata nodes associating all the global values in the
4815 /// current module with the Decls they came from.  This is useful for
4816 /// projects using IR gen as a subroutine.
4817 ///
4818 /// Since there's currently no way to associate an MDNode directly
4819 /// with an llvm::GlobalValue, we create a global named metadata
4820 /// with the name 'clang.global.decl.ptrs'.
4821 void CodeGenModule::EmitDeclMetadata() {
4822   llvm::NamedMDNode *GlobalMetadata = nullptr;
4823 
4824   for (auto &I : MangledDeclNames) {
4825     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4826     // Some mangled names don't necessarily have an associated GlobalValue
4827     // in this module, e.g. if we mangled it for DebugInfo.
4828     if (Addr)
4829       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4830   }
4831 }
4832 
4833 /// Emits metadata nodes for all the local variables in the current
4834 /// function.
4835 void CodeGenFunction::EmitDeclMetadata() {
4836   if (LocalDeclMap.empty()) return;
4837 
4838   llvm::LLVMContext &Context = getLLVMContext();
4839 
4840   // Find the unique metadata ID for this name.
4841   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4842 
4843   llvm::NamedMDNode *GlobalMetadata = nullptr;
4844 
4845   for (auto &I : LocalDeclMap) {
4846     const Decl *D = I.first;
4847     llvm::Value *Addr = I.second.getPointer();
4848     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4849       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4850       Alloca->setMetadata(
4851           DeclPtrKind, llvm::MDNode::get(
4852                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4853     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4854       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4855       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4856     }
4857   }
4858 }
4859 
4860 void CodeGenModule::EmitVersionIdentMetadata() {
4861   llvm::NamedMDNode *IdentMetadata =
4862     TheModule.getOrInsertNamedMetadata("llvm.ident");
4863   std::string Version = getClangFullVersion();
4864   llvm::LLVMContext &Ctx = TheModule.getContext();
4865 
4866   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4867   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4868 }
4869 
4870 void CodeGenModule::EmitTargetMetadata() {
4871   // Warning, new MangledDeclNames may be appended within this loop.
4872   // We rely on MapVector insertions adding new elements to the end
4873   // of the container.
4874   // FIXME: Move this loop into the one target that needs it, and only
4875   // loop over those declarations for which we couldn't emit the target
4876   // metadata when we emitted the declaration.
4877   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4878     auto Val = *(MangledDeclNames.begin() + I);
4879     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4880     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4881     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4882   }
4883 }
4884 
4885 void CodeGenModule::EmitCoverageFile() {
4886   if (getCodeGenOpts().CoverageDataFile.empty() &&
4887       getCodeGenOpts().CoverageNotesFile.empty())
4888     return;
4889 
4890   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4891   if (!CUNode)
4892     return;
4893 
4894   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4895   llvm::LLVMContext &Ctx = TheModule.getContext();
4896   auto *CoverageDataFile =
4897       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4898   auto *CoverageNotesFile =
4899       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4900   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4901     llvm::MDNode *CU = CUNode->getOperand(i);
4902     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4903     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4904   }
4905 }
4906 
4907 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4908   // Sema has checked that all uuid strings are of the form
4909   // "12345678-1234-1234-1234-1234567890ab".
4910   assert(Uuid.size() == 36);
4911   for (unsigned i = 0; i < 36; ++i) {
4912     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4913     else                                         assert(isHexDigit(Uuid[i]));
4914   }
4915 
4916   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4917   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4918 
4919   llvm::Constant *Field3[8];
4920   for (unsigned Idx = 0; Idx < 8; ++Idx)
4921     Field3[Idx] = llvm::ConstantInt::get(
4922         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4923 
4924   llvm::Constant *Fields[4] = {
4925     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4926     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4927     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4928     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4929   };
4930 
4931   return llvm::ConstantStruct::getAnon(Fields);
4932 }
4933 
4934 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4935                                                        bool ForEH) {
4936   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4937   // FIXME: should we even be calling this method if RTTI is disabled
4938   // and it's not for EH?
4939   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
4940     return llvm::Constant::getNullValue(Int8PtrTy);
4941 
4942   if (ForEH && Ty->isObjCObjectPointerType() &&
4943       LangOpts.ObjCRuntime.isGNUFamily())
4944     return ObjCRuntime->GetEHType(Ty);
4945 
4946   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4947 }
4948 
4949 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4950   // Do not emit threadprivates in simd-only mode.
4951   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4952     return;
4953   for (auto RefExpr : D->varlists()) {
4954     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4955     bool PerformInit =
4956         VD->getAnyInitializer() &&
4957         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4958                                                         /*ForRef=*/false);
4959 
4960     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4961     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4962             VD, Addr, RefExpr->getLocStart(), PerformInit))
4963       CXXGlobalInits.push_back(InitFunction);
4964   }
4965 }
4966 
4967 llvm::Metadata *
4968 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
4969                                             StringRef Suffix) {
4970   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
4971   if (InternalId)
4972     return InternalId;
4973 
4974   if (isExternallyVisible(T->getLinkage())) {
4975     std::string OutName;
4976     llvm::raw_string_ostream Out(OutName);
4977     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4978     Out << Suffix;
4979 
4980     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4981   } else {
4982     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4983                                            llvm::ArrayRef<llvm::Metadata *>());
4984   }
4985 
4986   return InternalId;
4987 }
4988 
4989 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4990   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
4991 }
4992 
4993 llvm::Metadata *
4994 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
4995   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
4996 }
4997 
4998 // Generalize pointer types to a void pointer with the qualifiers of the
4999 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5000 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5001 // 'void *'.
5002 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5003   if (!Ty->isPointerType())
5004     return Ty;
5005 
5006   return Ctx.getPointerType(
5007       QualType(Ctx.VoidTy).withCVRQualifiers(
5008           Ty->getPointeeType().getCVRQualifiers()));
5009 }
5010 
5011 // Apply type generalization to a FunctionType's return and argument types
5012 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5013   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5014     SmallVector<QualType, 8> GeneralizedParams;
5015     for (auto &Param : FnType->param_types())
5016       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5017 
5018     return Ctx.getFunctionType(
5019         GeneralizeType(Ctx, FnType->getReturnType()),
5020         GeneralizedParams, FnType->getExtProtoInfo());
5021   }
5022 
5023   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5024     return Ctx.getFunctionNoProtoType(
5025         GeneralizeType(Ctx, FnType->getReturnType()));
5026 
5027   llvm_unreachable("Encountered unknown FunctionType");
5028 }
5029 
5030 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5031   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5032                                       GeneralizedMetadataIdMap, ".generalized");
5033 }
5034 
5035 /// Returns whether this module needs the "all-vtables" type identifier.
5036 bool CodeGenModule::NeedAllVtablesTypeId() const {
5037   // Returns true if at least one of vtable-based CFI checkers is enabled and
5038   // is not in the trapping mode.
5039   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5040            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5041           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5042            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5043           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5044            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5045           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5046            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5047 }
5048 
5049 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5050                                           CharUnits Offset,
5051                                           const CXXRecordDecl *RD) {
5052   llvm::Metadata *MD =
5053       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5054   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5055 
5056   if (CodeGenOpts.SanitizeCfiCrossDso)
5057     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5058       VTable->addTypeMetadata(Offset.getQuantity(),
5059                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5060 
5061   if (NeedAllVtablesTypeId()) {
5062     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5063     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5064   }
5065 }
5066 
5067 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5068   assert(TD != nullptr);
5069   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5070 
5071   ParsedAttr.Features.erase(
5072       llvm::remove_if(ParsedAttr.Features,
5073                       [&](const std::string &Feat) {
5074                         return !Target.isValidFeatureName(
5075                             StringRef{Feat}.substr(1));
5076                       }),
5077       ParsedAttr.Features.end());
5078   return ParsedAttr;
5079 }
5080 
5081 
5082 // Fills in the supplied string map with the set of target features for the
5083 // passed in function.
5084 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5085                                           const FunctionDecl *FD) {
5086   StringRef TargetCPU = Target.getTargetOpts().CPU;
5087   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5088     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5089 
5090     // Make a copy of the features as passed on the command line into the
5091     // beginning of the additional features from the function to override.
5092     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5093                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5094                             Target.getTargetOpts().FeaturesAsWritten.end());
5095 
5096     if (ParsedAttr.Architecture != "" &&
5097         Target.isValidCPUName(ParsedAttr.Architecture))
5098       TargetCPU = ParsedAttr.Architecture;
5099 
5100     // Now populate the feature map, first with the TargetCPU which is either
5101     // the default or a new one from the target attribute string. Then we'll use
5102     // the passed in features (FeaturesAsWritten) along with the new ones from
5103     // the attribute.
5104     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5105                           ParsedAttr.Features);
5106   } else {
5107     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5108                           Target.getTargetOpts().Features);
5109   }
5110 }
5111 
5112 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5113   if (!SanStats)
5114     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5115 
5116   return *SanStats;
5117 }
5118 llvm::Value *
5119 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5120                                                   CodeGenFunction &CGF) {
5121   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5122   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5123   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5124   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5125                                 "__translate_sampler_initializer"),
5126                                 {C});
5127 }
5128