1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 115 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 116 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 117 118 if (LangOpts.ObjC1) 119 createObjCRuntime(); 120 if (LangOpts.OpenCL) 121 createOpenCLRuntime(); 122 if (LangOpts.OpenMP) 123 createOpenMPRuntime(); 124 if (LangOpts.CUDA) 125 createCUDARuntime(); 126 127 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 128 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 129 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 130 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 131 getCXXABI().getMangleContext())); 132 133 // If debug info or coverage generation is enabled, create the CGDebugInfo 134 // object. 135 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 136 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 137 DebugInfo.reset(new CGDebugInfo(*this)); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjC1) 142 ObjCData.reset(new ObjCEntrypoints()); 143 144 if (CodeGenOpts.hasProfileClangUse()) { 145 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 146 CodeGenOpts.ProfileInstrumentUsePath); 147 if (auto E = ReaderOrErr.takeError()) { 148 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 149 "Could not read profile %0: %1"); 150 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 151 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 152 << EI.message(); 153 }); 154 } else 155 PGOReader = std::move(ReaderOrErr.get()); 156 } 157 158 // If coverage mapping generation is enabled, create the 159 // CoverageMappingModuleGen object. 160 if (CodeGenOpts.CoverageMapping) 161 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 162 163 // Record mregparm value now so it is visible through rest of codegen. 164 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 165 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 166 CodeGenOpts.NumRegisterParameters); 167 168 } 169 170 CodeGenModule::~CodeGenModule() {} 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 case ObjCRuntime::WatchOS: 186 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 187 return; 188 } 189 llvm_unreachable("bad runtime kind"); 190 } 191 192 void CodeGenModule::createOpenCLRuntime() { 193 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 194 } 195 196 void CodeGenModule::createOpenMPRuntime() { 197 // Select a specialized code generation class based on the target, if any. 198 // If it does not exist use the default implementation. 199 switch (getTriple().getArch()) { 200 case llvm::Triple::nvptx: 201 case llvm::Triple::nvptx64: 202 assert(getLangOpts().OpenMPIsDevice && 203 "OpenMP NVPTX is only prepared to deal with device code."); 204 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 205 break; 206 default: 207 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 208 break; 209 } 210 } 211 212 void CodeGenModule::createCUDARuntime() { 213 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 214 } 215 216 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 217 Replacements[Name] = C; 218 } 219 220 void CodeGenModule::applyReplacements() { 221 for (auto &I : Replacements) { 222 StringRef MangledName = I.first(); 223 llvm::Constant *Replacement = I.second; 224 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 225 if (!Entry) 226 continue; 227 auto *OldF = cast<llvm::Function>(Entry); 228 auto *NewF = dyn_cast<llvm::Function>(Replacement); 229 if (!NewF) { 230 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 231 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 232 } else { 233 auto *CE = cast<llvm::ConstantExpr>(Replacement); 234 assert(CE->getOpcode() == llvm::Instruction::BitCast || 235 CE->getOpcode() == llvm::Instruction::GetElementPtr); 236 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 237 } 238 } 239 240 // Replace old with new, but keep the old order. 241 OldF->replaceAllUsesWith(Replacement); 242 if (NewF) { 243 NewF->removeFromParent(); 244 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 245 NewF); 246 } 247 OldF->eraseFromParent(); 248 } 249 } 250 251 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 252 GlobalValReplacements.push_back(std::make_pair(GV, C)); 253 } 254 255 void CodeGenModule::applyGlobalValReplacements() { 256 for (auto &I : GlobalValReplacements) { 257 llvm::GlobalValue *GV = I.first; 258 llvm::Constant *C = I.second; 259 260 GV->replaceAllUsesWith(C); 261 GV->eraseFromParent(); 262 } 263 } 264 265 // This is only used in aliases that we created and we know they have a 266 // linear structure. 267 static const llvm::GlobalObject *getAliasedGlobal( 268 const llvm::GlobalIndirectSymbol &GIS) { 269 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 270 const llvm::Constant *C = &GIS; 271 for (;;) { 272 C = C->stripPointerCasts(); 273 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 274 return GO; 275 // stripPointerCasts will not walk over weak aliases. 276 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 277 if (!GIS2) 278 return nullptr; 279 if (!Visited.insert(GIS2).second) 280 return nullptr; 281 C = GIS2->getIndirectSymbol(); 282 } 283 } 284 285 void CodeGenModule::checkAliases() { 286 // Check if the constructed aliases are well formed. It is really unfortunate 287 // that we have to do this in CodeGen, but we only construct mangled names 288 // and aliases during codegen. 289 bool Error = false; 290 DiagnosticsEngine &Diags = getDiags(); 291 for (const GlobalDecl &GD : Aliases) { 292 const auto *D = cast<ValueDecl>(GD.getDecl()); 293 SourceLocation Location; 294 bool IsIFunc = D->hasAttr<IFuncAttr>(); 295 if (const Attr *A = D->getDefiningAttr()) 296 Location = A->getLocation(); 297 else 298 llvm_unreachable("Not an alias or ifunc?"); 299 StringRef MangledName = getMangledName(GD); 300 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 301 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 302 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 303 if (!GV) { 304 Error = true; 305 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 306 } else if (GV->isDeclaration()) { 307 Error = true; 308 Diags.Report(Location, diag::err_alias_to_undefined) 309 << IsIFunc << IsIFunc; 310 } else if (IsIFunc) { 311 // Check resolver function type. 312 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 313 GV->getType()->getPointerElementType()); 314 assert(FTy); 315 if (!FTy->getReturnType()->isPointerTy()) 316 Diags.Report(Location, diag::err_ifunc_resolver_return); 317 if (FTy->getNumParams()) 318 Diags.Report(Location, diag::err_ifunc_resolver_params); 319 } 320 321 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 322 llvm::GlobalValue *AliaseeGV; 323 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 324 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 325 else 326 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 327 328 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 329 StringRef AliasSection = SA->getName(); 330 if (AliasSection != AliaseeGV->getSection()) 331 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 332 << AliasSection << IsIFunc << IsIFunc; 333 } 334 335 // We have to handle alias to weak aliases in here. LLVM itself disallows 336 // this since the object semantics would not match the IL one. For 337 // compatibility with gcc we implement it by just pointing the alias 338 // to its aliasee's aliasee. We also warn, since the user is probably 339 // expecting the link to be weak. 340 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 341 if (GA->isInterposable()) { 342 Diags.Report(Location, diag::warn_alias_to_weak_alias) 343 << GV->getName() << GA->getName() << IsIFunc; 344 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 345 GA->getIndirectSymbol(), Alias->getType()); 346 Alias->setIndirectSymbol(Aliasee); 347 } 348 } 349 } 350 if (!Error) 351 return; 352 353 for (const GlobalDecl &GD : Aliases) { 354 StringRef MangledName = getMangledName(GD); 355 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 356 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 357 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 358 Alias->eraseFromParent(); 359 } 360 } 361 362 void CodeGenModule::clear() { 363 DeferredDeclsToEmit.clear(); 364 if (OpenMPRuntime) 365 OpenMPRuntime->clear(); 366 } 367 368 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 369 StringRef MainFile) { 370 if (!hasDiagnostics()) 371 return; 372 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 373 if (MainFile.empty()) 374 MainFile = "<stdin>"; 375 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 376 } else 377 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 378 << Mismatched; 379 } 380 381 void CodeGenModule::Release() { 382 EmitDeferred(); 383 applyGlobalValReplacements(); 384 applyReplacements(); 385 checkAliases(); 386 EmitCXXGlobalInitFunc(); 387 EmitCXXGlobalDtorFunc(); 388 EmitCXXThreadLocalInitFunc(); 389 if (ObjCRuntime) 390 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 391 AddGlobalCtor(ObjCInitFunction); 392 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 393 CUDARuntime) { 394 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 395 AddGlobalCtor(CudaCtorFunction); 396 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 397 AddGlobalDtor(CudaDtorFunction); 398 } 399 if (OpenMPRuntime) 400 if (llvm::Function *OpenMPRegistrationFunction = 401 OpenMPRuntime->emitRegistrationFunction()) 402 AddGlobalCtor(OpenMPRegistrationFunction, 0); 403 if (PGOReader) { 404 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 405 if (PGOStats.hasDiagnostics()) 406 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 407 } 408 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 409 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 410 EmitGlobalAnnotations(); 411 EmitStaticExternCAliases(); 412 EmitDeferredUnusedCoverageMappings(); 413 if (CoverageMapping) 414 CoverageMapping->emit(); 415 if (CodeGenOpts.SanitizeCfiCrossDso) 416 CodeGenFunction(*this).EmitCfiCheckFail(); 417 emitAtAvailableLinkGuard(); 418 emitLLVMUsed(); 419 if (SanStats) 420 SanStats->finish(); 421 422 if (CodeGenOpts.Autolink && 423 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 424 EmitModuleLinkOptions(); 425 } 426 427 if (CodeGenOpts.DwarfVersion) { 428 // We actually want the latest version when there are conflicts. 429 // We can change from Warning to Latest if such mode is supported. 430 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 431 CodeGenOpts.DwarfVersion); 432 } 433 if (CodeGenOpts.EmitCodeView) { 434 // Indicate that we want CodeView in the metadata. 435 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 436 } 437 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 438 // We don't support LTO with 2 with different StrictVTablePointers 439 // FIXME: we could support it by stripping all the information introduced 440 // by StrictVTablePointers. 441 442 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 443 444 llvm::Metadata *Ops[2] = { 445 llvm::MDString::get(VMContext, "StrictVTablePointers"), 446 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 447 llvm::Type::getInt32Ty(VMContext), 1))}; 448 449 getModule().addModuleFlag(llvm::Module::Require, 450 "StrictVTablePointersRequirement", 451 llvm::MDNode::get(VMContext, Ops)); 452 } 453 if (DebugInfo) 454 // We support a single version in the linked module. The LLVM 455 // parser will drop debug info with a different version number 456 // (and warn about it, too). 457 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 458 llvm::DEBUG_METADATA_VERSION); 459 460 // We need to record the widths of enums and wchar_t, so that we can generate 461 // the correct build attributes in the ARM backend. 462 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 463 if ( Arch == llvm::Triple::arm 464 || Arch == llvm::Triple::armeb 465 || Arch == llvm::Triple::thumb 466 || Arch == llvm::Triple::thumbeb) { 467 // Width of wchar_t in bytes 468 uint64_t WCharWidth = 469 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 470 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 471 472 // The minimum width of an enum in bytes 473 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 474 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 475 } 476 477 if (CodeGenOpts.SanitizeCfiCrossDso) { 478 // Indicate that we want cross-DSO control flow integrity checks. 479 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 480 } 481 482 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 483 // Indicate whether __nvvm_reflect should be configured to flush denormal 484 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 485 // property.) 486 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 487 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 488 } 489 490 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 491 assert(PLevel < 3 && "Invalid PIC Level"); 492 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 493 if (Context.getLangOpts().PIE) 494 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 495 } 496 497 SimplifyPersonality(); 498 499 if (getCodeGenOpts().EmitDeclMetadata) 500 EmitDeclMetadata(); 501 502 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 503 EmitCoverageFile(); 504 505 if (DebugInfo) 506 DebugInfo->finalize(); 507 508 EmitVersionIdentMetadata(); 509 510 EmitTargetMetadata(); 511 } 512 513 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 514 // Make sure that this type is translated. 515 Types.UpdateCompletedType(TD); 516 } 517 518 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 519 // Make sure that this type is translated. 520 Types.RefreshTypeCacheForClass(RD); 521 } 522 523 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 524 if (!TBAA) 525 return nullptr; 526 return TBAA->getTBAAInfo(QTy); 527 } 528 529 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 530 if (!TBAA) 531 return nullptr; 532 return TBAA->getTBAAInfoForVTablePtr(); 533 } 534 535 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 536 if (!TBAA) 537 return nullptr; 538 return TBAA->getTBAAStructInfo(QTy); 539 } 540 541 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 542 llvm::MDNode *AccessN, 543 uint64_t O) { 544 if (!TBAA) 545 return nullptr; 546 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 547 } 548 549 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 550 /// and struct-path aware TBAA, the tag has the same format: 551 /// base type, access type and offset. 552 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 553 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 554 llvm::MDNode *TBAAInfo, 555 bool ConvertTypeToTag) { 556 if (ConvertTypeToTag && TBAA) 557 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 558 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 559 else 560 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 561 } 562 563 void CodeGenModule::DecorateInstructionWithInvariantGroup( 564 llvm::Instruction *I, const CXXRecordDecl *RD) { 565 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 566 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 567 // Check if we have to wrap MDString in MDNode. 568 if (!MetaDataNode) 569 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 570 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 571 } 572 573 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 574 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 575 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 576 } 577 578 /// ErrorUnsupported - Print out an error that codegen doesn't support the 579 /// specified stmt yet. 580 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 581 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 582 "cannot compile this %0 yet"); 583 std::string Msg = Type; 584 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 585 << Msg << S->getSourceRange(); 586 } 587 588 /// ErrorUnsupported - Print out an error that codegen doesn't support the 589 /// specified decl yet. 590 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 591 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 592 "cannot compile this %0 yet"); 593 std::string Msg = Type; 594 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 595 } 596 597 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 598 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 599 } 600 601 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 602 const NamedDecl *D) const { 603 // Internal definitions always have default visibility. 604 if (GV->hasLocalLinkage()) { 605 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 606 return; 607 } 608 609 // Set visibility for definitions. 610 LinkageInfo LV = D->getLinkageAndVisibility(); 611 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 612 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 613 } 614 615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 616 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 617 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 618 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 619 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 620 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 621 } 622 623 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 624 CodeGenOptions::TLSModel M) { 625 switch (M) { 626 case CodeGenOptions::GeneralDynamicTLSModel: 627 return llvm::GlobalVariable::GeneralDynamicTLSModel; 628 case CodeGenOptions::LocalDynamicTLSModel: 629 return llvm::GlobalVariable::LocalDynamicTLSModel; 630 case CodeGenOptions::InitialExecTLSModel: 631 return llvm::GlobalVariable::InitialExecTLSModel; 632 case CodeGenOptions::LocalExecTLSModel: 633 return llvm::GlobalVariable::LocalExecTLSModel; 634 } 635 llvm_unreachable("Invalid TLS model!"); 636 } 637 638 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 639 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 640 641 llvm::GlobalValue::ThreadLocalMode TLM; 642 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 643 644 // Override the TLS model if it is explicitly specified. 645 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 646 TLM = GetLLVMTLSModel(Attr->getModel()); 647 } 648 649 GV->setThreadLocalMode(TLM); 650 } 651 652 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 653 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 654 655 // Some ABIs don't have constructor variants. Make sure that base and 656 // complete constructors get mangled the same. 657 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 658 if (!getTarget().getCXXABI().hasConstructorVariants()) { 659 CXXCtorType OrigCtorType = GD.getCtorType(); 660 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 661 if (OrigCtorType == Ctor_Base) 662 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 663 } 664 } 665 666 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 667 if (!FoundStr.empty()) 668 return FoundStr; 669 670 const auto *ND = cast<NamedDecl>(GD.getDecl()); 671 SmallString<256> Buffer; 672 StringRef Str; 673 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 674 llvm::raw_svector_ostream Out(Buffer); 675 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 676 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 677 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 678 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 679 else 680 getCXXABI().getMangleContext().mangleName(ND, Out); 681 Str = Out.str(); 682 } else { 683 IdentifierInfo *II = ND->getIdentifier(); 684 assert(II && "Attempt to mangle unnamed decl."); 685 const auto *FD = dyn_cast<FunctionDecl>(ND); 686 687 if (FD && 688 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 689 llvm::raw_svector_ostream Out(Buffer); 690 Out << "__regcall3__" << II->getName(); 691 Str = Out.str(); 692 } else { 693 Str = II->getName(); 694 } 695 } 696 697 // Keep the first result in the case of a mangling collision. 698 auto Result = Manglings.insert(std::make_pair(Str, GD)); 699 return FoundStr = Result.first->first(); 700 } 701 702 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 703 const BlockDecl *BD) { 704 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 705 const Decl *D = GD.getDecl(); 706 707 SmallString<256> Buffer; 708 llvm::raw_svector_ostream Out(Buffer); 709 if (!D) 710 MangleCtx.mangleGlobalBlock(BD, 711 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 712 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 713 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 714 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 715 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 716 else 717 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 718 719 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 720 return Result.first->first(); 721 } 722 723 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 724 return getModule().getNamedValue(Name); 725 } 726 727 /// AddGlobalCtor - Add a function to the list that will be called before 728 /// main() runs. 729 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 730 llvm::Constant *AssociatedData) { 731 // FIXME: Type coercion of void()* types. 732 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 733 } 734 735 /// AddGlobalDtor - Add a function to the list that will be called 736 /// when the module is unloaded. 737 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 738 // FIXME: Type coercion of void()* types. 739 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 740 } 741 742 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 743 if (Fns.empty()) return; 744 745 // Ctor function type is void()*. 746 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 747 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 748 749 // Get the type of a ctor entry, { i32, void ()*, i8* }. 750 llvm::StructType *CtorStructTy = llvm::StructType::get( 751 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 752 753 // Construct the constructor and destructor arrays. 754 ConstantInitBuilder builder(*this); 755 auto ctors = builder.beginArray(CtorStructTy); 756 for (const auto &I : Fns) { 757 auto ctor = ctors.beginStruct(CtorStructTy); 758 ctor.addInt(Int32Ty, I.Priority); 759 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 760 if (I.AssociatedData) 761 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 762 else 763 ctor.addNullPointer(VoidPtrTy); 764 ctor.finishAndAddTo(ctors); 765 } 766 767 auto list = 768 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 769 /*constant*/ false, 770 llvm::GlobalValue::AppendingLinkage); 771 772 // The LTO linker doesn't seem to like it when we set an alignment 773 // on appending variables. Take it off as a workaround. 774 list->setAlignment(0); 775 776 Fns.clear(); 777 } 778 779 llvm::GlobalValue::LinkageTypes 780 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 781 const auto *D = cast<FunctionDecl>(GD.getDecl()); 782 783 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 784 785 if (isa<CXXDestructorDecl>(D) && 786 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 787 GD.getDtorType())) { 788 // Destructor variants in the Microsoft C++ ABI are always internal or 789 // linkonce_odr thunks emitted on an as-needed basis. 790 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 791 : llvm::GlobalValue::LinkOnceODRLinkage; 792 } 793 794 if (isa<CXXConstructorDecl>(D) && 795 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 796 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 797 // Our approach to inheriting constructors is fundamentally different from 798 // that used by the MS ABI, so keep our inheriting constructor thunks 799 // internal rather than trying to pick an unambiguous mangling for them. 800 return llvm::GlobalValue::InternalLinkage; 801 } 802 803 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 804 } 805 806 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 807 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 808 809 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 810 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 811 // Don't dllexport/import destructor thunks. 812 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 813 return; 814 } 815 } 816 817 if (FD->hasAttr<DLLImportAttr>()) 818 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 819 else if (FD->hasAttr<DLLExportAttr>()) 820 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 821 else 822 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 823 } 824 825 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 826 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 827 if (!MDS) return nullptr; 828 829 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 830 } 831 832 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 833 llvm::Function *F) { 834 setNonAliasAttributes(D, F); 835 } 836 837 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 838 const CGFunctionInfo &Info, 839 llvm::Function *F) { 840 unsigned CallingConv; 841 AttributeListType AttributeList; 842 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 843 false); 844 F->setAttributes(llvm::AttributeList::get(getLLVMContext(), AttributeList)); 845 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 846 } 847 848 /// Determines whether the language options require us to model 849 /// unwind exceptions. We treat -fexceptions as mandating this 850 /// except under the fragile ObjC ABI with only ObjC exceptions 851 /// enabled. This means, for example, that C with -fexceptions 852 /// enables this. 853 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 854 // If exceptions are completely disabled, obviously this is false. 855 if (!LangOpts.Exceptions) return false; 856 857 // If C++ exceptions are enabled, this is true. 858 if (LangOpts.CXXExceptions) return true; 859 860 // If ObjC exceptions are enabled, this depends on the ABI. 861 if (LangOpts.ObjCExceptions) { 862 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 863 } 864 865 return true; 866 } 867 868 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 869 llvm::Function *F) { 870 llvm::AttrBuilder B; 871 872 if (CodeGenOpts.UnwindTables) 873 B.addAttribute(llvm::Attribute::UWTable); 874 875 if (!hasUnwindExceptions(LangOpts)) 876 B.addAttribute(llvm::Attribute::NoUnwind); 877 878 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 879 B.addAttribute(llvm::Attribute::StackProtect); 880 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 881 B.addAttribute(llvm::Attribute::StackProtectStrong); 882 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 883 B.addAttribute(llvm::Attribute::StackProtectReq); 884 885 if (!D) { 886 // If we don't have a declaration to control inlining, the function isn't 887 // explicitly marked as alwaysinline for semantic reasons, and inlining is 888 // disabled, mark the function as noinline. 889 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 890 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 891 B.addAttribute(llvm::Attribute::NoInline); 892 893 F->addAttributes( 894 llvm::AttributeList::FunctionIndex, 895 llvm::AttributeList::get(F->getContext(), 896 llvm::AttributeList::FunctionIndex, B)); 897 return; 898 } 899 900 if (D->hasAttr<OptimizeNoneAttr>()) { 901 B.addAttribute(llvm::Attribute::OptimizeNone); 902 903 // OptimizeNone implies noinline; we should not be inlining such functions. 904 B.addAttribute(llvm::Attribute::NoInline); 905 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 906 "OptimizeNone and AlwaysInline on same function!"); 907 908 // We still need to handle naked functions even though optnone subsumes 909 // much of their semantics. 910 if (D->hasAttr<NakedAttr>()) 911 B.addAttribute(llvm::Attribute::Naked); 912 913 // OptimizeNone wins over OptimizeForSize and MinSize. 914 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 915 F->removeFnAttr(llvm::Attribute::MinSize); 916 } else if (D->hasAttr<NakedAttr>()) { 917 // Naked implies noinline: we should not be inlining such functions. 918 B.addAttribute(llvm::Attribute::Naked); 919 B.addAttribute(llvm::Attribute::NoInline); 920 } else if (D->hasAttr<NoDuplicateAttr>()) { 921 B.addAttribute(llvm::Attribute::NoDuplicate); 922 } else if (D->hasAttr<NoInlineAttr>()) { 923 B.addAttribute(llvm::Attribute::NoInline); 924 } else if (D->hasAttr<AlwaysInlineAttr>() && 925 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 926 // (noinline wins over always_inline, and we can't specify both in IR) 927 B.addAttribute(llvm::Attribute::AlwaysInline); 928 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 929 // If we're not inlining, then force everything that isn't always_inline to 930 // carry an explicit noinline attribute. 931 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 932 B.addAttribute(llvm::Attribute::NoInline); 933 } else { 934 // Otherwise, propagate the inline hint attribute and potentially use its 935 // absence to mark things as noinline. 936 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 937 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 938 return Redecl->isInlineSpecified(); 939 })) { 940 B.addAttribute(llvm::Attribute::InlineHint); 941 } else if (CodeGenOpts.getInlining() == 942 CodeGenOptions::OnlyHintInlining && 943 !FD->isInlined() && 944 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 945 B.addAttribute(llvm::Attribute::NoInline); 946 } 947 } 948 } 949 950 // Add other optimization related attributes if we are optimizing this 951 // function. 952 if (!D->hasAttr<OptimizeNoneAttr>()) { 953 if (D->hasAttr<ColdAttr>()) { 954 B.addAttribute(llvm::Attribute::OptimizeForSize); 955 B.addAttribute(llvm::Attribute::Cold); 956 } 957 958 if (D->hasAttr<MinSizeAttr>()) 959 B.addAttribute(llvm::Attribute::MinSize); 960 } 961 962 F->addAttributes(llvm::AttributeList::FunctionIndex, 963 llvm::AttributeList::get( 964 F->getContext(), llvm::AttributeList::FunctionIndex, B)); 965 966 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 967 if (alignment) 968 F->setAlignment(alignment); 969 970 // Some C++ ABIs require 2-byte alignment for member functions, in order to 971 // reserve a bit for differentiating between virtual and non-virtual member 972 // functions. If the current target's C++ ABI requires this and this is a 973 // member function, set its alignment accordingly. 974 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 975 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 976 F->setAlignment(2); 977 } 978 979 // In the cross-dso CFI mode, we want !type attributes on definitions only. 980 if (CodeGenOpts.SanitizeCfiCrossDso) 981 if (auto *FD = dyn_cast<FunctionDecl>(D)) 982 CreateFunctionTypeMetadata(FD, F); 983 } 984 985 void CodeGenModule::SetCommonAttributes(const Decl *D, 986 llvm::GlobalValue *GV) { 987 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 988 setGlobalVisibility(GV, ND); 989 else 990 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 991 992 if (D && D->hasAttr<UsedAttr>()) 993 addUsedGlobal(GV); 994 } 995 996 void CodeGenModule::setAliasAttributes(const Decl *D, 997 llvm::GlobalValue *GV) { 998 SetCommonAttributes(D, GV); 999 1000 // Process the dllexport attribute based on whether the original definition 1001 // (not necessarily the aliasee) was exported. 1002 if (D->hasAttr<DLLExportAttr>()) 1003 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1004 } 1005 1006 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1007 llvm::GlobalObject *GO) { 1008 SetCommonAttributes(D, GO); 1009 1010 if (D) 1011 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1012 GO->setSection(SA->getName()); 1013 1014 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1015 } 1016 1017 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1018 llvm::Function *F, 1019 const CGFunctionInfo &FI) { 1020 SetLLVMFunctionAttributes(D, FI, F); 1021 SetLLVMFunctionAttributesForDefinition(D, F); 1022 1023 F->setLinkage(llvm::Function::InternalLinkage); 1024 1025 setNonAliasAttributes(D, F); 1026 } 1027 1028 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1029 const NamedDecl *ND) { 1030 // Set linkage and visibility in case we never see a definition. 1031 LinkageInfo LV = ND->getLinkageAndVisibility(); 1032 if (LV.getLinkage() != ExternalLinkage) { 1033 // Don't set internal linkage on declarations. 1034 } else { 1035 if (ND->hasAttr<DLLImportAttr>()) { 1036 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1037 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1038 } else if (ND->hasAttr<DLLExportAttr>()) { 1039 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1040 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1041 // "extern_weak" is overloaded in LLVM; we probably should have 1042 // separate linkage types for this. 1043 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1044 } 1045 1046 // Set visibility on a declaration only if it's explicit. 1047 if (LV.isVisibilityExplicit()) 1048 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1049 } 1050 } 1051 1052 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1053 llvm::Function *F) { 1054 // Only if we are checking indirect calls. 1055 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1056 return; 1057 1058 // Non-static class methods are handled via vtable pointer checks elsewhere. 1059 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1060 return; 1061 1062 // Additionally, if building with cross-DSO support... 1063 if (CodeGenOpts.SanitizeCfiCrossDso) { 1064 // Skip available_externally functions. They won't be codegen'ed in the 1065 // current module anyway. 1066 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1067 return; 1068 } 1069 1070 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1071 F->addTypeMetadata(0, MD); 1072 1073 // Emit a hash-based bit set entry for cross-DSO calls. 1074 if (CodeGenOpts.SanitizeCfiCrossDso) 1075 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1076 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1077 } 1078 1079 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1080 bool IsIncompleteFunction, 1081 bool IsThunk) { 1082 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1083 // If this is an intrinsic function, set the function's attributes 1084 // to the intrinsic's attributes. 1085 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1086 return; 1087 } 1088 1089 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1090 1091 if (!IsIncompleteFunction) 1092 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1093 1094 // Add the Returned attribute for "this", except for iOS 5 and earlier 1095 // where substantial code, including the libstdc++ dylib, was compiled with 1096 // GCC and does not actually return "this". 1097 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1098 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1099 assert(!F->arg_empty() && 1100 F->arg_begin()->getType() 1101 ->canLosslesslyBitCastTo(F->getReturnType()) && 1102 "unexpected this return"); 1103 F->addAttribute(1, llvm::Attribute::Returned); 1104 } 1105 1106 // Only a few attributes are set on declarations; these may later be 1107 // overridden by a definition. 1108 1109 setLinkageAndVisibilityForGV(F, FD); 1110 1111 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1112 F->setSection(SA->getName()); 1113 1114 if (FD->isReplaceableGlobalAllocationFunction()) { 1115 // A replaceable global allocation function does not act like a builtin by 1116 // default, only if it is invoked by a new-expression or delete-expression. 1117 F->addAttribute(llvm::AttributeList::FunctionIndex, 1118 llvm::Attribute::NoBuiltin); 1119 1120 // A sane operator new returns a non-aliasing pointer. 1121 // FIXME: Also add NonNull attribute to the return value 1122 // for the non-nothrow forms? 1123 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1124 if (getCodeGenOpts().AssumeSaneOperatorNew && 1125 (Kind == OO_New || Kind == OO_Array_New)) 1126 F->addAttribute(llvm::AttributeList::ReturnIndex, 1127 llvm::Attribute::NoAlias); 1128 } 1129 1130 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1131 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1132 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1133 if (MD->isVirtual()) 1134 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1135 1136 // Don't emit entries for function declarations in the cross-DSO mode. This 1137 // is handled with better precision by the receiving DSO. 1138 if (!CodeGenOpts.SanitizeCfiCrossDso) 1139 CreateFunctionTypeMetadata(FD, F); 1140 } 1141 1142 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1143 assert(!GV->isDeclaration() && 1144 "Only globals with definition can force usage."); 1145 LLVMUsed.emplace_back(GV); 1146 } 1147 1148 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1149 assert(!GV->isDeclaration() && 1150 "Only globals with definition can force usage."); 1151 LLVMCompilerUsed.emplace_back(GV); 1152 } 1153 1154 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1155 std::vector<llvm::WeakVH> &List) { 1156 // Don't create llvm.used if there is no need. 1157 if (List.empty()) 1158 return; 1159 1160 // Convert List to what ConstantArray needs. 1161 SmallVector<llvm::Constant*, 8> UsedArray; 1162 UsedArray.resize(List.size()); 1163 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1164 UsedArray[i] = 1165 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1166 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1167 } 1168 1169 if (UsedArray.empty()) 1170 return; 1171 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1172 1173 auto *GV = new llvm::GlobalVariable( 1174 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1175 llvm::ConstantArray::get(ATy, UsedArray), Name); 1176 1177 GV->setSection("llvm.metadata"); 1178 } 1179 1180 void CodeGenModule::emitLLVMUsed() { 1181 emitUsed(*this, "llvm.used", LLVMUsed); 1182 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1183 } 1184 1185 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1186 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1187 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1188 } 1189 1190 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1191 llvm::SmallString<32> Opt; 1192 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1193 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1194 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1195 } 1196 1197 void CodeGenModule::AddDependentLib(StringRef Lib) { 1198 llvm::SmallString<24> Opt; 1199 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1200 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1201 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1202 } 1203 1204 /// \brief Add link options implied by the given module, including modules 1205 /// it depends on, using a postorder walk. 1206 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1207 SmallVectorImpl<llvm::Metadata *> &Metadata, 1208 llvm::SmallPtrSet<Module *, 16> &Visited) { 1209 // Import this module's parent. 1210 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1211 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1212 } 1213 1214 // Import this module's dependencies. 1215 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1216 if (Visited.insert(Mod->Imports[I - 1]).second) 1217 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1218 } 1219 1220 // Add linker options to link against the libraries/frameworks 1221 // described by this module. 1222 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1223 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1224 // Link against a framework. Frameworks are currently Darwin only, so we 1225 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1226 if (Mod->LinkLibraries[I-1].IsFramework) { 1227 llvm::Metadata *Args[2] = { 1228 llvm::MDString::get(Context, "-framework"), 1229 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1230 1231 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1232 continue; 1233 } 1234 1235 // Link against a library. 1236 llvm::SmallString<24> Opt; 1237 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1238 Mod->LinkLibraries[I-1].Library, Opt); 1239 auto *OptString = llvm::MDString::get(Context, Opt); 1240 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1241 } 1242 } 1243 1244 void CodeGenModule::EmitModuleLinkOptions() { 1245 // Collect the set of all of the modules we want to visit to emit link 1246 // options, which is essentially the imported modules and all of their 1247 // non-explicit child modules. 1248 llvm::SetVector<clang::Module *> LinkModules; 1249 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1250 SmallVector<clang::Module *, 16> Stack; 1251 1252 // Seed the stack with imported modules. 1253 for (Module *M : ImportedModules) { 1254 // Do not add any link flags when an implementation TU of a module imports 1255 // a header of that same module. 1256 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1257 !getLangOpts().isCompilingModule()) 1258 continue; 1259 if (Visited.insert(M).second) 1260 Stack.push_back(M); 1261 } 1262 1263 // Find all of the modules to import, making a little effort to prune 1264 // non-leaf modules. 1265 while (!Stack.empty()) { 1266 clang::Module *Mod = Stack.pop_back_val(); 1267 1268 bool AnyChildren = false; 1269 1270 // Visit the submodules of this module. 1271 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1272 SubEnd = Mod->submodule_end(); 1273 Sub != SubEnd; ++Sub) { 1274 // Skip explicit children; they need to be explicitly imported to be 1275 // linked against. 1276 if ((*Sub)->IsExplicit) 1277 continue; 1278 1279 if (Visited.insert(*Sub).second) { 1280 Stack.push_back(*Sub); 1281 AnyChildren = true; 1282 } 1283 } 1284 1285 // We didn't find any children, so add this module to the list of 1286 // modules to link against. 1287 if (!AnyChildren) { 1288 LinkModules.insert(Mod); 1289 } 1290 } 1291 1292 // Add link options for all of the imported modules in reverse topological 1293 // order. We don't do anything to try to order import link flags with respect 1294 // to linker options inserted by things like #pragma comment(). 1295 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1296 Visited.clear(); 1297 for (Module *M : LinkModules) 1298 if (Visited.insert(M).second) 1299 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1300 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1301 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1302 1303 // Add the linker options metadata flag. 1304 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1305 llvm::MDNode::get(getLLVMContext(), 1306 LinkerOptionsMetadata)); 1307 } 1308 1309 void CodeGenModule::EmitDeferred() { 1310 // Emit code for any potentially referenced deferred decls. Since a 1311 // previously unused static decl may become used during the generation of code 1312 // for a static function, iterate until no changes are made. 1313 1314 if (!DeferredVTables.empty()) { 1315 EmitDeferredVTables(); 1316 1317 // Emitting a vtable doesn't directly cause more vtables to 1318 // become deferred, although it can cause functions to be 1319 // emitted that then need those vtables. 1320 assert(DeferredVTables.empty()); 1321 } 1322 1323 // Stop if we're out of both deferred vtables and deferred declarations. 1324 if (DeferredDeclsToEmit.empty()) 1325 return; 1326 1327 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1328 // work, it will not interfere with this. 1329 std::vector<DeferredGlobal> CurDeclsToEmit; 1330 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1331 1332 for (DeferredGlobal &G : CurDeclsToEmit) { 1333 GlobalDecl D = G.GD; 1334 G.GV = nullptr; 1335 1336 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1337 // to get GlobalValue with exactly the type we need, not something that 1338 // might had been created for another decl with the same mangled name but 1339 // different type. 1340 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1341 GetAddrOfGlobal(D, ForDefinition)); 1342 1343 // In case of different address spaces, we may still get a cast, even with 1344 // IsForDefinition equal to true. Query mangled names table to get 1345 // GlobalValue. 1346 if (!GV) 1347 GV = GetGlobalValue(getMangledName(D)); 1348 1349 // Make sure GetGlobalValue returned non-null. 1350 assert(GV); 1351 1352 // Check to see if we've already emitted this. This is necessary 1353 // for a couple of reasons: first, decls can end up in the 1354 // deferred-decls queue multiple times, and second, decls can end 1355 // up with definitions in unusual ways (e.g. by an extern inline 1356 // function acquiring a strong function redefinition). Just 1357 // ignore these cases. 1358 if (!GV->isDeclaration()) 1359 continue; 1360 1361 // Otherwise, emit the definition and move on to the next one. 1362 EmitGlobalDefinition(D, GV); 1363 1364 // If we found out that we need to emit more decls, do that recursively. 1365 // This has the advantage that the decls are emitted in a DFS and related 1366 // ones are close together, which is convenient for testing. 1367 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1368 EmitDeferred(); 1369 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1370 } 1371 } 1372 } 1373 1374 void CodeGenModule::EmitGlobalAnnotations() { 1375 if (Annotations.empty()) 1376 return; 1377 1378 // Create a new global variable for the ConstantStruct in the Module. 1379 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1380 Annotations[0]->getType(), Annotations.size()), Annotations); 1381 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1382 llvm::GlobalValue::AppendingLinkage, 1383 Array, "llvm.global.annotations"); 1384 gv->setSection(AnnotationSection); 1385 } 1386 1387 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1388 llvm::Constant *&AStr = AnnotationStrings[Str]; 1389 if (AStr) 1390 return AStr; 1391 1392 // Not found yet, create a new global. 1393 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1394 auto *gv = 1395 new llvm::GlobalVariable(getModule(), s->getType(), true, 1396 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1397 gv->setSection(AnnotationSection); 1398 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1399 AStr = gv; 1400 return gv; 1401 } 1402 1403 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1404 SourceManager &SM = getContext().getSourceManager(); 1405 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1406 if (PLoc.isValid()) 1407 return EmitAnnotationString(PLoc.getFilename()); 1408 return EmitAnnotationString(SM.getBufferName(Loc)); 1409 } 1410 1411 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1412 SourceManager &SM = getContext().getSourceManager(); 1413 PresumedLoc PLoc = SM.getPresumedLoc(L); 1414 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1415 SM.getExpansionLineNumber(L); 1416 return llvm::ConstantInt::get(Int32Ty, LineNo); 1417 } 1418 1419 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1420 const AnnotateAttr *AA, 1421 SourceLocation L) { 1422 // Get the globals for file name, annotation, and the line number. 1423 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1424 *UnitGV = EmitAnnotationUnit(L), 1425 *LineNoCst = EmitAnnotationLineNo(L); 1426 1427 // Create the ConstantStruct for the global annotation. 1428 llvm::Constant *Fields[4] = { 1429 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1430 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1431 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1432 LineNoCst 1433 }; 1434 return llvm::ConstantStruct::getAnon(Fields); 1435 } 1436 1437 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1438 llvm::GlobalValue *GV) { 1439 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1440 // Get the struct elements for these annotations. 1441 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1442 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1443 } 1444 1445 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1446 SourceLocation Loc) const { 1447 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1448 // Blacklist by function name. 1449 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1450 return true; 1451 // Blacklist by location. 1452 if (Loc.isValid()) 1453 return SanitizerBL.isBlacklistedLocation(Loc); 1454 // If location is unknown, this may be a compiler-generated function. Assume 1455 // it's located in the main file. 1456 auto &SM = Context.getSourceManager(); 1457 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1458 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1459 } 1460 return false; 1461 } 1462 1463 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1464 SourceLocation Loc, QualType Ty, 1465 StringRef Category) const { 1466 // For now globals can be blacklisted only in ASan and KASan. 1467 if (!LangOpts.Sanitize.hasOneOf( 1468 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1469 return false; 1470 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1471 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1472 return true; 1473 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1474 return true; 1475 // Check global type. 1476 if (!Ty.isNull()) { 1477 // Drill down the array types: if global variable of a fixed type is 1478 // blacklisted, we also don't instrument arrays of them. 1479 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1480 Ty = AT->getElementType(); 1481 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1482 // We allow to blacklist only record types (classes, structs etc.) 1483 if (Ty->isRecordType()) { 1484 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1485 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1486 return true; 1487 } 1488 } 1489 return false; 1490 } 1491 1492 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1493 // Never defer when EmitAllDecls is specified. 1494 if (LangOpts.EmitAllDecls) 1495 return true; 1496 1497 return getContext().DeclMustBeEmitted(Global); 1498 } 1499 1500 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1501 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1502 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1503 // Implicit template instantiations may change linkage if they are later 1504 // explicitly instantiated, so they should not be emitted eagerly. 1505 return false; 1506 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1507 if (Context.getInlineVariableDefinitionKind(VD) == 1508 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1509 // A definition of an inline constexpr static data member may change 1510 // linkage later if it's redeclared outside the class. 1511 return false; 1512 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1513 // codegen for global variables, because they may be marked as threadprivate. 1514 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1515 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1516 return false; 1517 1518 return true; 1519 } 1520 1521 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1522 const CXXUuidofExpr* E) { 1523 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1524 // well-formed. 1525 StringRef Uuid = E->getUuidStr(); 1526 std::string Name = "_GUID_" + Uuid.lower(); 1527 std::replace(Name.begin(), Name.end(), '-', '_'); 1528 1529 // The UUID descriptor should be pointer aligned. 1530 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1531 1532 // Look for an existing global. 1533 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1534 return ConstantAddress(GV, Alignment); 1535 1536 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1537 assert(Init && "failed to initialize as constant"); 1538 1539 auto *GV = new llvm::GlobalVariable( 1540 getModule(), Init->getType(), 1541 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1542 if (supportsCOMDAT()) 1543 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1544 return ConstantAddress(GV, Alignment); 1545 } 1546 1547 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1548 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1549 assert(AA && "No alias?"); 1550 1551 CharUnits Alignment = getContext().getDeclAlign(VD); 1552 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1553 1554 // See if there is already something with the target's name in the module. 1555 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1556 if (Entry) { 1557 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1558 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1559 return ConstantAddress(Ptr, Alignment); 1560 } 1561 1562 llvm::Constant *Aliasee; 1563 if (isa<llvm::FunctionType>(DeclTy)) 1564 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1565 GlobalDecl(cast<FunctionDecl>(VD)), 1566 /*ForVTable=*/false); 1567 else 1568 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1569 llvm::PointerType::getUnqual(DeclTy), 1570 nullptr); 1571 1572 auto *F = cast<llvm::GlobalValue>(Aliasee); 1573 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1574 WeakRefReferences.insert(F); 1575 1576 return ConstantAddress(Aliasee, Alignment); 1577 } 1578 1579 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1580 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1581 1582 // Weak references don't produce any output by themselves. 1583 if (Global->hasAttr<WeakRefAttr>()) 1584 return; 1585 1586 // If this is an alias definition (which otherwise looks like a declaration) 1587 // emit it now. 1588 if (Global->hasAttr<AliasAttr>()) 1589 return EmitAliasDefinition(GD); 1590 1591 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1592 if (Global->hasAttr<IFuncAttr>()) 1593 return emitIFuncDefinition(GD); 1594 1595 // If this is CUDA, be selective about which declarations we emit. 1596 if (LangOpts.CUDA) { 1597 if (LangOpts.CUDAIsDevice) { 1598 if (!Global->hasAttr<CUDADeviceAttr>() && 1599 !Global->hasAttr<CUDAGlobalAttr>() && 1600 !Global->hasAttr<CUDAConstantAttr>() && 1601 !Global->hasAttr<CUDASharedAttr>()) 1602 return; 1603 } else { 1604 // We need to emit host-side 'shadows' for all global 1605 // device-side variables because the CUDA runtime needs their 1606 // size and host-side address in order to provide access to 1607 // their device-side incarnations. 1608 1609 // So device-only functions are the only things we skip. 1610 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1611 Global->hasAttr<CUDADeviceAttr>()) 1612 return; 1613 1614 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1615 "Expected Variable or Function"); 1616 } 1617 } 1618 1619 if (LangOpts.OpenMP) { 1620 // If this is OpenMP device, check if it is legal to emit this global 1621 // normally. 1622 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1623 return; 1624 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1625 if (MustBeEmitted(Global)) 1626 EmitOMPDeclareReduction(DRD); 1627 return; 1628 } 1629 } 1630 1631 // Ignore declarations, they will be emitted on their first use. 1632 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1633 // Forward declarations are emitted lazily on first use. 1634 if (!FD->doesThisDeclarationHaveABody()) { 1635 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1636 return; 1637 1638 StringRef MangledName = getMangledName(GD); 1639 1640 // Compute the function info and LLVM type. 1641 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1642 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1643 1644 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1645 /*DontDefer=*/false); 1646 return; 1647 } 1648 } else { 1649 const auto *VD = cast<VarDecl>(Global); 1650 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1651 // We need to emit device-side global CUDA variables even if a 1652 // variable does not have a definition -- we still need to define 1653 // host-side shadow for it. 1654 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1655 !VD->hasDefinition() && 1656 (VD->hasAttr<CUDAConstantAttr>() || 1657 VD->hasAttr<CUDADeviceAttr>()); 1658 if (!MustEmitForCuda && 1659 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1660 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1661 // If this declaration may have caused an inline variable definition to 1662 // change linkage, make sure that it's emitted. 1663 if (Context.getInlineVariableDefinitionKind(VD) == 1664 ASTContext::InlineVariableDefinitionKind::Strong) 1665 GetAddrOfGlobalVar(VD); 1666 return; 1667 } 1668 } 1669 1670 // Defer code generation to first use when possible, e.g. if this is an inline 1671 // function. If the global must always be emitted, do it eagerly if possible 1672 // to benefit from cache locality. 1673 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1674 // Emit the definition if it can't be deferred. 1675 EmitGlobalDefinition(GD); 1676 return; 1677 } 1678 1679 // If we're deferring emission of a C++ variable with an 1680 // initializer, remember the order in which it appeared in the file. 1681 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1682 cast<VarDecl>(Global)->hasInit()) { 1683 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1684 CXXGlobalInits.push_back(nullptr); 1685 } 1686 1687 StringRef MangledName = getMangledName(GD); 1688 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1689 // The value has already been used and should therefore be emitted. 1690 addDeferredDeclToEmit(GV, GD); 1691 } else if (MustBeEmitted(Global)) { 1692 // The value must be emitted, but cannot be emitted eagerly. 1693 assert(!MayBeEmittedEagerly(Global)); 1694 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1695 } else { 1696 // Otherwise, remember that we saw a deferred decl with this name. The 1697 // first use of the mangled name will cause it to move into 1698 // DeferredDeclsToEmit. 1699 DeferredDecls[MangledName] = GD; 1700 } 1701 } 1702 1703 // Check if T is a class type with a destructor that's not dllimport. 1704 static bool HasNonDllImportDtor(QualType T) { 1705 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1706 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1707 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1708 return true; 1709 1710 return false; 1711 } 1712 1713 namespace { 1714 struct FunctionIsDirectlyRecursive : 1715 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1716 const StringRef Name; 1717 const Builtin::Context &BI; 1718 bool Result; 1719 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1720 Name(N), BI(C), Result(false) { 1721 } 1722 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1723 1724 bool TraverseCallExpr(CallExpr *E) { 1725 const FunctionDecl *FD = E->getDirectCallee(); 1726 if (!FD) 1727 return true; 1728 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1729 if (Attr && Name == Attr->getLabel()) { 1730 Result = true; 1731 return false; 1732 } 1733 unsigned BuiltinID = FD->getBuiltinID(); 1734 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1735 return true; 1736 StringRef BuiltinName = BI.getName(BuiltinID); 1737 if (BuiltinName.startswith("__builtin_") && 1738 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1739 Result = true; 1740 return false; 1741 } 1742 return true; 1743 } 1744 }; 1745 1746 // Make sure we're not referencing non-imported vars or functions. 1747 struct DLLImportFunctionVisitor 1748 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1749 bool SafeToInline = true; 1750 1751 bool shouldVisitImplicitCode() const { return true; } 1752 1753 bool VisitVarDecl(VarDecl *VD) { 1754 if (VD->getTLSKind()) { 1755 // A thread-local variable cannot be imported. 1756 SafeToInline = false; 1757 return SafeToInline; 1758 } 1759 1760 // A variable definition might imply a destructor call. 1761 if (VD->isThisDeclarationADefinition()) 1762 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1763 1764 return SafeToInline; 1765 } 1766 1767 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1768 if (const auto *D = E->getTemporary()->getDestructor()) 1769 SafeToInline = D->hasAttr<DLLImportAttr>(); 1770 return SafeToInline; 1771 } 1772 1773 bool VisitDeclRefExpr(DeclRefExpr *E) { 1774 ValueDecl *VD = E->getDecl(); 1775 if (isa<FunctionDecl>(VD)) 1776 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1777 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1778 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1779 return SafeToInline; 1780 } 1781 1782 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1783 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1784 return SafeToInline; 1785 } 1786 1787 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1788 CXXMethodDecl *M = E->getMethodDecl(); 1789 if (!M) { 1790 // Call through a pointer to member function. This is safe to inline. 1791 SafeToInline = true; 1792 } else { 1793 SafeToInline = M->hasAttr<DLLImportAttr>(); 1794 } 1795 return SafeToInline; 1796 } 1797 1798 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1799 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1800 return SafeToInline; 1801 } 1802 1803 bool VisitCXXNewExpr(CXXNewExpr *E) { 1804 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1805 return SafeToInline; 1806 } 1807 }; 1808 } 1809 1810 // isTriviallyRecursive - Check if this function calls another 1811 // decl that, because of the asm attribute or the other decl being a builtin, 1812 // ends up pointing to itself. 1813 bool 1814 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1815 StringRef Name; 1816 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1817 // asm labels are a special kind of mangling we have to support. 1818 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1819 if (!Attr) 1820 return false; 1821 Name = Attr->getLabel(); 1822 } else { 1823 Name = FD->getName(); 1824 } 1825 1826 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1827 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1828 return Walker.Result; 1829 } 1830 1831 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1832 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1833 return true; 1834 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1835 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1836 return false; 1837 1838 if (F->hasAttr<DLLImportAttr>()) { 1839 // Check whether it would be safe to inline this dllimport function. 1840 DLLImportFunctionVisitor Visitor; 1841 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1842 if (!Visitor.SafeToInline) 1843 return false; 1844 1845 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1846 // Implicit destructor invocations aren't captured in the AST, so the 1847 // check above can't see them. Check for them manually here. 1848 for (const Decl *Member : Dtor->getParent()->decls()) 1849 if (isa<FieldDecl>(Member)) 1850 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1851 return false; 1852 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1853 if (HasNonDllImportDtor(B.getType())) 1854 return false; 1855 } 1856 } 1857 1858 // PR9614. Avoid cases where the source code is lying to us. An available 1859 // externally function should have an equivalent function somewhere else, 1860 // but a function that calls itself is clearly not equivalent to the real 1861 // implementation. 1862 // This happens in glibc's btowc and in some configure checks. 1863 return !isTriviallyRecursive(F); 1864 } 1865 1866 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1867 const auto *D = cast<ValueDecl>(GD.getDecl()); 1868 1869 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1870 Context.getSourceManager(), 1871 "Generating code for declaration"); 1872 1873 if (isa<FunctionDecl>(D)) { 1874 // At -O0, don't generate IR for functions with available_externally 1875 // linkage. 1876 if (!shouldEmitFunction(GD)) 1877 return; 1878 1879 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1880 // Make sure to emit the definition(s) before we emit the thunks. 1881 // This is necessary for the generation of certain thunks. 1882 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1883 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1884 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1885 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1886 else 1887 EmitGlobalFunctionDefinition(GD, GV); 1888 1889 if (Method->isVirtual()) 1890 getVTables().EmitThunks(GD); 1891 1892 return; 1893 } 1894 1895 return EmitGlobalFunctionDefinition(GD, GV); 1896 } 1897 1898 if (const auto *VD = dyn_cast<VarDecl>(D)) 1899 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1900 1901 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1902 } 1903 1904 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1905 llvm::Function *NewFn); 1906 1907 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1908 /// module, create and return an llvm Function with the specified type. If there 1909 /// is something in the module with the specified name, return it potentially 1910 /// bitcasted to the right type. 1911 /// 1912 /// If D is non-null, it specifies a decl that correspond to this. This is used 1913 /// to set the attributes on the function when it is first created. 1914 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1915 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1916 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1917 ForDefinition_t IsForDefinition) { 1918 const Decl *D = GD.getDecl(); 1919 1920 // Lookup the entry, lazily creating it if necessary. 1921 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1922 if (Entry) { 1923 if (WeakRefReferences.erase(Entry)) { 1924 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1925 if (FD && !FD->hasAttr<WeakAttr>()) 1926 Entry->setLinkage(llvm::Function::ExternalLinkage); 1927 } 1928 1929 // Handle dropped DLL attributes. 1930 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1931 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1932 1933 // If there are two attempts to define the same mangled name, issue an 1934 // error. 1935 if (IsForDefinition && !Entry->isDeclaration()) { 1936 GlobalDecl OtherGD; 1937 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1938 // to make sure that we issue an error only once. 1939 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1940 (GD.getCanonicalDecl().getDecl() != 1941 OtherGD.getCanonicalDecl().getDecl()) && 1942 DiagnosedConflictingDefinitions.insert(GD).second) { 1943 getDiags().Report(D->getLocation(), 1944 diag::err_duplicate_mangled_name); 1945 getDiags().Report(OtherGD.getDecl()->getLocation(), 1946 diag::note_previous_definition); 1947 } 1948 } 1949 1950 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1951 (Entry->getType()->getElementType() == Ty)) { 1952 return Entry; 1953 } 1954 1955 // Make sure the result is of the correct type. 1956 // (If function is requested for a definition, we always need to create a new 1957 // function, not just return a bitcast.) 1958 if (!IsForDefinition) 1959 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1960 } 1961 1962 // This function doesn't have a complete type (for example, the return 1963 // type is an incomplete struct). Use a fake type instead, and make 1964 // sure not to try to set attributes. 1965 bool IsIncompleteFunction = false; 1966 1967 llvm::FunctionType *FTy; 1968 if (isa<llvm::FunctionType>(Ty)) { 1969 FTy = cast<llvm::FunctionType>(Ty); 1970 } else { 1971 FTy = llvm::FunctionType::get(VoidTy, false); 1972 IsIncompleteFunction = true; 1973 } 1974 1975 llvm::Function *F = 1976 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1977 Entry ? StringRef() : MangledName, &getModule()); 1978 1979 // If we already created a function with the same mangled name (but different 1980 // type) before, take its name and add it to the list of functions to be 1981 // replaced with F at the end of CodeGen. 1982 // 1983 // This happens if there is a prototype for a function (e.g. "int f()") and 1984 // then a definition of a different type (e.g. "int f(int x)"). 1985 if (Entry) { 1986 F->takeName(Entry); 1987 1988 // This might be an implementation of a function without a prototype, in 1989 // which case, try to do special replacement of calls which match the new 1990 // prototype. The really key thing here is that we also potentially drop 1991 // arguments from the call site so as to make a direct call, which makes the 1992 // inliner happier and suppresses a number of optimizer warnings (!) about 1993 // dropping arguments. 1994 if (!Entry->use_empty()) { 1995 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1996 Entry->removeDeadConstantUsers(); 1997 } 1998 1999 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2000 F, Entry->getType()->getElementType()->getPointerTo()); 2001 addGlobalValReplacement(Entry, BC); 2002 } 2003 2004 assert(F->getName() == MangledName && "name was uniqued!"); 2005 if (D) 2006 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2007 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2008 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2009 F->addAttributes(llvm::AttributeList::FunctionIndex, 2010 llvm::AttributeList::get( 2011 VMContext, llvm::AttributeList::FunctionIndex, B)); 2012 } 2013 2014 if (!DontDefer) { 2015 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2016 // each other bottoming out with the base dtor. Therefore we emit non-base 2017 // dtors on usage, even if there is no dtor definition in the TU. 2018 if (D && isa<CXXDestructorDecl>(D) && 2019 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2020 GD.getDtorType())) 2021 addDeferredDeclToEmit(F, GD); 2022 2023 // This is the first use or definition of a mangled name. If there is a 2024 // deferred decl with this name, remember that we need to emit it at the end 2025 // of the file. 2026 auto DDI = DeferredDecls.find(MangledName); 2027 if (DDI != DeferredDecls.end()) { 2028 // Move the potentially referenced deferred decl to the 2029 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2030 // don't need it anymore). 2031 addDeferredDeclToEmit(F, DDI->second); 2032 DeferredDecls.erase(DDI); 2033 2034 // Otherwise, there are cases we have to worry about where we're 2035 // using a declaration for which we must emit a definition but where 2036 // we might not find a top-level definition: 2037 // - member functions defined inline in their classes 2038 // - friend functions defined inline in some class 2039 // - special member functions with implicit definitions 2040 // If we ever change our AST traversal to walk into class methods, 2041 // this will be unnecessary. 2042 // 2043 // We also don't emit a definition for a function if it's going to be an 2044 // entry in a vtable, unless it's already marked as used. 2045 } else if (getLangOpts().CPlusPlus && D) { 2046 // Look for a declaration that's lexically in a record. 2047 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2048 FD = FD->getPreviousDecl()) { 2049 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2050 if (FD->doesThisDeclarationHaveABody()) { 2051 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2052 break; 2053 } 2054 } 2055 } 2056 } 2057 } 2058 2059 // Make sure the result is of the requested type. 2060 if (!IsIncompleteFunction) { 2061 assert(F->getType()->getElementType() == Ty); 2062 return F; 2063 } 2064 2065 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2066 return llvm::ConstantExpr::getBitCast(F, PTy); 2067 } 2068 2069 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2070 /// non-null, then this function will use the specified type if it has to 2071 /// create it (this occurs when we see a definition of the function). 2072 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2073 llvm::Type *Ty, 2074 bool ForVTable, 2075 bool DontDefer, 2076 ForDefinition_t IsForDefinition) { 2077 // If there was no specific requested type, just convert it now. 2078 if (!Ty) { 2079 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2080 auto CanonTy = Context.getCanonicalType(FD->getType()); 2081 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2082 } 2083 2084 StringRef MangledName = getMangledName(GD); 2085 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2086 /*IsThunk=*/false, llvm::AttributeList(), 2087 IsForDefinition); 2088 } 2089 2090 static const FunctionDecl * 2091 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2092 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2093 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2094 2095 IdentifierInfo &CII = C.Idents.get(Name); 2096 for (const auto &Result : DC->lookup(&CII)) 2097 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2098 return FD; 2099 2100 if (!C.getLangOpts().CPlusPlus) 2101 return nullptr; 2102 2103 // Demangle the premangled name from getTerminateFn() 2104 IdentifierInfo &CXXII = 2105 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2106 ? C.Idents.get("terminate") 2107 : C.Idents.get(Name); 2108 2109 for (const auto &N : {"__cxxabiv1", "std"}) { 2110 IdentifierInfo &NS = C.Idents.get(N); 2111 for (const auto &Result : DC->lookup(&NS)) { 2112 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2113 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2114 for (const auto &Result : LSD->lookup(&NS)) 2115 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2116 break; 2117 2118 if (ND) 2119 for (const auto &Result : ND->lookup(&CXXII)) 2120 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2121 return FD; 2122 } 2123 } 2124 2125 return nullptr; 2126 } 2127 2128 /// CreateRuntimeFunction - Create a new runtime function with the specified 2129 /// type and name. 2130 llvm::Constant * 2131 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2132 llvm::AttributeList ExtraAttrs, 2133 bool Local) { 2134 llvm::Constant *C = 2135 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2136 /*DontDefer=*/false, /*IsThunk=*/false, 2137 ExtraAttrs); 2138 2139 if (auto *F = dyn_cast<llvm::Function>(C)) { 2140 if (F->empty()) { 2141 F->setCallingConv(getRuntimeCC()); 2142 2143 if (!Local && getTriple().isOSBinFormatCOFF() && 2144 !getCodeGenOpts().LTOVisibilityPublicStd) { 2145 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2146 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2147 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2148 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2149 } 2150 } 2151 } 2152 } 2153 2154 return C; 2155 } 2156 2157 /// CreateBuiltinFunction - Create a new builtin function with the specified 2158 /// type and name. 2159 llvm::Constant * 2160 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2161 llvm::AttributeList ExtraAttrs) { 2162 llvm::Constant *C = 2163 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2164 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2165 if (auto *F = dyn_cast<llvm::Function>(C)) 2166 if (F->empty()) 2167 F->setCallingConv(getBuiltinCC()); 2168 return C; 2169 } 2170 2171 /// isTypeConstant - Determine whether an object of this type can be emitted 2172 /// as a constant. 2173 /// 2174 /// If ExcludeCtor is true, the duration when the object's constructor runs 2175 /// will not be considered. The caller will need to verify that the object is 2176 /// not written to during its construction. 2177 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2178 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2179 return false; 2180 2181 if (Context.getLangOpts().CPlusPlus) { 2182 if (const CXXRecordDecl *Record 2183 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2184 return ExcludeCtor && !Record->hasMutableFields() && 2185 Record->hasTrivialDestructor(); 2186 } 2187 2188 return true; 2189 } 2190 2191 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2192 /// create and return an llvm GlobalVariable with the specified type. If there 2193 /// is something in the module with the specified name, return it potentially 2194 /// bitcasted to the right type. 2195 /// 2196 /// If D is non-null, it specifies a decl that correspond to this. This is used 2197 /// to set the attributes on the global when it is first created. 2198 /// 2199 /// If IsForDefinition is true, it is guranteed that an actual global with 2200 /// type Ty will be returned, not conversion of a variable with the same 2201 /// mangled name but some other type. 2202 llvm::Constant * 2203 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2204 llvm::PointerType *Ty, 2205 const VarDecl *D, 2206 ForDefinition_t IsForDefinition) { 2207 // Lookup the entry, lazily creating it if necessary. 2208 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2209 if (Entry) { 2210 if (WeakRefReferences.erase(Entry)) { 2211 if (D && !D->hasAttr<WeakAttr>()) 2212 Entry->setLinkage(llvm::Function::ExternalLinkage); 2213 } 2214 2215 // Handle dropped DLL attributes. 2216 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2217 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2218 2219 if (Entry->getType() == Ty) 2220 return Entry; 2221 2222 // If there are two attempts to define the same mangled name, issue an 2223 // error. 2224 if (IsForDefinition && !Entry->isDeclaration()) { 2225 GlobalDecl OtherGD; 2226 const VarDecl *OtherD; 2227 2228 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2229 // to make sure that we issue an error only once. 2230 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2231 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2232 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2233 OtherD->hasInit() && 2234 DiagnosedConflictingDefinitions.insert(D).second) { 2235 getDiags().Report(D->getLocation(), 2236 diag::err_duplicate_mangled_name); 2237 getDiags().Report(OtherGD.getDecl()->getLocation(), 2238 diag::note_previous_definition); 2239 } 2240 } 2241 2242 // Make sure the result is of the correct type. 2243 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2244 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2245 2246 // (If global is requested for a definition, we always need to create a new 2247 // global, not just return a bitcast.) 2248 if (!IsForDefinition) 2249 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2250 } 2251 2252 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2253 auto *GV = new llvm::GlobalVariable( 2254 getModule(), Ty->getElementType(), false, 2255 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2256 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2257 2258 // If we already created a global with the same mangled name (but different 2259 // type) before, take its name and remove it from its parent. 2260 if (Entry) { 2261 GV->takeName(Entry); 2262 2263 if (!Entry->use_empty()) { 2264 llvm::Constant *NewPtrForOldDecl = 2265 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2266 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2267 } 2268 2269 Entry->eraseFromParent(); 2270 } 2271 2272 // This is the first use or definition of a mangled name. If there is a 2273 // deferred decl with this name, remember that we need to emit it at the end 2274 // of the file. 2275 auto DDI = DeferredDecls.find(MangledName); 2276 if (DDI != DeferredDecls.end()) { 2277 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2278 // list, and remove it from DeferredDecls (since we don't need it anymore). 2279 addDeferredDeclToEmit(GV, DDI->second); 2280 DeferredDecls.erase(DDI); 2281 } 2282 2283 // Handle things which are present even on external declarations. 2284 if (D) { 2285 // FIXME: This code is overly simple and should be merged with other global 2286 // handling. 2287 GV->setConstant(isTypeConstant(D->getType(), false)); 2288 2289 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2290 2291 setLinkageAndVisibilityForGV(GV, D); 2292 2293 if (D->getTLSKind()) { 2294 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2295 CXXThreadLocals.push_back(D); 2296 setTLSMode(GV, *D); 2297 } 2298 2299 // If required by the ABI, treat declarations of static data members with 2300 // inline initializers as definitions. 2301 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2302 EmitGlobalVarDefinition(D); 2303 } 2304 2305 // Handle XCore specific ABI requirements. 2306 if (getTriple().getArch() == llvm::Triple::xcore && 2307 D->getLanguageLinkage() == CLanguageLinkage && 2308 D->getType().isConstant(Context) && 2309 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2310 GV->setSection(".cp.rodata"); 2311 } 2312 2313 if (AddrSpace != Ty->getAddressSpace()) 2314 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2315 2316 return GV; 2317 } 2318 2319 llvm::Constant * 2320 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2321 ForDefinition_t IsForDefinition) { 2322 const Decl *D = GD.getDecl(); 2323 if (isa<CXXConstructorDecl>(D)) 2324 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2325 getFromCtorType(GD.getCtorType()), 2326 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2327 /*DontDefer=*/false, IsForDefinition); 2328 else if (isa<CXXDestructorDecl>(D)) 2329 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2330 getFromDtorType(GD.getDtorType()), 2331 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2332 /*DontDefer=*/false, IsForDefinition); 2333 else if (isa<CXXMethodDecl>(D)) { 2334 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2335 cast<CXXMethodDecl>(D)); 2336 auto Ty = getTypes().GetFunctionType(*FInfo); 2337 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2338 IsForDefinition); 2339 } else if (isa<FunctionDecl>(D)) { 2340 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2341 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2342 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2343 IsForDefinition); 2344 } else 2345 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2346 IsForDefinition); 2347 } 2348 2349 llvm::GlobalVariable * 2350 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2351 llvm::Type *Ty, 2352 llvm::GlobalValue::LinkageTypes Linkage) { 2353 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2354 llvm::GlobalVariable *OldGV = nullptr; 2355 2356 if (GV) { 2357 // Check if the variable has the right type. 2358 if (GV->getType()->getElementType() == Ty) 2359 return GV; 2360 2361 // Because C++ name mangling, the only way we can end up with an already 2362 // existing global with the same name is if it has been declared extern "C". 2363 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2364 OldGV = GV; 2365 } 2366 2367 // Create a new variable. 2368 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2369 Linkage, nullptr, Name); 2370 2371 if (OldGV) { 2372 // Replace occurrences of the old variable if needed. 2373 GV->takeName(OldGV); 2374 2375 if (!OldGV->use_empty()) { 2376 llvm::Constant *NewPtrForOldDecl = 2377 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2378 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2379 } 2380 2381 OldGV->eraseFromParent(); 2382 } 2383 2384 if (supportsCOMDAT() && GV->isWeakForLinker() && 2385 !GV->hasAvailableExternallyLinkage()) 2386 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2387 2388 return GV; 2389 } 2390 2391 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2392 /// given global variable. If Ty is non-null and if the global doesn't exist, 2393 /// then it will be created with the specified type instead of whatever the 2394 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2395 /// that an actual global with type Ty will be returned, not conversion of a 2396 /// variable with the same mangled name but some other type. 2397 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2398 llvm::Type *Ty, 2399 ForDefinition_t IsForDefinition) { 2400 assert(D->hasGlobalStorage() && "Not a global variable"); 2401 QualType ASTTy = D->getType(); 2402 if (!Ty) 2403 Ty = getTypes().ConvertTypeForMem(ASTTy); 2404 2405 llvm::PointerType *PTy = 2406 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2407 2408 StringRef MangledName = getMangledName(D); 2409 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2410 } 2411 2412 /// CreateRuntimeVariable - Create a new runtime global variable with the 2413 /// specified type and name. 2414 llvm::Constant * 2415 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2416 StringRef Name) { 2417 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2418 } 2419 2420 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2421 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2422 2423 StringRef MangledName = getMangledName(D); 2424 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2425 2426 // We already have a definition, not declaration, with the same mangled name. 2427 // Emitting of declaration is not required (and actually overwrites emitted 2428 // definition). 2429 if (GV && !GV->isDeclaration()) 2430 return; 2431 2432 // If we have not seen a reference to this variable yet, place it into the 2433 // deferred declarations table to be emitted if needed later. 2434 if (!MustBeEmitted(D) && !GV) { 2435 DeferredDecls[MangledName] = D; 2436 return; 2437 } 2438 2439 // The tentative definition is the only definition. 2440 EmitGlobalVarDefinition(D); 2441 } 2442 2443 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2444 return Context.toCharUnitsFromBits( 2445 getDataLayout().getTypeStoreSizeInBits(Ty)); 2446 } 2447 2448 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2449 unsigned AddrSpace) { 2450 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2451 if (D->hasAttr<CUDAConstantAttr>()) 2452 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2453 else if (D->hasAttr<CUDASharedAttr>()) 2454 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2455 else 2456 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2457 } 2458 2459 return AddrSpace; 2460 } 2461 2462 template<typename SomeDecl> 2463 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2464 llvm::GlobalValue *GV) { 2465 if (!getLangOpts().CPlusPlus) 2466 return; 2467 2468 // Must have 'used' attribute, or else inline assembly can't rely on 2469 // the name existing. 2470 if (!D->template hasAttr<UsedAttr>()) 2471 return; 2472 2473 // Must have internal linkage and an ordinary name. 2474 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2475 return; 2476 2477 // Must be in an extern "C" context. Entities declared directly within 2478 // a record are not extern "C" even if the record is in such a context. 2479 const SomeDecl *First = D->getFirstDecl(); 2480 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2481 return; 2482 2483 // OK, this is an internal linkage entity inside an extern "C" linkage 2484 // specification. Make a note of that so we can give it the "expected" 2485 // mangled name if nothing else is using that name. 2486 std::pair<StaticExternCMap::iterator, bool> R = 2487 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2488 2489 // If we have multiple internal linkage entities with the same name 2490 // in extern "C" regions, none of them gets that name. 2491 if (!R.second) 2492 R.first->second = nullptr; 2493 } 2494 2495 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2496 if (!CGM.supportsCOMDAT()) 2497 return false; 2498 2499 if (D.hasAttr<SelectAnyAttr>()) 2500 return true; 2501 2502 GVALinkage Linkage; 2503 if (auto *VD = dyn_cast<VarDecl>(&D)) 2504 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2505 else 2506 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2507 2508 switch (Linkage) { 2509 case GVA_Internal: 2510 case GVA_AvailableExternally: 2511 case GVA_StrongExternal: 2512 return false; 2513 case GVA_DiscardableODR: 2514 case GVA_StrongODR: 2515 return true; 2516 } 2517 llvm_unreachable("No such linkage"); 2518 } 2519 2520 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2521 llvm::GlobalObject &GO) { 2522 if (!shouldBeInCOMDAT(*this, D)) 2523 return; 2524 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2525 } 2526 2527 /// Pass IsTentative as true if you want to create a tentative definition. 2528 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2529 bool IsTentative) { 2530 // OpenCL global variables of sampler type are translated to function calls, 2531 // therefore no need to be translated. 2532 QualType ASTTy = D->getType(); 2533 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2534 return; 2535 2536 llvm::Constant *Init = nullptr; 2537 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2538 bool NeedsGlobalCtor = false; 2539 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2540 2541 const VarDecl *InitDecl; 2542 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2543 2544 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2545 // as part of their declaration." Sema has already checked for 2546 // error cases, so we just need to set Init to UndefValue. 2547 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2548 D->hasAttr<CUDASharedAttr>()) 2549 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2550 else if (!InitExpr) { 2551 // This is a tentative definition; tentative definitions are 2552 // implicitly initialized with { 0 }. 2553 // 2554 // Note that tentative definitions are only emitted at the end of 2555 // a translation unit, so they should never have incomplete 2556 // type. In addition, EmitTentativeDefinition makes sure that we 2557 // never attempt to emit a tentative definition if a real one 2558 // exists. A use may still exists, however, so we still may need 2559 // to do a RAUW. 2560 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2561 Init = EmitNullConstant(D->getType()); 2562 } else { 2563 initializedGlobalDecl = GlobalDecl(D); 2564 Init = EmitConstantInit(*InitDecl); 2565 2566 if (!Init) { 2567 QualType T = InitExpr->getType(); 2568 if (D->getType()->isReferenceType()) 2569 T = D->getType(); 2570 2571 if (getLangOpts().CPlusPlus) { 2572 Init = EmitNullConstant(T); 2573 NeedsGlobalCtor = true; 2574 } else { 2575 ErrorUnsupported(D, "static initializer"); 2576 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2577 } 2578 } else { 2579 // We don't need an initializer, so remove the entry for the delayed 2580 // initializer position (just in case this entry was delayed) if we 2581 // also don't need to register a destructor. 2582 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2583 DelayedCXXInitPosition.erase(D); 2584 } 2585 } 2586 2587 llvm::Type* InitType = Init->getType(); 2588 llvm::Constant *Entry = 2589 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2590 2591 // Strip off a bitcast if we got one back. 2592 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2593 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2594 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2595 // All zero index gep. 2596 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2597 Entry = CE->getOperand(0); 2598 } 2599 2600 // Entry is now either a Function or GlobalVariable. 2601 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2602 2603 // We have a definition after a declaration with the wrong type. 2604 // We must make a new GlobalVariable* and update everything that used OldGV 2605 // (a declaration or tentative definition) with the new GlobalVariable* 2606 // (which will be a definition). 2607 // 2608 // This happens if there is a prototype for a global (e.g. 2609 // "extern int x[];") and then a definition of a different type (e.g. 2610 // "int x[10];"). This also happens when an initializer has a different type 2611 // from the type of the global (this happens with unions). 2612 if (!GV || 2613 GV->getType()->getElementType() != InitType || 2614 GV->getType()->getAddressSpace() != 2615 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2616 2617 // Move the old entry aside so that we'll create a new one. 2618 Entry->setName(StringRef()); 2619 2620 // Make a new global with the correct type, this is now guaranteed to work. 2621 GV = cast<llvm::GlobalVariable>( 2622 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2623 2624 // Replace all uses of the old global with the new global 2625 llvm::Constant *NewPtrForOldDecl = 2626 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2627 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2628 2629 // Erase the old global, since it is no longer used. 2630 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2631 } 2632 2633 MaybeHandleStaticInExternC(D, GV); 2634 2635 if (D->hasAttr<AnnotateAttr>()) 2636 AddGlobalAnnotations(D, GV); 2637 2638 // Set the llvm linkage type as appropriate. 2639 llvm::GlobalValue::LinkageTypes Linkage = 2640 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2641 2642 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2643 // the device. [...]" 2644 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2645 // __device__, declares a variable that: [...] 2646 // Is accessible from all the threads within the grid and from the host 2647 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2648 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2649 if (GV && LangOpts.CUDA) { 2650 if (LangOpts.CUDAIsDevice) { 2651 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2652 GV->setExternallyInitialized(true); 2653 } else { 2654 // Host-side shadows of external declarations of device-side 2655 // global variables become internal definitions. These have to 2656 // be internal in order to prevent name conflicts with global 2657 // host variables with the same name in a different TUs. 2658 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2659 Linkage = llvm::GlobalValue::InternalLinkage; 2660 2661 // Shadow variables and their properties must be registered 2662 // with CUDA runtime. 2663 unsigned Flags = 0; 2664 if (!D->hasDefinition()) 2665 Flags |= CGCUDARuntime::ExternDeviceVar; 2666 if (D->hasAttr<CUDAConstantAttr>()) 2667 Flags |= CGCUDARuntime::ConstantDeviceVar; 2668 getCUDARuntime().registerDeviceVar(*GV, Flags); 2669 } else if (D->hasAttr<CUDASharedAttr>()) 2670 // __shared__ variables are odd. Shadows do get created, but 2671 // they are not registered with the CUDA runtime, so they 2672 // can't really be used to access their device-side 2673 // counterparts. It's not clear yet whether it's nvcc's bug or 2674 // a feature, but we've got to do the same for compatibility. 2675 Linkage = llvm::GlobalValue::InternalLinkage; 2676 } 2677 } 2678 GV->setInitializer(Init); 2679 2680 // If it is safe to mark the global 'constant', do so now. 2681 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2682 isTypeConstant(D->getType(), true)); 2683 2684 // If it is in a read-only section, mark it 'constant'. 2685 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2686 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2687 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2688 GV->setConstant(true); 2689 } 2690 2691 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2692 2693 2694 // On Darwin, if the normal linkage of a C++ thread_local variable is 2695 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2696 // copies within a linkage unit; otherwise, the backing variable has 2697 // internal linkage and all accesses should just be calls to the 2698 // Itanium-specified entry point, which has the normal linkage of the 2699 // variable. This is to preserve the ability to change the implementation 2700 // behind the scenes. 2701 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2702 Context.getTargetInfo().getTriple().isOSDarwin() && 2703 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2704 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2705 Linkage = llvm::GlobalValue::InternalLinkage; 2706 2707 GV->setLinkage(Linkage); 2708 if (D->hasAttr<DLLImportAttr>()) 2709 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2710 else if (D->hasAttr<DLLExportAttr>()) 2711 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2712 else 2713 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2714 2715 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2716 // common vars aren't constant even if declared const. 2717 GV->setConstant(false); 2718 // Tentative definition of global variables may be initialized with 2719 // non-zero null pointers. In this case they should have weak linkage 2720 // since common linkage must have zero initializer and must not have 2721 // explicit section therefore cannot have non-zero initial value. 2722 if (!GV->getInitializer()->isNullValue()) 2723 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2724 } 2725 2726 setNonAliasAttributes(D, GV); 2727 2728 if (D->getTLSKind() && !GV->isThreadLocal()) { 2729 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2730 CXXThreadLocals.push_back(D); 2731 setTLSMode(GV, *D); 2732 } 2733 2734 maybeSetTrivialComdat(*D, *GV); 2735 2736 // Emit the initializer function if necessary. 2737 if (NeedsGlobalCtor || NeedsGlobalDtor) 2738 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2739 2740 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2741 2742 // Emit global variable debug information. 2743 if (CGDebugInfo *DI = getModuleDebugInfo()) 2744 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2745 DI->EmitGlobalVariable(GV, D); 2746 } 2747 2748 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2749 CodeGenModule &CGM, const VarDecl *D, 2750 bool NoCommon) { 2751 // Don't give variables common linkage if -fno-common was specified unless it 2752 // was overridden by a NoCommon attribute. 2753 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2754 return true; 2755 2756 // C11 6.9.2/2: 2757 // A declaration of an identifier for an object that has file scope without 2758 // an initializer, and without a storage-class specifier or with the 2759 // storage-class specifier static, constitutes a tentative definition. 2760 if (D->getInit() || D->hasExternalStorage()) 2761 return true; 2762 2763 // A variable cannot be both common and exist in a section. 2764 if (D->hasAttr<SectionAttr>()) 2765 return true; 2766 2767 // Thread local vars aren't considered common linkage. 2768 if (D->getTLSKind()) 2769 return true; 2770 2771 // Tentative definitions marked with WeakImportAttr are true definitions. 2772 if (D->hasAttr<WeakImportAttr>()) 2773 return true; 2774 2775 // A variable cannot be both common and exist in a comdat. 2776 if (shouldBeInCOMDAT(CGM, *D)) 2777 return true; 2778 2779 // Declarations with a required alignment do not have common linkage in MSVC 2780 // mode. 2781 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2782 if (D->hasAttr<AlignedAttr>()) 2783 return true; 2784 QualType VarType = D->getType(); 2785 if (Context.isAlignmentRequired(VarType)) 2786 return true; 2787 2788 if (const auto *RT = VarType->getAs<RecordType>()) { 2789 const RecordDecl *RD = RT->getDecl(); 2790 for (const FieldDecl *FD : RD->fields()) { 2791 if (FD->isBitField()) 2792 continue; 2793 if (FD->hasAttr<AlignedAttr>()) 2794 return true; 2795 if (Context.isAlignmentRequired(FD->getType())) 2796 return true; 2797 } 2798 } 2799 } 2800 2801 return false; 2802 } 2803 2804 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2805 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2806 if (Linkage == GVA_Internal) 2807 return llvm::Function::InternalLinkage; 2808 2809 if (D->hasAttr<WeakAttr>()) { 2810 if (IsConstantVariable) 2811 return llvm::GlobalVariable::WeakODRLinkage; 2812 else 2813 return llvm::GlobalVariable::WeakAnyLinkage; 2814 } 2815 2816 // We are guaranteed to have a strong definition somewhere else, 2817 // so we can use available_externally linkage. 2818 if (Linkage == GVA_AvailableExternally) 2819 return llvm::GlobalValue::AvailableExternallyLinkage; 2820 2821 // Note that Apple's kernel linker doesn't support symbol 2822 // coalescing, so we need to avoid linkonce and weak linkages there. 2823 // Normally, this means we just map to internal, but for explicit 2824 // instantiations we'll map to external. 2825 2826 // In C++, the compiler has to emit a definition in every translation unit 2827 // that references the function. We should use linkonce_odr because 2828 // a) if all references in this translation unit are optimized away, we 2829 // don't need to codegen it. b) if the function persists, it needs to be 2830 // merged with other definitions. c) C++ has the ODR, so we know the 2831 // definition is dependable. 2832 if (Linkage == GVA_DiscardableODR) 2833 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2834 : llvm::Function::InternalLinkage; 2835 2836 // An explicit instantiation of a template has weak linkage, since 2837 // explicit instantiations can occur in multiple translation units 2838 // and must all be equivalent. However, we are not allowed to 2839 // throw away these explicit instantiations. 2840 // 2841 // We don't currently support CUDA device code spread out across multiple TUs, 2842 // so say that CUDA templates are either external (for kernels) or internal. 2843 // This lets llvm perform aggressive inter-procedural optimizations. 2844 if (Linkage == GVA_StrongODR) { 2845 if (Context.getLangOpts().AppleKext) 2846 return llvm::Function::ExternalLinkage; 2847 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2848 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2849 : llvm::Function::InternalLinkage; 2850 return llvm::Function::WeakODRLinkage; 2851 } 2852 2853 // C++ doesn't have tentative definitions and thus cannot have common 2854 // linkage. 2855 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2856 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2857 CodeGenOpts.NoCommon)) 2858 return llvm::GlobalVariable::CommonLinkage; 2859 2860 // selectany symbols are externally visible, so use weak instead of 2861 // linkonce. MSVC optimizes away references to const selectany globals, so 2862 // all definitions should be the same and ODR linkage should be used. 2863 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2864 if (D->hasAttr<SelectAnyAttr>()) 2865 return llvm::GlobalVariable::WeakODRLinkage; 2866 2867 // Otherwise, we have strong external linkage. 2868 assert(Linkage == GVA_StrongExternal); 2869 return llvm::GlobalVariable::ExternalLinkage; 2870 } 2871 2872 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2873 const VarDecl *VD, bool IsConstant) { 2874 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2875 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2876 } 2877 2878 /// Replace the uses of a function that was declared with a non-proto type. 2879 /// We want to silently drop extra arguments from call sites 2880 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2881 llvm::Function *newFn) { 2882 // Fast path. 2883 if (old->use_empty()) return; 2884 2885 llvm::Type *newRetTy = newFn->getReturnType(); 2886 SmallVector<llvm::Value*, 4> newArgs; 2887 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2888 2889 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2890 ui != ue; ) { 2891 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2892 llvm::User *user = use->getUser(); 2893 2894 // Recognize and replace uses of bitcasts. Most calls to 2895 // unprototyped functions will use bitcasts. 2896 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2897 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2898 replaceUsesOfNonProtoConstant(bitcast, newFn); 2899 continue; 2900 } 2901 2902 // Recognize calls to the function. 2903 llvm::CallSite callSite(user); 2904 if (!callSite) continue; 2905 if (!callSite.isCallee(&*use)) continue; 2906 2907 // If the return types don't match exactly, then we can't 2908 // transform this call unless it's dead. 2909 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2910 continue; 2911 2912 // Get the call site's attribute list. 2913 SmallVector<llvm::AttributeList, 8> newAttrs; 2914 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2915 2916 // Collect any return attributes from the call. 2917 if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex)) 2918 newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(), 2919 oldAttrs.getRetAttributes())); 2920 2921 // If the function was passed too few arguments, don't transform. 2922 unsigned newNumArgs = newFn->arg_size(); 2923 if (callSite.arg_size() < newNumArgs) continue; 2924 2925 // If extra arguments were passed, we silently drop them. 2926 // If any of the types mismatch, we don't transform. 2927 unsigned argNo = 0; 2928 bool dontTransform = false; 2929 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2930 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2931 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2932 dontTransform = true; 2933 break; 2934 } 2935 2936 // Add any parameter attributes. 2937 if (oldAttrs.hasAttributes(argNo + 1)) 2938 newAttrs.push_back(llvm::AttributeList::get( 2939 newFn->getContext(), oldAttrs.getParamAttributes(argNo + 1))); 2940 } 2941 if (dontTransform) 2942 continue; 2943 2944 if (oldAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) 2945 newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(), 2946 oldAttrs.getFnAttributes())); 2947 2948 // Okay, we can transform this. Create the new call instruction and copy 2949 // over the required information. 2950 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2951 2952 // Copy over any operand bundles. 2953 callSite.getOperandBundlesAsDefs(newBundles); 2954 2955 llvm::CallSite newCall; 2956 if (callSite.isCall()) { 2957 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2958 callSite.getInstruction()); 2959 } else { 2960 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2961 newCall = llvm::InvokeInst::Create(newFn, 2962 oldInvoke->getNormalDest(), 2963 oldInvoke->getUnwindDest(), 2964 newArgs, newBundles, "", 2965 callSite.getInstruction()); 2966 } 2967 newArgs.clear(); // for the next iteration 2968 2969 if (!newCall->getType()->isVoidTy()) 2970 newCall->takeName(callSite.getInstruction()); 2971 newCall.setAttributes( 2972 llvm::AttributeList::get(newFn->getContext(), newAttrs)); 2973 newCall.setCallingConv(callSite.getCallingConv()); 2974 2975 // Finally, remove the old call, replacing any uses with the new one. 2976 if (!callSite->use_empty()) 2977 callSite->replaceAllUsesWith(newCall.getInstruction()); 2978 2979 // Copy debug location attached to CI. 2980 if (callSite->getDebugLoc()) 2981 newCall->setDebugLoc(callSite->getDebugLoc()); 2982 2983 callSite->eraseFromParent(); 2984 } 2985 } 2986 2987 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2988 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2989 /// existing call uses of the old function in the module, this adjusts them to 2990 /// call the new function directly. 2991 /// 2992 /// This is not just a cleanup: the always_inline pass requires direct calls to 2993 /// functions to be able to inline them. If there is a bitcast in the way, it 2994 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2995 /// run at -O0. 2996 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2997 llvm::Function *NewFn) { 2998 // If we're redefining a global as a function, don't transform it. 2999 if (!isa<llvm::Function>(Old)) return; 3000 3001 replaceUsesOfNonProtoConstant(Old, NewFn); 3002 } 3003 3004 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3005 auto DK = VD->isThisDeclarationADefinition(); 3006 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3007 return; 3008 3009 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3010 // If we have a definition, this might be a deferred decl. If the 3011 // instantiation is explicit, make sure we emit it at the end. 3012 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3013 GetAddrOfGlobalVar(VD); 3014 3015 EmitTopLevelDecl(VD); 3016 } 3017 3018 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3019 llvm::GlobalValue *GV) { 3020 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3021 3022 // Compute the function info and LLVM type. 3023 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3024 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3025 3026 // Get or create the prototype for the function. 3027 if (!GV || (GV->getType()->getElementType() != Ty)) 3028 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3029 /*DontDefer=*/true, 3030 ForDefinition)); 3031 3032 // Already emitted. 3033 if (!GV->isDeclaration()) 3034 return; 3035 3036 // We need to set linkage and visibility on the function before 3037 // generating code for it because various parts of IR generation 3038 // want to propagate this information down (e.g. to local static 3039 // declarations). 3040 auto *Fn = cast<llvm::Function>(GV); 3041 setFunctionLinkage(GD, Fn); 3042 setFunctionDLLStorageClass(GD, Fn); 3043 3044 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3045 setGlobalVisibility(Fn, D); 3046 3047 MaybeHandleStaticInExternC(D, Fn); 3048 3049 maybeSetTrivialComdat(*D, *Fn); 3050 3051 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3052 3053 setFunctionDefinitionAttributes(D, Fn); 3054 SetLLVMFunctionAttributesForDefinition(D, Fn); 3055 3056 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3057 AddGlobalCtor(Fn, CA->getPriority()); 3058 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3059 AddGlobalDtor(Fn, DA->getPriority()); 3060 if (D->hasAttr<AnnotateAttr>()) 3061 AddGlobalAnnotations(D, Fn); 3062 } 3063 3064 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3065 const auto *D = cast<ValueDecl>(GD.getDecl()); 3066 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3067 assert(AA && "Not an alias?"); 3068 3069 StringRef MangledName = getMangledName(GD); 3070 3071 if (AA->getAliasee() == MangledName) { 3072 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3073 return; 3074 } 3075 3076 // If there is a definition in the module, then it wins over the alias. 3077 // This is dubious, but allow it to be safe. Just ignore the alias. 3078 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3079 if (Entry && !Entry->isDeclaration()) 3080 return; 3081 3082 Aliases.push_back(GD); 3083 3084 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3085 3086 // Create a reference to the named value. This ensures that it is emitted 3087 // if a deferred decl. 3088 llvm::Constant *Aliasee; 3089 if (isa<llvm::FunctionType>(DeclTy)) 3090 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3091 /*ForVTable=*/false); 3092 else 3093 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3094 llvm::PointerType::getUnqual(DeclTy), 3095 /*D=*/nullptr); 3096 3097 // Create the new alias itself, but don't set a name yet. 3098 auto *GA = llvm::GlobalAlias::create( 3099 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3100 3101 if (Entry) { 3102 if (GA->getAliasee() == Entry) { 3103 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3104 return; 3105 } 3106 3107 assert(Entry->isDeclaration()); 3108 3109 // If there is a declaration in the module, then we had an extern followed 3110 // by the alias, as in: 3111 // extern int test6(); 3112 // ... 3113 // int test6() __attribute__((alias("test7"))); 3114 // 3115 // Remove it and replace uses of it with the alias. 3116 GA->takeName(Entry); 3117 3118 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3119 Entry->getType())); 3120 Entry->eraseFromParent(); 3121 } else { 3122 GA->setName(MangledName); 3123 } 3124 3125 // Set attributes which are particular to an alias; this is a 3126 // specialization of the attributes which may be set on a global 3127 // variable/function. 3128 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3129 D->isWeakImported()) { 3130 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3131 } 3132 3133 if (const auto *VD = dyn_cast<VarDecl>(D)) 3134 if (VD->getTLSKind()) 3135 setTLSMode(GA, *VD); 3136 3137 setAliasAttributes(D, GA); 3138 } 3139 3140 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3141 const auto *D = cast<ValueDecl>(GD.getDecl()); 3142 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3143 assert(IFA && "Not an ifunc?"); 3144 3145 StringRef MangledName = getMangledName(GD); 3146 3147 if (IFA->getResolver() == MangledName) { 3148 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3149 return; 3150 } 3151 3152 // Report an error if some definition overrides ifunc. 3153 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3154 if (Entry && !Entry->isDeclaration()) { 3155 GlobalDecl OtherGD; 3156 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3157 DiagnosedConflictingDefinitions.insert(GD).second) { 3158 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3159 Diags.Report(OtherGD.getDecl()->getLocation(), 3160 diag::note_previous_definition); 3161 } 3162 return; 3163 } 3164 3165 Aliases.push_back(GD); 3166 3167 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3168 llvm::Constant *Resolver = 3169 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3170 /*ForVTable=*/false); 3171 llvm::GlobalIFunc *GIF = 3172 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3173 "", Resolver, &getModule()); 3174 if (Entry) { 3175 if (GIF->getResolver() == Entry) { 3176 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3177 return; 3178 } 3179 assert(Entry->isDeclaration()); 3180 3181 // If there is a declaration in the module, then we had an extern followed 3182 // by the ifunc, as in: 3183 // extern int test(); 3184 // ... 3185 // int test() __attribute__((ifunc("resolver"))); 3186 // 3187 // Remove it and replace uses of it with the ifunc. 3188 GIF->takeName(Entry); 3189 3190 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3191 Entry->getType())); 3192 Entry->eraseFromParent(); 3193 } else 3194 GIF->setName(MangledName); 3195 3196 SetCommonAttributes(D, GIF); 3197 } 3198 3199 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3200 ArrayRef<llvm::Type*> Tys) { 3201 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3202 Tys); 3203 } 3204 3205 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3206 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3207 const StringLiteral *Literal, bool TargetIsLSB, 3208 bool &IsUTF16, unsigned &StringLength) { 3209 StringRef String = Literal->getString(); 3210 unsigned NumBytes = String.size(); 3211 3212 // Check for simple case. 3213 if (!Literal->containsNonAsciiOrNull()) { 3214 StringLength = NumBytes; 3215 return *Map.insert(std::make_pair(String, nullptr)).first; 3216 } 3217 3218 // Otherwise, convert the UTF8 literals into a string of shorts. 3219 IsUTF16 = true; 3220 3221 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3222 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3223 llvm::UTF16 *ToPtr = &ToBuf[0]; 3224 3225 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3226 ToPtr + NumBytes, llvm::strictConversion); 3227 3228 // ConvertUTF8toUTF16 returns the length in ToPtr. 3229 StringLength = ToPtr - &ToBuf[0]; 3230 3231 // Add an explicit null. 3232 *ToPtr = 0; 3233 return *Map.insert(std::make_pair( 3234 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3235 (StringLength + 1) * 2), 3236 nullptr)).first; 3237 } 3238 3239 ConstantAddress 3240 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3241 unsigned StringLength = 0; 3242 bool isUTF16 = false; 3243 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3244 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3245 getDataLayout().isLittleEndian(), isUTF16, 3246 StringLength); 3247 3248 if (auto *C = Entry.second) 3249 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3250 3251 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3252 llvm::Constant *Zeros[] = { Zero, Zero }; 3253 3254 // If we don't already have it, get __CFConstantStringClassReference. 3255 if (!CFConstantStringClassRef) { 3256 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3257 Ty = llvm::ArrayType::get(Ty, 0); 3258 llvm::Constant *GV = 3259 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3260 3261 if (getTriple().isOSBinFormatCOFF()) { 3262 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3263 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3264 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3265 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3266 3267 const VarDecl *VD = nullptr; 3268 for (const auto &Result : DC->lookup(&II)) 3269 if ((VD = dyn_cast<VarDecl>(Result))) 3270 break; 3271 3272 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3273 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3274 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3275 } else { 3276 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3277 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3278 } 3279 } 3280 3281 // Decay array -> ptr 3282 CFConstantStringClassRef = 3283 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3284 } 3285 3286 QualType CFTy = getContext().getCFConstantStringType(); 3287 3288 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3289 3290 ConstantInitBuilder Builder(*this); 3291 auto Fields = Builder.beginStruct(STy); 3292 3293 // Class pointer. 3294 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3295 3296 // Flags. 3297 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3298 3299 // String pointer. 3300 llvm::Constant *C = nullptr; 3301 if (isUTF16) { 3302 auto Arr = llvm::makeArrayRef( 3303 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3304 Entry.first().size() / 2); 3305 C = llvm::ConstantDataArray::get(VMContext, Arr); 3306 } else { 3307 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3308 } 3309 3310 // Note: -fwritable-strings doesn't make the backing store strings of 3311 // CFStrings writable. (See <rdar://problem/10657500>) 3312 auto *GV = 3313 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3314 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3315 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3316 // Don't enforce the target's minimum global alignment, since the only use 3317 // of the string is via this class initializer. 3318 CharUnits Align = isUTF16 3319 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3320 : getContext().getTypeAlignInChars(getContext().CharTy); 3321 GV->setAlignment(Align.getQuantity()); 3322 3323 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3324 // Without it LLVM can merge the string with a non unnamed_addr one during 3325 // LTO. Doing that changes the section it ends in, which surprises ld64. 3326 if (getTriple().isOSBinFormatMachO()) 3327 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3328 : "__TEXT,__cstring,cstring_literals"); 3329 3330 // String. 3331 llvm::Constant *Str = 3332 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3333 3334 if (isUTF16) 3335 // Cast the UTF16 string to the correct type. 3336 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3337 Fields.add(Str); 3338 3339 // String length. 3340 auto Ty = getTypes().ConvertType(getContext().LongTy); 3341 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3342 3343 CharUnits Alignment = getPointerAlign(); 3344 3345 // The struct. 3346 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3347 /*isConstant=*/false, 3348 llvm::GlobalVariable::PrivateLinkage); 3349 switch (getTriple().getObjectFormat()) { 3350 case llvm::Triple::UnknownObjectFormat: 3351 llvm_unreachable("unknown file format"); 3352 case llvm::Triple::COFF: 3353 case llvm::Triple::ELF: 3354 case llvm::Triple::Wasm: 3355 GV->setSection("cfstring"); 3356 break; 3357 case llvm::Triple::MachO: 3358 GV->setSection("__DATA,__cfstring"); 3359 break; 3360 } 3361 Entry.second = GV; 3362 3363 return ConstantAddress(GV, Alignment); 3364 } 3365 3366 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3367 if (ObjCFastEnumerationStateType.isNull()) { 3368 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3369 D->startDefinition(); 3370 3371 QualType FieldTypes[] = { 3372 Context.UnsignedLongTy, 3373 Context.getPointerType(Context.getObjCIdType()), 3374 Context.getPointerType(Context.UnsignedLongTy), 3375 Context.getConstantArrayType(Context.UnsignedLongTy, 3376 llvm::APInt(32, 5), ArrayType::Normal, 0) 3377 }; 3378 3379 for (size_t i = 0; i < 4; ++i) { 3380 FieldDecl *Field = FieldDecl::Create(Context, 3381 D, 3382 SourceLocation(), 3383 SourceLocation(), nullptr, 3384 FieldTypes[i], /*TInfo=*/nullptr, 3385 /*BitWidth=*/nullptr, 3386 /*Mutable=*/false, 3387 ICIS_NoInit); 3388 Field->setAccess(AS_public); 3389 D->addDecl(Field); 3390 } 3391 3392 D->completeDefinition(); 3393 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3394 } 3395 3396 return ObjCFastEnumerationStateType; 3397 } 3398 3399 llvm::Constant * 3400 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3401 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3402 3403 // Don't emit it as the address of the string, emit the string data itself 3404 // as an inline array. 3405 if (E->getCharByteWidth() == 1) { 3406 SmallString<64> Str(E->getString()); 3407 3408 // Resize the string to the right size, which is indicated by its type. 3409 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3410 Str.resize(CAT->getSize().getZExtValue()); 3411 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3412 } 3413 3414 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3415 llvm::Type *ElemTy = AType->getElementType(); 3416 unsigned NumElements = AType->getNumElements(); 3417 3418 // Wide strings have either 2-byte or 4-byte elements. 3419 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3420 SmallVector<uint16_t, 32> Elements; 3421 Elements.reserve(NumElements); 3422 3423 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3424 Elements.push_back(E->getCodeUnit(i)); 3425 Elements.resize(NumElements); 3426 return llvm::ConstantDataArray::get(VMContext, Elements); 3427 } 3428 3429 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3430 SmallVector<uint32_t, 32> Elements; 3431 Elements.reserve(NumElements); 3432 3433 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3434 Elements.push_back(E->getCodeUnit(i)); 3435 Elements.resize(NumElements); 3436 return llvm::ConstantDataArray::get(VMContext, Elements); 3437 } 3438 3439 static llvm::GlobalVariable * 3440 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3441 CodeGenModule &CGM, StringRef GlobalName, 3442 CharUnits Alignment) { 3443 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3444 unsigned AddrSpace = 0; 3445 if (CGM.getLangOpts().OpenCL) 3446 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3447 3448 llvm::Module &M = CGM.getModule(); 3449 // Create a global variable for this string 3450 auto *GV = new llvm::GlobalVariable( 3451 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3452 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3453 GV->setAlignment(Alignment.getQuantity()); 3454 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3455 if (GV->isWeakForLinker()) { 3456 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3457 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3458 } 3459 3460 return GV; 3461 } 3462 3463 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3464 /// constant array for the given string literal. 3465 ConstantAddress 3466 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3467 StringRef Name) { 3468 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3469 3470 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3471 llvm::GlobalVariable **Entry = nullptr; 3472 if (!LangOpts.WritableStrings) { 3473 Entry = &ConstantStringMap[C]; 3474 if (auto GV = *Entry) { 3475 if (Alignment.getQuantity() > GV->getAlignment()) 3476 GV->setAlignment(Alignment.getQuantity()); 3477 return ConstantAddress(GV, Alignment); 3478 } 3479 } 3480 3481 SmallString<256> MangledNameBuffer; 3482 StringRef GlobalVariableName; 3483 llvm::GlobalValue::LinkageTypes LT; 3484 3485 // Mangle the string literal if the ABI allows for it. However, we cannot 3486 // do this if we are compiling with ASan or -fwritable-strings because they 3487 // rely on strings having normal linkage. 3488 if (!LangOpts.WritableStrings && 3489 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3490 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3491 llvm::raw_svector_ostream Out(MangledNameBuffer); 3492 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3493 3494 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3495 GlobalVariableName = MangledNameBuffer; 3496 } else { 3497 LT = llvm::GlobalValue::PrivateLinkage; 3498 GlobalVariableName = Name; 3499 } 3500 3501 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3502 if (Entry) 3503 *Entry = GV; 3504 3505 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3506 QualType()); 3507 return ConstantAddress(GV, Alignment); 3508 } 3509 3510 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3511 /// array for the given ObjCEncodeExpr node. 3512 ConstantAddress 3513 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3514 std::string Str; 3515 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3516 3517 return GetAddrOfConstantCString(Str); 3518 } 3519 3520 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3521 /// the literal and a terminating '\0' character. 3522 /// The result has pointer to array type. 3523 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3524 const std::string &Str, const char *GlobalName) { 3525 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3526 CharUnits Alignment = 3527 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3528 3529 llvm::Constant *C = 3530 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3531 3532 // Don't share any string literals if strings aren't constant. 3533 llvm::GlobalVariable **Entry = nullptr; 3534 if (!LangOpts.WritableStrings) { 3535 Entry = &ConstantStringMap[C]; 3536 if (auto GV = *Entry) { 3537 if (Alignment.getQuantity() > GV->getAlignment()) 3538 GV->setAlignment(Alignment.getQuantity()); 3539 return ConstantAddress(GV, Alignment); 3540 } 3541 } 3542 3543 // Get the default prefix if a name wasn't specified. 3544 if (!GlobalName) 3545 GlobalName = ".str"; 3546 // Create a global variable for this. 3547 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3548 GlobalName, Alignment); 3549 if (Entry) 3550 *Entry = GV; 3551 return ConstantAddress(GV, Alignment); 3552 } 3553 3554 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3555 const MaterializeTemporaryExpr *E, const Expr *Init) { 3556 assert((E->getStorageDuration() == SD_Static || 3557 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3558 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3559 3560 // If we're not materializing a subobject of the temporary, keep the 3561 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3562 QualType MaterializedType = Init->getType(); 3563 if (Init == E->GetTemporaryExpr()) 3564 MaterializedType = E->getType(); 3565 3566 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3567 3568 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3569 return ConstantAddress(Slot, Align); 3570 3571 // FIXME: If an externally-visible declaration extends multiple temporaries, 3572 // we need to give each temporary the same name in every translation unit (and 3573 // we also need to make the temporaries externally-visible). 3574 SmallString<256> Name; 3575 llvm::raw_svector_ostream Out(Name); 3576 getCXXABI().getMangleContext().mangleReferenceTemporary( 3577 VD, E->getManglingNumber(), Out); 3578 3579 APValue *Value = nullptr; 3580 if (E->getStorageDuration() == SD_Static) { 3581 // We might have a cached constant initializer for this temporary. Note 3582 // that this might have a different value from the value computed by 3583 // evaluating the initializer if the surrounding constant expression 3584 // modifies the temporary. 3585 Value = getContext().getMaterializedTemporaryValue(E, false); 3586 if (Value && Value->isUninit()) 3587 Value = nullptr; 3588 } 3589 3590 // Try evaluating it now, it might have a constant initializer. 3591 Expr::EvalResult EvalResult; 3592 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3593 !EvalResult.hasSideEffects()) 3594 Value = &EvalResult.Val; 3595 3596 llvm::Constant *InitialValue = nullptr; 3597 bool Constant = false; 3598 llvm::Type *Type; 3599 if (Value) { 3600 // The temporary has a constant initializer, use it. 3601 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3602 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3603 Type = InitialValue->getType(); 3604 } else { 3605 // No initializer, the initialization will be provided when we 3606 // initialize the declaration which performed lifetime extension. 3607 Type = getTypes().ConvertTypeForMem(MaterializedType); 3608 } 3609 3610 // Create a global variable for this lifetime-extended temporary. 3611 llvm::GlobalValue::LinkageTypes Linkage = 3612 getLLVMLinkageVarDefinition(VD, Constant); 3613 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3614 const VarDecl *InitVD; 3615 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3616 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3617 // Temporaries defined inside a class get linkonce_odr linkage because the 3618 // class can be defined in multipe translation units. 3619 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3620 } else { 3621 // There is no need for this temporary to have external linkage if the 3622 // VarDecl has external linkage. 3623 Linkage = llvm::GlobalVariable::InternalLinkage; 3624 } 3625 } 3626 unsigned AddrSpace = GetGlobalVarAddressSpace( 3627 VD, getContext().getTargetAddressSpace(MaterializedType)); 3628 auto *GV = new llvm::GlobalVariable( 3629 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3630 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3631 AddrSpace); 3632 setGlobalVisibility(GV, VD); 3633 GV->setAlignment(Align.getQuantity()); 3634 if (supportsCOMDAT() && GV->isWeakForLinker()) 3635 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3636 if (VD->getTLSKind()) 3637 setTLSMode(GV, *VD); 3638 MaterializedGlobalTemporaryMap[E] = GV; 3639 return ConstantAddress(GV, Align); 3640 } 3641 3642 /// EmitObjCPropertyImplementations - Emit information for synthesized 3643 /// properties for an implementation. 3644 void CodeGenModule::EmitObjCPropertyImplementations(const 3645 ObjCImplementationDecl *D) { 3646 for (const auto *PID : D->property_impls()) { 3647 // Dynamic is just for type-checking. 3648 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3649 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3650 3651 // Determine which methods need to be implemented, some may have 3652 // been overridden. Note that ::isPropertyAccessor is not the method 3653 // we want, that just indicates if the decl came from a 3654 // property. What we want to know is if the method is defined in 3655 // this implementation. 3656 if (!D->getInstanceMethod(PD->getGetterName())) 3657 CodeGenFunction(*this).GenerateObjCGetter( 3658 const_cast<ObjCImplementationDecl *>(D), PID); 3659 if (!PD->isReadOnly() && 3660 !D->getInstanceMethod(PD->getSetterName())) 3661 CodeGenFunction(*this).GenerateObjCSetter( 3662 const_cast<ObjCImplementationDecl *>(D), PID); 3663 } 3664 } 3665 } 3666 3667 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3668 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3669 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3670 ivar; ivar = ivar->getNextIvar()) 3671 if (ivar->getType().isDestructedType()) 3672 return true; 3673 3674 return false; 3675 } 3676 3677 static bool AllTrivialInitializers(CodeGenModule &CGM, 3678 ObjCImplementationDecl *D) { 3679 CodeGenFunction CGF(CGM); 3680 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3681 E = D->init_end(); B != E; ++B) { 3682 CXXCtorInitializer *CtorInitExp = *B; 3683 Expr *Init = CtorInitExp->getInit(); 3684 if (!CGF.isTrivialInitializer(Init)) 3685 return false; 3686 } 3687 return true; 3688 } 3689 3690 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3691 /// for an implementation. 3692 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3693 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3694 if (needsDestructMethod(D)) { 3695 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3696 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3697 ObjCMethodDecl *DTORMethod = 3698 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3699 cxxSelector, getContext().VoidTy, nullptr, D, 3700 /*isInstance=*/true, /*isVariadic=*/false, 3701 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3702 /*isDefined=*/false, ObjCMethodDecl::Required); 3703 D->addInstanceMethod(DTORMethod); 3704 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3705 D->setHasDestructors(true); 3706 } 3707 3708 // If the implementation doesn't have any ivar initializers, we don't need 3709 // a .cxx_construct. 3710 if (D->getNumIvarInitializers() == 0 || 3711 AllTrivialInitializers(*this, D)) 3712 return; 3713 3714 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3715 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3716 // The constructor returns 'self'. 3717 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3718 D->getLocation(), 3719 D->getLocation(), 3720 cxxSelector, 3721 getContext().getObjCIdType(), 3722 nullptr, D, /*isInstance=*/true, 3723 /*isVariadic=*/false, 3724 /*isPropertyAccessor=*/true, 3725 /*isImplicitlyDeclared=*/true, 3726 /*isDefined=*/false, 3727 ObjCMethodDecl::Required); 3728 D->addInstanceMethod(CTORMethod); 3729 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3730 D->setHasNonZeroConstructors(true); 3731 } 3732 3733 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3734 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3735 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3736 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3737 ErrorUnsupported(LSD, "linkage spec"); 3738 return; 3739 } 3740 3741 EmitDeclContext(LSD); 3742 } 3743 3744 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3745 for (auto *I : DC->decls()) { 3746 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3747 // are themselves considered "top-level", so EmitTopLevelDecl on an 3748 // ObjCImplDecl does not recursively visit them. We need to do that in 3749 // case they're nested inside another construct (LinkageSpecDecl / 3750 // ExportDecl) that does stop them from being considered "top-level". 3751 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3752 for (auto *M : OID->methods()) 3753 EmitTopLevelDecl(M); 3754 } 3755 3756 EmitTopLevelDecl(I); 3757 } 3758 } 3759 3760 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3761 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3762 // Ignore dependent declarations. 3763 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3764 return; 3765 3766 switch (D->getKind()) { 3767 case Decl::CXXConversion: 3768 case Decl::CXXMethod: 3769 case Decl::Function: 3770 // Skip function templates 3771 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3772 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3773 return; 3774 3775 EmitGlobal(cast<FunctionDecl>(D)); 3776 // Always provide some coverage mapping 3777 // even for the functions that aren't emitted. 3778 AddDeferredUnusedCoverageMapping(D); 3779 break; 3780 3781 case Decl::Var: 3782 case Decl::Decomposition: 3783 // Skip variable templates 3784 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3785 return; 3786 case Decl::VarTemplateSpecialization: 3787 EmitGlobal(cast<VarDecl>(D)); 3788 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3789 for (auto *B : DD->bindings()) 3790 if (auto *HD = B->getHoldingVar()) 3791 EmitGlobal(HD); 3792 break; 3793 3794 // Indirect fields from global anonymous structs and unions can be 3795 // ignored; only the actual variable requires IR gen support. 3796 case Decl::IndirectField: 3797 break; 3798 3799 // C++ Decls 3800 case Decl::Namespace: 3801 EmitDeclContext(cast<NamespaceDecl>(D)); 3802 break; 3803 case Decl::CXXRecord: 3804 // Emit any static data members, they may be definitions. 3805 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3806 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3807 EmitTopLevelDecl(I); 3808 break; 3809 // No code generation needed. 3810 case Decl::UsingShadow: 3811 case Decl::ClassTemplate: 3812 case Decl::VarTemplate: 3813 case Decl::VarTemplatePartialSpecialization: 3814 case Decl::FunctionTemplate: 3815 case Decl::TypeAliasTemplate: 3816 case Decl::Block: 3817 case Decl::Empty: 3818 break; 3819 case Decl::Using: // using X; [C++] 3820 if (CGDebugInfo *DI = getModuleDebugInfo()) 3821 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3822 return; 3823 case Decl::NamespaceAlias: 3824 if (CGDebugInfo *DI = getModuleDebugInfo()) 3825 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3826 return; 3827 case Decl::UsingDirective: // using namespace X; [C++] 3828 if (CGDebugInfo *DI = getModuleDebugInfo()) 3829 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3830 return; 3831 case Decl::CXXConstructor: 3832 // Skip function templates 3833 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3834 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3835 return; 3836 3837 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3838 break; 3839 case Decl::CXXDestructor: 3840 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3841 return; 3842 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3843 break; 3844 3845 case Decl::StaticAssert: 3846 // Nothing to do. 3847 break; 3848 3849 // Objective-C Decls 3850 3851 // Forward declarations, no (immediate) code generation. 3852 case Decl::ObjCInterface: 3853 case Decl::ObjCCategory: 3854 break; 3855 3856 case Decl::ObjCProtocol: { 3857 auto *Proto = cast<ObjCProtocolDecl>(D); 3858 if (Proto->isThisDeclarationADefinition()) 3859 ObjCRuntime->GenerateProtocol(Proto); 3860 break; 3861 } 3862 3863 case Decl::ObjCCategoryImpl: 3864 // Categories have properties but don't support synthesize so we 3865 // can ignore them here. 3866 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3867 break; 3868 3869 case Decl::ObjCImplementation: { 3870 auto *OMD = cast<ObjCImplementationDecl>(D); 3871 EmitObjCPropertyImplementations(OMD); 3872 EmitObjCIvarInitializations(OMD); 3873 ObjCRuntime->GenerateClass(OMD); 3874 // Emit global variable debug information. 3875 if (CGDebugInfo *DI = getModuleDebugInfo()) 3876 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3877 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3878 OMD->getClassInterface()), OMD->getLocation()); 3879 break; 3880 } 3881 case Decl::ObjCMethod: { 3882 auto *OMD = cast<ObjCMethodDecl>(D); 3883 // If this is not a prototype, emit the body. 3884 if (OMD->getBody()) 3885 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3886 break; 3887 } 3888 case Decl::ObjCCompatibleAlias: 3889 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3890 break; 3891 3892 case Decl::PragmaComment: { 3893 const auto *PCD = cast<PragmaCommentDecl>(D); 3894 switch (PCD->getCommentKind()) { 3895 case PCK_Unknown: 3896 llvm_unreachable("unexpected pragma comment kind"); 3897 case PCK_Linker: 3898 AppendLinkerOptions(PCD->getArg()); 3899 break; 3900 case PCK_Lib: 3901 AddDependentLib(PCD->getArg()); 3902 break; 3903 case PCK_Compiler: 3904 case PCK_ExeStr: 3905 case PCK_User: 3906 break; // We ignore all of these. 3907 } 3908 break; 3909 } 3910 3911 case Decl::PragmaDetectMismatch: { 3912 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3913 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3914 break; 3915 } 3916 3917 case Decl::LinkageSpec: 3918 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3919 break; 3920 3921 case Decl::FileScopeAsm: { 3922 // File-scope asm is ignored during device-side CUDA compilation. 3923 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3924 break; 3925 // File-scope asm is ignored during device-side OpenMP compilation. 3926 if (LangOpts.OpenMPIsDevice) 3927 break; 3928 auto *AD = cast<FileScopeAsmDecl>(D); 3929 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3930 break; 3931 } 3932 3933 case Decl::Import: { 3934 auto *Import = cast<ImportDecl>(D); 3935 3936 // If we've already imported this module, we're done. 3937 if (!ImportedModules.insert(Import->getImportedModule())) 3938 break; 3939 3940 // Emit debug information for direct imports. 3941 if (!Import->getImportedOwningModule()) { 3942 if (CGDebugInfo *DI = getModuleDebugInfo()) 3943 DI->EmitImportDecl(*Import); 3944 } 3945 3946 // Find all of the submodules and emit the module initializers. 3947 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3948 SmallVector<clang::Module *, 16> Stack; 3949 Visited.insert(Import->getImportedModule()); 3950 Stack.push_back(Import->getImportedModule()); 3951 3952 while (!Stack.empty()) { 3953 clang::Module *Mod = Stack.pop_back_val(); 3954 if (!EmittedModuleInitializers.insert(Mod).second) 3955 continue; 3956 3957 for (auto *D : Context.getModuleInitializers(Mod)) 3958 EmitTopLevelDecl(D); 3959 3960 // Visit the submodules of this module. 3961 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3962 SubEnd = Mod->submodule_end(); 3963 Sub != SubEnd; ++Sub) { 3964 // Skip explicit children; they need to be explicitly imported to emit 3965 // the initializers. 3966 if ((*Sub)->IsExplicit) 3967 continue; 3968 3969 if (Visited.insert(*Sub).second) 3970 Stack.push_back(*Sub); 3971 } 3972 } 3973 break; 3974 } 3975 3976 case Decl::Export: 3977 EmitDeclContext(cast<ExportDecl>(D)); 3978 break; 3979 3980 case Decl::OMPThreadPrivate: 3981 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3982 break; 3983 3984 case Decl::ClassTemplateSpecialization: { 3985 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3986 if (DebugInfo && 3987 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3988 Spec->hasDefinition()) 3989 DebugInfo->completeTemplateDefinition(*Spec); 3990 break; 3991 } 3992 3993 case Decl::OMPDeclareReduction: 3994 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3995 break; 3996 3997 default: 3998 // Make sure we handled everything we should, every other kind is a 3999 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4000 // function. Need to recode Decl::Kind to do that easily. 4001 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4002 break; 4003 } 4004 } 4005 4006 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4007 // Do we need to generate coverage mapping? 4008 if (!CodeGenOpts.CoverageMapping) 4009 return; 4010 switch (D->getKind()) { 4011 case Decl::CXXConversion: 4012 case Decl::CXXMethod: 4013 case Decl::Function: 4014 case Decl::ObjCMethod: 4015 case Decl::CXXConstructor: 4016 case Decl::CXXDestructor: { 4017 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4018 return; 4019 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4020 if (I == DeferredEmptyCoverageMappingDecls.end()) 4021 DeferredEmptyCoverageMappingDecls[D] = true; 4022 break; 4023 } 4024 default: 4025 break; 4026 }; 4027 } 4028 4029 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4030 // Do we need to generate coverage mapping? 4031 if (!CodeGenOpts.CoverageMapping) 4032 return; 4033 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4034 if (Fn->isTemplateInstantiation()) 4035 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4036 } 4037 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4038 if (I == DeferredEmptyCoverageMappingDecls.end()) 4039 DeferredEmptyCoverageMappingDecls[D] = false; 4040 else 4041 I->second = false; 4042 } 4043 4044 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4045 std::vector<const Decl *> DeferredDecls; 4046 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4047 if (!I.second) 4048 continue; 4049 DeferredDecls.push_back(I.first); 4050 } 4051 // Sort the declarations by their location to make sure that the tests get a 4052 // predictable order for the coverage mapping for the unused declarations. 4053 if (CodeGenOpts.DumpCoverageMapping) 4054 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4055 [] (const Decl *LHS, const Decl *RHS) { 4056 return LHS->getLocStart() < RHS->getLocStart(); 4057 }); 4058 for (const auto *D : DeferredDecls) { 4059 switch (D->getKind()) { 4060 case Decl::CXXConversion: 4061 case Decl::CXXMethod: 4062 case Decl::Function: 4063 case Decl::ObjCMethod: { 4064 CodeGenPGO PGO(*this); 4065 GlobalDecl GD(cast<FunctionDecl>(D)); 4066 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4067 getFunctionLinkage(GD)); 4068 break; 4069 } 4070 case Decl::CXXConstructor: { 4071 CodeGenPGO PGO(*this); 4072 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4073 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4074 getFunctionLinkage(GD)); 4075 break; 4076 } 4077 case Decl::CXXDestructor: { 4078 CodeGenPGO PGO(*this); 4079 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4080 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4081 getFunctionLinkage(GD)); 4082 break; 4083 } 4084 default: 4085 break; 4086 }; 4087 } 4088 } 4089 4090 /// Turns the given pointer into a constant. 4091 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4092 const void *Ptr) { 4093 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4094 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4095 return llvm::ConstantInt::get(i64, PtrInt); 4096 } 4097 4098 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4099 llvm::NamedMDNode *&GlobalMetadata, 4100 GlobalDecl D, 4101 llvm::GlobalValue *Addr) { 4102 if (!GlobalMetadata) 4103 GlobalMetadata = 4104 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4105 4106 // TODO: should we report variant information for ctors/dtors? 4107 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4108 llvm::ConstantAsMetadata::get(GetPointerConstant( 4109 CGM.getLLVMContext(), D.getDecl()))}; 4110 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4111 } 4112 4113 /// For each function which is declared within an extern "C" region and marked 4114 /// as 'used', but has internal linkage, create an alias from the unmangled 4115 /// name to the mangled name if possible. People expect to be able to refer 4116 /// to such functions with an unmangled name from inline assembly within the 4117 /// same translation unit. 4118 void CodeGenModule::EmitStaticExternCAliases() { 4119 // Don't do anything if we're generating CUDA device code -- the NVPTX 4120 // assembly target doesn't support aliases. 4121 if (Context.getTargetInfo().getTriple().isNVPTX()) 4122 return; 4123 for (auto &I : StaticExternCValues) { 4124 IdentifierInfo *Name = I.first; 4125 llvm::GlobalValue *Val = I.second; 4126 if (Val && !getModule().getNamedValue(Name->getName())) 4127 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4128 } 4129 } 4130 4131 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4132 GlobalDecl &Result) const { 4133 auto Res = Manglings.find(MangledName); 4134 if (Res == Manglings.end()) 4135 return false; 4136 Result = Res->getValue(); 4137 return true; 4138 } 4139 4140 /// Emits metadata nodes associating all the global values in the 4141 /// current module with the Decls they came from. This is useful for 4142 /// projects using IR gen as a subroutine. 4143 /// 4144 /// Since there's currently no way to associate an MDNode directly 4145 /// with an llvm::GlobalValue, we create a global named metadata 4146 /// with the name 'clang.global.decl.ptrs'. 4147 void CodeGenModule::EmitDeclMetadata() { 4148 llvm::NamedMDNode *GlobalMetadata = nullptr; 4149 4150 for (auto &I : MangledDeclNames) { 4151 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4152 // Some mangled names don't necessarily have an associated GlobalValue 4153 // in this module, e.g. if we mangled it for DebugInfo. 4154 if (Addr) 4155 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4156 } 4157 } 4158 4159 /// Emits metadata nodes for all the local variables in the current 4160 /// function. 4161 void CodeGenFunction::EmitDeclMetadata() { 4162 if (LocalDeclMap.empty()) return; 4163 4164 llvm::LLVMContext &Context = getLLVMContext(); 4165 4166 // Find the unique metadata ID for this name. 4167 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4168 4169 llvm::NamedMDNode *GlobalMetadata = nullptr; 4170 4171 for (auto &I : LocalDeclMap) { 4172 const Decl *D = I.first; 4173 llvm::Value *Addr = I.second.getPointer(); 4174 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4175 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4176 Alloca->setMetadata( 4177 DeclPtrKind, llvm::MDNode::get( 4178 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4179 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4180 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4181 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4182 } 4183 } 4184 } 4185 4186 void CodeGenModule::EmitVersionIdentMetadata() { 4187 llvm::NamedMDNode *IdentMetadata = 4188 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4189 std::string Version = getClangFullVersion(); 4190 llvm::LLVMContext &Ctx = TheModule.getContext(); 4191 4192 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4193 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4194 } 4195 4196 void CodeGenModule::EmitTargetMetadata() { 4197 // Warning, new MangledDeclNames may be appended within this loop. 4198 // We rely on MapVector insertions adding new elements to the end 4199 // of the container. 4200 // FIXME: Move this loop into the one target that needs it, and only 4201 // loop over those declarations for which we couldn't emit the target 4202 // metadata when we emitted the declaration. 4203 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4204 auto Val = *(MangledDeclNames.begin() + I); 4205 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4206 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4207 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4208 } 4209 } 4210 4211 void CodeGenModule::EmitCoverageFile() { 4212 if (getCodeGenOpts().CoverageDataFile.empty() && 4213 getCodeGenOpts().CoverageNotesFile.empty()) 4214 return; 4215 4216 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4217 if (!CUNode) 4218 return; 4219 4220 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4221 llvm::LLVMContext &Ctx = TheModule.getContext(); 4222 auto *CoverageDataFile = 4223 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4224 auto *CoverageNotesFile = 4225 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4226 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4227 llvm::MDNode *CU = CUNode->getOperand(i); 4228 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4229 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4230 } 4231 } 4232 4233 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4234 // Sema has checked that all uuid strings are of the form 4235 // "12345678-1234-1234-1234-1234567890ab". 4236 assert(Uuid.size() == 36); 4237 for (unsigned i = 0; i < 36; ++i) { 4238 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4239 else assert(isHexDigit(Uuid[i])); 4240 } 4241 4242 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4243 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4244 4245 llvm::Constant *Field3[8]; 4246 for (unsigned Idx = 0; Idx < 8; ++Idx) 4247 Field3[Idx] = llvm::ConstantInt::get( 4248 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4249 4250 llvm::Constant *Fields[4] = { 4251 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4252 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4253 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4254 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4255 }; 4256 4257 return llvm::ConstantStruct::getAnon(Fields); 4258 } 4259 4260 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4261 bool ForEH) { 4262 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4263 // FIXME: should we even be calling this method if RTTI is disabled 4264 // and it's not for EH? 4265 if (!ForEH && !getLangOpts().RTTI) 4266 return llvm::Constant::getNullValue(Int8PtrTy); 4267 4268 if (ForEH && Ty->isObjCObjectPointerType() && 4269 LangOpts.ObjCRuntime.isGNUFamily()) 4270 return ObjCRuntime->GetEHType(Ty); 4271 4272 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4273 } 4274 4275 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4276 for (auto RefExpr : D->varlists()) { 4277 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4278 bool PerformInit = 4279 VD->getAnyInitializer() && 4280 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4281 /*ForRef=*/false); 4282 4283 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4284 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4285 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4286 CXXGlobalInits.push_back(InitFunction); 4287 } 4288 } 4289 4290 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4291 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4292 if (InternalId) 4293 return InternalId; 4294 4295 if (isExternallyVisible(T->getLinkage())) { 4296 std::string OutName; 4297 llvm::raw_string_ostream Out(OutName); 4298 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4299 4300 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4301 } else { 4302 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4303 llvm::ArrayRef<llvm::Metadata *>()); 4304 } 4305 4306 return InternalId; 4307 } 4308 4309 /// Returns whether this module needs the "all-vtables" type identifier. 4310 bool CodeGenModule::NeedAllVtablesTypeId() const { 4311 // Returns true if at least one of vtable-based CFI checkers is enabled and 4312 // is not in the trapping mode. 4313 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4314 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4315 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4316 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4317 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4318 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4319 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4320 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4321 } 4322 4323 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4324 CharUnits Offset, 4325 const CXXRecordDecl *RD) { 4326 llvm::Metadata *MD = 4327 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4328 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4329 4330 if (CodeGenOpts.SanitizeCfiCrossDso) 4331 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4332 VTable->addTypeMetadata(Offset.getQuantity(), 4333 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4334 4335 if (NeedAllVtablesTypeId()) { 4336 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4337 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4338 } 4339 } 4340 4341 // Fills in the supplied string map with the set of target features for the 4342 // passed in function. 4343 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4344 const FunctionDecl *FD) { 4345 StringRef TargetCPU = Target.getTargetOpts().CPU; 4346 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4347 // If we have a TargetAttr build up the feature map based on that. 4348 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4349 4350 // Make a copy of the features as passed on the command line into the 4351 // beginning of the additional features from the function to override. 4352 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4353 Target.getTargetOpts().FeaturesAsWritten.begin(), 4354 Target.getTargetOpts().FeaturesAsWritten.end()); 4355 4356 if (ParsedAttr.second != "") 4357 TargetCPU = ParsedAttr.second; 4358 4359 // Now populate the feature map, first with the TargetCPU which is either 4360 // the default or a new one from the target attribute string. Then we'll use 4361 // the passed in features (FeaturesAsWritten) along with the new ones from 4362 // the attribute. 4363 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4364 } else { 4365 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4366 Target.getTargetOpts().Features); 4367 } 4368 } 4369 4370 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4371 if (!SanStats) 4372 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4373 4374 return *SanStats; 4375 } 4376 llvm::Value * 4377 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4378 CodeGenFunction &CGF) { 4379 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4380 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4381 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4382 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4383 "__translate_sampler_initializer"), 4384 {C}); 4385 } 4386