1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 EmitCXXThreadLocalInitFunc(); 401 if (ObjCRuntime) 402 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 403 AddGlobalCtor(ObjCInitFunction); 404 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 405 CUDARuntime) { 406 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 407 AddGlobalCtor(CudaCtorFunction); 408 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 409 AddGlobalDtor(CudaDtorFunction); 410 } 411 if (OpenMPRuntime) 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 if (PGOReader) { 419 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 420 if (PGOStats.hasDiagnostics()) 421 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 422 } 423 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 424 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 425 EmitGlobalAnnotations(); 426 EmitStaticExternCAliases(); 427 EmitDeferredUnusedCoverageMappings(); 428 if (CoverageMapping) 429 CoverageMapping->emit(); 430 if (CodeGenOpts.SanitizeCfiCrossDso) { 431 CodeGenFunction(*this).EmitCfiCheckFail(); 432 CodeGenFunction(*this).EmitCfiCheckStub(); 433 } 434 emitAtAvailableLinkGuard(); 435 emitLLVMUsed(); 436 if (SanStats) 437 SanStats->finish(); 438 439 if (CodeGenOpts.Autolink && 440 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 441 EmitModuleLinkOptions(); 442 } 443 444 // Record mregparm value now so it is visible through rest of codegen. 445 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 446 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 447 CodeGenOpts.NumRegisterParameters); 448 449 if (CodeGenOpts.DwarfVersion) { 450 // We actually want the latest version when there are conflicts. 451 // We can change from Warning to Latest if such mode is supported. 452 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 453 CodeGenOpts.DwarfVersion); 454 } 455 if (CodeGenOpts.EmitCodeView) { 456 // Indicate that we want CodeView in the metadata. 457 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 458 } 459 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 460 // We don't support LTO with 2 with different StrictVTablePointers 461 // FIXME: we could support it by stripping all the information introduced 462 // by StrictVTablePointers. 463 464 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 465 466 llvm::Metadata *Ops[2] = { 467 llvm::MDString::get(VMContext, "StrictVTablePointers"), 468 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 469 llvm::Type::getInt32Ty(VMContext), 1))}; 470 471 getModule().addModuleFlag(llvm::Module::Require, 472 "StrictVTablePointersRequirement", 473 llvm::MDNode::get(VMContext, Ops)); 474 } 475 if (DebugInfo) 476 // We support a single version in the linked module. The LLVM 477 // parser will drop debug info with a different version number 478 // (and warn about it, too). 479 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 480 llvm::DEBUG_METADATA_VERSION); 481 482 // We need to record the widths of enums and wchar_t, so that we can generate 483 // the correct build attributes in the ARM backend. wchar_size is also used by 484 // TargetLibraryInfo. 485 uint64_t WCharWidth = 486 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 487 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 488 489 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 490 if ( Arch == llvm::Triple::arm 491 || Arch == llvm::Triple::armeb 492 || Arch == llvm::Triple::thumb 493 || Arch == llvm::Triple::thumbeb) { 494 // The minimum width of an enum in bytes 495 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 496 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 497 } 498 499 if (CodeGenOpts.SanitizeCfiCrossDso) { 500 // Indicate that we want cross-DSO control flow integrity checks. 501 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 502 } 503 504 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 505 // Indicate whether __nvvm_reflect should be configured to flush denormal 506 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 507 // property.) 508 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 509 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 510 } 511 512 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 513 if (LangOpts.OpenCL) { 514 EmitOpenCLMetadata(); 515 // Emit SPIR version. 516 if (getTriple().getArch() == llvm::Triple::spir || 517 getTriple().getArch() == llvm::Triple::spir64) { 518 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 519 // opencl.spir.version named metadata. 520 llvm::Metadata *SPIRVerElts[] = { 521 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 522 Int32Ty, LangOpts.OpenCLVersion / 100)), 523 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 524 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 525 llvm::NamedMDNode *SPIRVerMD = 526 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 527 llvm::LLVMContext &Ctx = TheModule.getContext(); 528 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 529 } 530 } 531 532 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 533 assert(PLevel < 3 && "Invalid PIC Level"); 534 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 535 if (Context.getLangOpts().PIE) 536 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 537 } 538 539 SimplifyPersonality(); 540 541 if (getCodeGenOpts().EmitDeclMetadata) 542 EmitDeclMetadata(); 543 544 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 545 EmitCoverageFile(); 546 547 if (DebugInfo) 548 DebugInfo->finalize(); 549 550 EmitVersionIdentMetadata(); 551 552 EmitTargetMetadata(); 553 } 554 555 void CodeGenModule::EmitOpenCLMetadata() { 556 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 557 // opencl.ocl.version named metadata node. 558 llvm::Metadata *OCLVerElts[] = { 559 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 560 Int32Ty, LangOpts.OpenCLVersion / 100)), 561 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 562 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 563 llvm::NamedMDNode *OCLVerMD = 564 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 565 llvm::LLVMContext &Ctx = TheModule.getContext(); 566 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 567 } 568 569 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 570 // Make sure that this type is translated. 571 Types.UpdateCompletedType(TD); 572 } 573 574 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 575 // Make sure that this type is translated. 576 Types.RefreshTypeCacheForClass(RD); 577 } 578 579 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 580 if (!TBAA) 581 return nullptr; 582 return TBAA->getTypeInfo(QTy); 583 } 584 585 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 586 // Pointee values may have incomplete types, but they shall never be 587 // dereferenced. 588 if (AccessType->isIncompleteType()) 589 return TBAAAccessInfo::getIncompleteInfo(); 590 591 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 592 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 593 } 594 595 TBAAAccessInfo 596 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 597 if (!TBAA) 598 return TBAAAccessInfo(); 599 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 600 } 601 602 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 603 if (!TBAA) 604 return nullptr; 605 return TBAA->getTBAAStructInfo(QTy); 606 } 607 608 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 609 if (!TBAA) 610 return nullptr; 611 return TBAA->getBaseTypeInfo(QTy); 612 } 613 614 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 615 if (!TBAA) 616 return nullptr; 617 return TBAA->getAccessTagInfo(Info); 618 } 619 620 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 621 TBAAAccessInfo TargetInfo) { 622 if (!TBAA) 623 return TBAAAccessInfo(); 624 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 625 } 626 627 TBAAAccessInfo 628 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 629 TBAAAccessInfo InfoB) { 630 if (!TBAA) 631 return TBAAAccessInfo(); 632 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 633 } 634 635 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 636 TBAAAccessInfo TBAAInfo) { 637 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 638 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 639 } 640 641 void CodeGenModule::DecorateInstructionWithInvariantGroup( 642 llvm::Instruction *I, const CXXRecordDecl *RD) { 643 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 644 llvm::MDNode::get(getLLVMContext(), {})); 645 } 646 647 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 648 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 649 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 650 } 651 652 /// ErrorUnsupported - Print out an error that codegen doesn't support the 653 /// specified stmt yet. 654 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 655 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 656 "cannot compile this %0 yet"); 657 std::string Msg = Type; 658 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 659 << Msg << S->getSourceRange(); 660 } 661 662 /// ErrorUnsupported - Print out an error that codegen doesn't support the 663 /// specified decl yet. 664 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 665 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 666 "cannot compile this %0 yet"); 667 std::string Msg = Type; 668 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 669 } 670 671 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 672 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 673 } 674 675 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 676 const NamedDecl *D, 677 ForDefinition_t IsForDefinition) const { 678 // Internal definitions always have default visibility. 679 if (GV->hasLocalLinkage()) { 680 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 681 return; 682 } 683 684 // Set visibility for definitions. 685 LinkageInfo LV = D->getLinkageAndVisibility(); 686 if (LV.isVisibilityExplicit() || 687 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 688 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 689 } 690 691 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 692 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 693 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 694 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 695 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 696 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 697 } 698 699 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 700 CodeGenOptions::TLSModel M) { 701 switch (M) { 702 case CodeGenOptions::GeneralDynamicTLSModel: 703 return llvm::GlobalVariable::GeneralDynamicTLSModel; 704 case CodeGenOptions::LocalDynamicTLSModel: 705 return llvm::GlobalVariable::LocalDynamicTLSModel; 706 case CodeGenOptions::InitialExecTLSModel: 707 return llvm::GlobalVariable::InitialExecTLSModel; 708 case CodeGenOptions::LocalExecTLSModel: 709 return llvm::GlobalVariable::LocalExecTLSModel; 710 } 711 llvm_unreachable("Invalid TLS model!"); 712 } 713 714 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 715 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 716 717 llvm::GlobalValue::ThreadLocalMode TLM; 718 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 719 720 // Override the TLS model if it is explicitly specified. 721 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 722 TLM = GetLLVMTLSModel(Attr->getModel()); 723 } 724 725 GV->setThreadLocalMode(TLM); 726 } 727 728 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 729 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 730 731 // Some ABIs don't have constructor variants. Make sure that base and 732 // complete constructors get mangled the same. 733 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 734 if (!getTarget().getCXXABI().hasConstructorVariants()) { 735 CXXCtorType OrigCtorType = GD.getCtorType(); 736 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 737 if (OrigCtorType == Ctor_Base) 738 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 739 } 740 } 741 742 auto FoundName = MangledDeclNames.find(CanonicalGD); 743 if (FoundName != MangledDeclNames.end()) 744 return FoundName->second; 745 746 const auto *ND = cast<NamedDecl>(GD.getDecl()); 747 SmallString<256> Buffer; 748 StringRef Str; 749 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 750 llvm::raw_svector_ostream Out(Buffer); 751 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 752 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 753 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 754 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 755 else 756 getCXXABI().getMangleContext().mangleName(ND, Out); 757 Str = Out.str(); 758 } else { 759 IdentifierInfo *II = ND->getIdentifier(); 760 assert(II && "Attempt to mangle unnamed decl."); 761 const auto *FD = dyn_cast<FunctionDecl>(ND); 762 763 if (FD && 764 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 765 llvm::raw_svector_ostream Out(Buffer); 766 Out << "__regcall3__" << II->getName(); 767 Str = Out.str(); 768 } else { 769 Str = II->getName(); 770 } 771 } 772 773 // Keep the first result in the case of a mangling collision. 774 auto Result = Manglings.insert(std::make_pair(Str, GD)); 775 return MangledDeclNames[CanonicalGD] = Result.first->first(); 776 } 777 778 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 779 const BlockDecl *BD) { 780 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 781 const Decl *D = GD.getDecl(); 782 783 SmallString<256> Buffer; 784 llvm::raw_svector_ostream Out(Buffer); 785 if (!D) 786 MangleCtx.mangleGlobalBlock(BD, 787 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 788 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 789 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 790 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 791 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 792 else 793 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 794 795 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 796 return Result.first->first(); 797 } 798 799 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 800 return getModule().getNamedValue(Name); 801 } 802 803 /// AddGlobalCtor - Add a function to the list that will be called before 804 /// main() runs. 805 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 806 llvm::Constant *AssociatedData) { 807 // FIXME: Type coercion of void()* types. 808 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 809 } 810 811 /// AddGlobalDtor - Add a function to the list that will be called 812 /// when the module is unloaded. 813 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 814 // FIXME: Type coercion of void()* types. 815 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 816 } 817 818 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 819 if (Fns.empty()) return; 820 821 // Ctor function type is void()*. 822 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 823 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 824 825 // Get the type of a ctor entry, { i32, void ()*, i8* }. 826 llvm::StructType *CtorStructTy = llvm::StructType::get( 827 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 828 829 // Construct the constructor and destructor arrays. 830 ConstantInitBuilder builder(*this); 831 auto ctors = builder.beginArray(CtorStructTy); 832 for (const auto &I : Fns) { 833 auto ctor = ctors.beginStruct(CtorStructTy); 834 ctor.addInt(Int32Ty, I.Priority); 835 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 836 if (I.AssociatedData) 837 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 838 else 839 ctor.addNullPointer(VoidPtrTy); 840 ctor.finishAndAddTo(ctors); 841 } 842 843 auto list = 844 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 845 /*constant*/ false, 846 llvm::GlobalValue::AppendingLinkage); 847 848 // The LTO linker doesn't seem to like it when we set an alignment 849 // on appending variables. Take it off as a workaround. 850 list->setAlignment(0); 851 852 Fns.clear(); 853 } 854 855 llvm::GlobalValue::LinkageTypes 856 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 857 const auto *D = cast<FunctionDecl>(GD.getDecl()); 858 859 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 860 861 if (isa<CXXDestructorDecl>(D) && 862 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 863 GD.getDtorType())) { 864 // Destructor variants in the Microsoft C++ ABI are always internal or 865 // linkonce_odr thunks emitted on an as-needed basis. 866 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 867 : llvm::GlobalValue::LinkOnceODRLinkage; 868 } 869 870 if (isa<CXXConstructorDecl>(D) && 871 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 872 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 873 // Our approach to inheriting constructors is fundamentally different from 874 // that used by the MS ABI, so keep our inheriting constructor thunks 875 // internal rather than trying to pick an unambiguous mangling for them. 876 return llvm::GlobalValue::InternalLinkage; 877 } 878 879 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 880 } 881 882 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 883 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 884 885 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 886 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 887 // Don't dllexport/import destructor thunks. 888 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 889 return; 890 } 891 } 892 893 if (FD->hasAttr<DLLImportAttr>()) 894 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 895 else if (FD->hasAttr<DLLExportAttr>()) 896 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 897 else 898 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 899 } 900 901 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 902 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 903 if (!MDS) return nullptr; 904 905 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 906 } 907 908 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 909 llvm::Function *F) { 910 setNonAliasAttributes(D, F); 911 } 912 913 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 914 const CGFunctionInfo &Info, 915 llvm::Function *F) { 916 unsigned CallingConv; 917 llvm::AttributeList PAL; 918 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 919 F->setAttributes(PAL); 920 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 921 } 922 923 /// Determines whether the language options require us to model 924 /// unwind exceptions. We treat -fexceptions as mandating this 925 /// except under the fragile ObjC ABI with only ObjC exceptions 926 /// enabled. This means, for example, that C with -fexceptions 927 /// enables this. 928 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 929 // If exceptions are completely disabled, obviously this is false. 930 if (!LangOpts.Exceptions) return false; 931 932 // If C++ exceptions are enabled, this is true. 933 if (LangOpts.CXXExceptions) return true; 934 935 // If ObjC exceptions are enabled, this depends on the ABI. 936 if (LangOpts.ObjCExceptions) { 937 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 938 } 939 940 return true; 941 } 942 943 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 944 llvm::Function *F) { 945 llvm::AttrBuilder B; 946 947 if (CodeGenOpts.UnwindTables) 948 B.addAttribute(llvm::Attribute::UWTable); 949 950 if (!hasUnwindExceptions(LangOpts)) 951 B.addAttribute(llvm::Attribute::NoUnwind); 952 953 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 954 B.addAttribute(llvm::Attribute::StackProtect); 955 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 956 B.addAttribute(llvm::Attribute::StackProtectStrong); 957 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 958 B.addAttribute(llvm::Attribute::StackProtectReq); 959 960 if (!D) { 961 // If we don't have a declaration to control inlining, the function isn't 962 // explicitly marked as alwaysinline for semantic reasons, and inlining is 963 // disabled, mark the function as noinline. 964 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 965 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 966 B.addAttribute(llvm::Attribute::NoInline); 967 968 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 969 return; 970 } 971 972 // Track whether we need to add the optnone LLVM attribute, 973 // starting with the default for this optimization level. 974 bool ShouldAddOptNone = 975 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 976 // We can't add optnone in the following cases, it won't pass the verifier. 977 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 978 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 979 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 980 981 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 982 B.addAttribute(llvm::Attribute::OptimizeNone); 983 984 // OptimizeNone implies noinline; we should not be inlining such functions. 985 B.addAttribute(llvm::Attribute::NoInline); 986 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 987 "OptimizeNone and AlwaysInline on same function!"); 988 989 // We still need to handle naked functions even though optnone subsumes 990 // much of their semantics. 991 if (D->hasAttr<NakedAttr>()) 992 B.addAttribute(llvm::Attribute::Naked); 993 994 // OptimizeNone wins over OptimizeForSize and MinSize. 995 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 996 F->removeFnAttr(llvm::Attribute::MinSize); 997 } else if (D->hasAttr<NakedAttr>()) { 998 // Naked implies noinline: we should not be inlining such functions. 999 B.addAttribute(llvm::Attribute::Naked); 1000 B.addAttribute(llvm::Attribute::NoInline); 1001 } else if (D->hasAttr<NoDuplicateAttr>()) { 1002 B.addAttribute(llvm::Attribute::NoDuplicate); 1003 } else if (D->hasAttr<NoInlineAttr>()) { 1004 B.addAttribute(llvm::Attribute::NoInline); 1005 } else if (D->hasAttr<AlwaysInlineAttr>() && 1006 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1007 // (noinline wins over always_inline, and we can't specify both in IR) 1008 B.addAttribute(llvm::Attribute::AlwaysInline); 1009 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1010 // If we're not inlining, then force everything that isn't always_inline to 1011 // carry an explicit noinline attribute. 1012 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1013 B.addAttribute(llvm::Attribute::NoInline); 1014 } else { 1015 // Otherwise, propagate the inline hint attribute and potentially use its 1016 // absence to mark things as noinline. 1017 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1018 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1019 return Redecl->isInlineSpecified(); 1020 })) { 1021 B.addAttribute(llvm::Attribute::InlineHint); 1022 } else if (CodeGenOpts.getInlining() == 1023 CodeGenOptions::OnlyHintInlining && 1024 !FD->isInlined() && 1025 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1026 B.addAttribute(llvm::Attribute::NoInline); 1027 } 1028 } 1029 } 1030 1031 // Add other optimization related attributes if we are optimizing this 1032 // function. 1033 if (!D->hasAttr<OptimizeNoneAttr>()) { 1034 if (D->hasAttr<ColdAttr>()) { 1035 if (!ShouldAddOptNone) 1036 B.addAttribute(llvm::Attribute::OptimizeForSize); 1037 B.addAttribute(llvm::Attribute::Cold); 1038 } 1039 1040 if (D->hasAttr<MinSizeAttr>()) 1041 B.addAttribute(llvm::Attribute::MinSize); 1042 } 1043 1044 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1045 1046 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1047 if (alignment) 1048 F->setAlignment(alignment); 1049 1050 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1051 // reserve a bit for differentiating between virtual and non-virtual member 1052 // functions. If the current target's C++ ABI requires this and this is a 1053 // member function, set its alignment accordingly. 1054 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1055 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1056 F->setAlignment(2); 1057 } 1058 1059 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1060 if (CodeGenOpts.SanitizeCfiCrossDso) 1061 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1062 CreateFunctionTypeMetadata(FD, F); 1063 } 1064 1065 void CodeGenModule::SetCommonAttributes(const Decl *D, 1066 llvm::GlobalValue *GV) { 1067 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1068 setGlobalVisibility(GV, ND, ForDefinition); 1069 else 1070 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1071 1072 if (D && D->hasAttr<UsedAttr>()) 1073 addUsedGlobal(GV); 1074 } 1075 1076 void CodeGenModule::setAliasAttributes(const Decl *D, 1077 llvm::GlobalValue *GV) { 1078 SetCommonAttributes(D, GV); 1079 1080 // Process the dllexport attribute based on whether the original definition 1081 // (not necessarily the aliasee) was exported. 1082 if (D->hasAttr<DLLExportAttr>()) 1083 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1084 } 1085 1086 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1087 llvm::GlobalObject *GO) { 1088 SetCommonAttributes(D, GO); 1089 1090 if (D) { 1091 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1092 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1093 GV->addAttribute("bss-section", SA->getName()); 1094 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1095 GV->addAttribute("data-section", SA->getName()); 1096 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1097 GV->addAttribute("rodata-section", SA->getName()); 1098 } 1099 1100 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1101 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1102 if (!D->getAttr<SectionAttr>()) 1103 F->addFnAttr("implicit-section-name", SA->getName()); 1104 } 1105 1106 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1107 GO->setSection(SA->getName()); 1108 } 1109 1110 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1111 } 1112 1113 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1114 llvm::Function *F, 1115 const CGFunctionInfo &FI) { 1116 SetLLVMFunctionAttributes(D, FI, F); 1117 SetLLVMFunctionAttributesForDefinition(D, F); 1118 1119 F->setLinkage(llvm::Function::InternalLinkage); 1120 1121 setNonAliasAttributes(D, F); 1122 } 1123 1124 static void setLinkageForGV(llvm::GlobalValue *GV, 1125 const NamedDecl *ND) { 1126 // Set linkage and visibility in case we never see a definition. 1127 LinkageInfo LV = ND->getLinkageAndVisibility(); 1128 if (!isExternallyVisible(LV.getLinkage())) { 1129 // Don't set internal linkage on declarations. 1130 } else { 1131 if (ND->hasAttr<DLLImportAttr>()) { 1132 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1133 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1134 } else if (ND->hasAttr<DLLExportAttr>()) { 1135 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1136 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1137 // "extern_weak" is overloaded in LLVM; we probably should have 1138 // separate linkage types for this. 1139 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1140 } 1141 } 1142 } 1143 1144 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1145 llvm::Function *F) { 1146 // Only if we are checking indirect calls. 1147 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1148 return; 1149 1150 // Non-static class methods are handled via vtable pointer checks elsewhere. 1151 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1152 return; 1153 1154 // Additionally, if building with cross-DSO support... 1155 if (CodeGenOpts.SanitizeCfiCrossDso) { 1156 // Skip available_externally functions. They won't be codegen'ed in the 1157 // current module anyway. 1158 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1159 return; 1160 } 1161 1162 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1163 F->addTypeMetadata(0, MD); 1164 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1165 1166 // Emit a hash-based bit set entry for cross-DSO calls. 1167 if (CodeGenOpts.SanitizeCfiCrossDso) 1168 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1169 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1170 } 1171 1172 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1173 bool IsIncompleteFunction, 1174 bool IsThunk, 1175 ForDefinition_t IsForDefinition) { 1176 1177 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1178 // If this is an intrinsic function, set the function's attributes 1179 // to the intrinsic's attributes. 1180 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1181 return; 1182 } 1183 1184 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1185 1186 if (!IsIncompleteFunction) { 1187 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1188 // Setup target-specific attributes. 1189 if (!IsForDefinition) 1190 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1191 NotForDefinition); 1192 } 1193 1194 // Add the Returned attribute for "this", except for iOS 5 and earlier 1195 // where substantial code, including the libstdc++ dylib, was compiled with 1196 // GCC and does not actually return "this". 1197 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1198 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1199 assert(!F->arg_empty() && 1200 F->arg_begin()->getType() 1201 ->canLosslesslyBitCastTo(F->getReturnType()) && 1202 "unexpected this return"); 1203 F->addAttribute(1, llvm::Attribute::Returned); 1204 } 1205 1206 // Only a few attributes are set on declarations; these may later be 1207 // overridden by a definition. 1208 1209 setLinkageForGV(F, FD); 1210 setGlobalVisibility(F, FD, NotForDefinition); 1211 1212 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1213 F->addFnAttr("implicit-section-name"); 1214 } 1215 1216 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1217 F->setSection(SA->getName()); 1218 1219 if (FD->isReplaceableGlobalAllocationFunction()) { 1220 // A replaceable global allocation function does not act like a builtin by 1221 // default, only if it is invoked by a new-expression or delete-expression. 1222 F->addAttribute(llvm::AttributeList::FunctionIndex, 1223 llvm::Attribute::NoBuiltin); 1224 1225 // A sane operator new returns a non-aliasing pointer. 1226 // FIXME: Also add NonNull attribute to the return value 1227 // for the non-nothrow forms? 1228 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1229 if (getCodeGenOpts().AssumeSaneOperatorNew && 1230 (Kind == OO_New || Kind == OO_Array_New)) 1231 F->addAttribute(llvm::AttributeList::ReturnIndex, 1232 llvm::Attribute::NoAlias); 1233 } 1234 1235 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1236 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1237 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1238 if (MD->isVirtual()) 1239 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1240 1241 // Don't emit entries for function declarations in the cross-DSO mode. This 1242 // is handled with better precision by the receiving DSO. 1243 if (!CodeGenOpts.SanitizeCfiCrossDso) 1244 CreateFunctionTypeMetadata(FD, F); 1245 1246 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1247 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1248 } 1249 1250 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1251 assert(!GV->isDeclaration() && 1252 "Only globals with definition can force usage."); 1253 LLVMUsed.emplace_back(GV); 1254 } 1255 1256 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1257 assert(!GV->isDeclaration() && 1258 "Only globals with definition can force usage."); 1259 LLVMCompilerUsed.emplace_back(GV); 1260 } 1261 1262 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1263 std::vector<llvm::WeakTrackingVH> &List) { 1264 // Don't create llvm.used if there is no need. 1265 if (List.empty()) 1266 return; 1267 1268 // Convert List to what ConstantArray needs. 1269 SmallVector<llvm::Constant*, 8> UsedArray; 1270 UsedArray.resize(List.size()); 1271 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1272 UsedArray[i] = 1273 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1274 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1275 } 1276 1277 if (UsedArray.empty()) 1278 return; 1279 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1280 1281 auto *GV = new llvm::GlobalVariable( 1282 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1283 llvm::ConstantArray::get(ATy, UsedArray), Name); 1284 1285 GV->setSection("llvm.metadata"); 1286 } 1287 1288 void CodeGenModule::emitLLVMUsed() { 1289 emitUsed(*this, "llvm.used", LLVMUsed); 1290 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1291 } 1292 1293 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1294 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1295 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1296 } 1297 1298 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1299 llvm::SmallString<32> Opt; 1300 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1301 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1302 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1303 } 1304 1305 void CodeGenModule::AddDependentLib(StringRef Lib) { 1306 llvm::SmallString<24> Opt; 1307 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1308 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1309 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1310 } 1311 1312 /// \brief Add link options implied by the given module, including modules 1313 /// it depends on, using a postorder walk. 1314 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1315 SmallVectorImpl<llvm::MDNode *> &Metadata, 1316 llvm::SmallPtrSet<Module *, 16> &Visited) { 1317 // Import this module's parent. 1318 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1319 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1320 } 1321 1322 // Import this module's dependencies. 1323 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1324 if (Visited.insert(Mod->Imports[I - 1]).second) 1325 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1326 } 1327 1328 // Add linker options to link against the libraries/frameworks 1329 // described by this module. 1330 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1331 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1332 // Link against a framework. Frameworks are currently Darwin only, so we 1333 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1334 if (Mod->LinkLibraries[I-1].IsFramework) { 1335 llvm::Metadata *Args[2] = { 1336 llvm::MDString::get(Context, "-framework"), 1337 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1338 1339 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1340 continue; 1341 } 1342 1343 // Link against a library. 1344 llvm::SmallString<24> Opt; 1345 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1346 Mod->LinkLibraries[I-1].Library, Opt); 1347 auto *OptString = llvm::MDString::get(Context, Opt); 1348 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1349 } 1350 } 1351 1352 void CodeGenModule::EmitModuleLinkOptions() { 1353 // Collect the set of all of the modules we want to visit to emit link 1354 // options, which is essentially the imported modules and all of their 1355 // non-explicit child modules. 1356 llvm::SetVector<clang::Module *> LinkModules; 1357 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1358 SmallVector<clang::Module *, 16> Stack; 1359 1360 // Seed the stack with imported modules. 1361 for (Module *M : ImportedModules) { 1362 // Do not add any link flags when an implementation TU of a module imports 1363 // a header of that same module. 1364 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1365 !getLangOpts().isCompilingModule()) 1366 continue; 1367 if (Visited.insert(M).second) 1368 Stack.push_back(M); 1369 } 1370 1371 // Find all of the modules to import, making a little effort to prune 1372 // non-leaf modules. 1373 while (!Stack.empty()) { 1374 clang::Module *Mod = Stack.pop_back_val(); 1375 1376 bool AnyChildren = false; 1377 1378 // Visit the submodules of this module. 1379 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1380 SubEnd = Mod->submodule_end(); 1381 Sub != SubEnd; ++Sub) { 1382 // Skip explicit children; they need to be explicitly imported to be 1383 // linked against. 1384 if ((*Sub)->IsExplicit) 1385 continue; 1386 1387 if (Visited.insert(*Sub).second) { 1388 Stack.push_back(*Sub); 1389 AnyChildren = true; 1390 } 1391 } 1392 1393 // We didn't find any children, so add this module to the list of 1394 // modules to link against. 1395 if (!AnyChildren) { 1396 LinkModules.insert(Mod); 1397 } 1398 } 1399 1400 // Add link options for all of the imported modules in reverse topological 1401 // order. We don't do anything to try to order import link flags with respect 1402 // to linker options inserted by things like #pragma comment(). 1403 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1404 Visited.clear(); 1405 for (Module *M : LinkModules) 1406 if (Visited.insert(M).second) 1407 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1408 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1409 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1410 1411 // Add the linker options metadata flag. 1412 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1413 for (auto *MD : LinkerOptionsMetadata) 1414 NMD->addOperand(MD); 1415 } 1416 1417 void CodeGenModule::EmitDeferred() { 1418 // Emit code for any potentially referenced deferred decls. Since a 1419 // previously unused static decl may become used during the generation of code 1420 // for a static function, iterate until no changes are made. 1421 1422 if (!DeferredVTables.empty()) { 1423 EmitDeferredVTables(); 1424 1425 // Emitting a vtable doesn't directly cause more vtables to 1426 // become deferred, although it can cause functions to be 1427 // emitted that then need those vtables. 1428 assert(DeferredVTables.empty()); 1429 } 1430 1431 // Stop if we're out of both deferred vtables and deferred declarations. 1432 if (DeferredDeclsToEmit.empty()) 1433 return; 1434 1435 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1436 // work, it will not interfere with this. 1437 std::vector<GlobalDecl> CurDeclsToEmit; 1438 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1439 1440 for (GlobalDecl &D : CurDeclsToEmit) { 1441 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1442 // to get GlobalValue with exactly the type we need, not something that 1443 // might had been created for another decl with the same mangled name but 1444 // different type. 1445 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1446 GetAddrOfGlobal(D, ForDefinition)); 1447 1448 // In case of different address spaces, we may still get a cast, even with 1449 // IsForDefinition equal to true. Query mangled names table to get 1450 // GlobalValue. 1451 if (!GV) 1452 GV = GetGlobalValue(getMangledName(D)); 1453 1454 // Make sure GetGlobalValue returned non-null. 1455 assert(GV); 1456 1457 // Check to see if we've already emitted this. This is necessary 1458 // for a couple of reasons: first, decls can end up in the 1459 // deferred-decls queue multiple times, and second, decls can end 1460 // up with definitions in unusual ways (e.g. by an extern inline 1461 // function acquiring a strong function redefinition). Just 1462 // ignore these cases. 1463 if (!GV->isDeclaration()) 1464 continue; 1465 1466 // Otherwise, emit the definition and move on to the next one. 1467 EmitGlobalDefinition(D, GV); 1468 1469 // If we found out that we need to emit more decls, do that recursively. 1470 // This has the advantage that the decls are emitted in a DFS and related 1471 // ones are close together, which is convenient for testing. 1472 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1473 EmitDeferred(); 1474 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1475 } 1476 } 1477 } 1478 1479 void CodeGenModule::EmitVTablesOpportunistically() { 1480 // Try to emit external vtables as available_externally if they have emitted 1481 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1482 // is not allowed to create new references to things that need to be emitted 1483 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1484 1485 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1486 && "Only emit opportunistic vtables with optimizations"); 1487 1488 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1489 assert(getVTables().isVTableExternal(RD) && 1490 "This queue should only contain external vtables"); 1491 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1492 VTables.GenerateClassData(RD); 1493 } 1494 OpportunisticVTables.clear(); 1495 } 1496 1497 void CodeGenModule::EmitGlobalAnnotations() { 1498 if (Annotations.empty()) 1499 return; 1500 1501 // Create a new global variable for the ConstantStruct in the Module. 1502 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1503 Annotations[0]->getType(), Annotations.size()), Annotations); 1504 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1505 llvm::GlobalValue::AppendingLinkage, 1506 Array, "llvm.global.annotations"); 1507 gv->setSection(AnnotationSection); 1508 } 1509 1510 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1511 llvm::Constant *&AStr = AnnotationStrings[Str]; 1512 if (AStr) 1513 return AStr; 1514 1515 // Not found yet, create a new global. 1516 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1517 auto *gv = 1518 new llvm::GlobalVariable(getModule(), s->getType(), true, 1519 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1520 gv->setSection(AnnotationSection); 1521 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1522 AStr = gv; 1523 return gv; 1524 } 1525 1526 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1527 SourceManager &SM = getContext().getSourceManager(); 1528 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1529 if (PLoc.isValid()) 1530 return EmitAnnotationString(PLoc.getFilename()); 1531 return EmitAnnotationString(SM.getBufferName(Loc)); 1532 } 1533 1534 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1535 SourceManager &SM = getContext().getSourceManager(); 1536 PresumedLoc PLoc = SM.getPresumedLoc(L); 1537 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1538 SM.getExpansionLineNumber(L); 1539 return llvm::ConstantInt::get(Int32Ty, LineNo); 1540 } 1541 1542 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1543 const AnnotateAttr *AA, 1544 SourceLocation L) { 1545 // Get the globals for file name, annotation, and the line number. 1546 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1547 *UnitGV = EmitAnnotationUnit(L), 1548 *LineNoCst = EmitAnnotationLineNo(L); 1549 1550 // Create the ConstantStruct for the global annotation. 1551 llvm::Constant *Fields[4] = { 1552 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1553 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1554 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1555 LineNoCst 1556 }; 1557 return llvm::ConstantStruct::getAnon(Fields); 1558 } 1559 1560 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1561 llvm::GlobalValue *GV) { 1562 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1563 // Get the struct elements for these annotations. 1564 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1565 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1566 } 1567 1568 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1569 llvm::Function *Fn, 1570 SourceLocation Loc) const { 1571 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1572 // Blacklist by function name. 1573 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1574 return true; 1575 // Blacklist by location. 1576 if (Loc.isValid()) 1577 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1578 // If location is unknown, this may be a compiler-generated function. Assume 1579 // it's located in the main file. 1580 auto &SM = Context.getSourceManager(); 1581 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1582 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1583 } 1584 return false; 1585 } 1586 1587 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1588 SourceLocation Loc, QualType Ty, 1589 StringRef Category) const { 1590 // For now globals can be blacklisted only in ASan and KASan. 1591 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1592 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1593 if (!EnabledAsanMask) 1594 return false; 1595 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1596 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1597 return true; 1598 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1599 return true; 1600 // Check global type. 1601 if (!Ty.isNull()) { 1602 // Drill down the array types: if global variable of a fixed type is 1603 // blacklisted, we also don't instrument arrays of them. 1604 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1605 Ty = AT->getElementType(); 1606 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1607 // We allow to blacklist only record types (classes, structs etc.) 1608 if (Ty->isRecordType()) { 1609 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1610 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1611 return true; 1612 } 1613 } 1614 return false; 1615 } 1616 1617 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1618 StringRef Category) const { 1619 if (!LangOpts.XRayInstrument) 1620 return false; 1621 const auto &XRayFilter = getContext().getXRayFilter(); 1622 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1623 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1624 if (Loc.isValid()) 1625 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1626 if (Attr == ImbueAttr::NONE) 1627 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1628 switch (Attr) { 1629 case ImbueAttr::NONE: 1630 return false; 1631 case ImbueAttr::ALWAYS: 1632 Fn->addFnAttr("function-instrument", "xray-always"); 1633 break; 1634 case ImbueAttr::ALWAYS_ARG1: 1635 Fn->addFnAttr("function-instrument", "xray-always"); 1636 Fn->addFnAttr("xray-log-args", "1"); 1637 break; 1638 case ImbueAttr::NEVER: 1639 Fn->addFnAttr("function-instrument", "xray-never"); 1640 break; 1641 } 1642 return true; 1643 } 1644 1645 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1646 // Never defer when EmitAllDecls is specified. 1647 if (LangOpts.EmitAllDecls) 1648 return true; 1649 1650 return getContext().DeclMustBeEmitted(Global); 1651 } 1652 1653 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1654 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1655 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1656 // Implicit template instantiations may change linkage if they are later 1657 // explicitly instantiated, so they should not be emitted eagerly. 1658 return false; 1659 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1660 if (Context.getInlineVariableDefinitionKind(VD) == 1661 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1662 // A definition of an inline constexpr static data member may change 1663 // linkage later if it's redeclared outside the class. 1664 return false; 1665 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1666 // codegen for global variables, because they may be marked as threadprivate. 1667 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1668 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1669 return false; 1670 1671 return true; 1672 } 1673 1674 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1675 const CXXUuidofExpr* E) { 1676 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1677 // well-formed. 1678 StringRef Uuid = E->getUuidStr(); 1679 std::string Name = "_GUID_" + Uuid.lower(); 1680 std::replace(Name.begin(), Name.end(), '-', '_'); 1681 1682 // The UUID descriptor should be pointer aligned. 1683 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1684 1685 // Look for an existing global. 1686 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1687 return ConstantAddress(GV, Alignment); 1688 1689 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1690 assert(Init && "failed to initialize as constant"); 1691 1692 auto *GV = new llvm::GlobalVariable( 1693 getModule(), Init->getType(), 1694 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1695 if (supportsCOMDAT()) 1696 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1697 return ConstantAddress(GV, Alignment); 1698 } 1699 1700 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1701 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1702 assert(AA && "No alias?"); 1703 1704 CharUnits Alignment = getContext().getDeclAlign(VD); 1705 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1706 1707 // See if there is already something with the target's name in the module. 1708 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1709 if (Entry) { 1710 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1711 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1712 return ConstantAddress(Ptr, Alignment); 1713 } 1714 1715 llvm::Constant *Aliasee; 1716 if (isa<llvm::FunctionType>(DeclTy)) 1717 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1718 GlobalDecl(cast<FunctionDecl>(VD)), 1719 /*ForVTable=*/false); 1720 else 1721 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1722 llvm::PointerType::getUnqual(DeclTy), 1723 nullptr); 1724 1725 auto *F = cast<llvm::GlobalValue>(Aliasee); 1726 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1727 WeakRefReferences.insert(F); 1728 1729 return ConstantAddress(Aliasee, Alignment); 1730 } 1731 1732 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1733 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1734 1735 // Weak references don't produce any output by themselves. 1736 if (Global->hasAttr<WeakRefAttr>()) 1737 return; 1738 1739 // If this is an alias definition (which otherwise looks like a declaration) 1740 // emit it now. 1741 if (Global->hasAttr<AliasAttr>()) 1742 return EmitAliasDefinition(GD); 1743 1744 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1745 if (Global->hasAttr<IFuncAttr>()) 1746 return emitIFuncDefinition(GD); 1747 1748 // If this is CUDA, be selective about which declarations we emit. 1749 if (LangOpts.CUDA) { 1750 if (LangOpts.CUDAIsDevice) { 1751 if (!Global->hasAttr<CUDADeviceAttr>() && 1752 !Global->hasAttr<CUDAGlobalAttr>() && 1753 !Global->hasAttr<CUDAConstantAttr>() && 1754 !Global->hasAttr<CUDASharedAttr>()) 1755 return; 1756 } else { 1757 // We need to emit host-side 'shadows' for all global 1758 // device-side variables because the CUDA runtime needs their 1759 // size and host-side address in order to provide access to 1760 // their device-side incarnations. 1761 1762 // So device-only functions are the only things we skip. 1763 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1764 Global->hasAttr<CUDADeviceAttr>()) 1765 return; 1766 1767 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1768 "Expected Variable or Function"); 1769 } 1770 } 1771 1772 if (LangOpts.OpenMP) { 1773 // If this is OpenMP device, check if it is legal to emit this global 1774 // normally. 1775 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1776 return; 1777 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1778 if (MustBeEmitted(Global)) 1779 EmitOMPDeclareReduction(DRD); 1780 return; 1781 } 1782 } 1783 1784 // Ignore declarations, they will be emitted on their first use. 1785 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1786 // Forward declarations are emitted lazily on first use. 1787 if (!FD->doesThisDeclarationHaveABody()) { 1788 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1789 return; 1790 1791 StringRef MangledName = getMangledName(GD); 1792 1793 // Compute the function info and LLVM type. 1794 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1795 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1796 1797 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1798 /*DontDefer=*/false); 1799 return; 1800 } 1801 } else { 1802 const auto *VD = cast<VarDecl>(Global); 1803 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1804 // We need to emit device-side global CUDA variables even if a 1805 // variable does not have a definition -- we still need to define 1806 // host-side shadow for it. 1807 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1808 !VD->hasDefinition() && 1809 (VD->hasAttr<CUDAConstantAttr>() || 1810 VD->hasAttr<CUDADeviceAttr>()); 1811 if (!MustEmitForCuda && 1812 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1813 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1814 // If this declaration may have caused an inline variable definition to 1815 // change linkage, make sure that it's emitted. 1816 if (Context.getInlineVariableDefinitionKind(VD) == 1817 ASTContext::InlineVariableDefinitionKind::Strong) 1818 GetAddrOfGlobalVar(VD); 1819 return; 1820 } 1821 } 1822 1823 // Defer code generation to first use when possible, e.g. if this is an inline 1824 // function. If the global must always be emitted, do it eagerly if possible 1825 // to benefit from cache locality. 1826 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1827 // Emit the definition if it can't be deferred. 1828 EmitGlobalDefinition(GD); 1829 return; 1830 } 1831 1832 // If we're deferring emission of a C++ variable with an 1833 // initializer, remember the order in which it appeared in the file. 1834 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1835 cast<VarDecl>(Global)->hasInit()) { 1836 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1837 CXXGlobalInits.push_back(nullptr); 1838 } 1839 1840 StringRef MangledName = getMangledName(GD); 1841 if (GetGlobalValue(MangledName) != nullptr) { 1842 // The value has already been used and should therefore be emitted. 1843 addDeferredDeclToEmit(GD); 1844 } else if (MustBeEmitted(Global)) { 1845 // The value must be emitted, but cannot be emitted eagerly. 1846 assert(!MayBeEmittedEagerly(Global)); 1847 addDeferredDeclToEmit(GD); 1848 } else { 1849 // Otherwise, remember that we saw a deferred decl with this name. The 1850 // first use of the mangled name will cause it to move into 1851 // DeferredDeclsToEmit. 1852 DeferredDecls[MangledName] = GD; 1853 } 1854 } 1855 1856 // Check if T is a class type with a destructor that's not dllimport. 1857 static bool HasNonDllImportDtor(QualType T) { 1858 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1859 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1860 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1861 return true; 1862 1863 return false; 1864 } 1865 1866 namespace { 1867 struct FunctionIsDirectlyRecursive : 1868 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1869 const StringRef Name; 1870 const Builtin::Context &BI; 1871 bool Result; 1872 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1873 Name(N), BI(C), Result(false) { 1874 } 1875 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1876 1877 bool TraverseCallExpr(CallExpr *E) { 1878 const FunctionDecl *FD = E->getDirectCallee(); 1879 if (!FD) 1880 return true; 1881 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1882 if (Attr && Name == Attr->getLabel()) { 1883 Result = true; 1884 return false; 1885 } 1886 unsigned BuiltinID = FD->getBuiltinID(); 1887 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1888 return true; 1889 StringRef BuiltinName = BI.getName(BuiltinID); 1890 if (BuiltinName.startswith("__builtin_") && 1891 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1892 Result = true; 1893 return false; 1894 } 1895 return true; 1896 } 1897 }; 1898 1899 // Make sure we're not referencing non-imported vars or functions. 1900 struct DLLImportFunctionVisitor 1901 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1902 bool SafeToInline = true; 1903 1904 bool shouldVisitImplicitCode() const { return true; } 1905 1906 bool VisitVarDecl(VarDecl *VD) { 1907 if (VD->getTLSKind()) { 1908 // A thread-local variable cannot be imported. 1909 SafeToInline = false; 1910 return SafeToInline; 1911 } 1912 1913 // A variable definition might imply a destructor call. 1914 if (VD->isThisDeclarationADefinition()) 1915 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1916 1917 return SafeToInline; 1918 } 1919 1920 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1921 if (const auto *D = E->getTemporary()->getDestructor()) 1922 SafeToInline = D->hasAttr<DLLImportAttr>(); 1923 return SafeToInline; 1924 } 1925 1926 bool VisitDeclRefExpr(DeclRefExpr *E) { 1927 ValueDecl *VD = E->getDecl(); 1928 if (isa<FunctionDecl>(VD)) 1929 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1930 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1931 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1932 return SafeToInline; 1933 } 1934 1935 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1936 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1937 return SafeToInline; 1938 } 1939 1940 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1941 CXXMethodDecl *M = E->getMethodDecl(); 1942 if (!M) { 1943 // Call through a pointer to member function. This is safe to inline. 1944 SafeToInline = true; 1945 } else { 1946 SafeToInline = M->hasAttr<DLLImportAttr>(); 1947 } 1948 return SafeToInline; 1949 } 1950 1951 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1952 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1953 return SafeToInline; 1954 } 1955 1956 bool VisitCXXNewExpr(CXXNewExpr *E) { 1957 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1958 return SafeToInline; 1959 } 1960 }; 1961 } 1962 1963 // isTriviallyRecursive - Check if this function calls another 1964 // decl that, because of the asm attribute or the other decl being a builtin, 1965 // ends up pointing to itself. 1966 bool 1967 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1968 StringRef Name; 1969 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1970 // asm labels are a special kind of mangling we have to support. 1971 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1972 if (!Attr) 1973 return false; 1974 Name = Attr->getLabel(); 1975 } else { 1976 Name = FD->getName(); 1977 } 1978 1979 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1980 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1981 return Walker.Result; 1982 } 1983 1984 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1985 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1986 return true; 1987 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1988 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1989 return false; 1990 1991 if (F->hasAttr<DLLImportAttr>()) { 1992 // Check whether it would be safe to inline this dllimport function. 1993 DLLImportFunctionVisitor Visitor; 1994 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1995 if (!Visitor.SafeToInline) 1996 return false; 1997 1998 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1999 // Implicit destructor invocations aren't captured in the AST, so the 2000 // check above can't see them. Check for them manually here. 2001 for (const Decl *Member : Dtor->getParent()->decls()) 2002 if (isa<FieldDecl>(Member)) 2003 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2004 return false; 2005 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2006 if (HasNonDllImportDtor(B.getType())) 2007 return false; 2008 } 2009 } 2010 2011 // PR9614. Avoid cases where the source code is lying to us. An available 2012 // externally function should have an equivalent function somewhere else, 2013 // but a function that calls itself is clearly not equivalent to the real 2014 // implementation. 2015 // This happens in glibc's btowc and in some configure checks. 2016 return !isTriviallyRecursive(F); 2017 } 2018 2019 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2020 return CodeGenOpts.OptimizationLevel > 0; 2021 } 2022 2023 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2024 const auto *D = cast<ValueDecl>(GD.getDecl()); 2025 2026 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2027 Context.getSourceManager(), 2028 "Generating code for declaration"); 2029 2030 if (isa<FunctionDecl>(D)) { 2031 // At -O0, don't generate IR for functions with available_externally 2032 // linkage. 2033 if (!shouldEmitFunction(GD)) 2034 return; 2035 2036 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2037 // Make sure to emit the definition(s) before we emit the thunks. 2038 // This is necessary for the generation of certain thunks. 2039 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2040 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2041 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2042 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2043 else 2044 EmitGlobalFunctionDefinition(GD, GV); 2045 2046 if (Method->isVirtual()) 2047 getVTables().EmitThunks(GD); 2048 2049 return; 2050 } 2051 2052 return EmitGlobalFunctionDefinition(GD, GV); 2053 } 2054 2055 if (const auto *VD = dyn_cast<VarDecl>(D)) 2056 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2057 2058 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2059 } 2060 2061 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2062 llvm::Function *NewFn); 2063 2064 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2065 /// module, create and return an llvm Function with the specified type. If there 2066 /// is something in the module with the specified name, return it potentially 2067 /// bitcasted to the right type. 2068 /// 2069 /// If D is non-null, it specifies a decl that correspond to this. This is used 2070 /// to set the attributes on the function when it is first created. 2071 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2072 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2073 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2074 ForDefinition_t IsForDefinition) { 2075 const Decl *D = GD.getDecl(); 2076 2077 // Lookup the entry, lazily creating it if necessary. 2078 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2079 if (Entry) { 2080 if (WeakRefReferences.erase(Entry)) { 2081 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2082 if (FD && !FD->hasAttr<WeakAttr>()) 2083 Entry->setLinkage(llvm::Function::ExternalLinkage); 2084 } 2085 2086 // Handle dropped DLL attributes. 2087 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2088 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2089 2090 // If there are two attempts to define the same mangled name, issue an 2091 // error. 2092 if (IsForDefinition && !Entry->isDeclaration()) { 2093 GlobalDecl OtherGD; 2094 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2095 // to make sure that we issue an error only once. 2096 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2097 (GD.getCanonicalDecl().getDecl() != 2098 OtherGD.getCanonicalDecl().getDecl()) && 2099 DiagnosedConflictingDefinitions.insert(GD).second) { 2100 getDiags().Report(D->getLocation(), 2101 diag::err_duplicate_mangled_name); 2102 getDiags().Report(OtherGD.getDecl()->getLocation(), 2103 diag::note_previous_definition); 2104 } 2105 } 2106 2107 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2108 (Entry->getType()->getElementType() == Ty)) { 2109 return Entry; 2110 } 2111 2112 // Make sure the result is of the correct type. 2113 // (If function is requested for a definition, we always need to create a new 2114 // function, not just return a bitcast.) 2115 if (!IsForDefinition) 2116 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2117 } 2118 2119 // This function doesn't have a complete type (for example, the return 2120 // type is an incomplete struct). Use a fake type instead, and make 2121 // sure not to try to set attributes. 2122 bool IsIncompleteFunction = false; 2123 2124 llvm::FunctionType *FTy; 2125 if (isa<llvm::FunctionType>(Ty)) { 2126 FTy = cast<llvm::FunctionType>(Ty); 2127 } else { 2128 FTy = llvm::FunctionType::get(VoidTy, false); 2129 IsIncompleteFunction = true; 2130 } 2131 2132 llvm::Function *F = 2133 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2134 Entry ? StringRef() : MangledName, &getModule()); 2135 2136 // If we already created a function with the same mangled name (but different 2137 // type) before, take its name and add it to the list of functions to be 2138 // replaced with F at the end of CodeGen. 2139 // 2140 // This happens if there is a prototype for a function (e.g. "int f()") and 2141 // then a definition of a different type (e.g. "int f(int x)"). 2142 if (Entry) { 2143 F->takeName(Entry); 2144 2145 // This might be an implementation of a function without a prototype, in 2146 // which case, try to do special replacement of calls which match the new 2147 // prototype. The really key thing here is that we also potentially drop 2148 // arguments from the call site so as to make a direct call, which makes the 2149 // inliner happier and suppresses a number of optimizer warnings (!) about 2150 // dropping arguments. 2151 if (!Entry->use_empty()) { 2152 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2153 Entry->removeDeadConstantUsers(); 2154 } 2155 2156 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2157 F, Entry->getType()->getElementType()->getPointerTo()); 2158 addGlobalValReplacement(Entry, BC); 2159 } 2160 2161 assert(F->getName() == MangledName && "name was uniqued!"); 2162 if (D) 2163 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2164 IsForDefinition); 2165 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2166 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2167 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2168 } 2169 2170 if (!DontDefer) { 2171 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2172 // each other bottoming out with the base dtor. Therefore we emit non-base 2173 // dtors on usage, even if there is no dtor definition in the TU. 2174 if (D && isa<CXXDestructorDecl>(D) && 2175 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2176 GD.getDtorType())) 2177 addDeferredDeclToEmit(GD); 2178 2179 // This is the first use or definition of a mangled name. If there is a 2180 // deferred decl with this name, remember that we need to emit it at the end 2181 // of the file. 2182 auto DDI = DeferredDecls.find(MangledName); 2183 if (DDI != DeferredDecls.end()) { 2184 // Move the potentially referenced deferred decl to the 2185 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2186 // don't need it anymore). 2187 addDeferredDeclToEmit(DDI->second); 2188 DeferredDecls.erase(DDI); 2189 2190 // Otherwise, there are cases we have to worry about where we're 2191 // using a declaration for which we must emit a definition but where 2192 // we might not find a top-level definition: 2193 // - member functions defined inline in their classes 2194 // - friend functions defined inline in some class 2195 // - special member functions with implicit definitions 2196 // If we ever change our AST traversal to walk into class methods, 2197 // this will be unnecessary. 2198 // 2199 // We also don't emit a definition for a function if it's going to be an 2200 // entry in a vtable, unless it's already marked as used. 2201 } else if (getLangOpts().CPlusPlus && D) { 2202 // Look for a declaration that's lexically in a record. 2203 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2204 FD = FD->getPreviousDecl()) { 2205 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2206 if (FD->doesThisDeclarationHaveABody()) { 2207 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2208 break; 2209 } 2210 } 2211 } 2212 } 2213 } 2214 2215 // Make sure the result is of the requested type. 2216 if (!IsIncompleteFunction) { 2217 assert(F->getType()->getElementType() == Ty); 2218 return F; 2219 } 2220 2221 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2222 return llvm::ConstantExpr::getBitCast(F, PTy); 2223 } 2224 2225 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2226 /// non-null, then this function will use the specified type if it has to 2227 /// create it (this occurs when we see a definition of the function). 2228 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2229 llvm::Type *Ty, 2230 bool ForVTable, 2231 bool DontDefer, 2232 ForDefinition_t IsForDefinition) { 2233 // If there was no specific requested type, just convert it now. 2234 if (!Ty) { 2235 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2236 auto CanonTy = Context.getCanonicalType(FD->getType()); 2237 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2238 } 2239 2240 StringRef MangledName = getMangledName(GD); 2241 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2242 /*IsThunk=*/false, llvm::AttributeList(), 2243 IsForDefinition); 2244 } 2245 2246 static const FunctionDecl * 2247 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2248 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2249 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2250 2251 IdentifierInfo &CII = C.Idents.get(Name); 2252 for (const auto &Result : DC->lookup(&CII)) 2253 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2254 return FD; 2255 2256 if (!C.getLangOpts().CPlusPlus) 2257 return nullptr; 2258 2259 // Demangle the premangled name from getTerminateFn() 2260 IdentifierInfo &CXXII = 2261 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2262 ? C.Idents.get("terminate") 2263 : C.Idents.get(Name); 2264 2265 for (const auto &N : {"__cxxabiv1", "std"}) { 2266 IdentifierInfo &NS = C.Idents.get(N); 2267 for (const auto &Result : DC->lookup(&NS)) { 2268 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2269 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2270 for (const auto &Result : LSD->lookup(&NS)) 2271 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2272 break; 2273 2274 if (ND) 2275 for (const auto &Result : ND->lookup(&CXXII)) 2276 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2277 return FD; 2278 } 2279 } 2280 2281 return nullptr; 2282 } 2283 2284 /// CreateRuntimeFunction - Create a new runtime function with the specified 2285 /// type and name. 2286 llvm::Constant * 2287 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2288 llvm::AttributeList ExtraAttrs, 2289 bool Local) { 2290 llvm::Constant *C = 2291 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2292 /*DontDefer=*/false, /*IsThunk=*/false, 2293 ExtraAttrs); 2294 2295 if (auto *F = dyn_cast<llvm::Function>(C)) { 2296 if (F->empty()) { 2297 F->setCallingConv(getRuntimeCC()); 2298 2299 if (!Local && getTriple().isOSBinFormatCOFF() && 2300 !getCodeGenOpts().LTOVisibilityPublicStd && 2301 !getTriple().isWindowsGNUEnvironment()) { 2302 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2303 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2304 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2305 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2306 } 2307 } 2308 } 2309 } 2310 2311 return C; 2312 } 2313 2314 /// CreateBuiltinFunction - Create a new builtin function with the specified 2315 /// type and name. 2316 llvm::Constant * 2317 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2318 llvm::AttributeList ExtraAttrs) { 2319 llvm::Constant *C = 2320 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2321 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2322 if (auto *F = dyn_cast<llvm::Function>(C)) 2323 if (F->empty()) 2324 F->setCallingConv(getBuiltinCC()); 2325 return C; 2326 } 2327 2328 /// isTypeConstant - Determine whether an object of this type can be emitted 2329 /// as a constant. 2330 /// 2331 /// If ExcludeCtor is true, the duration when the object's constructor runs 2332 /// will not be considered. The caller will need to verify that the object is 2333 /// not written to during its construction. 2334 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2335 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2336 return false; 2337 2338 if (Context.getLangOpts().CPlusPlus) { 2339 if (const CXXRecordDecl *Record 2340 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2341 return ExcludeCtor && !Record->hasMutableFields() && 2342 Record->hasTrivialDestructor(); 2343 } 2344 2345 return true; 2346 } 2347 2348 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2349 /// create and return an llvm GlobalVariable with the specified type. If there 2350 /// is something in the module with the specified name, return it potentially 2351 /// bitcasted to the right type. 2352 /// 2353 /// If D is non-null, it specifies a decl that correspond to this. This is used 2354 /// to set the attributes on the global when it is first created. 2355 /// 2356 /// If IsForDefinition is true, it is guranteed that an actual global with 2357 /// type Ty will be returned, not conversion of a variable with the same 2358 /// mangled name but some other type. 2359 llvm::Constant * 2360 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2361 llvm::PointerType *Ty, 2362 const VarDecl *D, 2363 ForDefinition_t IsForDefinition) { 2364 // Lookup the entry, lazily creating it if necessary. 2365 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2366 if (Entry) { 2367 if (WeakRefReferences.erase(Entry)) { 2368 if (D && !D->hasAttr<WeakAttr>()) 2369 Entry->setLinkage(llvm::Function::ExternalLinkage); 2370 } 2371 2372 // Handle dropped DLL attributes. 2373 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2374 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2375 2376 if (Entry->getType() == Ty) 2377 return Entry; 2378 2379 // If there are two attempts to define the same mangled name, issue an 2380 // error. 2381 if (IsForDefinition && !Entry->isDeclaration()) { 2382 GlobalDecl OtherGD; 2383 const VarDecl *OtherD; 2384 2385 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2386 // to make sure that we issue an error only once. 2387 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2388 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2389 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2390 OtherD->hasInit() && 2391 DiagnosedConflictingDefinitions.insert(D).second) { 2392 getDiags().Report(D->getLocation(), 2393 diag::err_duplicate_mangled_name); 2394 getDiags().Report(OtherGD.getDecl()->getLocation(), 2395 diag::note_previous_definition); 2396 } 2397 } 2398 2399 // Make sure the result is of the correct type. 2400 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2401 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2402 2403 // (If global is requested for a definition, we always need to create a new 2404 // global, not just return a bitcast.) 2405 if (!IsForDefinition) 2406 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2407 } 2408 2409 auto AddrSpace = GetGlobalVarAddressSpace(D); 2410 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2411 2412 auto *GV = new llvm::GlobalVariable( 2413 getModule(), Ty->getElementType(), false, 2414 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2415 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2416 2417 // If we already created a global with the same mangled name (but different 2418 // type) before, take its name and remove it from its parent. 2419 if (Entry) { 2420 GV->takeName(Entry); 2421 2422 if (!Entry->use_empty()) { 2423 llvm::Constant *NewPtrForOldDecl = 2424 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2425 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2426 } 2427 2428 Entry->eraseFromParent(); 2429 } 2430 2431 // This is the first use or definition of a mangled name. If there is a 2432 // deferred decl with this name, remember that we need to emit it at the end 2433 // of the file. 2434 auto DDI = DeferredDecls.find(MangledName); 2435 if (DDI != DeferredDecls.end()) { 2436 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2437 // list, and remove it from DeferredDecls (since we don't need it anymore). 2438 addDeferredDeclToEmit(DDI->second); 2439 DeferredDecls.erase(DDI); 2440 } 2441 2442 // Handle things which are present even on external declarations. 2443 if (D) { 2444 // FIXME: This code is overly simple and should be merged with other global 2445 // handling. 2446 GV->setConstant(isTypeConstant(D->getType(), false)); 2447 2448 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2449 2450 setLinkageForGV(GV, D); 2451 setGlobalVisibility(GV, D, NotForDefinition); 2452 2453 if (D->getTLSKind()) { 2454 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2455 CXXThreadLocals.push_back(D); 2456 setTLSMode(GV, *D); 2457 } 2458 2459 // If required by the ABI, treat declarations of static data members with 2460 // inline initializers as definitions. 2461 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2462 EmitGlobalVarDefinition(D); 2463 } 2464 2465 // Emit section information for extern variables. 2466 if (D->hasExternalStorage()) { 2467 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2468 GV->setSection(SA->getName()); 2469 } 2470 2471 // Handle XCore specific ABI requirements. 2472 if (getTriple().getArch() == llvm::Triple::xcore && 2473 D->getLanguageLinkage() == CLanguageLinkage && 2474 D->getType().isConstant(Context) && 2475 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2476 GV->setSection(".cp.rodata"); 2477 2478 // Check if we a have a const declaration with an initializer, we may be 2479 // able to emit it as available_externally to expose it's value to the 2480 // optimizer. 2481 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2482 D->getType().isConstQualified() && !GV->hasInitializer() && 2483 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2484 const auto *Record = 2485 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2486 bool HasMutableFields = Record && Record->hasMutableFields(); 2487 if (!HasMutableFields) { 2488 const VarDecl *InitDecl; 2489 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2490 if (InitExpr) { 2491 ConstantEmitter emitter(*this); 2492 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2493 if (Init) { 2494 auto *InitType = Init->getType(); 2495 if (GV->getType()->getElementType() != InitType) { 2496 // The type of the initializer does not match the definition. 2497 // This happens when an initializer has a different type from 2498 // the type of the global (because of padding at the end of a 2499 // structure for instance). 2500 GV->setName(StringRef()); 2501 // Make a new global with the correct type, this is now guaranteed 2502 // to work. 2503 auto *NewGV = cast<llvm::GlobalVariable>( 2504 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2505 2506 // Erase the old global, since it is no longer used. 2507 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2508 GV = NewGV; 2509 } else { 2510 GV->setInitializer(Init); 2511 GV->setConstant(true); 2512 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2513 } 2514 emitter.finalize(GV); 2515 } 2516 } 2517 } 2518 } 2519 } 2520 2521 LangAS ExpectedAS = 2522 D ? D->getType().getAddressSpace() 2523 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2524 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2525 Ty->getPointerAddressSpace()); 2526 if (AddrSpace != ExpectedAS) 2527 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2528 ExpectedAS, Ty); 2529 2530 return GV; 2531 } 2532 2533 llvm::Constant * 2534 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2535 ForDefinition_t IsForDefinition) { 2536 const Decl *D = GD.getDecl(); 2537 if (isa<CXXConstructorDecl>(D)) 2538 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2539 getFromCtorType(GD.getCtorType()), 2540 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2541 /*DontDefer=*/false, IsForDefinition); 2542 else if (isa<CXXDestructorDecl>(D)) 2543 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2544 getFromDtorType(GD.getDtorType()), 2545 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2546 /*DontDefer=*/false, IsForDefinition); 2547 else if (isa<CXXMethodDecl>(D)) { 2548 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2549 cast<CXXMethodDecl>(D)); 2550 auto Ty = getTypes().GetFunctionType(*FInfo); 2551 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2552 IsForDefinition); 2553 } else if (isa<FunctionDecl>(D)) { 2554 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2555 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2556 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2557 IsForDefinition); 2558 } else 2559 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2560 IsForDefinition); 2561 } 2562 2563 llvm::GlobalVariable * 2564 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2565 llvm::Type *Ty, 2566 llvm::GlobalValue::LinkageTypes Linkage) { 2567 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2568 llvm::GlobalVariable *OldGV = nullptr; 2569 2570 if (GV) { 2571 // Check if the variable has the right type. 2572 if (GV->getType()->getElementType() == Ty) 2573 return GV; 2574 2575 // Because C++ name mangling, the only way we can end up with an already 2576 // existing global with the same name is if it has been declared extern "C". 2577 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2578 OldGV = GV; 2579 } 2580 2581 // Create a new variable. 2582 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2583 Linkage, nullptr, Name); 2584 2585 if (OldGV) { 2586 // Replace occurrences of the old variable if needed. 2587 GV->takeName(OldGV); 2588 2589 if (!OldGV->use_empty()) { 2590 llvm::Constant *NewPtrForOldDecl = 2591 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2592 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2593 } 2594 2595 OldGV->eraseFromParent(); 2596 } 2597 2598 if (supportsCOMDAT() && GV->isWeakForLinker() && 2599 !GV->hasAvailableExternallyLinkage()) 2600 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2601 2602 return GV; 2603 } 2604 2605 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2606 /// given global variable. If Ty is non-null and if the global doesn't exist, 2607 /// then it will be created with the specified type instead of whatever the 2608 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2609 /// that an actual global with type Ty will be returned, not conversion of a 2610 /// variable with the same mangled name but some other type. 2611 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2612 llvm::Type *Ty, 2613 ForDefinition_t IsForDefinition) { 2614 assert(D->hasGlobalStorage() && "Not a global variable"); 2615 QualType ASTTy = D->getType(); 2616 if (!Ty) 2617 Ty = getTypes().ConvertTypeForMem(ASTTy); 2618 2619 llvm::PointerType *PTy = 2620 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2621 2622 StringRef MangledName = getMangledName(D); 2623 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2624 } 2625 2626 /// CreateRuntimeVariable - Create a new runtime global variable with the 2627 /// specified type and name. 2628 llvm::Constant * 2629 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2630 StringRef Name) { 2631 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2632 } 2633 2634 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2635 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2636 2637 StringRef MangledName = getMangledName(D); 2638 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2639 2640 // We already have a definition, not declaration, with the same mangled name. 2641 // Emitting of declaration is not required (and actually overwrites emitted 2642 // definition). 2643 if (GV && !GV->isDeclaration()) 2644 return; 2645 2646 // If we have not seen a reference to this variable yet, place it into the 2647 // deferred declarations table to be emitted if needed later. 2648 if (!MustBeEmitted(D) && !GV) { 2649 DeferredDecls[MangledName] = D; 2650 return; 2651 } 2652 2653 // The tentative definition is the only definition. 2654 EmitGlobalVarDefinition(D); 2655 } 2656 2657 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2658 return Context.toCharUnitsFromBits( 2659 getDataLayout().getTypeStoreSizeInBits(Ty)); 2660 } 2661 2662 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2663 LangAS AddrSpace = LangAS::Default; 2664 if (LangOpts.OpenCL) { 2665 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2666 assert(AddrSpace == LangAS::opencl_global || 2667 AddrSpace == LangAS::opencl_constant || 2668 AddrSpace == LangAS::opencl_local || 2669 AddrSpace >= LangAS::FirstTargetAddressSpace); 2670 return AddrSpace; 2671 } 2672 2673 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2674 if (D && D->hasAttr<CUDAConstantAttr>()) 2675 return LangAS::cuda_constant; 2676 else if (D && D->hasAttr<CUDASharedAttr>()) 2677 return LangAS::cuda_shared; 2678 else 2679 return LangAS::cuda_device; 2680 } 2681 2682 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2683 } 2684 2685 template<typename SomeDecl> 2686 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2687 llvm::GlobalValue *GV) { 2688 if (!getLangOpts().CPlusPlus) 2689 return; 2690 2691 // Must have 'used' attribute, or else inline assembly can't rely on 2692 // the name existing. 2693 if (!D->template hasAttr<UsedAttr>()) 2694 return; 2695 2696 // Must have internal linkage and an ordinary name. 2697 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2698 return; 2699 2700 // Must be in an extern "C" context. Entities declared directly within 2701 // a record are not extern "C" even if the record is in such a context. 2702 const SomeDecl *First = D->getFirstDecl(); 2703 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2704 return; 2705 2706 // OK, this is an internal linkage entity inside an extern "C" linkage 2707 // specification. Make a note of that so we can give it the "expected" 2708 // mangled name if nothing else is using that name. 2709 std::pair<StaticExternCMap::iterator, bool> R = 2710 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2711 2712 // If we have multiple internal linkage entities with the same name 2713 // in extern "C" regions, none of them gets that name. 2714 if (!R.second) 2715 R.first->second = nullptr; 2716 } 2717 2718 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2719 if (!CGM.supportsCOMDAT()) 2720 return false; 2721 2722 if (D.hasAttr<SelectAnyAttr>()) 2723 return true; 2724 2725 GVALinkage Linkage; 2726 if (auto *VD = dyn_cast<VarDecl>(&D)) 2727 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2728 else 2729 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2730 2731 switch (Linkage) { 2732 case GVA_Internal: 2733 case GVA_AvailableExternally: 2734 case GVA_StrongExternal: 2735 return false; 2736 case GVA_DiscardableODR: 2737 case GVA_StrongODR: 2738 return true; 2739 } 2740 llvm_unreachable("No such linkage"); 2741 } 2742 2743 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2744 llvm::GlobalObject &GO) { 2745 if (!shouldBeInCOMDAT(*this, D)) 2746 return; 2747 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2748 } 2749 2750 /// Pass IsTentative as true if you want to create a tentative definition. 2751 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2752 bool IsTentative) { 2753 // OpenCL global variables of sampler type are translated to function calls, 2754 // therefore no need to be translated. 2755 QualType ASTTy = D->getType(); 2756 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2757 return; 2758 2759 llvm::Constant *Init = nullptr; 2760 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2761 bool NeedsGlobalCtor = false; 2762 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2763 2764 const VarDecl *InitDecl; 2765 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2766 2767 Optional<ConstantEmitter> emitter; 2768 2769 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2770 // as part of their declaration." Sema has already checked for 2771 // error cases, so we just need to set Init to UndefValue. 2772 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2773 D->hasAttr<CUDASharedAttr>()) 2774 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2775 else if (!InitExpr) { 2776 // This is a tentative definition; tentative definitions are 2777 // implicitly initialized with { 0 }. 2778 // 2779 // Note that tentative definitions are only emitted at the end of 2780 // a translation unit, so they should never have incomplete 2781 // type. In addition, EmitTentativeDefinition makes sure that we 2782 // never attempt to emit a tentative definition if a real one 2783 // exists. A use may still exists, however, so we still may need 2784 // to do a RAUW. 2785 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2786 Init = EmitNullConstant(D->getType()); 2787 } else { 2788 initializedGlobalDecl = GlobalDecl(D); 2789 emitter.emplace(*this); 2790 Init = emitter->tryEmitForInitializer(*InitDecl); 2791 2792 if (!Init) { 2793 QualType T = InitExpr->getType(); 2794 if (D->getType()->isReferenceType()) 2795 T = D->getType(); 2796 2797 if (getLangOpts().CPlusPlus) { 2798 Init = EmitNullConstant(T); 2799 NeedsGlobalCtor = true; 2800 } else { 2801 ErrorUnsupported(D, "static initializer"); 2802 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2803 } 2804 } else { 2805 // We don't need an initializer, so remove the entry for the delayed 2806 // initializer position (just in case this entry was delayed) if we 2807 // also don't need to register a destructor. 2808 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2809 DelayedCXXInitPosition.erase(D); 2810 } 2811 } 2812 2813 llvm::Type* InitType = Init->getType(); 2814 llvm::Constant *Entry = 2815 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2816 2817 // Strip off a bitcast if we got one back. 2818 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2819 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2820 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2821 // All zero index gep. 2822 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2823 Entry = CE->getOperand(0); 2824 } 2825 2826 // Entry is now either a Function or GlobalVariable. 2827 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2828 2829 // We have a definition after a declaration with the wrong type. 2830 // We must make a new GlobalVariable* and update everything that used OldGV 2831 // (a declaration or tentative definition) with the new GlobalVariable* 2832 // (which will be a definition). 2833 // 2834 // This happens if there is a prototype for a global (e.g. 2835 // "extern int x[];") and then a definition of a different type (e.g. 2836 // "int x[10];"). This also happens when an initializer has a different type 2837 // from the type of the global (this happens with unions). 2838 if (!GV || GV->getType()->getElementType() != InitType || 2839 GV->getType()->getAddressSpace() != 2840 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2841 2842 // Move the old entry aside so that we'll create a new one. 2843 Entry->setName(StringRef()); 2844 2845 // Make a new global with the correct type, this is now guaranteed to work. 2846 GV = cast<llvm::GlobalVariable>( 2847 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2848 2849 // Replace all uses of the old global with the new global 2850 llvm::Constant *NewPtrForOldDecl = 2851 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2852 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2853 2854 // Erase the old global, since it is no longer used. 2855 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2856 } 2857 2858 MaybeHandleStaticInExternC(D, GV); 2859 2860 if (D->hasAttr<AnnotateAttr>()) 2861 AddGlobalAnnotations(D, GV); 2862 2863 // Set the llvm linkage type as appropriate. 2864 llvm::GlobalValue::LinkageTypes Linkage = 2865 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2866 2867 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2868 // the device. [...]" 2869 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2870 // __device__, declares a variable that: [...] 2871 // Is accessible from all the threads within the grid and from the host 2872 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2873 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2874 if (GV && LangOpts.CUDA) { 2875 if (LangOpts.CUDAIsDevice) { 2876 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2877 GV->setExternallyInitialized(true); 2878 } else { 2879 // Host-side shadows of external declarations of device-side 2880 // global variables become internal definitions. These have to 2881 // be internal in order to prevent name conflicts with global 2882 // host variables with the same name in a different TUs. 2883 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2884 Linkage = llvm::GlobalValue::InternalLinkage; 2885 2886 // Shadow variables and their properties must be registered 2887 // with CUDA runtime. 2888 unsigned Flags = 0; 2889 if (!D->hasDefinition()) 2890 Flags |= CGCUDARuntime::ExternDeviceVar; 2891 if (D->hasAttr<CUDAConstantAttr>()) 2892 Flags |= CGCUDARuntime::ConstantDeviceVar; 2893 getCUDARuntime().registerDeviceVar(*GV, Flags); 2894 } else if (D->hasAttr<CUDASharedAttr>()) 2895 // __shared__ variables are odd. Shadows do get created, but 2896 // they are not registered with the CUDA runtime, so they 2897 // can't really be used to access their device-side 2898 // counterparts. It's not clear yet whether it's nvcc's bug or 2899 // a feature, but we've got to do the same for compatibility. 2900 Linkage = llvm::GlobalValue::InternalLinkage; 2901 } 2902 } 2903 2904 GV->setInitializer(Init); 2905 if (emitter) emitter->finalize(GV); 2906 2907 // If it is safe to mark the global 'constant', do so now. 2908 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2909 isTypeConstant(D->getType(), true)); 2910 2911 // If it is in a read-only section, mark it 'constant'. 2912 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2913 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2914 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2915 GV->setConstant(true); 2916 } 2917 2918 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2919 2920 2921 // On Darwin, if the normal linkage of a C++ thread_local variable is 2922 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2923 // copies within a linkage unit; otherwise, the backing variable has 2924 // internal linkage and all accesses should just be calls to the 2925 // Itanium-specified entry point, which has the normal linkage of the 2926 // variable. This is to preserve the ability to change the implementation 2927 // behind the scenes. 2928 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2929 Context.getTargetInfo().getTriple().isOSDarwin() && 2930 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2931 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2932 Linkage = llvm::GlobalValue::InternalLinkage; 2933 2934 GV->setLinkage(Linkage); 2935 if (D->hasAttr<DLLImportAttr>()) 2936 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2937 else if (D->hasAttr<DLLExportAttr>()) 2938 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2939 else 2940 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2941 2942 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2943 // common vars aren't constant even if declared const. 2944 GV->setConstant(false); 2945 // Tentative definition of global variables may be initialized with 2946 // non-zero null pointers. In this case they should have weak linkage 2947 // since common linkage must have zero initializer and must not have 2948 // explicit section therefore cannot have non-zero initial value. 2949 if (!GV->getInitializer()->isNullValue()) 2950 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2951 } 2952 2953 setNonAliasAttributes(D, GV); 2954 2955 if (D->getTLSKind() && !GV->isThreadLocal()) { 2956 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2957 CXXThreadLocals.push_back(D); 2958 setTLSMode(GV, *D); 2959 } 2960 2961 maybeSetTrivialComdat(*D, *GV); 2962 2963 // Emit the initializer function if necessary. 2964 if (NeedsGlobalCtor || NeedsGlobalDtor) 2965 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2966 2967 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2968 2969 // Emit global variable debug information. 2970 if (CGDebugInfo *DI = getModuleDebugInfo()) 2971 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2972 DI->EmitGlobalVariable(GV, D); 2973 } 2974 2975 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2976 CodeGenModule &CGM, const VarDecl *D, 2977 bool NoCommon) { 2978 // Don't give variables common linkage if -fno-common was specified unless it 2979 // was overridden by a NoCommon attribute. 2980 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2981 return true; 2982 2983 // C11 6.9.2/2: 2984 // A declaration of an identifier for an object that has file scope without 2985 // an initializer, and without a storage-class specifier or with the 2986 // storage-class specifier static, constitutes a tentative definition. 2987 if (D->getInit() || D->hasExternalStorage()) 2988 return true; 2989 2990 // A variable cannot be both common and exist in a section. 2991 if (D->hasAttr<SectionAttr>()) 2992 return true; 2993 2994 // A variable cannot be both common and exist in a section. 2995 // We dont try to determine which is the right section in the front-end. 2996 // If no specialized section name is applicable, it will resort to default. 2997 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2998 D->hasAttr<PragmaClangDataSectionAttr>() || 2999 D->hasAttr<PragmaClangRodataSectionAttr>()) 3000 return true; 3001 3002 // Thread local vars aren't considered common linkage. 3003 if (D->getTLSKind()) 3004 return true; 3005 3006 // Tentative definitions marked with WeakImportAttr are true definitions. 3007 if (D->hasAttr<WeakImportAttr>()) 3008 return true; 3009 3010 // A variable cannot be both common and exist in a comdat. 3011 if (shouldBeInCOMDAT(CGM, *D)) 3012 return true; 3013 3014 // Declarations with a required alignment do not have common linkage in MSVC 3015 // mode. 3016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3017 if (D->hasAttr<AlignedAttr>()) 3018 return true; 3019 QualType VarType = D->getType(); 3020 if (Context.isAlignmentRequired(VarType)) 3021 return true; 3022 3023 if (const auto *RT = VarType->getAs<RecordType>()) { 3024 const RecordDecl *RD = RT->getDecl(); 3025 for (const FieldDecl *FD : RD->fields()) { 3026 if (FD->isBitField()) 3027 continue; 3028 if (FD->hasAttr<AlignedAttr>()) 3029 return true; 3030 if (Context.isAlignmentRequired(FD->getType())) 3031 return true; 3032 } 3033 } 3034 } 3035 3036 return false; 3037 } 3038 3039 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3040 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3041 if (Linkage == GVA_Internal) 3042 return llvm::Function::InternalLinkage; 3043 3044 if (D->hasAttr<WeakAttr>()) { 3045 if (IsConstantVariable) 3046 return llvm::GlobalVariable::WeakODRLinkage; 3047 else 3048 return llvm::GlobalVariable::WeakAnyLinkage; 3049 } 3050 3051 // We are guaranteed to have a strong definition somewhere else, 3052 // so we can use available_externally linkage. 3053 if (Linkage == GVA_AvailableExternally) 3054 return llvm::GlobalValue::AvailableExternallyLinkage; 3055 3056 // Note that Apple's kernel linker doesn't support symbol 3057 // coalescing, so we need to avoid linkonce and weak linkages there. 3058 // Normally, this means we just map to internal, but for explicit 3059 // instantiations we'll map to external. 3060 3061 // In C++, the compiler has to emit a definition in every translation unit 3062 // that references the function. We should use linkonce_odr because 3063 // a) if all references in this translation unit are optimized away, we 3064 // don't need to codegen it. b) if the function persists, it needs to be 3065 // merged with other definitions. c) C++ has the ODR, so we know the 3066 // definition is dependable. 3067 if (Linkage == GVA_DiscardableODR) 3068 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3069 : llvm::Function::InternalLinkage; 3070 3071 // An explicit instantiation of a template has weak linkage, since 3072 // explicit instantiations can occur in multiple translation units 3073 // and must all be equivalent. However, we are not allowed to 3074 // throw away these explicit instantiations. 3075 // 3076 // We don't currently support CUDA device code spread out across multiple TUs, 3077 // so say that CUDA templates are either external (for kernels) or internal. 3078 // This lets llvm perform aggressive inter-procedural optimizations. 3079 if (Linkage == GVA_StrongODR) { 3080 if (Context.getLangOpts().AppleKext) 3081 return llvm::Function::ExternalLinkage; 3082 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3083 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3084 : llvm::Function::InternalLinkage; 3085 return llvm::Function::WeakODRLinkage; 3086 } 3087 3088 // C++ doesn't have tentative definitions and thus cannot have common 3089 // linkage. 3090 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3091 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3092 CodeGenOpts.NoCommon)) 3093 return llvm::GlobalVariable::CommonLinkage; 3094 3095 // selectany symbols are externally visible, so use weak instead of 3096 // linkonce. MSVC optimizes away references to const selectany globals, so 3097 // all definitions should be the same and ODR linkage should be used. 3098 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3099 if (D->hasAttr<SelectAnyAttr>()) 3100 return llvm::GlobalVariable::WeakODRLinkage; 3101 3102 // Otherwise, we have strong external linkage. 3103 assert(Linkage == GVA_StrongExternal); 3104 return llvm::GlobalVariable::ExternalLinkage; 3105 } 3106 3107 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3108 const VarDecl *VD, bool IsConstant) { 3109 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3110 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3111 } 3112 3113 /// Replace the uses of a function that was declared with a non-proto type. 3114 /// We want to silently drop extra arguments from call sites 3115 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3116 llvm::Function *newFn) { 3117 // Fast path. 3118 if (old->use_empty()) return; 3119 3120 llvm::Type *newRetTy = newFn->getReturnType(); 3121 SmallVector<llvm::Value*, 4> newArgs; 3122 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3123 3124 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3125 ui != ue; ) { 3126 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3127 llvm::User *user = use->getUser(); 3128 3129 // Recognize and replace uses of bitcasts. Most calls to 3130 // unprototyped functions will use bitcasts. 3131 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3132 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3133 replaceUsesOfNonProtoConstant(bitcast, newFn); 3134 continue; 3135 } 3136 3137 // Recognize calls to the function. 3138 llvm::CallSite callSite(user); 3139 if (!callSite) continue; 3140 if (!callSite.isCallee(&*use)) continue; 3141 3142 // If the return types don't match exactly, then we can't 3143 // transform this call unless it's dead. 3144 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3145 continue; 3146 3147 // Get the call site's attribute list. 3148 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3149 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3150 3151 // If the function was passed too few arguments, don't transform. 3152 unsigned newNumArgs = newFn->arg_size(); 3153 if (callSite.arg_size() < newNumArgs) continue; 3154 3155 // If extra arguments were passed, we silently drop them. 3156 // If any of the types mismatch, we don't transform. 3157 unsigned argNo = 0; 3158 bool dontTransform = false; 3159 for (llvm::Argument &A : newFn->args()) { 3160 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3161 dontTransform = true; 3162 break; 3163 } 3164 3165 // Add any parameter attributes. 3166 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3167 argNo++; 3168 } 3169 if (dontTransform) 3170 continue; 3171 3172 // Okay, we can transform this. Create the new call instruction and copy 3173 // over the required information. 3174 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3175 3176 // Copy over any operand bundles. 3177 callSite.getOperandBundlesAsDefs(newBundles); 3178 3179 llvm::CallSite newCall; 3180 if (callSite.isCall()) { 3181 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3182 callSite.getInstruction()); 3183 } else { 3184 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3185 newCall = llvm::InvokeInst::Create(newFn, 3186 oldInvoke->getNormalDest(), 3187 oldInvoke->getUnwindDest(), 3188 newArgs, newBundles, "", 3189 callSite.getInstruction()); 3190 } 3191 newArgs.clear(); // for the next iteration 3192 3193 if (!newCall->getType()->isVoidTy()) 3194 newCall->takeName(callSite.getInstruction()); 3195 newCall.setAttributes(llvm::AttributeList::get( 3196 newFn->getContext(), oldAttrs.getFnAttributes(), 3197 oldAttrs.getRetAttributes(), newArgAttrs)); 3198 newCall.setCallingConv(callSite.getCallingConv()); 3199 3200 // Finally, remove the old call, replacing any uses with the new one. 3201 if (!callSite->use_empty()) 3202 callSite->replaceAllUsesWith(newCall.getInstruction()); 3203 3204 // Copy debug location attached to CI. 3205 if (callSite->getDebugLoc()) 3206 newCall->setDebugLoc(callSite->getDebugLoc()); 3207 3208 callSite->eraseFromParent(); 3209 } 3210 } 3211 3212 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3213 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3214 /// existing call uses of the old function in the module, this adjusts them to 3215 /// call the new function directly. 3216 /// 3217 /// This is not just a cleanup: the always_inline pass requires direct calls to 3218 /// functions to be able to inline them. If there is a bitcast in the way, it 3219 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3220 /// run at -O0. 3221 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3222 llvm::Function *NewFn) { 3223 // If we're redefining a global as a function, don't transform it. 3224 if (!isa<llvm::Function>(Old)) return; 3225 3226 replaceUsesOfNonProtoConstant(Old, NewFn); 3227 } 3228 3229 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3230 auto DK = VD->isThisDeclarationADefinition(); 3231 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3232 return; 3233 3234 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3235 // If we have a definition, this might be a deferred decl. If the 3236 // instantiation is explicit, make sure we emit it at the end. 3237 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3238 GetAddrOfGlobalVar(VD); 3239 3240 EmitTopLevelDecl(VD); 3241 } 3242 3243 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3244 llvm::GlobalValue *GV) { 3245 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3246 3247 // Compute the function info and LLVM type. 3248 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3249 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3250 3251 // Get or create the prototype for the function. 3252 if (!GV || (GV->getType()->getElementType() != Ty)) 3253 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3254 /*DontDefer=*/true, 3255 ForDefinition)); 3256 3257 // Already emitted. 3258 if (!GV->isDeclaration()) 3259 return; 3260 3261 // We need to set linkage and visibility on the function before 3262 // generating code for it because various parts of IR generation 3263 // want to propagate this information down (e.g. to local static 3264 // declarations). 3265 auto *Fn = cast<llvm::Function>(GV); 3266 setFunctionLinkage(GD, Fn); 3267 setFunctionDLLStorageClass(GD, Fn); 3268 3269 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3270 setGlobalVisibility(Fn, D, ForDefinition); 3271 3272 MaybeHandleStaticInExternC(D, Fn); 3273 3274 maybeSetTrivialComdat(*D, *Fn); 3275 3276 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3277 3278 setFunctionDefinitionAttributes(D, Fn); 3279 SetLLVMFunctionAttributesForDefinition(D, Fn); 3280 3281 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3282 AddGlobalCtor(Fn, CA->getPriority()); 3283 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3284 AddGlobalDtor(Fn, DA->getPriority()); 3285 if (D->hasAttr<AnnotateAttr>()) 3286 AddGlobalAnnotations(D, Fn); 3287 } 3288 3289 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3290 const auto *D = cast<ValueDecl>(GD.getDecl()); 3291 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3292 assert(AA && "Not an alias?"); 3293 3294 StringRef MangledName = getMangledName(GD); 3295 3296 if (AA->getAliasee() == MangledName) { 3297 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3298 return; 3299 } 3300 3301 // If there is a definition in the module, then it wins over the alias. 3302 // This is dubious, but allow it to be safe. Just ignore the alias. 3303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3304 if (Entry && !Entry->isDeclaration()) 3305 return; 3306 3307 Aliases.push_back(GD); 3308 3309 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3310 3311 // Create a reference to the named value. This ensures that it is emitted 3312 // if a deferred decl. 3313 llvm::Constant *Aliasee; 3314 if (isa<llvm::FunctionType>(DeclTy)) 3315 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3316 /*ForVTable=*/false); 3317 else 3318 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3319 llvm::PointerType::getUnqual(DeclTy), 3320 /*D=*/nullptr); 3321 3322 // Create the new alias itself, but don't set a name yet. 3323 auto *GA = llvm::GlobalAlias::create( 3324 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3325 3326 if (Entry) { 3327 if (GA->getAliasee() == Entry) { 3328 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3329 return; 3330 } 3331 3332 assert(Entry->isDeclaration()); 3333 3334 // If there is a declaration in the module, then we had an extern followed 3335 // by the alias, as in: 3336 // extern int test6(); 3337 // ... 3338 // int test6() __attribute__((alias("test7"))); 3339 // 3340 // Remove it and replace uses of it with the alias. 3341 GA->takeName(Entry); 3342 3343 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3344 Entry->getType())); 3345 Entry->eraseFromParent(); 3346 } else { 3347 GA->setName(MangledName); 3348 } 3349 3350 // Set attributes which are particular to an alias; this is a 3351 // specialization of the attributes which may be set on a global 3352 // variable/function. 3353 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3354 D->isWeakImported()) { 3355 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3356 } 3357 3358 if (const auto *VD = dyn_cast<VarDecl>(D)) 3359 if (VD->getTLSKind()) 3360 setTLSMode(GA, *VD); 3361 3362 setAliasAttributes(D, GA); 3363 } 3364 3365 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3366 const auto *D = cast<ValueDecl>(GD.getDecl()); 3367 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3368 assert(IFA && "Not an ifunc?"); 3369 3370 StringRef MangledName = getMangledName(GD); 3371 3372 if (IFA->getResolver() == MangledName) { 3373 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3374 return; 3375 } 3376 3377 // Report an error if some definition overrides ifunc. 3378 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3379 if (Entry && !Entry->isDeclaration()) { 3380 GlobalDecl OtherGD; 3381 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3382 DiagnosedConflictingDefinitions.insert(GD).second) { 3383 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3384 Diags.Report(OtherGD.getDecl()->getLocation(), 3385 diag::note_previous_definition); 3386 } 3387 return; 3388 } 3389 3390 Aliases.push_back(GD); 3391 3392 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3393 llvm::Constant *Resolver = 3394 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3395 /*ForVTable=*/false); 3396 llvm::GlobalIFunc *GIF = 3397 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3398 "", Resolver, &getModule()); 3399 if (Entry) { 3400 if (GIF->getResolver() == Entry) { 3401 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3402 return; 3403 } 3404 assert(Entry->isDeclaration()); 3405 3406 // If there is a declaration in the module, then we had an extern followed 3407 // by the ifunc, as in: 3408 // extern int test(); 3409 // ... 3410 // int test() __attribute__((ifunc("resolver"))); 3411 // 3412 // Remove it and replace uses of it with the ifunc. 3413 GIF->takeName(Entry); 3414 3415 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3416 Entry->getType())); 3417 Entry->eraseFromParent(); 3418 } else 3419 GIF->setName(MangledName); 3420 3421 SetCommonAttributes(D, GIF); 3422 } 3423 3424 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3425 ArrayRef<llvm::Type*> Tys) { 3426 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3427 Tys); 3428 } 3429 3430 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3431 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3432 const StringLiteral *Literal, bool TargetIsLSB, 3433 bool &IsUTF16, unsigned &StringLength) { 3434 StringRef String = Literal->getString(); 3435 unsigned NumBytes = String.size(); 3436 3437 // Check for simple case. 3438 if (!Literal->containsNonAsciiOrNull()) { 3439 StringLength = NumBytes; 3440 return *Map.insert(std::make_pair(String, nullptr)).first; 3441 } 3442 3443 // Otherwise, convert the UTF8 literals into a string of shorts. 3444 IsUTF16 = true; 3445 3446 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3447 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3448 llvm::UTF16 *ToPtr = &ToBuf[0]; 3449 3450 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3451 ToPtr + NumBytes, llvm::strictConversion); 3452 3453 // ConvertUTF8toUTF16 returns the length in ToPtr. 3454 StringLength = ToPtr - &ToBuf[0]; 3455 3456 // Add an explicit null. 3457 *ToPtr = 0; 3458 return *Map.insert(std::make_pair( 3459 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3460 (StringLength + 1) * 2), 3461 nullptr)).first; 3462 } 3463 3464 ConstantAddress 3465 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3466 unsigned StringLength = 0; 3467 bool isUTF16 = false; 3468 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3469 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3470 getDataLayout().isLittleEndian(), isUTF16, 3471 StringLength); 3472 3473 if (auto *C = Entry.second) 3474 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3475 3476 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3477 llvm::Constant *Zeros[] = { Zero, Zero }; 3478 3479 // If we don't already have it, get __CFConstantStringClassReference. 3480 if (!CFConstantStringClassRef) { 3481 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3482 Ty = llvm::ArrayType::get(Ty, 0); 3483 llvm::Constant *GV = 3484 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3485 3486 if (getTriple().isOSBinFormatCOFF()) { 3487 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3488 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3489 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3490 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3491 3492 const VarDecl *VD = nullptr; 3493 for (const auto &Result : DC->lookup(&II)) 3494 if ((VD = dyn_cast<VarDecl>(Result))) 3495 break; 3496 3497 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3498 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3499 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3500 } else { 3501 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3502 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3503 } 3504 } 3505 3506 // Decay array -> ptr 3507 CFConstantStringClassRef = 3508 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3509 } 3510 3511 QualType CFTy = getContext().getCFConstantStringType(); 3512 3513 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3514 3515 ConstantInitBuilder Builder(*this); 3516 auto Fields = Builder.beginStruct(STy); 3517 3518 // Class pointer. 3519 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3520 3521 // Flags. 3522 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3523 3524 // String pointer. 3525 llvm::Constant *C = nullptr; 3526 if (isUTF16) { 3527 auto Arr = llvm::makeArrayRef( 3528 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3529 Entry.first().size() / 2); 3530 C = llvm::ConstantDataArray::get(VMContext, Arr); 3531 } else { 3532 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3533 } 3534 3535 // Note: -fwritable-strings doesn't make the backing store strings of 3536 // CFStrings writable. (See <rdar://problem/10657500>) 3537 auto *GV = 3538 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3539 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3540 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3541 // Don't enforce the target's minimum global alignment, since the only use 3542 // of the string is via this class initializer. 3543 CharUnits Align = isUTF16 3544 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3545 : getContext().getTypeAlignInChars(getContext().CharTy); 3546 GV->setAlignment(Align.getQuantity()); 3547 3548 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3549 // Without it LLVM can merge the string with a non unnamed_addr one during 3550 // LTO. Doing that changes the section it ends in, which surprises ld64. 3551 if (getTriple().isOSBinFormatMachO()) 3552 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3553 : "__TEXT,__cstring,cstring_literals"); 3554 3555 // String. 3556 llvm::Constant *Str = 3557 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3558 3559 if (isUTF16) 3560 // Cast the UTF16 string to the correct type. 3561 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3562 Fields.add(Str); 3563 3564 // String length. 3565 auto Ty = getTypes().ConvertType(getContext().LongTy); 3566 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3567 3568 CharUnits Alignment = getPointerAlign(); 3569 3570 // The struct. 3571 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3572 /*isConstant=*/false, 3573 llvm::GlobalVariable::PrivateLinkage); 3574 switch (getTriple().getObjectFormat()) { 3575 case llvm::Triple::UnknownObjectFormat: 3576 llvm_unreachable("unknown file format"); 3577 case llvm::Triple::COFF: 3578 case llvm::Triple::ELF: 3579 case llvm::Triple::Wasm: 3580 GV->setSection("cfstring"); 3581 break; 3582 case llvm::Triple::MachO: 3583 GV->setSection("__DATA,__cfstring"); 3584 break; 3585 } 3586 Entry.second = GV; 3587 3588 return ConstantAddress(GV, Alignment); 3589 } 3590 3591 bool CodeGenModule::getExpressionLocationsEnabled() const { 3592 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3593 } 3594 3595 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3596 if (ObjCFastEnumerationStateType.isNull()) { 3597 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3598 D->startDefinition(); 3599 3600 QualType FieldTypes[] = { 3601 Context.UnsignedLongTy, 3602 Context.getPointerType(Context.getObjCIdType()), 3603 Context.getPointerType(Context.UnsignedLongTy), 3604 Context.getConstantArrayType(Context.UnsignedLongTy, 3605 llvm::APInt(32, 5), ArrayType::Normal, 0) 3606 }; 3607 3608 for (size_t i = 0; i < 4; ++i) { 3609 FieldDecl *Field = FieldDecl::Create(Context, 3610 D, 3611 SourceLocation(), 3612 SourceLocation(), nullptr, 3613 FieldTypes[i], /*TInfo=*/nullptr, 3614 /*BitWidth=*/nullptr, 3615 /*Mutable=*/false, 3616 ICIS_NoInit); 3617 Field->setAccess(AS_public); 3618 D->addDecl(Field); 3619 } 3620 3621 D->completeDefinition(); 3622 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3623 } 3624 3625 return ObjCFastEnumerationStateType; 3626 } 3627 3628 llvm::Constant * 3629 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3630 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3631 3632 // Don't emit it as the address of the string, emit the string data itself 3633 // as an inline array. 3634 if (E->getCharByteWidth() == 1) { 3635 SmallString<64> Str(E->getString()); 3636 3637 // Resize the string to the right size, which is indicated by its type. 3638 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3639 Str.resize(CAT->getSize().getZExtValue()); 3640 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3641 } 3642 3643 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3644 llvm::Type *ElemTy = AType->getElementType(); 3645 unsigned NumElements = AType->getNumElements(); 3646 3647 // Wide strings have either 2-byte or 4-byte elements. 3648 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3649 SmallVector<uint16_t, 32> Elements; 3650 Elements.reserve(NumElements); 3651 3652 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3653 Elements.push_back(E->getCodeUnit(i)); 3654 Elements.resize(NumElements); 3655 return llvm::ConstantDataArray::get(VMContext, Elements); 3656 } 3657 3658 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3659 SmallVector<uint32_t, 32> Elements; 3660 Elements.reserve(NumElements); 3661 3662 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3663 Elements.push_back(E->getCodeUnit(i)); 3664 Elements.resize(NumElements); 3665 return llvm::ConstantDataArray::get(VMContext, Elements); 3666 } 3667 3668 static llvm::GlobalVariable * 3669 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3670 CodeGenModule &CGM, StringRef GlobalName, 3671 CharUnits Alignment) { 3672 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3673 unsigned AddrSpace = 0; 3674 if (CGM.getLangOpts().OpenCL) 3675 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3676 3677 llvm::Module &M = CGM.getModule(); 3678 // Create a global variable for this string 3679 auto *GV = new llvm::GlobalVariable( 3680 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3681 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3682 GV->setAlignment(Alignment.getQuantity()); 3683 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3684 if (GV->isWeakForLinker()) { 3685 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3686 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3687 } 3688 3689 return GV; 3690 } 3691 3692 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3693 /// constant array for the given string literal. 3694 ConstantAddress 3695 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3696 StringRef Name) { 3697 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3698 3699 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3700 llvm::GlobalVariable **Entry = nullptr; 3701 if (!LangOpts.WritableStrings) { 3702 Entry = &ConstantStringMap[C]; 3703 if (auto GV = *Entry) { 3704 if (Alignment.getQuantity() > GV->getAlignment()) 3705 GV->setAlignment(Alignment.getQuantity()); 3706 return ConstantAddress(GV, Alignment); 3707 } 3708 } 3709 3710 SmallString<256> MangledNameBuffer; 3711 StringRef GlobalVariableName; 3712 llvm::GlobalValue::LinkageTypes LT; 3713 3714 // Mangle the string literal if the ABI allows for it. However, we cannot 3715 // do this if we are compiling with ASan or -fwritable-strings because they 3716 // rely on strings having normal linkage. 3717 if (!LangOpts.WritableStrings && 3718 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3719 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3720 llvm::raw_svector_ostream Out(MangledNameBuffer); 3721 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3722 3723 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3724 GlobalVariableName = MangledNameBuffer; 3725 } else { 3726 LT = llvm::GlobalValue::PrivateLinkage; 3727 GlobalVariableName = Name; 3728 } 3729 3730 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3731 if (Entry) 3732 *Entry = GV; 3733 3734 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3735 QualType()); 3736 return ConstantAddress(GV, Alignment); 3737 } 3738 3739 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3740 /// array for the given ObjCEncodeExpr node. 3741 ConstantAddress 3742 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3743 std::string Str; 3744 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3745 3746 return GetAddrOfConstantCString(Str); 3747 } 3748 3749 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3750 /// the literal and a terminating '\0' character. 3751 /// The result has pointer to array type. 3752 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3753 const std::string &Str, const char *GlobalName) { 3754 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3755 CharUnits Alignment = 3756 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3757 3758 llvm::Constant *C = 3759 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3760 3761 // Don't share any string literals if strings aren't constant. 3762 llvm::GlobalVariable **Entry = nullptr; 3763 if (!LangOpts.WritableStrings) { 3764 Entry = &ConstantStringMap[C]; 3765 if (auto GV = *Entry) { 3766 if (Alignment.getQuantity() > GV->getAlignment()) 3767 GV->setAlignment(Alignment.getQuantity()); 3768 return ConstantAddress(GV, Alignment); 3769 } 3770 } 3771 3772 // Get the default prefix if a name wasn't specified. 3773 if (!GlobalName) 3774 GlobalName = ".str"; 3775 // Create a global variable for this. 3776 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3777 GlobalName, Alignment); 3778 if (Entry) 3779 *Entry = GV; 3780 return ConstantAddress(GV, Alignment); 3781 } 3782 3783 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3784 const MaterializeTemporaryExpr *E, const Expr *Init) { 3785 assert((E->getStorageDuration() == SD_Static || 3786 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3787 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3788 3789 // If we're not materializing a subobject of the temporary, keep the 3790 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3791 QualType MaterializedType = Init->getType(); 3792 if (Init == E->GetTemporaryExpr()) 3793 MaterializedType = E->getType(); 3794 3795 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3796 3797 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3798 return ConstantAddress(Slot, Align); 3799 3800 // FIXME: If an externally-visible declaration extends multiple temporaries, 3801 // we need to give each temporary the same name in every translation unit (and 3802 // we also need to make the temporaries externally-visible). 3803 SmallString<256> Name; 3804 llvm::raw_svector_ostream Out(Name); 3805 getCXXABI().getMangleContext().mangleReferenceTemporary( 3806 VD, E->getManglingNumber(), Out); 3807 3808 APValue *Value = nullptr; 3809 if (E->getStorageDuration() == SD_Static) { 3810 // We might have a cached constant initializer for this temporary. Note 3811 // that this might have a different value from the value computed by 3812 // evaluating the initializer if the surrounding constant expression 3813 // modifies the temporary. 3814 Value = getContext().getMaterializedTemporaryValue(E, false); 3815 if (Value && Value->isUninit()) 3816 Value = nullptr; 3817 } 3818 3819 // Try evaluating it now, it might have a constant initializer. 3820 Expr::EvalResult EvalResult; 3821 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3822 !EvalResult.hasSideEffects()) 3823 Value = &EvalResult.Val; 3824 3825 LangAS AddrSpace = 3826 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3827 3828 Optional<ConstantEmitter> emitter; 3829 llvm::Constant *InitialValue = nullptr; 3830 bool Constant = false; 3831 llvm::Type *Type; 3832 if (Value) { 3833 // The temporary has a constant initializer, use it. 3834 emitter.emplace(*this); 3835 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3836 MaterializedType); 3837 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3838 Type = InitialValue->getType(); 3839 } else { 3840 // No initializer, the initialization will be provided when we 3841 // initialize the declaration which performed lifetime extension. 3842 Type = getTypes().ConvertTypeForMem(MaterializedType); 3843 } 3844 3845 // Create a global variable for this lifetime-extended temporary. 3846 llvm::GlobalValue::LinkageTypes Linkage = 3847 getLLVMLinkageVarDefinition(VD, Constant); 3848 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3849 const VarDecl *InitVD; 3850 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3851 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3852 // Temporaries defined inside a class get linkonce_odr linkage because the 3853 // class can be defined in multipe translation units. 3854 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3855 } else { 3856 // There is no need for this temporary to have external linkage if the 3857 // VarDecl has external linkage. 3858 Linkage = llvm::GlobalVariable::InternalLinkage; 3859 } 3860 } 3861 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3862 auto *GV = new llvm::GlobalVariable( 3863 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3864 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3865 if (emitter) emitter->finalize(GV); 3866 setGlobalVisibility(GV, VD, ForDefinition); 3867 GV->setAlignment(Align.getQuantity()); 3868 if (supportsCOMDAT() && GV->isWeakForLinker()) 3869 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3870 if (VD->getTLSKind()) 3871 setTLSMode(GV, *VD); 3872 llvm::Constant *CV = GV; 3873 if (AddrSpace != LangAS::Default) 3874 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3875 *this, GV, AddrSpace, LangAS::Default, 3876 Type->getPointerTo( 3877 getContext().getTargetAddressSpace(LangAS::Default))); 3878 MaterializedGlobalTemporaryMap[E] = CV; 3879 return ConstantAddress(CV, Align); 3880 } 3881 3882 /// EmitObjCPropertyImplementations - Emit information for synthesized 3883 /// properties for an implementation. 3884 void CodeGenModule::EmitObjCPropertyImplementations(const 3885 ObjCImplementationDecl *D) { 3886 for (const auto *PID : D->property_impls()) { 3887 // Dynamic is just for type-checking. 3888 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3889 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3890 3891 // Determine which methods need to be implemented, some may have 3892 // been overridden. Note that ::isPropertyAccessor is not the method 3893 // we want, that just indicates if the decl came from a 3894 // property. What we want to know is if the method is defined in 3895 // this implementation. 3896 if (!D->getInstanceMethod(PD->getGetterName())) 3897 CodeGenFunction(*this).GenerateObjCGetter( 3898 const_cast<ObjCImplementationDecl *>(D), PID); 3899 if (!PD->isReadOnly() && 3900 !D->getInstanceMethod(PD->getSetterName())) 3901 CodeGenFunction(*this).GenerateObjCSetter( 3902 const_cast<ObjCImplementationDecl *>(D), PID); 3903 } 3904 } 3905 } 3906 3907 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3908 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3909 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3910 ivar; ivar = ivar->getNextIvar()) 3911 if (ivar->getType().isDestructedType()) 3912 return true; 3913 3914 return false; 3915 } 3916 3917 static bool AllTrivialInitializers(CodeGenModule &CGM, 3918 ObjCImplementationDecl *D) { 3919 CodeGenFunction CGF(CGM); 3920 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3921 E = D->init_end(); B != E; ++B) { 3922 CXXCtorInitializer *CtorInitExp = *B; 3923 Expr *Init = CtorInitExp->getInit(); 3924 if (!CGF.isTrivialInitializer(Init)) 3925 return false; 3926 } 3927 return true; 3928 } 3929 3930 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3931 /// for an implementation. 3932 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3933 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3934 if (needsDestructMethod(D)) { 3935 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3936 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3937 ObjCMethodDecl *DTORMethod = 3938 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3939 cxxSelector, getContext().VoidTy, nullptr, D, 3940 /*isInstance=*/true, /*isVariadic=*/false, 3941 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3942 /*isDefined=*/false, ObjCMethodDecl::Required); 3943 D->addInstanceMethod(DTORMethod); 3944 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3945 D->setHasDestructors(true); 3946 } 3947 3948 // If the implementation doesn't have any ivar initializers, we don't need 3949 // a .cxx_construct. 3950 if (D->getNumIvarInitializers() == 0 || 3951 AllTrivialInitializers(*this, D)) 3952 return; 3953 3954 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3955 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3956 // The constructor returns 'self'. 3957 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3958 D->getLocation(), 3959 D->getLocation(), 3960 cxxSelector, 3961 getContext().getObjCIdType(), 3962 nullptr, D, /*isInstance=*/true, 3963 /*isVariadic=*/false, 3964 /*isPropertyAccessor=*/true, 3965 /*isImplicitlyDeclared=*/true, 3966 /*isDefined=*/false, 3967 ObjCMethodDecl::Required); 3968 D->addInstanceMethod(CTORMethod); 3969 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3970 D->setHasNonZeroConstructors(true); 3971 } 3972 3973 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3974 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3975 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3976 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3977 ErrorUnsupported(LSD, "linkage spec"); 3978 return; 3979 } 3980 3981 EmitDeclContext(LSD); 3982 } 3983 3984 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3985 for (auto *I : DC->decls()) { 3986 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3987 // are themselves considered "top-level", so EmitTopLevelDecl on an 3988 // ObjCImplDecl does not recursively visit them. We need to do that in 3989 // case they're nested inside another construct (LinkageSpecDecl / 3990 // ExportDecl) that does stop them from being considered "top-level". 3991 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3992 for (auto *M : OID->methods()) 3993 EmitTopLevelDecl(M); 3994 } 3995 3996 EmitTopLevelDecl(I); 3997 } 3998 } 3999 4000 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4001 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4002 // Ignore dependent declarations. 4003 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4004 return; 4005 4006 switch (D->getKind()) { 4007 case Decl::CXXConversion: 4008 case Decl::CXXMethod: 4009 case Decl::Function: 4010 // Skip function templates 4011 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4012 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4013 return; 4014 4015 EmitGlobal(cast<FunctionDecl>(D)); 4016 // Always provide some coverage mapping 4017 // even for the functions that aren't emitted. 4018 AddDeferredUnusedCoverageMapping(D); 4019 break; 4020 4021 case Decl::CXXDeductionGuide: 4022 // Function-like, but does not result in code emission. 4023 break; 4024 4025 case Decl::Var: 4026 case Decl::Decomposition: 4027 // Skip variable templates 4028 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4029 return; 4030 LLVM_FALLTHROUGH; 4031 case Decl::VarTemplateSpecialization: 4032 EmitGlobal(cast<VarDecl>(D)); 4033 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4034 for (auto *B : DD->bindings()) 4035 if (auto *HD = B->getHoldingVar()) 4036 EmitGlobal(HD); 4037 break; 4038 4039 // Indirect fields from global anonymous structs and unions can be 4040 // ignored; only the actual variable requires IR gen support. 4041 case Decl::IndirectField: 4042 break; 4043 4044 // C++ Decls 4045 case Decl::Namespace: 4046 EmitDeclContext(cast<NamespaceDecl>(D)); 4047 break; 4048 case Decl::ClassTemplateSpecialization: { 4049 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4050 if (DebugInfo && 4051 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4052 Spec->hasDefinition()) 4053 DebugInfo->completeTemplateDefinition(*Spec); 4054 } LLVM_FALLTHROUGH; 4055 case Decl::CXXRecord: 4056 if (DebugInfo) { 4057 if (auto *ES = D->getASTContext().getExternalSource()) 4058 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4059 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4060 } 4061 // Emit any static data members, they may be definitions. 4062 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4063 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4064 EmitTopLevelDecl(I); 4065 break; 4066 // No code generation needed. 4067 case Decl::UsingShadow: 4068 case Decl::ClassTemplate: 4069 case Decl::VarTemplate: 4070 case Decl::VarTemplatePartialSpecialization: 4071 case Decl::FunctionTemplate: 4072 case Decl::TypeAliasTemplate: 4073 case Decl::Block: 4074 case Decl::Empty: 4075 break; 4076 case Decl::Using: // using X; [C++] 4077 if (CGDebugInfo *DI = getModuleDebugInfo()) 4078 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4079 return; 4080 case Decl::NamespaceAlias: 4081 if (CGDebugInfo *DI = getModuleDebugInfo()) 4082 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4083 return; 4084 case Decl::UsingDirective: // using namespace X; [C++] 4085 if (CGDebugInfo *DI = getModuleDebugInfo()) 4086 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4087 return; 4088 case Decl::CXXConstructor: 4089 // Skip function templates 4090 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4091 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4092 return; 4093 4094 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4095 break; 4096 case Decl::CXXDestructor: 4097 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4098 return; 4099 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4100 break; 4101 4102 case Decl::StaticAssert: 4103 // Nothing to do. 4104 break; 4105 4106 // Objective-C Decls 4107 4108 // Forward declarations, no (immediate) code generation. 4109 case Decl::ObjCInterface: 4110 case Decl::ObjCCategory: 4111 break; 4112 4113 case Decl::ObjCProtocol: { 4114 auto *Proto = cast<ObjCProtocolDecl>(D); 4115 if (Proto->isThisDeclarationADefinition()) 4116 ObjCRuntime->GenerateProtocol(Proto); 4117 break; 4118 } 4119 4120 case Decl::ObjCCategoryImpl: 4121 // Categories have properties but don't support synthesize so we 4122 // can ignore them here. 4123 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4124 break; 4125 4126 case Decl::ObjCImplementation: { 4127 auto *OMD = cast<ObjCImplementationDecl>(D); 4128 EmitObjCPropertyImplementations(OMD); 4129 EmitObjCIvarInitializations(OMD); 4130 ObjCRuntime->GenerateClass(OMD); 4131 // Emit global variable debug information. 4132 if (CGDebugInfo *DI = getModuleDebugInfo()) 4133 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4134 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4135 OMD->getClassInterface()), OMD->getLocation()); 4136 break; 4137 } 4138 case Decl::ObjCMethod: { 4139 auto *OMD = cast<ObjCMethodDecl>(D); 4140 // If this is not a prototype, emit the body. 4141 if (OMD->getBody()) 4142 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4143 break; 4144 } 4145 case Decl::ObjCCompatibleAlias: 4146 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4147 break; 4148 4149 case Decl::PragmaComment: { 4150 const auto *PCD = cast<PragmaCommentDecl>(D); 4151 switch (PCD->getCommentKind()) { 4152 case PCK_Unknown: 4153 llvm_unreachable("unexpected pragma comment kind"); 4154 case PCK_Linker: 4155 AppendLinkerOptions(PCD->getArg()); 4156 break; 4157 case PCK_Lib: 4158 AddDependentLib(PCD->getArg()); 4159 break; 4160 case PCK_Compiler: 4161 case PCK_ExeStr: 4162 case PCK_User: 4163 break; // We ignore all of these. 4164 } 4165 break; 4166 } 4167 4168 case Decl::PragmaDetectMismatch: { 4169 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4170 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4171 break; 4172 } 4173 4174 case Decl::LinkageSpec: 4175 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4176 break; 4177 4178 case Decl::FileScopeAsm: { 4179 // File-scope asm is ignored during device-side CUDA compilation. 4180 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4181 break; 4182 // File-scope asm is ignored during device-side OpenMP compilation. 4183 if (LangOpts.OpenMPIsDevice) 4184 break; 4185 auto *AD = cast<FileScopeAsmDecl>(D); 4186 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4187 break; 4188 } 4189 4190 case Decl::Import: { 4191 auto *Import = cast<ImportDecl>(D); 4192 4193 // If we've already imported this module, we're done. 4194 if (!ImportedModules.insert(Import->getImportedModule())) 4195 break; 4196 4197 // Emit debug information for direct imports. 4198 if (!Import->getImportedOwningModule()) { 4199 if (CGDebugInfo *DI = getModuleDebugInfo()) 4200 DI->EmitImportDecl(*Import); 4201 } 4202 4203 // Find all of the submodules and emit the module initializers. 4204 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4205 SmallVector<clang::Module *, 16> Stack; 4206 Visited.insert(Import->getImportedModule()); 4207 Stack.push_back(Import->getImportedModule()); 4208 4209 while (!Stack.empty()) { 4210 clang::Module *Mod = Stack.pop_back_val(); 4211 if (!EmittedModuleInitializers.insert(Mod).second) 4212 continue; 4213 4214 for (auto *D : Context.getModuleInitializers(Mod)) 4215 EmitTopLevelDecl(D); 4216 4217 // Visit the submodules of this module. 4218 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4219 SubEnd = Mod->submodule_end(); 4220 Sub != SubEnd; ++Sub) { 4221 // Skip explicit children; they need to be explicitly imported to emit 4222 // the initializers. 4223 if ((*Sub)->IsExplicit) 4224 continue; 4225 4226 if (Visited.insert(*Sub).second) 4227 Stack.push_back(*Sub); 4228 } 4229 } 4230 break; 4231 } 4232 4233 case Decl::Export: 4234 EmitDeclContext(cast<ExportDecl>(D)); 4235 break; 4236 4237 case Decl::OMPThreadPrivate: 4238 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4239 break; 4240 4241 case Decl::OMPDeclareReduction: 4242 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4243 break; 4244 4245 default: 4246 // Make sure we handled everything we should, every other kind is a 4247 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4248 // function. Need to recode Decl::Kind to do that easily. 4249 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4250 break; 4251 } 4252 } 4253 4254 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4255 // Do we need to generate coverage mapping? 4256 if (!CodeGenOpts.CoverageMapping) 4257 return; 4258 switch (D->getKind()) { 4259 case Decl::CXXConversion: 4260 case Decl::CXXMethod: 4261 case Decl::Function: 4262 case Decl::ObjCMethod: 4263 case Decl::CXXConstructor: 4264 case Decl::CXXDestructor: { 4265 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4266 return; 4267 SourceManager &SM = getContext().getSourceManager(); 4268 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4269 return; 4270 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4271 if (I == DeferredEmptyCoverageMappingDecls.end()) 4272 DeferredEmptyCoverageMappingDecls[D] = true; 4273 break; 4274 } 4275 default: 4276 break; 4277 }; 4278 } 4279 4280 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4281 // Do we need to generate coverage mapping? 4282 if (!CodeGenOpts.CoverageMapping) 4283 return; 4284 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4285 if (Fn->isTemplateInstantiation()) 4286 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4287 } 4288 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4289 if (I == DeferredEmptyCoverageMappingDecls.end()) 4290 DeferredEmptyCoverageMappingDecls[D] = false; 4291 else 4292 I->second = false; 4293 } 4294 4295 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4296 // We call takeVector() here to avoid use-after-free. 4297 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4298 // we deserialize function bodies to emit coverage info for them, and that 4299 // deserializes more declarations. How should we handle that case? 4300 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4301 if (!Entry.second) 4302 continue; 4303 const Decl *D = Entry.first; 4304 switch (D->getKind()) { 4305 case Decl::CXXConversion: 4306 case Decl::CXXMethod: 4307 case Decl::Function: 4308 case Decl::ObjCMethod: { 4309 CodeGenPGO PGO(*this); 4310 GlobalDecl GD(cast<FunctionDecl>(D)); 4311 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4312 getFunctionLinkage(GD)); 4313 break; 4314 } 4315 case Decl::CXXConstructor: { 4316 CodeGenPGO PGO(*this); 4317 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4318 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4319 getFunctionLinkage(GD)); 4320 break; 4321 } 4322 case Decl::CXXDestructor: { 4323 CodeGenPGO PGO(*this); 4324 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4325 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4326 getFunctionLinkage(GD)); 4327 break; 4328 } 4329 default: 4330 break; 4331 }; 4332 } 4333 } 4334 4335 /// Turns the given pointer into a constant. 4336 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4337 const void *Ptr) { 4338 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4339 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4340 return llvm::ConstantInt::get(i64, PtrInt); 4341 } 4342 4343 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4344 llvm::NamedMDNode *&GlobalMetadata, 4345 GlobalDecl D, 4346 llvm::GlobalValue *Addr) { 4347 if (!GlobalMetadata) 4348 GlobalMetadata = 4349 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4350 4351 // TODO: should we report variant information for ctors/dtors? 4352 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4353 llvm::ConstantAsMetadata::get(GetPointerConstant( 4354 CGM.getLLVMContext(), D.getDecl()))}; 4355 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4356 } 4357 4358 /// For each function which is declared within an extern "C" region and marked 4359 /// as 'used', but has internal linkage, create an alias from the unmangled 4360 /// name to the mangled name if possible. People expect to be able to refer 4361 /// to such functions with an unmangled name from inline assembly within the 4362 /// same translation unit. 4363 void CodeGenModule::EmitStaticExternCAliases() { 4364 // Don't do anything if we're generating CUDA device code -- the NVPTX 4365 // assembly target doesn't support aliases. 4366 if (Context.getTargetInfo().getTriple().isNVPTX()) 4367 return; 4368 for (auto &I : StaticExternCValues) { 4369 IdentifierInfo *Name = I.first; 4370 llvm::GlobalValue *Val = I.second; 4371 if (Val && !getModule().getNamedValue(Name->getName())) 4372 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4373 } 4374 } 4375 4376 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4377 GlobalDecl &Result) const { 4378 auto Res = Manglings.find(MangledName); 4379 if (Res == Manglings.end()) 4380 return false; 4381 Result = Res->getValue(); 4382 return true; 4383 } 4384 4385 /// Emits metadata nodes associating all the global values in the 4386 /// current module with the Decls they came from. This is useful for 4387 /// projects using IR gen as a subroutine. 4388 /// 4389 /// Since there's currently no way to associate an MDNode directly 4390 /// with an llvm::GlobalValue, we create a global named metadata 4391 /// with the name 'clang.global.decl.ptrs'. 4392 void CodeGenModule::EmitDeclMetadata() { 4393 llvm::NamedMDNode *GlobalMetadata = nullptr; 4394 4395 for (auto &I : MangledDeclNames) { 4396 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4397 // Some mangled names don't necessarily have an associated GlobalValue 4398 // in this module, e.g. if we mangled it for DebugInfo. 4399 if (Addr) 4400 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4401 } 4402 } 4403 4404 /// Emits metadata nodes for all the local variables in the current 4405 /// function. 4406 void CodeGenFunction::EmitDeclMetadata() { 4407 if (LocalDeclMap.empty()) return; 4408 4409 llvm::LLVMContext &Context = getLLVMContext(); 4410 4411 // Find the unique metadata ID for this name. 4412 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4413 4414 llvm::NamedMDNode *GlobalMetadata = nullptr; 4415 4416 for (auto &I : LocalDeclMap) { 4417 const Decl *D = I.first; 4418 llvm::Value *Addr = I.second.getPointer(); 4419 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4420 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4421 Alloca->setMetadata( 4422 DeclPtrKind, llvm::MDNode::get( 4423 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4424 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4425 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4426 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4427 } 4428 } 4429 } 4430 4431 void CodeGenModule::EmitVersionIdentMetadata() { 4432 llvm::NamedMDNode *IdentMetadata = 4433 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4434 std::string Version = getClangFullVersion(); 4435 llvm::LLVMContext &Ctx = TheModule.getContext(); 4436 4437 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4438 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4439 } 4440 4441 void CodeGenModule::EmitTargetMetadata() { 4442 // Warning, new MangledDeclNames may be appended within this loop. 4443 // We rely on MapVector insertions adding new elements to the end 4444 // of the container. 4445 // FIXME: Move this loop into the one target that needs it, and only 4446 // loop over those declarations for which we couldn't emit the target 4447 // metadata when we emitted the declaration. 4448 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4449 auto Val = *(MangledDeclNames.begin() + I); 4450 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4451 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4452 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4453 } 4454 } 4455 4456 void CodeGenModule::EmitCoverageFile() { 4457 if (getCodeGenOpts().CoverageDataFile.empty() && 4458 getCodeGenOpts().CoverageNotesFile.empty()) 4459 return; 4460 4461 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4462 if (!CUNode) 4463 return; 4464 4465 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4466 llvm::LLVMContext &Ctx = TheModule.getContext(); 4467 auto *CoverageDataFile = 4468 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4469 auto *CoverageNotesFile = 4470 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4471 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4472 llvm::MDNode *CU = CUNode->getOperand(i); 4473 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4474 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4475 } 4476 } 4477 4478 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4479 // Sema has checked that all uuid strings are of the form 4480 // "12345678-1234-1234-1234-1234567890ab". 4481 assert(Uuid.size() == 36); 4482 for (unsigned i = 0; i < 36; ++i) { 4483 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4484 else assert(isHexDigit(Uuid[i])); 4485 } 4486 4487 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4488 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4489 4490 llvm::Constant *Field3[8]; 4491 for (unsigned Idx = 0; Idx < 8; ++Idx) 4492 Field3[Idx] = llvm::ConstantInt::get( 4493 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4494 4495 llvm::Constant *Fields[4] = { 4496 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4497 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4498 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4499 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4500 }; 4501 4502 return llvm::ConstantStruct::getAnon(Fields); 4503 } 4504 4505 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4506 bool ForEH) { 4507 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4508 // FIXME: should we even be calling this method if RTTI is disabled 4509 // and it's not for EH? 4510 if (!ForEH && !getLangOpts().RTTI) 4511 return llvm::Constant::getNullValue(Int8PtrTy); 4512 4513 if (ForEH && Ty->isObjCObjectPointerType() && 4514 LangOpts.ObjCRuntime.isGNUFamily()) 4515 return ObjCRuntime->GetEHType(Ty); 4516 4517 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4518 } 4519 4520 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4521 // Do not emit threadprivates in simd-only mode. 4522 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4523 return; 4524 for (auto RefExpr : D->varlists()) { 4525 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4526 bool PerformInit = 4527 VD->getAnyInitializer() && 4528 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4529 /*ForRef=*/false); 4530 4531 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4532 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4533 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4534 CXXGlobalInits.push_back(InitFunction); 4535 } 4536 } 4537 4538 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4539 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4540 if (InternalId) 4541 return InternalId; 4542 4543 if (isExternallyVisible(T->getLinkage())) { 4544 std::string OutName; 4545 llvm::raw_string_ostream Out(OutName); 4546 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4547 4548 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4549 } else { 4550 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4551 llvm::ArrayRef<llvm::Metadata *>()); 4552 } 4553 4554 return InternalId; 4555 } 4556 4557 // Generalize pointer types to a void pointer with the qualifiers of the 4558 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4559 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4560 // 'void *'. 4561 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4562 if (!Ty->isPointerType()) 4563 return Ty; 4564 4565 return Ctx.getPointerType( 4566 QualType(Ctx.VoidTy).withCVRQualifiers( 4567 Ty->getPointeeType().getCVRQualifiers())); 4568 } 4569 4570 // Apply type generalization to a FunctionType's return and argument types 4571 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4572 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4573 SmallVector<QualType, 8> GeneralizedParams; 4574 for (auto &Param : FnType->param_types()) 4575 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4576 4577 return Ctx.getFunctionType( 4578 GeneralizeType(Ctx, FnType->getReturnType()), 4579 GeneralizedParams, FnType->getExtProtoInfo()); 4580 } 4581 4582 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4583 return Ctx.getFunctionNoProtoType( 4584 GeneralizeType(Ctx, FnType->getReturnType())); 4585 4586 llvm_unreachable("Encountered unknown FunctionType"); 4587 } 4588 4589 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4590 T = GeneralizeFunctionType(getContext(), T); 4591 4592 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4593 if (InternalId) 4594 return InternalId; 4595 4596 if (isExternallyVisible(T->getLinkage())) { 4597 std::string OutName; 4598 llvm::raw_string_ostream Out(OutName); 4599 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4600 Out << ".generalized"; 4601 4602 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4603 } else { 4604 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4605 llvm::ArrayRef<llvm::Metadata *>()); 4606 } 4607 4608 return InternalId; 4609 } 4610 4611 /// Returns whether this module needs the "all-vtables" type identifier. 4612 bool CodeGenModule::NeedAllVtablesTypeId() const { 4613 // Returns true if at least one of vtable-based CFI checkers is enabled and 4614 // is not in the trapping mode. 4615 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4616 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4617 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4618 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4619 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4620 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4621 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4622 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4623 } 4624 4625 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4626 CharUnits Offset, 4627 const CXXRecordDecl *RD) { 4628 llvm::Metadata *MD = 4629 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4630 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4631 4632 if (CodeGenOpts.SanitizeCfiCrossDso) 4633 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4634 VTable->addTypeMetadata(Offset.getQuantity(), 4635 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4636 4637 if (NeedAllVtablesTypeId()) { 4638 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4639 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4640 } 4641 } 4642 4643 // Fills in the supplied string map with the set of target features for the 4644 // passed in function. 4645 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4646 const FunctionDecl *FD) { 4647 StringRef TargetCPU = Target.getTargetOpts().CPU; 4648 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4649 // If we have a TargetAttr build up the feature map based on that. 4650 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4651 4652 ParsedAttr.Features.erase( 4653 llvm::remove_if(ParsedAttr.Features, 4654 [&](const std::string &Feat) { 4655 return !Target.isValidFeatureName( 4656 StringRef{Feat}.substr(1)); 4657 }), 4658 ParsedAttr.Features.end()); 4659 4660 // Make a copy of the features as passed on the command line into the 4661 // beginning of the additional features from the function to override. 4662 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4663 Target.getTargetOpts().FeaturesAsWritten.begin(), 4664 Target.getTargetOpts().FeaturesAsWritten.end()); 4665 4666 if (ParsedAttr.Architecture != "" && 4667 Target.isValidCPUName(ParsedAttr.Architecture)) 4668 TargetCPU = ParsedAttr.Architecture; 4669 4670 // Now populate the feature map, first with the TargetCPU which is either 4671 // the default or a new one from the target attribute string. Then we'll use 4672 // the passed in features (FeaturesAsWritten) along with the new ones from 4673 // the attribute. 4674 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4675 ParsedAttr.Features); 4676 } else { 4677 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4678 Target.getTargetOpts().Features); 4679 } 4680 } 4681 4682 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4683 if (!SanStats) 4684 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4685 4686 return *SanStats; 4687 } 4688 llvm::Value * 4689 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4690 CodeGenFunction &CGF) { 4691 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4692 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4693 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4694 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4695 "__translate_sampler_initializer"), 4696 {C}); 4697 } 4698