1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 AllocaInt8PtrTy = Int8Ty->getPointerTo( 115 M.getDataLayout().getAllocaAddrSpace()); 116 117 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 118 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 119 120 if (LangOpts.ObjC1) 121 createObjCRuntime(); 122 if (LangOpts.OpenCL) 123 createOpenCLRuntime(); 124 if (LangOpts.OpenMP) 125 createOpenMPRuntime(); 126 if (LangOpts.CUDA) 127 createCUDARuntime(); 128 129 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 130 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 131 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 132 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 133 getCXXABI().getMangleContext())); 134 135 // If debug info or coverage generation is enabled, create the CGDebugInfo 136 // object. 137 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 138 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 139 DebugInfo.reset(new CGDebugInfo(*this)); 140 141 Block.GlobalUniqueCount = 0; 142 143 if (C.getLangOpts().ObjC1) 144 ObjCData.reset(new ObjCEntrypoints()); 145 146 if (CodeGenOpts.hasProfileClangUse()) { 147 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 148 CodeGenOpts.ProfileInstrumentUsePath); 149 if (auto E = ReaderOrErr.takeError()) { 150 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 151 "Could not read profile %0: %1"); 152 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 153 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 154 << EI.message(); 155 }); 156 } else 157 PGOReader = std::move(ReaderOrErr.get()); 158 } 159 160 // If coverage mapping generation is enabled, create the 161 // CoverageMappingModuleGen object. 162 if (CodeGenOpts.CoverageMapping) 163 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 164 } 165 166 CodeGenModule::~CodeGenModule() {} 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 case ObjCRuntime::WatchOS: 182 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 // Select a specialized code generation class based on the target, if any. 194 // If it does not exist use the default implementation. 195 switch (getTriple().getArch()) { 196 case llvm::Triple::nvptx: 197 case llvm::Triple::nvptx64: 198 assert(getLangOpts().OpenMPIsDevice && 199 "OpenMP NVPTX is only prepared to deal with device code."); 200 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 201 break; 202 default: 203 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 204 break; 205 } 206 } 207 208 void CodeGenModule::createCUDARuntime() { 209 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 210 } 211 212 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 213 Replacements[Name] = C; 214 } 215 216 void CodeGenModule::applyReplacements() { 217 for (auto &I : Replacements) { 218 StringRef MangledName = I.first(); 219 llvm::Constant *Replacement = I.second; 220 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 221 if (!Entry) 222 continue; 223 auto *OldF = cast<llvm::Function>(Entry); 224 auto *NewF = dyn_cast<llvm::Function>(Replacement); 225 if (!NewF) { 226 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 227 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 228 } else { 229 auto *CE = cast<llvm::ConstantExpr>(Replacement); 230 assert(CE->getOpcode() == llvm::Instruction::BitCast || 231 CE->getOpcode() == llvm::Instruction::GetElementPtr); 232 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 233 } 234 } 235 236 // Replace old with new, but keep the old order. 237 OldF->replaceAllUsesWith(Replacement); 238 if (NewF) { 239 NewF->removeFromParent(); 240 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 241 NewF); 242 } 243 OldF->eraseFromParent(); 244 } 245 } 246 247 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 248 GlobalValReplacements.push_back(std::make_pair(GV, C)); 249 } 250 251 void CodeGenModule::applyGlobalValReplacements() { 252 for (auto &I : GlobalValReplacements) { 253 llvm::GlobalValue *GV = I.first; 254 llvm::Constant *C = I.second; 255 256 GV->replaceAllUsesWith(C); 257 GV->eraseFromParent(); 258 } 259 } 260 261 // This is only used in aliases that we created and we know they have a 262 // linear structure. 263 static const llvm::GlobalObject *getAliasedGlobal( 264 const llvm::GlobalIndirectSymbol &GIS) { 265 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 266 const llvm::Constant *C = &GIS; 267 for (;;) { 268 C = C->stripPointerCasts(); 269 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 270 return GO; 271 // stripPointerCasts will not walk over weak aliases. 272 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 273 if (!GIS2) 274 return nullptr; 275 if (!Visited.insert(GIS2).second) 276 return nullptr; 277 C = GIS2->getIndirectSymbol(); 278 } 279 } 280 281 void CodeGenModule::checkAliases() { 282 // Check if the constructed aliases are well formed. It is really unfortunate 283 // that we have to do this in CodeGen, but we only construct mangled names 284 // and aliases during codegen. 285 bool Error = false; 286 DiagnosticsEngine &Diags = getDiags(); 287 for (const GlobalDecl &GD : Aliases) { 288 const auto *D = cast<ValueDecl>(GD.getDecl()); 289 SourceLocation Location; 290 bool IsIFunc = D->hasAttr<IFuncAttr>(); 291 if (const Attr *A = D->getDefiningAttr()) 292 Location = A->getLocation(); 293 else 294 llvm_unreachable("Not an alias or ifunc?"); 295 StringRef MangledName = getMangledName(GD); 296 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 297 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 298 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 299 if (!GV) { 300 Error = true; 301 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 302 } else if (GV->isDeclaration()) { 303 Error = true; 304 Diags.Report(Location, diag::err_alias_to_undefined) 305 << IsIFunc << IsIFunc; 306 } else if (IsIFunc) { 307 // Check resolver function type. 308 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 309 GV->getType()->getPointerElementType()); 310 assert(FTy); 311 if (!FTy->getReturnType()->isPointerTy()) 312 Diags.Report(Location, diag::err_ifunc_resolver_return); 313 if (FTy->getNumParams()) 314 Diags.Report(Location, diag::err_ifunc_resolver_params); 315 } 316 317 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 318 llvm::GlobalValue *AliaseeGV; 319 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 320 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 321 else 322 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 323 324 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 325 StringRef AliasSection = SA->getName(); 326 if (AliasSection != AliaseeGV->getSection()) 327 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 328 << AliasSection << IsIFunc << IsIFunc; 329 } 330 331 // We have to handle alias to weak aliases in here. LLVM itself disallows 332 // this since the object semantics would not match the IL one. For 333 // compatibility with gcc we implement it by just pointing the alias 334 // to its aliasee's aliasee. We also warn, since the user is probably 335 // expecting the link to be weak. 336 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 337 if (GA->isInterposable()) { 338 Diags.Report(Location, diag::warn_alias_to_weak_alias) 339 << GV->getName() << GA->getName() << IsIFunc; 340 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 341 GA->getIndirectSymbol(), Alias->getType()); 342 Alias->setIndirectSymbol(Aliasee); 343 } 344 } 345 } 346 if (!Error) 347 return; 348 349 for (const GlobalDecl &GD : Aliases) { 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 353 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 354 Alias->eraseFromParent(); 355 } 356 } 357 358 void CodeGenModule::clear() { 359 DeferredDeclsToEmit.clear(); 360 if (OpenMPRuntime) 361 OpenMPRuntime->clear(); 362 } 363 364 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 365 StringRef MainFile) { 366 if (!hasDiagnostics()) 367 return; 368 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 369 if (MainFile.empty()) 370 MainFile = "<stdin>"; 371 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 372 } else 373 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 374 << Mismatched; 375 } 376 377 void CodeGenModule::Release() { 378 EmitDeferred(); 379 applyGlobalValReplacements(); 380 applyReplacements(); 381 checkAliases(); 382 EmitCXXGlobalInitFunc(); 383 EmitCXXGlobalDtorFunc(); 384 EmitCXXThreadLocalInitFunc(); 385 if (ObjCRuntime) 386 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 387 AddGlobalCtor(ObjCInitFunction); 388 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 389 CUDARuntime) { 390 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 391 AddGlobalCtor(CudaCtorFunction); 392 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 393 AddGlobalDtor(CudaDtorFunction); 394 } 395 if (OpenMPRuntime) 396 if (llvm::Function *OpenMPRegistrationFunction = 397 OpenMPRuntime->emitRegistrationFunction()) 398 AddGlobalCtor(OpenMPRegistrationFunction, 0); 399 if (PGOReader) { 400 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 401 if (PGOStats.hasDiagnostics()) 402 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 403 } 404 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 405 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 406 EmitGlobalAnnotations(); 407 EmitStaticExternCAliases(); 408 EmitDeferredUnusedCoverageMappings(); 409 if (CoverageMapping) 410 CoverageMapping->emit(); 411 if (CodeGenOpts.SanitizeCfiCrossDso) { 412 CodeGenFunction(*this).EmitCfiCheckFail(); 413 CodeGenFunction(*this).EmitCfiCheckStub(); 414 } 415 emitAtAvailableLinkGuard(); 416 emitLLVMUsed(); 417 if (SanStats) 418 SanStats->finish(); 419 420 if (CodeGenOpts.Autolink && 421 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 422 EmitModuleLinkOptions(); 423 } 424 425 // Record mregparm value now so it is visible through rest of codegen. 426 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 427 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 428 CodeGenOpts.NumRegisterParameters); 429 430 if (CodeGenOpts.DwarfVersion) { 431 // We actually want the latest version when there are conflicts. 432 // We can change from Warning to Latest if such mode is supported. 433 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 434 CodeGenOpts.DwarfVersion); 435 } 436 if (CodeGenOpts.EmitCodeView) { 437 // Indicate that we want CodeView in the metadata. 438 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 439 } 440 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 441 // We don't support LTO with 2 with different StrictVTablePointers 442 // FIXME: we could support it by stripping all the information introduced 443 // by StrictVTablePointers. 444 445 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 446 447 llvm::Metadata *Ops[2] = { 448 llvm::MDString::get(VMContext, "StrictVTablePointers"), 449 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 450 llvm::Type::getInt32Ty(VMContext), 1))}; 451 452 getModule().addModuleFlag(llvm::Module::Require, 453 "StrictVTablePointersRequirement", 454 llvm::MDNode::get(VMContext, Ops)); 455 } 456 if (DebugInfo) 457 // We support a single version in the linked module. The LLVM 458 // parser will drop debug info with a different version number 459 // (and warn about it, too). 460 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 461 llvm::DEBUG_METADATA_VERSION); 462 463 // We need to record the widths of enums and wchar_t, so that we can generate 464 // the correct build attributes in the ARM backend. 465 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 466 if ( Arch == llvm::Triple::arm 467 || Arch == llvm::Triple::armeb 468 || Arch == llvm::Triple::thumb 469 || Arch == llvm::Triple::thumbeb) { 470 // Width of wchar_t in bytes 471 uint64_t WCharWidth = 472 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 473 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 474 475 // The minimum width of an enum in bytes 476 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 477 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 478 } 479 480 if (CodeGenOpts.SanitizeCfiCrossDso) { 481 // Indicate that we want cross-DSO control flow integrity checks. 482 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 483 } 484 485 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 486 // Indicate whether __nvvm_reflect should be configured to flush denormal 487 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 488 // property.) 489 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 490 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 491 } 492 493 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 494 assert(PLevel < 3 && "Invalid PIC Level"); 495 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 496 if (Context.getLangOpts().PIE) 497 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 498 } 499 500 SimplifyPersonality(); 501 502 if (getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 506 EmitCoverageFile(); 507 508 if (DebugInfo) 509 DebugInfo->finalize(); 510 511 EmitVersionIdentMetadata(); 512 513 EmitTargetMetadata(); 514 } 515 516 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 517 // Make sure that this type is translated. 518 Types.UpdateCompletedType(TD); 519 } 520 521 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 522 // Make sure that this type is translated. 523 Types.RefreshTypeCacheForClass(RD); 524 } 525 526 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 527 if (!TBAA) 528 return nullptr; 529 return TBAA->getTBAAInfo(QTy); 530 } 531 532 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 533 if (!TBAA) 534 return nullptr; 535 return TBAA->getTBAAInfoForVTablePtr(); 536 } 537 538 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 539 if (!TBAA) 540 return nullptr; 541 return TBAA->getTBAAStructInfo(QTy); 542 } 543 544 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 545 llvm::MDNode *AccessN, 546 uint64_t O) { 547 if (!TBAA) 548 return nullptr; 549 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 550 } 551 552 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 553 /// and struct-path aware TBAA, the tag has the same format: 554 /// base type, access type and offset. 555 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 556 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 557 llvm::MDNode *TBAAInfo, 558 bool ConvertTypeToTag) { 559 if (ConvertTypeToTag && TBAA) 560 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 561 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 562 else 563 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 564 } 565 566 void CodeGenModule::DecorateInstructionWithInvariantGroup( 567 llvm::Instruction *I, const CXXRecordDecl *RD) { 568 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 569 llvm::MDNode::get(getLLVMContext(), {})); 570 } 571 572 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 573 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 574 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 575 } 576 577 /// ErrorUnsupported - Print out an error that codegen doesn't support the 578 /// specified stmt yet. 579 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 580 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 581 "cannot compile this %0 yet"); 582 std::string Msg = Type; 583 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 584 << Msg << S->getSourceRange(); 585 } 586 587 /// ErrorUnsupported - Print out an error that codegen doesn't support the 588 /// specified decl yet. 589 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 590 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 591 "cannot compile this %0 yet"); 592 std::string Msg = Type; 593 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 594 } 595 596 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 597 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 598 } 599 600 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 601 const NamedDecl *D) const { 602 // Internal definitions always have default visibility. 603 if (GV->hasLocalLinkage()) { 604 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 605 return; 606 } 607 608 // Set visibility for definitions. 609 LinkageInfo LV = D->getLinkageAndVisibility(); 610 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 611 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 612 } 613 614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 615 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 616 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 617 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 618 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 619 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 620 } 621 622 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 623 CodeGenOptions::TLSModel M) { 624 switch (M) { 625 case CodeGenOptions::GeneralDynamicTLSModel: 626 return llvm::GlobalVariable::GeneralDynamicTLSModel; 627 case CodeGenOptions::LocalDynamicTLSModel: 628 return llvm::GlobalVariable::LocalDynamicTLSModel; 629 case CodeGenOptions::InitialExecTLSModel: 630 return llvm::GlobalVariable::InitialExecTLSModel; 631 case CodeGenOptions::LocalExecTLSModel: 632 return llvm::GlobalVariable::LocalExecTLSModel; 633 } 634 llvm_unreachable("Invalid TLS model!"); 635 } 636 637 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 638 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 639 640 llvm::GlobalValue::ThreadLocalMode TLM; 641 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 642 643 // Override the TLS model if it is explicitly specified. 644 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 645 TLM = GetLLVMTLSModel(Attr->getModel()); 646 } 647 648 GV->setThreadLocalMode(TLM); 649 } 650 651 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 652 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 653 654 // Some ABIs don't have constructor variants. Make sure that base and 655 // complete constructors get mangled the same. 656 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 657 if (!getTarget().getCXXABI().hasConstructorVariants()) { 658 CXXCtorType OrigCtorType = GD.getCtorType(); 659 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 660 if (OrigCtorType == Ctor_Base) 661 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 662 } 663 } 664 665 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 666 if (!FoundStr.empty()) 667 return FoundStr; 668 669 const auto *ND = cast<NamedDecl>(GD.getDecl()); 670 SmallString<256> Buffer; 671 StringRef Str; 672 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 673 llvm::raw_svector_ostream Out(Buffer); 674 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 675 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 676 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 677 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 678 else 679 getCXXABI().getMangleContext().mangleName(ND, Out); 680 Str = Out.str(); 681 } else { 682 IdentifierInfo *II = ND->getIdentifier(); 683 assert(II && "Attempt to mangle unnamed decl."); 684 const auto *FD = dyn_cast<FunctionDecl>(ND); 685 686 if (FD && 687 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 688 llvm::raw_svector_ostream Out(Buffer); 689 Out << "__regcall3__" << II->getName(); 690 Str = Out.str(); 691 } else { 692 Str = II->getName(); 693 } 694 } 695 696 // Keep the first result in the case of a mangling collision. 697 auto Result = Manglings.insert(std::make_pair(Str, GD)); 698 return FoundStr = Result.first->first(); 699 } 700 701 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 702 const BlockDecl *BD) { 703 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 704 const Decl *D = GD.getDecl(); 705 706 SmallString<256> Buffer; 707 llvm::raw_svector_ostream Out(Buffer); 708 if (!D) 709 MangleCtx.mangleGlobalBlock(BD, 710 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 711 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 712 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 713 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 714 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 715 else 716 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 717 718 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 719 return Result.first->first(); 720 } 721 722 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 723 return getModule().getNamedValue(Name); 724 } 725 726 /// AddGlobalCtor - Add a function to the list that will be called before 727 /// main() runs. 728 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 729 llvm::Constant *AssociatedData) { 730 // FIXME: Type coercion of void()* types. 731 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 732 } 733 734 /// AddGlobalDtor - Add a function to the list that will be called 735 /// when the module is unloaded. 736 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 737 // FIXME: Type coercion of void()* types. 738 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 739 } 740 741 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 742 if (Fns.empty()) return; 743 744 // Ctor function type is void()*. 745 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 746 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 747 748 // Get the type of a ctor entry, { i32, void ()*, i8* }. 749 llvm::StructType *CtorStructTy = llvm::StructType::get( 750 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 751 752 // Construct the constructor and destructor arrays. 753 ConstantInitBuilder builder(*this); 754 auto ctors = builder.beginArray(CtorStructTy); 755 for (const auto &I : Fns) { 756 auto ctor = ctors.beginStruct(CtorStructTy); 757 ctor.addInt(Int32Ty, I.Priority); 758 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 759 if (I.AssociatedData) 760 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 761 else 762 ctor.addNullPointer(VoidPtrTy); 763 ctor.finishAndAddTo(ctors); 764 } 765 766 auto list = 767 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 768 /*constant*/ false, 769 llvm::GlobalValue::AppendingLinkage); 770 771 // The LTO linker doesn't seem to like it when we set an alignment 772 // on appending variables. Take it off as a workaround. 773 list->setAlignment(0); 774 775 Fns.clear(); 776 } 777 778 llvm::GlobalValue::LinkageTypes 779 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 780 const auto *D = cast<FunctionDecl>(GD.getDecl()); 781 782 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 783 784 if (isa<CXXDestructorDecl>(D) && 785 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 786 GD.getDtorType())) { 787 // Destructor variants in the Microsoft C++ ABI are always internal or 788 // linkonce_odr thunks emitted on an as-needed basis. 789 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 790 : llvm::GlobalValue::LinkOnceODRLinkage; 791 } 792 793 if (isa<CXXConstructorDecl>(D) && 794 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 795 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 796 // Our approach to inheriting constructors is fundamentally different from 797 // that used by the MS ABI, so keep our inheriting constructor thunks 798 // internal rather than trying to pick an unambiguous mangling for them. 799 return llvm::GlobalValue::InternalLinkage; 800 } 801 802 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 803 } 804 805 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 806 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 807 808 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 809 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 810 // Don't dllexport/import destructor thunks. 811 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 812 return; 813 } 814 } 815 816 if (FD->hasAttr<DLLImportAttr>()) 817 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 818 else if (FD->hasAttr<DLLExportAttr>()) 819 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 820 else 821 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 822 } 823 824 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 825 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 826 if (!MDS) return nullptr; 827 828 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 829 } 830 831 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 832 llvm::Function *F) { 833 setNonAliasAttributes(D, F); 834 } 835 836 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 837 const CGFunctionInfo &Info, 838 llvm::Function *F) { 839 unsigned CallingConv; 840 llvm::AttributeList PAL; 841 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 842 F->setAttributes(PAL); 843 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 844 } 845 846 /// Determines whether the language options require us to model 847 /// unwind exceptions. We treat -fexceptions as mandating this 848 /// except under the fragile ObjC ABI with only ObjC exceptions 849 /// enabled. This means, for example, that C with -fexceptions 850 /// enables this. 851 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 852 // If exceptions are completely disabled, obviously this is false. 853 if (!LangOpts.Exceptions) return false; 854 855 // If C++ exceptions are enabled, this is true. 856 if (LangOpts.CXXExceptions) return true; 857 858 // If ObjC exceptions are enabled, this depends on the ABI. 859 if (LangOpts.ObjCExceptions) { 860 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 861 } 862 863 return true; 864 } 865 866 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 867 llvm::Function *F) { 868 llvm::AttrBuilder B; 869 870 if (CodeGenOpts.UnwindTables) 871 B.addAttribute(llvm::Attribute::UWTable); 872 873 if (!hasUnwindExceptions(LangOpts)) 874 B.addAttribute(llvm::Attribute::NoUnwind); 875 876 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 877 B.addAttribute(llvm::Attribute::StackProtect); 878 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 879 B.addAttribute(llvm::Attribute::StackProtectStrong); 880 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 881 B.addAttribute(llvm::Attribute::StackProtectReq); 882 883 if (!D) { 884 // If we don't have a declaration to control inlining, the function isn't 885 // explicitly marked as alwaysinline for semantic reasons, and inlining is 886 // disabled, mark the function as noinline. 887 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 888 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 889 B.addAttribute(llvm::Attribute::NoInline); 890 891 F->addAttributes( 892 llvm::AttributeList::FunctionIndex, 893 llvm::AttributeList::get(F->getContext(), 894 llvm::AttributeList::FunctionIndex, B)); 895 return; 896 } 897 898 if (D->hasAttr<OptimizeNoneAttr>()) { 899 B.addAttribute(llvm::Attribute::OptimizeNone); 900 901 // OptimizeNone implies noinline; we should not be inlining such functions. 902 B.addAttribute(llvm::Attribute::NoInline); 903 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 904 "OptimizeNone and AlwaysInline on same function!"); 905 906 // We still need to handle naked functions even though optnone subsumes 907 // much of their semantics. 908 if (D->hasAttr<NakedAttr>()) 909 B.addAttribute(llvm::Attribute::Naked); 910 911 // OptimizeNone wins over OptimizeForSize and MinSize. 912 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 913 F->removeFnAttr(llvm::Attribute::MinSize); 914 } else if (D->hasAttr<NakedAttr>()) { 915 // Naked implies noinline: we should not be inlining such functions. 916 B.addAttribute(llvm::Attribute::Naked); 917 B.addAttribute(llvm::Attribute::NoInline); 918 } else if (D->hasAttr<NoDuplicateAttr>()) { 919 B.addAttribute(llvm::Attribute::NoDuplicate); 920 } else if (D->hasAttr<NoInlineAttr>()) { 921 B.addAttribute(llvm::Attribute::NoInline); 922 } else if (D->hasAttr<AlwaysInlineAttr>() && 923 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 924 // (noinline wins over always_inline, and we can't specify both in IR) 925 B.addAttribute(llvm::Attribute::AlwaysInline); 926 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 927 // If we're not inlining, then force everything that isn't always_inline to 928 // carry an explicit noinline attribute. 929 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 930 B.addAttribute(llvm::Attribute::NoInline); 931 } else { 932 // Otherwise, propagate the inline hint attribute and potentially use its 933 // absence to mark things as noinline. 934 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 935 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 936 return Redecl->isInlineSpecified(); 937 })) { 938 B.addAttribute(llvm::Attribute::InlineHint); 939 } else if (CodeGenOpts.getInlining() == 940 CodeGenOptions::OnlyHintInlining && 941 !FD->isInlined() && 942 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 943 B.addAttribute(llvm::Attribute::NoInline); 944 } 945 } 946 } 947 948 // Add other optimization related attributes if we are optimizing this 949 // function. 950 if (!D->hasAttr<OptimizeNoneAttr>()) { 951 if (D->hasAttr<ColdAttr>()) { 952 B.addAttribute(llvm::Attribute::OptimizeForSize); 953 B.addAttribute(llvm::Attribute::Cold); 954 } 955 956 if (D->hasAttr<MinSizeAttr>()) 957 B.addAttribute(llvm::Attribute::MinSize); 958 } 959 960 F->addAttributes(llvm::AttributeList::FunctionIndex, 961 llvm::AttributeList::get( 962 F->getContext(), llvm::AttributeList::FunctionIndex, B)); 963 964 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 965 if (alignment) 966 F->setAlignment(alignment); 967 968 // Some C++ ABIs require 2-byte alignment for member functions, in order to 969 // reserve a bit for differentiating between virtual and non-virtual member 970 // functions. If the current target's C++ ABI requires this and this is a 971 // member function, set its alignment accordingly. 972 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 973 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 974 F->setAlignment(2); 975 } 976 977 // In the cross-dso CFI mode, we want !type attributes on definitions only. 978 if (CodeGenOpts.SanitizeCfiCrossDso) 979 if (auto *FD = dyn_cast<FunctionDecl>(D)) 980 CreateFunctionTypeMetadata(FD, F); 981 } 982 983 void CodeGenModule::SetCommonAttributes(const Decl *D, 984 llvm::GlobalValue *GV) { 985 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 986 setGlobalVisibility(GV, ND); 987 else 988 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 989 990 if (D && D->hasAttr<UsedAttr>()) 991 addUsedGlobal(GV); 992 } 993 994 void CodeGenModule::setAliasAttributes(const Decl *D, 995 llvm::GlobalValue *GV) { 996 SetCommonAttributes(D, GV); 997 998 // Process the dllexport attribute based on whether the original definition 999 // (not necessarily the aliasee) was exported. 1000 if (D->hasAttr<DLLExportAttr>()) 1001 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1002 } 1003 1004 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1005 llvm::GlobalObject *GO) { 1006 SetCommonAttributes(D, GO); 1007 1008 if (D) 1009 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1010 GO->setSection(SA->getName()); 1011 1012 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1013 } 1014 1015 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1016 llvm::Function *F, 1017 const CGFunctionInfo &FI) { 1018 SetLLVMFunctionAttributes(D, FI, F); 1019 SetLLVMFunctionAttributesForDefinition(D, F); 1020 1021 F->setLinkage(llvm::Function::InternalLinkage); 1022 1023 setNonAliasAttributes(D, F); 1024 } 1025 1026 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1027 const NamedDecl *ND) { 1028 // Set linkage and visibility in case we never see a definition. 1029 LinkageInfo LV = ND->getLinkageAndVisibility(); 1030 if (LV.getLinkage() != ExternalLinkage) { 1031 // Don't set internal linkage on declarations. 1032 } else { 1033 if (ND->hasAttr<DLLImportAttr>()) { 1034 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1035 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1036 } else if (ND->hasAttr<DLLExportAttr>()) { 1037 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1038 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1039 // "extern_weak" is overloaded in LLVM; we probably should have 1040 // separate linkage types for this. 1041 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1042 } 1043 1044 // Set visibility on a declaration only if it's explicit. 1045 if (LV.isVisibilityExplicit()) 1046 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1047 } 1048 } 1049 1050 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1051 llvm::Function *F) { 1052 // Only if we are checking indirect calls. 1053 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1054 return; 1055 1056 // Non-static class methods are handled via vtable pointer checks elsewhere. 1057 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1058 return; 1059 1060 // Additionally, if building with cross-DSO support... 1061 if (CodeGenOpts.SanitizeCfiCrossDso) { 1062 // Skip available_externally functions. They won't be codegen'ed in the 1063 // current module anyway. 1064 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1065 return; 1066 } 1067 1068 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1069 F->addTypeMetadata(0, MD); 1070 1071 // Emit a hash-based bit set entry for cross-DSO calls. 1072 if (CodeGenOpts.SanitizeCfiCrossDso) 1073 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1074 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1075 } 1076 1077 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1078 bool IsIncompleteFunction, 1079 bool IsThunk) { 1080 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1081 // If this is an intrinsic function, set the function's attributes 1082 // to the intrinsic's attributes. 1083 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1084 return; 1085 } 1086 1087 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1088 1089 if (!IsIncompleteFunction) 1090 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1091 1092 // Add the Returned attribute for "this", except for iOS 5 and earlier 1093 // where substantial code, including the libstdc++ dylib, was compiled with 1094 // GCC and does not actually return "this". 1095 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1096 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1097 assert(!F->arg_empty() && 1098 F->arg_begin()->getType() 1099 ->canLosslesslyBitCastTo(F->getReturnType()) && 1100 "unexpected this return"); 1101 F->addAttribute(1, llvm::Attribute::Returned); 1102 } 1103 1104 // Only a few attributes are set on declarations; these may later be 1105 // overridden by a definition. 1106 1107 setLinkageAndVisibilityForGV(F, FD); 1108 1109 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1110 F->setSection(SA->getName()); 1111 1112 if (FD->isReplaceableGlobalAllocationFunction()) { 1113 // A replaceable global allocation function does not act like a builtin by 1114 // default, only if it is invoked by a new-expression or delete-expression. 1115 F->addAttribute(llvm::AttributeList::FunctionIndex, 1116 llvm::Attribute::NoBuiltin); 1117 1118 // A sane operator new returns a non-aliasing pointer. 1119 // FIXME: Also add NonNull attribute to the return value 1120 // for the non-nothrow forms? 1121 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1122 if (getCodeGenOpts().AssumeSaneOperatorNew && 1123 (Kind == OO_New || Kind == OO_Array_New)) 1124 F->addAttribute(llvm::AttributeList::ReturnIndex, 1125 llvm::Attribute::NoAlias); 1126 } 1127 1128 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1129 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1130 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1131 if (MD->isVirtual()) 1132 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1133 1134 // Don't emit entries for function declarations in the cross-DSO mode. This 1135 // is handled with better precision by the receiving DSO. 1136 if (!CodeGenOpts.SanitizeCfiCrossDso) 1137 CreateFunctionTypeMetadata(FD, F); 1138 } 1139 1140 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1141 assert(!GV->isDeclaration() && 1142 "Only globals with definition can force usage."); 1143 LLVMUsed.emplace_back(GV); 1144 } 1145 1146 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1147 assert(!GV->isDeclaration() && 1148 "Only globals with definition can force usage."); 1149 LLVMCompilerUsed.emplace_back(GV); 1150 } 1151 1152 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1153 std::vector<llvm::WeakVH> &List) { 1154 // Don't create llvm.used if there is no need. 1155 if (List.empty()) 1156 return; 1157 1158 // Convert List to what ConstantArray needs. 1159 SmallVector<llvm::Constant*, 8> UsedArray; 1160 UsedArray.resize(List.size()); 1161 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1162 UsedArray[i] = 1163 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1164 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1165 } 1166 1167 if (UsedArray.empty()) 1168 return; 1169 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1170 1171 auto *GV = new llvm::GlobalVariable( 1172 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1173 llvm::ConstantArray::get(ATy, UsedArray), Name); 1174 1175 GV->setSection("llvm.metadata"); 1176 } 1177 1178 void CodeGenModule::emitLLVMUsed() { 1179 emitUsed(*this, "llvm.used", LLVMUsed); 1180 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1181 } 1182 1183 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1184 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1185 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1186 } 1187 1188 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1189 llvm::SmallString<32> Opt; 1190 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1191 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1192 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1193 } 1194 1195 void CodeGenModule::AddDependentLib(StringRef Lib) { 1196 llvm::SmallString<24> Opt; 1197 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1198 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1199 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1200 } 1201 1202 /// \brief Add link options implied by the given module, including modules 1203 /// it depends on, using a postorder walk. 1204 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1205 SmallVectorImpl<llvm::Metadata *> &Metadata, 1206 llvm::SmallPtrSet<Module *, 16> &Visited) { 1207 // Import this module's parent. 1208 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1209 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1210 } 1211 1212 // Import this module's dependencies. 1213 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1214 if (Visited.insert(Mod->Imports[I - 1]).second) 1215 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1216 } 1217 1218 // Add linker options to link against the libraries/frameworks 1219 // described by this module. 1220 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1221 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1222 // Link against a framework. Frameworks are currently Darwin only, so we 1223 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1224 if (Mod->LinkLibraries[I-1].IsFramework) { 1225 llvm::Metadata *Args[2] = { 1226 llvm::MDString::get(Context, "-framework"), 1227 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1228 1229 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1230 continue; 1231 } 1232 1233 // Link against a library. 1234 llvm::SmallString<24> Opt; 1235 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1236 Mod->LinkLibraries[I-1].Library, Opt); 1237 auto *OptString = llvm::MDString::get(Context, Opt); 1238 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1239 } 1240 } 1241 1242 void CodeGenModule::EmitModuleLinkOptions() { 1243 // Collect the set of all of the modules we want to visit to emit link 1244 // options, which is essentially the imported modules and all of their 1245 // non-explicit child modules. 1246 llvm::SetVector<clang::Module *> LinkModules; 1247 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1248 SmallVector<clang::Module *, 16> Stack; 1249 1250 // Seed the stack with imported modules. 1251 for (Module *M : ImportedModules) { 1252 // Do not add any link flags when an implementation TU of a module imports 1253 // a header of that same module. 1254 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1255 !getLangOpts().isCompilingModule()) 1256 continue; 1257 if (Visited.insert(M).second) 1258 Stack.push_back(M); 1259 } 1260 1261 // Find all of the modules to import, making a little effort to prune 1262 // non-leaf modules. 1263 while (!Stack.empty()) { 1264 clang::Module *Mod = Stack.pop_back_val(); 1265 1266 bool AnyChildren = false; 1267 1268 // Visit the submodules of this module. 1269 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1270 SubEnd = Mod->submodule_end(); 1271 Sub != SubEnd; ++Sub) { 1272 // Skip explicit children; they need to be explicitly imported to be 1273 // linked against. 1274 if ((*Sub)->IsExplicit) 1275 continue; 1276 1277 if (Visited.insert(*Sub).second) { 1278 Stack.push_back(*Sub); 1279 AnyChildren = true; 1280 } 1281 } 1282 1283 // We didn't find any children, so add this module to the list of 1284 // modules to link against. 1285 if (!AnyChildren) { 1286 LinkModules.insert(Mod); 1287 } 1288 } 1289 1290 // Add link options for all of the imported modules in reverse topological 1291 // order. We don't do anything to try to order import link flags with respect 1292 // to linker options inserted by things like #pragma comment(). 1293 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1294 Visited.clear(); 1295 for (Module *M : LinkModules) 1296 if (Visited.insert(M).second) 1297 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1298 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1299 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1300 1301 // Add the linker options metadata flag. 1302 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1303 llvm::MDNode::get(getLLVMContext(), 1304 LinkerOptionsMetadata)); 1305 } 1306 1307 void CodeGenModule::EmitDeferred() { 1308 // Emit code for any potentially referenced deferred decls. Since a 1309 // previously unused static decl may become used during the generation of code 1310 // for a static function, iterate until no changes are made. 1311 1312 if (!DeferredVTables.empty()) { 1313 EmitDeferredVTables(); 1314 1315 // Emitting a vtable doesn't directly cause more vtables to 1316 // become deferred, although it can cause functions to be 1317 // emitted that then need those vtables. 1318 assert(DeferredVTables.empty()); 1319 } 1320 1321 // Stop if we're out of both deferred vtables and deferred declarations. 1322 if (DeferredDeclsToEmit.empty()) 1323 return; 1324 1325 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1326 // work, it will not interfere with this. 1327 std::vector<DeferredGlobal> CurDeclsToEmit; 1328 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1329 1330 for (DeferredGlobal &G : CurDeclsToEmit) { 1331 GlobalDecl D = G.GD; 1332 G.GV = nullptr; 1333 1334 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1335 // to get GlobalValue with exactly the type we need, not something that 1336 // might had been created for another decl with the same mangled name but 1337 // different type. 1338 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1339 GetAddrOfGlobal(D, ForDefinition)); 1340 1341 // In case of different address spaces, we may still get a cast, even with 1342 // IsForDefinition equal to true. Query mangled names table to get 1343 // GlobalValue. 1344 if (!GV) 1345 GV = GetGlobalValue(getMangledName(D)); 1346 1347 // Make sure GetGlobalValue returned non-null. 1348 assert(GV); 1349 1350 // Check to see if we've already emitted this. This is necessary 1351 // for a couple of reasons: first, decls can end up in the 1352 // deferred-decls queue multiple times, and second, decls can end 1353 // up with definitions in unusual ways (e.g. by an extern inline 1354 // function acquiring a strong function redefinition). Just 1355 // ignore these cases. 1356 if (!GV->isDeclaration()) 1357 continue; 1358 1359 // Otherwise, emit the definition and move on to the next one. 1360 EmitGlobalDefinition(D, GV); 1361 1362 // If we found out that we need to emit more decls, do that recursively. 1363 // This has the advantage that the decls are emitted in a DFS and related 1364 // ones are close together, which is convenient for testing. 1365 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1366 EmitDeferred(); 1367 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1368 } 1369 } 1370 } 1371 1372 void CodeGenModule::EmitGlobalAnnotations() { 1373 if (Annotations.empty()) 1374 return; 1375 1376 // Create a new global variable for the ConstantStruct in the Module. 1377 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1378 Annotations[0]->getType(), Annotations.size()), Annotations); 1379 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1380 llvm::GlobalValue::AppendingLinkage, 1381 Array, "llvm.global.annotations"); 1382 gv->setSection(AnnotationSection); 1383 } 1384 1385 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1386 llvm::Constant *&AStr = AnnotationStrings[Str]; 1387 if (AStr) 1388 return AStr; 1389 1390 // Not found yet, create a new global. 1391 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1392 auto *gv = 1393 new llvm::GlobalVariable(getModule(), s->getType(), true, 1394 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1395 gv->setSection(AnnotationSection); 1396 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1397 AStr = gv; 1398 return gv; 1399 } 1400 1401 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1402 SourceManager &SM = getContext().getSourceManager(); 1403 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1404 if (PLoc.isValid()) 1405 return EmitAnnotationString(PLoc.getFilename()); 1406 return EmitAnnotationString(SM.getBufferName(Loc)); 1407 } 1408 1409 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1410 SourceManager &SM = getContext().getSourceManager(); 1411 PresumedLoc PLoc = SM.getPresumedLoc(L); 1412 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1413 SM.getExpansionLineNumber(L); 1414 return llvm::ConstantInt::get(Int32Ty, LineNo); 1415 } 1416 1417 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1418 const AnnotateAttr *AA, 1419 SourceLocation L) { 1420 // Get the globals for file name, annotation, and the line number. 1421 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1422 *UnitGV = EmitAnnotationUnit(L), 1423 *LineNoCst = EmitAnnotationLineNo(L); 1424 1425 // Create the ConstantStruct for the global annotation. 1426 llvm::Constant *Fields[4] = { 1427 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1428 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1429 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1430 LineNoCst 1431 }; 1432 return llvm::ConstantStruct::getAnon(Fields); 1433 } 1434 1435 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1436 llvm::GlobalValue *GV) { 1437 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1438 // Get the struct elements for these annotations. 1439 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1440 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1441 } 1442 1443 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1444 SourceLocation Loc) const { 1445 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1446 // Blacklist by function name. 1447 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1448 return true; 1449 // Blacklist by location. 1450 if (Loc.isValid()) 1451 return SanitizerBL.isBlacklistedLocation(Loc); 1452 // If location is unknown, this may be a compiler-generated function. Assume 1453 // it's located in the main file. 1454 auto &SM = Context.getSourceManager(); 1455 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1456 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1457 } 1458 return false; 1459 } 1460 1461 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1462 SourceLocation Loc, QualType Ty, 1463 StringRef Category) const { 1464 // For now globals can be blacklisted only in ASan and KASan. 1465 if (!LangOpts.Sanitize.hasOneOf( 1466 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1467 return false; 1468 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1469 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1470 return true; 1471 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1472 return true; 1473 // Check global type. 1474 if (!Ty.isNull()) { 1475 // Drill down the array types: if global variable of a fixed type is 1476 // blacklisted, we also don't instrument arrays of them. 1477 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1478 Ty = AT->getElementType(); 1479 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1480 // We allow to blacklist only record types (classes, structs etc.) 1481 if (Ty->isRecordType()) { 1482 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1483 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1484 return true; 1485 } 1486 } 1487 return false; 1488 } 1489 1490 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1491 StringRef Category) const { 1492 if (!LangOpts.XRayInstrument) 1493 return false; 1494 const auto &XRayFilter = getContext().getXRayFilter(); 1495 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1496 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1497 if (Loc.isValid()) 1498 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1499 if (Attr == ImbueAttr::NONE) 1500 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1501 switch (Attr) { 1502 case ImbueAttr::NONE: 1503 return false; 1504 case ImbueAttr::ALWAYS: 1505 Fn->addFnAttr("function-instrument", "xray-always"); 1506 break; 1507 case ImbueAttr::NEVER: 1508 Fn->addFnAttr("function-instrument", "xray-never"); 1509 break; 1510 } 1511 return true; 1512 } 1513 1514 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1515 // Never defer when EmitAllDecls is specified. 1516 if (LangOpts.EmitAllDecls) 1517 return true; 1518 1519 return getContext().DeclMustBeEmitted(Global); 1520 } 1521 1522 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1523 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1524 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1525 // Implicit template instantiations may change linkage if they are later 1526 // explicitly instantiated, so they should not be emitted eagerly. 1527 return false; 1528 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1529 if (Context.getInlineVariableDefinitionKind(VD) == 1530 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1531 // A definition of an inline constexpr static data member may change 1532 // linkage later if it's redeclared outside the class. 1533 return false; 1534 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1535 // codegen for global variables, because they may be marked as threadprivate. 1536 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1537 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1538 return false; 1539 1540 return true; 1541 } 1542 1543 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1544 const CXXUuidofExpr* E) { 1545 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1546 // well-formed. 1547 StringRef Uuid = E->getUuidStr(); 1548 std::string Name = "_GUID_" + Uuid.lower(); 1549 std::replace(Name.begin(), Name.end(), '-', '_'); 1550 1551 // The UUID descriptor should be pointer aligned. 1552 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1553 1554 // Look for an existing global. 1555 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1556 return ConstantAddress(GV, Alignment); 1557 1558 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1559 assert(Init && "failed to initialize as constant"); 1560 1561 auto *GV = new llvm::GlobalVariable( 1562 getModule(), Init->getType(), 1563 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1564 if (supportsCOMDAT()) 1565 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1566 return ConstantAddress(GV, Alignment); 1567 } 1568 1569 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1570 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1571 assert(AA && "No alias?"); 1572 1573 CharUnits Alignment = getContext().getDeclAlign(VD); 1574 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1575 1576 // See if there is already something with the target's name in the module. 1577 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1578 if (Entry) { 1579 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1580 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1581 return ConstantAddress(Ptr, Alignment); 1582 } 1583 1584 llvm::Constant *Aliasee; 1585 if (isa<llvm::FunctionType>(DeclTy)) 1586 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1587 GlobalDecl(cast<FunctionDecl>(VD)), 1588 /*ForVTable=*/false); 1589 else 1590 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1591 llvm::PointerType::getUnqual(DeclTy), 1592 nullptr); 1593 1594 auto *F = cast<llvm::GlobalValue>(Aliasee); 1595 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1596 WeakRefReferences.insert(F); 1597 1598 return ConstantAddress(Aliasee, Alignment); 1599 } 1600 1601 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1602 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1603 1604 // Weak references don't produce any output by themselves. 1605 if (Global->hasAttr<WeakRefAttr>()) 1606 return; 1607 1608 // If this is an alias definition (which otherwise looks like a declaration) 1609 // emit it now. 1610 if (Global->hasAttr<AliasAttr>()) 1611 return EmitAliasDefinition(GD); 1612 1613 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1614 if (Global->hasAttr<IFuncAttr>()) 1615 return emitIFuncDefinition(GD); 1616 1617 // If this is CUDA, be selective about which declarations we emit. 1618 if (LangOpts.CUDA) { 1619 if (LangOpts.CUDAIsDevice) { 1620 if (!Global->hasAttr<CUDADeviceAttr>() && 1621 !Global->hasAttr<CUDAGlobalAttr>() && 1622 !Global->hasAttr<CUDAConstantAttr>() && 1623 !Global->hasAttr<CUDASharedAttr>()) 1624 return; 1625 } else { 1626 // We need to emit host-side 'shadows' for all global 1627 // device-side variables because the CUDA runtime needs their 1628 // size and host-side address in order to provide access to 1629 // their device-side incarnations. 1630 1631 // So device-only functions are the only things we skip. 1632 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1633 Global->hasAttr<CUDADeviceAttr>()) 1634 return; 1635 1636 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1637 "Expected Variable or Function"); 1638 } 1639 } 1640 1641 if (LangOpts.OpenMP) { 1642 // If this is OpenMP device, check if it is legal to emit this global 1643 // normally. 1644 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1645 return; 1646 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1647 if (MustBeEmitted(Global)) 1648 EmitOMPDeclareReduction(DRD); 1649 return; 1650 } 1651 } 1652 1653 // Ignore declarations, they will be emitted on their first use. 1654 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1655 // Forward declarations are emitted lazily on first use. 1656 if (!FD->doesThisDeclarationHaveABody()) { 1657 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1658 return; 1659 1660 StringRef MangledName = getMangledName(GD); 1661 1662 // Compute the function info and LLVM type. 1663 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1664 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1665 1666 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1667 /*DontDefer=*/false); 1668 return; 1669 } 1670 } else { 1671 const auto *VD = cast<VarDecl>(Global); 1672 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1673 // We need to emit device-side global CUDA variables even if a 1674 // variable does not have a definition -- we still need to define 1675 // host-side shadow for it. 1676 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1677 !VD->hasDefinition() && 1678 (VD->hasAttr<CUDAConstantAttr>() || 1679 VD->hasAttr<CUDADeviceAttr>()); 1680 if (!MustEmitForCuda && 1681 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1682 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1683 // If this declaration may have caused an inline variable definition to 1684 // change linkage, make sure that it's emitted. 1685 if (Context.getInlineVariableDefinitionKind(VD) == 1686 ASTContext::InlineVariableDefinitionKind::Strong) 1687 GetAddrOfGlobalVar(VD); 1688 return; 1689 } 1690 } 1691 1692 // Defer code generation to first use when possible, e.g. if this is an inline 1693 // function. If the global must always be emitted, do it eagerly if possible 1694 // to benefit from cache locality. 1695 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1696 // Emit the definition if it can't be deferred. 1697 EmitGlobalDefinition(GD); 1698 return; 1699 } 1700 1701 // If we're deferring emission of a C++ variable with an 1702 // initializer, remember the order in which it appeared in the file. 1703 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1704 cast<VarDecl>(Global)->hasInit()) { 1705 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1706 CXXGlobalInits.push_back(nullptr); 1707 } 1708 1709 StringRef MangledName = getMangledName(GD); 1710 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1711 // The value has already been used and should therefore be emitted. 1712 addDeferredDeclToEmit(GV, GD); 1713 } else if (MustBeEmitted(Global)) { 1714 // The value must be emitted, but cannot be emitted eagerly. 1715 assert(!MayBeEmittedEagerly(Global)); 1716 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1717 } else { 1718 // Otherwise, remember that we saw a deferred decl with this name. The 1719 // first use of the mangled name will cause it to move into 1720 // DeferredDeclsToEmit. 1721 DeferredDecls[MangledName] = GD; 1722 } 1723 } 1724 1725 // Check if T is a class type with a destructor that's not dllimport. 1726 static bool HasNonDllImportDtor(QualType T) { 1727 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1728 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1729 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1730 return true; 1731 1732 return false; 1733 } 1734 1735 namespace { 1736 struct FunctionIsDirectlyRecursive : 1737 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1738 const StringRef Name; 1739 const Builtin::Context &BI; 1740 bool Result; 1741 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1742 Name(N), BI(C), Result(false) { 1743 } 1744 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1745 1746 bool TraverseCallExpr(CallExpr *E) { 1747 const FunctionDecl *FD = E->getDirectCallee(); 1748 if (!FD) 1749 return true; 1750 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1751 if (Attr && Name == Attr->getLabel()) { 1752 Result = true; 1753 return false; 1754 } 1755 unsigned BuiltinID = FD->getBuiltinID(); 1756 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1757 return true; 1758 StringRef BuiltinName = BI.getName(BuiltinID); 1759 if (BuiltinName.startswith("__builtin_") && 1760 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1761 Result = true; 1762 return false; 1763 } 1764 return true; 1765 } 1766 }; 1767 1768 // Make sure we're not referencing non-imported vars or functions. 1769 struct DLLImportFunctionVisitor 1770 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1771 bool SafeToInline = true; 1772 1773 bool shouldVisitImplicitCode() const { return true; } 1774 1775 bool VisitVarDecl(VarDecl *VD) { 1776 if (VD->getTLSKind()) { 1777 // A thread-local variable cannot be imported. 1778 SafeToInline = false; 1779 return SafeToInline; 1780 } 1781 1782 // A variable definition might imply a destructor call. 1783 if (VD->isThisDeclarationADefinition()) 1784 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1785 1786 return SafeToInline; 1787 } 1788 1789 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1790 if (const auto *D = E->getTemporary()->getDestructor()) 1791 SafeToInline = D->hasAttr<DLLImportAttr>(); 1792 return SafeToInline; 1793 } 1794 1795 bool VisitDeclRefExpr(DeclRefExpr *E) { 1796 ValueDecl *VD = E->getDecl(); 1797 if (isa<FunctionDecl>(VD)) 1798 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1799 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1800 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1801 return SafeToInline; 1802 } 1803 1804 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1805 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1806 return SafeToInline; 1807 } 1808 1809 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1810 CXXMethodDecl *M = E->getMethodDecl(); 1811 if (!M) { 1812 // Call through a pointer to member function. This is safe to inline. 1813 SafeToInline = true; 1814 } else { 1815 SafeToInline = M->hasAttr<DLLImportAttr>(); 1816 } 1817 return SafeToInline; 1818 } 1819 1820 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1821 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1822 return SafeToInline; 1823 } 1824 1825 bool VisitCXXNewExpr(CXXNewExpr *E) { 1826 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1827 return SafeToInline; 1828 } 1829 }; 1830 } 1831 1832 // isTriviallyRecursive - Check if this function calls another 1833 // decl that, because of the asm attribute or the other decl being a builtin, 1834 // ends up pointing to itself. 1835 bool 1836 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1837 StringRef Name; 1838 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1839 // asm labels are a special kind of mangling we have to support. 1840 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1841 if (!Attr) 1842 return false; 1843 Name = Attr->getLabel(); 1844 } else { 1845 Name = FD->getName(); 1846 } 1847 1848 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1849 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1850 return Walker.Result; 1851 } 1852 1853 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1854 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1855 return true; 1856 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1857 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1858 return false; 1859 1860 if (F->hasAttr<DLLImportAttr>()) { 1861 // Check whether it would be safe to inline this dllimport function. 1862 DLLImportFunctionVisitor Visitor; 1863 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1864 if (!Visitor.SafeToInline) 1865 return false; 1866 1867 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1868 // Implicit destructor invocations aren't captured in the AST, so the 1869 // check above can't see them. Check for them manually here. 1870 for (const Decl *Member : Dtor->getParent()->decls()) 1871 if (isa<FieldDecl>(Member)) 1872 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1873 return false; 1874 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1875 if (HasNonDllImportDtor(B.getType())) 1876 return false; 1877 } 1878 } 1879 1880 // PR9614. Avoid cases where the source code is lying to us. An available 1881 // externally function should have an equivalent function somewhere else, 1882 // but a function that calls itself is clearly not equivalent to the real 1883 // implementation. 1884 // This happens in glibc's btowc and in some configure checks. 1885 return !isTriviallyRecursive(F); 1886 } 1887 1888 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1889 const auto *D = cast<ValueDecl>(GD.getDecl()); 1890 1891 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1892 Context.getSourceManager(), 1893 "Generating code for declaration"); 1894 1895 if (isa<FunctionDecl>(D)) { 1896 // At -O0, don't generate IR for functions with available_externally 1897 // linkage. 1898 if (!shouldEmitFunction(GD)) 1899 return; 1900 1901 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1902 // Make sure to emit the definition(s) before we emit the thunks. 1903 // This is necessary for the generation of certain thunks. 1904 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1905 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1906 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1907 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1908 else 1909 EmitGlobalFunctionDefinition(GD, GV); 1910 1911 if (Method->isVirtual()) 1912 getVTables().EmitThunks(GD); 1913 1914 return; 1915 } 1916 1917 return EmitGlobalFunctionDefinition(GD, GV); 1918 } 1919 1920 if (const auto *VD = dyn_cast<VarDecl>(D)) 1921 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1922 1923 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1924 } 1925 1926 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1927 llvm::Function *NewFn); 1928 1929 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1930 /// module, create and return an llvm Function with the specified type. If there 1931 /// is something in the module with the specified name, return it potentially 1932 /// bitcasted to the right type. 1933 /// 1934 /// If D is non-null, it specifies a decl that correspond to this. This is used 1935 /// to set the attributes on the function when it is first created. 1936 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1937 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1938 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1939 ForDefinition_t IsForDefinition) { 1940 const Decl *D = GD.getDecl(); 1941 1942 // Lookup the entry, lazily creating it if necessary. 1943 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1944 if (Entry) { 1945 if (WeakRefReferences.erase(Entry)) { 1946 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1947 if (FD && !FD->hasAttr<WeakAttr>()) 1948 Entry->setLinkage(llvm::Function::ExternalLinkage); 1949 } 1950 1951 // Handle dropped DLL attributes. 1952 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1953 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1954 1955 // If there are two attempts to define the same mangled name, issue an 1956 // error. 1957 if (IsForDefinition && !Entry->isDeclaration()) { 1958 GlobalDecl OtherGD; 1959 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1960 // to make sure that we issue an error only once. 1961 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1962 (GD.getCanonicalDecl().getDecl() != 1963 OtherGD.getCanonicalDecl().getDecl()) && 1964 DiagnosedConflictingDefinitions.insert(GD).second) { 1965 getDiags().Report(D->getLocation(), 1966 diag::err_duplicate_mangled_name); 1967 getDiags().Report(OtherGD.getDecl()->getLocation(), 1968 diag::note_previous_definition); 1969 } 1970 } 1971 1972 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1973 (Entry->getType()->getElementType() == Ty)) { 1974 return Entry; 1975 } 1976 1977 // Make sure the result is of the correct type. 1978 // (If function is requested for a definition, we always need to create a new 1979 // function, not just return a bitcast.) 1980 if (!IsForDefinition) 1981 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1982 } 1983 1984 // This function doesn't have a complete type (for example, the return 1985 // type is an incomplete struct). Use a fake type instead, and make 1986 // sure not to try to set attributes. 1987 bool IsIncompleteFunction = false; 1988 1989 llvm::FunctionType *FTy; 1990 if (isa<llvm::FunctionType>(Ty)) { 1991 FTy = cast<llvm::FunctionType>(Ty); 1992 } else { 1993 FTy = llvm::FunctionType::get(VoidTy, false); 1994 IsIncompleteFunction = true; 1995 } 1996 1997 llvm::Function *F = 1998 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1999 Entry ? StringRef() : MangledName, &getModule()); 2000 2001 // If we already created a function with the same mangled name (but different 2002 // type) before, take its name and add it to the list of functions to be 2003 // replaced with F at the end of CodeGen. 2004 // 2005 // This happens if there is a prototype for a function (e.g. "int f()") and 2006 // then a definition of a different type (e.g. "int f(int x)"). 2007 if (Entry) { 2008 F->takeName(Entry); 2009 2010 // This might be an implementation of a function without a prototype, in 2011 // which case, try to do special replacement of calls which match the new 2012 // prototype. The really key thing here is that we also potentially drop 2013 // arguments from the call site so as to make a direct call, which makes the 2014 // inliner happier and suppresses a number of optimizer warnings (!) about 2015 // dropping arguments. 2016 if (!Entry->use_empty()) { 2017 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2018 Entry->removeDeadConstantUsers(); 2019 } 2020 2021 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2022 F, Entry->getType()->getElementType()->getPointerTo()); 2023 addGlobalValReplacement(Entry, BC); 2024 } 2025 2026 assert(F->getName() == MangledName && "name was uniqued!"); 2027 if (D) 2028 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2029 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2030 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2031 F->addAttributes(llvm::AttributeList::FunctionIndex, 2032 llvm::AttributeList::get( 2033 VMContext, llvm::AttributeList::FunctionIndex, B)); 2034 } 2035 2036 if (!DontDefer) { 2037 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2038 // each other bottoming out with the base dtor. Therefore we emit non-base 2039 // dtors on usage, even if there is no dtor definition in the TU. 2040 if (D && isa<CXXDestructorDecl>(D) && 2041 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2042 GD.getDtorType())) 2043 addDeferredDeclToEmit(F, GD); 2044 2045 // This is the first use or definition of a mangled name. If there is a 2046 // deferred decl with this name, remember that we need to emit it at the end 2047 // of the file. 2048 auto DDI = DeferredDecls.find(MangledName); 2049 if (DDI != DeferredDecls.end()) { 2050 // Move the potentially referenced deferred decl to the 2051 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2052 // don't need it anymore). 2053 addDeferredDeclToEmit(F, DDI->second); 2054 DeferredDecls.erase(DDI); 2055 2056 // Otherwise, there are cases we have to worry about where we're 2057 // using a declaration for which we must emit a definition but where 2058 // we might not find a top-level definition: 2059 // - member functions defined inline in their classes 2060 // - friend functions defined inline in some class 2061 // - special member functions with implicit definitions 2062 // If we ever change our AST traversal to walk into class methods, 2063 // this will be unnecessary. 2064 // 2065 // We also don't emit a definition for a function if it's going to be an 2066 // entry in a vtable, unless it's already marked as used. 2067 } else if (getLangOpts().CPlusPlus && D) { 2068 // Look for a declaration that's lexically in a record. 2069 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2070 FD = FD->getPreviousDecl()) { 2071 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2072 if (FD->doesThisDeclarationHaveABody()) { 2073 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2074 break; 2075 } 2076 } 2077 } 2078 } 2079 } 2080 2081 // Make sure the result is of the requested type. 2082 if (!IsIncompleteFunction) { 2083 assert(F->getType()->getElementType() == Ty); 2084 return F; 2085 } 2086 2087 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2088 return llvm::ConstantExpr::getBitCast(F, PTy); 2089 } 2090 2091 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2092 /// non-null, then this function will use the specified type if it has to 2093 /// create it (this occurs when we see a definition of the function). 2094 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2095 llvm::Type *Ty, 2096 bool ForVTable, 2097 bool DontDefer, 2098 ForDefinition_t IsForDefinition) { 2099 // If there was no specific requested type, just convert it now. 2100 if (!Ty) { 2101 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2102 auto CanonTy = Context.getCanonicalType(FD->getType()); 2103 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2104 } 2105 2106 StringRef MangledName = getMangledName(GD); 2107 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2108 /*IsThunk=*/false, llvm::AttributeList(), 2109 IsForDefinition); 2110 } 2111 2112 static const FunctionDecl * 2113 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2114 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2115 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2116 2117 IdentifierInfo &CII = C.Idents.get(Name); 2118 for (const auto &Result : DC->lookup(&CII)) 2119 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2120 return FD; 2121 2122 if (!C.getLangOpts().CPlusPlus) 2123 return nullptr; 2124 2125 // Demangle the premangled name from getTerminateFn() 2126 IdentifierInfo &CXXII = 2127 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2128 ? C.Idents.get("terminate") 2129 : C.Idents.get(Name); 2130 2131 for (const auto &N : {"__cxxabiv1", "std"}) { 2132 IdentifierInfo &NS = C.Idents.get(N); 2133 for (const auto &Result : DC->lookup(&NS)) { 2134 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2135 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2136 for (const auto &Result : LSD->lookup(&NS)) 2137 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2138 break; 2139 2140 if (ND) 2141 for (const auto &Result : ND->lookup(&CXXII)) 2142 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2143 return FD; 2144 } 2145 } 2146 2147 return nullptr; 2148 } 2149 2150 /// CreateRuntimeFunction - Create a new runtime function with the specified 2151 /// type and name. 2152 llvm::Constant * 2153 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2154 llvm::AttributeList ExtraAttrs, 2155 bool Local) { 2156 llvm::Constant *C = 2157 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2158 /*DontDefer=*/false, /*IsThunk=*/false, 2159 ExtraAttrs); 2160 2161 if (auto *F = dyn_cast<llvm::Function>(C)) { 2162 if (F->empty()) { 2163 F->setCallingConv(getRuntimeCC()); 2164 2165 if (!Local && getTriple().isOSBinFormatCOFF() && 2166 !getCodeGenOpts().LTOVisibilityPublicStd) { 2167 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2168 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2169 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2170 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2171 } 2172 } 2173 } 2174 } 2175 2176 return C; 2177 } 2178 2179 /// CreateBuiltinFunction - Create a new builtin function with the specified 2180 /// type and name. 2181 llvm::Constant * 2182 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2183 llvm::AttributeList ExtraAttrs) { 2184 llvm::Constant *C = 2185 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2186 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2187 if (auto *F = dyn_cast<llvm::Function>(C)) 2188 if (F->empty()) 2189 F->setCallingConv(getBuiltinCC()); 2190 return C; 2191 } 2192 2193 /// isTypeConstant - Determine whether an object of this type can be emitted 2194 /// as a constant. 2195 /// 2196 /// If ExcludeCtor is true, the duration when the object's constructor runs 2197 /// will not be considered. The caller will need to verify that the object is 2198 /// not written to during its construction. 2199 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2200 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2201 return false; 2202 2203 if (Context.getLangOpts().CPlusPlus) { 2204 if (const CXXRecordDecl *Record 2205 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2206 return ExcludeCtor && !Record->hasMutableFields() && 2207 Record->hasTrivialDestructor(); 2208 } 2209 2210 return true; 2211 } 2212 2213 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2214 /// create and return an llvm GlobalVariable with the specified type. If there 2215 /// is something in the module with the specified name, return it potentially 2216 /// bitcasted to the right type. 2217 /// 2218 /// If D is non-null, it specifies a decl that correspond to this. This is used 2219 /// to set the attributes on the global when it is first created. 2220 /// 2221 /// If IsForDefinition is true, it is guranteed that an actual global with 2222 /// type Ty will be returned, not conversion of a variable with the same 2223 /// mangled name but some other type. 2224 llvm::Constant * 2225 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2226 llvm::PointerType *Ty, 2227 const VarDecl *D, 2228 ForDefinition_t IsForDefinition) { 2229 // Lookup the entry, lazily creating it if necessary. 2230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2231 if (Entry) { 2232 if (WeakRefReferences.erase(Entry)) { 2233 if (D && !D->hasAttr<WeakAttr>()) 2234 Entry->setLinkage(llvm::Function::ExternalLinkage); 2235 } 2236 2237 // Handle dropped DLL attributes. 2238 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2239 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2240 2241 if (Entry->getType() == Ty) 2242 return Entry; 2243 2244 // If there are two attempts to define the same mangled name, issue an 2245 // error. 2246 if (IsForDefinition && !Entry->isDeclaration()) { 2247 GlobalDecl OtherGD; 2248 const VarDecl *OtherD; 2249 2250 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2251 // to make sure that we issue an error only once. 2252 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2253 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2254 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2255 OtherD->hasInit() && 2256 DiagnosedConflictingDefinitions.insert(D).second) { 2257 getDiags().Report(D->getLocation(), 2258 diag::err_duplicate_mangled_name); 2259 getDiags().Report(OtherGD.getDecl()->getLocation(), 2260 diag::note_previous_definition); 2261 } 2262 } 2263 2264 // Make sure the result is of the correct type. 2265 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2266 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2267 2268 // (If global is requested for a definition, we always need to create a new 2269 // global, not just return a bitcast.) 2270 if (!IsForDefinition) 2271 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2272 } 2273 2274 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2275 auto *GV = new llvm::GlobalVariable( 2276 getModule(), Ty->getElementType(), false, 2277 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2278 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2279 2280 // If we already created a global with the same mangled name (but different 2281 // type) before, take its name and remove it from its parent. 2282 if (Entry) { 2283 GV->takeName(Entry); 2284 2285 if (!Entry->use_empty()) { 2286 llvm::Constant *NewPtrForOldDecl = 2287 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2288 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2289 } 2290 2291 Entry->eraseFromParent(); 2292 } 2293 2294 // This is the first use or definition of a mangled name. If there is a 2295 // deferred decl with this name, remember that we need to emit it at the end 2296 // of the file. 2297 auto DDI = DeferredDecls.find(MangledName); 2298 if (DDI != DeferredDecls.end()) { 2299 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2300 // list, and remove it from DeferredDecls (since we don't need it anymore). 2301 addDeferredDeclToEmit(GV, DDI->second); 2302 DeferredDecls.erase(DDI); 2303 } 2304 2305 // Handle things which are present even on external declarations. 2306 if (D) { 2307 // FIXME: This code is overly simple and should be merged with other global 2308 // handling. 2309 GV->setConstant(isTypeConstant(D->getType(), false)); 2310 2311 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2312 2313 setLinkageAndVisibilityForGV(GV, D); 2314 2315 if (D->getTLSKind()) { 2316 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2317 CXXThreadLocals.push_back(D); 2318 setTLSMode(GV, *D); 2319 } 2320 2321 // If required by the ABI, treat declarations of static data members with 2322 // inline initializers as definitions. 2323 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2324 EmitGlobalVarDefinition(D); 2325 } 2326 2327 // Handle XCore specific ABI requirements. 2328 if (getTriple().getArch() == llvm::Triple::xcore && 2329 D->getLanguageLinkage() == CLanguageLinkage && 2330 D->getType().isConstant(Context) && 2331 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2332 GV->setSection(".cp.rodata"); 2333 } 2334 2335 if (AddrSpace != Ty->getAddressSpace()) 2336 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2337 2338 return GV; 2339 } 2340 2341 llvm::Constant * 2342 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2343 ForDefinition_t IsForDefinition) { 2344 const Decl *D = GD.getDecl(); 2345 if (isa<CXXConstructorDecl>(D)) 2346 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2347 getFromCtorType(GD.getCtorType()), 2348 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2349 /*DontDefer=*/false, IsForDefinition); 2350 else if (isa<CXXDestructorDecl>(D)) 2351 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2352 getFromDtorType(GD.getDtorType()), 2353 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2354 /*DontDefer=*/false, IsForDefinition); 2355 else if (isa<CXXMethodDecl>(D)) { 2356 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2357 cast<CXXMethodDecl>(D)); 2358 auto Ty = getTypes().GetFunctionType(*FInfo); 2359 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2360 IsForDefinition); 2361 } else if (isa<FunctionDecl>(D)) { 2362 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2363 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2364 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2365 IsForDefinition); 2366 } else 2367 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2368 IsForDefinition); 2369 } 2370 2371 llvm::GlobalVariable * 2372 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2373 llvm::Type *Ty, 2374 llvm::GlobalValue::LinkageTypes Linkage) { 2375 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2376 llvm::GlobalVariable *OldGV = nullptr; 2377 2378 if (GV) { 2379 // Check if the variable has the right type. 2380 if (GV->getType()->getElementType() == Ty) 2381 return GV; 2382 2383 // Because C++ name mangling, the only way we can end up with an already 2384 // existing global with the same name is if it has been declared extern "C". 2385 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2386 OldGV = GV; 2387 } 2388 2389 // Create a new variable. 2390 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2391 Linkage, nullptr, Name); 2392 2393 if (OldGV) { 2394 // Replace occurrences of the old variable if needed. 2395 GV->takeName(OldGV); 2396 2397 if (!OldGV->use_empty()) { 2398 llvm::Constant *NewPtrForOldDecl = 2399 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2400 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2401 } 2402 2403 OldGV->eraseFromParent(); 2404 } 2405 2406 if (supportsCOMDAT() && GV->isWeakForLinker() && 2407 !GV->hasAvailableExternallyLinkage()) 2408 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2409 2410 return GV; 2411 } 2412 2413 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2414 /// given global variable. If Ty is non-null and if the global doesn't exist, 2415 /// then it will be created with the specified type instead of whatever the 2416 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2417 /// that an actual global with type Ty will be returned, not conversion of a 2418 /// variable with the same mangled name but some other type. 2419 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2420 llvm::Type *Ty, 2421 ForDefinition_t IsForDefinition) { 2422 assert(D->hasGlobalStorage() && "Not a global variable"); 2423 QualType ASTTy = D->getType(); 2424 if (!Ty) 2425 Ty = getTypes().ConvertTypeForMem(ASTTy); 2426 2427 llvm::PointerType *PTy = 2428 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2429 2430 StringRef MangledName = getMangledName(D); 2431 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2432 } 2433 2434 /// CreateRuntimeVariable - Create a new runtime global variable with the 2435 /// specified type and name. 2436 llvm::Constant * 2437 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2438 StringRef Name) { 2439 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2440 } 2441 2442 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2443 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2444 2445 StringRef MangledName = getMangledName(D); 2446 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2447 2448 // We already have a definition, not declaration, with the same mangled name. 2449 // Emitting of declaration is not required (and actually overwrites emitted 2450 // definition). 2451 if (GV && !GV->isDeclaration()) 2452 return; 2453 2454 // If we have not seen a reference to this variable yet, place it into the 2455 // deferred declarations table to be emitted if needed later. 2456 if (!MustBeEmitted(D) && !GV) { 2457 DeferredDecls[MangledName] = D; 2458 return; 2459 } 2460 2461 // The tentative definition is the only definition. 2462 EmitGlobalVarDefinition(D); 2463 } 2464 2465 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2466 return Context.toCharUnitsFromBits( 2467 getDataLayout().getTypeStoreSizeInBits(Ty)); 2468 } 2469 2470 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2471 unsigned AddrSpace) { 2472 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2473 if (D->hasAttr<CUDAConstantAttr>()) 2474 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2475 else if (D->hasAttr<CUDASharedAttr>()) 2476 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2477 else 2478 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2479 } 2480 2481 return AddrSpace; 2482 } 2483 2484 template<typename SomeDecl> 2485 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2486 llvm::GlobalValue *GV) { 2487 if (!getLangOpts().CPlusPlus) 2488 return; 2489 2490 // Must have 'used' attribute, or else inline assembly can't rely on 2491 // the name existing. 2492 if (!D->template hasAttr<UsedAttr>()) 2493 return; 2494 2495 // Must have internal linkage and an ordinary name. 2496 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2497 return; 2498 2499 // Must be in an extern "C" context. Entities declared directly within 2500 // a record are not extern "C" even if the record is in such a context. 2501 const SomeDecl *First = D->getFirstDecl(); 2502 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2503 return; 2504 2505 // OK, this is an internal linkage entity inside an extern "C" linkage 2506 // specification. Make a note of that so we can give it the "expected" 2507 // mangled name if nothing else is using that name. 2508 std::pair<StaticExternCMap::iterator, bool> R = 2509 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2510 2511 // If we have multiple internal linkage entities with the same name 2512 // in extern "C" regions, none of them gets that name. 2513 if (!R.second) 2514 R.first->second = nullptr; 2515 } 2516 2517 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2518 if (!CGM.supportsCOMDAT()) 2519 return false; 2520 2521 if (D.hasAttr<SelectAnyAttr>()) 2522 return true; 2523 2524 GVALinkage Linkage; 2525 if (auto *VD = dyn_cast<VarDecl>(&D)) 2526 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2527 else 2528 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2529 2530 switch (Linkage) { 2531 case GVA_Internal: 2532 case GVA_AvailableExternally: 2533 case GVA_StrongExternal: 2534 return false; 2535 case GVA_DiscardableODR: 2536 case GVA_StrongODR: 2537 return true; 2538 } 2539 llvm_unreachable("No such linkage"); 2540 } 2541 2542 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2543 llvm::GlobalObject &GO) { 2544 if (!shouldBeInCOMDAT(*this, D)) 2545 return; 2546 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2547 } 2548 2549 /// Pass IsTentative as true if you want to create a tentative definition. 2550 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2551 bool IsTentative) { 2552 // OpenCL global variables of sampler type are translated to function calls, 2553 // therefore no need to be translated. 2554 QualType ASTTy = D->getType(); 2555 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2556 return; 2557 2558 llvm::Constant *Init = nullptr; 2559 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2560 bool NeedsGlobalCtor = false; 2561 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2562 2563 const VarDecl *InitDecl; 2564 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2565 2566 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2567 // as part of their declaration." Sema has already checked for 2568 // error cases, so we just need to set Init to UndefValue. 2569 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2570 D->hasAttr<CUDASharedAttr>()) 2571 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2572 else if (!InitExpr) { 2573 // This is a tentative definition; tentative definitions are 2574 // implicitly initialized with { 0 }. 2575 // 2576 // Note that tentative definitions are only emitted at the end of 2577 // a translation unit, so they should never have incomplete 2578 // type. In addition, EmitTentativeDefinition makes sure that we 2579 // never attempt to emit a tentative definition if a real one 2580 // exists. A use may still exists, however, so we still may need 2581 // to do a RAUW. 2582 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2583 Init = EmitNullConstant(D->getType()); 2584 } else { 2585 initializedGlobalDecl = GlobalDecl(D); 2586 Init = EmitConstantInit(*InitDecl); 2587 2588 if (!Init) { 2589 QualType T = InitExpr->getType(); 2590 if (D->getType()->isReferenceType()) 2591 T = D->getType(); 2592 2593 if (getLangOpts().CPlusPlus) { 2594 Init = EmitNullConstant(T); 2595 NeedsGlobalCtor = true; 2596 } else { 2597 ErrorUnsupported(D, "static initializer"); 2598 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2599 } 2600 } else { 2601 // We don't need an initializer, so remove the entry for the delayed 2602 // initializer position (just in case this entry was delayed) if we 2603 // also don't need to register a destructor. 2604 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2605 DelayedCXXInitPosition.erase(D); 2606 } 2607 } 2608 2609 llvm::Type* InitType = Init->getType(); 2610 llvm::Constant *Entry = 2611 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2612 2613 // Strip off a bitcast if we got one back. 2614 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2615 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2616 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2617 // All zero index gep. 2618 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2619 Entry = CE->getOperand(0); 2620 } 2621 2622 // Entry is now either a Function or GlobalVariable. 2623 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2624 2625 // We have a definition after a declaration with the wrong type. 2626 // We must make a new GlobalVariable* and update everything that used OldGV 2627 // (a declaration or tentative definition) with the new GlobalVariable* 2628 // (which will be a definition). 2629 // 2630 // This happens if there is a prototype for a global (e.g. 2631 // "extern int x[];") and then a definition of a different type (e.g. 2632 // "int x[10];"). This also happens when an initializer has a different type 2633 // from the type of the global (this happens with unions). 2634 if (!GV || 2635 GV->getType()->getElementType() != InitType || 2636 GV->getType()->getAddressSpace() != 2637 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2638 2639 // Move the old entry aside so that we'll create a new one. 2640 Entry->setName(StringRef()); 2641 2642 // Make a new global with the correct type, this is now guaranteed to work. 2643 GV = cast<llvm::GlobalVariable>( 2644 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2645 2646 // Replace all uses of the old global with the new global 2647 llvm::Constant *NewPtrForOldDecl = 2648 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2649 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2650 2651 // Erase the old global, since it is no longer used. 2652 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2653 } 2654 2655 MaybeHandleStaticInExternC(D, GV); 2656 2657 if (D->hasAttr<AnnotateAttr>()) 2658 AddGlobalAnnotations(D, GV); 2659 2660 // Set the llvm linkage type as appropriate. 2661 llvm::GlobalValue::LinkageTypes Linkage = 2662 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2663 2664 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2665 // the device. [...]" 2666 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2667 // __device__, declares a variable that: [...] 2668 // Is accessible from all the threads within the grid and from the host 2669 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2670 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2671 if (GV && LangOpts.CUDA) { 2672 if (LangOpts.CUDAIsDevice) { 2673 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2674 GV->setExternallyInitialized(true); 2675 } else { 2676 // Host-side shadows of external declarations of device-side 2677 // global variables become internal definitions. These have to 2678 // be internal in order to prevent name conflicts with global 2679 // host variables with the same name in a different TUs. 2680 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2681 Linkage = llvm::GlobalValue::InternalLinkage; 2682 2683 // Shadow variables and their properties must be registered 2684 // with CUDA runtime. 2685 unsigned Flags = 0; 2686 if (!D->hasDefinition()) 2687 Flags |= CGCUDARuntime::ExternDeviceVar; 2688 if (D->hasAttr<CUDAConstantAttr>()) 2689 Flags |= CGCUDARuntime::ConstantDeviceVar; 2690 getCUDARuntime().registerDeviceVar(*GV, Flags); 2691 } else if (D->hasAttr<CUDASharedAttr>()) 2692 // __shared__ variables are odd. Shadows do get created, but 2693 // they are not registered with the CUDA runtime, so they 2694 // can't really be used to access their device-side 2695 // counterparts. It's not clear yet whether it's nvcc's bug or 2696 // a feature, but we've got to do the same for compatibility. 2697 Linkage = llvm::GlobalValue::InternalLinkage; 2698 } 2699 } 2700 GV->setInitializer(Init); 2701 2702 // If it is safe to mark the global 'constant', do so now. 2703 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2704 isTypeConstant(D->getType(), true)); 2705 2706 // If it is in a read-only section, mark it 'constant'. 2707 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2708 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2709 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2710 GV->setConstant(true); 2711 } 2712 2713 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2714 2715 2716 // On Darwin, if the normal linkage of a C++ thread_local variable is 2717 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2718 // copies within a linkage unit; otherwise, the backing variable has 2719 // internal linkage and all accesses should just be calls to the 2720 // Itanium-specified entry point, which has the normal linkage of the 2721 // variable. This is to preserve the ability to change the implementation 2722 // behind the scenes. 2723 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2724 Context.getTargetInfo().getTriple().isOSDarwin() && 2725 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2726 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2727 Linkage = llvm::GlobalValue::InternalLinkage; 2728 2729 GV->setLinkage(Linkage); 2730 if (D->hasAttr<DLLImportAttr>()) 2731 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2732 else if (D->hasAttr<DLLExportAttr>()) 2733 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2734 else 2735 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2736 2737 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2738 // common vars aren't constant even if declared const. 2739 GV->setConstant(false); 2740 // Tentative definition of global variables may be initialized with 2741 // non-zero null pointers. In this case they should have weak linkage 2742 // since common linkage must have zero initializer and must not have 2743 // explicit section therefore cannot have non-zero initial value. 2744 if (!GV->getInitializer()->isNullValue()) 2745 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2746 } 2747 2748 setNonAliasAttributes(D, GV); 2749 2750 if (D->getTLSKind() && !GV->isThreadLocal()) { 2751 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2752 CXXThreadLocals.push_back(D); 2753 setTLSMode(GV, *D); 2754 } 2755 2756 maybeSetTrivialComdat(*D, *GV); 2757 2758 // Emit the initializer function if necessary. 2759 if (NeedsGlobalCtor || NeedsGlobalDtor) 2760 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2761 2762 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2763 2764 // Emit global variable debug information. 2765 if (CGDebugInfo *DI = getModuleDebugInfo()) 2766 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2767 DI->EmitGlobalVariable(GV, D); 2768 } 2769 2770 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2771 CodeGenModule &CGM, const VarDecl *D, 2772 bool NoCommon) { 2773 // Don't give variables common linkage if -fno-common was specified unless it 2774 // was overridden by a NoCommon attribute. 2775 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2776 return true; 2777 2778 // C11 6.9.2/2: 2779 // A declaration of an identifier for an object that has file scope without 2780 // an initializer, and without a storage-class specifier or with the 2781 // storage-class specifier static, constitutes a tentative definition. 2782 if (D->getInit() || D->hasExternalStorage()) 2783 return true; 2784 2785 // A variable cannot be both common and exist in a section. 2786 if (D->hasAttr<SectionAttr>()) 2787 return true; 2788 2789 // Thread local vars aren't considered common linkage. 2790 if (D->getTLSKind()) 2791 return true; 2792 2793 // Tentative definitions marked with WeakImportAttr are true definitions. 2794 if (D->hasAttr<WeakImportAttr>()) 2795 return true; 2796 2797 // A variable cannot be both common and exist in a comdat. 2798 if (shouldBeInCOMDAT(CGM, *D)) 2799 return true; 2800 2801 // Declarations with a required alignment do not have common linkage in MSVC 2802 // mode. 2803 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2804 if (D->hasAttr<AlignedAttr>()) 2805 return true; 2806 QualType VarType = D->getType(); 2807 if (Context.isAlignmentRequired(VarType)) 2808 return true; 2809 2810 if (const auto *RT = VarType->getAs<RecordType>()) { 2811 const RecordDecl *RD = RT->getDecl(); 2812 for (const FieldDecl *FD : RD->fields()) { 2813 if (FD->isBitField()) 2814 continue; 2815 if (FD->hasAttr<AlignedAttr>()) 2816 return true; 2817 if (Context.isAlignmentRequired(FD->getType())) 2818 return true; 2819 } 2820 } 2821 } 2822 2823 return false; 2824 } 2825 2826 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2827 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2828 if (Linkage == GVA_Internal) 2829 return llvm::Function::InternalLinkage; 2830 2831 if (D->hasAttr<WeakAttr>()) { 2832 if (IsConstantVariable) 2833 return llvm::GlobalVariable::WeakODRLinkage; 2834 else 2835 return llvm::GlobalVariable::WeakAnyLinkage; 2836 } 2837 2838 // We are guaranteed to have a strong definition somewhere else, 2839 // so we can use available_externally linkage. 2840 if (Linkage == GVA_AvailableExternally) 2841 return llvm::GlobalValue::AvailableExternallyLinkage; 2842 2843 // Note that Apple's kernel linker doesn't support symbol 2844 // coalescing, so we need to avoid linkonce and weak linkages there. 2845 // Normally, this means we just map to internal, but for explicit 2846 // instantiations we'll map to external. 2847 2848 // In C++, the compiler has to emit a definition in every translation unit 2849 // that references the function. We should use linkonce_odr because 2850 // a) if all references in this translation unit are optimized away, we 2851 // don't need to codegen it. b) if the function persists, it needs to be 2852 // merged with other definitions. c) C++ has the ODR, so we know the 2853 // definition is dependable. 2854 if (Linkage == GVA_DiscardableODR) 2855 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2856 : llvm::Function::InternalLinkage; 2857 2858 // An explicit instantiation of a template has weak linkage, since 2859 // explicit instantiations can occur in multiple translation units 2860 // and must all be equivalent. However, we are not allowed to 2861 // throw away these explicit instantiations. 2862 // 2863 // We don't currently support CUDA device code spread out across multiple TUs, 2864 // so say that CUDA templates are either external (for kernels) or internal. 2865 // This lets llvm perform aggressive inter-procedural optimizations. 2866 if (Linkage == GVA_StrongODR) { 2867 if (Context.getLangOpts().AppleKext) 2868 return llvm::Function::ExternalLinkage; 2869 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2870 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2871 : llvm::Function::InternalLinkage; 2872 return llvm::Function::WeakODRLinkage; 2873 } 2874 2875 // C++ doesn't have tentative definitions and thus cannot have common 2876 // linkage. 2877 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2878 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2879 CodeGenOpts.NoCommon)) 2880 return llvm::GlobalVariable::CommonLinkage; 2881 2882 // selectany symbols are externally visible, so use weak instead of 2883 // linkonce. MSVC optimizes away references to const selectany globals, so 2884 // all definitions should be the same and ODR linkage should be used. 2885 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2886 if (D->hasAttr<SelectAnyAttr>()) 2887 return llvm::GlobalVariable::WeakODRLinkage; 2888 2889 // Otherwise, we have strong external linkage. 2890 assert(Linkage == GVA_StrongExternal); 2891 return llvm::GlobalVariable::ExternalLinkage; 2892 } 2893 2894 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2895 const VarDecl *VD, bool IsConstant) { 2896 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2897 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2898 } 2899 2900 /// Replace the uses of a function that was declared with a non-proto type. 2901 /// We want to silently drop extra arguments from call sites 2902 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2903 llvm::Function *newFn) { 2904 // Fast path. 2905 if (old->use_empty()) return; 2906 2907 llvm::Type *newRetTy = newFn->getReturnType(); 2908 SmallVector<llvm::Value*, 4> newArgs; 2909 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2910 2911 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2912 ui != ue; ) { 2913 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2914 llvm::User *user = use->getUser(); 2915 2916 // Recognize and replace uses of bitcasts. Most calls to 2917 // unprototyped functions will use bitcasts. 2918 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2919 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2920 replaceUsesOfNonProtoConstant(bitcast, newFn); 2921 continue; 2922 } 2923 2924 // Recognize calls to the function. 2925 llvm::CallSite callSite(user); 2926 if (!callSite) continue; 2927 if (!callSite.isCallee(&*use)) continue; 2928 2929 // If the return types don't match exactly, then we can't 2930 // transform this call unless it's dead. 2931 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2932 continue; 2933 2934 // Get the call site's attribute list. 2935 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 2936 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2937 2938 // If the function was passed too few arguments, don't transform. 2939 unsigned newNumArgs = newFn->arg_size(); 2940 if (callSite.arg_size() < newNumArgs) continue; 2941 2942 // If extra arguments were passed, we silently drop them. 2943 // If any of the types mismatch, we don't transform. 2944 unsigned argNo = 0; 2945 bool dontTransform = false; 2946 for (llvm::Argument &A : newFn->args()) { 2947 if (callSite.getArgument(argNo)->getType() != A.getType()) { 2948 dontTransform = true; 2949 break; 2950 } 2951 2952 // Add any parameter attributes. 2953 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 2954 argNo++; 2955 } 2956 if (dontTransform) 2957 continue; 2958 2959 // Okay, we can transform this. Create the new call instruction and copy 2960 // over the required information. 2961 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2962 2963 // Copy over any operand bundles. 2964 callSite.getOperandBundlesAsDefs(newBundles); 2965 2966 llvm::CallSite newCall; 2967 if (callSite.isCall()) { 2968 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2969 callSite.getInstruction()); 2970 } else { 2971 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2972 newCall = llvm::InvokeInst::Create(newFn, 2973 oldInvoke->getNormalDest(), 2974 oldInvoke->getUnwindDest(), 2975 newArgs, newBundles, "", 2976 callSite.getInstruction()); 2977 } 2978 newArgs.clear(); // for the next iteration 2979 2980 if (!newCall->getType()->isVoidTy()) 2981 newCall->takeName(callSite.getInstruction()); 2982 newCall.setAttributes(llvm::AttributeList::get( 2983 newFn->getContext(), oldAttrs.getFnAttributes(), 2984 oldAttrs.getRetAttributes(), newArgAttrs)); 2985 newCall.setCallingConv(callSite.getCallingConv()); 2986 2987 // Finally, remove the old call, replacing any uses with the new one. 2988 if (!callSite->use_empty()) 2989 callSite->replaceAllUsesWith(newCall.getInstruction()); 2990 2991 // Copy debug location attached to CI. 2992 if (callSite->getDebugLoc()) 2993 newCall->setDebugLoc(callSite->getDebugLoc()); 2994 2995 callSite->eraseFromParent(); 2996 } 2997 } 2998 2999 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3000 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3001 /// existing call uses of the old function in the module, this adjusts them to 3002 /// call the new function directly. 3003 /// 3004 /// This is not just a cleanup: the always_inline pass requires direct calls to 3005 /// functions to be able to inline them. If there is a bitcast in the way, it 3006 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3007 /// run at -O0. 3008 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3009 llvm::Function *NewFn) { 3010 // If we're redefining a global as a function, don't transform it. 3011 if (!isa<llvm::Function>(Old)) return; 3012 3013 replaceUsesOfNonProtoConstant(Old, NewFn); 3014 } 3015 3016 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3017 auto DK = VD->isThisDeclarationADefinition(); 3018 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3019 return; 3020 3021 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3022 // If we have a definition, this might be a deferred decl. If the 3023 // instantiation is explicit, make sure we emit it at the end. 3024 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3025 GetAddrOfGlobalVar(VD); 3026 3027 EmitTopLevelDecl(VD); 3028 } 3029 3030 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3031 llvm::GlobalValue *GV) { 3032 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3033 3034 // Compute the function info and LLVM type. 3035 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3036 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3037 3038 // Get or create the prototype for the function. 3039 if (!GV || (GV->getType()->getElementType() != Ty)) 3040 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3041 /*DontDefer=*/true, 3042 ForDefinition)); 3043 3044 // Already emitted. 3045 if (!GV->isDeclaration()) 3046 return; 3047 3048 // We need to set linkage and visibility on the function before 3049 // generating code for it because various parts of IR generation 3050 // want to propagate this information down (e.g. to local static 3051 // declarations). 3052 auto *Fn = cast<llvm::Function>(GV); 3053 setFunctionLinkage(GD, Fn); 3054 setFunctionDLLStorageClass(GD, Fn); 3055 3056 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3057 setGlobalVisibility(Fn, D); 3058 3059 MaybeHandleStaticInExternC(D, Fn); 3060 3061 maybeSetTrivialComdat(*D, *Fn); 3062 3063 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3064 3065 setFunctionDefinitionAttributes(D, Fn); 3066 SetLLVMFunctionAttributesForDefinition(D, Fn); 3067 3068 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3069 AddGlobalCtor(Fn, CA->getPriority()); 3070 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3071 AddGlobalDtor(Fn, DA->getPriority()); 3072 if (D->hasAttr<AnnotateAttr>()) 3073 AddGlobalAnnotations(D, Fn); 3074 } 3075 3076 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3077 const auto *D = cast<ValueDecl>(GD.getDecl()); 3078 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3079 assert(AA && "Not an alias?"); 3080 3081 StringRef MangledName = getMangledName(GD); 3082 3083 if (AA->getAliasee() == MangledName) { 3084 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3085 return; 3086 } 3087 3088 // If there is a definition in the module, then it wins over the alias. 3089 // This is dubious, but allow it to be safe. Just ignore the alias. 3090 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3091 if (Entry && !Entry->isDeclaration()) 3092 return; 3093 3094 Aliases.push_back(GD); 3095 3096 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3097 3098 // Create a reference to the named value. This ensures that it is emitted 3099 // if a deferred decl. 3100 llvm::Constant *Aliasee; 3101 if (isa<llvm::FunctionType>(DeclTy)) 3102 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3103 /*ForVTable=*/false); 3104 else 3105 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3106 llvm::PointerType::getUnqual(DeclTy), 3107 /*D=*/nullptr); 3108 3109 // Create the new alias itself, but don't set a name yet. 3110 auto *GA = llvm::GlobalAlias::create( 3111 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3112 3113 if (Entry) { 3114 if (GA->getAliasee() == Entry) { 3115 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3116 return; 3117 } 3118 3119 assert(Entry->isDeclaration()); 3120 3121 // If there is a declaration in the module, then we had an extern followed 3122 // by the alias, as in: 3123 // extern int test6(); 3124 // ... 3125 // int test6() __attribute__((alias("test7"))); 3126 // 3127 // Remove it and replace uses of it with the alias. 3128 GA->takeName(Entry); 3129 3130 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3131 Entry->getType())); 3132 Entry->eraseFromParent(); 3133 } else { 3134 GA->setName(MangledName); 3135 } 3136 3137 // Set attributes which are particular to an alias; this is a 3138 // specialization of the attributes which may be set on a global 3139 // variable/function. 3140 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3141 D->isWeakImported()) { 3142 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3143 } 3144 3145 if (const auto *VD = dyn_cast<VarDecl>(D)) 3146 if (VD->getTLSKind()) 3147 setTLSMode(GA, *VD); 3148 3149 setAliasAttributes(D, GA); 3150 } 3151 3152 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3153 const auto *D = cast<ValueDecl>(GD.getDecl()); 3154 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3155 assert(IFA && "Not an ifunc?"); 3156 3157 StringRef MangledName = getMangledName(GD); 3158 3159 if (IFA->getResolver() == MangledName) { 3160 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3161 return; 3162 } 3163 3164 // Report an error if some definition overrides ifunc. 3165 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3166 if (Entry && !Entry->isDeclaration()) { 3167 GlobalDecl OtherGD; 3168 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3169 DiagnosedConflictingDefinitions.insert(GD).second) { 3170 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3171 Diags.Report(OtherGD.getDecl()->getLocation(), 3172 diag::note_previous_definition); 3173 } 3174 return; 3175 } 3176 3177 Aliases.push_back(GD); 3178 3179 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3180 llvm::Constant *Resolver = 3181 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3182 /*ForVTable=*/false); 3183 llvm::GlobalIFunc *GIF = 3184 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3185 "", Resolver, &getModule()); 3186 if (Entry) { 3187 if (GIF->getResolver() == Entry) { 3188 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3189 return; 3190 } 3191 assert(Entry->isDeclaration()); 3192 3193 // If there is a declaration in the module, then we had an extern followed 3194 // by the ifunc, as in: 3195 // extern int test(); 3196 // ... 3197 // int test() __attribute__((ifunc("resolver"))); 3198 // 3199 // Remove it and replace uses of it with the ifunc. 3200 GIF->takeName(Entry); 3201 3202 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3203 Entry->getType())); 3204 Entry->eraseFromParent(); 3205 } else 3206 GIF->setName(MangledName); 3207 3208 SetCommonAttributes(D, GIF); 3209 } 3210 3211 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3212 ArrayRef<llvm::Type*> Tys) { 3213 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3214 Tys); 3215 } 3216 3217 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3218 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3219 const StringLiteral *Literal, bool TargetIsLSB, 3220 bool &IsUTF16, unsigned &StringLength) { 3221 StringRef String = Literal->getString(); 3222 unsigned NumBytes = String.size(); 3223 3224 // Check for simple case. 3225 if (!Literal->containsNonAsciiOrNull()) { 3226 StringLength = NumBytes; 3227 return *Map.insert(std::make_pair(String, nullptr)).first; 3228 } 3229 3230 // Otherwise, convert the UTF8 literals into a string of shorts. 3231 IsUTF16 = true; 3232 3233 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3234 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3235 llvm::UTF16 *ToPtr = &ToBuf[0]; 3236 3237 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3238 ToPtr + NumBytes, llvm::strictConversion); 3239 3240 // ConvertUTF8toUTF16 returns the length in ToPtr. 3241 StringLength = ToPtr - &ToBuf[0]; 3242 3243 // Add an explicit null. 3244 *ToPtr = 0; 3245 return *Map.insert(std::make_pair( 3246 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3247 (StringLength + 1) * 2), 3248 nullptr)).first; 3249 } 3250 3251 ConstantAddress 3252 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3253 unsigned StringLength = 0; 3254 bool isUTF16 = false; 3255 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3256 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3257 getDataLayout().isLittleEndian(), isUTF16, 3258 StringLength); 3259 3260 if (auto *C = Entry.second) 3261 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3262 3263 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3264 llvm::Constant *Zeros[] = { Zero, Zero }; 3265 3266 // If we don't already have it, get __CFConstantStringClassReference. 3267 if (!CFConstantStringClassRef) { 3268 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3269 Ty = llvm::ArrayType::get(Ty, 0); 3270 llvm::Constant *GV = 3271 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3272 3273 if (getTriple().isOSBinFormatCOFF()) { 3274 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3275 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3276 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3277 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3278 3279 const VarDecl *VD = nullptr; 3280 for (const auto &Result : DC->lookup(&II)) 3281 if ((VD = dyn_cast<VarDecl>(Result))) 3282 break; 3283 3284 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3285 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3286 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3287 } else { 3288 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3289 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3290 } 3291 } 3292 3293 // Decay array -> ptr 3294 CFConstantStringClassRef = 3295 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3296 } 3297 3298 QualType CFTy = getContext().getCFConstantStringType(); 3299 3300 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3301 3302 ConstantInitBuilder Builder(*this); 3303 auto Fields = Builder.beginStruct(STy); 3304 3305 // Class pointer. 3306 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3307 3308 // Flags. 3309 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3310 3311 // String pointer. 3312 llvm::Constant *C = nullptr; 3313 if (isUTF16) { 3314 auto Arr = llvm::makeArrayRef( 3315 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3316 Entry.first().size() / 2); 3317 C = llvm::ConstantDataArray::get(VMContext, Arr); 3318 } else { 3319 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3320 } 3321 3322 // Note: -fwritable-strings doesn't make the backing store strings of 3323 // CFStrings writable. (See <rdar://problem/10657500>) 3324 auto *GV = 3325 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3326 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3327 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3328 // Don't enforce the target's minimum global alignment, since the only use 3329 // of the string is via this class initializer. 3330 CharUnits Align = isUTF16 3331 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3332 : getContext().getTypeAlignInChars(getContext().CharTy); 3333 GV->setAlignment(Align.getQuantity()); 3334 3335 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3336 // Without it LLVM can merge the string with a non unnamed_addr one during 3337 // LTO. Doing that changes the section it ends in, which surprises ld64. 3338 if (getTriple().isOSBinFormatMachO()) 3339 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3340 : "__TEXT,__cstring,cstring_literals"); 3341 3342 // String. 3343 llvm::Constant *Str = 3344 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3345 3346 if (isUTF16) 3347 // Cast the UTF16 string to the correct type. 3348 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3349 Fields.add(Str); 3350 3351 // String length. 3352 auto Ty = getTypes().ConvertType(getContext().LongTy); 3353 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3354 3355 CharUnits Alignment = getPointerAlign(); 3356 3357 // The struct. 3358 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3359 /*isConstant=*/false, 3360 llvm::GlobalVariable::PrivateLinkage); 3361 switch (getTriple().getObjectFormat()) { 3362 case llvm::Triple::UnknownObjectFormat: 3363 llvm_unreachable("unknown file format"); 3364 case llvm::Triple::COFF: 3365 case llvm::Triple::ELF: 3366 case llvm::Triple::Wasm: 3367 GV->setSection("cfstring"); 3368 break; 3369 case llvm::Triple::MachO: 3370 GV->setSection("__DATA,__cfstring"); 3371 break; 3372 } 3373 Entry.second = GV; 3374 3375 return ConstantAddress(GV, Alignment); 3376 } 3377 3378 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3379 if (ObjCFastEnumerationStateType.isNull()) { 3380 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3381 D->startDefinition(); 3382 3383 QualType FieldTypes[] = { 3384 Context.UnsignedLongTy, 3385 Context.getPointerType(Context.getObjCIdType()), 3386 Context.getPointerType(Context.UnsignedLongTy), 3387 Context.getConstantArrayType(Context.UnsignedLongTy, 3388 llvm::APInt(32, 5), ArrayType::Normal, 0) 3389 }; 3390 3391 for (size_t i = 0; i < 4; ++i) { 3392 FieldDecl *Field = FieldDecl::Create(Context, 3393 D, 3394 SourceLocation(), 3395 SourceLocation(), nullptr, 3396 FieldTypes[i], /*TInfo=*/nullptr, 3397 /*BitWidth=*/nullptr, 3398 /*Mutable=*/false, 3399 ICIS_NoInit); 3400 Field->setAccess(AS_public); 3401 D->addDecl(Field); 3402 } 3403 3404 D->completeDefinition(); 3405 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3406 } 3407 3408 return ObjCFastEnumerationStateType; 3409 } 3410 3411 llvm::Constant * 3412 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3413 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3414 3415 // Don't emit it as the address of the string, emit the string data itself 3416 // as an inline array. 3417 if (E->getCharByteWidth() == 1) { 3418 SmallString<64> Str(E->getString()); 3419 3420 // Resize the string to the right size, which is indicated by its type. 3421 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3422 Str.resize(CAT->getSize().getZExtValue()); 3423 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3424 } 3425 3426 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3427 llvm::Type *ElemTy = AType->getElementType(); 3428 unsigned NumElements = AType->getNumElements(); 3429 3430 // Wide strings have either 2-byte or 4-byte elements. 3431 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3432 SmallVector<uint16_t, 32> Elements; 3433 Elements.reserve(NumElements); 3434 3435 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3436 Elements.push_back(E->getCodeUnit(i)); 3437 Elements.resize(NumElements); 3438 return llvm::ConstantDataArray::get(VMContext, Elements); 3439 } 3440 3441 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3442 SmallVector<uint32_t, 32> Elements; 3443 Elements.reserve(NumElements); 3444 3445 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3446 Elements.push_back(E->getCodeUnit(i)); 3447 Elements.resize(NumElements); 3448 return llvm::ConstantDataArray::get(VMContext, Elements); 3449 } 3450 3451 static llvm::GlobalVariable * 3452 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3453 CodeGenModule &CGM, StringRef GlobalName, 3454 CharUnits Alignment) { 3455 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3456 unsigned AddrSpace = 0; 3457 if (CGM.getLangOpts().OpenCL) 3458 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3459 3460 llvm::Module &M = CGM.getModule(); 3461 // Create a global variable for this string 3462 auto *GV = new llvm::GlobalVariable( 3463 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3464 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3465 GV->setAlignment(Alignment.getQuantity()); 3466 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3467 if (GV->isWeakForLinker()) { 3468 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3469 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3470 } 3471 3472 return GV; 3473 } 3474 3475 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3476 /// constant array for the given string literal. 3477 ConstantAddress 3478 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3479 StringRef Name) { 3480 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3481 3482 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3483 llvm::GlobalVariable **Entry = nullptr; 3484 if (!LangOpts.WritableStrings) { 3485 Entry = &ConstantStringMap[C]; 3486 if (auto GV = *Entry) { 3487 if (Alignment.getQuantity() > GV->getAlignment()) 3488 GV->setAlignment(Alignment.getQuantity()); 3489 return ConstantAddress(GV, Alignment); 3490 } 3491 } 3492 3493 SmallString<256> MangledNameBuffer; 3494 StringRef GlobalVariableName; 3495 llvm::GlobalValue::LinkageTypes LT; 3496 3497 // Mangle the string literal if the ABI allows for it. However, we cannot 3498 // do this if we are compiling with ASan or -fwritable-strings because they 3499 // rely on strings having normal linkage. 3500 if (!LangOpts.WritableStrings && 3501 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3502 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3503 llvm::raw_svector_ostream Out(MangledNameBuffer); 3504 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3505 3506 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3507 GlobalVariableName = MangledNameBuffer; 3508 } else { 3509 LT = llvm::GlobalValue::PrivateLinkage; 3510 GlobalVariableName = Name; 3511 } 3512 3513 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3514 if (Entry) 3515 *Entry = GV; 3516 3517 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3518 QualType()); 3519 return ConstantAddress(GV, Alignment); 3520 } 3521 3522 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3523 /// array for the given ObjCEncodeExpr node. 3524 ConstantAddress 3525 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3526 std::string Str; 3527 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3528 3529 return GetAddrOfConstantCString(Str); 3530 } 3531 3532 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3533 /// the literal and a terminating '\0' character. 3534 /// The result has pointer to array type. 3535 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3536 const std::string &Str, const char *GlobalName) { 3537 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3538 CharUnits Alignment = 3539 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3540 3541 llvm::Constant *C = 3542 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3543 3544 // Don't share any string literals if strings aren't constant. 3545 llvm::GlobalVariable **Entry = nullptr; 3546 if (!LangOpts.WritableStrings) { 3547 Entry = &ConstantStringMap[C]; 3548 if (auto GV = *Entry) { 3549 if (Alignment.getQuantity() > GV->getAlignment()) 3550 GV->setAlignment(Alignment.getQuantity()); 3551 return ConstantAddress(GV, Alignment); 3552 } 3553 } 3554 3555 // Get the default prefix if a name wasn't specified. 3556 if (!GlobalName) 3557 GlobalName = ".str"; 3558 // Create a global variable for this. 3559 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3560 GlobalName, Alignment); 3561 if (Entry) 3562 *Entry = GV; 3563 return ConstantAddress(GV, Alignment); 3564 } 3565 3566 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3567 const MaterializeTemporaryExpr *E, const Expr *Init) { 3568 assert((E->getStorageDuration() == SD_Static || 3569 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3570 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3571 3572 // If we're not materializing a subobject of the temporary, keep the 3573 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3574 QualType MaterializedType = Init->getType(); 3575 if (Init == E->GetTemporaryExpr()) 3576 MaterializedType = E->getType(); 3577 3578 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3579 3580 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3581 return ConstantAddress(Slot, Align); 3582 3583 // FIXME: If an externally-visible declaration extends multiple temporaries, 3584 // we need to give each temporary the same name in every translation unit (and 3585 // we also need to make the temporaries externally-visible). 3586 SmallString<256> Name; 3587 llvm::raw_svector_ostream Out(Name); 3588 getCXXABI().getMangleContext().mangleReferenceTemporary( 3589 VD, E->getManglingNumber(), Out); 3590 3591 APValue *Value = nullptr; 3592 if (E->getStorageDuration() == SD_Static) { 3593 // We might have a cached constant initializer for this temporary. Note 3594 // that this might have a different value from the value computed by 3595 // evaluating the initializer if the surrounding constant expression 3596 // modifies the temporary. 3597 Value = getContext().getMaterializedTemporaryValue(E, false); 3598 if (Value && Value->isUninit()) 3599 Value = nullptr; 3600 } 3601 3602 // Try evaluating it now, it might have a constant initializer. 3603 Expr::EvalResult EvalResult; 3604 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3605 !EvalResult.hasSideEffects()) 3606 Value = &EvalResult.Val; 3607 3608 llvm::Constant *InitialValue = nullptr; 3609 bool Constant = false; 3610 llvm::Type *Type; 3611 if (Value) { 3612 // The temporary has a constant initializer, use it. 3613 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3614 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3615 Type = InitialValue->getType(); 3616 } else { 3617 // No initializer, the initialization will be provided when we 3618 // initialize the declaration which performed lifetime extension. 3619 Type = getTypes().ConvertTypeForMem(MaterializedType); 3620 } 3621 3622 // Create a global variable for this lifetime-extended temporary. 3623 llvm::GlobalValue::LinkageTypes Linkage = 3624 getLLVMLinkageVarDefinition(VD, Constant); 3625 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3626 const VarDecl *InitVD; 3627 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3628 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3629 // Temporaries defined inside a class get linkonce_odr linkage because the 3630 // class can be defined in multipe translation units. 3631 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3632 } else { 3633 // There is no need for this temporary to have external linkage if the 3634 // VarDecl has external linkage. 3635 Linkage = llvm::GlobalVariable::InternalLinkage; 3636 } 3637 } 3638 unsigned AddrSpace = GetGlobalVarAddressSpace( 3639 VD, getContext().getTargetAddressSpace(MaterializedType)); 3640 auto *GV = new llvm::GlobalVariable( 3641 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3642 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3643 AddrSpace); 3644 setGlobalVisibility(GV, VD); 3645 GV->setAlignment(Align.getQuantity()); 3646 if (supportsCOMDAT() && GV->isWeakForLinker()) 3647 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3648 if (VD->getTLSKind()) 3649 setTLSMode(GV, *VD); 3650 MaterializedGlobalTemporaryMap[E] = GV; 3651 return ConstantAddress(GV, Align); 3652 } 3653 3654 /// EmitObjCPropertyImplementations - Emit information for synthesized 3655 /// properties for an implementation. 3656 void CodeGenModule::EmitObjCPropertyImplementations(const 3657 ObjCImplementationDecl *D) { 3658 for (const auto *PID : D->property_impls()) { 3659 // Dynamic is just for type-checking. 3660 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3661 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3662 3663 // Determine which methods need to be implemented, some may have 3664 // been overridden. Note that ::isPropertyAccessor is not the method 3665 // we want, that just indicates if the decl came from a 3666 // property. What we want to know is if the method is defined in 3667 // this implementation. 3668 if (!D->getInstanceMethod(PD->getGetterName())) 3669 CodeGenFunction(*this).GenerateObjCGetter( 3670 const_cast<ObjCImplementationDecl *>(D), PID); 3671 if (!PD->isReadOnly() && 3672 !D->getInstanceMethod(PD->getSetterName())) 3673 CodeGenFunction(*this).GenerateObjCSetter( 3674 const_cast<ObjCImplementationDecl *>(D), PID); 3675 } 3676 } 3677 } 3678 3679 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3680 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3681 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3682 ivar; ivar = ivar->getNextIvar()) 3683 if (ivar->getType().isDestructedType()) 3684 return true; 3685 3686 return false; 3687 } 3688 3689 static bool AllTrivialInitializers(CodeGenModule &CGM, 3690 ObjCImplementationDecl *D) { 3691 CodeGenFunction CGF(CGM); 3692 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3693 E = D->init_end(); B != E; ++B) { 3694 CXXCtorInitializer *CtorInitExp = *B; 3695 Expr *Init = CtorInitExp->getInit(); 3696 if (!CGF.isTrivialInitializer(Init)) 3697 return false; 3698 } 3699 return true; 3700 } 3701 3702 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3703 /// for an implementation. 3704 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3705 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3706 if (needsDestructMethod(D)) { 3707 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3708 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3709 ObjCMethodDecl *DTORMethod = 3710 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3711 cxxSelector, getContext().VoidTy, nullptr, D, 3712 /*isInstance=*/true, /*isVariadic=*/false, 3713 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3714 /*isDefined=*/false, ObjCMethodDecl::Required); 3715 D->addInstanceMethod(DTORMethod); 3716 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3717 D->setHasDestructors(true); 3718 } 3719 3720 // If the implementation doesn't have any ivar initializers, we don't need 3721 // a .cxx_construct. 3722 if (D->getNumIvarInitializers() == 0 || 3723 AllTrivialInitializers(*this, D)) 3724 return; 3725 3726 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3727 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3728 // The constructor returns 'self'. 3729 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3730 D->getLocation(), 3731 D->getLocation(), 3732 cxxSelector, 3733 getContext().getObjCIdType(), 3734 nullptr, D, /*isInstance=*/true, 3735 /*isVariadic=*/false, 3736 /*isPropertyAccessor=*/true, 3737 /*isImplicitlyDeclared=*/true, 3738 /*isDefined=*/false, 3739 ObjCMethodDecl::Required); 3740 D->addInstanceMethod(CTORMethod); 3741 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3742 D->setHasNonZeroConstructors(true); 3743 } 3744 3745 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3746 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3747 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3748 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3749 ErrorUnsupported(LSD, "linkage spec"); 3750 return; 3751 } 3752 3753 EmitDeclContext(LSD); 3754 } 3755 3756 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3757 for (auto *I : DC->decls()) { 3758 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3759 // are themselves considered "top-level", so EmitTopLevelDecl on an 3760 // ObjCImplDecl does not recursively visit them. We need to do that in 3761 // case they're nested inside another construct (LinkageSpecDecl / 3762 // ExportDecl) that does stop them from being considered "top-level". 3763 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3764 for (auto *M : OID->methods()) 3765 EmitTopLevelDecl(M); 3766 } 3767 3768 EmitTopLevelDecl(I); 3769 } 3770 } 3771 3772 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3773 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3774 // Ignore dependent declarations. 3775 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3776 return; 3777 3778 switch (D->getKind()) { 3779 case Decl::CXXConversion: 3780 case Decl::CXXMethod: 3781 case Decl::Function: 3782 // Skip function templates 3783 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3784 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3785 return; 3786 3787 EmitGlobal(cast<FunctionDecl>(D)); 3788 // Always provide some coverage mapping 3789 // even for the functions that aren't emitted. 3790 AddDeferredUnusedCoverageMapping(D); 3791 break; 3792 3793 case Decl::CXXDeductionGuide: 3794 // Function-like, but does not result in code emission. 3795 break; 3796 3797 case Decl::Var: 3798 case Decl::Decomposition: 3799 // Skip variable templates 3800 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3801 return; 3802 case Decl::VarTemplateSpecialization: 3803 EmitGlobal(cast<VarDecl>(D)); 3804 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3805 for (auto *B : DD->bindings()) 3806 if (auto *HD = B->getHoldingVar()) 3807 EmitGlobal(HD); 3808 break; 3809 3810 // Indirect fields from global anonymous structs and unions can be 3811 // ignored; only the actual variable requires IR gen support. 3812 case Decl::IndirectField: 3813 break; 3814 3815 // C++ Decls 3816 case Decl::Namespace: 3817 EmitDeclContext(cast<NamespaceDecl>(D)); 3818 break; 3819 case Decl::CXXRecord: 3820 if (DebugInfo) { 3821 if (auto *ES = D->getASTContext().getExternalSource()) 3822 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3823 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3824 } 3825 // Emit any static data members, they may be definitions. 3826 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3827 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3828 EmitTopLevelDecl(I); 3829 break; 3830 // No code generation needed. 3831 case Decl::UsingShadow: 3832 case Decl::ClassTemplate: 3833 case Decl::VarTemplate: 3834 case Decl::VarTemplatePartialSpecialization: 3835 case Decl::FunctionTemplate: 3836 case Decl::TypeAliasTemplate: 3837 case Decl::Block: 3838 case Decl::Empty: 3839 break; 3840 case Decl::Using: // using X; [C++] 3841 if (CGDebugInfo *DI = getModuleDebugInfo()) 3842 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3843 return; 3844 case Decl::NamespaceAlias: 3845 if (CGDebugInfo *DI = getModuleDebugInfo()) 3846 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3847 return; 3848 case Decl::UsingDirective: // using namespace X; [C++] 3849 if (CGDebugInfo *DI = getModuleDebugInfo()) 3850 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3851 return; 3852 case Decl::CXXConstructor: 3853 // Skip function templates 3854 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3855 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3856 return; 3857 3858 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3859 break; 3860 case Decl::CXXDestructor: 3861 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3862 return; 3863 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3864 break; 3865 3866 case Decl::StaticAssert: 3867 // Nothing to do. 3868 break; 3869 3870 // Objective-C Decls 3871 3872 // Forward declarations, no (immediate) code generation. 3873 case Decl::ObjCInterface: 3874 case Decl::ObjCCategory: 3875 break; 3876 3877 case Decl::ObjCProtocol: { 3878 auto *Proto = cast<ObjCProtocolDecl>(D); 3879 if (Proto->isThisDeclarationADefinition()) 3880 ObjCRuntime->GenerateProtocol(Proto); 3881 break; 3882 } 3883 3884 case Decl::ObjCCategoryImpl: 3885 // Categories have properties but don't support synthesize so we 3886 // can ignore them here. 3887 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3888 break; 3889 3890 case Decl::ObjCImplementation: { 3891 auto *OMD = cast<ObjCImplementationDecl>(D); 3892 EmitObjCPropertyImplementations(OMD); 3893 EmitObjCIvarInitializations(OMD); 3894 ObjCRuntime->GenerateClass(OMD); 3895 // Emit global variable debug information. 3896 if (CGDebugInfo *DI = getModuleDebugInfo()) 3897 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3898 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3899 OMD->getClassInterface()), OMD->getLocation()); 3900 break; 3901 } 3902 case Decl::ObjCMethod: { 3903 auto *OMD = cast<ObjCMethodDecl>(D); 3904 // If this is not a prototype, emit the body. 3905 if (OMD->getBody()) 3906 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3907 break; 3908 } 3909 case Decl::ObjCCompatibleAlias: 3910 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3911 break; 3912 3913 case Decl::PragmaComment: { 3914 const auto *PCD = cast<PragmaCommentDecl>(D); 3915 switch (PCD->getCommentKind()) { 3916 case PCK_Unknown: 3917 llvm_unreachable("unexpected pragma comment kind"); 3918 case PCK_Linker: 3919 AppendLinkerOptions(PCD->getArg()); 3920 break; 3921 case PCK_Lib: 3922 AddDependentLib(PCD->getArg()); 3923 break; 3924 case PCK_Compiler: 3925 case PCK_ExeStr: 3926 case PCK_User: 3927 break; // We ignore all of these. 3928 } 3929 break; 3930 } 3931 3932 case Decl::PragmaDetectMismatch: { 3933 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3934 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3935 break; 3936 } 3937 3938 case Decl::LinkageSpec: 3939 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3940 break; 3941 3942 case Decl::FileScopeAsm: { 3943 // File-scope asm is ignored during device-side CUDA compilation. 3944 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3945 break; 3946 // File-scope asm is ignored during device-side OpenMP compilation. 3947 if (LangOpts.OpenMPIsDevice) 3948 break; 3949 auto *AD = cast<FileScopeAsmDecl>(D); 3950 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3951 break; 3952 } 3953 3954 case Decl::Import: { 3955 auto *Import = cast<ImportDecl>(D); 3956 3957 // If we've already imported this module, we're done. 3958 if (!ImportedModules.insert(Import->getImportedModule())) 3959 break; 3960 3961 // Emit debug information for direct imports. 3962 if (!Import->getImportedOwningModule()) { 3963 if (CGDebugInfo *DI = getModuleDebugInfo()) 3964 DI->EmitImportDecl(*Import); 3965 } 3966 3967 // Find all of the submodules and emit the module initializers. 3968 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3969 SmallVector<clang::Module *, 16> Stack; 3970 Visited.insert(Import->getImportedModule()); 3971 Stack.push_back(Import->getImportedModule()); 3972 3973 while (!Stack.empty()) { 3974 clang::Module *Mod = Stack.pop_back_val(); 3975 if (!EmittedModuleInitializers.insert(Mod).second) 3976 continue; 3977 3978 for (auto *D : Context.getModuleInitializers(Mod)) 3979 EmitTopLevelDecl(D); 3980 3981 // Visit the submodules of this module. 3982 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3983 SubEnd = Mod->submodule_end(); 3984 Sub != SubEnd; ++Sub) { 3985 // Skip explicit children; they need to be explicitly imported to emit 3986 // the initializers. 3987 if ((*Sub)->IsExplicit) 3988 continue; 3989 3990 if (Visited.insert(*Sub).second) 3991 Stack.push_back(*Sub); 3992 } 3993 } 3994 break; 3995 } 3996 3997 case Decl::Export: 3998 EmitDeclContext(cast<ExportDecl>(D)); 3999 break; 4000 4001 case Decl::OMPThreadPrivate: 4002 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4003 break; 4004 4005 case Decl::ClassTemplateSpecialization: { 4006 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4007 if (DebugInfo && 4008 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4009 Spec->hasDefinition()) 4010 DebugInfo->completeTemplateDefinition(*Spec); 4011 break; 4012 } 4013 4014 case Decl::OMPDeclareReduction: 4015 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4016 break; 4017 4018 default: 4019 // Make sure we handled everything we should, every other kind is a 4020 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4021 // function. Need to recode Decl::Kind to do that easily. 4022 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4023 break; 4024 } 4025 } 4026 4027 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4028 // Do we need to generate coverage mapping? 4029 if (!CodeGenOpts.CoverageMapping) 4030 return; 4031 switch (D->getKind()) { 4032 case Decl::CXXConversion: 4033 case Decl::CXXMethod: 4034 case Decl::Function: 4035 case Decl::ObjCMethod: 4036 case Decl::CXXConstructor: 4037 case Decl::CXXDestructor: { 4038 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4039 return; 4040 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4041 if (I == DeferredEmptyCoverageMappingDecls.end()) 4042 DeferredEmptyCoverageMappingDecls[D] = true; 4043 break; 4044 } 4045 default: 4046 break; 4047 }; 4048 } 4049 4050 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4051 // Do we need to generate coverage mapping? 4052 if (!CodeGenOpts.CoverageMapping) 4053 return; 4054 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4055 if (Fn->isTemplateInstantiation()) 4056 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4057 } 4058 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4059 if (I == DeferredEmptyCoverageMappingDecls.end()) 4060 DeferredEmptyCoverageMappingDecls[D] = false; 4061 else 4062 I->second = false; 4063 } 4064 4065 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4066 std::vector<const Decl *> DeferredDecls; 4067 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4068 if (!I.second) 4069 continue; 4070 DeferredDecls.push_back(I.first); 4071 } 4072 // Sort the declarations by their location to make sure that the tests get a 4073 // predictable order for the coverage mapping for the unused declarations. 4074 if (CodeGenOpts.DumpCoverageMapping) 4075 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4076 [] (const Decl *LHS, const Decl *RHS) { 4077 return LHS->getLocStart() < RHS->getLocStart(); 4078 }); 4079 for (const auto *D : DeferredDecls) { 4080 switch (D->getKind()) { 4081 case Decl::CXXConversion: 4082 case Decl::CXXMethod: 4083 case Decl::Function: 4084 case Decl::ObjCMethod: { 4085 CodeGenPGO PGO(*this); 4086 GlobalDecl GD(cast<FunctionDecl>(D)); 4087 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4088 getFunctionLinkage(GD)); 4089 break; 4090 } 4091 case Decl::CXXConstructor: { 4092 CodeGenPGO PGO(*this); 4093 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4094 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4095 getFunctionLinkage(GD)); 4096 break; 4097 } 4098 case Decl::CXXDestructor: { 4099 CodeGenPGO PGO(*this); 4100 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4101 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4102 getFunctionLinkage(GD)); 4103 break; 4104 } 4105 default: 4106 break; 4107 }; 4108 } 4109 } 4110 4111 /// Turns the given pointer into a constant. 4112 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4113 const void *Ptr) { 4114 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4115 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4116 return llvm::ConstantInt::get(i64, PtrInt); 4117 } 4118 4119 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4120 llvm::NamedMDNode *&GlobalMetadata, 4121 GlobalDecl D, 4122 llvm::GlobalValue *Addr) { 4123 if (!GlobalMetadata) 4124 GlobalMetadata = 4125 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4126 4127 // TODO: should we report variant information for ctors/dtors? 4128 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4129 llvm::ConstantAsMetadata::get(GetPointerConstant( 4130 CGM.getLLVMContext(), D.getDecl()))}; 4131 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4132 } 4133 4134 /// For each function which is declared within an extern "C" region and marked 4135 /// as 'used', but has internal linkage, create an alias from the unmangled 4136 /// name to the mangled name if possible. People expect to be able to refer 4137 /// to such functions with an unmangled name from inline assembly within the 4138 /// same translation unit. 4139 void CodeGenModule::EmitStaticExternCAliases() { 4140 // Don't do anything if we're generating CUDA device code -- the NVPTX 4141 // assembly target doesn't support aliases. 4142 if (Context.getTargetInfo().getTriple().isNVPTX()) 4143 return; 4144 for (auto &I : StaticExternCValues) { 4145 IdentifierInfo *Name = I.first; 4146 llvm::GlobalValue *Val = I.second; 4147 if (Val && !getModule().getNamedValue(Name->getName())) 4148 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4149 } 4150 } 4151 4152 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4153 GlobalDecl &Result) const { 4154 auto Res = Manglings.find(MangledName); 4155 if (Res == Manglings.end()) 4156 return false; 4157 Result = Res->getValue(); 4158 return true; 4159 } 4160 4161 /// Emits metadata nodes associating all the global values in the 4162 /// current module with the Decls they came from. This is useful for 4163 /// projects using IR gen as a subroutine. 4164 /// 4165 /// Since there's currently no way to associate an MDNode directly 4166 /// with an llvm::GlobalValue, we create a global named metadata 4167 /// with the name 'clang.global.decl.ptrs'. 4168 void CodeGenModule::EmitDeclMetadata() { 4169 llvm::NamedMDNode *GlobalMetadata = nullptr; 4170 4171 for (auto &I : MangledDeclNames) { 4172 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4173 // Some mangled names don't necessarily have an associated GlobalValue 4174 // in this module, e.g. if we mangled it for DebugInfo. 4175 if (Addr) 4176 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4177 } 4178 } 4179 4180 /// Emits metadata nodes for all the local variables in the current 4181 /// function. 4182 void CodeGenFunction::EmitDeclMetadata() { 4183 if (LocalDeclMap.empty()) return; 4184 4185 llvm::LLVMContext &Context = getLLVMContext(); 4186 4187 // Find the unique metadata ID for this name. 4188 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4189 4190 llvm::NamedMDNode *GlobalMetadata = nullptr; 4191 4192 for (auto &I : LocalDeclMap) { 4193 const Decl *D = I.first; 4194 llvm::Value *Addr = I.second.getPointer(); 4195 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4196 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4197 Alloca->setMetadata( 4198 DeclPtrKind, llvm::MDNode::get( 4199 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4200 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4201 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4202 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4203 } 4204 } 4205 } 4206 4207 void CodeGenModule::EmitVersionIdentMetadata() { 4208 llvm::NamedMDNode *IdentMetadata = 4209 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4210 std::string Version = getClangFullVersion(); 4211 llvm::LLVMContext &Ctx = TheModule.getContext(); 4212 4213 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4214 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4215 } 4216 4217 void CodeGenModule::EmitTargetMetadata() { 4218 // Warning, new MangledDeclNames may be appended within this loop. 4219 // We rely on MapVector insertions adding new elements to the end 4220 // of the container. 4221 // FIXME: Move this loop into the one target that needs it, and only 4222 // loop over those declarations for which we couldn't emit the target 4223 // metadata when we emitted the declaration. 4224 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4225 auto Val = *(MangledDeclNames.begin() + I); 4226 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4227 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4228 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4229 } 4230 } 4231 4232 void CodeGenModule::EmitCoverageFile() { 4233 if (getCodeGenOpts().CoverageDataFile.empty() && 4234 getCodeGenOpts().CoverageNotesFile.empty()) 4235 return; 4236 4237 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4238 if (!CUNode) 4239 return; 4240 4241 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4242 llvm::LLVMContext &Ctx = TheModule.getContext(); 4243 auto *CoverageDataFile = 4244 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4245 auto *CoverageNotesFile = 4246 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4247 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4248 llvm::MDNode *CU = CUNode->getOperand(i); 4249 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4250 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4251 } 4252 } 4253 4254 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4255 // Sema has checked that all uuid strings are of the form 4256 // "12345678-1234-1234-1234-1234567890ab". 4257 assert(Uuid.size() == 36); 4258 for (unsigned i = 0; i < 36; ++i) { 4259 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4260 else assert(isHexDigit(Uuid[i])); 4261 } 4262 4263 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4264 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4265 4266 llvm::Constant *Field3[8]; 4267 for (unsigned Idx = 0; Idx < 8; ++Idx) 4268 Field3[Idx] = llvm::ConstantInt::get( 4269 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4270 4271 llvm::Constant *Fields[4] = { 4272 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4273 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4274 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4275 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4276 }; 4277 4278 return llvm::ConstantStruct::getAnon(Fields); 4279 } 4280 4281 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4282 bool ForEH) { 4283 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4284 // FIXME: should we even be calling this method if RTTI is disabled 4285 // and it's not for EH? 4286 if (!ForEH && !getLangOpts().RTTI) 4287 return llvm::Constant::getNullValue(Int8PtrTy); 4288 4289 if (ForEH && Ty->isObjCObjectPointerType() && 4290 LangOpts.ObjCRuntime.isGNUFamily()) 4291 return ObjCRuntime->GetEHType(Ty); 4292 4293 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4294 } 4295 4296 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4297 for (auto RefExpr : D->varlists()) { 4298 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4299 bool PerformInit = 4300 VD->getAnyInitializer() && 4301 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4302 /*ForRef=*/false); 4303 4304 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4305 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4306 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4307 CXXGlobalInits.push_back(InitFunction); 4308 } 4309 } 4310 4311 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4312 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4313 if (InternalId) 4314 return InternalId; 4315 4316 if (isExternallyVisible(T->getLinkage())) { 4317 std::string OutName; 4318 llvm::raw_string_ostream Out(OutName); 4319 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4320 4321 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4322 } else { 4323 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4324 llvm::ArrayRef<llvm::Metadata *>()); 4325 } 4326 4327 return InternalId; 4328 } 4329 4330 /// Returns whether this module needs the "all-vtables" type identifier. 4331 bool CodeGenModule::NeedAllVtablesTypeId() const { 4332 // Returns true if at least one of vtable-based CFI checkers is enabled and 4333 // is not in the trapping mode. 4334 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4335 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4336 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4338 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4339 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4340 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4341 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4342 } 4343 4344 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4345 CharUnits Offset, 4346 const CXXRecordDecl *RD) { 4347 llvm::Metadata *MD = 4348 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4349 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4350 4351 if (CodeGenOpts.SanitizeCfiCrossDso) 4352 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4353 VTable->addTypeMetadata(Offset.getQuantity(), 4354 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4355 4356 if (NeedAllVtablesTypeId()) { 4357 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4358 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4359 } 4360 } 4361 4362 // Fills in the supplied string map with the set of target features for the 4363 // passed in function. 4364 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4365 const FunctionDecl *FD) { 4366 StringRef TargetCPU = Target.getTargetOpts().CPU; 4367 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4368 // If we have a TargetAttr build up the feature map based on that. 4369 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4370 4371 // Make a copy of the features as passed on the command line into the 4372 // beginning of the additional features from the function to override. 4373 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4374 Target.getTargetOpts().FeaturesAsWritten.begin(), 4375 Target.getTargetOpts().FeaturesAsWritten.end()); 4376 4377 if (ParsedAttr.second != "") 4378 TargetCPU = ParsedAttr.second; 4379 4380 // Now populate the feature map, first with the TargetCPU which is either 4381 // the default or a new one from the target attribute string. Then we'll use 4382 // the passed in features (FeaturesAsWritten) along with the new ones from 4383 // the attribute. 4384 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4385 } else { 4386 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4387 Target.getTargetOpts().Features); 4388 } 4389 } 4390 4391 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4392 if (!SanStats) 4393 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4394 4395 return *SanStats; 4396 } 4397 llvm::Value * 4398 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4399 CodeGenFunction &CGF) { 4400 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4401 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4402 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4403 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4404 "__translate_sampler_initializer"), 4405 {C}); 4406 } 4407