xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a7d03840e695d4fd7432e9d07a61db3a9d16feeb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
76     ABI(createCXXABI(*this)),
77     Types(*this),
78     TBAA(0),
79     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
80     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
81     RRData(0), CFConstantStringClassRef(0),
82     ConstantStringClassRef(0), NSConstantStringType(0),
83     VMContext(M.getContext()),
84     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
85     BlockObjectAssign(0), BlockObjectDispose(0),
86     BlockDescriptorType(0), GenericBlockLiteralType(0),
87     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
88     SanOpts(SanitizerBlacklist.isIn(M) ?
89             SanitizerOptions::Disabled : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   if (LangOpts.ObjC1)
109     createObjCRuntime();
110   if (LangOpts.OpenCL)
111     createOpenCLRuntime();
112   if (LangOpts.CUDA)
113     createCUDARuntime();
114 
115   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
116   if (SanOpts.Thread ||
117       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
118     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
119                            ABI.getMangleContext());
120 
121   // If debug info or coverage generation is enabled, create the CGDebugInfo
122   // object.
123   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
124       CodeGenOpts.EmitGcovArcs ||
125       CodeGenOpts.EmitGcovNotes)
126     DebugInfo = new CGDebugInfo(*this);
127 
128   Block.GlobalUniqueCount = 0;
129 
130   if (C.getLangOpts().ObjCAutoRefCount)
131     ARCData = new ARCEntrypoints();
132   RRData = new RREntrypoints();
133 }
134 
135 CodeGenModule::~CodeGenModule() {
136   delete ObjCRuntime;
137   delete OpenCLRuntime;
138   delete CUDARuntime;
139   delete TheTargetCodeGenInfo;
140   delete &ABI;
141   delete TBAA;
142   delete DebugInfo;
143   delete ARCData;
144   delete RRData;
145 }
146 
147 void CodeGenModule::createObjCRuntime() {
148   // This is just isGNUFamily(), but we want to force implementors of
149   // new ABIs to decide how best to do this.
150   switch (LangOpts.ObjCRuntime.getKind()) {
151   case ObjCRuntime::GNUstep:
152   case ObjCRuntime::GCC:
153   case ObjCRuntime::ObjFW:
154     ObjCRuntime = CreateGNUObjCRuntime(*this);
155     return;
156 
157   case ObjCRuntime::FragileMacOSX:
158   case ObjCRuntime::MacOSX:
159   case ObjCRuntime::iOS:
160     ObjCRuntime = CreateMacObjCRuntime(*this);
161     return;
162   }
163   llvm_unreachable("bad runtime kind");
164 }
165 
166 void CodeGenModule::createOpenCLRuntime() {
167   OpenCLRuntime = new CGOpenCLRuntime(*this);
168 }
169 
170 void CodeGenModule::createCUDARuntime() {
171   CUDARuntime = CreateNVCUDARuntime(*this);
172 }
173 
174 void CodeGenModule::Release() {
175   EmitDeferred();
176   EmitCXXGlobalInitFunc();
177   EmitCXXGlobalDtorFunc();
178   if (ObjCRuntime)
179     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
180       AddGlobalCtor(ObjCInitFunction);
181   EmitCtorList(GlobalCtors, "llvm.global_ctors");
182   EmitCtorList(GlobalDtors, "llvm.global_dtors");
183   EmitGlobalAnnotations();
184   EmitLLVMUsed();
185 
186   if (CodeGenOpts.ModulesAutolink) {
187     EmitModuleLinkOptions();
188   }
189 
190   SimplifyPersonality();
191 
192   if (getCodeGenOpts().EmitDeclMetadata)
193     EmitDeclMetadata();
194 
195   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
196     EmitCoverageFile();
197 
198   if (DebugInfo)
199     DebugInfo->finalize();
200 }
201 
202 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
203   // Make sure that this type is translated.
204   Types.UpdateCompletedType(TD);
205 }
206 
207 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
208   if (!TBAA)
209     return 0;
210   return TBAA->getTBAAInfo(QTy);
211 }
212 
213 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
214   if (!TBAA)
215     return 0;
216   return TBAA->getTBAAInfoForVTablePtr();
217 }
218 
219 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
220   if (!TBAA)
221     return 0;
222   return TBAA->getTBAAStructInfo(QTy);
223 }
224 
225 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
226                                         llvm::MDNode *TBAAInfo) {
227   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
228 }
229 
230 bool CodeGenModule::isTargetDarwin() const {
231   return getContext().getTargetInfo().getTriple().isOSDarwin();
232 }
233 
234 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
235   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
236   getDiags().Report(Context.getFullLoc(loc), diagID);
237 }
238 
239 /// ErrorUnsupported - Print out an error that codegen doesn't support the
240 /// specified stmt yet.
241 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
242                                      bool OmitOnError) {
243   if (OmitOnError && getDiags().hasErrorOccurred())
244     return;
245   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
246                                                "cannot compile this %0 yet");
247   std::string Msg = Type;
248   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
249     << Msg << S->getSourceRange();
250 }
251 
252 /// ErrorUnsupported - Print out an error that codegen doesn't support the
253 /// specified decl yet.
254 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
255                                      bool OmitOnError) {
256   if (OmitOnError && getDiags().hasErrorOccurred())
257     return;
258   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
259                                                "cannot compile this %0 yet");
260   std::string Msg = Type;
261   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
262 }
263 
264 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
265   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
266 }
267 
268 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
269                                         const NamedDecl *D) const {
270   // Internal definitions always have default visibility.
271   if (GV->hasLocalLinkage()) {
272     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
273     return;
274   }
275 
276   // Set visibility for definitions.
277   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
278   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
279     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
280 }
281 
282 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
283   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
284       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
285       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
286       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
287       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
288 }
289 
290 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
291     CodeGenOptions::TLSModel M) {
292   switch (M) {
293   case CodeGenOptions::GeneralDynamicTLSModel:
294     return llvm::GlobalVariable::GeneralDynamicTLSModel;
295   case CodeGenOptions::LocalDynamicTLSModel:
296     return llvm::GlobalVariable::LocalDynamicTLSModel;
297   case CodeGenOptions::InitialExecTLSModel:
298     return llvm::GlobalVariable::InitialExecTLSModel;
299   case CodeGenOptions::LocalExecTLSModel:
300     return llvm::GlobalVariable::LocalExecTLSModel;
301   }
302   llvm_unreachable("Invalid TLS model!");
303 }
304 
305 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
306                                const VarDecl &D) const {
307   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
308 
309   llvm::GlobalVariable::ThreadLocalMode TLM;
310   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
311 
312   // Override the TLS model if it is explicitly specified.
313   if (D.hasAttr<TLSModelAttr>()) {
314     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
315     TLM = GetLLVMTLSModel(Attr->getModel());
316   }
317 
318   GV->setThreadLocalMode(TLM);
319 }
320 
321 /// Set the symbol visibility of type information (vtable and RTTI)
322 /// associated with the given type.
323 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
324                                       const CXXRecordDecl *RD,
325                                       TypeVisibilityKind TVK) const {
326   setGlobalVisibility(GV, RD);
327 
328   if (!CodeGenOpts.HiddenWeakVTables)
329     return;
330 
331   // We never want to drop the visibility for RTTI names.
332   if (TVK == TVK_ForRTTIName)
333     return;
334 
335   // We want to drop the visibility to hidden for weak type symbols.
336   // This isn't possible if there might be unresolved references
337   // elsewhere that rely on this symbol being visible.
338 
339   // This should be kept roughly in sync with setThunkVisibility
340   // in CGVTables.cpp.
341 
342   // Preconditions.
343   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
344       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
345     return;
346 
347   // Don't override an explicit visibility attribute.
348   if (RD->getExplicitVisibility())
349     return;
350 
351   switch (RD->getTemplateSpecializationKind()) {
352   // We have to disable the optimization if this is an EI definition
353   // because there might be EI declarations in other shared objects.
354   case TSK_ExplicitInstantiationDefinition:
355   case TSK_ExplicitInstantiationDeclaration:
356     return;
357 
358   // Every use of a non-template class's type information has to emit it.
359   case TSK_Undeclared:
360     break;
361 
362   // In theory, implicit instantiations can ignore the possibility of
363   // an explicit instantiation declaration because there necessarily
364   // must be an EI definition somewhere with default visibility.  In
365   // practice, it's possible to have an explicit instantiation for
366   // an arbitrary template class, and linkers aren't necessarily able
367   // to deal with mixed-visibility symbols.
368   case TSK_ExplicitSpecialization:
369   case TSK_ImplicitInstantiation:
370     return;
371   }
372 
373   // If there's a key function, there may be translation units
374   // that don't have the key function's definition.  But ignore
375   // this if we're emitting RTTI under -fno-rtti.
376   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
377     // FIXME: what should we do if we "lose" the key function during
378     // the emission of the file?
379     if (Context.getCurrentKeyFunction(RD))
380       return;
381   }
382 
383   // Otherwise, drop the visibility to hidden.
384   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
385   GV->setUnnamedAddr(true);
386 }
387 
388 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
389   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
390 
391   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
392   if (!Str.empty())
393     return Str;
394 
395   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
396     IdentifierInfo *II = ND->getIdentifier();
397     assert(II && "Attempt to mangle unnamed decl.");
398 
399     Str = II->getName();
400     return Str;
401   }
402 
403   SmallString<256> Buffer;
404   llvm::raw_svector_ostream Out(Buffer);
405   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
406     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
407   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
408     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
409   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
410     getCXXABI().getMangleContext().mangleBlock(BD, Out,
411       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
412   else
413     getCXXABI().getMangleContext().mangleName(ND, Out);
414 
415   // Allocate space for the mangled name.
416   Out.flush();
417   size_t Length = Buffer.size();
418   char *Name = MangledNamesAllocator.Allocate<char>(Length);
419   std::copy(Buffer.begin(), Buffer.end(), Name);
420 
421   Str = StringRef(Name, Length);
422 
423   return Str;
424 }
425 
426 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
427                                         const BlockDecl *BD) {
428   MangleContext &MangleCtx = getCXXABI().getMangleContext();
429   const Decl *D = GD.getDecl();
430   llvm::raw_svector_ostream Out(Buffer.getBuffer());
431   if (D == 0)
432     MangleCtx.mangleGlobalBlock(BD,
433       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
434   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
435     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
436   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
437     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
438   else
439     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
440 }
441 
442 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
443   return getModule().getNamedValue(Name);
444 }
445 
446 /// AddGlobalCtor - Add a function to the list that will be called before
447 /// main() runs.
448 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
449   // FIXME: Type coercion of void()* types.
450   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
451 }
452 
453 /// AddGlobalDtor - Add a function to the list that will be called
454 /// when the module is unloaded.
455 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
456   // FIXME: Type coercion of void()* types.
457   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
458 }
459 
460 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
461   // Ctor function type is void()*.
462   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
463   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
464 
465   // Get the type of a ctor entry, { i32, void ()* }.
466   llvm::StructType *CtorStructTy =
467     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
468 
469   // Construct the constructor and destructor arrays.
470   SmallVector<llvm::Constant*, 8> Ctors;
471   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
472     llvm::Constant *S[] = {
473       llvm::ConstantInt::get(Int32Ty, I->second, false),
474       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
475     };
476     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
477   }
478 
479   if (!Ctors.empty()) {
480     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
481     new llvm::GlobalVariable(TheModule, AT, false,
482                              llvm::GlobalValue::AppendingLinkage,
483                              llvm::ConstantArray::get(AT, Ctors),
484                              GlobalName);
485   }
486 }
487 
488 llvm::GlobalValue::LinkageTypes
489 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
490   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
491 
492   if (Linkage == GVA_Internal)
493     return llvm::Function::InternalLinkage;
494 
495   if (D->hasAttr<DLLExportAttr>())
496     return llvm::Function::DLLExportLinkage;
497 
498   if (D->hasAttr<WeakAttr>())
499     return llvm::Function::WeakAnyLinkage;
500 
501   // In C99 mode, 'inline' functions are guaranteed to have a strong
502   // definition somewhere else, so we can use available_externally linkage.
503   if (Linkage == GVA_C99Inline)
504     return llvm::Function::AvailableExternallyLinkage;
505 
506   // Note that Apple's kernel linker doesn't support symbol
507   // coalescing, so we need to avoid linkonce and weak linkages there.
508   // Normally, this means we just map to internal, but for explicit
509   // instantiations we'll map to external.
510 
511   // In C++, the compiler has to emit a definition in every translation unit
512   // that references the function.  We should use linkonce_odr because
513   // a) if all references in this translation unit are optimized away, we
514   // don't need to codegen it.  b) if the function persists, it needs to be
515   // merged with other definitions. c) C++ has the ODR, so we know the
516   // definition is dependable.
517   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
518     return !Context.getLangOpts().AppleKext
519              ? llvm::Function::LinkOnceODRLinkage
520              : llvm::Function::InternalLinkage;
521 
522   // An explicit instantiation of a template has weak linkage, since
523   // explicit instantiations can occur in multiple translation units
524   // and must all be equivalent. However, we are not allowed to
525   // throw away these explicit instantiations.
526   if (Linkage == GVA_ExplicitTemplateInstantiation)
527     return !Context.getLangOpts().AppleKext
528              ? llvm::Function::WeakODRLinkage
529              : llvm::Function::ExternalLinkage;
530 
531   // Otherwise, we have strong external linkage.
532   assert(Linkage == GVA_StrongExternal);
533   return llvm::Function::ExternalLinkage;
534 }
535 
536 
537 /// SetFunctionDefinitionAttributes - Set attributes for a global.
538 ///
539 /// FIXME: This is currently only done for aliases and functions, but not for
540 /// variables (these details are set in EmitGlobalVarDefinition for variables).
541 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
542                                                     llvm::GlobalValue *GV) {
543   SetCommonAttributes(D, GV);
544 }
545 
546 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
547                                               const CGFunctionInfo &Info,
548                                               llvm::Function *F) {
549   unsigned CallingConv;
550   AttributeListType AttributeList;
551   ConstructAttributeList(Info, D, AttributeList, CallingConv);
552   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
553   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
554 }
555 
556 /// Determines whether the language options require us to model
557 /// unwind exceptions.  We treat -fexceptions as mandating this
558 /// except under the fragile ObjC ABI with only ObjC exceptions
559 /// enabled.  This means, for example, that C with -fexceptions
560 /// enables this.
561 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
562   // If exceptions are completely disabled, obviously this is false.
563   if (!LangOpts.Exceptions) return false;
564 
565   // If C++ exceptions are enabled, this is true.
566   if (LangOpts.CXXExceptions) return true;
567 
568   // If ObjC exceptions are enabled, this depends on the ABI.
569   if (LangOpts.ObjCExceptions) {
570     return LangOpts.ObjCRuntime.hasUnwindExceptions();
571   }
572 
573   return true;
574 }
575 
576 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
577                                                            llvm::Function *F) {
578   if (CodeGenOpts.UnwindTables)
579     F->setHasUWTable();
580 
581   if (!hasUnwindExceptions(LangOpts))
582     F->addFnAttr(llvm::Attribute::NoUnwind);
583 
584   if (D->hasAttr<NakedAttr>()) {
585     // Naked implies noinline: we should not be inlining such functions.
586     F->addFnAttr(llvm::Attribute::Naked);
587     F->addFnAttr(llvm::Attribute::NoInline);
588   }
589 
590   if (D->hasAttr<NoInlineAttr>())
591     F->addFnAttr(llvm::Attribute::NoInline);
592 
593   // (noinline wins over always_inline, and we can't specify both in IR)
594   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
595       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
596                                        llvm::Attribute::NoInline))
597     F->addFnAttr(llvm::Attribute::AlwaysInline);
598 
599   // FIXME: Communicate hot and cold attributes to LLVM more directly.
600   if (D->hasAttr<ColdAttr>())
601     F->addFnAttr(llvm::Attribute::OptimizeForSize);
602 
603   if (D->hasAttr<MinSizeAttr>())
604     F->addFnAttr(llvm::Attribute::MinSize);
605 
606   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
607     F->setUnnamedAddr(true);
608 
609   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
610     if (MD->isVirtual())
611       F->setUnnamedAddr(true);
612 
613   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
614     F->addFnAttr(llvm::Attribute::StackProtect);
615   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
616     F->addFnAttr(llvm::Attribute::StackProtectReq);
617 
618   if (SanOpts.Address) {
619     // When AddressSanitizer is enabled, set AddressSafety attribute
620     // unless __attribute__((no_address_safety_analysis)) is used.
621     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
622       F->addFnAttr(llvm::Attribute::AddressSafety);
623   }
624 
625   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
626   if (alignment)
627     F->setAlignment(alignment);
628 
629   // C++ ABI requires 2-byte alignment for member functions.
630   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
631     F->setAlignment(2);
632 }
633 
634 void CodeGenModule::SetCommonAttributes(const Decl *D,
635                                         llvm::GlobalValue *GV) {
636   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
637     setGlobalVisibility(GV, ND);
638   else
639     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
640 
641   if (D->hasAttr<UsedAttr>())
642     AddUsedGlobal(GV);
643 
644   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
645     GV->setSection(SA->getName());
646 
647   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
648 }
649 
650 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
651                                                   llvm::Function *F,
652                                                   const CGFunctionInfo &FI) {
653   SetLLVMFunctionAttributes(D, FI, F);
654   SetLLVMFunctionAttributesForDefinition(D, F);
655 
656   F->setLinkage(llvm::Function::InternalLinkage);
657 
658   SetCommonAttributes(D, F);
659 }
660 
661 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
662                                           llvm::Function *F,
663                                           bool IsIncompleteFunction) {
664   if (unsigned IID = F->getIntrinsicID()) {
665     // If this is an intrinsic function, set the function's attributes
666     // to the intrinsic's attributes.
667     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
668                                                     (llvm::Intrinsic::ID)IID));
669     return;
670   }
671 
672   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
673 
674   if (!IsIncompleteFunction)
675     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
676 
677   // Only a few attributes are set on declarations; these may later be
678   // overridden by a definition.
679 
680   if (FD->hasAttr<DLLImportAttr>()) {
681     F->setLinkage(llvm::Function::DLLImportLinkage);
682   } else if (FD->hasAttr<WeakAttr>() ||
683              FD->isWeakImported()) {
684     // "extern_weak" is overloaded in LLVM; we probably should have
685     // separate linkage types for this.
686     F->setLinkage(llvm::Function::ExternalWeakLinkage);
687   } else {
688     F->setLinkage(llvm::Function::ExternalLinkage);
689 
690     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
691     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
692       F->setVisibility(GetLLVMVisibility(LV.visibility()));
693     }
694   }
695 
696   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
697     F->setSection(SA->getName());
698 }
699 
700 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
701   assert(!GV->isDeclaration() &&
702          "Only globals with definition can force usage.");
703   LLVMUsed.push_back(GV);
704 }
705 
706 void CodeGenModule::EmitLLVMUsed() {
707   // Don't create llvm.used if there is no need.
708   if (LLVMUsed.empty())
709     return;
710 
711   // Convert LLVMUsed to what ConstantArray needs.
712   SmallVector<llvm::Constant*, 8> UsedArray;
713   UsedArray.resize(LLVMUsed.size());
714   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
715     UsedArray[i] =
716      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
717                                     Int8PtrTy);
718   }
719 
720   if (UsedArray.empty())
721     return;
722   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
723 
724   llvm::GlobalVariable *GV =
725     new llvm::GlobalVariable(getModule(), ATy, false,
726                              llvm::GlobalValue::AppendingLinkage,
727                              llvm::ConstantArray::get(ATy, UsedArray),
728                              "llvm.used");
729 
730   GV->setSection("llvm.metadata");
731 }
732 
733 /// \brief Add link options implied by the given module, including modules
734 /// it depends on, using a postorder walk.
735 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
736                                     Module *Mod,
737                                     SmallVectorImpl<llvm::Value *> &Metadata,
738                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
739   // Import this module's parent.
740   if (Mod->Parent && Visited.insert(Mod->Parent)) {
741     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
742   }
743 
744   // Import this module's dependencies.
745   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
746     if (Visited.insert(Mod->Imports[I-1]))
747       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
748   }
749 
750   // Add linker options to link against the libraries/frameworks
751   // described by this module.
752   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
753     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
754     // We need to know more about the linker to know how to encode these
755     // options propertly.
756 
757     // Link against a framework.
758     if (Mod->LinkLibraries[I-1].IsFramework) {
759       llvm::Value *Args[2] = {
760         llvm::MDString::get(Context, "-framework"),
761         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
762       };
763 
764       Metadata.push_back(llvm::MDNode::get(Context, Args));
765       continue;
766     }
767 
768     // Link against a library.
769     llvm::Value *OptString
770     = llvm::MDString::get(Context,
771                           "-l" + Mod->LinkLibraries[I-1].Library);
772     Metadata.push_back(llvm::MDNode::get(Context, OptString));
773   }
774 }
775 
776 void CodeGenModule::EmitModuleLinkOptions() {
777   // Collect the set of all of the modules we want to visit to emit link
778   // options, which is essentially the imported modules and all of their
779   // non-explicit child modules.
780   llvm::SetVector<clang::Module *> LinkModules;
781   llvm::SmallPtrSet<clang::Module *, 16> Visited;
782   SmallVector<clang::Module *, 16> Stack;
783 
784   // Seed the stack with imported modules.
785   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
786                                                MEnd = ImportedModules.end();
787        M != MEnd; ++M) {
788     if (Visited.insert(*M))
789       Stack.push_back(*M);
790   }
791 
792   // Find all of the modules to import, making a little effort to prune
793   // non-leaf modules.
794   while (!Stack.empty()) {
795     clang::Module *Mod = Stack.back();
796     Stack.pop_back();
797 
798     bool AnyChildren = false;
799 
800     // Visit the submodules of this module.
801     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
802                                         SubEnd = Mod->submodule_end();
803          Sub != SubEnd; ++Sub) {
804       // Skip explicit children; they need to be explicitly imported to be
805       // linked against.
806       if ((*Sub)->IsExplicit)
807         continue;
808 
809       if (Visited.insert(*Sub)) {
810         Stack.push_back(*Sub);
811         AnyChildren = true;
812       }
813     }
814 
815     // We didn't find any children, so add this module to the list of
816     // modules to link against.
817     if (!AnyChildren) {
818       LinkModules.insert(Mod);
819     }
820   }
821 
822   // Add link options for all of the imported modules in reverse topological
823   // order.
824   SmallVector<llvm::Value *, 16> MetadataArgs;
825   Visited.clear();
826   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
827                                                MEnd = LinkModules.end();
828        M != MEnd; ++M) {
829     if (Visited.insert(*M))
830       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
831   }
832   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
833 
834   // Add the linker options metadata flag.
835   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
836                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
837 }
838 
839 void CodeGenModule::EmitDeferred() {
840   // Emit code for any potentially referenced deferred decls.  Since a
841   // previously unused static decl may become used during the generation of code
842   // for a static function, iterate until no changes are made.
843 
844   while (true) {
845     if (!DeferredVTables.empty()) {
846       EmitDeferredVTables();
847 
848       // Emitting a v-table doesn't directly cause more v-tables to
849       // become deferred, although it can cause functions to be
850       // emitted that then need those v-tables.
851       assert(DeferredVTables.empty());
852     }
853 
854     // Stop if we're out of both deferred v-tables and deferred declarations.
855     if (DeferredDeclsToEmit.empty()) break;
856 
857     GlobalDecl D = DeferredDeclsToEmit.back();
858     DeferredDeclsToEmit.pop_back();
859 
860     // Check to see if we've already emitted this.  This is necessary
861     // for a couple of reasons: first, decls can end up in the
862     // deferred-decls queue multiple times, and second, decls can end
863     // up with definitions in unusual ways (e.g. by an extern inline
864     // function acquiring a strong function redefinition).  Just
865     // ignore these cases.
866     //
867     // TODO: That said, looking this up multiple times is very wasteful.
868     StringRef Name = getMangledName(D);
869     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
870     assert(CGRef && "Deferred decl wasn't referenced?");
871 
872     if (!CGRef->isDeclaration())
873       continue;
874 
875     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
876     // purposes an alias counts as a definition.
877     if (isa<llvm::GlobalAlias>(CGRef))
878       continue;
879 
880     // Otherwise, emit the definition and move on to the next one.
881     EmitGlobalDefinition(D);
882   }
883 }
884 
885 void CodeGenModule::EmitGlobalAnnotations() {
886   if (Annotations.empty())
887     return;
888 
889   // Create a new global variable for the ConstantStruct in the Module.
890   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
891     Annotations[0]->getType(), Annotations.size()), Annotations);
892   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
893     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
894     "llvm.global.annotations");
895   gv->setSection(AnnotationSection);
896 }
897 
898 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
899   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
900   if (i != AnnotationStrings.end())
901     return i->second;
902 
903   // Not found yet, create a new global.
904   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
905   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
906     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
907   gv->setSection(AnnotationSection);
908   gv->setUnnamedAddr(true);
909   AnnotationStrings[Str] = gv;
910   return gv;
911 }
912 
913 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
914   SourceManager &SM = getContext().getSourceManager();
915   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
916   if (PLoc.isValid())
917     return EmitAnnotationString(PLoc.getFilename());
918   return EmitAnnotationString(SM.getBufferName(Loc));
919 }
920 
921 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
922   SourceManager &SM = getContext().getSourceManager();
923   PresumedLoc PLoc = SM.getPresumedLoc(L);
924   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
925     SM.getExpansionLineNumber(L);
926   return llvm::ConstantInt::get(Int32Ty, LineNo);
927 }
928 
929 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
930                                                 const AnnotateAttr *AA,
931                                                 SourceLocation L) {
932   // Get the globals for file name, annotation, and the line number.
933   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
934                  *UnitGV = EmitAnnotationUnit(L),
935                  *LineNoCst = EmitAnnotationLineNo(L);
936 
937   // Create the ConstantStruct for the global annotation.
938   llvm::Constant *Fields[4] = {
939     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
940     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
941     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
942     LineNoCst
943   };
944   return llvm::ConstantStruct::getAnon(Fields);
945 }
946 
947 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
948                                          llvm::GlobalValue *GV) {
949   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
950   // Get the struct elements for these annotations.
951   for (specific_attr_iterator<AnnotateAttr>
952        ai = D->specific_attr_begin<AnnotateAttr>(),
953        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
954     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
955 }
956 
957 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
958   // Never defer when EmitAllDecls is specified.
959   if (LangOpts.EmitAllDecls)
960     return false;
961 
962   return !getContext().DeclMustBeEmitted(Global);
963 }
964 
965 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
966     const CXXUuidofExpr* E) {
967   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
968   // well-formed.
969   StringRef Uuid;
970   if (E->isTypeOperand())
971     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
972   else {
973     // Special case: __uuidof(0) means an all-zero GUID.
974     Expr *Op = E->getExprOperand();
975     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
976       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
977     else
978       Uuid = "00000000-0000-0000-0000-000000000000";
979   }
980   std::string Name = "__uuid_" + Uuid.str();
981 
982   // Look for an existing global.
983   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
984     return GV;
985 
986   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
987   assert(Init && "failed to initialize as constant");
988 
989   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
990   // first field is declared as "long", which for many targets is 8 bytes.
991   // Those architectures are not supported. (With the MS abi, long is always 4
992   // bytes.)
993   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
994   if (Init->getType() != GuidType) {
995     DiagnosticsEngine &Diags = getDiags();
996     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
997         "__uuidof codegen is not supported on this architecture");
998     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
999     Init = llvm::UndefValue::get(GuidType);
1000   }
1001 
1002   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1003       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1004   GV->setUnnamedAddr(true);
1005   return GV;
1006 }
1007 
1008 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1009   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1010   assert(AA && "No alias?");
1011 
1012   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1013 
1014   // See if there is already something with the target's name in the module.
1015   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1016   if (Entry) {
1017     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1018     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1019   }
1020 
1021   llvm::Constant *Aliasee;
1022   if (isa<llvm::FunctionType>(DeclTy))
1023     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1024                                       GlobalDecl(cast<FunctionDecl>(VD)),
1025                                       /*ForVTable=*/false);
1026   else
1027     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1028                                     llvm::PointerType::getUnqual(DeclTy), 0);
1029 
1030   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1031   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1032   WeakRefReferences.insert(F);
1033 
1034   return Aliasee;
1035 }
1036 
1037 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1038   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1039 
1040   // Weak references don't produce any output by themselves.
1041   if (Global->hasAttr<WeakRefAttr>())
1042     return;
1043 
1044   // If this is an alias definition (which otherwise looks like a declaration)
1045   // emit it now.
1046   if (Global->hasAttr<AliasAttr>())
1047     return EmitAliasDefinition(GD);
1048 
1049   // If this is CUDA, be selective about which declarations we emit.
1050   if (LangOpts.CUDA) {
1051     if (CodeGenOpts.CUDAIsDevice) {
1052       if (!Global->hasAttr<CUDADeviceAttr>() &&
1053           !Global->hasAttr<CUDAGlobalAttr>() &&
1054           !Global->hasAttr<CUDAConstantAttr>() &&
1055           !Global->hasAttr<CUDASharedAttr>())
1056         return;
1057     } else {
1058       if (!Global->hasAttr<CUDAHostAttr>() && (
1059             Global->hasAttr<CUDADeviceAttr>() ||
1060             Global->hasAttr<CUDAConstantAttr>() ||
1061             Global->hasAttr<CUDASharedAttr>()))
1062         return;
1063     }
1064   }
1065 
1066   // Ignore declarations, they will be emitted on their first use.
1067   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1068     // Forward declarations are emitted lazily on first use.
1069     if (!FD->doesThisDeclarationHaveABody()) {
1070       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1071         return;
1072 
1073       const FunctionDecl *InlineDefinition = 0;
1074       FD->getBody(InlineDefinition);
1075 
1076       StringRef MangledName = getMangledName(GD);
1077       DeferredDecls.erase(MangledName);
1078       EmitGlobalDefinition(InlineDefinition);
1079       return;
1080     }
1081   } else {
1082     const VarDecl *VD = cast<VarDecl>(Global);
1083     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1084 
1085     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1086       return;
1087   }
1088 
1089   // Defer code generation when possible if this is a static definition, inline
1090   // function etc.  These we only want to emit if they are used.
1091   if (!MayDeferGeneration(Global)) {
1092     // Emit the definition if it can't be deferred.
1093     EmitGlobalDefinition(GD);
1094     return;
1095   }
1096 
1097   // If we're deferring emission of a C++ variable with an
1098   // initializer, remember the order in which it appeared in the file.
1099   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1100       cast<VarDecl>(Global)->hasInit()) {
1101     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1102     CXXGlobalInits.push_back(0);
1103   }
1104 
1105   // If the value has already been used, add it directly to the
1106   // DeferredDeclsToEmit list.
1107   StringRef MangledName = getMangledName(GD);
1108   if (GetGlobalValue(MangledName))
1109     DeferredDeclsToEmit.push_back(GD);
1110   else {
1111     // Otherwise, remember that we saw a deferred decl with this name.  The
1112     // first use of the mangled name will cause it to move into
1113     // DeferredDeclsToEmit.
1114     DeferredDecls[MangledName] = GD;
1115   }
1116 }
1117 
1118 namespace {
1119   struct FunctionIsDirectlyRecursive :
1120     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1121     const StringRef Name;
1122     const Builtin::Context &BI;
1123     bool Result;
1124     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1125       Name(N), BI(C), Result(false) {
1126     }
1127     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1128 
1129     bool TraverseCallExpr(CallExpr *E) {
1130       const FunctionDecl *FD = E->getDirectCallee();
1131       if (!FD)
1132         return true;
1133       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1134       if (Attr && Name == Attr->getLabel()) {
1135         Result = true;
1136         return false;
1137       }
1138       unsigned BuiltinID = FD->getBuiltinID();
1139       if (!BuiltinID)
1140         return true;
1141       StringRef BuiltinName = BI.GetName(BuiltinID);
1142       if (BuiltinName.startswith("__builtin_") &&
1143           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1144         Result = true;
1145         return false;
1146       }
1147       return true;
1148     }
1149   };
1150 }
1151 
1152 // isTriviallyRecursive - Check if this function calls another
1153 // decl that, because of the asm attribute or the other decl being a builtin,
1154 // ends up pointing to itself.
1155 bool
1156 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1157   StringRef Name;
1158   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1159     // asm labels are a special kind of mangling we have to support.
1160     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1161     if (!Attr)
1162       return false;
1163     Name = Attr->getLabel();
1164   } else {
1165     Name = FD->getName();
1166   }
1167 
1168   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1169   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1170   return Walker.Result;
1171 }
1172 
1173 bool
1174 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1175   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1176     return true;
1177   if (CodeGenOpts.OptimizationLevel == 0 &&
1178       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1179     return false;
1180   // PR9614. Avoid cases where the source code is lying to us. An available
1181   // externally function should have an equivalent function somewhere else,
1182   // but a function that calls itself is clearly not equivalent to the real
1183   // implementation.
1184   // This happens in glibc's btowc and in some configure checks.
1185   return !isTriviallyRecursive(F);
1186 }
1187 
1188 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1189   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1190 
1191   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1192                                  Context.getSourceManager(),
1193                                  "Generating code for declaration");
1194 
1195   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1196     // At -O0, don't generate IR for functions with available_externally
1197     // linkage.
1198     if (!shouldEmitFunction(Function))
1199       return;
1200 
1201     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1202       // Make sure to emit the definition(s) before we emit the thunks.
1203       // This is necessary for the generation of certain thunks.
1204       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1205         EmitCXXConstructor(CD, GD.getCtorType());
1206       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1207         EmitCXXDestructor(DD, GD.getDtorType());
1208       else
1209         EmitGlobalFunctionDefinition(GD);
1210 
1211       if (Method->isVirtual())
1212         getVTables().EmitThunks(GD);
1213 
1214       return;
1215     }
1216 
1217     return EmitGlobalFunctionDefinition(GD);
1218   }
1219 
1220   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1221     return EmitGlobalVarDefinition(VD);
1222 
1223   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1224 }
1225 
1226 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1227 /// module, create and return an llvm Function with the specified type. If there
1228 /// is something in the module with the specified name, return it potentially
1229 /// bitcasted to the right type.
1230 ///
1231 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1232 /// to set the attributes on the function when it is first created.
1233 llvm::Constant *
1234 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1235                                        llvm::Type *Ty,
1236                                        GlobalDecl D, bool ForVTable,
1237                                        llvm::AttributeSet ExtraAttrs) {
1238   // Lookup the entry, lazily creating it if necessary.
1239   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1240   if (Entry) {
1241     if (WeakRefReferences.erase(Entry)) {
1242       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1243       if (FD && !FD->hasAttr<WeakAttr>())
1244         Entry->setLinkage(llvm::Function::ExternalLinkage);
1245     }
1246 
1247     if (Entry->getType()->getElementType() == Ty)
1248       return Entry;
1249 
1250     // Make sure the result is of the correct type.
1251     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1252   }
1253 
1254   // This function doesn't have a complete type (for example, the return
1255   // type is an incomplete struct). Use a fake type instead, and make
1256   // sure not to try to set attributes.
1257   bool IsIncompleteFunction = false;
1258 
1259   llvm::FunctionType *FTy;
1260   if (isa<llvm::FunctionType>(Ty)) {
1261     FTy = cast<llvm::FunctionType>(Ty);
1262   } else {
1263     FTy = llvm::FunctionType::get(VoidTy, false);
1264     IsIncompleteFunction = true;
1265   }
1266 
1267   llvm::Function *F = llvm::Function::Create(FTy,
1268                                              llvm::Function::ExternalLinkage,
1269                                              MangledName, &getModule());
1270   assert(F->getName() == MangledName && "name was uniqued!");
1271   if (D.getDecl())
1272     SetFunctionAttributes(D, F, IsIncompleteFunction);
1273   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1274     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1275     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1276                      llvm::AttributeSet::get(VMContext,
1277                                              llvm::AttributeSet::FunctionIndex,
1278                                              B));
1279   }
1280 
1281   // This is the first use or definition of a mangled name.  If there is a
1282   // deferred decl with this name, remember that we need to emit it at the end
1283   // of the file.
1284   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1285   if (DDI != DeferredDecls.end()) {
1286     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1287     // list, and remove it from DeferredDecls (since we don't need it anymore).
1288     DeferredDeclsToEmit.push_back(DDI->second);
1289     DeferredDecls.erase(DDI);
1290 
1291   // Otherwise, there are cases we have to worry about where we're
1292   // using a declaration for which we must emit a definition but where
1293   // we might not find a top-level definition:
1294   //   - member functions defined inline in their classes
1295   //   - friend functions defined inline in some class
1296   //   - special member functions with implicit definitions
1297   // If we ever change our AST traversal to walk into class methods,
1298   // this will be unnecessary.
1299   //
1300   // We also don't emit a definition for a function if it's going to be an entry
1301   // in a vtable, unless it's already marked as used.
1302   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1303     // Look for a declaration that's lexically in a record.
1304     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1305     FD = FD->getMostRecentDecl();
1306     do {
1307       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1308         if (FD->isImplicit() && !ForVTable) {
1309           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1310           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1311           break;
1312         } else if (FD->doesThisDeclarationHaveABody()) {
1313           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1314           break;
1315         }
1316       }
1317       FD = FD->getPreviousDecl();
1318     } while (FD);
1319   }
1320 
1321   // Make sure the result is of the requested type.
1322   if (!IsIncompleteFunction) {
1323     assert(F->getType()->getElementType() == Ty);
1324     return F;
1325   }
1326 
1327   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1328   return llvm::ConstantExpr::getBitCast(F, PTy);
1329 }
1330 
1331 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1332 /// non-null, then this function will use the specified type if it has to
1333 /// create it (this occurs when we see a definition of the function).
1334 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1335                                                  llvm::Type *Ty,
1336                                                  bool ForVTable) {
1337   // If there was no specific requested type, just convert it now.
1338   if (!Ty)
1339     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1340 
1341   StringRef MangledName = getMangledName(GD);
1342   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1343 }
1344 
1345 /// CreateRuntimeFunction - Create a new runtime function with the specified
1346 /// type and name.
1347 llvm::Constant *
1348 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1349                                      StringRef Name,
1350                                      llvm::AttributeSet ExtraAttrs) {
1351   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1352                                  ExtraAttrs);
1353 }
1354 
1355 /// isTypeConstant - Determine whether an object of this type can be emitted
1356 /// as a constant.
1357 ///
1358 /// If ExcludeCtor is true, the duration when the object's constructor runs
1359 /// will not be considered. The caller will need to verify that the object is
1360 /// not written to during its construction.
1361 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1362   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1363     return false;
1364 
1365   if (Context.getLangOpts().CPlusPlus) {
1366     if (const CXXRecordDecl *Record
1367           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1368       return ExcludeCtor && !Record->hasMutableFields() &&
1369              Record->hasTrivialDestructor();
1370   }
1371 
1372   return true;
1373 }
1374 
1375 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1376 /// create and return an llvm GlobalVariable with the specified type.  If there
1377 /// is something in the module with the specified name, return it potentially
1378 /// bitcasted to the right type.
1379 ///
1380 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1381 /// to set the attributes on the global when it is first created.
1382 llvm::Constant *
1383 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1384                                      llvm::PointerType *Ty,
1385                                      const VarDecl *D,
1386                                      bool UnnamedAddr) {
1387   // Lookup the entry, lazily creating it if necessary.
1388   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1389   if (Entry) {
1390     if (WeakRefReferences.erase(Entry)) {
1391       if (D && !D->hasAttr<WeakAttr>())
1392         Entry->setLinkage(llvm::Function::ExternalLinkage);
1393     }
1394 
1395     if (UnnamedAddr)
1396       Entry->setUnnamedAddr(true);
1397 
1398     if (Entry->getType() == Ty)
1399       return Entry;
1400 
1401     // Make sure the result is of the correct type.
1402     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1403   }
1404 
1405   // This is the first use or definition of a mangled name.  If there is a
1406   // deferred decl with this name, remember that we need to emit it at the end
1407   // of the file.
1408   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1409   if (DDI != DeferredDecls.end()) {
1410     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1411     // list, and remove it from DeferredDecls (since we don't need it anymore).
1412     DeferredDeclsToEmit.push_back(DDI->second);
1413     DeferredDecls.erase(DDI);
1414   }
1415 
1416   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1417   llvm::GlobalVariable *GV =
1418     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1419                              llvm::GlobalValue::ExternalLinkage,
1420                              0, MangledName, 0,
1421                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1422 
1423   // Handle things which are present even on external declarations.
1424   if (D) {
1425     // FIXME: This code is overly simple and should be merged with other global
1426     // handling.
1427     GV->setConstant(isTypeConstant(D->getType(), false));
1428 
1429     // Set linkage and visibility in case we never see a definition.
1430     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1431     if (LV.linkage() != ExternalLinkage) {
1432       // Don't set internal linkage on declarations.
1433     } else {
1434       if (D->hasAttr<DLLImportAttr>())
1435         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1436       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1437         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1438 
1439       // Set visibility on a declaration only if it's explicit.
1440       if (LV.visibilityExplicit())
1441         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1442     }
1443 
1444     if (D->isThreadSpecified())
1445       setTLSMode(GV, *D);
1446   }
1447 
1448   if (AddrSpace != Ty->getAddressSpace())
1449     return llvm::ConstantExpr::getBitCast(GV, Ty);
1450   else
1451     return GV;
1452 }
1453 
1454 
1455 llvm::GlobalVariable *
1456 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1457                                       llvm::Type *Ty,
1458                                       llvm::GlobalValue::LinkageTypes Linkage) {
1459   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1460   llvm::GlobalVariable *OldGV = 0;
1461 
1462 
1463   if (GV) {
1464     // Check if the variable has the right type.
1465     if (GV->getType()->getElementType() == Ty)
1466       return GV;
1467 
1468     // Because C++ name mangling, the only way we can end up with an already
1469     // existing global with the same name is if it has been declared extern "C".
1470     assert(GV->isDeclaration() && "Declaration has wrong type!");
1471     OldGV = GV;
1472   }
1473 
1474   // Create a new variable.
1475   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1476                                 Linkage, 0, Name);
1477 
1478   if (OldGV) {
1479     // Replace occurrences of the old variable if needed.
1480     GV->takeName(OldGV);
1481 
1482     if (!OldGV->use_empty()) {
1483       llvm::Constant *NewPtrForOldDecl =
1484       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1485       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1486     }
1487 
1488     OldGV->eraseFromParent();
1489   }
1490 
1491   return GV;
1492 }
1493 
1494 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1495 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1496 /// then it will be created with the specified type instead of whatever the
1497 /// normal requested type would be.
1498 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1499                                                   llvm::Type *Ty) {
1500   assert(D->hasGlobalStorage() && "Not a global variable");
1501   QualType ASTTy = D->getType();
1502   if (Ty == 0)
1503     Ty = getTypes().ConvertTypeForMem(ASTTy);
1504 
1505   llvm::PointerType *PTy =
1506     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1507 
1508   StringRef MangledName = getMangledName(D);
1509   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1510 }
1511 
1512 /// CreateRuntimeVariable - Create a new runtime global variable with the
1513 /// specified type and name.
1514 llvm::Constant *
1515 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1516                                      StringRef Name) {
1517   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1518                                true);
1519 }
1520 
1521 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1522   assert(!D->getInit() && "Cannot emit definite definitions here!");
1523 
1524   if (MayDeferGeneration(D)) {
1525     // If we have not seen a reference to this variable yet, place it
1526     // into the deferred declarations table to be emitted if needed
1527     // later.
1528     StringRef MangledName = getMangledName(D);
1529     if (!GetGlobalValue(MangledName)) {
1530       DeferredDecls[MangledName] = D;
1531       return;
1532     }
1533   }
1534 
1535   // The tentative definition is the only definition.
1536   EmitGlobalVarDefinition(D);
1537 }
1538 
1539 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1540     return Context.toCharUnitsFromBits(
1541       TheDataLayout.getTypeStoreSizeInBits(Ty));
1542 }
1543 
1544 llvm::Constant *
1545 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1546                                                        const Expr *rawInit) {
1547   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1548   if (const ExprWithCleanups *withCleanups =
1549           dyn_cast<ExprWithCleanups>(rawInit)) {
1550     cleanups = withCleanups->getObjects();
1551     rawInit = withCleanups->getSubExpr();
1552   }
1553 
1554   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1555   if (!init || !init->initializesStdInitializerList() ||
1556       init->getNumInits() == 0)
1557     return 0;
1558 
1559   ASTContext &ctx = getContext();
1560   unsigned numInits = init->getNumInits();
1561   // FIXME: This check is here because we would otherwise silently miscompile
1562   // nested global std::initializer_lists. Better would be to have a real
1563   // implementation.
1564   for (unsigned i = 0; i < numInits; ++i) {
1565     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1566     if (inner && inner->initializesStdInitializerList()) {
1567       ErrorUnsupported(inner, "nested global std::initializer_list");
1568       return 0;
1569     }
1570   }
1571 
1572   // Synthesize a fake VarDecl for the array and initialize that.
1573   QualType elementType = init->getInit(0)->getType();
1574   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1575   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1576                                                 ArrayType::Normal, 0);
1577 
1578   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1579   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1580                                               arrayType, D->getLocation());
1581   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1582                                                           D->getDeclContext()),
1583                                           D->getLocStart(), D->getLocation(),
1584                                           name, arrayType, sourceInfo,
1585                                           SC_Static, SC_Static);
1586 
1587   // Now clone the InitListExpr to initialize the array instead.
1588   // Incredible hack: we want to use the existing InitListExpr here, so we need
1589   // to tell it that it no longer initializes a std::initializer_list.
1590   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1591                         init->getNumInits());
1592   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1593                                            init->getRBraceLoc());
1594   arrayInit->setType(arrayType);
1595 
1596   if (!cleanups.empty())
1597     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1598 
1599   backingArray->setInit(arrayInit);
1600 
1601   // Emit the definition of the array.
1602   EmitGlobalVarDefinition(backingArray);
1603 
1604   // Inspect the initializer list to validate it and determine its type.
1605   // FIXME: doing this every time is probably inefficient; caching would be nice
1606   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1607   RecordDecl::field_iterator field = record->field_begin();
1608   if (field == record->field_end()) {
1609     ErrorUnsupported(D, "weird std::initializer_list");
1610     return 0;
1611   }
1612   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1613   // Start pointer.
1614   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1615     ErrorUnsupported(D, "weird std::initializer_list");
1616     return 0;
1617   }
1618   ++field;
1619   if (field == record->field_end()) {
1620     ErrorUnsupported(D, "weird std::initializer_list");
1621     return 0;
1622   }
1623   bool isStartEnd = false;
1624   if (ctx.hasSameType(field->getType(), elementPtr)) {
1625     // End pointer.
1626     isStartEnd = true;
1627   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1628     ErrorUnsupported(D, "weird std::initializer_list");
1629     return 0;
1630   }
1631 
1632   // Now build an APValue representing the std::initializer_list.
1633   APValue initListValue(APValue::UninitStruct(), 0, 2);
1634   APValue &startField = initListValue.getStructField(0);
1635   APValue::LValuePathEntry startOffsetPathEntry;
1636   startOffsetPathEntry.ArrayIndex = 0;
1637   startField = APValue(APValue::LValueBase(backingArray),
1638                        CharUnits::fromQuantity(0),
1639                        llvm::makeArrayRef(startOffsetPathEntry),
1640                        /*IsOnePastTheEnd=*/false, 0);
1641 
1642   if (isStartEnd) {
1643     APValue &endField = initListValue.getStructField(1);
1644     APValue::LValuePathEntry endOffsetPathEntry;
1645     endOffsetPathEntry.ArrayIndex = numInits;
1646     endField = APValue(APValue::LValueBase(backingArray),
1647                        ctx.getTypeSizeInChars(elementType) * numInits,
1648                        llvm::makeArrayRef(endOffsetPathEntry),
1649                        /*IsOnePastTheEnd=*/true, 0);
1650   } else {
1651     APValue &sizeField = initListValue.getStructField(1);
1652     sizeField = APValue(llvm::APSInt(numElements));
1653   }
1654 
1655   // Emit the constant for the initializer_list.
1656   llvm::Constant *llvmInit =
1657       EmitConstantValueForMemory(initListValue, D->getType());
1658   assert(llvmInit && "failed to initialize as constant");
1659   return llvmInit;
1660 }
1661 
1662 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1663                                                  unsigned AddrSpace) {
1664   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1665     if (D->hasAttr<CUDAConstantAttr>())
1666       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1667     else if (D->hasAttr<CUDASharedAttr>())
1668       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1669     else
1670       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1671   }
1672 
1673   return AddrSpace;
1674 }
1675 
1676 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1677   llvm::Constant *Init = 0;
1678   QualType ASTTy = D->getType();
1679   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1680   bool NeedsGlobalCtor = false;
1681   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1682 
1683   const VarDecl *InitDecl;
1684   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1685 
1686   if (!InitExpr) {
1687     // This is a tentative definition; tentative definitions are
1688     // implicitly initialized with { 0 }.
1689     //
1690     // Note that tentative definitions are only emitted at the end of
1691     // a translation unit, so they should never have incomplete
1692     // type. In addition, EmitTentativeDefinition makes sure that we
1693     // never attempt to emit a tentative definition if a real one
1694     // exists. A use may still exists, however, so we still may need
1695     // to do a RAUW.
1696     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1697     Init = EmitNullConstant(D->getType());
1698   } else {
1699     // If this is a std::initializer_list, emit the special initializer.
1700     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1701     // An empty init list will perform zero-initialization, which happens
1702     // to be exactly what we want.
1703     // FIXME: It does so in a global constructor, which is *not* what we
1704     // want.
1705 
1706     if (!Init) {
1707       initializedGlobalDecl = GlobalDecl(D);
1708       Init = EmitConstantInit(*InitDecl);
1709     }
1710     if (!Init) {
1711       QualType T = InitExpr->getType();
1712       if (D->getType()->isReferenceType())
1713         T = D->getType();
1714 
1715       if (getLangOpts().CPlusPlus) {
1716         Init = EmitNullConstant(T);
1717         NeedsGlobalCtor = true;
1718       } else {
1719         ErrorUnsupported(D, "static initializer");
1720         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1721       }
1722     } else {
1723       // We don't need an initializer, so remove the entry for the delayed
1724       // initializer position (just in case this entry was delayed) if we
1725       // also don't need to register a destructor.
1726       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1727         DelayedCXXInitPosition.erase(D);
1728     }
1729   }
1730 
1731   llvm::Type* InitType = Init->getType();
1732   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1733 
1734   // Strip off a bitcast if we got one back.
1735   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1736     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1737            // all zero index gep.
1738            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1739     Entry = CE->getOperand(0);
1740   }
1741 
1742   // Entry is now either a Function or GlobalVariable.
1743   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1744 
1745   // We have a definition after a declaration with the wrong type.
1746   // We must make a new GlobalVariable* and update everything that used OldGV
1747   // (a declaration or tentative definition) with the new GlobalVariable*
1748   // (which will be a definition).
1749   //
1750   // This happens if there is a prototype for a global (e.g.
1751   // "extern int x[];") and then a definition of a different type (e.g.
1752   // "int x[10];"). This also happens when an initializer has a different type
1753   // from the type of the global (this happens with unions).
1754   if (GV == 0 ||
1755       GV->getType()->getElementType() != InitType ||
1756       GV->getType()->getAddressSpace() !=
1757        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1758 
1759     // Move the old entry aside so that we'll create a new one.
1760     Entry->setName(StringRef());
1761 
1762     // Make a new global with the correct type, this is now guaranteed to work.
1763     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1764 
1765     // Replace all uses of the old global with the new global
1766     llvm::Constant *NewPtrForOldDecl =
1767         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1768     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1769 
1770     // Erase the old global, since it is no longer used.
1771     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1772   }
1773 
1774   if (D->hasAttr<AnnotateAttr>())
1775     AddGlobalAnnotations(D, GV);
1776 
1777   GV->setInitializer(Init);
1778 
1779   // If it is safe to mark the global 'constant', do so now.
1780   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1781                   isTypeConstant(D->getType(), true));
1782 
1783   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1784 
1785   // Set the llvm linkage type as appropriate.
1786   llvm::GlobalValue::LinkageTypes Linkage =
1787     GetLLVMLinkageVarDefinition(D, GV);
1788   GV->setLinkage(Linkage);
1789   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1790     // common vars aren't constant even if declared const.
1791     GV->setConstant(false);
1792 
1793   SetCommonAttributes(D, GV);
1794 
1795   // Emit the initializer function if necessary.
1796   if (NeedsGlobalCtor || NeedsGlobalDtor)
1797     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1798 
1799   // If we are compiling with ASan, add metadata indicating dynamically
1800   // initialized globals.
1801   if (SanOpts.Address && NeedsGlobalCtor) {
1802     llvm::Module &M = getModule();
1803 
1804     llvm::NamedMDNode *DynamicInitializers =
1805         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1806     llvm::Value *GlobalToAdd[] = { GV };
1807     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1808     DynamicInitializers->addOperand(ThisGlobal);
1809   }
1810 
1811   // Emit global variable debug information.
1812   if (CGDebugInfo *DI = getModuleDebugInfo())
1813     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1814       DI->EmitGlobalVariable(GV, D);
1815 }
1816 
1817 llvm::GlobalValue::LinkageTypes
1818 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1819                                            llvm::GlobalVariable *GV) {
1820   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1821   if (Linkage == GVA_Internal)
1822     return llvm::Function::InternalLinkage;
1823   else if (D->hasAttr<DLLImportAttr>())
1824     return llvm::Function::DLLImportLinkage;
1825   else if (D->hasAttr<DLLExportAttr>())
1826     return llvm::Function::DLLExportLinkage;
1827   else if (D->hasAttr<WeakAttr>()) {
1828     if (GV->isConstant())
1829       return llvm::GlobalVariable::WeakODRLinkage;
1830     else
1831       return llvm::GlobalVariable::WeakAnyLinkage;
1832   } else if (Linkage == GVA_TemplateInstantiation ||
1833              Linkage == GVA_ExplicitTemplateInstantiation)
1834     return llvm::GlobalVariable::WeakODRLinkage;
1835   else if (!getLangOpts().CPlusPlus &&
1836            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1837              D->getAttr<CommonAttr>()) &&
1838            !D->hasExternalStorage() && !D->getInit() &&
1839            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1840            !D->getAttr<WeakImportAttr>()) {
1841     // Thread local vars aren't considered common linkage.
1842     return llvm::GlobalVariable::CommonLinkage;
1843   }
1844   return llvm::GlobalVariable::ExternalLinkage;
1845 }
1846 
1847 /// Replace the uses of a function that was declared with a non-proto type.
1848 /// We want to silently drop extra arguments from call sites
1849 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1850                                           llvm::Function *newFn) {
1851   // Fast path.
1852   if (old->use_empty()) return;
1853 
1854   llvm::Type *newRetTy = newFn->getReturnType();
1855   SmallVector<llvm::Value*, 4> newArgs;
1856 
1857   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1858          ui != ue; ) {
1859     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1860     llvm::User *user = *use;
1861 
1862     // Recognize and replace uses of bitcasts.  Most calls to
1863     // unprototyped functions will use bitcasts.
1864     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1865       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1866         replaceUsesOfNonProtoConstant(bitcast, newFn);
1867       continue;
1868     }
1869 
1870     // Recognize calls to the function.
1871     llvm::CallSite callSite(user);
1872     if (!callSite) continue;
1873     if (!callSite.isCallee(use)) continue;
1874 
1875     // If the return types don't match exactly, then we can't
1876     // transform this call unless it's dead.
1877     if (callSite->getType() != newRetTy && !callSite->use_empty())
1878       continue;
1879 
1880     // Get the call site's attribute list.
1881     SmallVector<llvm::AttributeSet, 8> newAttrs;
1882     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1883 
1884     // Collect any return attributes from the call.
1885     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1886       newAttrs.push_back(
1887         llvm::AttributeSet::get(newFn->getContext(),
1888                                 oldAttrs.getRetAttributes()));
1889 
1890     // If the function was passed too few arguments, don't transform.
1891     unsigned newNumArgs = newFn->arg_size();
1892     if (callSite.arg_size() < newNumArgs) continue;
1893 
1894     // If extra arguments were passed, we silently drop them.
1895     // If any of the types mismatch, we don't transform.
1896     unsigned argNo = 0;
1897     bool dontTransform = false;
1898     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1899            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1900       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1901         dontTransform = true;
1902         break;
1903       }
1904 
1905       // Add any parameter attributes.
1906       if (oldAttrs.hasAttributes(argNo + 1))
1907         newAttrs.
1908           push_back(llvm::
1909                     AttributeSet::get(newFn->getContext(),
1910                                       oldAttrs.getParamAttributes(argNo + 1)));
1911     }
1912     if (dontTransform)
1913       continue;
1914 
1915     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1916       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1917                                                  oldAttrs.getFnAttributes()));
1918 
1919     // Okay, we can transform this.  Create the new call instruction and copy
1920     // over the required information.
1921     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1922 
1923     llvm::CallSite newCall;
1924     if (callSite.isCall()) {
1925       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1926                                        callSite.getInstruction());
1927     } else {
1928       llvm::InvokeInst *oldInvoke =
1929         cast<llvm::InvokeInst>(callSite.getInstruction());
1930       newCall = llvm::InvokeInst::Create(newFn,
1931                                          oldInvoke->getNormalDest(),
1932                                          oldInvoke->getUnwindDest(),
1933                                          newArgs, "",
1934                                          callSite.getInstruction());
1935     }
1936     newArgs.clear(); // for the next iteration
1937 
1938     if (!newCall->getType()->isVoidTy())
1939       newCall->takeName(callSite.getInstruction());
1940     newCall.setAttributes(
1941                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1942     newCall.setCallingConv(callSite.getCallingConv());
1943 
1944     // Finally, remove the old call, replacing any uses with the new one.
1945     if (!callSite->use_empty())
1946       callSite->replaceAllUsesWith(newCall.getInstruction());
1947 
1948     // Copy debug location attached to CI.
1949     if (!callSite->getDebugLoc().isUnknown())
1950       newCall->setDebugLoc(callSite->getDebugLoc());
1951     callSite->eraseFromParent();
1952   }
1953 }
1954 
1955 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1956 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1957 /// existing call uses of the old function in the module, this adjusts them to
1958 /// call the new function directly.
1959 ///
1960 /// This is not just a cleanup: the always_inline pass requires direct calls to
1961 /// functions to be able to inline them.  If there is a bitcast in the way, it
1962 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1963 /// run at -O0.
1964 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1965                                                       llvm::Function *NewFn) {
1966   // If we're redefining a global as a function, don't transform it.
1967   if (!isa<llvm::Function>(Old)) return;
1968 
1969   replaceUsesOfNonProtoConstant(Old, NewFn);
1970 }
1971 
1972 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1973   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1974   // If we have a definition, this might be a deferred decl. If the
1975   // instantiation is explicit, make sure we emit it at the end.
1976   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1977     GetAddrOfGlobalVar(VD);
1978 }
1979 
1980 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1981   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1982 
1983   // Compute the function info and LLVM type.
1984   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1985   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1986 
1987   // Get or create the prototype for the function.
1988   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1989 
1990   // Strip off a bitcast if we got one back.
1991   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1992     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1993     Entry = CE->getOperand(0);
1994   }
1995 
1996 
1997   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1998     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1999 
2000     // If the types mismatch then we have to rewrite the definition.
2001     assert(OldFn->isDeclaration() &&
2002            "Shouldn't replace non-declaration");
2003 
2004     // F is the Function* for the one with the wrong type, we must make a new
2005     // Function* and update everything that used F (a declaration) with the new
2006     // Function* (which will be a definition).
2007     //
2008     // This happens if there is a prototype for a function
2009     // (e.g. "int f()") and then a definition of a different type
2010     // (e.g. "int f(int x)").  Move the old function aside so that it
2011     // doesn't interfere with GetAddrOfFunction.
2012     OldFn->setName(StringRef());
2013     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2014 
2015     // This might be an implementation of a function without a
2016     // prototype, in which case, try to do special replacement of
2017     // calls which match the new prototype.  The really key thing here
2018     // is that we also potentially drop arguments from the call site
2019     // so as to make a direct call, which makes the inliner happier
2020     // and suppresses a number of optimizer warnings (!) about
2021     // dropping arguments.
2022     if (!OldFn->use_empty()) {
2023       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2024       OldFn->removeDeadConstantUsers();
2025     }
2026 
2027     // Replace uses of F with the Function we will endow with a body.
2028     if (!Entry->use_empty()) {
2029       llvm::Constant *NewPtrForOldDecl =
2030         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2031       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2032     }
2033 
2034     // Ok, delete the old function now, which is dead.
2035     OldFn->eraseFromParent();
2036 
2037     Entry = NewFn;
2038   }
2039 
2040   // We need to set linkage and visibility on the function before
2041   // generating code for it because various parts of IR generation
2042   // want to propagate this information down (e.g. to local static
2043   // declarations).
2044   llvm::Function *Fn = cast<llvm::Function>(Entry);
2045   setFunctionLinkage(D, Fn);
2046 
2047   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2048   setGlobalVisibility(Fn, D);
2049 
2050   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2051 
2052   SetFunctionDefinitionAttributes(D, Fn);
2053   SetLLVMFunctionAttributesForDefinition(D, Fn);
2054 
2055   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2056     AddGlobalCtor(Fn, CA->getPriority());
2057   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2058     AddGlobalDtor(Fn, DA->getPriority());
2059   if (D->hasAttr<AnnotateAttr>())
2060     AddGlobalAnnotations(D, Fn);
2061 }
2062 
2063 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2064   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2065   const AliasAttr *AA = D->getAttr<AliasAttr>();
2066   assert(AA && "Not an alias?");
2067 
2068   StringRef MangledName = getMangledName(GD);
2069 
2070   // If there is a definition in the module, then it wins over the alias.
2071   // This is dubious, but allow it to be safe.  Just ignore the alias.
2072   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2073   if (Entry && !Entry->isDeclaration())
2074     return;
2075 
2076   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2077 
2078   // Create a reference to the named value.  This ensures that it is emitted
2079   // if a deferred decl.
2080   llvm::Constant *Aliasee;
2081   if (isa<llvm::FunctionType>(DeclTy))
2082     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2083                                       /*ForVTable=*/false);
2084   else
2085     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2086                                     llvm::PointerType::getUnqual(DeclTy), 0);
2087 
2088   // Create the new alias itself, but don't set a name yet.
2089   llvm::GlobalValue *GA =
2090     new llvm::GlobalAlias(Aliasee->getType(),
2091                           llvm::Function::ExternalLinkage,
2092                           "", Aliasee, &getModule());
2093 
2094   if (Entry) {
2095     assert(Entry->isDeclaration());
2096 
2097     // If there is a declaration in the module, then we had an extern followed
2098     // by the alias, as in:
2099     //   extern int test6();
2100     //   ...
2101     //   int test6() __attribute__((alias("test7")));
2102     //
2103     // Remove it and replace uses of it with the alias.
2104     GA->takeName(Entry);
2105 
2106     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2107                                                           Entry->getType()));
2108     Entry->eraseFromParent();
2109   } else {
2110     GA->setName(MangledName);
2111   }
2112 
2113   // Set attributes which are particular to an alias; this is a
2114   // specialization of the attributes which may be set on a global
2115   // variable/function.
2116   if (D->hasAttr<DLLExportAttr>()) {
2117     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2118       // The dllexport attribute is ignored for undefined symbols.
2119       if (FD->hasBody())
2120         GA->setLinkage(llvm::Function::DLLExportLinkage);
2121     } else {
2122       GA->setLinkage(llvm::Function::DLLExportLinkage);
2123     }
2124   } else if (D->hasAttr<WeakAttr>() ||
2125              D->hasAttr<WeakRefAttr>() ||
2126              D->isWeakImported()) {
2127     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2128   }
2129 
2130   SetCommonAttributes(D, GA);
2131 }
2132 
2133 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2134                                             ArrayRef<llvm::Type*> Tys) {
2135   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2136                                          Tys);
2137 }
2138 
2139 static llvm::StringMapEntry<llvm::Constant*> &
2140 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2141                          const StringLiteral *Literal,
2142                          bool TargetIsLSB,
2143                          bool &IsUTF16,
2144                          unsigned &StringLength) {
2145   StringRef String = Literal->getString();
2146   unsigned NumBytes = String.size();
2147 
2148   // Check for simple case.
2149   if (!Literal->containsNonAsciiOrNull()) {
2150     StringLength = NumBytes;
2151     return Map.GetOrCreateValue(String);
2152   }
2153 
2154   // Otherwise, convert the UTF8 literals into a string of shorts.
2155   IsUTF16 = true;
2156 
2157   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2158   const UTF8 *FromPtr = (const UTF8 *)String.data();
2159   UTF16 *ToPtr = &ToBuf[0];
2160 
2161   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2162                            &ToPtr, ToPtr + NumBytes,
2163                            strictConversion);
2164 
2165   // ConvertUTF8toUTF16 returns the length in ToPtr.
2166   StringLength = ToPtr - &ToBuf[0];
2167 
2168   // Add an explicit null.
2169   *ToPtr = 0;
2170   return Map.
2171     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2172                                (StringLength + 1) * 2));
2173 }
2174 
2175 static llvm::StringMapEntry<llvm::Constant*> &
2176 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2177                        const StringLiteral *Literal,
2178                        unsigned &StringLength) {
2179   StringRef String = Literal->getString();
2180   StringLength = String.size();
2181   return Map.GetOrCreateValue(String);
2182 }
2183 
2184 llvm::Constant *
2185 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2186   unsigned StringLength = 0;
2187   bool isUTF16 = false;
2188   llvm::StringMapEntry<llvm::Constant*> &Entry =
2189     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2190                              getDataLayout().isLittleEndian(),
2191                              isUTF16, StringLength);
2192 
2193   if (llvm::Constant *C = Entry.getValue())
2194     return C;
2195 
2196   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2197   llvm::Constant *Zeros[] = { Zero, Zero };
2198 
2199   // If we don't already have it, get __CFConstantStringClassReference.
2200   if (!CFConstantStringClassRef) {
2201     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2202     Ty = llvm::ArrayType::get(Ty, 0);
2203     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2204                                            "__CFConstantStringClassReference");
2205     // Decay array -> ptr
2206     CFConstantStringClassRef =
2207       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2208   }
2209 
2210   QualType CFTy = getContext().getCFConstantStringType();
2211 
2212   llvm::StructType *STy =
2213     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2214 
2215   llvm::Constant *Fields[4];
2216 
2217   // Class pointer.
2218   Fields[0] = CFConstantStringClassRef;
2219 
2220   // Flags.
2221   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2222   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2223     llvm::ConstantInt::get(Ty, 0x07C8);
2224 
2225   // String pointer.
2226   llvm::Constant *C = 0;
2227   if (isUTF16) {
2228     ArrayRef<uint16_t> Arr =
2229       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2230                                      const_cast<char *>(Entry.getKey().data())),
2231                                    Entry.getKey().size() / 2);
2232     C = llvm::ConstantDataArray::get(VMContext, Arr);
2233   } else {
2234     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2235   }
2236 
2237   llvm::GlobalValue::LinkageTypes Linkage;
2238   if (isUTF16)
2239     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2240     Linkage = llvm::GlobalValue::InternalLinkage;
2241   else
2242     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2243     // when using private linkage. It is not clear if this is a bug in ld
2244     // or a reasonable new restriction.
2245     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2246 
2247   // Note: -fwritable-strings doesn't make the backing store strings of
2248   // CFStrings writable. (See <rdar://problem/10657500>)
2249   llvm::GlobalVariable *GV =
2250     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2251                              Linkage, C, ".str");
2252   GV->setUnnamedAddr(true);
2253   if (isUTF16) {
2254     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2255     GV->setAlignment(Align.getQuantity());
2256   } else {
2257     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2258     GV->setAlignment(Align.getQuantity());
2259   }
2260 
2261   // String.
2262   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2263 
2264   if (isUTF16)
2265     // Cast the UTF16 string to the correct type.
2266     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2267 
2268   // String length.
2269   Ty = getTypes().ConvertType(getContext().LongTy);
2270   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2271 
2272   // The struct.
2273   C = llvm::ConstantStruct::get(STy, Fields);
2274   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2275                                 llvm::GlobalVariable::PrivateLinkage, C,
2276                                 "_unnamed_cfstring_");
2277   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2278     GV->setSection(Sect);
2279   Entry.setValue(GV);
2280 
2281   return GV;
2282 }
2283 
2284 static RecordDecl *
2285 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2286                  DeclContext *DC, IdentifierInfo *Id) {
2287   SourceLocation Loc;
2288   if (Ctx.getLangOpts().CPlusPlus)
2289     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2290   else
2291     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2292 }
2293 
2294 llvm::Constant *
2295 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2296   unsigned StringLength = 0;
2297   llvm::StringMapEntry<llvm::Constant*> &Entry =
2298     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2299 
2300   if (llvm::Constant *C = Entry.getValue())
2301     return C;
2302 
2303   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2304   llvm::Constant *Zeros[] = { Zero, Zero };
2305 
2306   // If we don't already have it, get _NSConstantStringClassReference.
2307   if (!ConstantStringClassRef) {
2308     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2309     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2310     llvm::Constant *GV;
2311     if (LangOpts.ObjCRuntime.isNonFragile()) {
2312       std::string str =
2313         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2314                             : "OBJC_CLASS_$_" + StringClass;
2315       GV = getObjCRuntime().GetClassGlobal(str);
2316       // Make sure the result is of the correct type.
2317       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2318       ConstantStringClassRef =
2319         llvm::ConstantExpr::getBitCast(GV, PTy);
2320     } else {
2321       std::string str =
2322         StringClass.empty() ? "_NSConstantStringClassReference"
2323                             : "_" + StringClass + "ClassReference";
2324       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2325       GV = CreateRuntimeVariable(PTy, str);
2326       // Decay array -> ptr
2327       ConstantStringClassRef =
2328         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2329     }
2330   }
2331 
2332   if (!NSConstantStringType) {
2333     // Construct the type for a constant NSString.
2334     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2335                                      Context.getTranslationUnitDecl(),
2336                                    &Context.Idents.get("__builtin_NSString"));
2337     D->startDefinition();
2338 
2339     QualType FieldTypes[3];
2340 
2341     // const int *isa;
2342     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2343     // const char *str;
2344     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2345     // unsigned int length;
2346     FieldTypes[2] = Context.UnsignedIntTy;
2347 
2348     // Create fields
2349     for (unsigned i = 0; i < 3; ++i) {
2350       FieldDecl *Field = FieldDecl::Create(Context, D,
2351                                            SourceLocation(),
2352                                            SourceLocation(), 0,
2353                                            FieldTypes[i], /*TInfo=*/0,
2354                                            /*BitWidth=*/0,
2355                                            /*Mutable=*/false,
2356                                            ICIS_NoInit);
2357       Field->setAccess(AS_public);
2358       D->addDecl(Field);
2359     }
2360 
2361     D->completeDefinition();
2362     QualType NSTy = Context.getTagDeclType(D);
2363     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2364   }
2365 
2366   llvm::Constant *Fields[3];
2367 
2368   // Class pointer.
2369   Fields[0] = ConstantStringClassRef;
2370 
2371   // String pointer.
2372   llvm::Constant *C =
2373     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2374 
2375   llvm::GlobalValue::LinkageTypes Linkage;
2376   bool isConstant;
2377   Linkage = llvm::GlobalValue::PrivateLinkage;
2378   isConstant = !LangOpts.WritableStrings;
2379 
2380   llvm::GlobalVariable *GV =
2381   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2382                            ".str");
2383   GV->setUnnamedAddr(true);
2384   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2385   GV->setAlignment(Align.getQuantity());
2386   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2387 
2388   // String length.
2389   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2390   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2391 
2392   // The struct.
2393   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2394   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2395                                 llvm::GlobalVariable::PrivateLinkage, C,
2396                                 "_unnamed_nsstring_");
2397   // FIXME. Fix section.
2398   if (const char *Sect =
2399         LangOpts.ObjCRuntime.isNonFragile()
2400           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2401           : getContext().getTargetInfo().getNSStringSection())
2402     GV->setSection(Sect);
2403   Entry.setValue(GV);
2404 
2405   return GV;
2406 }
2407 
2408 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2409   if (ObjCFastEnumerationStateType.isNull()) {
2410     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2411                                      Context.getTranslationUnitDecl(),
2412                       &Context.Idents.get("__objcFastEnumerationState"));
2413     D->startDefinition();
2414 
2415     QualType FieldTypes[] = {
2416       Context.UnsignedLongTy,
2417       Context.getPointerType(Context.getObjCIdType()),
2418       Context.getPointerType(Context.UnsignedLongTy),
2419       Context.getConstantArrayType(Context.UnsignedLongTy,
2420                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2421     };
2422 
2423     for (size_t i = 0; i < 4; ++i) {
2424       FieldDecl *Field = FieldDecl::Create(Context,
2425                                            D,
2426                                            SourceLocation(),
2427                                            SourceLocation(), 0,
2428                                            FieldTypes[i], /*TInfo=*/0,
2429                                            /*BitWidth=*/0,
2430                                            /*Mutable=*/false,
2431                                            ICIS_NoInit);
2432       Field->setAccess(AS_public);
2433       D->addDecl(Field);
2434     }
2435 
2436     D->completeDefinition();
2437     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2438   }
2439 
2440   return ObjCFastEnumerationStateType;
2441 }
2442 
2443 llvm::Constant *
2444 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2445   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2446 
2447   // Don't emit it as the address of the string, emit the string data itself
2448   // as an inline array.
2449   if (E->getCharByteWidth() == 1) {
2450     SmallString<64> Str(E->getString());
2451 
2452     // Resize the string to the right size, which is indicated by its type.
2453     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2454     Str.resize(CAT->getSize().getZExtValue());
2455     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2456   }
2457 
2458   llvm::ArrayType *AType =
2459     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2460   llvm::Type *ElemTy = AType->getElementType();
2461   unsigned NumElements = AType->getNumElements();
2462 
2463   // Wide strings have either 2-byte or 4-byte elements.
2464   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2465     SmallVector<uint16_t, 32> Elements;
2466     Elements.reserve(NumElements);
2467 
2468     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2469       Elements.push_back(E->getCodeUnit(i));
2470     Elements.resize(NumElements);
2471     return llvm::ConstantDataArray::get(VMContext, Elements);
2472   }
2473 
2474   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2475   SmallVector<uint32_t, 32> Elements;
2476   Elements.reserve(NumElements);
2477 
2478   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2479     Elements.push_back(E->getCodeUnit(i));
2480   Elements.resize(NumElements);
2481   return llvm::ConstantDataArray::get(VMContext, Elements);
2482 }
2483 
2484 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2485 /// constant array for the given string literal.
2486 llvm::Constant *
2487 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2488   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2489   if (S->isAscii() || S->isUTF8()) {
2490     SmallString<64> Str(S->getString());
2491 
2492     // Resize the string to the right size, which is indicated by its type.
2493     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2494     Str.resize(CAT->getSize().getZExtValue());
2495     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2496   }
2497 
2498   // FIXME: the following does not memoize wide strings.
2499   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2500   llvm::GlobalVariable *GV =
2501     new llvm::GlobalVariable(getModule(),C->getType(),
2502                              !LangOpts.WritableStrings,
2503                              llvm::GlobalValue::PrivateLinkage,
2504                              C,".str");
2505 
2506   GV->setAlignment(Align.getQuantity());
2507   GV->setUnnamedAddr(true);
2508   return GV;
2509 }
2510 
2511 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2512 /// array for the given ObjCEncodeExpr node.
2513 llvm::Constant *
2514 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2515   std::string Str;
2516   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2517 
2518   return GetAddrOfConstantCString(Str);
2519 }
2520 
2521 
2522 /// GenerateWritableString -- Creates storage for a string literal.
2523 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2524                                              bool constant,
2525                                              CodeGenModule &CGM,
2526                                              const char *GlobalName,
2527                                              unsigned Alignment) {
2528   // Create Constant for this string literal. Don't add a '\0'.
2529   llvm::Constant *C =
2530       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2531 
2532   // Create a global variable for this string
2533   llvm::GlobalVariable *GV =
2534     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2535                              llvm::GlobalValue::PrivateLinkage,
2536                              C, GlobalName);
2537   GV->setAlignment(Alignment);
2538   GV->setUnnamedAddr(true);
2539   return GV;
2540 }
2541 
2542 /// GetAddrOfConstantString - Returns a pointer to a character array
2543 /// containing the literal. This contents are exactly that of the
2544 /// given string, i.e. it will not be null terminated automatically;
2545 /// see GetAddrOfConstantCString. Note that whether the result is
2546 /// actually a pointer to an LLVM constant depends on
2547 /// Feature.WriteableStrings.
2548 ///
2549 /// The result has pointer to array type.
2550 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2551                                                        const char *GlobalName,
2552                                                        unsigned Alignment) {
2553   // Get the default prefix if a name wasn't specified.
2554   if (!GlobalName)
2555     GlobalName = ".str";
2556 
2557   // Don't share any string literals if strings aren't constant.
2558   if (LangOpts.WritableStrings)
2559     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2560 
2561   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2562     ConstantStringMap.GetOrCreateValue(Str);
2563 
2564   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2565     if (Alignment > GV->getAlignment()) {
2566       GV->setAlignment(Alignment);
2567     }
2568     return GV;
2569   }
2570 
2571   // Create a global variable for this.
2572   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2573                                                    Alignment);
2574   Entry.setValue(GV);
2575   return GV;
2576 }
2577 
2578 /// GetAddrOfConstantCString - Returns a pointer to a character
2579 /// array containing the literal and a terminating '\0'
2580 /// character. The result has pointer to array type.
2581 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2582                                                         const char *GlobalName,
2583                                                         unsigned Alignment) {
2584   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2585   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2586 }
2587 
2588 /// EmitObjCPropertyImplementations - Emit information for synthesized
2589 /// properties for an implementation.
2590 void CodeGenModule::EmitObjCPropertyImplementations(const
2591                                                     ObjCImplementationDecl *D) {
2592   for (ObjCImplementationDecl::propimpl_iterator
2593          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2594     ObjCPropertyImplDecl *PID = *i;
2595 
2596     // Dynamic is just for type-checking.
2597     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2598       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2599 
2600       // Determine which methods need to be implemented, some may have
2601       // been overridden. Note that ::isPropertyAccessor is not the method
2602       // we want, that just indicates if the decl came from a
2603       // property. What we want to know is if the method is defined in
2604       // this implementation.
2605       if (!D->getInstanceMethod(PD->getGetterName()))
2606         CodeGenFunction(*this).GenerateObjCGetter(
2607                                  const_cast<ObjCImplementationDecl *>(D), PID);
2608       if (!PD->isReadOnly() &&
2609           !D->getInstanceMethod(PD->getSetterName()))
2610         CodeGenFunction(*this).GenerateObjCSetter(
2611                                  const_cast<ObjCImplementationDecl *>(D), PID);
2612     }
2613   }
2614 }
2615 
2616 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2617   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2618   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2619        ivar; ivar = ivar->getNextIvar())
2620     if (ivar->getType().isDestructedType())
2621       return true;
2622 
2623   return false;
2624 }
2625 
2626 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2627 /// for an implementation.
2628 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2629   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2630   if (needsDestructMethod(D)) {
2631     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2632     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2633     ObjCMethodDecl *DTORMethod =
2634       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2635                              cxxSelector, getContext().VoidTy, 0, D,
2636                              /*isInstance=*/true, /*isVariadic=*/false,
2637                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2638                              /*isDefined=*/false, ObjCMethodDecl::Required);
2639     D->addInstanceMethod(DTORMethod);
2640     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2641     D->setHasDestructors(true);
2642   }
2643 
2644   // If the implementation doesn't have any ivar initializers, we don't need
2645   // a .cxx_construct.
2646   if (D->getNumIvarInitializers() == 0)
2647     return;
2648 
2649   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2650   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2651   // The constructor returns 'self'.
2652   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2653                                                 D->getLocation(),
2654                                                 D->getLocation(),
2655                                                 cxxSelector,
2656                                                 getContext().getObjCIdType(), 0,
2657                                                 D, /*isInstance=*/true,
2658                                                 /*isVariadic=*/false,
2659                                                 /*isPropertyAccessor=*/true,
2660                                                 /*isImplicitlyDeclared=*/true,
2661                                                 /*isDefined=*/false,
2662                                                 ObjCMethodDecl::Required);
2663   D->addInstanceMethod(CTORMethod);
2664   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2665   D->setHasNonZeroConstructors(true);
2666 }
2667 
2668 /// EmitNamespace - Emit all declarations in a namespace.
2669 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2670   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2671        I != E; ++I)
2672     EmitTopLevelDecl(*I);
2673 }
2674 
2675 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2676 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2677   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2678       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2679     ErrorUnsupported(LSD, "linkage spec");
2680     return;
2681   }
2682 
2683   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2684        I != E; ++I) {
2685     // Meta-data for ObjC class includes references to implemented methods.
2686     // Generate class's method definitions first.
2687     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2688       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2689            MEnd = OID->meth_end();
2690            M != MEnd; ++M)
2691         EmitTopLevelDecl(*M);
2692     }
2693     EmitTopLevelDecl(*I);
2694   }
2695 }
2696 
2697 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2698 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2699   // If an error has occurred, stop code generation, but continue
2700   // parsing and semantic analysis (to ensure all warnings and errors
2701   // are emitted).
2702   if (Diags.hasErrorOccurred())
2703     return;
2704 
2705   // Ignore dependent declarations.
2706   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2707     return;
2708 
2709   switch (D->getKind()) {
2710   case Decl::CXXConversion:
2711   case Decl::CXXMethod:
2712   case Decl::Function:
2713     // Skip function templates
2714     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2715         cast<FunctionDecl>(D)->isLateTemplateParsed())
2716       return;
2717 
2718     EmitGlobal(cast<FunctionDecl>(D));
2719     break;
2720 
2721   case Decl::Var:
2722     EmitGlobal(cast<VarDecl>(D));
2723     break;
2724 
2725   // Indirect fields from global anonymous structs and unions can be
2726   // ignored; only the actual variable requires IR gen support.
2727   case Decl::IndirectField:
2728     break;
2729 
2730   // C++ Decls
2731   case Decl::Namespace:
2732     EmitNamespace(cast<NamespaceDecl>(D));
2733     break;
2734     // No code generation needed.
2735   case Decl::UsingShadow:
2736   case Decl::Using:
2737   case Decl::UsingDirective:
2738   case Decl::ClassTemplate:
2739   case Decl::FunctionTemplate:
2740   case Decl::TypeAliasTemplate:
2741   case Decl::NamespaceAlias:
2742   case Decl::Block:
2743     break;
2744   case Decl::CXXConstructor:
2745     // Skip function templates
2746     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2747         cast<FunctionDecl>(D)->isLateTemplateParsed())
2748       return;
2749 
2750     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2751     break;
2752   case Decl::CXXDestructor:
2753     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2754       return;
2755     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2756     break;
2757 
2758   case Decl::StaticAssert:
2759     // Nothing to do.
2760     break;
2761 
2762   // Objective-C Decls
2763 
2764   // Forward declarations, no (immediate) code generation.
2765   case Decl::ObjCInterface:
2766   case Decl::ObjCCategory:
2767     break;
2768 
2769   case Decl::ObjCProtocol: {
2770     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2771     if (Proto->isThisDeclarationADefinition())
2772       ObjCRuntime->GenerateProtocol(Proto);
2773     break;
2774   }
2775 
2776   case Decl::ObjCCategoryImpl:
2777     // Categories have properties but don't support synthesize so we
2778     // can ignore them here.
2779     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2780     break;
2781 
2782   case Decl::ObjCImplementation: {
2783     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2784     EmitObjCPropertyImplementations(OMD);
2785     EmitObjCIvarInitializations(OMD);
2786     ObjCRuntime->GenerateClass(OMD);
2787     // Emit global variable debug information.
2788     if (CGDebugInfo *DI = getModuleDebugInfo())
2789       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2790         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2791             OMD->getClassInterface()), OMD->getLocation());
2792     break;
2793   }
2794   case Decl::ObjCMethod: {
2795     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2796     // If this is not a prototype, emit the body.
2797     if (OMD->getBody())
2798       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2799     break;
2800   }
2801   case Decl::ObjCCompatibleAlias:
2802     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2803     break;
2804 
2805   case Decl::LinkageSpec:
2806     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2807     break;
2808 
2809   case Decl::FileScopeAsm: {
2810     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2811     StringRef AsmString = AD->getAsmString()->getString();
2812 
2813     const std::string &S = getModule().getModuleInlineAsm();
2814     if (S.empty())
2815       getModule().setModuleInlineAsm(AsmString);
2816     else if (S.end()[-1] == '\n')
2817       getModule().setModuleInlineAsm(S + AsmString.str());
2818     else
2819       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2820     break;
2821   }
2822 
2823   case Decl::Import: {
2824     ImportDecl *Import = cast<ImportDecl>(D);
2825 
2826     // Ignore import declarations that come from imported modules.
2827     if (clang::Module *Owner = Import->getOwningModule()) {
2828       if (getLangOpts().CurrentModule.empty() ||
2829           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2830         break;
2831     }
2832 
2833     ImportedModules.insert(Import->getImportedModule());
2834     break;
2835  }
2836 
2837   default:
2838     // Make sure we handled everything we should, every other kind is a
2839     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2840     // function. Need to recode Decl::Kind to do that easily.
2841     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2842   }
2843 }
2844 
2845 /// Turns the given pointer into a constant.
2846 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2847                                           const void *Ptr) {
2848   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2849   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2850   return llvm::ConstantInt::get(i64, PtrInt);
2851 }
2852 
2853 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2854                                    llvm::NamedMDNode *&GlobalMetadata,
2855                                    GlobalDecl D,
2856                                    llvm::GlobalValue *Addr) {
2857   if (!GlobalMetadata)
2858     GlobalMetadata =
2859       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2860 
2861   // TODO: should we report variant information for ctors/dtors?
2862   llvm::Value *Ops[] = {
2863     Addr,
2864     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2865   };
2866   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2867 }
2868 
2869 /// Emits metadata nodes associating all the global values in the
2870 /// current module with the Decls they came from.  This is useful for
2871 /// projects using IR gen as a subroutine.
2872 ///
2873 /// Since there's currently no way to associate an MDNode directly
2874 /// with an llvm::GlobalValue, we create a global named metadata
2875 /// with the name 'clang.global.decl.ptrs'.
2876 void CodeGenModule::EmitDeclMetadata() {
2877   llvm::NamedMDNode *GlobalMetadata = 0;
2878 
2879   // StaticLocalDeclMap
2880   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2881          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2882        I != E; ++I) {
2883     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2884     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2885   }
2886 }
2887 
2888 /// Emits metadata nodes for all the local variables in the current
2889 /// function.
2890 void CodeGenFunction::EmitDeclMetadata() {
2891   if (LocalDeclMap.empty()) return;
2892 
2893   llvm::LLVMContext &Context = getLLVMContext();
2894 
2895   // Find the unique metadata ID for this name.
2896   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2897 
2898   llvm::NamedMDNode *GlobalMetadata = 0;
2899 
2900   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2901          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2902     const Decl *D = I->first;
2903     llvm::Value *Addr = I->second;
2904 
2905     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2906       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2907       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2908     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2909       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2910       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2911     }
2912   }
2913 }
2914 
2915 void CodeGenModule::EmitCoverageFile() {
2916   if (!getCodeGenOpts().CoverageFile.empty()) {
2917     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2918       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2919       llvm::LLVMContext &Ctx = TheModule.getContext();
2920       llvm::MDString *CoverageFile =
2921           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2922       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2923         llvm::MDNode *CU = CUNode->getOperand(i);
2924         llvm::Value *node[] = { CoverageFile, CU };
2925         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2926         GCov->addOperand(N);
2927       }
2928     }
2929   }
2930 }
2931 
2932 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2933                                                      QualType GuidType) {
2934   // Sema has checked that all uuid strings are of the form
2935   // "12345678-1234-1234-1234-1234567890ab".
2936   assert(Uuid.size() == 36);
2937   const char *Uuidstr = Uuid.data();
2938   for (int i = 0; i < 36; ++i) {
2939     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2940     else                                         assert(isHexDigit(Uuidstr[i]));
2941   }
2942 
2943   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2944   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2945   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2946   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2947 
2948   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2949   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2950   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2951   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2952   APValue& Arr = InitStruct.getStructField(3);
2953   Arr = APValue(APValue::UninitArray(), 8, 8);
2954   for (int t = 0; t < 8; ++t)
2955     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2956           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2957 
2958   return EmitConstantValue(InitStruct, GuidType);
2959 }
2960