xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a738c25f5e095b2c72c4bfece65c00df7e23d750)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 
92   Block.GlobalUniqueCount = 0;
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
97   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
99   PointerWidthInBits = C.Target.getPointerWidth(0);
100   PointerAlignInBytes =
101     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 }
107 
108 CodeGenModule::~CodeGenModule() {
109   delete Runtime;
110   delete &ABI;
111   delete TBAA;
112   delete DebugInfo;
113 }
114 
115 void CodeGenModule::createObjCRuntime() {
116   if (!Features.NeXTRuntime)
117     Runtime = CreateGNUObjCRuntime(*this);
118   else if (Features.ObjCNonFragileABI)
119     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
120   else
121     Runtime = CreateMacObjCRuntime(*this);
122 }
123 
124 void CodeGenModule::Release() {
125   EmitDeferred();
126   EmitCXXGlobalInitFunc();
127   EmitCXXGlobalDtorFunc();
128   if (Runtime)
129     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
130       AddGlobalCtor(ObjCInitFunction);
131   EmitCtorList(GlobalCtors, "llvm.global_ctors");
132   EmitCtorList(GlobalDtors, "llvm.global_dtors");
133   EmitAnnotations();
134   EmitLLVMUsed();
135 
136   SimplifyPersonality();
137 
138   if (getCodeGenOpts().EmitDeclMetadata)
139     EmitDeclMetadata();
140 }
141 
142 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
143   if (!TBAA)
144     return 0;
145   return TBAA->getTBAAInfo(QTy);
146 }
147 
148 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
149                                         llvm::MDNode *TBAAInfo) {
150   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
151 }
152 
153 bool CodeGenModule::isTargetDarwin() const {
154   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
155 }
156 
157 /// ErrorUnsupported - Print out an error that codegen doesn't support the
158 /// specified stmt yet.
159 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
160                                      bool OmitOnError) {
161   if (OmitOnError && getDiags().hasErrorOccurred())
162     return;
163   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
164                                                "cannot compile this %0 yet");
165   std::string Msg = Type;
166   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
167     << Msg << S->getSourceRange();
168 }
169 
170 /// ErrorUnsupported - Print out an error that codegen doesn't support the
171 /// specified decl yet.
172 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
173                                      bool OmitOnError) {
174   if (OmitOnError && getDiags().hasErrorOccurred())
175     return;
176   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
177                                                "cannot compile this %0 yet");
178   std::string Msg = Type;
179   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
180 }
181 
182 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
183                                         const NamedDecl *D) const {
184   // Internal definitions always have default visibility.
185   if (GV->hasLocalLinkage()) {
186     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
187     return;
188   }
189 
190   // Set visibility for definitions.
191   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
192   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
193     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
194 }
195 
196 /// Set the symbol visibility of type information (vtable and RTTI)
197 /// associated with the given type.
198 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
199                                       const CXXRecordDecl *RD,
200                                       TypeVisibilityKind TVK) const {
201   setGlobalVisibility(GV, RD);
202 
203   if (!CodeGenOpts.HiddenWeakVTables)
204     return;
205 
206   // We never want to drop the visibility for RTTI names.
207   if (TVK == TVK_ForRTTIName)
208     return;
209 
210   // We want to drop the visibility to hidden for weak type symbols.
211   // This isn't possible if there might be unresolved references
212   // elsewhere that rely on this symbol being visible.
213 
214   // This should be kept roughly in sync with setThunkVisibility
215   // in CGVTables.cpp.
216 
217   // Preconditions.
218   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
219       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
220     return;
221 
222   // Don't override an explicit visibility attribute.
223   if (RD->hasAttr<VisibilityAttr>())
224     return;
225 
226   switch (RD->getTemplateSpecializationKind()) {
227   // We have to disable the optimization if this is an EI definition
228   // because there might be EI declarations in other shared objects.
229   case TSK_ExplicitInstantiationDefinition:
230   case TSK_ExplicitInstantiationDeclaration:
231     return;
232 
233   // Every use of a non-template class's type information has to emit it.
234   case TSK_Undeclared:
235     break;
236 
237   // In theory, implicit instantiations can ignore the possibility of
238   // an explicit instantiation declaration because there necessarily
239   // must be an EI definition somewhere with default visibility.  In
240   // practice, it's possible to have an explicit instantiation for
241   // an arbitrary template class, and linkers aren't necessarily able
242   // to deal with mixed-visibility symbols.
243   case TSK_ExplicitSpecialization:
244   case TSK_ImplicitInstantiation:
245     if (!CodeGenOpts.HiddenWeakTemplateVTables)
246       return;
247     break;
248   }
249 
250   // If there's a key function, there may be translation units
251   // that don't have the key function's definition.  But ignore
252   // this if we're emitting RTTI under -fno-rtti.
253   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
254     if (Context.getKeyFunction(RD))
255       return;
256   }
257 
258   // Otherwise, drop the visibility to hidden.
259   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
260   GV->setUnnamedAddr(true);
261 }
262 
263 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
264   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
265 
266   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
267   if (!Str.empty())
268     return Str;
269 
270   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
271     IdentifierInfo *II = ND->getIdentifier();
272     assert(II && "Attempt to mangle unnamed decl.");
273 
274     Str = II->getName();
275     return Str;
276   }
277 
278   llvm::SmallString<256> Buffer;
279   llvm::raw_svector_ostream Out(Buffer);
280   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
281     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
282   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
283     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
284   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
285     getCXXABI().getMangleContext().mangleBlock(BD, Out);
286   else
287     getCXXABI().getMangleContext().mangleName(ND, Out);
288 
289   // Allocate space for the mangled name.
290   Out.flush();
291   size_t Length = Buffer.size();
292   char *Name = MangledNamesAllocator.Allocate<char>(Length);
293   std::copy(Buffer.begin(), Buffer.end(), Name);
294 
295   Str = llvm::StringRef(Name, Length);
296 
297   return Str;
298 }
299 
300 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
301                                         const BlockDecl *BD) {
302   MangleContext &MangleCtx = getCXXABI().getMangleContext();
303   const Decl *D = GD.getDecl();
304   llvm::raw_svector_ostream Out(Buffer.getBuffer());
305   if (D == 0)
306     MangleCtx.mangleGlobalBlock(BD, Out);
307   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
308     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
309   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
310     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
311   else
312     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
313 }
314 
315 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
316   return getModule().getNamedValue(Name);
317 }
318 
319 /// AddGlobalCtor - Add a function to the list that will be called before
320 /// main() runs.
321 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
322   // FIXME: Type coercion of void()* types.
323   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
324 }
325 
326 /// AddGlobalDtor - Add a function to the list that will be called
327 /// when the module is unloaded.
328 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
329   // FIXME: Type coercion of void()* types.
330   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
331 }
332 
333 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
334   // Ctor function type is void()*.
335   llvm::FunctionType* CtorFTy =
336     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
337   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
338 
339   // Get the type of a ctor entry, { i32, void ()* }.
340   llvm::StructType* CtorStructTy =
341     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
342                           llvm::PointerType::getUnqual(CtorFTy), NULL);
343 
344   // Construct the constructor and destructor arrays.
345   std::vector<llvm::Constant*> Ctors;
346   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
347     std::vector<llvm::Constant*> S;
348     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
349                 I->second, false));
350     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
351     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
352   }
353 
354   if (!Ctors.empty()) {
355     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
356     new llvm::GlobalVariable(TheModule, AT, false,
357                              llvm::GlobalValue::AppendingLinkage,
358                              llvm::ConstantArray::get(AT, Ctors),
359                              GlobalName);
360   }
361 }
362 
363 void CodeGenModule::EmitAnnotations() {
364   if (Annotations.empty())
365     return;
366 
367   // Create a new global variable for the ConstantStruct in the Module.
368   llvm::Constant *Array =
369   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
370                                                 Annotations.size()),
371                            Annotations);
372   llvm::GlobalValue *gv =
373   new llvm::GlobalVariable(TheModule, Array->getType(), false,
374                            llvm::GlobalValue::AppendingLinkage, Array,
375                            "llvm.global.annotations");
376   gv->setSection("llvm.metadata");
377 }
378 
379 llvm::GlobalValue::LinkageTypes
380 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
381   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
382 
383   if (Linkage == GVA_Internal)
384     return llvm::Function::InternalLinkage;
385 
386   if (D->hasAttr<DLLExportAttr>())
387     return llvm::Function::DLLExportLinkage;
388 
389   if (D->hasAttr<WeakAttr>())
390     return llvm::Function::WeakAnyLinkage;
391 
392   // In C99 mode, 'inline' functions are guaranteed to have a strong
393   // definition somewhere else, so we can use available_externally linkage.
394   if (Linkage == GVA_C99Inline)
395     return llvm::Function::AvailableExternallyLinkage;
396 
397   // In C++, the compiler has to emit a definition in every translation unit
398   // that references the function.  We should use linkonce_odr because
399   // a) if all references in this translation unit are optimized away, we
400   // don't need to codegen it.  b) if the function persists, it needs to be
401   // merged with other definitions. c) C++ has the ODR, so we know the
402   // definition is dependable.
403   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
404     return !Context.getLangOptions().AppleKext
405              ? llvm::Function::LinkOnceODRLinkage
406              : llvm::Function::InternalLinkage;
407 
408   // An explicit instantiation of a template has weak linkage, since
409   // explicit instantiations can occur in multiple translation units
410   // and must all be equivalent. However, we are not allowed to
411   // throw away these explicit instantiations.
412   if (Linkage == GVA_ExplicitTemplateInstantiation)
413     return !Context.getLangOptions().AppleKext
414              ? llvm::Function::WeakODRLinkage
415              : llvm::Function::InternalLinkage;
416 
417   // Otherwise, we have strong external linkage.
418   assert(Linkage == GVA_StrongExternal);
419   return llvm::Function::ExternalLinkage;
420 }
421 
422 
423 /// SetFunctionDefinitionAttributes - Set attributes for a global.
424 ///
425 /// FIXME: This is currently only done for aliases and functions, but not for
426 /// variables (these details are set in EmitGlobalVarDefinition for variables).
427 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
428                                                     llvm::GlobalValue *GV) {
429   SetCommonAttributes(D, GV);
430 }
431 
432 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
433                                               const CGFunctionInfo &Info,
434                                               llvm::Function *F) {
435   unsigned CallingConv;
436   AttributeListType AttributeList;
437   ConstructAttributeList(Info, D, AttributeList, CallingConv);
438   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
439                                           AttributeList.size()));
440   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
441 }
442 
443 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
444                                                            llvm::Function *F) {
445   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
446     F->addFnAttr(llvm::Attribute::NoUnwind);
447 
448   if (D->hasAttr<AlwaysInlineAttr>())
449     F->addFnAttr(llvm::Attribute::AlwaysInline);
450 
451   if (D->hasAttr<NakedAttr>())
452     F->addFnAttr(llvm::Attribute::Naked);
453 
454   if (D->hasAttr<NoInlineAttr>())
455     F->addFnAttr(llvm::Attribute::NoInline);
456 
457   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
458     F->setUnnamedAddr(true);
459 
460   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
461     F->addFnAttr(llvm::Attribute::StackProtect);
462   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
463     F->addFnAttr(llvm::Attribute::StackProtectReq);
464 
465   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
466   if (alignment)
467     F->setAlignment(alignment);
468 
469   // C++ ABI requires 2-byte alignment for member functions.
470   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
471     F->setAlignment(2);
472 }
473 
474 void CodeGenModule::SetCommonAttributes(const Decl *D,
475                                         llvm::GlobalValue *GV) {
476   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
477     setGlobalVisibility(GV, ND);
478   else
479     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
480 
481   if (D->hasAttr<UsedAttr>())
482     AddUsedGlobal(GV);
483 
484   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
485     GV->setSection(SA->getName());
486 
487   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
488 }
489 
490 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
491                                                   llvm::Function *F,
492                                                   const CGFunctionInfo &FI) {
493   SetLLVMFunctionAttributes(D, FI, F);
494   SetLLVMFunctionAttributesForDefinition(D, F);
495 
496   F->setLinkage(llvm::Function::InternalLinkage);
497 
498   SetCommonAttributes(D, F);
499 }
500 
501 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
502                                           llvm::Function *F,
503                                           bool IsIncompleteFunction) {
504   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
505 
506   if (!IsIncompleteFunction)
507     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
508 
509   // Only a few attributes are set on declarations; these may later be
510   // overridden by a definition.
511 
512   if (FD->hasAttr<DLLImportAttr>()) {
513     F->setLinkage(llvm::Function::DLLImportLinkage);
514   } else if (FD->hasAttr<WeakAttr>() ||
515              FD->hasAttr<WeakImportAttr>()) {
516     // "extern_weak" is overloaded in LLVM; we probably should have
517     // separate linkage types for this.
518     F->setLinkage(llvm::Function::ExternalWeakLinkage);
519   } else {
520     F->setLinkage(llvm::Function::ExternalLinkage);
521 
522     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
523     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
524       F->setVisibility(GetLLVMVisibility(LV.visibility()));
525     }
526   }
527 
528   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
529     F->setSection(SA->getName());
530 }
531 
532 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
533   assert(!GV->isDeclaration() &&
534          "Only globals with definition can force usage.");
535   LLVMUsed.push_back(GV);
536 }
537 
538 void CodeGenModule::EmitLLVMUsed() {
539   // Don't create llvm.used if there is no need.
540   if (LLVMUsed.empty())
541     return;
542 
543   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
544 
545   // Convert LLVMUsed to what ConstantArray needs.
546   std::vector<llvm::Constant*> UsedArray;
547   UsedArray.resize(LLVMUsed.size());
548   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
549     UsedArray[i] =
550      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
551                                       i8PTy);
552   }
553 
554   if (UsedArray.empty())
555     return;
556   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
557 
558   llvm::GlobalVariable *GV =
559     new llvm::GlobalVariable(getModule(), ATy, false,
560                              llvm::GlobalValue::AppendingLinkage,
561                              llvm::ConstantArray::get(ATy, UsedArray),
562                              "llvm.used");
563 
564   GV->setSection("llvm.metadata");
565 }
566 
567 void CodeGenModule::EmitDeferred() {
568   // Emit code for any potentially referenced deferred decls.  Since a
569   // previously unused static decl may become used during the generation of code
570   // for a static function, iterate until no  changes are made.
571 
572   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
573     if (!DeferredVTables.empty()) {
574       const CXXRecordDecl *RD = DeferredVTables.back();
575       DeferredVTables.pop_back();
576       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
577       continue;
578     }
579 
580     GlobalDecl D = DeferredDeclsToEmit.back();
581     DeferredDeclsToEmit.pop_back();
582 
583     // Check to see if we've already emitted this.  This is necessary
584     // for a couple of reasons: first, decls can end up in the
585     // deferred-decls queue multiple times, and second, decls can end
586     // up with definitions in unusual ways (e.g. by an extern inline
587     // function acquiring a strong function redefinition).  Just
588     // ignore these cases.
589     //
590     // TODO: That said, looking this up multiple times is very wasteful.
591     llvm::StringRef Name = getMangledName(D);
592     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
593     assert(CGRef && "Deferred decl wasn't referenced?");
594 
595     if (!CGRef->isDeclaration())
596       continue;
597 
598     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
599     // purposes an alias counts as a definition.
600     if (isa<llvm::GlobalAlias>(CGRef))
601       continue;
602 
603     // Otherwise, emit the definition and move on to the next one.
604     EmitGlobalDefinition(D);
605   }
606 }
607 
608 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
609 /// annotation information for a given GlobalValue.  The annotation struct is
610 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
611 /// GlobalValue being annotated.  The second field is the constant string
612 /// created from the AnnotateAttr's annotation.  The third field is a constant
613 /// string containing the name of the translation unit.  The fourth field is
614 /// the line number in the file of the annotated value declaration.
615 ///
616 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
617 ///        appears to.
618 ///
619 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
620                                                 const AnnotateAttr *AA,
621                                                 unsigned LineNo) {
622   llvm::Module *M = &getModule();
623 
624   // get [N x i8] constants for the annotation string, and the filename string
625   // which are the 2nd and 3rd elements of the global annotation structure.
626   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
627   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
628                                                   AA->getAnnotation(), true);
629   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
630                                                   M->getModuleIdentifier(),
631                                                   true);
632 
633   // Get the two global values corresponding to the ConstantArrays we just
634   // created to hold the bytes of the strings.
635   llvm::GlobalValue *annoGV =
636     new llvm::GlobalVariable(*M, anno->getType(), false,
637                              llvm::GlobalValue::PrivateLinkage, anno,
638                              GV->getName());
639   // translation unit name string, emitted into the llvm.metadata section.
640   llvm::GlobalValue *unitGV =
641     new llvm::GlobalVariable(*M, unit->getType(), false,
642                              llvm::GlobalValue::PrivateLinkage, unit,
643                              ".str");
644   unitGV->setUnnamedAddr(true);
645 
646   // Create the ConstantStruct for the global annotation.
647   llvm::Constant *Fields[4] = {
648     llvm::ConstantExpr::getBitCast(GV, SBP),
649     llvm::ConstantExpr::getBitCast(annoGV, SBP),
650     llvm::ConstantExpr::getBitCast(unitGV, SBP),
651     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
652   };
653   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
654 }
655 
656 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
657   // Never defer when EmitAllDecls is specified.
658   if (Features.EmitAllDecls)
659     return false;
660 
661   return !getContext().DeclMustBeEmitted(Global);
662 }
663 
664 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
665   const AliasAttr *AA = VD->getAttr<AliasAttr>();
666   assert(AA && "No alias?");
667 
668   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
669 
670   // See if there is already something with the target's name in the module.
671   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
672 
673   llvm::Constant *Aliasee;
674   if (isa<llvm::FunctionType>(DeclTy))
675     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
676                                       /*ForVTable=*/false);
677   else
678     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
679                                     llvm::PointerType::getUnqual(DeclTy), 0);
680   if (!Entry) {
681     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
682     F->setLinkage(llvm::Function::ExternalWeakLinkage);
683     WeakRefReferences.insert(F);
684   }
685 
686   return Aliasee;
687 }
688 
689 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
690   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
691 
692   // Weak references don't produce any output by themselves.
693   if (Global->hasAttr<WeakRefAttr>())
694     return;
695 
696   // If this is an alias definition (which otherwise looks like a declaration)
697   // emit it now.
698   if (Global->hasAttr<AliasAttr>())
699     return EmitAliasDefinition(GD);
700 
701   // Ignore declarations, they will be emitted on their first use.
702   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
703     if (FD->getIdentifier()) {
704       llvm::StringRef Name = FD->getName();
705       if (Name == "_Block_object_assign") {
706         BlockObjectAssignDecl = FD;
707       } else if (Name == "_Block_object_dispose") {
708         BlockObjectDisposeDecl = FD;
709       }
710     }
711 
712     // Forward declarations are emitted lazily on first use.
713     if (!FD->isThisDeclarationADefinition())
714       return;
715   } else {
716     const VarDecl *VD = cast<VarDecl>(Global);
717     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
718 
719     if (VD->getIdentifier()) {
720       llvm::StringRef Name = VD->getName();
721       if (Name == "_NSConcreteGlobalBlock") {
722         NSConcreteGlobalBlockDecl = VD;
723       } else if (Name == "_NSConcreteStackBlock") {
724         NSConcreteStackBlockDecl = VD;
725       }
726     }
727 
728 
729     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
730       return;
731   }
732 
733   // Defer code generation when possible if this is a static definition, inline
734   // function etc.  These we only want to emit if they are used.
735   if (!MayDeferGeneration(Global)) {
736     // Emit the definition if it can't be deferred.
737     EmitGlobalDefinition(GD);
738     return;
739   }
740 
741   // If we're deferring emission of a C++ variable with an
742   // initializer, remember the order in which it appeared in the file.
743   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
744       cast<VarDecl>(Global)->hasInit()) {
745     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
746     CXXGlobalInits.push_back(0);
747   }
748 
749   // If the value has already been used, add it directly to the
750   // DeferredDeclsToEmit list.
751   llvm::StringRef MangledName = getMangledName(GD);
752   if (GetGlobalValue(MangledName))
753     DeferredDeclsToEmit.push_back(GD);
754   else {
755     // Otherwise, remember that we saw a deferred decl with this name.  The
756     // first use of the mangled name will cause it to move into
757     // DeferredDeclsToEmit.
758     DeferredDecls[MangledName] = GD;
759   }
760 }
761 
762 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
763   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
764 
765   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
766                                  Context.getSourceManager(),
767                                  "Generating code for declaration");
768 
769   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
770     // At -O0, don't generate IR for functions with available_externally
771     // linkage.
772     if (CodeGenOpts.OptimizationLevel == 0 &&
773         !Function->hasAttr<AlwaysInlineAttr>() &&
774         getFunctionLinkage(Function)
775                                   == llvm::Function::AvailableExternallyLinkage)
776       return;
777 
778     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
779       if (Method->isVirtual())
780         getVTables().EmitThunks(GD);
781 
782       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
783         return EmitCXXConstructor(CD, GD.getCtorType());
784 
785       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
786         return EmitCXXDestructor(DD, GD.getDtorType());
787     }
788 
789     return EmitGlobalFunctionDefinition(GD);
790   }
791 
792   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
793     return EmitGlobalVarDefinition(VD);
794 
795   assert(0 && "Invalid argument to EmitGlobalDefinition()");
796 }
797 
798 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
799 /// module, create and return an llvm Function with the specified type. If there
800 /// is something in the module with the specified name, return it potentially
801 /// bitcasted to the right type.
802 ///
803 /// If D is non-null, it specifies a decl that correspond to this.  This is used
804 /// to set the attributes on the function when it is first created.
805 llvm::Constant *
806 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
807                                        const llvm::Type *Ty,
808                                        GlobalDecl D, bool ForVTable) {
809   // Lookup the entry, lazily creating it if necessary.
810   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
811   if (Entry) {
812     if (WeakRefReferences.count(Entry)) {
813       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
814       if (FD && !FD->hasAttr<WeakAttr>())
815         Entry->setLinkage(llvm::Function::ExternalLinkage);
816 
817       WeakRefReferences.erase(Entry);
818     }
819 
820     if (Entry->getType()->getElementType() == Ty)
821       return Entry;
822 
823     // Make sure the result is of the correct type.
824     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
825     return llvm::ConstantExpr::getBitCast(Entry, PTy);
826   }
827 
828   // This function doesn't have a complete type (for example, the return
829   // type is an incomplete struct). Use a fake type instead, and make
830   // sure not to try to set attributes.
831   bool IsIncompleteFunction = false;
832 
833   const llvm::FunctionType *FTy;
834   if (isa<llvm::FunctionType>(Ty)) {
835     FTy = cast<llvm::FunctionType>(Ty);
836   } else {
837     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
838     IsIncompleteFunction = true;
839   }
840 
841   llvm::Function *F = llvm::Function::Create(FTy,
842                                              llvm::Function::ExternalLinkage,
843                                              MangledName, &getModule());
844   assert(F->getName() == MangledName && "name was uniqued!");
845   if (D.getDecl())
846     SetFunctionAttributes(D, F, IsIncompleteFunction);
847 
848   // This is the first use or definition of a mangled name.  If there is a
849   // deferred decl with this name, remember that we need to emit it at the end
850   // of the file.
851   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
852   if (DDI != DeferredDecls.end()) {
853     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854     // list, and remove it from DeferredDecls (since we don't need it anymore).
855     DeferredDeclsToEmit.push_back(DDI->second);
856     DeferredDecls.erase(DDI);
857 
858   // Otherwise, there are cases we have to worry about where we're
859   // using a declaration for which we must emit a definition but where
860   // we might not find a top-level definition:
861   //   - member functions defined inline in their classes
862   //   - friend functions defined inline in some class
863   //   - special member functions with implicit definitions
864   // If we ever change our AST traversal to walk into class methods,
865   // this will be unnecessary.
866   //
867   // We also don't emit a definition for a function if it's going to be an entry
868   // in a vtable, unless it's already marked as used.
869   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
870     // Look for a declaration that's lexically in a record.
871     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
872     do {
873       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
874         if (FD->isImplicit() && !ForVTable) {
875           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
876           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
877           break;
878         } else if (FD->isThisDeclarationADefinition()) {
879           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
880           break;
881         }
882       }
883       FD = FD->getPreviousDeclaration();
884     } while (FD);
885   }
886 
887   // Make sure the result is of the requested type.
888   if (!IsIncompleteFunction) {
889     assert(F->getType()->getElementType() == Ty);
890     return F;
891   }
892 
893   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
894   return llvm::ConstantExpr::getBitCast(F, PTy);
895 }
896 
897 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
898 /// non-null, then this function will use the specified type if it has to
899 /// create it (this occurs when we see a definition of the function).
900 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
901                                                  const llvm::Type *Ty,
902                                                  bool ForVTable) {
903   // If there was no specific requested type, just convert it now.
904   if (!Ty)
905     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
906 
907   llvm::StringRef MangledName = getMangledName(GD);
908   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
909 }
910 
911 /// CreateRuntimeFunction - Create a new runtime function with the specified
912 /// type and name.
913 llvm::Constant *
914 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
915                                      llvm::StringRef Name) {
916   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
917 }
918 
919 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
920   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
921     return false;
922   if (Context.getLangOptions().CPlusPlus &&
923       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
924     // FIXME: We should do something fancier here!
925     return false;
926   }
927   return true;
928 }
929 
930 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
931 /// create and return an llvm GlobalVariable with the specified type.  If there
932 /// is something in the module with the specified name, return it potentially
933 /// bitcasted to the right type.
934 ///
935 /// If D is non-null, it specifies a decl that correspond to this.  This is used
936 /// to set the attributes on the global when it is first created.
937 llvm::Constant *
938 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
939                                      const llvm::PointerType *Ty,
940                                      const VarDecl *D,
941                                      bool UnnamedAddr) {
942   // Lookup the entry, lazily creating it if necessary.
943   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
944   if (Entry) {
945     if (WeakRefReferences.count(Entry)) {
946       if (D && !D->hasAttr<WeakAttr>())
947         Entry->setLinkage(llvm::Function::ExternalLinkage);
948 
949       WeakRefReferences.erase(Entry);
950     }
951 
952     if (UnnamedAddr)
953       Entry->setUnnamedAddr(true);
954 
955     if (Entry->getType() == Ty)
956       return Entry;
957 
958     // Make sure the result is of the correct type.
959     return llvm::ConstantExpr::getBitCast(Entry, Ty);
960   }
961 
962   // This is the first use or definition of a mangled name.  If there is a
963   // deferred decl with this name, remember that we need to emit it at the end
964   // of the file.
965   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
966   if (DDI != DeferredDecls.end()) {
967     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
968     // list, and remove it from DeferredDecls (since we don't need it anymore).
969     DeferredDeclsToEmit.push_back(DDI->second);
970     DeferredDecls.erase(DDI);
971   }
972 
973   llvm::GlobalVariable *GV =
974     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
975                              llvm::GlobalValue::ExternalLinkage,
976                              0, MangledName, 0,
977                              false, Ty->getAddressSpace());
978 
979   // Handle things which are present even on external declarations.
980   if (D) {
981     // FIXME: This code is overly simple and should be merged with other global
982     // handling.
983     GV->setConstant(DeclIsConstantGlobal(Context, D));
984 
985     // Set linkage and visibility in case we never see a definition.
986     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
987     if (LV.linkage() != ExternalLinkage) {
988       // Don't set internal linkage on declarations.
989     } else {
990       if (D->hasAttr<DLLImportAttr>())
991         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
992       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
993         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
994 
995       // Set visibility on a declaration only if it's explicit.
996       if (LV.visibilityExplicit())
997         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
998     }
999 
1000     GV->setThreadLocal(D->isThreadSpecified());
1001   }
1002 
1003   return GV;
1004 }
1005 
1006 
1007 llvm::GlobalVariable *
1008 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1009                                       const llvm::Type *Ty,
1010                                       llvm::GlobalValue::LinkageTypes Linkage) {
1011   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1012   llvm::GlobalVariable *OldGV = 0;
1013 
1014 
1015   if (GV) {
1016     // Check if the variable has the right type.
1017     if (GV->getType()->getElementType() == Ty)
1018       return GV;
1019 
1020     // Because C++ name mangling, the only way we can end up with an already
1021     // existing global with the same name is if it has been declared extern "C".
1022       assert(GV->isDeclaration() && "Declaration has wrong type!");
1023     OldGV = GV;
1024   }
1025 
1026   // Create a new variable.
1027   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1028                                 Linkage, 0, Name);
1029 
1030   if (OldGV) {
1031     // Replace occurrences of the old variable if needed.
1032     GV->takeName(OldGV);
1033 
1034     if (!OldGV->use_empty()) {
1035       llvm::Constant *NewPtrForOldDecl =
1036       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1037       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1038     }
1039 
1040     OldGV->eraseFromParent();
1041   }
1042 
1043   return GV;
1044 }
1045 
1046 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1047 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1048 /// then it will be greated with the specified type instead of whatever the
1049 /// normal requested type would be.
1050 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1051                                                   const llvm::Type *Ty) {
1052   assert(D->hasGlobalStorage() && "Not a global variable");
1053   QualType ASTTy = D->getType();
1054   if (Ty == 0)
1055     Ty = getTypes().ConvertTypeForMem(ASTTy);
1056 
1057   const llvm::PointerType *PTy =
1058     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1059 
1060   llvm::StringRef MangledName = getMangledName(D);
1061   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1062 }
1063 
1064 /// CreateRuntimeVariable - Create a new runtime global variable with the
1065 /// specified type and name.
1066 llvm::Constant *
1067 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1068                                      llvm::StringRef Name) {
1069   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1070                                true);
1071 }
1072 
1073 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1074   assert(!D->getInit() && "Cannot emit definite definitions here!");
1075 
1076   if (MayDeferGeneration(D)) {
1077     // If we have not seen a reference to this variable yet, place it
1078     // into the deferred declarations table to be emitted if needed
1079     // later.
1080     llvm::StringRef MangledName = getMangledName(D);
1081     if (!GetGlobalValue(MangledName)) {
1082       DeferredDecls[MangledName] = D;
1083       return;
1084     }
1085   }
1086 
1087   // The tentative definition is the only definition.
1088   EmitGlobalVarDefinition(D);
1089 }
1090 
1091 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1092   if (DefinitionRequired)
1093     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1094 }
1095 
1096 llvm::GlobalVariable::LinkageTypes
1097 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1098   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1099     return llvm::GlobalVariable::InternalLinkage;
1100 
1101   if (const CXXMethodDecl *KeyFunction
1102                                     = RD->getASTContext().getKeyFunction(RD)) {
1103     // If this class has a key function, use that to determine the linkage of
1104     // the vtable.
1105     const FunctionDecl *Def = 0;
1106     if (KeyFunction->hasBody(Def))
1107       KeyFunction = cast<CXXMethodDecl>(Def);
1108 
1109     switch (KeyFunction->getTemplateSpecializationKind()) {
1110       case TSK_Undeclared:
1111       case TSK_ExplicitSpecialization:
1112         // When compiling with optimizations turned on, we emit all vtables,
1113         // even if the key function is not defined in the current translation
1114         // unit. If this is the case, use available_externally linkage.
1115         if (!Def && CodeGenOpts.OptimizationLevel)
1116           return llvm::GlobalVariable::AvailableExternallyLinkage;
1117 
1118         if (KeyFunction->isInlined())
1119           return !Context.getLangOptions().AppleKext ?
1120                    llvm::GlobalVariable::LinkOnceODRLinkage :
1121                    llvm::Function::InternalLinkage;
1122 
1123         return llvm::GlobalVariable::ExternalLinkage;
1124 
1125       case TSK_ImplicitInstantiation:
1126         return !Context.getLangOptions().AppleKext ?
1127                  llvm::GlobalVariable::LinkOnceODRLinkage :
1128                  llvm::Function::InternalLinkage;
1129 
1130       case TSK_ExplicitInstantiationDefinition:
1131         return !Context.getLangOptions().AppleKext ?
1132                  llvm::GlobalVariable::WeakODRLinkage :
1133                  llvm::Function::InternalLinkage;
1134 
1135       case TSK_ExplicitInstantiationDeclaration:
1136         // FIXME: Use available_externally linkage. However, this currently
1137         // breaks LLVM's build due to undefined symbols.
1138         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1139         return !Context.getLangOptions().AppleKext ?
1140                  llvm::GlobalVariable::LinkOnceODRLinkage :
1141                  llvm::Function::InternalLinkage;
1142     }
1143   }
1144 
1145   if (Context.getLangOptions().AppleKext)
1146     return llvm::Function::InternalLinkage;
1147 
1148   switch (RD->getTemplateSpecializationKind()) {
1149   case TSK_Undeclared:
1150   case TSK_ExplicitSpecialization:
1151   case TSK_ImplicitInstantiation:
1152     // FIXME: Use available_externally linkage. However, this currently
1153     // breaks LLVM's build due to undefined symbols.
1154     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1155   case TSK_ExplicitInstantiationDeclaration:
1156     return llvm::GlobalVariable::LinkOnceODRLinkage;
1157 
1158   case TSK_ExplicitInstantiationDefinition:
1159       return llvm::GlobalVariable::WeakODRLinkage;
1160   }
1161 
1162   // Silence GCC warning.
1163   return llvm::GlobalVariable::LinkOnceODRLinkage;
1164 }
1165 
1166 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1167     return Context.toCharUnitsFromBits(
1168       TheTargetData.getTypeStoreSizeInBits(Ty));
1169 }
1170 
1171 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1172   llvm::Constant *Init = 0;
1173   QualType ASTTy = D->getType();
1174   bool NonConstInit = false;
1175 
1176   const Expr *InitExpr = D->getAnyInitializer();
1177 
1178   if (!InitExpr) {
1179     // This is a tentative definition; tentative definitions are
1180     // implicitly initialized with { 0 }.
1181     //
1182     // Note that tentative definitions are only emitted at the end of
1183     // a translation unit, so they should never have incomplete
1184     // type. In addition, EmitTentativeDefinition makes sure that we
1185     // never attempt to emit a tentative definition if a real one
1186     // exists. A use may still exists, however, so we still may need
1187     // to do a RAUW.
1188     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1189     Init = EmitNullConstant(D->getType());
1190   } else {
1191     Init = EmitConstantExpr(InitExpr, D->getType());
1192     if (!Init) {
1193       QualType T = InitExpr->getType();
1194       if (D->getType()->isReferenceType())
1195         T = D->getType();
1196 
1197       if (getLangOptions().CPlusPlus) {
1198         Init = EmitNullConstant(T);
1199         NonConstInit = true;
1200       } else {
1201         ErrorUnsupported(D, "static initializer");
1202         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1203       }
1204     } else {
1205       // We don't need an initializer, so remove the entry for the delayed
1206       // initializer position (just in case this entry was delayed).
1207       if (getLangOptions().CPlusPlus)
1208         DelayedCXXInitPosition.erase(D);
1209     }
1210   }
1211 
1212   const llvm::Type* InitType = Init->getType();
1213   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1214 
1215   // Strip off a bitcast if we got one back.
1216   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1217     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1218            // all zero index gep.
1219            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1220     Entry = CE->getOperand(0);
1221   }
1222 
1223   // Entry is now either a Function or GlobalVariable.
1224   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1225 
1226   // We have a definition after a declaration with the wrong type.
1227   // We must make a new GlobalVariable* and update everything that used OldGV
1228   // (a declaration or tentative definition) with the new GlobalVariable*
1229   // (which will be a definition).
1230   //
1231   // This happens if there is a prototype for a global (e.g.
1232   // "extern int x[];") and then a definition of a different type (e.g.
1233   // "int x[10];"). This also happens when an initializer has a different type
1234   // from the type of the global (this happens with unions).
1235   if (GV == 0 ||
1236       GV->getType()->getElementType() != InitType ||
1237       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1238 
1239     // Move the old entry aside so that we'll create a new one.
1240     Entry->setName(llvm::StringRef());
1241 
1242     // Make a new global with the correct type, this is now guaranteed to work.
1243     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1244 
1245     // Replace all uses of the old global with the new global
1246     llvm::Constant *NewPtrForOldDecl =
1247         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1248     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1249 
1250     // Erase the old global, since it is no longer used.
1251     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1252   }
1253 
1254   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1255     SourceManager &SM = Context.getSourceManager();
1256     AddAnnotation(EmitAnnotateAttr(GV, AA,
1257                               SM.getInstantiationLineNumber(D->getLocation())));
1258   }
1259 
1260   GV->setInitializer(Init);
1261 
1262   // If it is safe to mark the global 'constant', do so now.
1263   GV->setConstant(false);
1264   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1265     GV->setConstant(true);
1266 
1267   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1268 
1269   // Set the llvm linkage type as appropriate.
1270   llvm::GlobalValue::LinkageTypes Linkage =
1271     GetLLVMLinkageVarDefinition(D, GV);
1272   GV->setLinkage(Linkage);
1273   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1274     // common vars aren't constant even if declared const.
1275     GV->setConstant(false);
1276 
1277   SetCommonAttributes(D, GV);
1278 
1279   // Emit the initializer function if necessary.
1280   if (NonConstInit)
1281     EmitCXXGlobalVarDeclInitFunc(D, GV);
1282 
1283   // Emit global variable debug information.
1284   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1285     DI->setLocation(D->getLocation());
1286     DI->EmitGlobalVariable(GV, D);
1287   }
1288 }
1289 
1290 llvm::GlobalValue::LinkageTypes
1291 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1292                                            llvm::GlobalVariable *GV) {
1293   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1294   if (Linkage == GVA_Internal)
1295     return llvm::Function::InternalLinkage;
1296   else if (D->hasAttr<DLLImportAttr>())
1297     return llvm::Function::DLLImportLinkage;
1298   else if (D->hasAttr<DLLExportAttr>())
1299     return llvm::Function::DLLExportLinkage;
1300   else if (D->hasAttr<WeakAttr>()) {
1301     if (GV->isConstant())
1302       return llvm::GlobalVariable::WeakODRLinkage;
1303     else
1304       return llvm::GlobalVariable::WeakAnyLinkage;
1305   } else if (Linkage == GVA_TemplateInstantiation ||
1306              Linkage == GVA_ExplicitTemplateInstantiation)
1307     // FIXME: It seems like we can provide more specific linkage here
1308     // (LinkOnceODR, WeakODR).
1309     return llvm::GlobalVariable::WeakAnyLinkage;
1310   else if (!getLangOptions().CPlusPlus &&
1311            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1312              D->getAttr<CommonAttr>()) &&
1313            !D->hasExternalStorage() && !D->getInit() &&
1314            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1315     // Thread local vars aren't considered common linkage.
1316     return llvm::GlobalVariable::CommonLinkage;
1317   }
1318   return llvm::GlobalVariable::ExternalLinkage;
1319 }
1320 
1321 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1322 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1323 /// existing call uses of the old function in the module, this adjusts them to
1324 /// call the new function directly.
1325 ///
1326 /// This is not just a cleanup: the always_inline pass requires direct calls to
1327 /// functions to be able to inline them.  If there is a bitcast in the way, it
1328 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1329 /// run at -O0.
1330 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1331                                                       llvm::Function *NewFn) {
1332   // If we're redefining a global as a function, don't transform it.
1333   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1334   if (OldFn == 0) return;
1335 
1336   const llvm::Type *NewRetTy = NewFn->getReturnType();
1337   llvm::SmallVector<llvm::Value*, 4> ArgList;
1338 
1339   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1340        UI != E; ) {
1341     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1342     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1343     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1344     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1345     llvm::CallSite CS(CI);
1346     if (!CI || !CS.isCallee(I)) continue;
1347 
1348     // If the return types don't match exactly, and if the call isn't dead, then
1349     // we can't transform this call.
1350     if (CI->getType() != NewRetTy && !CI->use_empty())
1351       continue;
1352 
1353     // If the function was passed too few arguments, don't transform.  If extra
1354     // arguments were passed, we silently drop them.  If any of the types
1355     // mismatch, we don't transform.
1356     unsigned ArgNo = 0;
1357     bool DontTransform = false;
1358     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1359          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1360       if (CS.arg_size() == ArgNo ||
1361           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1362         DontTransform = true;
1363         break;
1364       }
1365     }
1366     if (DontTransform)
1367       continue;
1368 
1369     // Okay, we can transform this.  Create the new call instruction and copy
1370     // over the required information.
1371     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1372     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1373                                                      ArgList.end(), "", CI);
1374     ArgList.clear();
1375     if (!NewCall->getType()->isVoidTy())
1376       NewCall->takeName(CI);
1377     NewCall->setAttributes(CI->getAttributes());
1378     NewCall->setCallingConv(CI->getCallingConv());
1379 
1380     // Finally, remove the old call, replacing any uses with the new one.
1381     if (!CI->use_empty())
1382       CI->replaceAllUsesWith(NewCall);
1383 
1384     // Copy debug location attached to CI.
1385     if (!CI->getDebugLoc().isUnknown())
1386       NewCall->setDebugLoc(CI->getDebugLoc());
1387     CI->eraseFromParent();
1388   }
1389 }
1390 
1391 
1392 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1393   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1394 
1395   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1396 
1397   // FIXME: re-use FI in this computation!
1398   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1399 
1400   // Get or create the prototype for the function.
1401   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1402 
1403   // Strip off a bitcast if we got one back.
1404   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1405     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1406     Entry = CE->getOperand(0);
1407   }
1408 
1409 
1410   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1411     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1412 
1413     // If the types mismatch then we have to rewrite the definition.
1414     assert(OldFn->isDeclaration() &&
1415            "Shouldn't replace non-declaration");
1416 
1417     // F is the Function* for the one with the wrong type, we must make a new
1418     // Function* and update everything that used F (a declaration) with the new
1419     // Function* (which will be a definition).
1420     //
1421     // This happens if there is a prototype for a function
1422     // (e.g. "int f()") and then a definition of a different type
1423     // (e.g. "int f(int x)").  Move the old function aside so that it
1424     // doesn't interfere with GetAddrOfFunction.
1425     OldFn->setName(llvm::StringRef());
1426     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1427 
1428     // If this is an implementation of a function without a prototype, try to
1429     // replace any existing uses of the function (which may be calls) with uses
1430     // of the new function
1431     if (D->getType()->isFunctionNoProtoType()) {
1432       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1433       OldFn->removeDeadConstantUsers();
1434     }
1435 
1436     // Replace uses of F with the Function we will endow with a body.
1437     if (!Entry->use_empty()) {
1438       llvm::Constant *NewPtrForOldDecl =
1439         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1440       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1441     }
1442 
1443     // Ok, delete the old function now, which is dead.
1444     OldFn->eraseFromParent();
1445 
1446     Entry = NewFn;
1447   }
1448 
1449   // We need to set linkage and visibility on the function before
1450   // generating code for it because various parts of IR generation
1451   // want to propagate this information down (e.g. to local static
1452   // declarations).
1453   llvm::Function *Fn = cast<llvm::Function>(Entry);
1454   setFunctionLinkage(D, Fn);
1455 
1456   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1457   setGlobalVisibility(Fn, D);
1458 
1459   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1460 
1461   SetFunctionDefinitionAttributes(D, Fn);
1462   SetLLVMFunctionAttributesForDefinition(D, Fn);
1463 
1464   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1465     AddGlobalCtor(Fn, CA->getPriority());
1466   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1467     AddGlobalDtor(Fn, DA->getPriority());
1468 }
1469 
1470 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1471   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1472   const AliasAttr *AA = D->getAttr<AliasAttr>();
1473   assert(AA && "Not an alias?");
1474 
1475   llvm::StringRef MangledName = getMangledName(GD);
1476 
1477   // If there is a definition in the module, then it wins over the alias.
1478   // This is dubious, but allow it to be safe.  Just ignore the alias.
1479   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1480   if (Entry && !Entry->isDeclaration())
1481     return;
1482 
1483   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1484 
1485   // Create a reference to the named value.  This ensures that it is emitted
1486   // if a deferred decl.
1487   llvm::Constant *Aliasee;
1488   if (isa<llvm::FunctionType>(DeclTy))
1489     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1490                                       /*ForVTable=*/false);
1491   else
1492     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1493                                     llvm::PointerType::getUnqual(DeclTy), 0);
1494 
1495   // Create the new alias itself, but don't set a name yet.
1496   llvm::GlobalValue *GA =
1497     new llvm::GlobalAlias(Aliasee->getType(),
1498                           llvm::Function::ExternalLinkage,
1499                           "", Aliasee, &getModule());
1500 
1501   if (Entry) {
1502     assert(Entry->isDeclaration());
1503 
1504     // If there is a declaration in the module, then we had an extern followed
1505     // by the alias, as in:
1506     //   extern int test6();
1507     //   ...
1508     //   int test6() __attribute__((alias("test7")));
1509     //
1510     // Remove it and replace uses of it with the alias.
1511     GA->takeName(Entry);
1512 
1513     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1514                                                           Entry->getType()));
1515     Entry->eraseFromParent();
1516   } else {
1517     GA->setName(MangledName);
1518   }
1519 
1520   // Set attributes which are particular to an alias; this is a
1521   // specialization of the attributes which may be set on a global
1522   // variable/function.
1523   if (D->hasAttr<DLLExportAttr>()) {
1524     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1525       // The dllexport attribute is ignored for undefined symbols.
1526       if (FD->hasBody())
1527         GA->setLinkage(llvm::Function::DLLExportLinkage);
1528     } else {
1529       GA->setLinkage(llvm::Function::DLLExportLinkage);
1530     }
1531   } else if (D->hasAttr<WeakAttr>() ||
1532              D->hasAttr<WeakRefAttr>() ||
1533              D->hasAttr<WeakImportAttr>()) {
1534     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1535   }
1536 
1537   SetCommonAttributes(D, GA);
1538 }
1539 
1540 /// getBuiltinLibFunction - Given a builtin id for a function like
1541 /// "__builtin_fabsf", return a Function* for "fabsf".
1542 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1543                                                   unsigned BuiltinID) {
1544   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1545           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1546          "isn't a lib fn");
1547 
1548   // Get the name, skip over the __builtin_ prefix (if necessary).
1549   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1550   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1551     Name += 10;
1552 
1553   const llvm::FunctionType *Ty =
1554     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1555 
1556   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1557 }
1558 
1559 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1560                                             unsigned NumTys) {
1561   return llvm::Intrinsic::getDeclaration(&getModule(),
1562                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1563 }
1564 
1565 static llvm::StringMapEntry<llvm::Constant*> &
1566 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1567                          const StringLiteral *Literal,
1568                          bool TargetIsLSB,
1569                          bool &IsUTF16,
1570                          unsigned &StringLength) {
1571   llvm::StringRef String = Literal->getString();
1572   unsigned NumBytes = String.size();
1573 
1574   // Check for simple case.
1575   if (!Literal->containsNonAsciiOrNull()) {
1576     StringLength = NumBytes;
1577     return Map.GetOrCreateValue(String);
1578   }
1579 
1580   // Otherwise, convert the UTF8 literals into a byte string.
1581   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1582   const UTF8 *FromPtr = (UTF8 *)String.data();
1583   UTF16 *ToPtr = &ToBuf[0];
1584 
1585   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1586                            &ToPtr, ToPtr + NumBytes,
1587                            strictConversion);
1588 
1589   // ConvertUTF8toUTF16 returns the length in ToPtr.
1590   StringLength = ToPtr - &ToBuf[0];
1591 
1592   // Render the UTF-16 string into a byte array and convert to the target byte
1593   // order.
1594   //
1595   // FIXME: This isn't something we should need to do here.
1596   llvm::SmallString<128> AsBytes;
1597   AsBytes.reserve(StringLength * 2);
1598   for (unsigned i = 0; i != StringLength; ++i) {
1599     unsigned short Val = ToBuf[i];
1600     if (TargetIsLSB) {
1601       AsBytes.push_back(Val & 0xFF);
1602       AsBytes.push_back(Val >> 8);
1603     } else {
1604       AsBytes.push_back(Val >> 8);
1605       AsBytes.push_back(Val & 0xFF);
1606     }
1607   }
1608   // Append one extra null character, the second is automatically added by our
1609   // caller.
1610   AsBytes.push_back(0);
1611 
1612   IsUTF16 = true;
1613   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1614 }
1615 
1616 llvm::Constant *
1617 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1618   unsigned StringLength = 0;
1619   bool isUTF16 = false;
1620   llvm::StringMapEntry<llvm::Constant*> &Entry =
1621     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1622                              getTargetData().isLittleEndian(),
1623                              isUTF16, StringLength);
1624 
1625   if (llvm::Constant *C = Entry.getValue())
1626     return C;
1627 
1628   llvm::Constant *Zero =
1629       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1630   llvm::Constant *Zeros[] = { Zero, Zero };
1631 
1632   // If we don't already have it, get __CFConstantStringClassReference.
1633   if (!CFConstantStringClassRef) {
1634     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1635     Ty = llvm::ArrayType::get(Ty, 0);
1636     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1637                                            "__CFConstantStringClassReference");
1638     // Decay array -> ptr
1639     CFConstantStringClassRef =
1640       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1641   }
1642 
1643   QualType CFTy = getContext().getCFConstantStringType();
1644 
1645   const llvm::StructType *STy =
1646     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1647 
1648   std::vector<llvm::Constant*> Fields(4);
1649 
1650   // Class pointer.
1651   Fields[0] = CFConstantStringClassRef;
1652 
1653   // Flags.
1654   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1655   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1656     llvm::ConstantInt::get(Ty, 0x07C8);
1657 
1658   // String pointer.
1659   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1660 
1661   llvm::GlobalValue::LinkageTypes Linkage;
1662   bool isConstant;
1663   if (isUTF16) {
1664     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1665     Linkage = llvm::GlobalValue::InternalLinkage;
1666     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1667     // does make plain ascii ones writable.
1668     isConstant = true;
1669   } else {
1670     Linkage = llvm::GlobalValue::PrivateLinkage;
1671     isConstant = !Features.WritableStrings;
1672   }
1673 
1674   llvm::GlobalVariable *GV =
1675     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1676                              ".str");
1677   GV->setUnnamedAddr(true);
1678   if (isUTF16) {
1679     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1680     GV->setAlignment(Align.getQuantity());
1681   }
1682   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1683 
1684   // String length.
1685   Ty = getTypes().ConvertType(getContext().LongTy);
1686   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1687 
1688   // The struct.
1689   C = llvm::ConstantStruct::get(STy, Fields);
1690   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1691                                 llvm::GlobalVariable::PrivateLinkage, C,
1692                                 "_unnamed_cfstring_");
1693   if (const char *Sect = getContext().Target.getCFStringSection())
1694     GV->setSection(Sect);
1695   Entry.setValue(GV);
1696 
1697   return GV;
1698 }
1699 
1700 llvm::Constant *
1701 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1702   unsigned StringLength = 0;
1703   bool isUTF16 = false;
1704   llvm::StringMapEntry<llvm::Constant*> &Entry =
1705     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1706                              getTargetData().isLittleEndian(),
1707                              isUTF16, StringLength);
1708 
1709   if (llvm::Constant *C = Entry.getValue())
1710     return C;
1711 
1712   llvm::Constant *Zero =
1713   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1714   llvm::Constant *Zeros[] = { Zero, Zero };
1715 
1716   // If we don't already have it, get _NSConstantStringClassReference.
1717   if (!ConstantStringClassRef) {
1718     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1719     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1720     Ty = llvm::ArrayType::get(Ty, 0);
1721     llvm::Constant *GV;
1722     if (StringClass.empty())
1723       GV = CreateRuntimeVariable(Ty,
1724                                  Features.ObjCNonFragileABI ?
1725                                  "OBJC_CLASS_$_NSConstantString" :
1726                                  "_NSConstantStringClassReference");
1727     else {
1728       std::string str;
1729       if (Features.ObjCNonFragileABI)
1730         str = "OBJC_CLASS_$_" + StringClass;
1731       else
1732         str = "_" + StringClass + "ClassReference";
1733       GV = CreateRuntimeVariable(Ty, str);
1734     }
1735     // Decay array -> ptr
1736     ConstantStringClassRef =
1737     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1738   }
1739 
1740   QualType NSTy = getContext().getNSConstantStringType();
1741 
1742   const llvm::StructType *STy =
1743   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1744 
1745   std::vector<llvm::Constant*> Fields(3);
1746 
1747   // Class pointer.
1748   Fields[0] = ConstantStringClassRef;
1749 
1750   // String pointer.
1751   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1752 
1753   llvm::GlobalValue::LinkageTypes Linkage;
1754   bool isConstant;
1755   if (isUTF16) {
1756     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1757     Linkage = llvm::GlobalValue::InternalLinkage;
1758     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1759     // does make plain ascii ones writable.
1760     isConstant = true;
1761   } else {
1762     Linkage = llvm::GlobalValue::PrivateLinkage;
1763     isConstant = !Features.WritableStrings;
1764   }
1765 
1766   llvm::GlobalVariable *GV =
1767   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1768                            ".str");
1769   GV->setUnnamedAddr(true);
1770   if (isUTF16) {
1771     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1772     GV->setAlignment(Align.getQuantity());
1773   }
1774   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1775 
1776   // String length.
1777   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1778   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1779 
1780   // The struct.
1781   C = llvm::ConstantStruct::get(STy, Fields);
1782   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1783                                 llvm::GlobalVariable::PrivateLinkage, C,
1784                                 "_unnamed_nsstring_");
1785   // FIXME. Fix section.
1786   if (const char *Sect =
1787         Features.ObjCNonFragileABI
1788           ? getContext().Target.getNSStringNonFragileABISection()
1789           : getContext().Target.getNSStringSection())
1790     GV->setSection(Sect);
1791   Entry.setValue(GV);
1792 
1793   return GV;
1794 }
1795 
1796 /// GetStringForStringLiteral - Return the appropriate bytes for a
1797 /// string literal, properly padded to match the literal type.
1798 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1799   const ASTContext &Context = getContext();
1800   const ConstantArrayType *CAT =
1801     Context.getAsConstantArrayType(E->getType());
1802   assert(CAT && "String isn't pointer or array!");
1803 
1804   // Resize the string to the right size.
1805   uint64_t RealLen = CAT->getSize().getZExtValue();
1806 
1807   if (E->isWide())
1808     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1809 
1810   std::string Str = E->getString().str();
1811   Str.resize(RealLen, '\0');
1812 
1813   return Str;
1814 }
1815 
1816 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1817 /// constant array for the given string literal.
1818 llvm::Constant *
1819 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1820   // FIXME: This can be more efficient.
1821   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1822   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1823   if (S->isWide()) {
1824     llvm::Type *DestTy =
1825         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1826     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1827   }
1828   return C;
1829 }
1830 
1831 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1832 /// array for the given ObjCEncodeExpr node.
1833 llvm::Constant *
1834 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1835   std::string Str;
1836   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1837 
1838   return GetAddrOfConstantCString(Str);
1839 }
1840 
1841 
1842 /// GenerateWritableString -- Creates storage for a string literal.
1843 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1844                                              bool constant,
1845                                              CodeGenModule &CGM,
1846                                              const char *GlobalName) {
1847   // Create Constant for this string literal. Don't add a '\0'.
1848   llvm::Constant *C =
1849       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1850 
1851   // Create a global variable for this string
1852   llvm::GlobalVariable *GV =
1853     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1854                              llvm::GlobalValue::PrivateLinkage,
1855                              C, GlobalName);
1856   GV->setUnnamedAddr(true);
1857   return GV;
1858 }
1859 
1860 /// GetAddrOfConstantString - Returns a pointer to a character array
1861 /// containing the literal. This contents are exactly that of the
1862 /// given string, i.e. it will not be null terminated automatically;
1863 /// see GetAddrOfConstantCString. Note that whether the result is
1864 /// actually a pointer to an LLVM constant depends on
1865 /// Feature.WriteableStrings.
1866 ///
1867 /// The result has pointer to array type.
1868 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1869                                                        const char *GlobalName) {
1870   bool IsConstant = !Features.WritableStrings;
1871 
1872   // Get the default prefix if a name wasn't specified.
1873   if (!GlobalName)
1874     GlobalName = ".str";
1875 
1876   // Don't share any string literals if strings aren't constant.
1877   if (!IsConstant)
1878     return GenerateStringLiteral(Str, false, *this, GlobalName);
1879 
1880   llvm::StringMapEntry<llvm::Constant *> &Entry =
1881     ConstantStringMap.GetOrCreateValue(Str);
1882 
1883   if (Entry.getValue())
1884     return Entry.getValue();
1885 
1886   // Create a global variable for this.
1887   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1888   Entry.setValue(C);
1889   return C;
1890 }
1891 
1892 /// GetAddrOfConstantCString - Returns a pointer to a character
1893 /// array containing the literal and a terminating '\0'
1894 /// character. The result has pointer to array type.
1895 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1896                                                         const char *GlobalName){
1897   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1898   return GetAddrOfConstantString(StrWithNull, GlobalName);
1899 }
1900 
1901 /// EmitObjCPropertyImplementations - Emit information for synthesized
1902 /// properties for an implementation.
1903 void CodeGenModule::EmitObjCPropertyImplementations(const
1904                                                     ObjCImplementationDecl *D) {
1905   for (ObjCImplementationDecl::propimpl_iterator
1906          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1907     ObjCPropertyImplDecl *PID = *i;
1908 
1909     // Dynamic is just for type-checking.
1910     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1911       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1912 
1913       // Determine which methods need to be implemented, some may have
1914       // been overridden. Note that ::isSynthesized is not the method
1915       // we want, that just indicates if the decl came from a
1916       // property. What we want to know is if the method is defined in
1917       // this implementation.
1918       if (!D->getInstanceMethod(PD->getGetterName()))
1919         CodeGenFunction(*this).GenerateObjCGetter(
1920                                  const_cast<ObjCImplementationDecl *>(D), PID);
1921       if (!PD->isReadOnly() &&
1922           !D->getInstanceMethod(PD->getSetterName()))
1923         CodeGenFunction(*this).GenerateObjCSetter(
1924                                  const_cast<ObjCImplementationDecl *>(D), PID);
1925     }
1926   }
1927 }
1928 
1929 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1930 /// for an implementation.
1931 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1932   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1933     return;
1934   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1935   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1936   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1937   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1938   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1939                                                   D->getLocation(),
1940                                                   D->getLocation(), cxxSelector,
1941                                                   getContext().VoidTy, 0,
1942                                                   DC, true, false, true, false,
1943                                                   ObjCMethodDecl::Required);
1944   D->addInstanceMethod(DTORMethod);
1945   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1946 
1947   II = &getContext().Idents.get(".cxx_construct");
1948   cxxSelector = getContext().Selectors.getSelector(0, &II);
1949   // The constructor returns 'self'.
1950   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1951                                                 D->getLocation(),
1952                                                 D->getLocation(), cxxSelector,
1953                                                 getContext().getObjCIdType(), 0,
1954                                                 DC, true, false, true, false,
1955                                                 ObjCMethodDecl::Required);
1956   D->addInstanceMethod(CTORMethod);
1957   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1958 
1959 
1960 }
1961 
1962 /// EmitNamespace - Emit all declarations in a namespace.
1963 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1964   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1965        I != E; ++I)
1966     EmitTopLevelDecl(*I);
1967 }
1968 
1969 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1970 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1971   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1972       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1973     ErrorUnsupported(LSD, "linkage spec");
1974     return;
1975   }
1976 
1977   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1978        I != E; ++I)
1979     EmitTopLevelDecl(*I);
1980 }
1981 
1982 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1983 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1984   // If an error has occurred, stop code generation, but continue
1985   // parsing and semantic analysis (to ensure all warnings and errors
1986   // are emitted).
1987   if (Diags.hasErrorOccurred())
1988     return;
1989 
1990   // Ignore dependent declarations.
1991   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1992     return;
1993 
1994   switch (D->getKind()) {
1995   case Decl::CXXConversion:
1996   case Decl::CXXMethod:
1997   case Decl::Function:
1998     // Skip function templates
1999     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2000       return;
2001 
2002     EmitGlobal(cast<FunctionDecl>(D));
2003     break;
2004 
2005   case Decl::Var:
2006     EmitGlobal(cast<VarDecl>(D));
2007     break;
2008 
2009   // C++ Decls
2010   case Decl::Namespace:
2011     EmitNamespace(cast<NamespaceDecl>(D));
2012     break;
2013     // No code generation needed.
2014   case Decl::UsingShadow:
2015   case Decl::Using:
2016   case Decl::UsingDirective:
2017   case Decl::ClassTemplate:
2018   case Decl::FunctionTemplate:
2019   case Decl::NamespaceAlias:
2020     break;
2021   case Decl::CXXConstructor:
2022     // Skip function templates
2023     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2024       return;
2025 
2026     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2027     break;
2028   case Decl::CXXDestructor:
2029     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2030     break;
2031 
2032   case Decl::StaticAssert:
2033     // Nothing to do.
2034     break;
2035 
2036   // Objective-C Decls
2037 
2038   // Forward declarations, no (immediate) code generation.
2039   case Decl::ObjCClass:
2040   case Decl::ObjCForwardProtocol:
2041   case Decl::ObjCInterface:
2042     break;
2043 
2044     case Decl::ObjCCategory: {
2045       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2046       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2047         Context.ResetObjCLayout(CD->getClassInterface());
2048       break;
2049     }
2050 
2051 
2052   case Decl::ObjCProtocol:
2053     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2054     break;
2055 
2056   case Decl::ObjCCategoryImpl:
2057     // Categories have properties but don't support synthesize so we
2058     // can ignore them here.
2059     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2060     break;
2061 
2062   case Decl::ObjCImplementation: {
2063     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2064     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2065       Context.ResetObjCLayout(OMD->getClassInterface());
2066     EmitObjCPropertyImplementations(OMD);
2067     EmitObjCIvarInitializations(OMD);
2068     Runtime->GenerateClass(OMD);
2069     break;
2070   }
2071   case Decl::ObjCMethod: {
2072     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2073     // If this is not a prototype, emit the body.
2074     if (OMD->getBody())
2075       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2076     break;
2077   }
2078   case Decl::ObjCCompatibleAlias:
2079     // compatibility-alias is a directive and has no code gen.
2080     break;
2081 
2082   case Decl::LinkageSpec:
2083     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2084     break;
2085 
2086   case Decl::FileScopeAsm: {
2087     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2088     llvm::StringRef AsmString = AD->getAsmString()->getString();
2089 
2090     const std::string &S = getModule().getModuleInlineAsm();
2091     if (S.empty())
2092       getModule().setModuleInlineAsm(AsmString);
2093     else
2094       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2095     break;
2096   }
2097 
2098   default:
2099     // Make sure we handled everything we should, every other kind is a
2100     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2101     // function. Need to recode Decl::Kind to do that easily.
2102     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2103   }
2104 }
2105 
2106 /// Turns the given pointer into a constant.
2107 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2108                                           const void *Ptr) {
2109   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2110   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2111   return llvm::ConstantInt::get(i64, PtrInt);
2112 }
2113 
2114 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2115                                    llvm::NamedMDNode *&GlobalMetadata,
2116                                    GlobalDecl D,
2117                                    llvm::GlobalValue *Addr) {
2118   if (!GlobalMetadata)
2119     GlobalMetadata =
2120       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2121 
2122   // TODO: should we report variant information for ctors/dtors?
2123   llvm::Value *Ops[] = {
2124     Addr,
2125     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2126   };
2127   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2128 }
2129 
2130 /// Emits metadata nodes associating all the global values in the
2131 /// current module with the Decls they came from.  This is useful for
2132 /// projects using IR gen as a subroutine.
2133 ///
2134 /// Since there's currently no way to associate an MDNode directly
2135 /// with an llvm::GlobalValue, we create a global named metadata
2136 /// with the name 'clang.global.decl.ptrs'.
2137 void CodeGenModule::EmitDeclMetadata() {
2138   llvm::NamedMDNode *GlobalMetadata = 0;
2139 
2140   // StaticLocalDeclMap
2141   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2142          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2143        I != E; ++I) {
2144     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2145     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2146   }
2147 }
2148 
2149 /// Emits metadata nodes for all the local variables in the current
2150 /// function.
2151 void CodeGenFunction::EmitDeclMetadata() {
2152   if (LocalDeclMap.empty()) return;
2153 
2154   llvm::LLVMContext &Context = getLLVMContext();
2155 
2156   // Find the unique metadata ID for this name.
2157   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2158 
2159   llvm::NamedMDNode *GlobalMetadata = 0;
2160 
2161   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2162          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2163     const Decl *D = I->first;
2164     llvm::Value *Addr = I->second;
2165 
2166     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2167       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2168       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2169     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2170       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2171       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2172     }
2173   }
2174 }
2175 
2176 ///@name Custom Runtime Function Interfaces
2177 ///@{
2178 //
2179 // FIXME: These can be eliminated once we can have clients just get the required
2180 // AST nodes from the builtin tables.
2181 
2182 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2183   if (BlockObjectDispose)
2184     return BlockObjectDispose;
2185 
2186   // If we saw an explicit decl, use that.
2187   if (BlockObjectDisposeDecl) {
2188     return BlockObjectDispose = GetAddrOfFunction(
2189       BlockObjectDisposeDecl,
2190       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2191   }
2192 
2193   // Otherwise construct the function by hand.
2194   const llvm::FunctionType *FTy;
2195   std::vector<const llvm::Type*> ArgTys;
2196   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2197   ArgTys.push_back(Int8PtrTy);
2198   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2199   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2200   return BlockObjectDispose =
2201     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2202 }
2203 
2204 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2205   if (BlockObjectAssign)
2206     return BlockObjectAssign;
2207 
2208   // If we saw an explicit decl, use that.
2209   if (BlockObjectAssignDecl) {
2210     return BlockObjectAssign = GetAddrOfFunction(
2211       BlockObjectAssignDecl,
2212       getTypes().GetFunctionType(BlockObjectAssignDecl));
2213   }
2214 
2215   // Otherwise construct the function by hand.
2216   const llvm::FunctionType *FTy;
2217   std::vector<const llvm::Type*> ArgTys;
2218   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2219   ArgTys.push_back(Int8PtrTy);
2220   ArgTys.push_back(Int8PtrTy);
2221   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2222   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2223   return BlockObjectAssign =
2224     CreateRuntimeFunction(FTy, "_Block_object_assign");
2225 }
2226 
2227 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2228   if (NSConcreteGlobalBlock)
2229     return NSConcreteGlobalBlock;
2230 
2231   // If we saw an explicit decl, use that.
2232   if (NSConcreteGlobalBlockDecl) {
2233     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2234       NSConcreteGlobalBlockDecl,
2235       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2236   }
2237 
2238   // Otherwise construct the variable by hand.
2239   return NSConcreteGlobalBlock =
2240     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2241 }
2242 
2243 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2244   if (NSConcreteStackBlock)
2245     return NSConcreteStackBlock;
2246 
2247   // If we saw an explicit decl, use that.
2248   if (NSConcreteStackBlockDecl) {
2249     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2250       NSConcreteStackBlockDecl,
2251       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2252   }
2253 
2254   // Otherwise construct the variable by hand.
2255   return NSConcreteStackBlock =
2256     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2257 }
2258 
2259 ///@}
2260