xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a700f688282a1984164a2a95590eb39284fb4272)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0),
54     NSConstantStringClassRef(0),
55     VMContext(M.getContext()) {
56 
57   if (!Features.ObjC1)
58     Runtime = 0;
59   else if (!Features.NeXTRuntime)
60     Runtime = CreateGNUObjCRuntime(*this);
61   else if (Features.ObjCNonFragileABI)
62     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
63   else
64     Runtime = CreateMacObjCRuntime(*this);
65 
66   if (!Features.CPlusPlus)
67     ABI = 0;
68   else createCXXABI();
69 
70   // If debug info generation is enabled, create the CGDebugInfo object.
71   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
72 }
73 
74 CodeGenModule::~CodeGenModule() {
75   delete Runtime;
76   delete ABI;
77   delete DebugInfo;
78 }
79 
80 void CodeGenModule::createObjCRuntime() {
81   if (!Features.NeXTRuntime)
82     Runtime = CreateGNUObjCRuntime(*this);
83   else if (Features.ObjCNonFragileABI)
84     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
85   else
86     Runtime = CreateMacObjCRuntime(*this);
87 }
88 
89 void CodeGenModule::createCXXABI() {
90   if (Context.Target.getCXXABI() == "microsoft")
91     ABI = CreateMicrosoftCXXABI(*this);
92   else
93     ABI = CreateItaniumCXXABI(*this);
94 }
95 
96 void CodeGenModule::Release() {
97   EmitDeferred();
98   EmitCXXGlobalInitFunc();
99   EmitCXXGlobalDtorFunc();
100   if (Runtime)
101     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
102       AddGlobalCtor(ObjCInitFunction);
103   EmitCtorList(GlobalCtors, "llvm.global_ctors");
104   EmitCtorList(GlobalDtors, "llvm.global_dtors");
105   EmitAnnotations();
106   EmitLLVMUsed();
107 
108   if (getCodeGenOpts().EmitDeclMetadata)
109     EmitDeclMetadata();
110 }
111 
112 bool CodeGenModule::isTargetDarwin() const {
113   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
114 }
115 
116 /// ErrorUnsupported - Print out an error that codegen doesn't support the
117 /// specified stmt yet.
118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
119                                      bool OmitOnError) {
120   if (OmitOnError && getDiags().hasErrorOccurred())
121     return;
122   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
123                                                "cannot compile this %0 yet");
124   std::string Msg = Type;
125   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
126     << Msg << S->getSourceRange();
127 }
128 
129 /// ErrorUnsupported - Print out an error that codegen doesn't support the
130 /// specified decl yet.
131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
132                                      bool OmitOnError) {
133   if (OmitOnError && getDiags().hasErrorOccurred())
134     return;
135   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
136                                                "cannot compile this %0 yet");
137   std::string Msg = Type;
138   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
139 }
140 
141 LangOptions::VisibilityMode
142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
143   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
144     if (VD->getStorageClass() == VarDecl::PrivateExtern)
145       return LangOptions::Hidden;
146 
147   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
148     switch (attr->getVisibility()) {
149     default: assert(0 && "Unknown visibility!");
150     case VisibilityAttr::DefaultVisibility:
151       return LangOptions::Default;
152     case VisibilityAttr::HiddenVisibility:
153       return LangOptions::Hidden;
154     case VisibilityAttr::ProtectedVisibility:
155       return LangOptions::Protected;
156     }
157   }
158 
159   if (getLangOptions().CPlusPlus) {
160     // Entities subject to an explicit instantiation declaration get default
161     // visibility.
162     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
163       if (Function->getTemplateSpecializationKind()
164                                         == TSK_ExplicitInstantiationDeclaration)
165         return LangOptions::Default;
166     } else if (const ClassTemplateSpecializationDecl *ClassSpec
167                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
168       if (ClassSpec->getSpecializationKind()
169                                         == TSK_ExplicitInstantiationDeclaration)
170         return LangOptions::Default;
171     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
172       if (Record->getTemplateSpecializationKind()
173                                         == TSK_ExplicitInstantiationDeclaration)
174         return LangOptions::Default;
175     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
176       if (Var->isStaticDataMember() &&
177           (Var->getTemplateSpecializationKind()
178                                       == TSK_ExplicitInstantiationDeclaration))
179         return LangOptions::Default;
180     }
181 
182     // If -fvisibility-inlines-hidden was provided, then inline C++ member
183     // functions get "hidden" visibility by default.
184     if (getLangOptions().InlineVisibilityHidden)
185       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
186         if (Method->isInlined())
187           return LangOptions::Hidden;
188   }
189 
190   // This decl should have the same visibility as its parent.
191   if (const DeclContext *DC = D->getDeclContext())
192     return getDeclVisibilityMode(cast<Decl>(DC));
193 
194   return getLangOptions().getVisibilityMode();
195 }
196 
197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
198                                         const Decl *D) const {
199   // Internal definitions always have default visibility.
200   if (GV->hasLocalLinkage()) {
201     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
202     return;
203   }
204 
205   switch (getDeclVisibilityMode(D)) {
206   default: assert(0 && "Unknown visibility!");
207   case LangOptions::Default:
208     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
209   case LangOptions::Hidden:
210     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
211   case LangOptions::Protected:
212     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
213   }
214 }
215 
216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
217   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
218 
219   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
220   if (!Str.empty())
221     return Str;
222 
223   if (!getMangleContext().shouldMangleDeclName(ND)) {
224     IdentifierInfo *II = ND->getIdentifier();
225     assert(II && "Attempt to mangle unnamed decl.");
226 
227     Str = II->getName();
228     return Str;
229   }
230 
231   llvm::SmallString<256> Buffer;
232   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
233     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
234   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
235     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
236   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
237     getMangleContext().mangleBlock(GD, BD, Buffer);
238   else
239     getMangleContext().mangleName(ND, Buffer);
240 
241   // Allocate space for the mangled name.
242   size_t Length = Buffer.size();
243   char *Name = MangledNamesAllocator.Allocate<char>(Length);
244   std::copy(Buffer.begin(), Buffer.end(), Name);
245 
246   Str = llvm::StringRef(Name, Length);
247 
248   return Str;
249 }
250 
251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
252                                    const BlockDecl *BD) {
253   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
254 }
255 
256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
257   return getModule().getNamedValue(Name);
258 }
259 
260 /// AddGlobalCtor - Add a function to the list that will be called before
261 /// main() runs.
262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
263   // FIXME: Type coercion of void()* types.
264   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
265 }
266 
267 /// AddGlobalDtor - Add a function to the list that will be called
268 /// when the module is unloaded.
269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
270   // FIXME: Type coercion of void()* types.
271   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
272 }
273 
274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
275   // Ctor function type is void()*.
276   llvm::FunctionType* CtorFTy =
277     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
278                             std::vector<const llvm::Type*>(),
279                             false);
280   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
281 
282   // Get the type of a ctor entry, { i32, void ()* }.
283   llvm::StructType* CtorStructTy =
284     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
285                           llvm::PointerType::getUnqual(CtorFTy), NULL);
286 
287   // Construct the constructor and destructor arrays.
288   std::vector<llvm::Constant*> Ctors;
289   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
290     std::vector<llvm::Constant*> S;
291     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
292                 I->second, false));
293     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
294     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
295   }
296 
297   if (!Ctors.empty()) {
298     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
299     new llvm::GlobalVariable(TheModule, AT, false,
300                              llvm::GlobalValue::AppendingLinkage,
301                              llvm::ConstantArray::get(AT, Ctors),
302                              GlobalName);
303   }
304 }
305 
306 void CodeGenModule::EmitAnnotations() {
307   if (Annotations.empty())
308     return;
309 
310   // Create a new global variable for the ConstantStruct in the Module.
311   llvm::Constant *Array =
312   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
313                                                 Annotations.size()),
314                            Annotations);
315   llvm::GlobalValue *gv =
316   new llvm::GlobalVariable(TheModule, Array->getType(), false,
317                            llvm::GlobalValue::AppendingLinkage, Array,
318                            "llvm.global.annotations");
319   gv->setSection("llvm.metadata");
320 }
321 
322 static CodeGenModule::GVALinkage
323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
324                       const LangOptions &Features) {
325   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
326 
327   Linkage L = FD->getLinkage();
328   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
329       FD->getType()->getLinkage() == UniqueExternalLinkage)
330     L = UniqueExternalLinkage;
331 
332   switch (L) {
333   case NoLinkage:
334   case InternalLinkage:
335   case UniqueExternalLinkage:
336     return CodeGenModule::GVA_Internal;
337 
338   case ExternalLinkage:
339     switch (FD->getTemplateSpecializationKind()) {
340     case TSK_Undeclared:
341     case TSK_ExplicitSpecialization:
342       External = CodeGenModule::GVA_StrongExternal;
343       break;
344 
345     case TSK_ExplicitInstantiationDefinition:
346       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
347 
348     case TSK_ExplicitInstantiationDeclaration:
349     case TSK_ImplicitInstantiation:
350       External = CodeGenModule::GVA_TemplateInstantiation;
351       break;
352     }
353   }
354 
355   if (!FD->isInlined())
356     return External;
357 
358   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
359     // GNU or C99 inline semantics. Determine whether this symbol should be
360     // externally visible.
361     if (FD->isInlineDefinitionExternallyVisible())
362       return External;
363 
364     // C99 inline semantics, where the symbol is not externally visible.
365     return CodeGenModule::GVA_C99Inline;
366   }
367 
368   // C++0x [temp.explicit]p9:
369   //   [ Note: The intent is that an inline function that is the subject of
370   //   an explicit instantiation declaration will still be implicitly
371   //   instantiated when used so that the body can be considered for
372   //   inlining, but that no out-of-line copy of the inline function would be
373   //   generated in the translation unit. -- end note ]
374   if (FD->getTemplateSpecializationKind()
375                                        == TSK_ExplicitInstantiationDeclaration)
376     return CodeGenModule::GVA_C99Inline;
377 
378   return CodeGenModule::GVA_CXXInline;
379 }
380 
381 llvm::GlobalValue::LinkageTypes
382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
383   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
384 
385   if (Linkage == GVA_Internal)
386     return llvm::Function::InternalLinkage;
387 
388   if (D->hasAttr<DLLExportAttr>())
389     return llvm::Function::DLLExportLinkage;
390 
391   if (D->hasAttr<WeakAttr>())
392     return llvm::Function::WeakAnyLinkage;
393 
394   // In C99 mode, 'inline' functions are guaranteed to have a strong
395   // definition somewhere else, so we can use available_externally linkage.
396   if (Linkage == GVA_C99Inline)
397     return llvm::Function::AvailableExternallyLinkage;
398 
399   // In C++, the compiler has to emit a definition in every translation unit
400   // that references the function.  We should use linkonce_odr because
401   // a) if all references in this translation unit are optimized away, we
402   // don't need to codegen it.  b) if the function persists, it needs to be
403   // merged with other definitions. c) C++ has the ODR, so we know the
404   // definition is dependable.
405   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
406     return llvm::Function::LinkOnceODRLinkage;
407 
408   // An explicit instantiation of a template has weak linkage, since
409   // explicit instantiations can occur in multiple translation units
410   // and must all be equivalent. However, we are not allowed to
411   // throw away these explicit instantiations.
412   if (Linkage == GVA_ExplicitTemplateInstantiation)
413     return llvm::Function::WeakODRLinkage;
414 
415   // Otherwise, we have strong external linkage.
416   assert(Linkage == GVA_StrongExternal);
417   return llvm::Function::ExternalLinkage;
418 }
419 
420 
421 /// SetFunctionDefinitionAttributes - Set attributes for a global.
422 ///
423 /// FIXME: This is currently only done for aliases and functions, but not for
424 /// variables (these details are set in EmitGlobalVarDefinition for variables).
425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
426                                                     llvm::GlobalValue *GV) {
427   SetCommonAttributes(D, GV);
428 }
429 
430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
431                                               const CGFunctionInfo &Info,
432                                               llvm::Function *F) {
433   unsigned CallingConv;
434   AttributeListType AttributeList;
435   ConstructAttributeList(Info, D, AttributeList, CallingConv);
436   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
437                                           AttributeList.size()));
438   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
439 }
440 
441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
442                                                            llvm::Function *F) {
443   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
444     F->addFnAttr(llvm::Attribute::NoUnwind);
445 
446   if (D->hasAttr<AlwaysInlineAttr>())
447     F->addFnAttr(llvm::Attribute::AlwaysInline);
448 
449   if (D->hasAttr<NoInlineAttr>())
450     F->addFnAttr(llvm::Attribute::NoInline);
451 
452   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
453     F->addFnAttr(llvm::Attribute::StackProtect);
454   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
455     F->addFnAttr(llvm::Attribute::StackProtectReq);
456 
457   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
458     unsigned width = Context.Target.getCharWidth();
459     F->setAlignment(AA->getAlignment() / width);
460     while ((AA = AA->getNext<AlignedAttr>()))
461       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
462   }
463   // C++ ABI requires 2-byte alignment for member functions.
464   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
465     F->setAlignment(2);
466 }
467 
468 void CodeGenModule::SetCommonAttributes(const Decl *D,
469                                         llvm::GlobalValue *GV) {
470   setGlobalVisibility(GV, D);
471 
472   if (D->hasAttr<UsedAttr>())
473     AddUsedGlobal(GV);
474 
475   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
476     GV->setSection(SA->getName());
477 
478   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
479 }
480 
481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
482                                                   llvm::Function *F,
483                                                   const CGFunctionInfo &FI) {
484   SetLLVMFunctionAttributes(D, FI, F);
485   SetLLVMFunctionAttributesForDefinition(D, F);
486 
487   F->setLinkage(llvm::Function::InternalLinkage);
488 
489   SetCommonAttributes(D, F);
490 }
491 
492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
493                                           llvm::Function *F,
494                                           bool IsIncompleteFunction) {
495   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
496 
497   if (!IsIncompleteFunction)
498     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
499 
500   // Only a few attributes are set on declarations; these may later be
501   // overridden by a definition.
502 
503   if (FD->hasAttr<DLLImportAttr>()) {
504     F->setLinkage(llvm::Function::DLLImportLinkage);
505   } else if (FD->hasAttr<WeakAttr>() ||
506              FD->hasAttr<WeakImportAttr>()) {
507     // "extern_weak" is overloaded in LLVM; we probably should have
508     // separate linkage types for this.
509     F->setLinkage(llvm::Function::ExternalWeakLinkage);
510   } else {
511     F->setLinkage(llvm::Function::ExternalLinkage);
512   }
513 
514   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
515     F->setSection(SA->getName());
516 }
517 
518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
519   assert(!GV->isDeclaration() &&
520          "Only globals with definition can force usage.");
521   LLVMUsed.push_back(GV);
522 }
523 
524 void CodeGenModule::EmitLLVMUsed() {
525   // Don't create llvm.used if there is no need.
526   if (LLVMUsed.empty())
527     return;
528 
529   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
530 
531   // Convert LLVMUsed to what ConstantArray needs.
532   std::vector<llvm::Constant*> UsedArray;
533   UsedArray.resize(LLVMUsed.size());
534   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
535     UsedArray[i] =
536      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
537                                       i8PTy);
538   }
539 
540   if (UsedArray.empty())
541     return;
542   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
543 
544   llvm::GlobalVariable *GV =
545     new llvm::GlobalVariable(getModule(), ATy, false,
546                              llvm::GlobalValue::AppendingLinkage,
547                              llvm::ConstantArray::get(ATy, UsedArray),
548                              "llvm.used");
549 
550   GV->setSection("llvm.metadata");
551 }
552 
553 void CodeGenModule::EmitDeferred() {
554   // Emit code for any potentially referenced deferred decls.  Since a
555   // previously unused static decl may become used during the generation of code
556   // for a static function, iterate until no  changes are made.
557 
558   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
559     if (!DeferredVTables.empty()) {
560       const CXXRecordDecl *RD = DeferredVTables.back();
561       DeferredVTables.pop_back();
562       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
563       continue;
564     }
565 
566     GlobalDecl D = DeferredDeclsToEmit.back();
567     DeferredDeclsToEmit.pop_back();
568 
569     // Check to see if we've already emitted this.  This is necessary
570     // for a couple of reasons: first, decls can end up in the
571     // deferred-decls queue multiple times, and second, decls can end
572     // up with definitions in unusual ways (e.g. by an extern inline
573     // function acquiring a strong function redefinition).  Just
574     // ignore these cases.
575     //
576     // TODO: That said, looking this up multiple times is very wasteful.
577     llvm::StringRef Name = getMangledName(D);
578     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
579     assert(CGRef && "Deferred decl wasn't referenced?");
580 
581     if (!CGRef->isDeclaration())
582       continue;
583 
584     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
585     // purposes an alias counts as a definition.
586     if (isa<llvm::GlobalAlias>(CGRef))
587       continue;
588 
589     // Otherwise, emit the definition and move on to the next one.
590     EmitGlobalDefinition(D);
591   }
592 }
593 
594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
595 /// annotation information for a given GlobalValue.  The annotation struct is
596 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
597 /// GlobalValue being annotated.  The second field is the constant string
598 /// created from the AnnotateAttr's annotation.  The third field is a constant
599 /// string containing the name of the translation unit.  The fourth field is
600 /// the line number in the file of the annotated value declaration.
601 ///
602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
603 ///        appears to.
604 ///
605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
606                                                 const AnnotateAttr *AA,
607                                                 unsigned LineNo) {
608   llvm::Module *M = &getModule();
609 
610   // get [N x i8] constants for the annotation string, and the filename string
611   // which are the 2nd and 3rd elements of the global annotation structure.
612   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
613   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
614                                                   AA->getAnnotation(), true);
615   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
616                                                   M->getModuleIdentifier(),
617                                                   true);
618 
619   // Get the two global values corresponding to the ConstantArrays we just
620   // created to hold the bytes of the strings.
621   llvm::GlobalValue *annoGV =
622     new llvm::GlobalVariable(*M, anno->getType(), false,
623                              llvm::GlobalValue::PrivateLinkage, anno,
624                              GV->getName());
625   // translation unit name string, emitted into the llvm.metadata section.
626   llvm::GlobalValue *unitGV =
627     new llvm::GlobalVariable(*M, unit->getType(), false,
628                              llvm::GlobalValue::PrivateLinkage, unit,
629                              ".str");
630 
631   // Create the ConstantStruct for the global annotation.
632   llvm::Constant *Fields[4] = {
633     llvm::ConstantExpr::getBitCast(GV, SBP),
634     llvm::ConstantExpr::getBitCast(annoGV, SBP),
635     llvm::ConstantExpr::getBitCast(unitGV, SBP),
636     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
637   };
638   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
639 }
640 
641 static CodeGenModule::GVALinkage
642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
643   // If this is a static data member, compute the kind of template
644   // specialization. Otherwise, this variable is not part of a
645   // template.
646   TemplateSpecializationKind TSK = TSK_Undeclared;
647   if (VD->isStaticDataMember())
648     TSK = VD->getTemplateSpecializationKind();
649 
650   Linkage L = VD->getLinkage();
651   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
652       VD->getType()->getLinkage() == UniqueExternalLinkage)
653     L = UniqueExternalLinkage;
654 
655   switch (L) {
656   case NoLinkage:
657   case InternalLinkage:
658   case UniqueExternalLinkage:
659     return CodeGenModule::GVA_Internal;
660 
661   case ExternalLinkage:
662     switch (TSK) {
663     case TSK_Undeclared:
664     case TSK_ExplicitSpecialization:
665       return CodeGenModule::GVA_StrongExternal;
666 
667     case TSK_ExplicitInstantiationDeclaration:
668       llvm_unreachable("Variable should not be instantiated");
669       // Fall through to treat this like any other instantiation.
670 
671     case TSK_ExplicitInstantiationDefinition:
672       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
673 
674     case TSK_ImplicitInstantiation:
675       return CodeGenModule::GVA_TemplateInstantiation;
676     }
677   }
678 
679   return CodeGenModule::GVA_StrongExternal;
680 }
681 
682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
683   // Never defer when EmitAllDecls is specified or the decl has
684   // attribute used.
685   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
686     return false;
687 
688   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
689     // Constructors and destructors should never be deferred.
690     if (FD->hasAttr<ConstructorAttr>() ||
691         FD->hasAttr<DestructorAttr>())
692       return false;
693 
694     // The key function for a class must never be deferred.
695     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
696       const CXXRecordDecl *RD = MD->getParent();
697       if (MD->isOutOfLine() && RD->isDynamicClass()) {
698         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
699         if (KeyFunction &&
700             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
701           return false;
702       }
703     }
704 
705     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
706 
707     // static, static inline, always_inline, and extern inline functions can
708     // always be deferred.  Normal inline functions can be deferred in C99/C++.
709     // Implicit template instantiations can also be deferred in C++.
710     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
711         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
712       return true;
713     return false;
714   }
715 
716   const VarDecl *VD = cast<VarDecl>(Global);
717   assert(VD->isFileVarDecl() && "Invalid decl");
718 
719   // We never want to defer structs that have non-trivial constructors or
720   // destructors.
721 
722   // FIXME: Handle references.
723   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
724     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
725       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
726         return false;
727     }
728   }
729 
730   GVALinkage L = GetLinkageForVariable(getContext(), VD);
731   if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
732     if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context)))
733       return true;
734   }
735 
736   return false;
737 }
738 
739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
740   const AliasAttr *AA = VD->getAttr<AliasAttr>();
741   assert(AA && "No alias?");
742 
743   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
744 
745   // See if there is already something with the target's name in the module.
746   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
747 
748   llvm::Constant *Aliasee;
749   if (isa<llvm::FunctionType>(DeclTy))
750     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
751   else
752     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
753                                     llvm::PointerType::getUnqual(DeclTy), 0);
754   if (!Entry) {
755     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
756     F->setLinkage(llvm::Function::ExternalWeakLinkage);
757     WeakRefReferences.insert(F);
758   }
759 
760   return Aliasee;
761 }
762 
763 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
764   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
765 
766   // Weak references don't produce any output by themselves.
767   if (Global->hasAttr<WeakRefAttr>())
768     return;
769 
770   // If this is an alias definition (which otherwise looks like a declaration)
771   // emit it now.
772   if (Global->hasAttr<AliasAttr>())
773     return EmitAliasDefinition(GD);
774 
775   // Ignore declarations, they will be emitted on their first use.
776   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
777     // Forward declarations are emitted lazily on first use.
778     if (!FD->isThisDeclarationADefinition())
779       return;
780   } else {
781     const VarDecl *VD = cast<VarDecl>(Global);
782     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
783 
784     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
785       return;
786   }
787 
788   // Defer code generation when possible if this is a static definition, inline
789   // function etc.  These we only want to emit if they are used.
790   if (!MayDeferGeneration(Global)) {
791     // Emit the definition if it can't be deferred.
792     EmitGlobalDefinition(GD);
793     return;
794   }
795 
796   // If the value has already been used, add it directly to the
797   // DeferredDeclsToEmit list.
798   llvm::StringRef MangledName = getMangledName(GD);
799   if (GetGlobalValue(MangledName))
800     DeferredDeclsToEmit.push_back(GD);
801   else {
802     // Otherwise, remember that we saw a deferred decl with this name.  The
803     // first use of the mangled name will cause it to move into
804     // DeferredDeclsToEmit.
805     DeferredDecls[MangledName] = GD;
806   }
807 }
808 
809 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
810   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
811 
812   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
813                                  Context.getSourceManager(),
814                                  "Generating code for declaration");
815 
816   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
817     // At -O0, don't generate IR for functions with available_externally
818     // linkage.
819     if (CodeGenOpts.OptimizationLevel == 0 &&
820         getFunctionLinkage(Function)
821                                   == llvm::Function::AvailableExternallyLinkage)
822       return;
823 
824     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
825       if (Method->isVirtual())
826         getVTables().EmitThunks(GD);
827 
828       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
829         return EmitCXXConstructor(CD, GD.getCtorType());
830 
831       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
832         return EmitCXXDestructor(DD, GD.getDtorType());
833     }
834 
835     return EmitGlobalFunctionDefinition(GD);
836   }
837 
838   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
839     return EmitGlobalVarDefinition(VD);
840 
841   assert(0 && "Invalid argument to EmitGlobalDefinition()");
842 }
843 
844 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
845 /// module, create and return an llvm Function with the specified type. If there
846 /// is something in the module with the specified name, return it potentially
847 /// bitcasted to the right type.
848 ///
849 /// If D is non-null, it specifies a decl that correspond to this.  This is used
850 /// to set the attributes on the function when it is first created.
851 llvm::Constant *
852 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
853                                        const llvm::Type *Ty,
854                                        GlobalDecl D) {
855   // Lookup the entry, lazily creating it if necessary.
856   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
857   if (Entry) {
858     if (WeakRefReferences.count(Entry)) {
859       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
860       if (FD && !FD->hasAttr<WeakAttr>())
861         Entry->setLinkage(llvm::Function::ExternalLinkage);
862 
863       WeakRefReferences.erase(Entry);
864     }
865 
866     if (Entry->getType()->getElementType() == Ty)
867       return Entry;
868 
869     // Make sure the result is of the correct type.
870     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
871     return llvm::ConstantExpr::getBitCast(Entry, PTy);
872   }
873 
874   // This function doesn't have a complete type (for example, the return
875   // type is an incomplete struct). Use a fake type instead, and make
876   // sure not to try to set attributes.
877   bool IsIncompleteFunction = false;
878 
879   const llvm::FunctionType *FTy;
880   if (isa<llvm::FunctionType>(Ty)) {
881     FTy = cast<llvm::FunctionType>(Ty);
882   } else {
883     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
884                                   std::vector<const llvm::Type*>(), false);
885     IsIncompleteFunction = true;
886   }
887 
888   llvm::Function *F = llvm::Function::Create(FTy,
889                                              llvm::Function::ExternalLinkage,
890                                              MangledName, &getModule());
891   assert(F->getName() == MangledName && "name was uniqued!");
892   if (D.getDecl())
893     SetFunctionAttributes(D, F, IsIncompleteFunction);
894 
895   // This is the first use or definition of a mangled name.  If there is a
896   // deferred decl with this name, remember that we need to emit it at the end
897   // of the file.
898   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
899   if (DDI != DeferredDecls.end()) {
900     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
901     // list, and remove it from DeferredDecls (since we don't need it anymore).
902     DeferredDeclsToEmit.push_back(DDI->second);
903     DeferredDecls.erase(DDI);
904   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
905     // If this the first reference to a C++ inline function in a class, queue up
906     // the deferred function body for emission.  These are not seen as
907     // top-level declarations.
908     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
909       DeferredDeclsToEmit.push_back(D);
910     // A called constructor which has no definition or declaration need be
911     // synthesized.
912     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
913       if (CD->isImplicit()) {
914         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
915         DeferredDeclsToEmit.push_back(D);
916       }
917     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
918       if (DD->isImplicit()) {
919         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
920         DeferredDeclsToEmit.push_back(D);
921       }
922     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
923       if (MD->isCopyAssignment() && MD->isImplicit()) {
924         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
925         DeferredDeclsToEmit.push_back(D);
926       }
927     }
928   }
929 
930   // Make sure the result is of the requested type.
931   if (!IsIncompleteFunction) {
932     assert(F->getType()->getElementType() == Ty);
933     return F;
934   }
935 
936   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
937   return llvm::ConstantExpr::getBitCast(F, PTy);
938 }
939 
940 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
941 /// non-null, then this function will use the specified type if it has to
942 /// create it (this occurs when we see a definition of the function).
943 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
944                                                  const llvm::Type *Ty) {
945   // If there was no specific requested type, just convert it now.
946   if (!Ty)
947     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
948 
949   llvm::StringRef MangledName = getMangledName(GD);
950   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
951 }
952 
953 /// CreateRuntimeFunction - Create a new runtime function with the specified
954 /// type and name.
955 llvm::Constant *
956 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
957                                      llvm::StringRef Name) {
958   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
959 }
960 
961 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
962   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
963     return false;
964   if (Context.getLangOptions().CPlusPlus &&
965       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
966     // FIXME: We should do something fancier here!
967     return false;
968   }
969   return true;
970 }
971 
972 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
973 /// create and return an llvm GlobalVariable with the specified type.  If there
974 /// is something in the module with the specified name, return it potentially
975 /// bitcasted to the right type.
976 ///
977 /// If D is non-null, it specifies a decl that correspond to this.  This is used
978 /// to set the attributes on the global when it is first created.
979 llvm::Constant *
980 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
981                                      const llvm::PointerType *Ty,
982                                      const VarDecl *D) {
983   // Lookup the entry, lazily creating it if necessary.
984   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
985   if (Entry) {
986     if (WeakRefReferences.count(Entry)) {
987       if (D && !D->hasAttr<WeakAttr>())
988         Entry->setLinkage(llvm::Function::ExternalLinkage);
989 
990       WeakRefReferences.erase(Entry);
991     }
992 
993     if (Entry->getType() == Ty)
994       return Entry;
995 
996     // Make sure the result is of the correct type.
997     return llvm::ConstantExpr::getBitCast(Entry, Ty);
998   }
999 
1000   // This is the first use or definition of a mangled name.  If there is a
1001   // deferred decl with this name, remember that we need to emit it at the end
1002   // of the file.
1003   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1004   if (DDI != DeferredDecls.end()) {
1005     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1006     // list, and remove it from DeferredDecls (since we don't need it anymore).
1007     DeferredDeclsToEmit.push_back(DDI->second);
1008     DeferredDecls.erase(DDI);
1009   }
1010 
1011   llvm::GlobalVariable *GV =
1012     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1013                              llvm::GlobalValue::ExternalLinkage,
1014                              0, MangledName, 0,
1015                              false, Ty->getAddressSpace());
1016 
1017   // Handle things which are present even on external declarations.
1018   if (D) {
1019     // FIXME: This code is overly simple and should be merged with other global
1020     // handling.
1021     GV->setConstant(DeclIsConstantGlobal(Context, D));
1022 
1023     // FIXME: Merge with other attribute handling code.
1024     if (D->getStorageClass() == VarDecl::PrivateExtern)
1025       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1026 
1027     if (D->hasAttr<WeakAttr>() ||
1028         D->hasAttr<WeakImportAttr>())
1029       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1030 
1031     GV->setThreadLocal(D->isThreadSpecified());
1032   }
1033 
1034   return GV;
1035 }
1036 
1037 
1038 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1039 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1040 /// then it will be greated with the specified type instead of whatever the
1041 /// normal requested type would be.
1042 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1043                                                   const llvm::Type *Ty) {
1044   assert(D->hasGlobalStorage() && "Not a global variable");
1045   QualType ASTTy = D->getType();
1046   if (Ty == 0)
1047     Ty = getTypes().ConvertTypeForMem(ASTTy);
1048 
1049   const llvm::PointerType *PTy =
1050     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1051 
1052   llvm::StringRef MangledName = getMangledName(D);
1053   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1054 }
1055 
1056 /// CreateRuntimeVariable - Create a new runtime global variable with the
1057 /// specified type and name.
1058 llvm::Constant *
1059 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1060                                      llvm::StringRef Name) {
1061   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1062 }
1063 
1064 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1065   assert(!D->getInit() && "Cannot emit definite definitions here!");
1066 
1067   if (MayDeferGeneration(D)) {
1068     // If we have not seen a reference to this variable yet, place it
1069     // into the deferred declarations table to be emitted if needed
1070     // later.
1071     llvm::StringRef MangledName = getMangledName(D);
1072     if (!GetGlobalValue(MangledName)) {
1073       DeferredDecls[MangledName] = D;
1074       return;
1075     }
1076   }
1077 
1078   // The tentative definition is the only definition.
1079   EmitGlobalVarDefinition(D);
1080 }
1081 
1082 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1083   if (DefinitionRequired)
1084     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1085 }
1086 
1087 llvm::GlobalVariable::LinkageTypes
1088 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1089   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1090     return llvm::GlobalVariable::InternalLinkage;
1091 
1092   if (const CXXMethodDecl *KeyFunction
1093                                     = RD->getASTContext().getKeyFunction(RD)) {
1094     // If this class has a key function, use that to determine the linkage of
1095     // the vtable.
1096     const FunctionDecl *Def = 0;
1097     if (KeyFunction->hasBody(Def))
1098       KeyFunction = cast<CXXMethodDecl>(Def);
1099 
1100     switch (KeyFunction->getTemplateSpecializationKind()) {
1101       case TSK_Undeclared:
1102       case TSK_ExplicitSpecialization:
1103         if (KeyFunction->isInlined())
1104           return llvm::GlobalVariable::WeakODRLinkage;
1105 
1106         return llvm::GlobalVariable::ExternalLinkage;
1107 
1108       case TSK_ImplicitInstantiation:
1109       case TSK_ExplicitInstantiationDefinition:
1110         return llvm::GlobalVariable::WeakODRLinkage;
1111 
1112       case TSK_ExplicitInstantiationDeclaration:
1113         // FIXME: Use available_externally linkage. However, this currently
1114         // breaks LLVM's build due to undefined symbols.
1115         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1116         return llvm::GlobalVariable::WeakODRLinkage;
1117     }
1118   }
1119 
1120   switch (RD->getTemplateSpecializationKind()) {
1121   case TSK_Undeclared:
1122   case TSK_ExplicitSpecialization:
1123   case TSK_ImplicitInstantiation:
1124   case TSK_ExplicitInstantiationDefinition:
1125     return llvm::GlobalVariable::WeakODRLinkage;
1126 
1127   case TSK_ExplicitInstantiationDeclaration:
1128     // FIXME: Use available_externally linkage. However, this currently
1129     // breaks LLVM's build due to undefined symbols.
1130     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1131     return llvm::GlobalVariable::WeakODRLinkage;
1132   }
1133 
1134   // Silence GCC warning.
1135   return llvm::GlobalVariable::WeakODRLinkage;
1136 }
1137 
1138 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1139     return CharUnits::fromQuantity(
1140       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1141 }
1142 
1143 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1144   llvm::Constant *Init = 0;
1145   QualType ASTTy = D->getType();
1146   bool NonConstInit = false;
1147 
1148   const Expr *InitExpr = D->getAnyInitializer();
1149 
1150   if (!InitExpr) {
1151     // This is a tentative definition; tentative definitions are
1152     // implicitly initialized with { 0 }.
1153     //
1154     // Note that tentative definitions are only emitted at the end of
1155     // a translation unit, so they should never have incomplete
1156     // type. In addition, EmitTentativeDefinition makes sure that we
1157     // never attempt to emit a tentative definition if a real one
1158     // exists. A use may still exists, however, so we still may need
1159     // to do a RAUW.
1160     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1161     Init = EmitNullConstant(D->getType());
1162   } else {
1163     Init = EmitConstantExpr(InitExpr, D->getType());
1164     if (!Init) {
1165       QualType T = InitExpr->getType();
1166       if (D->getType()->isReferenceType())
1167         T = D->getType();
1168 
1169       if (getLangOptions().CPlusPlus) {
1170         EmitCXXGlobalVarDeclInitFunc(D);
1171         Init = EmitNullConstant(T);
1172         NonConstInit = true;
1173       } else {
1174         ErrorUnsupported(D, "static initializer");
1175         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1176       }
1177     }
1178   }
1179 
1180   const llvm::Type* InitType = Init->getType();
1181   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1182 
1183   // Strip off a bitcast if we got one back.
1184   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1185     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1186            // all zero index gep.
1187            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1188     Entry = CE->getOperand(0);
1189   }
1190 
1191   // Entry is now either a Function or GlobalVariable.
1192   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1193 
1194   // We have a definition after a declaration with the wrong type.
1195   // We must make a new GlobalVariable* and update everything that used OldGV
1196   // (a declaration or tentative definition) with the new GlobalVariable*
1197   // (which will be a definition).
1198   //
1199   // This happens if there is a prototype for a global (e.g.
1200   // "extern int x[];") and then a definition of a different type (e.g.
1201   // "int x[10];"). This also happens when an initializer has a different type
1202   // from the type of the global (this happens with unions).
1203   if (GV == 0 ||
1204       GV->getType()->getElementType() != InitType ||
1205       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1206 
1207     // Move the old entry aside so that we'll create a new one.
1208     Entry->setName(llvm::StringRef());
1209 
1210     // Make a new global with the correct type, this is now guaranteed to work.
1211     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1212 
1213     // Replace all uses of the old global with the new global
1214     llvm::Constant *NewPtrForOldDecl =
1215         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1216     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1217 
1218     // Erase the old global, since it is no longer used.
1219     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1220   }
1221 
1222   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1223     SourceManager &SM = Context.getSourceManager();
1224     AddAnnotation(EmitAnnotateAttr(GV, AA,
1225                               SM.getInstantiationLineNumber(D->getLocation())));
1226   }
1227 
1228   GV->setInitializer(Init);
1229 
1230   // If it is safe to mark the global 'constant', do so now.
1231   GV->setConstant(false);
1232   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1233     GV->setConstant(true);
1234 
1235   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1236 
1237   // Set the llvm linkage type as appropriate.
1238   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1239   if (Linkage == GVA_Internal)
1240     GV->setLinkage(llvm::Function::InternalLinkage);
1241   else if (D->hasAttr<DLLImportAttr>())
1242     GV->setLinkage(llvm::Function::DLLImportLinkage);
1243   else if (D->hasAttr<DLLExportAttr>())
1244     GV->setLinkage(llvm::Function::DLLExportLinkage);
1245   else if (D->hasAttr<WeakAttr>()) {
1246     if (GV->isConstant())
1247       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1248     else
1249       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1250   } else if (Linkage == GVA_TemplateInstantiation ||
1251              Linkage == GVA_ExplicitTemplateInstantiation)
1252     // FIXME: It seems like we can provide more specific linkage here
1253     // (LinkOnceODR, WeakODR).
1254     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1255   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1256            !D->hasExternalStorage() && !D->getInit() &&
1257            !D->getAttr<SectionAttr>()) {
1258     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1259     // common vars aren't constant even if declared const.
1260     GV->setConstant(false);
1261   } else
1262     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1263 
1264   SetCommonAttributes(D, GV);
1265 
1266   // Emit global variable debug information.
1267   if (CGDebugInfo *DI = getDebugInfo()) {
1268     DI->setLocation(D->getLocation());
1269     DI->EmitGlobalVariable(GV, D);
1270   }
1271 }
1272 
1273 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1274 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1275 /// existing call uses of the old function in the module, this adjusts them to
1276 /// call the new function directly.
1277 ///
1278 /// This is not just a cleanup: the always_inline pass requires direct calls to
1279 /// functions to be able to inline them.  If there is a bitcast in the way, it
1280 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1281 /// run at -O0.
1282 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1283                                                       llvm::Function *NewFn) {
1284   // If we're redefining a global as a function, don't transform it.
1285   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1286   if (OldFn == 0) return;
1287 
1288   const llvm::Type *NewRetTy = NewFn->getReturnType();
1289   llvm::SmallVector<llvm::Value*, 4> ArgList;
1290 
1291   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1292        UI != E; ) {
1293     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1294     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1295     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1296     llvm::CallSite CS(CI);
1297     if (!CI || !CS.isCallee(I)) continue;
1298 
1299     // If the return types don't match exactly, and if the call isn't dead, then
1300     // we can't transform this call.
1301     if (CI->getType() != NewRetTy && !CI->use_empty())
1302       continue;
1303 
1304     // If the function was passed too few arguments, don't transform.  If extra
1305     // arguments were passed, we silently drop them.  If any of the types
1306     // mismatch, we don't transform.
1307     unsigned ArgNo = 0;
1308     bool DontTransform = false;
1309     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1310          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1311       if (CS.arg_size() == ArgNo ||
1312           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1313         DontTransform = true;
1314         break;
1315       }
1316     }
1317     if (DontTransform)
1318       continue;
1319 
1320     // Okay, we can transform this.  Create the new call instruction and copy
1321     // over the required information.
1322     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1323     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1324                                                      ArgList.end(), "", CI);
1325     ArgList.clear();
1326     if (!NewCall->getType()->isVoidTy())
1327       NewCall->takeName(CI);
1328     NewCall->setAttributes(CI->getAttributes());
1329     NewCall->setCallingConv(CI->getCallingConv());
1330 
1331     // Finally, remove the old call, replacing any uses with the new one.
1332     if (!CI->use_empty())
1333       CI->replaceAllUsesWith(NewCall);
1334 
1335     // Copy debug location attached to CI.
1336     if (!CI->getDebugLoc().isUnknown())
1337       NewCall->setDebugLoc(CI->getDebugLoc());
1338     CI->eraseFromParent();
1339   }
1340 }
1341 
1342 
1343 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1344   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1345   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1346   getMangleContext().mangleInitDiscriminator();
1347   // Get or create the prototype for the function.
1348   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1349 
1350   // Strip off a bitcast if we got one back.
1351   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1352     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1353     Entry = CE->getOperand(0);
1354   }
1355 
1356 
1357   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1358     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1359 
1360     // If the types mismatch then we have to rewrite the definition.
1361     assert(OldFn->isDeclaration() &&
1362            "Shouldn't replace non-declaration");
1363 
1364     // F is the Function* for the one with the wrong type, we must make a new
1365     // Function* and update everything that used F (a declaration) with the new
1366     // Function* (which will be a definition).
1367     //
1368     // This happens if there is a prototype for a function
1369     // (e.g. "int f()") and then a definition of a different type
1370     // (e.g. "int f(int x)").  Move the old function aside so that it
1371     // doesn't interfere with GetAddrOfFunction.
1372     OldFn->setName(llvm::StringRef());
1373     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1374 
1375     // If this is an implementation of a function without a prototype, try to
1376     // replace any existing uses of the function (which may be calls) with uses
1377     // of the new function
1378     if (D->getType()->isFunctionNoProtoType()) {
1379       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1380       OldFn->removeDeadConstantUsers();
1381     }
1382 
1383     // Replace uses of F with the Function we will endow with a body.
1384     if (!Entry->use_empty()) {
1385       llvm::Constant *NewPtrForOldDecl =
1386         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1387       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1388     }
1389 
1390     // Ok, delete the old function now, which is dead.
1391     OldFn->eraseFromParent();
1392 
1393     Entry = NewFn;
1394   }
1395 
1396   llvm::Function *Fn = cast<llvm::Function>(Entry);
1397   setFunctionLinkage(D, Fn);
1398 
1399   CodeGenFunction(*this).GenerateCode(D, Fn);
1400 
1401   SetFunctionDefinitionAttributes(D, Fn);
1402   SetLLVMFunctionAttributesForDefinition(D, Fn);
1403 
1404   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1405     AddGlobalCtor(Fn, CA->getPriority());
1406   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1407     AddGlobalDtor(Fn, DA->getPriority());
1408 }
1409 
1410 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1411   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1412   const AliasAttr *AA = D->getAttr<AliasAttr>();
1413   assert(AA && "Not an alias?");
1414 
1415   llvm::StringRef MangledName = getMangledName(GD);
1416 
1417   // If there is a definition in the module, then it wins over the alias.
1418   // This is dubious, but allow it to be safe.  Just ignore the alias.
1419   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1420   if (Entry && !Entry->isDeclaration())
1421     return;
1422 
1423   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1424 
1425   // Create a reference to the named value.  This ensures that it is emitted
1426   // if a deferred decl.
1427   llvm::Constant *Aliasee;
1428   if (isa<llvm::FunctionType>(DeclTy))
1429     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1430   else
1431     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1432                                     llvm::PointerType::getUnqual(DeclTy), 0);
1433 
1434   // Create the new alias itself, but don't set a name yet.
1435   llvm::GlobalValue *GA =
1436     new llvm::GlobalAlias(Aliasee->getType(),
1437                           llvm::Function::ExternalLinkage,
1438                           "", Aliasee, &getModule());
1439 
1440   if (Entry) {
1441     assert(Entry->isDeclaration());
1442 
1443     // If there is a declaration in the module, then we had an extern followed
1444     // by the alias, as in:
1445     //   extern int test6();
1446     //   ...
1447     //   int test6() __attribute__((alias("test7")));
1448     //
1449     // Remove it and replace uses of it with the alias.
1450     GA->takeName(Entry);
1451 
1452     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1453                                                           Entry->getType()));
1454     Entry->eraseFromParent();
1455   } else {
1456     GA->setName(MangledName);
1457   }
1458 
1459   // Set attributes which are particular to an alias; this is a
1460   // specialization of the attributes which may be set on a global
1461   // variable/function.
1462   if (D->hasAttr<DLLExportAttr>()) {
1463     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1464       // The dllexport attribute is ignored for undefined symbols.
1465       if (FD->hasBody())
1466         GA->setLinkage(llvm::Function::DLLExportLinkage);
1467     } else {
1468       GA->setLinkage(llvm::Function::DLLExportLinkage);
1469     }
1470   } else if (D->hasAttr<WeakAttr>() ||
1471              D->hasAttr<WeakRefAttr>() ||
1472              D->hasAttr<WeakImportAttr>()) {
1473     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1474   }
1475 
1476   SetCommonAttributes(D, GA);
1477 }
1478 
1479 /// getBuiltinLibFunction - Given a builtin id for a function like
1480 /// "__builtin_fabsf", return a Function* for "fabsf".
1481 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1482                                                   unsigned BuiltinID) {
1483   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1484           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1485          "isn't a lib fn");
1486 
1487   // Get the name, skip over the __builtin_ prefix (if necessary).
1488   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1489   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1490     Name += 10;
1491 
1492   const llvm::FunctionType *Ty =
1493     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1494 
1495   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1496 }
1497 
1498 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1499                                             unsigned NumTys) {
1500   return llvm::Intrinsic::getDeclaration(&getModule(),
1501                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1502 }
1503 
1504 
1505 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1506                                            const llvm::Type *SrcType,
1507                                            const llvm::Type *SizeType) {
1508   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1509   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1510 }
1511 
1512 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1513                                             const llvm::Type *SrcType,
1514                                             const llvm::Type *SizeType) {
1515   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1516   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1517 }
1518 
1519 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1520                                            const llvm::Type *SizeType) {
1521   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1522   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1523 }
1524 
1525 static llvm::StringMapEntry<llvm::Constant*> &
1526 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1527                          const StringLiteral *Literal,
1528                          bool TargetIsLSB,
1529                          bool &IsUTF16,
1530                          unsigned &StringLength) {
1531   unsigned NumBytes = Literal->getByteLength();
1532 
1533   // Check for simple case.
1534   if (!Literal->containsNonAsciiOrNull()) {
1535     StringLength = NumBytes;
1536     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1537                                                 StringLength));
1538   }
1539 
1540   // Otherwise, convert the UTF8 literals into a byte string.
1541   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1542   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1543   UTF16 *ToPtr = &ToBuf[0];
1544 
1545   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1546                                                &ToPtr, ToPtr + NumBytes,
1547                                                strictConversion);
1548 
1549   // Check for conversion failure.
1550   if (Result != conversionOK) {
1551     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1552     // this duplicate code.
1553     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1554     StringLength = NumBytes;
1555     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1556                                                 StringLength));
1557   }
1558 
1559   // ConvertUTF8toUTF16 returns the length in ToPtr.
1560   StringLength = ToPtr - &ToBuf[0];
1561 
1562   // Render the UTF-16 string into a byte array and convert to the target byte
1563   // order.
1564   //
1565   // FIXME: This isn't something we should need to do here.
1566   llvm::SmallString<128> AsBytes;
1567   AsBytes.reserve(StringLength * 2);
1568   for (unsigned i = 0; i != StringLength; ++i) {
1569     unsigned short Val = ToBuf[i];
1570     if (TargetIsLSB) {
1571       AsBytes.push_back(Val & 0xFF);
1572       AsBytes.push_back(Val >> 8);
1573     } else {
1574       AsBytes.push_back(Val >> 8);
1575       AsBytes.push_back(Val & 0xFF);
1576     }
1577   }
1578   // Append one extra null character, the second is automatically added by our
1579   // caller.
1580   AsBytes.push_back(0);
1581 
1582   IsUTF16 = true;
1583   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1584 }
1585 
1586 llvm::Constant *
1587 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1588   unsigned StringLength = 0;
1589   bool isUTF16 = false;
1590   llvm::StringMapEntry<llvm::Constant*> &Entry =
1591     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1592                              getTargetData().isLittleEndian(),
1593                              isUTF16, StringLength);
1594 
1595   if (llvm::Constant *C = Entry.getValue())
1596     return C;
1597 
1598   llvm::Constant *Zero =
1599       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1600   llvm::Constant *Zeros[] = { Zero, Zero };
1601 
1602   // If we don't already have it, get __CFConstantStringClassReference.
1603   if (!CFConstantStringClassRef) {
1604     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1605     Ty = llvm::ArrayType::get(Ty, 0);
1606     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1607                                            "__CFConstantStringClassReference");
1608     // Decay array -> ptr
1609     CFConstantStringClassRef =
1610       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1611   }
1612 
1613   QualType CFTy = getContext().getCFConstantStringType();
1614 
1615   const llvm::StructType *STy =
1616     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1617 
1618   std::vector<llvm::Constant*> Fields(4);
1619 
1620   // Class pointer.
1621   Fields[0] = CFConstantStringClassRef;
1622 
1623   // Flags.
1624   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1625   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1626     llvm::ConstantInt::get(Ty, 0x07C8);
1627 
1628   // String pointer.
1629   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1630 
1631   llvm::GlobalValue::LinkageTypes Linkage;
1632   bool isConstant;
1633   if (isUTF16) {
1634     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1635     Linkage = llvm::GlobalValue::InternalLinkage;
1636     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1637     // does make plain ascii ones writable.
1638     isConstant = true;
1639   } else {
1640     Linkage = llvm::GlobalValue::PrivateLinkage;
1641     isConstant = !Features.WritableStrings;
1642   }
1643 
1644   llvm::GlobalVariable *GV =
1645     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1646                              ".str");
1647   if (isUTF16) {
1648     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1649     GV->setAlignment(Align.getQuantity());
1650   }
1651   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1652 
1653   // String length.
1654   Ty = getTypes().ConvertType(getContext().LongTy);
1655   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1656 
1657   // The struct.
1658   C = llvm::ConstantStruct::get(STy, Fields);
1659   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1660                                 llvm::GlobalVariable::PrivateLinkage, C,
1661                                 "_unnamed_cfstring_");
1662   if (const char *Sect = getContext().Target.getCFStringSection())
1663     GV->setSection(Sect);
1664   Entry.setValue(GV);
1665 
1666   return GV;
1667 }
1668 
1669 llvm::Constant *
1670 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1671   unsigned StringLength = 0;
1672   bool isUTF16 = false;
1673   llvm::StringMapEntry<llvm::Constant*> &Entry =
1674     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1675                              getTargetData().isLittleEndian(),
1676                              isUTF16, StringLength);
1677 
1678   if (llvm::Constant *C = Entry.getValue())
1679     return C;
1680 
1681   llvm::Constant *Zero =
1682   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1683   llvm::Constant *Zeros[] = { Zero, Zero };
1684 
1685   // If we don't already have it, get _NSConstantStringClassReference.
1686   if (!NSConstantStringClassRef) {
1687     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1688     Ty = llvm::ArrayType::get(Ty, 0);
1689     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1690                                         Features.ObjCNonFragileABI ?
1691                                         "OBJC_CLASS_$_NSConstantString" :
1692                                         "_NSConstantStringClassReference");
1693     // Decay array -> ptr
1694     NSConstantStringClassRef =
1695       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1696   }
1697 
1698   QualType NSTy = getContext().getNSConstantStringType();
1699 
1700   const llvm::StructType *STy =
1701   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1702 
1703   std::vector<llvm::Constant*> Fields(3);
1704 
1705   // Class pointer.
1706   Fields[0] = NSConstantStringClassRef;
1707 
1708   // String pointer.
1709   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1710 
1711   llvm::GlobalValue::LinkageTypes Linkage;
1712   bool isConstant;
1713   if (isUTF16) {
1714     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1715     Linkage = llvm::GlobalValue::InternalLinkage;
1716     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1717     // does make plain ascii ones writable.
1718     isConstant = true;
1719   } else {
1720     Linkage = llvm::GlobalValue::PrivateLinkage;
1721     isConstant = !Features.WritableStrings;
1722   }
1723 
1724   llvm::GlobalVariable *GV =
1725   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1726                            ".str");
1727   if (isUTF16) {
1728     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1729     GV->setAlignment(Align.getQuantity());
1730   }
1731   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1732 
1733   // String length.
1734   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1735   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1736 
1737   // The struct.
1738   C = llvm::ConstantStruct::get(STy, Fields);
1739   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1740                                 llvm::GlobalVariable::PrivateLinkage, C,
1741                                 "_unnamed_nsstring_");
1742   // FIXME. Fix section.
1743   if (const char *Sect =
1744         Features.ObjCNonFragileABI
1745           ? getContext().Target.getNSStringNonFragileABISection()
1746           : getContext().Target.getNSStringSection())
1747     GV->setSection(Sect);
1748   Entry.setValue(GV);
1749 
1750   return GV;
1751 }
1752 
1753 /// GetStringForStringLiteral - Return the appropriate bytes for a
1754 /// string literal, properly padded to match the literal type.
1755 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1756   const char *StrData = E->getStrData();
1757   unsigned Len = E->getByteLength();
1758 
1759   const ConstantArrayType *CAT =
1760     getContext().getAsConstantArrayType(E->getType());
1761   assert(CAT && "String isn't pointer or array!");
1762 
1763   // Resize the string to the right size.
1764   std::string Str(StrData, StrData+Len);
1765   uint64_t RealLen = CAT->getSize().getZExtValue();
1766 
1767   if (E->isWide())
1768     RealLen *= getContext().Target.getWCharWidth()/8;
1769 
1770   Str.resize(RealLen, '\0');
1771 
1772   return Str;
1773 }
1774 
1775 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1776 /// constant array for the given string literal.
1777 llvm::Constant *
1778 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1779   // FIXME: This can be more efficient.
1780   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1781   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1782   if (S->isWide()) {
1783     llvm::Type *DestTy =
1784         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1785     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1786   }
1787   return C;
1788 }
1789 
1790 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1791 /// array for the given ObjCEncodeExpr node.
1792 llvm::Constant *
1793 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1794   std::string Str;
1795   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1796 
1797   return GetAddrOfConstantCString(Str);
1798 }
1799 
1800 
1801 /// GenerateWritableString -- Creates storage for a string literal.
1802 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1803                                              bool constant,
1804                                              CodeGenModule &CGM,
1805                                              const char *GlobalName) {
1806   // Create Constant for this string literal. Don't add a '\0'.
1807   llvm::Constant *C =
1808       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1809 
1810   // Create a global variable for this string
1811   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1812                                   llvm::GlobalValue::PrivateLinkage,
1813                                   C, GlobalName);
1814 }
1815 
1816 /// GetAddrOfConstantString - Returns a pointer to a character array
1817 /// containing the literal. This contents are exactly that of the
1818 /// given string, i.e. it will not be null terminated automatically;
1819 /// see GetAddrOfConstantCString. Note that whether the result is
1820 /// actually a pointer to an LLVM constant depends on
1821 /// Feature.WriteableStrings.
1822 ///
1823 /// The result has pointer to array type.
1824 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1825                                                        const char *GlobalName) {
1826   bool IsConstant = !Features.WritableStrings;
1827 
1828   // Get the default prefix if a name wasn't specified.
1829   if (!GlobalName)
1830     GlobalName = ".str";
1831 
1832   // Don't share any string literals if strings aren't constant.
1833   if (!IsConstant)
1834     return GenerateStringLiteral(str, false, *this, GlobalName);
1835 
1836   llvm::StringMapEntry<llvm::Constant *> &Entry =
1837     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1838 
1839   if (Entry.getValue())
1840     return Entry.getValue();
1841 
1842   // Create a global variable for this.
1843   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1844   Entry.setValue(C);
1845   return C;
1846 }
1847 
1848 /// GetAddrOfConstantCString - Returns a pointer to a character
1849 /// array containing the literal and a terminating '\-'
1850 /// character. The result has pointer to array type.
1851 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1852                                                         const char *GlobalName){
1853   return GetAddrOfConstantString(str + '\0', GlobalName);
1854 }
1855 
1856 /// EmitObjCPropertyImplementations - Emit information for synthesized
1857 /// properties for an implementation.
1858 void CodeGenModule::EmitObjCPropertyImplementations(const
1859                                                     ObjCImplementationDecl *D) {
1860   for (ObjCImplementationDecl::propimpl_iterator
1861          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1862     ObjCPropertyImplDecl *PID = *i;
1863 
1864     // Dynamic is just for type-checking.
1865     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1866       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1867 
1868       // Determine which methods need to be implemented, some may have
1869       // been overridden. Note that ::isSynthesized is not the method
1870       // we want, that just indicates if the decl came from a
1871       // property. What we want to know is if the method is defined in
1872       // this implementation.
1873       if (!D->getInstanceMethod(PD->getGetterName()))
1874         CodeGenFunction(*this).GenerateObjCGetter(
1875                                  const_cast<ObjCImplementationDecl *>(D), PID);
1876       if (!PD->isReadOnly() &&
1877           !D->getInstanceMethod(PD->getSetterName()))
1878         CodeGenFunction(*this).GenerateObjCSetter(
1879                                  const_cast<ObjCImplementationDecl *>(D), PID);
1880     }
1881   }
1882 }
1883 
1884 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1885 /// for an implementation.
1886 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1887   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1888     return;
1889   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1890   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1891   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1892   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1893   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1894                                                   D->getLocation(),
1895                                                   D->getLocation(), cxxSelector,
1896                                                   getContext().VoidTy, 0,
1897                                                   DC, true, false, true,
1898                                                   ObjCMethodDecl::Required);
1899   D->addInstanceMethod(DTORMethod);
1900   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1901 
1902   II = &getContext().Idents.get(".cxx_construct");
1903   cxxSelector = getContext().Selectors.getSelector(0, &II);
1904   // The constructor returns 'self'.
1905   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1906                                                 D->getLocation(),
1907                                                 D->getLocation(), cxxSelector,
1908                                                 getContext().getObjCIdType(), 0,
1909                                                 DC, true, false, true,
1910                                                 ObjCMethodDecl::Required);
1911   D->addInstanceMethod(CTORMethod);
1912   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1913 
1914 
1915 }
1916 
1917 /// EmitNamespace - Emit all declarations in a namespace.
1918 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1919   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1920        I != E; ++I)
1921     EmitTopLevelDecl(*I);
1922 }
1923 
1924 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1925 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1926   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1927       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1928     ErrorUnsupported(LSD, "linkage spec");
1929     return;
1930   }
1931 
1932   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1933        I != E; ++I)
1934     EmitTopLevelDecl(*I);
1935 }
1936 
1937 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1938 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1939   // If an error has occurred, stop code generation, but continue
1940   // parsing and semantic analysis (to ensure all warnings and errors
1941   // are emitted).
1942   if (Diags.hasErrorOccurred())
1943     return;
1944 
1945   // Ignore dependent declarations.
1946   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1947     return;
1948 
1949   switch (D->getKind()) {
1950   case Decl::CXXConversion:
1951   case Decl::CXXMethod:
1952   case Decl::Function:
1953     // Skip function templates
1954     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1955       return;
1956 
1957     EmitGlobal(cast<FunctionDecl>(D));
1958     break;
1959 
1960   case Decl::Var:
1961     EmitGlobal(cast<VarDecl>(D));
1962     break;
1963 
1964   // C++ Decls
1965   case Decl::Namespace:
1966     EmitNamespace(cast<NamespaceDecl>(D));
1967     break;
1968     // No code generation needed.
1969   case Decl::UsingShadow:
1970   case Decl::Using:
1971   case Decl::UsingDirective:
1972   case Decl::ClassTemplate:
1973   case Decl::FunctionTemplate:
1974   case Decl::NamespaceAlias:
1975     break;
1976   case Decl::CXXConstructor:
1977     // Skip function templates
1978     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1979       return;
1980 
1981     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1982     break;
1983   case Decl::CXXDestructor:
1984     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1985     break;
1986 
1987   case Decl::StaticAssert:
1988     // Nothing to do.
1989     break;
1990 
1991   // Objective-C Decls
1992 
1993   // Forward declarations, no (immediate) code generation.
1994   case Decl::ObjCClass:
1995   case Decl::ObjCForwardProtocol:
1996   case Decl::ObjCCategory:
1997   case Decl::ObjCInterface:
1998     break;
1999 
2000   case Decl::ObjCProtocol:
2001     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2002     break;
2003 
2004   case Decl::ObjCCategoryImpl:
2005     // Categories have properties but don't support synthesize so we
2006     // can ignore them here.
2007     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2008     break;
2009 
2010   case Decl::ObjCImplementation: {
2011     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2012     EmitObjCPropertyImplementations(OMD);
2013     EmitObjCIvarInitializations(OMD);
2014     Runtime->GenerateClass(OMD);
2015     break;
2016   }
2017   case Decl::ObjCMethod: {
2018     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2019     // If this is not a prototype, emit the body.
2020     if (OMD->getBody())
2021       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2022     break;
2023   }
2024   case Decl::ObjCCompatibleAlias:
2025     // compatibility-alias is a directive and has no code gen.
2026     break;
2027 
2028   case Decl::LinkageSpec:
2029     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2030     break;
2031 
2032   case Decl::FileScopeAsm: {
2033     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2034     llvm::StringRef AsmString = AD->getAsmString()->getString();
2035 
2036     const std::string &S = getModule().getModuleInlineAsm();
2037     if (S.empty())
2038       getModule().setModuleInlineAsm(AsmString);
2039     else
2040       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2041     break;
2042   }
2043 
2044   default:
2045     // Make sure we handled everything we should, every other kind is a
2046     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2047     // function. Need to recode Decl::Kind to do that easily.
2048     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2049   }
2050 }
2051 
2052 /// Turns the given pointer into a constant.
2053 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2054                                           const void *Ptr) {
2055   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2056   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2057   return llvm::ConstantInt::get(i64, PtrInt);
2058 }
2059 
2060 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2061                                    llvm::NamedMDNode *&GlobalMetadata,
2062                                    GlobalDecl D,
2063                                    llvm::GlobalValue *Addr) {
2064   if (!GlobalMetadata)
2065     GlobalMetadata =
2066       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2067 
2068   // TODO: should we report variant information for ctors/dtors?
2069   llvm::Value *Ops[] = {
2070     Addr,
2071     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2072   };
2073   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2074 }
2075 
2076 /// Emits metadata nodes associating all the global values in the
2077 /// current module with the Decls they came from.  This is useful for
2078 /// projects using IR gen as a subroutine.
2079 ///
2080 /// Since there's currently no way to associate an MDNode directly
2081 /// with an llvm::GlobalValue, we create a global named metadata
2082 /// with the name 'clang.global.decl.ptrs'.
2083 void CodeGenModule::EmitDeclMetadata() {
2084   llvm::NamedMDNode *GlobalMetadata = 0;
2085 
2086   // StaticLocalDeclMap
2087   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2088          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2089        I != E; ++I) {
2090     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2091     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2092   }
2093 }
2094 
2095 /// Emits metadata nodes for all the local variables in the current
2096 /// function.
2097 void CodeGenFunction::EmitDeclMetadata() {
2098   if (LocalDeclMap.empty()) return;
2099 
2100   llvm::LLVMContext &Context = getLLVMContext();
2101 
2102   // Find the unique metadata ID for this name.
2103   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2104 
2105   llvm::NamedMDNode *GlobalMetadata = 0;
2106 
2107   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2108          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2109     const Decl *D = I->first;
2110     llvm::Value *Addr = I->second;
2111 
2112     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2113       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2114       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2115     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2116       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2117       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2118     }
2119   }
2120 }
2121