1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 108 if (getCodeGenOpts().EmitDeclMetadata) 109 EmitDeclMetadata(); 110 } 111 112 bool CodeGenModule::isTargetDarwin() const { 113 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 114 } 115 116 /// ErrorUnsupported - Print out an error that codegen doesn't support the 117 /// specified stmt yet. 118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 119 bool OmitOnError) { 120 if (OmitOnError && getDiags().hasErrorOccurred()) 121 return; 122 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 123 "cannot compile this %0 yet"); 124 std::string Msg = Type; 125 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 126 << Msg << S->getSourceRange(); 127 } 128 129 /// ErrorUnsupported - Print out an error that codegen doesn't support the 130 /// specified decl yet. 131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 132 bool OmitOnError) { 133 if (OmitOnError && getDiags().hasErrorOccurred()) 134 return; 135 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 136 "cannot compile this %0 yet"); 137 std::string Msg = Type; 138 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 139 } 140 141 LangOptions::VisibilityMode 142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 143 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 144 if (VD->getStorageClass() == VarDecl::PrivateExtern) 145 return LangOptions::Hidden; 146 147 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 148 switch (attr->getVisibility()) { 149 default: assert(0 && "Unknown visibility!"); 150 case VisibilityAttr::DefaultVisibility: 151 return LangOptions::Default; 152 case VisibilityAttr::HiddenVisibility: 153 return LangOptions::Hidden; 154 case VisibilityAttr::ProtectedVisibility: 155 return LangOptions::Protected; 156 } 157 } 158 159 if (getLangOptions().CPlusPlus) { 160 // Entities subject to an explicit instantiation declaration get default 161 // visibility. 162 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 163 if (Function->getTemplateSpecializationKind() 164 == TSK_ExplicitInstantiationDeclaration) 165 return LangOptions::Default; 166 } else if (const ClassTemplateSpecializationDecl *ClassSpec 167 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 168 if (ClassSpec->getSpecializationKind() 169 == TSK_ExplicitInstantiationDeclaration) 170 return LangOptions::Default; 171 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 172 if (Record->getTemplateSpecializationKind() 173 == TSK_ExplicitInstantiationDeclaration) 174 return LangOptions::Default; 175 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 176 if (Var->isStaticDataMember() && 177 (Var->getTemplateSpecializationKind() 178 == TSK_ExplicitInstantiationDeclaration)) 179 return LangOptions::Default; 180 } 181 182 // If -fvisibility-inlines-hidden was provided, then inline C++ member 183 // functions get "hidden" visibility by default. 184 if (getLangOptions().InlineVisibilityHidden) 185 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 186 if (Method->isInlined()) 187 return LangOptions::Hidden; 188 } 189 190 // This decl should have the same visibility as its parent. 191 if (const DeclContext *DC = D->getDeclContext()) 192 return getDeclVisibilityMode(cast<Decl>(DC)); 193 194 return getLangOptions().getVisibilityMode(); 195 } 196 197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 198 const Decl *D) const { 199 // Internal definitions always have default visibility. 200 if (GV->hasLocalLinkage()) { 201 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 202 return; 203 } 204 205 switch (getDeclVisibilityMode(D)) { 206 default: assert(0 && "Unknown visibility!"); 207 case LangOptions::Default: 208 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 209 case LangOptions::Hidden: 210 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 211 case LangOptions::Protected: 212 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 213 } 214 } 215 216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 217 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 218 219 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 220 if (!Str.empty()) 221 return Str; 222 223 if (!getMangleContext().shouldMangleDeclName(ND)) { 224 IdentifierInfo *II = ND->getIdentifier(); 225 assert(II && "Attempt to mangle unnamed decl."); 226 227 Str = II->getName(); 228 return Str; 229 } 230 231 llvm::SmallString<256> Buffer; 232 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 233 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 234 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 235 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 236 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 237 getMangleContext().mangleBlock(GD, BD, Buffer); 238 else 239 getMangleContext().mangleName(ND, Buffer); 240 241 // Allocate space for the mangled name. 242 size_t Length = Buffer.size(); 243 char *Name = MangledNamesAllocator.Allocate<char>(Length); 244 std::copy(Buffer.begin(), Buffer.end(), Name); 245 246 Str = llvm::StringRef(Name, Length); 247 248 return Str; 249 } 250 251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 252 const BlockDecl *BD) { 253 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 254 } 255 256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 257 return getModule().getNamedValue(Name); 258 } 259 260 /// AddGlobalCtor - Add a function to the list that will be called before 261 /// main() runs. 262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 263 // FIXME: Type coercion of void()* types. 264 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 265 } 266 267 /// AddGlobalDtor - Add a function to the list that will be called 268 /// when the module is unloaded. 269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 270 // FIXME: Type coercion of void()* types. 271 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 272 } 273 274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 275 // Ctor function type is void()*. 276 llvm::FunctionType* CtorFTy = 277 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 278 std::vector<const llvm::Type*>(), 279 false); 280 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 281 282 // Get the type of a ctor entry, { i32, void ()* }. 283 llvm::StructType* CtorStructTy = 284 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 285 llvm::PointerType::getUnqual(CtorFTy), NULL); 286 287 // Construct the constructor and destructor arrays. 288 std::vector<llvm::Constant*> Ctors; 289 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 290 std::vector<llvm::Constant*> S; 291 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 292 I->second, false)); 293 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 294 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 295 } 296 297 if (!Ctors.empty()) { 298 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 299 new llvm::GlobalVariable(TheModule, AT, false, 300 llvm::GlobalValue::AppendingLinkage, 301 llvm::ConstantArray::get(AT, Ctors), 302 GlobalName); 303 } 304 } 305 306 void CodeGenModule::EmitAnnotations() { 307 if (Annotations.empty()) 308 return; 309 310 // Create a new global variable for the ConstantStruct in the Module. 311 llvm::Constant *Array = 312 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 313 Annotations.size()), 314 Annotations); 315 llvm::GlobalValue *gv = 316 new llvm::GlobalVariable(TheModule, Array->getType(), false, 317 llvm::GlobalValue::AppendingLinkage, Array, 318 "llvm.global.annotations"); 319 gv->setSection("llvm.metadata"); 320 } 321 322 static CodeGenModule::GVALinkage 323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 324 const LangOptions &Features) { 325 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 326 327 Linkage L = FD->getLinkage(); 328 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 329 FD->getType()->getLinkage() == UniqueExternalLinkage) 330 L = UniqueExternalLinkage; 331 332 switch (L) { 333 case NoLinkage: 334 case InternalLinkage: 335 case UniqueExternalLinkage: 336 return CodeGenModule::GVA_Internal; 337 338 case ExternalLinkage: 339 switch (FD->getTemplateSpecializationKind()) { 340 case TSK_Undeclared: 341 case TSK_ExplicitSpecialization: 342 External = CodeGenModule::GVA_StrongExternal; 343 break; 344 345 case TSK_ExplicitInstantiationDefinition: 346 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 347 348 case TSK_ExplicitInstantiationDeclaration: 349 case TSK_ImplicitInstantiation: 350 External = CodeGenModule::GVA_TemplateInstantiation; 351 break; 352 } 353 } 354 355 if (!FD->isInlined()) 356 return External; 357 358 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 359 // GNU or C99 inline semantics. Determine whether this symbol should be 360 // externally visible. 361 if (FD->isInlineDefinitionExternallyVisible()) 362 return External; 363 364 // C99 inline semantics, where the symbol is not externally visible. 365 return CodeGenModule::GVA_C99Inline; 366 } 367 368 // C++0x [temp.explicit]p9: 369 // [ Note: The intent is that an inline function that is the subject of 370 // an explicit instantiation declaration will still be implicitly 371 // instantiated when used so that the body can be considered for 372 // inlining, but that no out-of-line copy of the inline function would be 373 // generated in the translation unit. -- end note ] 374 if (FD->getTemplateSpecializationKind() 375 == TSK_ExplicitInstantiationDeclaration) 376 return CodeGenModule::GVA_C99Inline; 377 378 return CodeGenModule::GVA_CXXInline; 379 } 380 381 llvm::GlobalValue::LinkageTypes 382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 383 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 384 385 if (Linkage == GVA_Internal) 386 return llvm::Function::InternalLinkage; 387 388 if (D->hasAttr<DLLExportAttr>()) 389 return llvm::Function::DLLExportLinkage; 390 391 if (D->hasAttr<WeakAttr>()) 392 return llvm::Function::WeakAnyLinkage; 393 394 // In C99 mode, 'inline' functions are guaranteed to have a strong 395 // definition somewhere else, so we can use available_externally linkage. 396 if (Linkage == GVA_C99Inline) 397 return llvm::Function::AvailableExternallyLinkage; 398 399 // In C++, the compiler has to emit a definition in every translation unit 400 // that references the function. We should use linkonce_odr because 401 // a) if all references in this translation unit are optimized away, we 402 // don't need to codegen it. b) if the function persists, it needs to be 403 // merged with other definitions. c) C++ has the ODR, so we know the 404 // definition is dependable. 405 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 406 return llvm::Function::LinkOnceODRLinkage; 407 408 // An explicit instantiation of a template has weak linkage, since 409 // explicit instantiations can occur in multiple translation units 410 // and must all be equivalent. However, we are not allowed to 411 // throw away these explicit instantiations. 412 if (Linkage == GVA_ExplicitTemplateInstantiation) 413 return llvm::Function::WeakODRLinkage; 414 415 // Otherwise, we have strong external linkage. 416 assert(Linkage == GVA_StrongExternal); 417 return llvm::Function::ExternalLinkage; 418 } 419 420 421 /// SetFunctionDefinitionAttributes - Set attributes for a global. 422 /// 423 /// FIXME: This is currently only done for aliases and functions, but not for 424 /// variables (these details are set in EmitGlobalVarDefinition for variables). 425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 426 llvm::GlobalValue *GV) { 427 SetCommonAttributes(D, GV); 428 } 429 430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 431 const CGFunctionInfo &Info, 432 llvm::Function *F) { 433 unsigned CallingConv; 434 AttributeListType AttributeList; 435 ConstructAttributeList(Info, D, AttributeList, CallingConv); 436 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 437 AttributeList.size())); 438 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 442 llvm::Function *F) { 443 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 444 F->addFnAttr(llvm::Attribute::NoUnwind); 445 446 if (D->hasAttr<AlwaysInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::AlwaysInline); 448 449 if (D->hasAttr<NoInlineAttr>()) 450 F->addFnAttr(llvm::Attribute::NoInline); 451 452 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 453 F->addFnAttr(llvm::Attribute::StackProtect); 454 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 455 F->addFnAttr(llvm::Attribute::StackProtectReq); 456 457 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 458 unsigned width = Context.Target.getCharWidth(); 459 F->setAlignment(AA->getAlignment() / width); 460 while ((AA = AA->getNext<AlignedAttr>())) 461 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 462 } 463 // C++ ABI requires 2-byte alignment for member functions. 464 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 465 F->setAlignment(2); 466 } 467 468 void CodeGenModule::SetCommonAttributes(const Decl *D, 469 llvm::GlobalValue *GV) { 470 setGlobalVisibility(GV, D); 471 472 if (D->hasAttr<UsedAttr>()) 473 AddUsedGlobal(GV); 474 475 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 476 GV->setSection(SA->getName()); 477 478 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 479 } 480 481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 482 llvm::Function *F, 483 const CGFunctionInfo &FI) { 484 SetLLVMFunctionAttributes(D, FI, F); 485 SetLLVMFunctionAttributesForDefinition(D, F); 486 487 F->setLinkage(llvm::Function::InternalLinkage); 488 489 SetCommonAttributes(D, F); 490 } 491 492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 493 llvm::Function *F, 494 bool IsIncompleteFunction) { 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (!IsIncompleteFunction) 498 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 499 500 // Only a few attributes are set on declarations; these may later be 501 // overridden by a definition. 502 503 if (FD->hasAttr<DLLImportAttr>()) { 504 F->setLinkage(llvm::Function::DLLImportLinkage); 505 } else if (FD->hasAttr<WeakAttr>() || 506 FD->hasAttr<WeakImportAttr>()) { 507 // "extern_weak" is overloaded in LLVM; we probably should have 508 // separate linkage types for this. 509 F->setLinkage(llvm::Function::ExternalWeakLinkage); 510 } else { 511 F->setLinkage(llvm::Function::ExternalLinkage); 512 } 513 514 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 515 F->setSection(SA->getName()); 516 } 517 518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 519 assert(!GV->isDeclaration() && 520 "Only globals with definition can force usage."); 521 LLVMUsed.push_back(GV); 522 } 523 524 void CodeGenModule::EmitLLVMUsed() { 525 // Don't create llvm.used if there is no need. 526 if (LLVMUsed.empty()) 527 return; 528 529 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 530 531 // Convert LLVMUsed to what ConstantArray needs. 532 std::vector<llvm::Constant*> UsedArray; 533 UsedArray.resize(LLVMUsed.size()); 534 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 535 UsedArray[i] = 536 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 537 i8PTy); 538 } 539 540 if (UsedArray.empty()) 541 return; 542 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 543 544 llvm::GlobalVariable *GV = 545 new llvm::GlobalVariable(getModule(), ATy, false, 546 llvm::GlobalValue::AppendingLinkage, 547 llvm::ConstantArray::get(ATy, UsedArray), 548 "llvm.used"); 549 550 GV->setSection("llvm.metadata"); 551 } 552 553 void CodeGenModule::EmitDeferred() { 554 // Emit code for any potentially referenced deferred decls. Since a 555 // previously unused static decl may become used during the generation of code 556 // for a static function, iterate until no changes are made. 557 558 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 559 if (!DeferredVTables.empty()) { 560 const CXXRecordDecl *RD = DeferredVTables.back(); 561 DeferredVTables.pop_back(); 562 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 563 continue; 564 } 565 566 GlobalDecl D = DeferredDeclsToEmit.back(); 567 DeferredDeclsToEmit.pop_back(); 568 569 // Check to see if we've already emitted this. This is necessary 570 // for a couple of reasons: first, decls can end up in the 571 // deferred-decls queue multiple times, and second, decls can end 572 // up with definitions in unusual ways (e.g. by an extern inline 573 // function acquiring a strong function redefinition). Just 574 // ignore these cases. 575 // 576 // TODO: That said, looking this up multiple times is very wasteful. 577 llvm::StringRef Name = getMangledName(D); 578 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 579 assert(CGRef && "Deferred decl wasn't referenced?"); 580 581 if (!CGRef->isDeclaration()) 582 continue; 583 584 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 585 // purposes an alias counts as a definition. 586 if (isa<llvm::GlobalAlias>(CGRef)) 587 continue; 588 589 // Otherwise, emit the definition and move on to the next one. 590 EmitGlobalDefinition(D); 591 } 592 } 593 594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 595 /// annotation information for a given GlobalValue. The annotation struct is 596 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 597 /// GlobalValue being annotated. The second field is the constant string 598 /// created from the AnnotateAttr's annotation. The third field is a constant 599 /// string containing the name of the translation unit. The fourth field is 600 /// the line number in the file of the annotated value declaration. 601 /// 602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 603 /// appears to. 604 /// 605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 606 const AnnotateAttr *AA, 607 unsigned LineNo) { 608 llvm::Module *M = &getModule(); 609 610 // get [N x i8] constants for the annotation string, and the filename string 611 // which are the 2nd and 3rd elements of the global annotation structure. 612 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 613 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 614 AA->getAnnotation(), true); 615 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 616 M->getModuleIdentifier(), 617 true); 618 619 // Get the two global values corresponding to the ConstantArrays we just 620 // created to hold the bytes of the strings. 621 llvm::GlobalValue *annoGV = 622 new llvm::GlobalVariable(*M, anno->getType(), false, 623 llvm::GlobalValue::PrivateLinkage, anno, 624 GV->getName()); 625 // translation unit name string, emitted into the llvm.metadata section. 626 llvm::GlobalValue *unitGV = 627 new llvm::GlobalVariable(*M, unit->getType(), false, 628 llvm::GlobalValue::PrivateLinkage, unit, 629 ".str"); 630 631 // Create the ConstantStruct for the global annotation. 632 llvm::Constant *Fields[4] = { 633 llvm::ConstantExpr::getBitCast(GV, SBP), 634 llvm::ConstantExpr::getBitCast(annoGV, SBP), 635 llvm::ConstantExpr::getBitCast(unitGV, SBP), 636 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 637 }; 638 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 639 } 640 641 static CodeGenModule::GVALinkage 642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 643 // If this is a static data member, compute the kind of template 644 // specialization. Otherwise, this variable is not part of a 645 // template. 646 TemplateSpecializationKind TSK = TSK_Undeclared; 647 if (VD->isStaticDataMember()) 648 TSK = VD->getTemplateSpecializationKind(); 649 650 Linkage L = VD->getLinkage(); 651 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 652 VD->getType()->getLinkage() == UniqueExternalLinkage) 653 L = UniqueExternalLinkage; 654 655 switch (L) { 656 case NoLinkage: 657 case InternalLinkage: 658 case UniqueExternalLinkage: 659 return CodeGenModule::GVA_Internal; 660 661 case ExternalLinkage: 662 switch (TSK) { 663 case TSK_Undeclared: 664 case TSK_ExplicitSpecialization: 665 return CodeGenModule::GVA_StrongExternal; 666 667 case TSK_ExplicitInstantiationDeclaration: 668 llvm_unreachable("Variable should not be instantiated"); 669 // Fall through to treat this like any other instantiation. 670 671 case TSK_ExplicitInstantiationDefinition: 672 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 673 674 case TSK_ImplicitInstantiation: 675 return CodeGenModule::GVA_TemplateInstantiation; 676 } 677 } 678 679 return CodeGenModule::GVA_StrongExternal; 680 } 681 682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 683 // Never defer when EmitAllDecls is specified or the decl has 684 // attribute used. 685 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 686 return false; 687 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 689 // Constructors and destructors should never be deferred. 690 if (FD->hasAttr<ConstructorAttr>() || 691 FD->hasAttr<DestructorAttr>()) 692 return false; 693 694 // The key function for a class must never be deferred. 695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 696 const CXXRecordDecl *RD = MD->getParent(); 697 if (MD->isOutOfLine() && RD->isDynamicClass()) { 698 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 699 if (KeyFunction && 700 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 701 return false; 702 } 703 } 704 705 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 706 707 // static, static inline, always_inline, and extern inline functions can 708 // always be deferred. Normal inline functions can be deferred in C99/C++. 709 // Implicit template instantiations can also be deferred in C++. 710 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 711 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 712 return true; 713 return false; 714 } 715 716 const VarDecl *VD = cast<VarDecl>(Global); 717 assert(VD->isFileVarDecl() && "Invalid decl"); 718 719 // We never want to defer structs that have non-trivial constructors or 720 // destructors. 721 722 // FIXME: Handle references. 723 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 724 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 725 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 726 return false; 727 } 728 } 729 730 GVALinkage L = GetLinkageForVariable(getContext(), VD); 731 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 732 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 733 return true; 734 } 735 736 return false; 737 } 738 739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 740 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 741 assert(AA && "No alias?"); 742 743 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 744 745 // See if there is already something with the target's name in the module. 746 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 747 748 llvm::Constant *Aliasee; 749 if (isa<llvm::FunctionType>(DeclTy)) 750 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 751 else 752 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 753 llvm::PointerType::getUnqual(DeclTy), 0); 754 if (!Entry) { 755 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 756 F->setLinkage(llvm::Function::ExternalWeakLinkage); 757 WeakRefReferences.insert(F); 758 } 759 760 return Aliasee; 761 } 762 763 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 764 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 765 766 // Weak references don't produce any output by themselves. 767 if (Global->hasAttr<WeakRefAttr>()) 768 return; 769 770 // If this is an alias definition (which otherwise looks like a declaration) 771 // emit it now. 772 if (Global->hasAttr<AliasAttr>()) 773 return EmitAliasDefinition(GD); 774 775 // Ignore declarations, they will be emitted on their first use. 776 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 777 // Forward declarations are emitted lazily on first use. 778 if (!FD->isThisDeclarationADefinition()) 779 return; 780 } else { 781 const VarDecl *VD = cast<VarDecl>(Global); 782 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 783 784 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 785 return; 786 } 787 788 // Defer code generation when possible if this is a static definition, inline 789 // function etc. These we only want to emit if they are used. 790 if (!MayDeferGeneration(Global)) { 791 // Emit the definition if it can't be deferred. 792 EmitGlobalDefinition(GD); 793 return; 794 } 795 796 // If the value has already been used, add it directly to the 797 // DeferredDeclsToEmit list. 798 llvm::StringRef MangledName = getMangledName(GD); 799 if (GetGlobalValue(MangledName)) 800 DeferredDeclsToEmit.push_back(GD); 801 else { 802 // Otherwise, remember that we saw a deferred decl with this name. The 803 // first use of the mangled name will cause it to move into 804 // DeferredDeclsToEmit. 805 DeferredDecls[MangledName] = GD; 806 } 807 } 808 809 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 810 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 811 812 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 813 Context.getSourceManager(), 814 "Generating code for declaration"); 815 816 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 817 // At -O0, don't generate IR for functions with available_externally 818 // linkage. 819 if (CodeGenOpts.OptimizationLevel == 0 && 820 getFunctionLinkage(Function) 821 == llvm::Function::AvailableExternallyLinkage) 822 return; 823 824 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 825 if (Method->isVirtual()) 826 getVTables().EmitThunks(GD); 827 828 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 829 return EmitCXXConstructor(CD, GD.getCtorType()); 830 831 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 832 return EmitCXXDestructor(DD, GD.getDtorType()); 833 } 834 835 return EmitGlobalFunctionDefinition(GD); 836 } 837 838 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 839 return EmitGlobalVarDefinition(VD); 840 841 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 842 } 843 844 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 845 /// module, create and return an llvm Function with the specified type. If there 846 /// is something in the module with the specified name, return it potentially 847 /// bitcasted to the right type. 848 /// 849 /// If D is non-null, it specifies a decl that correspond to this. This is used 850 /// to set the attributes on the function when it is first created. 851 llvm::Constant * 852 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 853 const llvm::Type *Ty, 854 GlobalDecl D) { 855 // Lookup the entry, lazily creating it if necessary. 856 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 857 if (Entry) { 858 if (WeakRefReferences.count(Entry)) { 859 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 860 if (FD && !FD->hasAttr<WeakAttr>()) 861 Entry->setLinkage(llvm::Function::ExternalLinkage); 862 863 WeakRefReferences.erase(Entry); 864 } 865 866 if (Entry->getType()->getElementType() == Ty) 867 return Entry; 868 869 // Make sure the result is of the correct type. 870 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 871 return llvm::ConstantExpr::getBitCast(Entry, PTy); 872 } 873 874 // This function doesn't have a complete type (for example, the return 875 // type is an incomplete struct). Use a fake type instead, and make 876 // sure not to try to set attributes. 877 bool IsIncompleteFunction = false; 878 879 const llvm::FunctionType *FTy; 880 if (isa<llvm::FunctionType>(Ty)) { 881 FTy = cast<llvm::FunctionType>(Ty); 882 } else { 883 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 884 std::vector<const llvm::Type*>(), false); 885 IsIncompleteFunction = true; 886 } 887 888 llvm::Function *F = llvm::Function::Create(FTy, 889 llvm::Function::ExternalLinkage, 890 MangledName, &getModule()); 891 assert(F->getName() == MangledName && "name was uniqued!"); 892 if (D.getDecl()) 893 SetFunctionAttributes(D, F, IsIncompleteFunction); 894 895 // This is the first use or definition of a mangled name. If there is a 896 // deferred decl with this name, remember that we need to emit it at the end 897 // of the file. 898 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 899 if (DDI != DeferredDecls.end()) { 900 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 901 // list, and remove it from DeferredDecls (since we don't need it anymore). 902 DeferredDeclsToEmit.push_back(DDI->second); 903 DeferredDecls.erase(DDI); 904 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 905 // If this the first reference to a C++ inline function in a class, queue up 906 // the deferred function body for emission. These are not seen as 907 // top-level declarations. 908 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 909 DeferredDeclsToEmit.push_back(D); 910 // A called constructor which has no definition or declaration need be 911 // synthesized. 912 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 913 if (CD->isImplicit()) { 914 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 915 DeferredDeclsToEmit.push_back(D); 916 } 917 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 918 if (DD->isImplicit()) { 919 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 920 DeferredDeclsToEmit.push_back(D); 921 } 922 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 923 if (MD->isCopyAssignment() && MD->isImplicit()) { 924 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 925 DeferredDeclsToEmit.push_back(D); 926 } 927 } 928 } 929 930 // Make sure the result is of the requested type. 931 if (!IsIncompleteFunction) { 932 assert(F->getType()->getElementType() == Ty); 933 return F; 934 } 935 936 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 937 return llvm::ConstantExpr::getBitCast(F, PTy); 938 } 939 940 /// GetAddrOfFunction - Return the address of the given function. If Ty is 941 /// non-null, then this function will use the specified type if it has to 942 /// create it (this occurs when we see a definition of the function). 943 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 944 const llvm::Type *Ty) { 945 // If there was no specific requested type, just convert it now. 946 if (!Ty) 947 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 948 949 llvm::StringRef MangledName = getMangledName(GD); 950 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 951 } 952 953 /// CreateRuntimeFunction - Create a new runtime function with the specified 954 /// type and name. 955 llvm::Constant * 956 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 957 llvm::StringRef Name) { 958 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 959 } 960 961 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 962 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 963 return false; 964 if (Context.getLangOptions().CPlusPlus && 965 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 966 // FIXME: We should do something fancier here! 967 return false; 968 } 969 return true; 970 } 971 972 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 973 /// create and return an llvm GlobalVariable with the specified type. If there 974 /// is something in the module with the specified name, return it potentially 975 /// bitcasted to the right type. 976 /// 977 /// If D is non-null, it specifies a decl that correspond to this. This is used 978 /// to set the attributes on the global when it is first created. 979 llvm::Constant * 980 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 981 const llvm::PointerType *Ty, 982 const VarDecl *D) { 983 // Lookup the entry, lazily creating it if necessary. 984 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 985 if (Entry) { 986 if (WeakRefReferences.count(Entry)) { 987 if (D && !D->hasAttr<WeakAttr>()) 988 Entry->setLinkage(llvm::Function::ExternalLinkage); 989 990 WeakRefReferences.erase(Entry); 991 } 992 993 if (Entry->getType() == Ty) 994 return Entry; 995 996 // Make sure the result is of the correct type. 997 return llvm::ConstantExpr::getBitCast(Entry, Ty); 998 } 999 1000 // This is the first use or definition of a mangled name. If there is a 1001 // deferred decl with this name, remember that we need to emit it at the end 1002 // of the file. 1003 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1004 if (DDI != DeferredDecls.end()) { 1005 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1006 // list, and remove it from DeferredDecls (since we don't need it anymore). 1007 DeferredDeclsToEmit.push_back(DDI->second); 1008 DeferredDecls.erase(DDI); 1009 } 1010 1011 llvm::GlobalVariable *GV = 1012 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1013 llvm::GlobalValue::ExternalLinkage, 1014 0, MangledName, 0, 1015 false, Ty->getAddressSpace()); 1016 1017 // Handle things which are present even on external declarations. 1018 if (D) { 1019 // FIXME: This code is overly simple and should be merged with other global 1020 // handling. 1021 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1022 1023 // FIXME: Merge with other attribute handling code. 1024 if (D->getStorageClass() == VarDecl::PrivateExtern) 1025 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1026 1027 if (D->hasAttr<WeakAttr>() || 1028 D->hasAttr<WeakImportAttr>()) 1029 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1030 1031 GV->setThreadLocal(D->isThreadSpecified()); 1032 } 1033 1034 return GV; 1035 } 1036 1037 1038 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1039 /// given global variable. If Ty is non-null and if the global doesn't exist, 1040 /// then it will be greated with the specified type instead of whatever the 1041 /// normal requested type would be. 1042 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1043 const llvm::Type *Ty) { 1044 assert(D->hasGlobalStorage() && "Not a global variable"); 1045 QualType ASTTy = D->getType(); 1046 if (Ty == 0) 1047 Ty = getTypes().ConvertTypeForMem(ASTTy); 1048 1049 const llvm::PointerType *PTy = 1050 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1051 1052 llvm::StringRef MangledName = getMangledName(D); 1053 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1054 } 1055 1056 /// CreateRuntimeVariable - Create a new runtime global variable with the 1057 /// specified type and name. 1058 llvm::Constant * 1059 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1060 llvm::StringRef Name) { 1061 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1062 } 1063 1064 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1065 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1066 1067 if (MayDeferGeneration(D)) { 1068 // If we have not seen a reference to this variable yet, place it 1069 // into the deferred declarations table to be emitted if needed 1070 // later. 1071 llvm::StringRef MangledName = getMangledName(D); 1072 if (!GetGlobalValue(MangledName)) { 1073 DeferredDecls[MangledName] = D; 1074 return; 1075 } 1076 } 1077 1078 // The tentative definition is the only definition. 1079 EmitGlobalVarDefinition(D); 1080 } 1081 1082 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1083 if (DefinitionRequired) 1084 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1085 } 1086 1087 llvm::GlobalVariable::LinkageTypes 1088 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1089 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1090 return llvm::GlobalVariable::InternalLinkage; 1091 1092 if (const CXXMethodDecl *KeyFunction 1093 = RD->getASTContext().getKeyFunction(RD)) { 1094 // If this class has a key function, use that to determine the linkage of 1095 // the vtable. 1096 const FunctionDecl *Def = 0; 1097 if (KeyFunction->hasBody(Def)) 1098 KeyFunction = cast<CXXMethodDecl>(Def); 1099 1100 switch (KeyFunction->getTemplateSpecializationKind()) { 1101 case TSK_Undeclared: 1102 case TSK_ExplicitSpecialization: 1103 if (KeyFunction->isInlined()) 1104 return llvm::GlobalVariable::WeakODRLinkage; 1105 1106 return llvm::GlobalVariable::ExternalLinkage; 1107 1108 case TSK_ImplicitInstantiation: 1109 case TSK_ExplicitInstantiationDefinition: 1110 return llvm::GlobalVariable::WeakODRLinkage; 1111 1112 case TSK_ExplicitInstantiationDeclaration: 1113 // FIXME: Use available_externally linkage. However, this currently 1114 // breaks LLVM's build due to undefined symbols. 1115 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1116 return llvm::GlobalVariable::WeakODRLinkage; 1117 } 1118 } 1119 1120 switch (RD->getTemplateSpecializationKind()) { 1121 case TSK_Undeclared: 1122 case TSK_ExplicitSpecialization: 1123 case TSK_ImplicitInstantiation: 1124 case TSK_ExplicitInstantiationDefinition: 1125 return llvm::GlobalVariable::WeakODRLinkage; 1126 1127 case TSK_ExplicitInstantiationDeclaration: 1128 // FIXME: Use available_externally linkage. However, this currently 1129 // breaks LLVM's build due to undefined symbols. 1130 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1131 return llvm::GlobalVariable::WeakODRLinkage; 1132 } 1133 1134 // Silence GCC warning. 1135 return llvm::GlobalVariable::WeakODRLinkage; 1136 } 1137 1138 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1139 return CharUnits::fromQuantity( 1140 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1141 } 1142 1143 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1144 llvm::Constant *Init = 0; 1145 QualType ASTTy = D->getType(); 1146 bool NonConstInit = false; 1147 1148 const Expr *InitExpr = D->getAnyInitializer(); 1149 1150 if (!InitExpr) { 1151 // This is a tentative definition; tentative definitions are 1152 // implicitly initialized with { 0 }. 1153 // 1154 // Note that tentative definitions are only emitted at the end of 1155 // a translation unit, so they should never have incomplete 1156 // type. In addition, EmitTentativeDefinition makes sure that we 1157 // never attempt to emit a tentative definition if a real one 1158 // exists. A use may still exists, however, so we still may need 1159 // to do a RAUW. 1160 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1161 Init = EmitNullConstant(D->getType()); 1162 } else { 1163 Init = EmitConstantExpr(InitExpr, D->getType()); 1164 if (!Init) { 1165 QualType T = InitExpr->getType(); 1166 if (D->getType()->isReferenceType()) 1167 T = D->getType(); 1168 1169 if (getLangOptions().CPlusPlus) { 1170 EmitCXXGlobalVarDeclInitFunc(D); 1171 Init = EmitNullConstant(T); 1172 NonConstInit = true; 1173 } else { 1174 ErrorUnsupported(D, "static initializer"); 1175 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1176 } 1177 } 1178 } 1179 1180 const llvm::Type* InitType = Init->getType(); 1181 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1182 1183 // Strip off a bitcast if we got one back. 1184 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1185 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1186 // all zero index gep. 1187 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1188 Entry = CE->getOperand(0); 1189 } 1190 1191 // Entry is now either a Function or GlobalVariable. 1192 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1193 1194 // We have a definition after a declaration with the wrong type. 1195 // We must make a new GlobalVariable* and update everything that used OldGV 1196 // (a declaration or tentative definition) with the new GlobalVariable* 1197 // (which will be a definition). 1198 // 1199 // This happens if there is a prototype for a global (e.g. 1200 // "extern int x[];") and then a definition of a different type (e.g. 1201 // "int x[10];"). This also happens when an initializer has a different type 1202 // from the type of the global (this happens with unions). 1203 if (GV == 0 || 1204 GV->getType()->getElementType() != InitType || 1205 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1206 1207 // Move the old entry aside so that we'll create a new one. 1208 Entry->setName(llvm::StringRef()); 1209 1210 // Make a new global with the correct type, this is now guaranteed to work. 1211 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1212 1213 // Replace all uses of the old global with the new global 1214 llvm::Constant *NewPtrForOldDecl = 1215 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1216 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1217 1218 // Erase the old global, since it is no longer used. 1219 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1220 } 1221 1222 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1223 SourceManager &SM = Context.getSourceManager(); 1224 AddAnnotation(EmitAnnotateAttr(GV, AA, 1225 SM.getInstantiationLineNumber(D->getLocation()))); 1226 } 1227 1228 GV->setInitializer(Init); 1229 1230 // If it is safe to mark the global 'constant', do so now. 1231 GV->setConstant(false); 1232 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1233 GV->setConstant(true); 1234 1235 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1236 1237 // Set the llvm linkage type as appropriate. 1238 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1239 if (Linkage == GVA_Internal) 1240 GV->setLinkage(llvm::Function::InternalLinkage); 1241 else if (D->hasAttr<DLLImportAttr>()) 1242 GV->setLinkage(llvm::Function::DLLImportLinkage); 1243 else if (D->hasAttr<DLLExportAttr>()) 1244 GV->setLinkage(llvm::Function::DLLExportLinkage); 1245 else if (D->hasAttr<WeakAttr>()) { 1246 if (GV->isConstant()) 1247 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1248 else 1249 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1250 } else if (Linkage == GVA_TemplateInstantiation || 1251 Linkage == GVA_ExplicitTemplateInstantiation) 1252 // FIXME: It seems like we can provide more specific linkage here 1253 // (LinkOnceODR, WeakODR). 1254 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1255 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1256 !D->hasExternalStorage() && !D->getInit() && 1257 !D->getAttr<SectionAttr>()) { 1258 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1259 // common vars aren't constant even if declared const. 1260 GV->setConstant(false); 1261 } else 1262 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1263 1264 SetCommonAttributes(D, GV); 1265 1266 // Emit global variable debug information. 1267 if (CGDebugInfo *DI = getDebugInfo()) { 1268 DI->setLocation(D->getLocation()); 1269 DI->EmitGlobalVariable(GV, D); 1270 } 1271 } 1272 1273 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1274 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1275 /// existing call uses of the old function in the module, this adjusts them to 1276 /// call the new function directly. 1277 /// 1278 /// This is not just a cleanup: the always_inline pass requires direct calls to 1279 /// functions to be able to inline them. If there is a bitcast in the way, it 1280 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1281 /// run at -O0. 1282 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1283 llvm::Function *NewFn) { 1284 // If we're redefining a global as a function, don't transform it. 1285 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1286 if (OldFn == 0) return; 1287 1288 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1289 llvm::SmallVector<llvm::Value*, 4> ArgList; 1290 1291 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1292 UI != E; ) { 1293 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1294 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1295 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1296 llvm::CallSite CS(CI); 1297 if (!CI || !CS.isCallee(I)) continue; 1298 1299 // If the return types don't match exactly, and if the call isn't dead, then 1300 // we can't transform this call. 1301 if (CI->getType() != NewRetTy && !CI->use_empty()) 1302 continue; 1303 1304 // If the function was passed too few arguments, don't transform. If extra 1305 // arguments were passed, we silently drop them. If any of the types 1306 // mismatch, we don't transform. 1307 unsigned ArgNo = 0; 1308 bool DontTransform = false; 1309 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1310 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1311 if (CS.arg_size() == ArgNo || 1312 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1313 DontTransform = true; 1314 break; 1315 } 1316 } 1317 if (DontTransform) 1318 continue; 1319 1320 // Okay, we can transform this. Create the new call instruction and copy 1321 // over the required information. 1322 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1323 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1324 ArgList.end(), "", CI); 1325 ArgList.clear(); 1326 if (!NewCall->getType()->isVoidTy()) 1327 NewCall->takeName(CI); 1328 NewCall->setAttributes(CI->getAttributes()); 1329 NewCall->setCallingConv(CI->getCallingConv()); 1330 1331 // Finally, remove the old call, replacing any uses with the new one. 1332 if (!CI->use_empty()) 1333 CI->replaceAllUsesWith(NewCall); 1334 1335 // Copy debug location attached to CI. 1336 if (!CI->getDebugLoc().isUnknown()) 1337 NewCall->setDebugLoc(CI->getDebugLoc()); 1338 CI->eraseFromParent(); 1339 } 1340 } 1341 1342 1343 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1344 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1345 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1346 getMangleContext().mangleInitDiscriminator(); 1347 // Get or create the prototype for the function. 1348 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1349 1350 // Strip off a bitcast if we got one back. 1351 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1352 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1353 Entry = CE->getOperand(0); 1354 } 1355 1356 1357 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1358 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1359 1360 // If the types mismatch then we have to rewrite the definition. 1361 assert(OldFn->isDeclaration() && 1362 "Shouldn't replace non-declaration"); 1363 1364 // F is the Function* for the one with the wrong type, we must make a new 1365 // Function* and update everything that used F (a declaration) with the new 1366 // Function* (which will be a definition). 1367 // 1368 // This happens if there is a prototype for a function 1369 // (e.g. "int f()") and then a definition of a different type 1370 // (e.g. "int f(int x)"). Move the old function aside so that it 1371 // doesn't interfere with GetAddrOfFunction. 1372 OldFn->setName(llvm::StringRef()); 1373 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1374 1375 // If this is an implementation of a function without a prototype, try to 1376 // replace any existing uses of the function (which may be calls) with uses 1377 // of the new function 1378 if (D->getType()->isFunctionNoProtoType()) { 1379 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1380 OldFn->removeDeadConstantUsers(); 1381 } 1382 1383 // Replace uses of F with the Function we will endow with a body. 1384 if (!Entry->use_empty()) { 1385 llvm::Constant *NewPtrForOldDecl = 1386 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1387 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1388 } 1389 1390 // Ok, delete the old function now, which is dead. 1391 OldFn->eraseFromParent(); 1392 1393 Entry = NewFn; 1394 } 1395 1396 llvm::Function *Fn = cast<llvm::Function>(Entry); 1397 setFunctionLinkage(D, Fn); 1398 1399 CodeGenFunction(*this).GenerateCode(D, Fn); 1400 1401 SetFunctionDefinitionAttributes(D, Fn); 1402 SetLLVMFunctionAttributesForDefinition(D, Fn); 1403 1404 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1405 AddGlobalCtor(Fn, CA->getPriority()); 1406 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1407 AddGlobalDtor(Fn, DA->getPriority()); 1408 } 1409 1410 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1411 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1412 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1413 assert(AA && "Not an alias?"); 1414 1415 llvm::StringRef MangledName = getMangledName(GD); 1416 1417 // If there is a definition in the module, then it wins over the alias. 1418 // This is dubious, but allow it to be safe. Just ignore the alias. 1419 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1420 if (Entry && !Entry->isDeclaration()) 1421 return; 1422 1423 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1424 1425 // Create a reference to the named value. This ensures that it is emitted 1426 // if a deferred decl. 1427 llvm::Constant *Aliasee; 1428 if (isa<llvm::FunctionType>(DeclTy)) 1429 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1430 else 1431 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1432 llvm::PointerType::getUnqual(DeclTy), 0); 1433 1434 // Create the new alias itself, but don't set a name yet. 1435 llvm::GlobalValue *GA = 1436 new llvm::GlobalAlias(Aliasee->getType(), 1437 llvm::Function::ExternalLinkage, 1438 "", Aliasee, &getModule()); 1439 1440 if (Entry) { 1441 assert(Entry->isDeclaration()); 1442 1443 // If there is a declaration in the module, then we had an extern followed 1444 // by the alias, as in: 1445 // extern int test6(); 1446 // ... 1447 // int test6() __attribute__((alias("test7"))); 1448 // 1449 // Remove it and replace uses of it with the alias. 1450 GA->takeName(Entry); 1451 1452 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1453 Entry->getType())); 1454 Entry->eraseFromParent(); 1455 } else { 1456 GA->setName(MangledName); 1457 } 1458 1459 // Set attributes which are particular to an alias; this is a 1460 // specialization of the attributes which may be set on a global 1461 // variable/function. 1462 if (D->hasAttr<DLLExportAttr>()) { 1463 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1464 // The dllexport attribute is ignored for undefined symbols. 1465 if (FD->hasBody()) 1466 GA->setLinkage(llvm::Function::DLLExportLinkage); 1467 } else { 1468 GA->setLinkage(llvm::Function::DLLExportLinkage); 1469 } 1470 } else if (D->hasAttr<WeakAttr>() || 1471 D->hasAttr<WeakRefAttr>() || 1472 D->hasAttr<WeakImportAttr>()) { 1473 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1474 } 1475 1476 SetCommonAttributes(D, GA); 1477 } 1478 1479 /// getBuiltinLibFunction - Given a builtin id for a function like 1480 /// "__builtin_fabsf", return a Function* for "fabsf". 1481 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1482 unsigned BuiltinID) { 1483 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1484 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1485 "isn't a lib fn"); 1486 1487 // Get the name, skip over the __builtin_ prefix (if necessary). 1488 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1489 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1490 Name += 10; 1491 1492 const llvm::FunctionType *Ty = 1493 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1494 1495 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1496 } 1497 1498 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1499 unsigned NumTys) { 1500 return llvm::Intrinsic::getDeclaration(&getModule(), 1501 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1502 } 1503 1504 1505 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1506 const llvm::Type *SrcType, 1507 const llvm::Type *SizeType) { 1508 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1509 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1510 } 1511 1512 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1513 const llvm::Type *SrcType, 1514 const llvm::Type *SizeType) { 1515 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1516 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1517 } 1518 1519 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1520 const llvm::Type *SizeType) { 1521 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1522 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1523 } 1524 1525 static llvm::StringMapEntry<llvm::Constant*> & 1526 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1527 const StringLiteral *Literal, 1528 bool TargetIsLSB, 1529 bool &IsUTF16, 1530 unsigned &StringLength) { 1531 unsigned NumBytes = Literal->getByteLength(); 1532 1533 // Check for simple case. 1534 if (!Literal->containsNonAsciiOrNull()) { 1535 StringLength = NumBytes; 1536 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1537 StringLength)); 1538 } 1539 1540 // Otherwise, convert the UTF8 literals into a byte string. 1541 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1542 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1543 UTF16 *ToPtr = &ToBuf[0]; 1544 1545 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1546 &ToPtr, ToPtr + NumBytes, 1547 strictConversion); 1548 1549 // Check for conversion failure. 1550 if (Result != conversionOK) { 1551 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1552 // this duplicate code. 1553 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1554 StringLength = NumBytes; 1555 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1556 StringLength)); 1557 } 1558 1559 // ConvertUTF8toUTF16 returns the length in ToPtr. 1560 StringLength = ToPtr - &ToBuf[0]; 1561 1562 // Render the UTF-16 string into a byte array and convert to the target byte 1563 // order. 1564 // 1565 // FIXME: This isn't something we should need to do here. 1566 llvm::SmallString<128> AsBytes; 1567 AsBytes.reserve(StringLength * 2); 1568 for (unsigned i = 0; i != StringLength; ++i) { 1569 unsigned short Val = ToBuf[i]; 1570 if (TargetIsLSB) { 1571 AsBytes.push_back(Val & 0xFF); 1572 AsBytes.push_back(Val >> 8); 1573 } else { 1574 AsBytes.push_back(Val >> 8); 1575 AsBytes.push_back(Val & 0xFF); 1576 } 1577 } 1578 // Append one extra null character, the second is automatically added by our 1579 // caller. 1580 AsBytes.push_back(0); 1581 1582 IsUTF16 = true; 1583 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1584 } 1585 1586 llvm::Constant * 1587 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1588 unsigned StringLength = 0; 1589 bool isUTF16 = false; 1590 llvm::StringMapEntry<llvm::Constant*> &Entry = 1591 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1592 getTargetData().isLittleEndian(), 1593 isUTF16, StringLength); 1594 1595 if (llvm::Constant *C = Entry.getValue()) 1596 return C; 1597 1598 llvm::Constant *Zero = 1599 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1600 llvm::Constant *Zeros[] = { Zero, Zero }; 1601 1602 // If we don't already have it, get __CFConstantStringClassReference. 1603 if (!CFConstantStringClassRef) { 1604 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1605 Ty = llvm::ArrayType::get(Ty, 0); 1606 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1607 "__CFConstantStringClassReference"); 1608 // Decay array -> ptr 1609 CFConstantStringClassRef = 1610 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1611 } 1612 1613 QualType CFTy = getContext().getCFConstantStringType(); 1614 1615 const llvm::StructType *STy = 1616 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1617 1618 std::vector<llvm::Constant*> Fields(4); 1619 1620 // Class pointer. 1621 Fields[0] = CFConstantStringClassRef; 1622 1623 // Flags. 1624 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1625 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1626 llvm::ConstantInt::get(Ty, 0x07C8); 1627 1628 // String pointer. 1629 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1630 1631 llvm::GlobalValue::LinkageTypes Linkage; 1632 bool isConstant; 1633 if (isUTF16) { 1634 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1635 Linkage = llvm::GlobalValue::InternalLinkage; 1636 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1637 // does make plain ascii ones writable. 1638 isConstant = true; 1639 } else { 1640 Linkage = llvm::GlobalValue::PrivateLinkage; 1641 isConstant = !Features.WritableStrings; 1642 } 1643 1644 llvm::GlobalVariable *GV = 1645 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1646 ".str"); 1647 if (isUTF16) { 1648 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1649 GV->setAlignment(Align.getQuantity()); 1650 } 1651 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1652 1653 // String length. 1654 Ty = getTypes().ConvertType(getContext().LongTy); 1655 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1656 1657 // The struct. 1658 C = llvm::ConstantStruct::get(STy, Fields); 1659 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1660 llvm::GlobalVariable::PrivateLinkage, C, 1661 "_unnamed_cfstring_"); 1662 if (const char *Sect = getContext().Target.getCFStringSection()) 1663 GV->setSection(Sect); 1664 Entry.setValue(GV); 1665 1666 return GV; 1667 } 1668 1669 llvm::Constant * 1670 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1671 unsigned StringLength = 0; 1672 bool isUTF16 = false; 1673 llvm::StringMapEntry<llvm::Constant*> &Entry = 1674 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1675 getTargetData().isLittleEndian(), 1676 isUTF16, StringLength); 1677 1678 if (llvm::Constant *C = Entry.getValue()) 1679 return C; 1680 1681 llvm::Constant *Zero = 1682 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1683 llvm::Constant *Zeros[] = { Zero, Zero }; 1684 1685 // If we don't already have it, get _NSConstantStringClassReference. 1686 if (!NSConstantStringClassRef) { 1687 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1688 Ty = llvm::ArrayType::get(Ty, 0); 1689 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1690 Features.ObjCNonFragileABI ? 1691 "OBJC_CLASS_$_NSConstantString" : 1692 "_NSConstantStringClassReference"); 1693 // Decay array -> ptr 1694 NSConstantStringClassRef = 1695 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1696 } 1697 1698 QualType NSTy = getContext().getNSConstantStringType(); 1699 1700 const llvm::StructType *STy = 1701 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1702 1703 std::vector<llvm::Constant*> Fields(3); 1704 1705 // Class pointer. 1706 Fields[0] = NSConstantStringClassRef; 1707 1708 // String pointer. 1709 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1710 1711 llvm::GlobalValue::LinkageTypes Linkage; 1712 bool isConstant; 1713 if (isUTF16) { 1714 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1715 Linkage = llvm::GlobalValue::InternalLinkage; 1716 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1717 // does make plain ascii ones writable. 1718 isConstant = true; 1719 } else { 1720 Linkage = llvm::GlobalValue::PrivateLinkage; 1721 isConstant = !Features.WritableStrings; 1722 } 1723 1724 llvm::GlobalVariable *GV = 1725 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1726 ".str"); 1727 if (isUTF16) { 1728 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1729 GV->setAlignment(Align.getQuantity()); 1730 } 1731 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1732 1733 // String length. 1734 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1735 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1736 1737 // The struct. 1738 C = llvm::ConstantStruct::get(STy, Fields); 1739 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1740 llvm::GlobalVariable::PrivateLinkage, C, 1741 "_unnamed_nsstring_"); 1742 // FIXME. Fix section. 1743 if (const char *Sect = 1744 Features.ObjCNonFragileABI 1745 ? getContext().Target.getNSStringNonFragileABISection() 1746 : getContext().Target.getNSStringSection()) 1747 GV->setSection(Sect); 1748 Entry.setValue(GV); 1749 1750 return GV; 1751 } 1752 1753 /// GetStringForStringLiteral - Return the appropriate bytes for a 1754 /// string literal, properly padded to match the literal type. 1755 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1756 const char *StrData = E->getStrData(); 1757 unsigned Len = E->getByteLength(); 1758 1759 const ConstantArrayType *CAT = 1760 getContext().getAsConstantArrayType(E->getType()); 1761 assert(CAT && "String isn't pointer or array!"); 1762 1763 // Resize the string to the right size. 1764 std::string Str(StrData, StrData+Len); 1765 uint64_t RealLen = CAT->getSize().getZExtValue(); 1766 1767 if (E->isWide()) 1768 RealLen *= getContext().Target.getWCharWidth()/8; 1769 1770 Str.resize(RealLen, '\0'); 1771 1772 return Str; 1773 } 1774 1775 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1776 /// constant array for the given string literal. 1777 llvm::Constant * 1778 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1779 // FIXME: This can be more efficient. 1780 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1781 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1782 if (S->isWide()) { 1783 llvm::Type *DestTy = 1784 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1785 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1786 } 1787 return C; 1788 } 1789 1790 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1791 /// array for the given ObjCEncodeExpr node. 1792 llvm::Constant * 1793 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1794 std::string Str; 1795 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1796 1797 return GetAddrOfConstantCString(Str); 1798 } 1799 1800 1801 /// GenerateWritableString -- Creates storage for a string literal. 1802 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1803 bool constant, 1804 CodeGenModule &CGM, 1805 const char *GlobalName) { 1806 // Create Constant for this string literal. Don't add a '\0'. 1807 llvm::Constant *C = 1808 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1809 1810 // Create a global variable for this string 1811 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1812 llvm::GlobalValue::PrivateLinkage, 1813 C, GlobalName); 1814 } 1815 1816 /// GetAddrOfConstantString - Returns a pointer to a character array 1817 /// containing the literal. This contents are exactly that of the 1818 /// given string, i.e. it will not be null terminated automatically; 1819 /// see GetAddrOfConstantCString. Note that whether the result is 1820 /// actually a pointer to an LLVM constant depends on 1821 /// Feature.WriteableStrings. 1822 /// 1823 /// The result has pointer to array type. 1824 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1825 const char *GlobalName) { 1826 bool IsConstant = !Features.WritableStrings; 1827 1828 // Get the default prefix if a name wasn't specified. 1829 if (!GlobalName) 1830 GlobalName = ".str"; 1831 1832 // Don't share any string literals if strings aren't constant. 1833 if (!IsConstant) 1834 return GenerateStringLiteral(str, false, *this, GlobalName); 1835 1836 llvm::StringMapEntry<llvm::Constant *> &Entry = 1837 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1838 1839 if (Entry.getValue()) 1840 return Entry.getValue(); 1841 1842 // Create a global variable for this. 1843 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1844 Entry.setValue(C); 1845 return C; 1846 } 1847 1848 /// GetAddrOfConstantCString - Returns a pointer to a character 1849 /// array containing the literal and a terminating '\-' 1850 /// character. The result has pointer to array type. 1851 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1852 const char *GlobalName){ 1853 return GetAddrOfConstantString(str + '\0', GlobalName); 1854 } 1855 1856 /// EmitObjCPropertyImplementations - Emit information for synthesized 1857 /// properties for an implementation. 1858 void CodeGenModule::EmitObjCPropertyImplementations(const 1859 ObjCImplementationDecl *D) { 1860 for (ObjCImplementationDecl::propimpl_iterator 1861 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1862 ObjCPropertyImplDecl *PID = *i; 1863 1864 // Dynamic is just for type-checking. 1865 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1866 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1867 1868 // Determine which methods need to be implemented, some may have 1869 // been overridden. Note that ::isSynthesized is not the method 1870 // we want, that just indicates if the decl came from a 1871 // property. What we want to know is if the method is defined in 1872 // this implementation. 1873 if (!D->getInstanceMethod(PD->getGetterName())) 1874 CodeGenFunction(*this).GenerateObjCGetter( 1875 const_cast<ObjCImplementationDecl *>(D), PID); 1876 if (!PD->isReadOnly() && 1877 !D->getInstanceMethod(PD->getSetterName())) 1878 CodeGenFunction(*this).GenerateObjCSetter( 1879 const_cast<ObjCImplementationDecl *>(D), PID); 1880 } 1881 } 1882 } 1883 1884 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1885 /// for an implementation. 1886 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1887 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1888 return; 1889 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1890 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1891 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1892 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1893 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1894 D->getLocation(), 1895 D->getLocation(), cxxSelector, 1896 getContext().VoidTy, 0, 1897 DC, true, false, true, 1898 ObjCMethodDecl::Required); 1899 D->addInstanceMethod(DTORMethod); 1900 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1901 1902 II = &getContext().Idents.get(".cxx_construct"); 1903 cxxSelector = getContext().Selectors.getSelector(0, &II); 1904 // The constructor returns 'self'. 1905 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1906 D->getLocation(), 1907 D->getLocation(), cxxSelector, 1908 getContext().getObjCIdType(), 0, 1909 DC, true, false, true, 1910 ObjCMethodDecl::Required); 1911 D->addInstanceMethod(CTORMethod); 1912 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1913 1914 1915 } 1916 1917 /// EmitNamespace - Emit all declarations in a namespace. 1918 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1919 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1920 I != E; ++I) 1921 EmitTopLevelDecl(*I); 1922 } 1923 1924 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1925 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1926 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1927 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1928 ErrorUnsupported(LSD, "linkage spec"); 1929 return; 1930 } 1931 1932 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1933 I != E; ++I) 1934 EmitTopLevelDecl(*I); 1935 } 1936 1937 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1938 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1939 // If an error has occurred, stop code generation, but continue 1940 // parsing and semantic analysis (to ensure all warnings and errors 1941 // are emitted). 1942 if (Diags.hasErrorOccurred()) 1943 return; 1944 1945 // Ignore dependent declarations. 1946 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1947 return; 1948 1949 switch (D->getKind()) { 1950 case Decl::CXXConversion: 1951 case Decl::CXXMethod: 1952 case Decl::Function: 1953 // Skip function templates 1954 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1955 return; 1956 1957 EmitGlobal(cast<FunctionDecl>(D)); 1958 break; 1959 1960 case Decl::Var: 1961 EmitGlobal(cast<VarDecl>(D)); 1962 break; 1963 1964 // C++ Decls 1965 case Decl::Namespace: 1966 EmitNamespace(cast<NamespaceDecl>(D)); 1967 break; 1968 // No code generation needed. 1969 case Decl::UsingShadow: 1970 case Decl::Using: 1971 case Decl::UsingDirective: 1972 case Decl::ClassTemplate: 1973 case Decl::FunctionTemplate: 1974 case Decl::NamespaceAlias: 1975 break; 1976 case Decl::CXXConstructor: 1977 // Skip function templates 1978 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1979 return; 1980 1981 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1982 break; 1983 case Decl::CXXDestructor: 1984 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1985 break; 1986 1987 case Decl::StaticAssert: 1988 // Nothing to do. 1989 break; 1990 1991 // Objective-C Decls 1992 1993 // Forward declarations, no (immediate) code generation. 1994 case Decl::ObjCClass: 1995 case Decl::ObjCForwardProtocol: 1996 case Decl::ObjCCategory: 1997 case Decl::ObjCInterface: 1998 break; 1999 2000 case Decl::ObjCProtocol: 2001 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2002 break; 2003 2004 case Decl::ObjCCategoryImpl: 2005 // Categories have properties but don't support synthesize so we 2006 // can ignore them here. 2007 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2008 break; 2009 2010 case Decl::ObjCImplementation: { 2011 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2012 EmitObjCPropertyImplementations(OMD); 2013 EmitObjCIvarInitializations(OMD); 2014 Runtime->GenerateClass(OMD); 2015 break; 2016 } 2017 case Decl::ObjCMethod: { 2018 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2019 // If this is not a prototype, emit the body. 2020 if (OMD->getBody()) 2021 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2022 break; 2023 } 2024 case Decl::ObjCCompatibleAlias: 2025 // compatibility-alias is a directive and has no code gen. 2026 break; 2027 2028 case Decl::LinkageSpec: 2029 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2030 break; 2031 2032 case Decl::FileScopeAsm: { 2033 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2034 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2035 2036 const std::string &S = getModule().getModuleInlineAsm(); 2037 if (S.empty()) 2038 getModule().setModuleInlineAsm(AsmString); 2039 else 2040 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2041 break; 2042 } 2043 2044 default: 2045 // Make sure we handled everything we should, every other kind is a 2046 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2047 // function. Need to recode Decl::Kind to do that easily. 2048 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2049 } 2050 } 2051 2052 /// Turns the given pointer into a constant. 2053 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2054 const void *Ptr) { 2055 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2056 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2057 return llvm::ConstantInt::get(i64, PtrInt); 2058 } 2059 2060 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2061 llvm::NamedMDNode *&GlobalMetadata, 2062 GlobalDecl D, 2063 llvm::GlobalValue *Addr) { 2064 if (!GlobalMetadata) 2065 GlobalMetadata = 2066 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2067 2068 // TODO: should we report variant information for ctors/dtors? 2069 llvm::Value *Ops[] = { 2070 Addr, 2071 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2072 }; 2073 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2074 } 2075 2076 /// Emits metadata nodes associating all the global values in the 2077 /// current module with the Decls they came from. This is useful for 2078 /// projects using IR gen as a subroutine. 2079 /// 2080 /// Since there's currently no way to associate an MDNode directly 2081 /// with an llvm::GlobalValue, we create a global named metadata 2082 /// with the name 'clang.global.decl.ptrs'. 2083 void CodeGenModule::EmitDeclMetadata() { 2084 llvm::NamedMDNode *GlobalMetadata = 0; 2085 2086 // StaticLocalDeclMap 2087 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2088 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2089 I != E; ++I) { 2090 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2091 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2092 } 2093 } 2094 2095 /// Emits metadata nodes for all the local variables in the current 2096 /// function. 2097 void CodeGenFunction::EmitDeclMetadata() { 2098 if (LocalDeclMap.empty()) return; 2099 2100 llvm::LLVMContext &Context = getLLVMContext(); 2101 2102 // Find the unique metadata ID for this name. 2103 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2104 2105 llvm::NamedMDNode *GlobalMetadata = 0; 2106 2107 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2108 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2109 const Decl *D = I->first; 2110 llvm::Value *Addr = I->second; 2111 2112 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2113 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2114 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2115 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2116 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2117 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2118 } 2119 } 2120 } 2121