xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a602f76a2406cc3edd6b297ede3583b26513a34c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
127   PointerAlignInBytes =
128       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
129           .getQuantity();
130   SizeSizeInBytes =
131     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
132   IntAlignInBytes =
133     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
134   CharTy =
135     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
136   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
137   IntPtrTy = llvm::IntegerType::get(LLVMContext,
138     C.getTargetInfo().getMaxPointerWidth());
139   Int8PtrTy = Int8Ty->getPointerTo(0);
140   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
141   const llvm::DataLayout &DL = M.getDataLayout();
142   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
143   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
144   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
145 
146   // Build C++20 Module initializers.
147   // TODO: Add Microsoft here once we know the mangling required for the
148   // initializers.
149   CXX20ModuleInits =
150       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
151                                        ItaniumMangleContext::MK_Itanium;
152 
153   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
154 
155   if (LangOpts.ObjC)
156     createObjCRuntime();
157   if (LangOpts.OpenCL)
158     createOpenCLRuntime();
159   if (LangOpts.OpenMP)
160     createOpenMPRuntime();
161   if (LangOpts.CUDA)
162     createCUDARuntime();
163   if (LangOpts.HLSL)
164     createHLSLRuntime();
165 
166   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
167   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
168       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
169     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
170                                getCXXABI().getMangleContext()));
171 
172   // If debug info or coverage generation is enabled, create the CGDebugInfo
173   // object.
174   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
175       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
176     DebugInfo.reset(new CGDebugInfo(*this));
177 
178   Block.GlobalUniqueCount = 0;
179 
180   if (C.getLangOpts().ObjC)
181     ObjCData.reset(new ObjCEntrypoints());
182 
183   if (CodeGenOpts.hasProfileClangUse()) {
184     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
185         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
186     // We're checking for profile read errors in CompilerInvocation, so if
187     // there was an error it should've already been caught. If it hasn't been
188     // somehow, trip an assertion.
189     assert(ReaderOrErr);
190     PGOReader = std::move(ReaderOrErr.get());
191   }
192 
193   // If coverage mapping generation is enabled, create the
194   // CoverageMappingModuleGen object.
195   if (CodeGenOpts.CoverageMapping)
196     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
197 
198   // Generate the module name hash here if needed.
199   if (CodeGenOpts.UniqueInternalLinkageNames &&
200       !getModule().getSourceFileName().empty()) {
201     std::string Path = getModule().getSourceFileName();
202     // Check if a path substitution is needed from the MacroPrefixMap.
203     for (const auto &Entry : LangOpts.MacroPrefixMap)
204       if (Path.rfind(Entry.first, 0) != std::string::npos) {
205         Path = Entry.second + Path.substr(Entry.first.size());
206         break;
207       }
208     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
209   }
210 }
211 
212 CodeGenModule::~CodeGenModule() {}
213 
214 void CodeGenModule::createObjCRuntime() {
215   // This is just isGNUFamily(), but we want to force implementors of
216   // new ABIs to decide how best to do this.
217   switch (LangOpts.ObjCRuntime.getKind()) {
218   case ObjCRuntime::GNUstep:
219   case ObjCRuntime::GCC:
220   case ObjCRuntime::ObjFW:
221     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
222     return;
223 
224   case ObjCRuntime::FragileMacOSX:
225   case ObjCRuntime::MacOSX:
226   case ObjCRuntime::iOS:
227   case ObjCRuntime::WatchOS:
228     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
229     return;
230   }
231   llvm_unreachable("bad runtime kind");
232 }
233 
234 void CodeGenModule::createOpenCLRuntime() {
235   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
236 }
237 
238 void CodeGenModule::createOpenMPRuntime() {
239   // Select a specialized code generation class based on the target, if any.
240   // If it does not exist use the default implementation.
241   switch (getTriple().getArch()) {
242   case llvm::Triple::nvptx:
243   case llvm::Triple::nvptx64:
244   case llvm::Triple::amdgcn:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
248     break;
249   default:
250     if (LangOpts.OpenMPSimd)
251       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
252     else
253       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
254     break;
255   }
256 }
257 
258 void CodeGenModule::createCUDARuntime() {
259   CUDARuntime.reset(CreateNVCUDARuntime(*this));
260 }
261 
262 void CodeGenModule::createHLSLRuntime() {
263   HLSLRuntime.reset(new CGHLSLRuntime(*this));
264 }
265 
266 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
267   Replacements[Name] = C;
268 }
269 
270 void CodeGenModule::applyReplacements() {
271   for (auto &I : Replacements) {
272     StringRef MangledName = I.first();
273     llvm::Constant *Replacement = I.second;
274     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
275     if (!Entry)
276       continue;
277     auto *OldF = cast<llvm::Function>(Entry);
278     auto *NewF = dyn_cast<llvm::Function>(Replacement);
279     if (!NewF) {
280       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
281         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
282       } else {
283         auto *CE = cast<llvm::ConstantExpr>(Replacement);
284         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
285                CE->getOpcode() == llvm::Instruction::GetElementPtr);
286         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
287       }
288     }
289 
290     // Replace old with new, but keep the old order.
291     OldF->replaceAllUsesWith(Replacement);
292     if (NewF) {
293       NewF->removeFromParent();
294       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
295                                                        NewF);
296     }
297     OldF->eraseFromParent();
298   }
299 }
300 
301 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
302   GlobalValReplacements.push_back(std::make_pair(GV, C));
303 }
304 
305 void CodeGenModule::applyGlobalValReplacements() {
306   for (auto &I : GlobalValReplacements) {
307     llvm::GlobalValue *GV = I.first;
308     llvm::Constant *C = I.second;
309 
310     GV->replaceAllUsesWith(C);
311     GV->eraseFromParent();
312   }
313 }
314 
315 // This is only used in aliases that we created and we know they have a
316 // linear structure.
317 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
318   const llvm::Constant *C;
319   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
320     C = GA->getAliasee();
321   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
322     C = GI->getResolver();
323   else
324     return GV;
325 
326   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
327   if (!AliaseeGV)
328     return nullptr;
329 
330   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
331   if (FinalGV == GV)
332     return nullptr;
333 
334   return FinalGV;
335 }
336 
337 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
338                                SourceLocation Location, bool IsIFunc,
339                                const llvm::GlobalValue *Alias,
340                                const llvm::GlobalValue *&GV) {
341   GV = getAliasedGlobal(Alias);
342   if (!GV) {
343     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
344     return false;
345   }
346 
347   if (GV->isDeclaration()) {
348     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
349     return false;
350   }
351 
352   if (IsIFunc) {
353     // Check resolver function type.
354     const auto *F = dyn_cast<llvm::Function>(GV);
355     if (!F) {
356       Diags.Report(Location, diag::err_alias_to_undefined)
357           << IsIFunc << IsIFunc;
358       return false;
359     }
360 
361     llvm::FunctionType *FTy = F->getFunctionType();
362     if (!FTy->getReturnType()->isPointerTy()) {
363       Diags.Report(Location, diag::err_ifunc_resolver_return);
364       return false;
365     }
366   }
367 
368   return true;
369 }
370 
371 void CodeGenModule::checkAliases() {
372   // Check if the constructed aliases are well formed. It is really unfortunate
373   // that we have to do this in CodeGen, but we only construct mangled names
374   // and aliases during codegen.
375   bool Error = false;
376   DiagnosticsEngine &Diags = getDiags();
377   for (const GlobalDecl &GD : Aliases) {
378     const auto *D = cast<ValueDecl>(GD.getDecl());
379     SourceLocation Location;
380     bool IsIFunc = D->hasAttr<IFuncAttr>();
381     if (const Attr *A = D->getDefiningAttr())
382       Location = A->getLocation();
383     else
384       llvm_unreachable("Not an alias or ifunc?");
385 
386     StringRef MangledName = getMangledName(GD);
387     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
388     const llvm::GlobalValue *GV = nullptr;
389     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
390       Error = true;
391       continue;
392     }
393 
394     llvm::Constant *Aliasee =
395         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
396                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
397 
398     llvm::GlobalValue *AliaseeGV;
399     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
400       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
401     else
402       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
403 
404     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
405       StringRef AliasSection = SA->getName();
406       if (AliasSection != AliaseeGV->getSection())
407         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
408             << AliasSection << IsIFunc << IsIFunc;
409     }
410 
411     // We have to handle alias to weak aliases in here. LLVM itself disallows
412     // this since the object semantics would not match the IL one. For
413     // compatibility with gcc we implement it by just pointing the alias
414     // to its aliasee's aliasee. We also warn, since the user is probably
415     // expecting the link to be weak.
416     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
417       if (GA->isInterposable()) {
418         Diags.Report(Location, diag::warn_alias_to_weak_alias)
419             << GV->getName() << GA->getName() << IsIFunc;
420         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
421             GA->getAliasee(), Alias->getType());
422 
423         if (IsIFunc)
424           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
425         else
426           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
427       }
428     }
429   }
430   if (!Error)
431     return;
432 
433   for (const GlobalDecl &GD : Aliases) {
434     StringRef MangledName = getMangledName(GD);
435     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
436     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
437     Alias->eraseFromParent();
438   }
439 }
440 
441 void CodeGenModule::clear() {
442   DeferredDeclsToEmit.clear();
443   EmittedDeferredDecls.clear();
444   if (OpenMPRuntime)
445     OpenMPRuntime->clear();
446 }
447 
448 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
449                                        StringRef MainFile) {
450   if (!hasDiagnostics())
451     return;
452   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
453     if (MainFile.empty())
454       MainFile = "<stdin>";
455     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
456   } else {
457     if (Mismatched > 0)
458       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
459 
460     if (Missing > 0)
461       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
462   }
463 }
464 
465 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
466                                              llvm::Module &M) {
467   if (!LO.VisibilityFromDLLStorageClass)
468     return;
469 
470   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
471       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
472   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
473       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
474   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
476   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(
478           LO.getExternDeclNoDLLStorageClassVisibility());
479 
480   for (llvm::GlobalValue &GV : M.global_values()) {
481     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
482       continue;
483 
484     // Reset DSO locality before setting the visibility. This removes
485     // any effects that visibility options and annotations may have
486     // had on the DSO locality. Setting the visibility will implicitly set
487     // appropriate globals to DSO Local; however, this will be pessimistic
488     // w.r.t. to the normal compiler IRGen.
489     GV.setDSOLocal(false);
490 
491     if (GV.isDeclarationForLinker()) {
492       GV.setVisibility(GV.getDLLStorageClass() ==
493                                llvm::GlobalValue::DLLImportStorageClass
494                            ? ExternDeclDLLImportVisibility
495                            : ExternDeclNoDLLStorageClassVisibility);
496     } else {
497       GV.setVisibility(GV.getDLLStorageClass() ==
498                                llvm::GlobalValue::DLLExportStorageClass
499                            ? DLLExportVisibility
500                            : NoDLLStorageClassVisibility);
501     }
502 
503     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
504   }
505 }
506 
507 void CodeGenModule::Release() {
508   Module *Primary = getContext().getModuleForCodeGen();
509   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
510     EmitModuleInitializers(Primary);
511   EmitDeferred();
512   DeferredDecls.insert(EmittedDeferredDecls.begin(),
513                        EmittedDeferredDecls.end());
514   EmittedDeferredDecls.clear();
515   EmitVTablesOpportunistically();
516   applyGlobalValReplacements();
517   applyReplacements();
518   emitMultiVersionFunctions();
519   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
520     EmitCXXModuleInitFunc(Primary);
521   else
522     EmitCXXGlobalInitFunc();
523   EmitCXXGlobalCleanUpFunc();
524   registerGlobalDtorsWithAtExit();
525   EmitCXXThreadLocalInitFunc();
526   if (ObjCRuntime)
527     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
528       AddGlobalCtor(ObjCInitFunction);
529   if (Context.getLangOpts().CUDA && CUDARuntime) {
530     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
531       AddGlobalCtor(CudaCtorFunction);
532   }
533   if (OpenMPRuntime) {
534     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
535             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
536       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
537     }
538     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
539     OpenMPRuntime->clear();
540   }
541   if (PGOReader) {
542     getModule().setProfileSummary(
543         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
544         llvm::ProfileSummary::PSK_Instr);
545     if (PGOStats.hasDiagnostics())
546       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
547   }
548   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
549     return L.LexOrder < R.LexOrder;
550   });
551   EmitCtorList(GlobalCtors, "llvm.global_ctors");
552   EmitCtorList(GlobalDtors, "llvm.global_dtors");
553   EmitGlobalAnnotations();
554   EmitStaticExternCAliases();
555   checkAliases();
556   EmitDeferredUnusedCoverageMappings();
557   CodeGenPGO(*this).setValueProfilingFlag(getModule());
558   if (CoverageMapping)
559     CoverageMapping->emit();
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     CodeGenFunction(*this).EmitCfiCheckFail();
562     CodeGenFunction(*this).EmitCfiCheckStub();
563   }
564   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
565     finalizeKCFITypes();
566   emitAtAvailableLinkGuard();
567   if (Context.getTargetInfo().getTriple().isWasm())
568     EmitMainVoidAlias();
569 
570   if (getTriple().isAMDGPU()) {
571     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
572     // preserve ASAN functions in bitcode libraries.
573     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
574       auto *FT = llvm::FunctionType::get(VoidTy, {});
575       auto *F = llvm::Function::Create(
576           FT, llvm::GlobalValue::ExternalLinkage,
577           "__amdgpu_device_library_preserve_asan_functions", &getModule());
578       auto *Var = new llvm::GlobalVariable(
579           getModule(), FT->getPointerTo(),
580           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
581           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
582           llvm::GlobalVariable::NotThreadLocal);
583       addCompilerUsedGlobal(Var);
584     }
585     // Emit amdgpu_code_object_version module flag, which is code object version
586     // times 100.
587     if (getTarget().getTargetOpts().CodeObjectVersion !=
588         TargetOptions::COV_None) {
589       getModule().addModuleFlag(llvm::Module::Error,
590                                 "amdgpu_code_object_version",
591                                 getTarget().getTargetOpts().CodeObjectVersion);
592     }
593   }
594 
595   // Emit a global array containing all external kernels or device variables
596   // used by host functions and mark it as used for CUDA/HIP. This is necessary
597   // to get kernels or device variables in archives linked in even if these
598   // kernels or device variables are only used in host functions.
599   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
600     SmallVector<llvm::Constant *, 8> UsedArray;
601     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
602       GlobalDecl GD;
603       if (auto *FD = dyn_cast<FunctionDecl>(D))
604         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
605       else
606         GD = GlobalDecl(D);
607       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
608           GetAddrOfGlobal(GD), Int8PtrTy));
609     }
610 
611     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
612 
613     auto *GV = new llvm::GlobalVariable(
614         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
615         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
616     addCompilerUsedGlobal(GV);
617   }
618 
619   emitLLVMUsed();
620   if (SanStats)
621     SanStats->finish();
622 
623   if (CodeGenOpts.Autolink &&
624       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
625     EmitModuleLinkOptions();
626   }
627 
628   // On ELF we pass the dependent library specifiers directly to the linker
629   // without manipulating them. This is in contrast to other platforms where
630   // they are mapped to a specific linker option by the compiler. This
631   // difference is a result of the greater variety of ELF linkers and the fact
632   // that ELF linkers tend to handle libraries in a more complicated fashion
633   // than on other platforms. This forces us to defer handling the dependent
634   // libs to the linker.
635   //
636   // CUDA/HIP device and host libraries are different. Currently there is no
637   // way to differentiate dependent libraries for host or device. Existing
638   // usage of #pragma comment(lib, *) is intended for host libraries on
639   // Windows. Therefore emit llvm.dependent-libraries only for host.
640   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
641     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
642     for (auto *MD : ELFDependentLibraries)
643       NMD->addOperand(MD);
644   }
645 
646   // Record mregparm value now so it is visible through rest of codegen.
647   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
648     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
649                               CodeGenOpts.NumRegisterParameters);
650 
651   if (CodeGenOpts.DwarfVersion) {
652     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
653                               CodeGenOpts.DwarfVersion);
654   }
655 
656   if (CodeGenOpts.Dwarf64)
657     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
658 
659   if (Context.getLangOpts().SemanticInterposition)
660     // Require various optimization to respect semantic interposition.
661     getModule().setSemanticInterposition(true);
662 
663   if (CodeGenOpts.EmitCodeView) {
664     // Indicate that we want CodeView in the metadata.
665     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
666   }
667   if (CodeGenOpts.CodeViewGHash) {
668     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
669   }
670   if (CodeGenOpts.ControlFlowGuard) {
671     // Function ID tables and checks for Control Flow Guard (cfguard=2).
672     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
673   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
674     // Function ID tables for Control Flow Guard (cfguard=1).
675     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
676   }
677   if (CodeGenOpts.EHContGuard) {
678     // Function ID tables for EH Continuation Guard.
679     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
680   }
681   if (Context.getLangOpts().Kernel) {
682     // Note if we are compiling with /kernel.
683     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
684   }
685   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
686     // We don't support LTO with 2 with different StrictVTablePointers
687     // FIXME: we could support it by stripping all the information introduced
688     // by StrictVTablePointers.
689 
690     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
691 
692     llvm::Metadata *Ops[2] = {
693               llvm::MDString::get(VMContext, "StrictVTablePointers"),
694               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
695                   llvm::Type::getInt32Ty(VMContext), 1))};
696 
697     getModule().addModuleFlag(llvm::Module::Require,
698                               "StrictVTablePointersRequirement",
699                               llvm::MDNode::get(VMContext, Ops));
700   }
701   if (getModuleDebugInfo())
702     // We support a single version in the linked module. The LLVM
703     // parser will drop debug info with a different version number
704     // (and warn about it, too).
705     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
706                               llvm::DEBUG_METADATA_VERSION);
707 
708   // We need to record the widths of enums and wchar_t, so that we can generate
709   // the correct build attributes in the ARM backend. wchar_size is also used by
710   // TargetLibraryInfo.
711   uint64_t WCharWidth =
712       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
713   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
714 
715   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
716   if (   Arch == llvm::Triple::arm
717       || Arch == llvm::Triple::armeb
718       || Arch == llvm::Triple::thumb
719       || Arch == llvm::Triple::thumbeb) {
720     // The minimum width of an enum in bytes
721     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
722     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
723   }
724 
725   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
726     StringRef ABIStr = Target.getABI();
727     llvm::LLVMContext &Ctx = TheModule.getContext();
728     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
729                               llvm::MDString::get(Ctx, ABIStr));
730   }
731 
732   if (CodeGenOpts.SanitizeCfiCrossDso) {
733     // Indicate that we want cross-DSO control flow integrity checks.
734     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
735   }
736 
737   if (CodeGenOpts.WholeProgramVTables) {
738     // Indicate whether VFE was enabled for this module, so that the
739     // vcall_visibility metadata added under whole program vtables is handled
740     // appropriately in the optimizer.
741     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
742                               CodeGenOpts.VirtualFunctionElimination);
743   }
744 
745   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
746     getModule().addModuleFlag(llvm::Module::Override,
747                               "CFI Canonical Jump Tables",
748                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
749   }
750 
751   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
752     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
753 
754   if (CodeGenOpts.CFProtectionReturn &&
755       Target.checkCFProtectionReturnSupported(getDiags())) {
756     // Indicate that we want to instrument return control flow protection.
757     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
758                               1);
759   }
760 
761   if (CodeGenOpts.CFProtectionBranch &&
762       Target.checkCFProtectionBranchSupported(getDiags())) {
763     // Indicate that we want to instrument branch control flow protection.
764     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
765                               1);
766   }
767 
768   if (CodeGenOpts.IBTSeal)
769     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
770 
771   if (CodeGenOpts.FunctionReturnThunks)
772     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
773 
774   if (CodeGenOpts.IndirectBranchCSPrefix)
775     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
776 
777   // Add module metadata for return address signing (ignoring
778   // non-leaf/all) and stack tagging. These are actually turned on by function
779   // attributes, but we use module metadata to emit build attributes. This is
780   // needed for LTO, where the function attributes are inside bitcode
781   // serialised into a global variable by the time build attributes are
782   // emitted, so we can't access them. LTO objects could be compiled with
783   // different flags therefore module flags are set to "Min" behavior to achieve
784   // the same end result of the normal build where e.g BTI is off if any object
785   // doesn't support it.
786   if (Context.getTargetInfo().hasFeature("ptrauth") &&
787       LangOpts.getSignReturnAddressScope() !=
788           LangOptions::SignReturnAddressScopeKind::None)
789     getModule().addModuleFlag(llvm::Module::Override,
790                               "sign-return-address-buildattr", 1);
791   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
792     getModule().addModuleFlag(llvm::Module::Override,
793                               "tag-stack-memory-buildattr", 1);
794 
795   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
796       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
797       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
798       Arch == llvm::Triple::aarch64_be) {
799     if (LangOpts.BranchTargetEnforcement)
800       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
801                                 1);
802     if (LangOpts.hasSignReturnAddress())
803       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
804     if (LangOpts.isSignReturnAddressScopeAll())
805       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
806                                 1);
807     if (!LangOpts.isSignReturnAddressWithAKey())
808       getModule().addModuleFlag(llvm::Module::Min,
809                                 "sign-return-address-with-bkey", 1);
810   }
811 
812   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
813     llvm::LLVMContext &Ctx = TheModule.getContext();
814     getModule().addModuleFlag(
815         llvm::Module::Error, "MemProfProfileFilename",
816         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
817   }
818 
819   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
820     // Indicate whether __nvvm_reflect should be configured to flush denormal
821     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
822     // property.)
823     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
824                               CodeGenOpts.FP32DenormalMode.Output !=
825                                   llvm::DenormalMode::IEEE);
826   }
827 
828   if (LangOpts.EHAsynch)
829     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
830 
831   // Indicate whether this Module was compiled with -fopenmp
832   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
833     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
834   if (getLangOpts().OpenMPIsDevice)
835     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
836                               LangOpts.OpenMP);
837 
838   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
839   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
840     EmitOpenCLMetadata();
841     // Emit SPIR version.
842     if (getTriple().isSPIR()) {
843       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
844       // opencl.spir.version named metadata.
845       // C++ for OpenCL has a distinct mapping for version compatibility with
846       // OpenCL.
847       auto Version = LangOpts.getOpenCLCompatibleVersion();
848       llvm::Metadata *SPIRVerElts[] = {
849           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
850               Int32Ty, Version / 100)),
851           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
852               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
853       llvm::NamedMDNode *SPIRVerMD =
854           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
855       llvm::LLVMContext &Ctx = TheModule.getContext();
856       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
857     }
858   }
859 
860   // HLSL related end of code gen work items.
861   if (LangOpts.HLSL)
862     getHLSLRuntime().finishCodeGen();
863 
864   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
865     assert(PLevel < 3 && "Invalid PIC Level");
866     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
867     if (Context.getLangOpts().PIE)
868       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
869   }
870 
871   if (getCodeGenOpts().CodeModel.size() > 0) {
872     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
873                   .Case("tiny", llvm::CodeModel::Tiny)
874                   .Case("small", llvm::CodeModel::Small)
875                   .Case("kernel", llvm::CodeModel::Kernel)
876                   .Case("medium", llvm::CodeModel::Medium)
877                   .Case("large", llvm::CodeModel::Large)
878                   .Default(~0u);
879     if (CM != ~0u) {
880       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
881       getModule().setCodeModel(codeModel);
882     }
883   }
884 
885   if (CodeGenOpts.NoPLT)
886     getModule().setRtLibUseGOT();
887   if (CodeGenOpts.UnwindTables)
888     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
889 
890   switch (CodeGenOpts.getFramePointer()) {
891   case CodeGenOptions::FramePointerKind::None:
892     // 0 ("none") is the default.
893     break;
894   case CodeGenOptions::FramePointerKind::NonLeaf:
895     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
896     break;
897   case CodeGenOptions::FramePointerKind::All:
898     getModule().setFramePointer(llvm::FramePointerKind::All);
899     break;
900   }
901 
902   SimplifyPersonality();
903 
904   if (getCodeGenOpts().EmitDeclMetadata)
905     EmitDeclMetadata();
906 
907   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
908     EmitCoverageFile();
909 
910   if (CGDebugInfo *DI = getModuleDebugInfo())
911     DI->finalize();
912 
913   if (getCodeGenOpts().EmitVersionIdentMetadata)
914     EmitVersionIdentMetadata();
915 
916   if (!getCodeGenOpts().RecordCommandLine.empty())
917     EmitCommandLineMetadata();
918 
919   if (!getCodeGenOpts().StackProtectorGuard.empty())
920     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
921   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
922     getModule().setStackProtectorGuardReg(
923         getCodeGenOpts().StackProtectorGuardReg);
924   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
925     getModule().setStackProtectorGuardSymbol(
926         getCodeGenOpts().StackProtectorGuardSymbol);
927   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
928     getModule().setStackProtectorGuardOffset(
929         getCodeGenOpts().StackProtectorGuardOffset);
930   if (getCodeGenOpts().StackAlignment)
931     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
932   if (getCodeGenOpts().SkipRaxSetup)
933     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
934 
935   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
936 
937   EmitBackendOptionsMetadata(getCodeGenOpts());
938 
939   // If there is device offloading code embed it in the host now.
940   EmbedObject(&getModule(), CodeGenOpts, getDiags());
941 
942   // Set visibility from DLL storage class
943   // We do this at the end of LLVM IR generation; after any operation
944   // that might affect the DLL storage class or the visibility, and
945   // before anything that might act on these.
946   setVisibilityFromDLLStorageClass(LangOpts, getModule());
947 }
948 
949 void CodeGenModule::EmitOpenCLMetadata() {
950   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
951   // opencl.ocl.version named metadata node.
952   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
953   auto Version = LangOpts.getOpenCLCompatibleVersion();
954   llvm::Metadata *OCLVerElts[] = {
955       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
956           Int32Ty, Version / 100)),
957       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
958           Int32Ty, (Version % 100) / 10))};
959   llvm::NamedMDNode *OCLVerMD =
960       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
961   llvm::LLVMContext &Ctx = TheModule.getContext();
962   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
963 }
964 
965 void CodeGenModule::EmitBackendOptionsMetadata(
966     const CodeGenOptions CodeGenOpts) {
967   if (getTriple().isRISCV()) {
968     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
969                               CodeGenOpts.SmallDataLimit);
970   }
971 }
972 
973 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
974   // Make sure that this type is translated.
975   Types.UpdateCompletedType(TD);
976 }
977 
978 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
979   // Make sure that this type is translated.
980   Types.RefreshTypeCacheForClass(RD);
981 }
982 
983 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
984   if (!TBAA)
985     return nullptr;
986   return TBAA->getTypeInfo(QTy);
987 }
988 
989 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
990   if (!TBAA)
991     return TBAAAccessInfo();
992   if (getLangOpts().CUDAIsDevice) {
993     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
994     // access info.
995     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
996       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
997           nullptr)
998         return TBAAAccessInfo();
999     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1000       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1001           nullptr)
1002         return TBAAAccessInfo();
1003     }
1004   }
1005   return TBAA->getAccessInfo(AccessType);
1006 }
1007 
1008 TBAAAccessInfo
1009 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1010   if (!TBAA)
1011     return TBAAAccessInfo();
1012   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1013 }
1014 
1015 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1016   if (!TBAA)
1017     return nullptr;
1018   return TBAA->getTBAAStructInfo(QTy);
1019 }
1020 
1021 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1022   if (!TBAA)
1023     return nullptr;
1024   return TBAA->getBaseTypeInfo(QTy);
1025 }
1026 
1027 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1028   if (!TBAA)
1029     return nullptr;
1030   return TBAA->getAccessTagInfo(Info);
1031 }
1032 
1033 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1034                                                    TBAAAccessInfo TargetInfo) {
1035   if (!TBAA)
1036     return TBAAAccessInfo();
1037   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1038 }
1039 
1040 TBAAAccessInfo
1041 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1042                                                    TBAAAccessInfo InfoB) {
1043   if (!TBAA)
1044     return TBAAAccessInfo();
1045   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1046 }
1047 
1048 TBAAAccessInfo
1049 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1050                                               TBAAAccessInfo SrcInfo) {
1051   if (!TBAA)
1052     return TBAAAccessInfo();
1053   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1054 }
1055 
1056 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1057                                                 TBAAAccessInfo TBAAInfo) {
1058   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1059     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1060 }
1061 
1062 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1063     llvm::Instruction *I, const CXXRecordDecl *RD) {
1064   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1065                  llvm::MDNode::get(getLLVMContext(), {}));
1066 }
1067 
1068 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1069   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1070   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1071 }
1072 
1073 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1074 /// specified stmt yet.
1075 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1076   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1077                                                "cannot compile this %0 yet");
1078   std::string Msg = Type;
1079   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1080       << Msg << S->getSourceRange();
1081 }
1082 
1083 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1084 /// specified decl yet.
1085 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1086   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1087                                                "cannot compile this %0 yet");
1088   std::string Msg = Type;
1089   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1090 }
1091 
1092 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1093   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1094 }
1095 
1096 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1097                                         const NamedDecl *D) const {
1098   // Internal definitions always have default visibility.
1099   if (GV->hasLocalLinkage()) {
1100     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1101     return;
1102   }
1103   if (!D)
1104     return;
1105   // Set visibility for definitions, and for declarations if requested globally
1106   // or set explicitly.
1107   LinkageInfo LV = D->getLinkageAndVisibility();
1108   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1109     // Reject incompatible dlllstorage and visibility annotations.
1110     if (!LV.isVisibilityExplicit())
1111       return;
1112     if (GV->hasDLLExportStorageClass()) {
1113       if (LV.getVisibility() == HiddenVisibility)
1114         getDiags().Report(D->getLocation(),
1115                           diag::err_hidden_visibility_dllexport);
1116     } else if (LV.getVisibility() != DefaultVisibility) {
1117       getDiags().Report(D->getLocation(),
1118                         diag::err_non_default_visibility_dllimport);
1119     }
1120     return;
1121   }
1122 
1123   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1124       !GV->isDeclarationForLinker())
1125     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1126 }
1127 
1128 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1129                                  llvm::GlobalValue *GV) {
1130   if (GV->hasLocalLinkage())
1131     return true;
1132 
1133   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1134     return true;
1135 
1136   // DLLImport explicitly marks the GV as external.
1137   if (GV->hasDLLImportStorageClass())
1138     return false;
1139 
1140   const llvm::Triple &TT = CGM.getTriple();
1141   if (TT.isWindowsGNUEnvironment()) {
1142     // In MinGW, variables without DLLImport can still be automatically
1143     // imported from a DLL by the linker; don't mark variables that
1144     // potentially could come from another DLL as DSO local.
1145 
1146     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1147     // (and this actually happens in the public interface of libstdc++), so
1148     // such variables can't be marked as DSO local. (Native TLS variables
1149     // can't be dllimported at all, though.)
1150     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1151         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1152       return false;
1153   }
1154 
1155   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1156   // remain unresolved in the link, they can be resolved to zero, which is
1157   // outside the current DSO.
1158   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1159     return false;
1160 
1161   // Every other GV is local on COFF.
1162   // Make an exception for windows OS in the triple: Some firmware builds use
1163   // *-win32-macho triples. This (accidentally?) produced windows relocations
1164   // without GOT tables in older clang versions; Keep this behaviour.
1165   // FIXME: even thread local variables?
1166   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1167     return true;
1168 
1169   // Only handle COFF and ELF for now.
1170   if (!TT.isOSBinFormatELF())
1171     return false;
1172 
1173   // If this is not an executable, don't assume anything is local.
1174   const auto &CGOpts = CGM.getCodeGenOpts();
1175   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1176   const auto &LOpts = CGM.getLangOpts();
1177   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1178     // On ELF, if -fno-semantic-interposition is specified and the target
1179     // supports local aliases, there will be neither CC1
1180     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1181     // dso_local on the function if using a local alias is preferable (can avoid
1182     // PLT indirection).
1183     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1184       return false;
1185     return !(CGM.getLangOpts().SemanticInterposition ||
1186              CGM.getLangOpts().HalfNoSemanticInterposition);
1187   }
1188 
1189   // A definition cannot be preempted from an executable.
1190   if (!GV->isDeclarationForLinker())
1191     return true;
1192 
1193   // Most PIC code sequences that assume that a symbol is local cannot produce a
1194   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1195   // depended, it seems worth it to handle it here.
1196   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1197     return false;
1198 
1199   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1200   if (TT.isPPC64())
1201     return false;
1202 
1203   if (CGOpts.DirectAccessExternalData) {
1204     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1205     // for non-thread-local variables. If the symbol is not defined in the
1206     // executable, a copy relocation will be needed at link time. dso_local is
1207     // excluded for thread-local variables because they generally don't support
1208     // copy relocations.
1209     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1210       if (!Var->isThreadLocal())
1211         return true;
1212 
1213     // -fno-pic sets dso_local on a function declaration to allow direct
1214     // accesses when taking its address (similar to a data symbol). If the
1215     // function is not defined in the executable, a canonical PLT entry will be
1216     // needed at link time. -fno-direct-access-external-data can avoid the
1217     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1218     // it could just cause trouble without providing perceptible benefits.
1219     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1220       return true;
1221   }
1222 
1223   // If we can use copy relocations we can assume it is local.
1224 
1225   // Otherwise don't assume it is local.
1226   return false;
1227 }
1228 
1229 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1230   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1231 }
1232 
1233 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1234                                           GlobalDecl GD) const {
1235   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1236   // C++ destructors have a few C++ ABI specific special cases.
1237   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1238     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1239     return;
1240   }
1241   setDLLImportDLLExport(GV, D);
1242 }
1243 
1244 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1245                                           const NamedDecl *D) const {
1246   if (D && D->isExternallyVisible()) {
1247     if (D->hasAttr<DLLImportAttr>())
1248       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1249     else if ((D->hasAttr<DLLExportAttr>() ||
1250               shouldMapVisibilityToDLLExport(D)) &&
1251              !GV->isDeclarationForLinker())
1252       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1253   }
1254 }
1255 
1256 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1257                                     GlobalDecl GD) const {
1258   setDLLImportDLLExport(GV, GD);
1259   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1260 }
1261 
1262 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1263                                     const NamedDecl *D) const {
1264   setDLLImportDLLExport(GV, D);
1265   setGVPropertiesAux(GV, D);
1266 }
1267 
1268 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1269                                        const NamedDecl *D) const {
1270   setGlobalVisibility(GV, D);
1271   setDSOLocal(GV);
1272   GV->setPartition(CodeGenOpts.SymbolPartition);
1273 }
1274 
1275 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1276   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1277       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1278       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1279       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1280       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1281 }
1282 
1283 llvm::GlobalVariable::ThreadLocalMode
1284 CodeGenModule::GetDefaultLLVMTLSModel() const {
1285   switch (CodeGenOpts.getDefaultTLSModel()) {
1286   case CodeGenOptions::GeneralDynamicTLSModel:
1287     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1288   case CodeGenOptions::LocalDynamicTLSModel:
1289     return llvm::GlobalVariable::LocalDynamicTLSModel;
1290   case CodeGenOptions::InitialExecTLSModel:
1291     return llvm::GlobalVariable::InitialExecTLSModel;
1292   case CodeGenOptions::LocalExecTLSModel:
1293     return llvm::GlobalVariable::LocalExecTLSModel;
1294   }
1295   llvm_unreachable("Invalid TLS model!");
1296 }
1297 
1298 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1299   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1300 
1301   llvm::GlobalValue::ThreadLocalMode TLM;
1302   TLM = GetDefaultLLVMTLSModel();
1303 
1304   // Override the TLS model if it is explicitly specified.
1305   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1306     TLM = GetLLVMTLSModel(Attr->getModel());
1307   }
1308 
1309   GV->setThreadLocalMode(TLM);
1310 }
1311 
1312 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1313                                           StringRef Name) {
1314   const TargetInfo &Target = CGM.getTarget();
1315   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1316 }
1317 
1318 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1319                                                  const CPUSpecificAttr *Attr,
1320                                                  unsigned CPUIndex,
1321                                                  raw_ostream &Out) {
1322   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1323   // supported.
1324   if (Attr)
1325     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1326   else if (CGM.getTarget().supportsIFunc())
1327     Out << ".resolver";
1328 }
1329 
1330 static void AppendTargetMangling(const CodeGenModule &CGM,
1331                                  const TargetAttr *Attr, raw_ostream &Out) {
1332   if (Attr->isDefaultVersion())
1333     return;
1334 
1335   Out << '.';
1336   const TargetInfo &Target = CGM.getTarget();
1337   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1338   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1339     // Multiversioning doesn't allow "no-${feature}", so we can
1340     // only have "+" prefixes here.
1341     assert(LHS.startswith("+") && RHS.startswith("+") &&
1342            "Features should always have a prefix.");
1343     return Target.multiVersionSortPriority(LHS.substr(1)) >
1344            Target.multiVersionSortPriority(RHS.substr(1));
1345   });
1346 
1347   bool IsFirst = true;
1348 
1349   if (!Info.CPU.empty()) {
1350     IsFirst = false;
1351     Out << "arch_" << Info.CPU;
1352   }
1353 
1354   for (StringRef Feat : Info.Features) {
1355     if (!IsFirst)
1356       Out << '_';
1357     IsFirst = false;
1358     Out << Feat.substr(1);
1359   }
1360 }
1361 
1362 // Returns true if GD is a function decl with internal linkage and
1363 // needs a unique suffix after the mangled name.
1364 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1365                                         CodeGenModule &CGM) {
1366   const Decl *D = GD.getDecl();
1367   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1368          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1369 }
1370 
1371 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1372                                        const TargetClonesAttr *Attr,
1373                                        unsigned VersionIndex,
1374                                        raw_ostream &Out) {
1375   Out << '.';
1376   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1377   if (FeatureStr.startswith("arch="))
1378     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1379   else
1380     Out << FeatureStr;
1381 
1382   Out << '.' << Attr->getMangledIndex(VersionIndex);
1383 }
1384 
1385 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1386                                       const NamedDecl *ND,
1387                                       bool OmitMultiVersionMangling = false) {
1388   SmallString<256> Buffer;
1389   llvm::raw_svector_ostream Out(Buffer);
1390   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1391   if (!CGM.getModuleNameHash().empty())
1392     MC.needsUniqueInternalLinkageNames();
1393   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1394   if (ShouldMangle)
1395     MC.mangleName(GD.getWithDecl(ND), Out);
1396   else {
1397     IdentifierInfo *II = ND->getIdentifier();
1398     assert(II && "Attempt to mangle unnamed decl.");
1399     const auto *FD = dyn_cast<FunctionDecl>(ND);
1400 
1401     if (FD &&
1402         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1403       Out << "__regcall3__" << II->getName();
1404     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1405                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1406       Out << "__device_stub__" << II->getName();
1407     } else {
1408       Out << II->getName();
1409     }
1410   }
1411 
1412   // Check if the module name hash should be appended for internal linkage
1413   // symbols.   This should come before multi-version target suffixes are
1414   // appended. This is to keep the name and module hash suffix of the
1415   // internal linkage function together.  The unique suffix should only be
1416   // added when name mangling is done to make sure that the final name can
1417   // be properly demangled.  For example, for C functions without prototypes,
1418   // name mangling is not done and the unique suffix should not be appeneded
1419   // then.
1420   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1421     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1422            "Hash computed when not explicitly requested");
1423     Out << CGM.getModuleNameHash();
1424   }
1425 
1426   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1427     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1428       switch (FD->getMultiVersionKind()) {
1429       case MultiVersionKind::CPUDispatch:
1430       case MultiVersionKind::CPUSpecific:
1431         AppendCPUSpecificCPUDispatchMangling(CGM,
1432                                              FD->getAttr<CPUSpecificAttr>(),
1433                                              GD.getMultiVersionIndex(), Out);
1434         break;
1435       case MultiVersionKind::Target:
1436         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1437         break;
1438       case MultiVersionKind::TargetClones:
1439         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1440                                    GD.getMultiVersionIndex(), Out);
1441         break;
1442       case MultiVersionKind::None:
1443         llvm_unreachable("None multiversion type isn't valid here");
1444       }
1445     }
1446 
1447   // Make unique name for device side static file-scope variable for HIP.
1448   if (CGM.getContext().shouldExternalize(ND) &&
1449       CGM.getLangOpts().GPURelocatableDeviceCode &&
1450       CGM.getLangOpts().CUDAIsDevice)
1451     CGM.printPostfixForExternalizedDecl(Out, ND);
1452 
1453   return std::string(Out.str());
1454 }
1455 
1456 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1457                                             const FunctionDecl *FD,
1458                                             StringRef &CurName) {
1459   if (!FD->isMultiVersion())
1460     return;
1461 
1462   // Get the name of what this would be without the 'target' attribute.  This
1463   // allows us to lookup the version that was emitted when this wasn't a
1464   // multiversion function.
1465   std::string NonTargetName =
1466       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1467   GlobalDecl OtherGD;
1468   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1469     assert(OtherGD.getCanonicalDecl()
1470                .getDecl()
1471                ->getAsFunction()
1472                ->isMultiVersion() &&
1473            "Other GD should now be a multiversioned function");
1474     // OtherFD is the version of this function that was mangled BEFORE
1475     // becoming a MultiVersion function.  It potentially needs to be updated.
1476     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1477                                       .getDecl()
1478                                       ->getAsFunction()
1479                                       ->getMostRecentDecl();
1480     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1481     // This is so that if the initial version was already the 'default'
1482     // version, we don't try to update it.
1483     if (OtherName != NonTargetName) {
1484       // Remove instead of erase, since others may have stored the StringRef
1485       // to this.
1486       const auto ExistingRecord = Manglings.find(NonTargetName);
1487       if (ExistingRecord != std::end(Manglings))
1488         Manglings.remove(&(*ExistingRecord));
1489       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1490       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1491           Result.first->first();
1492       // If this is the current decl is being created, make sure we update the name.
1493       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1494         CurName = OtherNameRef;
1495       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1496         Entry->setName(OtherName);
1497     }
1498   }
1499 }
1500 
1501 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1502   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1503 
1504   // Some ABIs don't have constructor variants.  Make sure that base and
1505   // complete constructors get mangled the same.
1506   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1507     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1508       CXXCtorType OrigCtorType = GD.getCtorType();
1509       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1510       if (OrigCtorType == Ctor_Base)
1511         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1512     }
1513   }
1514 
1515   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1516   // static device variable depends on whether the variable is referenced by
1517   // a host or device host function. Therefore the mangled name cannot be
1518   // cached.
1519   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1520     auto FoundName = MangledDeclNames.find(CanonicalGD);
1521     if (FoundName != MangledDeclNames.end())
1522       return FoundName->second;
1523   }
1524 
1525   // Keep the first result in the case of a mangling collision.
1526   const auto *ND = cast<NamedDecl>(GD.getDecl());
1527   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1528 
1529   // Ensure either we have different ABIs between host and device compilations,
1530   // says host compilation following MSVC ABI but device compilation follows
1531   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1532   // mangling should be the same after name stubbing. The later checking is
1533   // very important as the device kernel name being mangled in host-compilation
1534   // is used to resolve the device binaries to be executed. Inconsistent naming
1535   // result in undefined behavior. Even though we cannot check that naming
1536   // directly between host- and device-compilations, the host- and
1537   // device-mangling in host compilation could help catching certain ones.
1538   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1539          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1540          (getContext().getAuxTargetInfo() &&
1541           (getContext().getAuxTargetInfo()->getCXXABI() !=
1542            getContext().getTargetInfo().getCXXABI())) ||
1543          getCUDARuntime().getDeviceSideName(ND) ==
1544              getMangledNameImpl(
1545                  *this,
1546                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1547                  ND));
1548 
1549   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1550   return MangledDeclNames[CanonicalGD] = Result.first->first();
1551 }
1552 
1553 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1554                                              const BlockDecl *BD) {
1555   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1556   const Decl *D = GD.getDecl();
1557 
1558   SmallString<256> Buffer;
1559   llvm::raw_svector_ostream Out(Buffer);
1560   if (!D)
1561     MangleCtx.mangleGlobalBlock(BD,
1562       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1563   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1564     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1565   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1566     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1567   else
1568     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1569 
1570   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1571   return Result.first->first();
1572 }
1573 
1574 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1575   auto it = MangledDeclNames.begin();
1576   while (it != MangledDeclNames.end()) {
1577     if (it->second == Name)
1578       return it->first;
1579     it++;
1580   }
1581   return GlobalDecl();
1582 }
1583 
1584 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1585   return getModule().getNamedValue(Name);
1586 }
1587 
1588 /// AddGlobalCtor - Add a function to the list that will be called before
1589 /// main() runs.
1590 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1591                                   unsigned LexOrder,
1592                                   llvm::Constant *AssociatedData) {
1593   // FIXME: Type coercion of void()* types.
1594   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1595 }
1596 
1597 /// AddGlobalDtor - Add a function to the list that will be called
1598 /// when the module is unloaded.
1599 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1600                                   bool IsDtorAttrFunc) {
1601   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1602       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1603     DtorsUsingAtExit[Priority].push_back(Dtor);
1604     return;
1605   }
1606 
1607   // FIXME: Type coercion of void()* types.
1608   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1609 }
1610 
1611 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1612   if (Fns.empty()) return;
1613 
1614   // Ctor function type is void()*.
1615   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1616   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1617       TheModule.getDataLayout().getProgramAddressSpace());
1618 
1619   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1620   llvm::StructType *CtorStructTy = llvm::StructType::get(
1621       Int32Ty, CtorPFTy, VoidPtrTy);
1622 
1623   // Construct the constructor and destructor arrays.
1624   ConstantInitBuilder builder(*this);
1625   auto ctors = builder.beginArray(CtorStructTy);
1626   for (const auto &I : Fns) {
1627     auto ctor = ctors.beginStruct(CtorStructTy);
1628     ctor.addInt(Int32Ty, I.Priority);
1629     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1630     if (I.AssociatedData)
1631       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1632     else
1633       ctor.addNullPointer(VoidPtrTy);
1634     ctor.finishAndAddTo(ctors);
1635   }
1636 
1637   auto list =
1638     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1639                                 /*constant*/ false,
1640                                 llvm::GlobalValue::AppendingLinkage);
1641 
1642   // The LTO linker doesn't seem to like it when we set an alignment
1643   // on appending variables.  Take it off as a workaround.
1644   list->setAlignment(llvm::None);
1645 
1646   Fns.clear();
1647 }
1648 
1649 llvm::GlobalValue::LinkageTypes
1650 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1651   const auto *D = cast<FunctionDecl>(GD.getDecl());
1652 
1653   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1654 
1655   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1656     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1657 
1658   if (isa<CXXConstructorDecl>(D) &&
1659       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1660       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1661     // Our approach to inheriting constructors is fundamentally different from
1662     // that used by the MS ABI, so keep our inheriting constructor thunks
1663     // internal rather than trying to pick an unambiguous mangling for them.
1664     return llvm::GlobalValue::InternalLinkage;
1665   }
1666 
1667   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1668 }
1669 
1670 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1671   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1672   if (!MDS) return nullptr;
1673 
1674   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1675 }
1676 
1677 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1678   if (auto *FnType = T->getAs<FunctionProtoType>())
1679     T = getContext().getFunctionType(
1680         FnType->getReturnType(), FnType->getParamTypes(),
1681         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1682 
1683   std::string OutName;
1684   llvm::raw_string_ostream Out(OutName);
1685   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1686 
1687   return llvm::ConstantInt::get(Int32Ty,
1688                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1689 }
1690 
1691 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1692                                               const CGFunctionInfo &Info,
1693                                               llvm::Function *F, bool IsThunk) {
1694   unsigned CallingConv;
1695   llvm::AttributeList PAL;
1696   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1697                          /*AttrOnCallSite=*/false, IsThunk);
1698   F->setAttributes(PAL);
1699   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1700 }
1701 
1702 static void removeImageAccessQualifier(std::string& TyName) {
1703   std::string ReadOnlyQual("__read_only");
1704   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1705   if (ReadOnlyPos != std::string::npos)
1706     // "+ 1" for the space after access qualifier.
1707     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1708   else {
1709     std::string WriteOnlyQual("__write_only");
1710     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1711     if (WriteOnlyPos != std::string::npos)
1712       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1713     else {
1714       std::string ReadWriteQual("__read_write");
1715       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1716       if (ReadWritePos != std::string::npos)
1717         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1718     }
1719   }
1720 }
1721 
1722 // Returns the address space id that should be produced to the
1723 // kernel_arg_addr_space metadata. This is always fixed to the ids
1724 // as specified in the SPIR 2.0 specification in order to differentiate
1725 // for example in clGetKernelArgInfo() implementation between the address
1726 // spaces with targets without unique mapping to the OpenCL address spaces
1727 // (basically all single AS CPUs).
1728 static unsigned ArgInfoAddressSpace(LangAS AS) {
1729   switch (AS) {
1730   case LangAS::opencl_global:
1731     return 1;
1732   case LangAS::opencl_constant:
1733     return 2;
1734   case LangAS::opencl_local:
1735     return 3;
1736   case LangAS::opencl_generic:
1737     return 4; // Not in SPIR 2.0 specs.
1738   case LangAS::opencl_global_device:
1739     return 5;
1740   case LangAS::opencl_global_host:
1741     return 6;
1742   default:
1743     return 0; // Assume private.
1744   }
1745 }
1746 
1747 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1748                                          const FunctionDecl *FD,
1749                                          CodeGenFunction *CGF) {
1750   assert(((FD && CGF) || (!FD && !CGF)) &&
1751          "Incorrect use - FD and CGF should either be both null or not!");
1752   // Create MDNodes that represent the kernel arg metadata.
1753   // Each MDNode is a list in the form of "key", N number of values which is
1754   // the same number of values as their are kernel arguments.
1755 
1756   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1757 
1758   // MDNode for the kernel argument address space qualifiers.
1759   SmallVector<llvm::Metadata *, 8> addressQuals;
1760 
1761   // MDNode for the kernel argument access qualifiers (images only).
1762   SmallVector<llvm::Metadata *, 8> accessQuals;
1763 
1764   // MDNode for the kernel argument type names.
1765   SmallVector<llvm::Metadata *, 8> argTypeNames;
1766 
1767   // MDNode for the kernel argument base type names.
1768   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1769 
1770   // MDNode for the kernel argument type qualifiers.
1771   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1772 
1773   // MDNode for the kernel argument names.
1774   SmallVector<llvm::Metadata *, 8> argNames;
1775 
1776   if (FD && CGF)
1777     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1778       const ParmVarDecl *parm = FD->getParamDecl(i);
1779       // Get argument name.
1780       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1781 
1782       if (!getLangOpts().OpenCL)
1783         continue;
1784       QualType ty = parm->getType();
1785       std::string typeQuals;
1786 
1787       // Get image and pipe access qualifier:
1788       if (ty->isImageType() || ty->isPipeType()) {
1789         const Decl *PDecl = parm;
1790         if (const auto *TD = ty->getAs<TypedefType>())
1791           PDecl = TD->getDecl();
1792         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1793         if (A && A->isWriteOnly())
1794           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1795         else if (A && A->isReadWrite())
1796           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1797         else
1798           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1799       } else
1800         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1801 
1802       auto getTypeSpelling = [&](QualType Ty) {
1803         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1804 
1805         if (Ty.isCanonical()) {
1806           StringRef typeNameRef = typeName;
1807           // Turn "unsigned type" to "utype"
1808           if (typeNameRef.consume_front("unsigned "))
1809             return std::string("u") + typeNameRef.str();
1810           if (typeNameRef.consume_front("signed "))
1811             return typeNameRef.str();
1812         }
1813 
1814         return typeName;
1815       };
1816 
1817       if (ty->isPointerType()) {
1818         QualType pointeeTy = ty->getPointeeType();
1819 
1820         // Get address qualifier.
1821         addressQuals.push_back(
1822             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1823                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1824 
1825         // Get argument type name.
1826         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1827         std::string baseTypeName =
1828             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1829         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1830         argBaseTypeNames.push_back(
1831             llvm::MDString::get(VMContext, baseTypeName));
1832 
1833         // Get argument type qualifiers:
1834         if (ty.isRestrictQualified())
1835           typeQuals = "restrict";
1836         if (pointeeTy.isConstQualified() ||
1837             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1838           typeQuals += typeQuals.empty() ? "const" : " const";
1839         if (pointeeTy.isVolatileQualified())
1840           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1841       } else {
1842         uint32_t AddrSpc = 0;
1843         bool isPipe = ty->isPipeType();
1844         if (ty->isImageType() || isPipe)
1845           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1846 
1847         addressQuals.push_back(
1848             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1849 
1850         // Get argument type name.
1851         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1852         std::string typeName = getTypeSpelling(ty);
1853         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1854 
1855         // Remove access qualifiers on images
1856         // (as they are inseparable from type in clang implementation,
1857         // but OpenCL spec provides a special query to get access qualifier
1858         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1859         if (ty->isImageType()) {
1860           removeImageAccessQualifier(typeName);
1861           removeImageAccessQualifier(baseTypeName);
1862         }
1863 
1864         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1865         argBaseTypeNames.push_back(
1866             llvm::MDString::get(VMContext, baseTypeName));
1867 
1868         if (isPipe)
1869           typeQuals = "pipe";
1870       }
1871       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1872     }
1873 
1874   if (getLangOpts().OpenCL) {
1875     Fn->setMetadata("kernel_arg_addr_space",
1876                     llvm::MDNode::get(VMContext, addressQuals));
1877     Fn->setMetadata("kernel_arg_access_qual",
1878                     llvm::MDNode::get(VMContext, accessQuals));
1879     Fn->setMetadata("kernel_arg_type",
1880                     llvm::MDNode::get(VMContext, argTypeNames));
1881     Fn->setMetadata("kernel_arg_base_type",
1882                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1883     Fn->setMetadata("kernel_arg_type_qual",
1884                     llvm::MDNode::get(VMContext, argTypeQuals));
1885   }
1886   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1887       getCodeGenOpts().HIPSaveKernelArgName)
1888     Fn->setMetadata("kernel_arg_name",
1889                     llvm::MDNode::get(VMContext, argNames));
1890 }
1891 
1892 /// Determines whether the language options require us to model
1893 /// unwind exceptions.  We treat -fexceptions as mandating this
1894 /// except under the fragile ObjC ABI with only ObjC exceptions
1895 /// enabled.  This means, for example, that C with -fexceptions
1896 /// enables this.
1897 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1898   // If exceptions are completely disabled, obviously this is false.
1899   if (!LangOpts.Exceptions) return false;
1900 
1901   // If C++ exceptions are enabled, this is true.
1902   if (LangOpts.CXXExceptions) return true;
1903 
1904   // If ObjC exceptions are enabled, this depends on the ABI.
1905   if (LangOpts.ObjCExceptions) {
1906     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1907   }
1908 
1909   return true;
1910 }
1911 
1912 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1913                                                       const CXXMethodDecl *MD) {
1914   // Check that the type metadata can ever actually be used by a call.
1915   if (!CGM.getCodeGenOpts().LTOUnit ||
1916       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1917     return false;
1918 
1919   // Only functions whose address can be taken with a member function pointer
1920   // need this sort of type metadata.
1921   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1922          !isa<CXXDestructorDecl>(MD);
1923 }
1924 
1925 std::vector<const CXXRecordDecl *>
1926 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1927   llvm::SetVector<const CXXRecordDecl *> MostBases;
1928 
1929   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1930   CollectMostBases = [&](const CXXRecordDecl *RD) {
1931     if (RD->getNumBases() == 0)
1932       MostBases.insert(RD);
1933     for (const CXXBaseSpecifier &B : RD->bases())
1934       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1935   };
1936   CollectMostBases(RD);
1937   return MostBases.takeVector();
1938 }
1939 
1940 llvm::GlobalVariable *
1941 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1942   auto It = RTTIProxyMap.find(Addr);
1943   if (It != RTTIProxyMap.end())
1944     return It->second;
1945 
1946   auto *FTRTTIProxy = new llvm::GlobalVariable(
1947       TheModule, Addr->getType(),
1948       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1949       "__llvm_rtti_proxy");
1950   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1951 
1952   RTTIProxyMap[Addr] = FTRTTIProxy;
1953   return FTRTTIProxy;
1954 }
1955 
1956 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1957                                                            llvm::Function *F) {
1958   llvm::AttrBuilder B(F->getContext());
1959 
1960   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1961     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1962 
1963   if (CodeGenOpts.StackClashProtector)
1964     B.addAttribute("probe-stack", "inline-asm");
1965 
1966   if (!hasUnwindExceptions(LangOpts))
1967     B.addAttribute(llvm::Attribute::NoUnwind);
1968 
1969   if (D && D->hasAttr<NoStackProtectorAttr>())
1970     ; // Do nothing.
1971   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
1972            LangOpts.getStackProtector() == LangOptions::SSPOn)
1973     B.addAttribute(llvm::Attribute::StackProtectStrong);
1974   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1975     B.addAttribute(llvm::Attribute::StackProtect);
1976   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1977     B.addAttribute(llvm::Attribute::StackProtectStrong);
1978   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1979     B.addAttribute(llvm::Attribute::StackProtectReq);
1980 
1981   if (!D) {
1982     // If we don't have a declaration to control inlining, the function isn't
1983     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1984     // disabled, mark the function as noinline.
1985     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1986         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1987       B.addAttribute(llvm::Attribute::NoInline);
1988 
1989     F->addFnAttrs(B);
1990     return;
1991   }
1992 
1993   // Track whether we need to add the optnone LLVM attribute,
1994   // starting with the default for this optimization level.
1995   bool ShouldAddOptNone =
1996       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1997   // We can't add optnone in the following cases, it won't pass the verifier.
1998   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1999   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2000 
2001   // Add optnone, but do so only if the function isn't always_inline.
2002   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2003       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2004     B.addAttribute(llvm::Attribute::OptimizeNone);
2005 
2006     // OptimizeNone implies noinline; we should not be inlining such functions.
2007     B.addAttribute(llvm::Attribute::NoInline);
2008 
2009     // We still need to handle naked functions even though optnone subsumes
2010     // much of their semantics.
2011     if (D->hasAttr<NakedAttr>())
2012       B.addAttribute(llvm::Attribute::Naked);
2013 
2014     // OptimizeNone wins over OptimizeForSize and MinSize.
2015     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2016     F->removeFnAttr(llvm::Attribute::MinSize);
2017   } else if (D->hasAttr<NakedAttr>()) {
2018     // Naked implies noinline: we should not be inlining such functions.
2019     B.addAttribute(llvm::Attribute::Naked);
2020     B.addAttribute(llvm::Attribute::NoInline);
2021   } else if (D->hasAttr<NoDuplicateAttr>()) {
2022     B.addAttribute(llvm::Attribute::NoDuplicate);
2023   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2024     // Add noinline if the function isn't always_inline.
2025     B.addAttribute(llvm::Attribute::NoInline);
2026   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2027              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2028     // (noinline wins over always_inline, and we can't specify both in IR)
2029     B.addAttribute(llvm::Attribute::AlwaysInline);
2030   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2031     // If we're not inlining, then force everything that isn't always_inline to
2032     // carry an explicit noinline attribute.
2033     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2034       B.addAttribute(llvm::Attribute::NoInline);
2035   } else {
2036     // Otherwise, propagate the inline hint attribute and potentially use its
2037     // absence to mark things as noinline.
2038     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2039       // Search function and template pattern redeclarations for inline.
2040       auto CheckForInline = [](const FunctionDecl *FD) {
2041         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2042           return Redecl->isInlineSpecified();
2043         };
2044         if (any_of(FD->redecls(), CheckRedeclForInline))
2045           return true;
2046         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2047         if (!Pattern)
2048           return false;
2049         return any_of(Pattern->redecls(), CheckRedeclForInline);
2050       };
2051       if (CheckForInline(FD)) {
2052         B.addAttribute(llvm::Attribute::InlineHint);
2053       } else if (CodeGenOpts.getInlining() ==
2054                      CodeGenOptions::OnlyHintInlining &&
2055                  !FD->isInlined() &&
2056                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2057         B.addAttribute(llvm::Attribute::NoInline);
2058       }
2059     }
2060   }
2061 
2062   // Add other optimization related attributes if we are optimizing this
2063   // function.
2064   if (!D->hasAttr<OptimizeNoneAttr>()) {
2065     if (D->hasAttr<ColdAttr>()) {
2066       if (!ShouldAddOptNone)
2067         B.addAttribute(llvm::Attribute::OptimizeForSize);
2068       B.addAttribute(llvm::Attribute::Cold);
2069     }
2070     if (D->hasAttr<HotAttr>())
2071       B.addAttribute(llvm::Attribute::Hot);
2072     if (D->hasAttr<MinSizeAttr>())
2073       B.addAttribute(llvm::Attribute::MinSize);
2074   }
2075 
2076   F->addFnAttrs(B);
2077 
2078   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2079   if (alignment)
2080     F->setAlignment(llvm::Align(alignment));
2081 
2082   if (!D->hasAttr<AlignedAttr>())
2083     if (LangOpts.FunctionAlignment)
2084       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2085 
2086   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2087   // reserve a bit for differentiating between virtual and non-virtual member
2088   // functions. If the current target's C++ ABI requires this and this is a
2089   // member function, set its alignment accordingly.
2090   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2091     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2092       F->setAlignment(llvm::Align(2));
2093   }
2094 
2095   // In the cross-dso CFI mode with canonical jump tables, we want !type
2096   // attributes on definitions only.
2097   if (CodeGenOpts.SanitizeCfiCrossDso &&
2098       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2099     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2100       // Skip available_externally functions. They won't be codegen'ed in the
2101       // current module anyway.
2102       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2103         CreateFunctionTypeMetadataForIcall(FD, F);
2104     }
2105   }
2106 
2107   // Emit type metadata on member functions for member function pointer checks.
2108   // These are only ever necessary on definitions; we're guaranteed that the
2109   // definition will be present in the LTO unit as a result of LTO visibility.
2110   auto *MD = dyn_cast<CXXMethodDecl>(D);
2111   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2112     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2113       llvm::Metadata *Id =
2114           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2115               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2116       F->addTypeMetadata(0, Id);
2117     }
2118   }
2119 }
2120 
2121 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2122                                                   llvm::Function *F) {
2123   if (D->hasAttr<StrictFPAttr>()) {
2124     llvm::AttrBuilder FuncAttrs(F->getContext());
2125     FuncAttrs.addAttribute("strictfp");
2126     F->addFnAttrs(FuncAttrs);
2127   }
2128 }
2129 
2130 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2131   const Decl *D = GD.getDecl();
2132   if (isa_and_nonnull<NamedDecl>(D))
2133     setGVProperties(GV, GD);
2134   else
2135     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2136 
2137   if (D && D->hasAttr<UsedAttr>())
2138     addUsedOrCompilerUsedGlobal(GV);
2139 
2140   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2141     const auto *VD = cast<VarDecl>(D);
2142     if (VD->getType().isConstQualified() &&
2143         VD->getStorageDuration() == SD_Static)
2144       addUsedOrCompilerUsedGlobal(GV);
2145   }
2146 }
2147 
2148 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2149                                                 llvm::AttrBuilder &Attrs) {
2150   // Add target-cpu and target-features attributes to functions. If
2151   // we have a decl for the function and it has a target attribute then
2152   // parse that and add it to the feature set.
2153   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2154   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2155   std::vector<std::string> Features;
2156   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2157   FD = FD ? FD->getMostRecentDecl() : FD;
2158   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2159   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2160   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2161   bool AddedAttr = false;
2162   if (TD || SD || TC) {
2163     llvm::StringMap<bool> FeatureMap;
2164     getContext().getFunctionFeatureMap(FeatureMap, GD);
2165 
2166     // Produce the canonical string for this set of features.
2167     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2168       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2169 
2170     // Now add the target-cpu and target-features to the function.
2171     // While we populated the feature map above, we still need to
2172     // get and parse the target attribute so we can get the cpu for
2173     // the function.
2174     if (TD) {
2175       ParsedTargetAttr ParsedAttr =
2176           Target.parseTargetAttr(TD->getFeaturesStr());
2177       if (!ParsedAttr.CPU.empty() &&
2178           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2179         TargetCPU = ParsedAttr.CPU;
2180         TuneCPU = ""; // Clear the tune CPU.
2181       }
2182       if (!ParsedAttr.Tune.empty() &&
2183           getTarget().isValidCPUName(ParsedAttr.Tune))
2184         TuneCPU = ParsedAttr.Tune;
2185     }
2186 
2187     if (SD) {
2188       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2189       // favor this processor.
2190       TuneCPU = getTarget().getCPUSpecificTuneName(
2191           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2192     }
2193   } else {
2194     // Otherwise just add the existing target cpu and target features to the
2195     // function.
2196     Features = getTarget().getTargetOpts().Features;
2197   }
2198 
2199   if (!TargetCPU.empty()) {
2200     Attrs.addAttribute("target-cpu", TargetCPU);
2201     AddedAttr = true;
2202   }
2203   if (!TuneCPU.empty()) {
2204     Attrs.addAttribute("tune-cpu", TuneCPU);
2205     AddedAttr = true;
2206   }
2207   if (!Features.empty()) {
2208     llvm::sort(Features);
2209     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2210     AddedAttr = true;
2211   }
2212 
2213   return AddedAttr;
2214 }
2215 
2216 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2217                                           llvm::GlobalObject *GO) {
2218   const Decl *D = GD.getDecl();
2219   SetCommonAttributes(GD, GO);
2220 
2221   if (D) {
2222     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2223       if (D->hasAttr<RetainAttr>())
2224         addUsedGlobal(GV);
2225       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2226         GV->addAttribute("bss-section", SA->getName());
2227       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2228         GV->addAttribute("data-section", SA->getName());
2229       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2230         GV->addAttribute("rodata-section", SA->getName());
2231       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2232         GV->addAttribute("relro-section", SA->getName());
2233     }
2234 
2235     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2236       if (D->hasAttr<RetainAttr>())
2237         addUsedGlobal(F);
2238       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2239         if (!D->getAttr<SectionAttr>())
2240           F->addFnAttr("implicit-section-name", SA->getName());
2241 
2242       llvm::AttrBuilder Attrs(F->getContext());
2243       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2244         // We know that GetCPUAndFeaturesAttributes will always have the
2245         // newest set, since it has the newest possible FunctionDecl, so the
2246         // new ones should replace the old.
2247         llvm::AttributeMask RemoveAttrs;
2248         RemoveAttrs.addAttribute("target-cpu");
2249         RemoveAttrs.addAttribute("target-features");
2250         RemoveAttrs.addAttribute("tune-cpu");
2251         F->removeFnAttrs(RemoveAttrs);
2252         F->addFnAttrs(Attrs);
2253       }
2254     }
2255 
2256     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2257       GO->setSection(CSA->getName());
2258     else if (const auto *SA = D->getAttr<SectionAttr>())
2259       GO->setSection(SA->getName());
2260   }
2261 
2262   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2263 }
2264 
2265 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2266                                                   llvm::Function *F,
2267                                                   const CGFunctionInfo &FI) {
2268   const Decl *D = GD.getDecl();
2269   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2270   SetLLVMFunctionAttributesForDefinition(D, F);
2271 
2272   F->setLinkage(llvm::Function::InternalLinkage);
2273 
2274   setNonAliasAttributes(GD, F);
2275 }
2276 
2277 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2278   // Set linkage and visibility in case we never see a definition.
2279   LinkageInfo LV = ND->getLinkageAndVisibility();
2280   // Don't set internal linkage on declarations.
2281   // "extern_weak" is overloaded in LLVM; we probably should have
2282   // separate linkage types for this.
2283   if (isExternallyVisible(LV.getLinkage()) &&
2284       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2285     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2286 }
2287 
2288 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2289                                                        llvm::Function *F) {
2290   // Only if we are checking indirect calls.
2291   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2292     return;
2293 
2294   // Non-static class methods are handled via vtable or member function pointer
2295   // checks elsewhere.
2296   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2297     return;
2298 
2299   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2300   F->addTypeMetadata(0, MD);
2301   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2302 
2303   // Emit a hash-based bit set entry for cross-DSO calls.
2304   if (CodeGenOpts.SanitizeCfiCrossDso)
2305     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2306       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2307 }
2308 
2309 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2310   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2311     return;
2312 
2313   llvm::LLVMContext &Ctx = F->getContext();
2314   llvm::MDBuilder MDB(Ctx);
2315   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2316                  llvm::MDNode::get(
2317                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2318 }
2319 
2320 static bool allowKCFIIdentifier(StringRef Name) {
2321   // KCFI type identifier constants are only necessary for external assembly
2322   // functions, which means it's safe to skip unusual names. Subset of
2323   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2324   return llvm::all_of(Name, [](const char &C) {
2325     return llvm::isAlnum(C) || C == '_' || C == '.';
2326   });
2327 }
2328 
2329 void CodeGenModule::finalizeKCFITypes() {
2330   llvm::Module &M = getModule();
2331   for (auto &F : M.functions()) {
2332     // Remove KCFI type metadata from non-address-taken local functions.
2333     bool AddressTaken = F.hasAddressTaken();
2334     if (!AddressTaken && F.hasLocalLinkage())
2335       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2336 
2337     // Generate a constant with the expected KCFI type identifier for all
2338     // address-taken function declarations to support annotating indirectly
2339     // called assembly functions.
2340     if (!AddressTaken || !F.isDeclaration())
2341       continue;
2342 
2343     const llvm::ConstantInt *Type;
2344     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2345       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2346     else
2347       continue;
2348 
2349     StringRef Name = F.getName();
2350     if (!allowKCFIIdentifier(Name))
2351       continue;
2352 
2353     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2354                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2355                           .str();
2356     M.appendModuleInlineAsm(Asm);
2357   }
2358 }
2359 
2360 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2361                                           bool IsIncompleteFunction,
2362                                           bool IsThunk) {
2363 
2364   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2365     // If this is an intrinsic function, set the function's attributes
2366     // to the intrinsic's attributes.
2367     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2368     return;
2369   }
2370 
2371   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2372 
2373   if (!IsIncompleteFunction)
2374     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2375                               IsThunk);
2376 
2377   // Add the Returned attribute for "this", except for iOS 5 and earlier
2378   // where substantial code, including the libstdc++ dylib, was compiled with
2379   // GCC and does not actually return "this".
2380   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2381       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2382     assert(!F->arg_empty() &&
2383            F->arg_begin()->getType()
2384              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2385            "unexpected this return");
2386     F->addParamAttr(0, llvm::Attribute::Returned);
2387   }
2388 
2389   // Only a few attributes are set on declarations; these may later be
2390   // overridden by a definition.
2391 
2392   setLinkageForGV(F, FD);
2393   setGVProperties(F, FD);
2394 
2395   // Setup target-specific attributes.
2396   if (!IsIncompleteFunction && F->isDeclaration())
2397     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2398 
2399   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2400     F->setSection(CSA->getName());
2401   else if (const auto *SA = FD->getAttr<SectionAttr>())
2402      F->setSection(SA->getName());
2403 
2404   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2405     if (EA->isError())
2406       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2407     else if (EA->isWarning())
2408       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2409   }
2410 
2411   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2412   if (FD->isInlineBuiltinDeclaration()) {
2413     const FunctionDecl *FDBody;
2414     bool HasBody = FD->hasBody(FDBody);
2415     (void)HasBody;
2416     assert(HasBody && "Inline builtin declarations should always have an "
2417                       "available body!");
2418     if (shouldEmitFunction(FDBody))
2419       F->addFnAttr(llvm::Attribute::NoBuiltin);
2420   }
2421 
2422   if (FD->isReplaceableGlobalAllocationFunction()) {
2423     // A replaceable global allocation function does not act like a builtin by
2424     // default, only if it is invoked by a new-expression or delete-expression.
2425     F->addFnAttr(llvm::Attribute::NoBuiltin);
2426   }
2427 
2428   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2429     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2430   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2431     if (MD->isVirtual())
2432       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2433 
2434   // Don't emit entries for function declarations in the cross-DSO mode. This
2435   // is handled with better precision by the receiving DSO. But if jump tables
2436   // are non-canonical then we need type metadata in order to produce the local
2437   // jump table.
2438   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2439       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2440     CreateFunctionTypeMetadataForIcall(FD, F);
2441 
2442   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2443     setKCFIType(FD, F);
2444 
2445   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2446     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2447 
2448   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2449     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2450 
2451   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2452     // Annotate the callback behavior as metadata:
2453     //  - The callback callee (as argument number).
2454     //  - The callback payloads (as argument numbers).
2455     llvm::LLVMContext &Ctx = F->getContext();
2456     llvm::MDBuilder MDB(Ctx);
2457 
2458     // The payload indices are all but the first one in the encoding. The first
2459     // identifies the callback callee.
2460     int CalleeIdx = *CB->encoding_begin();
2461     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2462     F->addMetadata(llvm::LLVMContext::MD_callback,
2463                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2464                                                CalleeIdx, PayloadIndices,
2465                                                /* VarArgsArePassed */ false)}));
2466   }
2467 }
2468 
2469 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2470   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2471          "Only globals with definition can force usage.");
2472   LLVMUsed.emplace_back(GV);
2473 }
2474 
2475 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2476   assert(!GV->isDeclaration() &&
2477          "Only globals with definition can force usage.");
2478   LLVMCompilerUsed.emplace_back(GV);
2479 }
2480 
2481 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2482   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2483          "Only globals with definition can force usage.");
2484   if (getTriple().isOSBinFormatELF())
2485     LLVMCompilerUsed.emplace_back(GV);
2486   else
2487     LLVMUsed.emplace_back(GV);
2488 }
2489 
2490 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2491                      std::vector<llvm::WeakTrackingVH> &List) {
2492   // Don't create llvm.used if there is no need.
2493   if (List.empty())
2494     return;
2495 
2496   // Convert List to what ConstantArray needs.
2497   SmallVector<llvm::Constant*, 8> UsedArray;
2498   UsedArray.resize(List.size());
2499   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2500     UsedArray[i] =
2501         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2502             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2503   }
2504 
2505   if (UsedArray.empty())
2506     return;
2507   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2508 
2509   auto *GV = new llvm::GlobalVariable(
2510       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2511       llvm::ConstantArray::get(ATy, UsedArray), Name);
2512 
2513   GV->setSection("llvm.metadata");
2514 }
2515 
2516 void CodeGenModule::emitLLVMUsed() {
2517   emitUsed(*this, "llvm.used", LLVMUsed);
2518   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2519 }
2520 
2521 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2522   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2523   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2524 }
2525 
2526 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2527   llvm::SmallString<32> Opt;
2528   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2529   if (Opt.empty())
2530     return;
2531   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2532   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2533 }
2534 
2535 void CodeGenModule::AddDependentLib(StringRef Lib) {
2536   auto &C = getLLVMContext();
2537   if (getTarget().getTriple().isOSBinFormatELF()) {
2538       ELFDependentLibraries.push_back(
2539         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2540     return;
2541   }
2542 
2543   llvm::SmallString<24> Opt;
2544   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2545   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2546   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2547 }
2548 
2549 /// Add link options implied by the given module, including modules
2550 /// it depends on, using a postorder walk.
2551 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2552                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2553                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2554   // Import this module's parent.
2555   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2556     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2557   }
2558 
2559   // Import this module's dependencies.
2560   for (Module *Import : llvm::reverse(Mod->Imports)) {
2561     if (Visited.insert(Import).second)
2562       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2563   }
2564 
2565   // Add linker options to link against the libraries/frameworks
2566   // described by this module.
2567   llvm::LLVMContext &Context = CGM.getLLVMContext();
2568   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2569 
2570   // For modules that use export_as for linking, use that module
2571   // name instead.
2572   if (Mod->UseExportAsModuleLinkName)
2573     return;
2574 
2575   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2576     // Link against a framework.  Frameworks are currently Darwin only, so we
2577     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2578     if (LL.IsFramework) {
2579       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2580                                  llvm::MDString::get(Context, LL.Library)};
2581 
2582       Metadata.push_back(llvm::MDNode::get(Context, Args));
2583       continue;
2584     }
2585 
2586     // Link against a library.
2587     if (IsELF) {
2588       llvm::Metadata *Args[2] = {
2589           llvm::MDString::get(Context, "lib"),
2590           llvm::MDString::get(Context, LL.Library),
2591       };
2592       Metadata.push_back(llvm::MDNode::get(Context, Args));
2593     } else {
2594       llvm::SmallString<24> Opt;
2595       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2596       auto *OptString = llvm::MDString::get(Context, Opt);
2597       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2598     }
2599   }
2600 }
2601 
2602 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2603   // Emit the initializers in the order that sub-modules appear in the
2604   // source, first Global Module Fragments, if present.
2605   if (auto GMF = Primary->getGlobalModuleFragment()) {
2606     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2607       if (isa<ImportDecl>(D))
2608         continue;
2609       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2610       EmitTopLevelDecl(D);
2611     }
2612   }
2613   // Second any associated with the module, itself.
2614   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2615     // Skip import decls, the inits for those are called explicitly.
2616     if (isa<ImportDecl>(D))
2617       continue;
2618     EmitTopLevelDecl(D);
2619   }
2620   // Third any associated with the Privat eMOdule Fragment, if present.
2621   if (auto PMF = Primary->getPrivateModuleFragment()) {
2622     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2623       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2624       EmitTopLevelDecl(D);
2625     }
2626   }
2627 }
2628 
2629 void CodeGenModule::EmitModuleLinkOptions() {
2630   // Collect the set of all of the modules we want to visit to emit link
2631   // options, which is essentially the imported modules and all of their
2632   // non-explicit child modules.
2633   llvm::SetVector<clang::Module *> LinkModules;
2634   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2635   SmallVector<clang::Module *, 16> Stack;
2636 
2637   // Seed the stack with imported modules.
2638   for (Module *M : ImportedModules) {
2639     // Do not add any link flags when an implementation TU of a module imports
2640     // a header of that same module.
2641     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2642         !getLangOpts().isCompilingModule())
2643       continue;
2644     if (Visited.insert(M).second)
2645       Stack.push_back(M);
2646   }
2647 
2648   // Find all of the modules to import, making a little effort to prune
2649   // non-leaf modules.
2650   while (!Stack.empty()) {
2651     clang::Module *Mod = Stack.pop_back_val();
2652 
2653     bool AnyChildren = false;
2654 
2655     // Visit the submodules of this module.
2656     for (const auto &SM : Mod->submodules()) {
2657       // Skip explicit children; they need to be explicitly imported to be
2658       // linked against.
2659       if (SM->IsExplicit)
2660         continue;
2661 
2662       if (Visited.insert(SM).second) {
2663         Stack.push_back(SM);
2664         AnyChildren = true;
2665       }
2666     }
2667 
2668     // We didn't find any children, so add this module to the list of
2669     // modules to link against.
2670     if (!AnyChildren) {
2671       LinkModules.insert(Mod);
2672     }
2673   }
2674 
2675   // Add link options for all of the imported modules in reverse topological
2676   // order.  We don't do anything to try to order import link flags with respect
2677   // to linker options inserted by things like #pragma comment().
2678   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2679   Visited.clear();
2680   for (Module *M : LinkModules)
2681     if (Visited.insert(M).second)
2682       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2683   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2684   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2685 
2686   // Add the linker options metadata flag.
2687   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2688   for (auto *MD : LinkerOptionsMetadata)
2689     NMD->addOperand(MD);
2690 }
2691 
2692 void CodeGenModule::EmitDeferred() {
2693   // Emit deferred declare target declarations.
2694   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2695     getOpenMPRuntime().emitDeferredTargetDecls();
2696 
2697   // Emit code for any potentially referenced deferred decls.  Since a
2698   // previously unused static decl may become used during the generation of code
2699   // for a static function, iterate until no changes are made.
2700 
2701   if (!DeferredVTables.empty()) {
2702     EmitDeferredVTables();
2703 
2704     // Emitting a vtable doesn't directly cause more vtables to
2705     // become deferred, although it can cause functions to be
2706     // emitted that then need those vtables.
2707     assert(DeferredVTables.empty());
2708   }
2709 
2710   // Emit CUDA/HIP static device variables referenced by host code only.
2711   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2712   // needed for further handling.
2713   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2714     llvm::append_range(DeferredDeclsToEmit,
2715                        getContext().CUDADeviceVarODRUsedByHost);
2716 
2717   // Stop if we're out of both deferred vtables and deferred declarations.
2718   if (DeferredDeclsToEmit.empty())
2719     return;
2720 
2721   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2722   // work, it will not interfere with this.
2723   std::vector<GlobalDecl> CurDeclsToEmit;
2724   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2725 
2726   for (GlobalDecl &D : CurDeclsToEmit) {
2727     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2728     // to get GlobalValue with exactly the type we need, not something that
2729     // might had been created for another decl with the same mangled name but
2730     // different type.
2731     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2732         GetAddrOfGlobal(D, ForDefinition));
2733 
2734     // In case of different address spaces, we may still get a cast, even with
2735     // IsForDefinition equal to true. Query mangled names table to get
2736     // GlobalValue.
2737     if (!GV)
2738       GV = GetGlobalValue(getMangledName(D));
2739 
2740     // Make sure GetGlobalValue returned non-null.
2741     assert(GV);
2742 
2743     // Check to see if we've already emitted this.  This is necessary
2744     // for a couple of reasons: first, decls can end up in the
2745     // deferred-decls queue multiple times, and second, decls can end
2746     // up with definitions in unusual ways (e.g. by an extern inline
2747     // function acquiring a strong function redefinition).  Just
2748     // ignore these cases.
2749     if (!GV->isDeclaration())
2750       continue;
2751 
2752     // If this is OpenMP, check if it is legal to emit this global normally.
2753     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2754       continue;
2755 
2756     // Otherwise, emit the definition and move on to the next one.
2757     EmitGlobalDefinition(D, GV);
2758 
2759     // If we found out that we need to emit more decls, do that recursively.
2760     // This has the advantage that the decls are emitted in a DFS and related
2761     // ones are close together, which is convenient for testing.
2762     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2763       EmitDeferred();
2764       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2765     }
2766   }
2767 }
2768 
2769 void CodeGenModule::EmitVTablesOpportunistically() {
2770   // Try to emit external vtables as available_externally if they have emitted
2771   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2772   // is not allowed to create new references to things that need to be emitted
2773   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2774 
2775   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2776          && "Only emit opportunistic vtables with optimizations");
2777 
2778   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2779     assert(getVTables().isVTableExternal(RD) &&
2780            "This queue should only contain external vtables");
2781     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2782       VTables.GenerateClassData(RD);
2783   }
2784   OpportunisticVTables.clear();
2785 }
2786 
2787 void CodeGenModule::EmitGlobalAnnotations() {
2788   if (Annotations.empty())
2789     return;
2790 
2791   // Create a new global variable for the ConstantStruct in the Module.
2792   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2793     Annotations[0]->getType(), Annotations.size()), Annotations);
2794   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2795                                       llvm::GlobalValue::AppendingLinkage,
2796                                       Array, "llvm.global.annotations");
2797   gv->setSection(AnnotationSection);
2798 }
2799 
2800 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2801   llvm::Constant *&AStr = AnnotationStrings[Str];
2802   if (AStr)
2803     return AStr;
2804 
2805   // Not found yet, create a new global.
2806   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2807   auto *gv =
2808       new llvm::GlobalVariable(getModule(), s->getType(), true,
2809                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2810   gv->setSection(AnnotationSection);
2811   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2812   AStr = gv;
2813   return gv;
2814 }
2815 
2816 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2817   SourceManager &SM = getContext().getSourceManager();
2818   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2819   if (PLoc.isValid())
2820     return EmitAnnotationString(PLoc.getFilename());
2821   return EmitAnnotationString(SM.getBufferName(Loc));
2822 }
2823 
2824 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2825   SourceManager &SM = getContext().getSourceManager();
2826   PresumedLoc PLoc = SM.getPresumedLoc(L);
2827   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2828     SM.getExpansionLineNumber(L);
2829   return llvm::ConstantInt::get(Int32Ty, LineNo);
2830 }
2831 
2832 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2833   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2834   if (Exprs.empty())
2835     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2836 
2837   llvm::FoldingSetNodeID ID;
2838   for (Expr *E : Exprs) {
2839     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2840   }
2841   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2842   if (Lookup)
2843     return Lookup;
2844 
2845   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2846   LLVMArgs.reserve(Exprs.size());
2847   ConstantEmitter ConstEmiter(*this);
2848   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2849     const auto *CE = cast<clang::ConstantExpr>(E);
2850     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2851                                     CE->getType());
2852   });
2853   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2854   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2855                                       llvm::GlobalValue::PrivateLinkage, Struct,
2856                                       ".args");
2857   GV->setSection(AnnotationSection);
2858   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2859   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2860 
2861   Lookup = Bitcasted;
2862   return Bitcasted;
2863 }
2864 
2865 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2866                                                 const AnnotateAttr *AA,
2867                                                 SourceLocation L) {
2868   // Get the globals for file name, annotation, and the line number.
2869   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2870                  *UnitGV = EmitAnnotationUnit(L),
2871                  *LineNoCst = EmitAnnotationLineNo(L),
2872                  *Args = EmitAnnotationArgs(AA);
2873 
2874   llvm::Constant *GVInGlobalsAS = GV;
2875   if (GV->getAddressSpace() !=
2876       getDataLayout().getDefaultGlobalsAddressSpace()) {
2877     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2878         GV, GV->getValueType()->getPointerTo(
2879                 getDataLayout().getDefaultGlobalsAddressSpace()));
2880   }
2881 
2882   // Create the ConstantStruct for the global annotation.
2883   llvm::Constant *Fields[] = {
2884       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2885       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2886       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2887       LineNoCst,
2888       Args,
2889   };
2890   return llvm::ConstantStruct::getAnon(Fields);
2891 }
2892 
2893 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2894                                          llvm::GlobalValue *GV) {
2895   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2896   // Get the struct elements for these annotations.
2897   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2898     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2899 }
2900 
2901 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2902                                        SourceLocation Loc) const {
2903   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2904   // NoSanitize by function name.
2905   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2906     return true;
2907   // NoSanitize by location. Check "mainfile" prefix.
2908   auto &SM = Context.getSourceManager();
2909   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2910   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2911     return true;
2912 
2913   // Check "src" prefix.
2914   if (Loc.isValid())
2915     return NoSanitizeL.containsLocation(Kind, Loc);
2916   // If location is unknown, this may be a compiler-generated function. Assume
2917   // it's located in the main file.
2918   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2919 }
2920 
2921 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2922                                        llvm::GlobalVariable *GV,
2923                                        SourceLocation Loc, QualType Ty,
2924                                        StringRef Category) const {
2925   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2926   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2927     return true;
2928   auto &SM = Context.getSourceManager();
2929   if (NoSanitizeL.containsMainFile(
2930           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2931     return true;
2932   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2933     return true;
2934 
2935   // Check global type.
2936   if (!Ty.isNull()) {
2937     // Drill down the array types: if global variable of a fixed type is
2938     // not sanitized, we also don't instrument arrays of them.
2939     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2940       Ty = AT->getElementType();
2941     Ty = Ty.getCanonicalType().getUnqualifiedType();
2942     // Only record types (classes, structs etc.) are ignored.
2943     if (Ty->isRecordType()) {
2944       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2945       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2946         return true;
2947     }
2948   }
2949   return false;
2950 }
2951 
2952 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2953                                    StringRef Category) const {
2954   const auto &XRayFilter = getContext().getXRayFilter();
2955   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2956   auto Attr = ImbueAttr::NONE;
2957   if (Loc.isValid())
2958     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2959   if (Attr == ImbueAttr::NONE)
2960     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2961   switch (Attr) {
2962   case ImbueAttr::NONE:
2963     return false;
2964   case ImbueAttr::ALWAYS:
2965     Fn->addFnAttr("function-instrument", "xray-always");
2966     break;
2967   case ImbueAttr::ALWAYS_ARG1:
2968     Fn->addFnAttr("function-instrument", "xray-always");
2969     Fn->addFnAttr("xray-log-args", "1");
2970     break;
2971   case ImbueAttr::NEVER:
2972     Fn->addFnAttr("function-instrument", "xray-never");
2973     break;
2974   }
2975   return true;
2976 }
2977 
2978 ProfileList::ExclusionType
2979 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2980                                               SourceLocation Loc) const {
2981   const auto &ProfileList = getContext().getProfileList();
2982   // If the profile list is empty, then instrument everything.
2983   if (ProfileList.isEmpty())
2984     return ProfileList::Allow;
2985   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2986   // First, check the function name.
2987   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2988     return *V;
2989   // Next, check the source location.
2990   if (Loc.isValid())
2991     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2992       return *V;
2993   // If location is unknown, this may be a compiler-generated function. Assume
2994   // it's located in the main file.
2995   auto &SM = Context.getSourceManager();
2996   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2997     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2998       return *V;
2999   return ProfileList.getDefault(Kind);
3000 }
3001 
3002 ProfileList::ExclusionType
3003 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3004                                                  SourceLocation Loc) const {
3005   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3006   if (V != ProfileList::Allow)
3007     return V;
3008 
3009   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3010   if (NumGroups > 1) {
3011     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3012     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3013       return ProfileList::Skip;
3014   }
3015   return ProfileList::Allow;
3016 }
3017 
3018 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3019   // Never defer when EmitAllDecls is specified.
3020   if (LangOpts.EmitAllDecls)
3021     return true;
3022 
3023   if (CodeGenOpts.KeepStaticConsts) {
3024     const auto *VD = dyn_cast<VarDecl>(Global);
3025     if (VD && VD->getType().isConstQualified() &&
3026         VD->getStorageDuration() == SD_Static)
3027       return true;
3028   }
3029 
3030   return getContext().DeclMustBeEmitted(Global);
3031 }
3032 
3033 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3034   // In OpenMP 5.0 variables and function may be marked as
3035   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3036   // that they must be emitted on the host/device. To be sure we need to have
3037   // seen a declare target with an explicit mentioning of the function, we know
3038   // we have if the level of the declare target attribute is -1. Note that we
3039   // check somewhere else if we should emit this at all.
3040   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3041     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3042         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3043     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3044       return false;
3045   }
3046 
3047   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3048     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3049       // Implicit template instantiations may change linkage if they are later
3050       // explicitly instantiated, so they should not be emitted eagerly.
3051       return false;
3052   }
3053   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3054     if (Context.getInlineVariableDefinitionKind(VD) ==
3055         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3056       // A definition of an inline constexpr static data member may change
3057       // linkage later if it's redeclared outside the class.
3058       return false;
3059     if (CXX20ModuleInits && VD->getOwningModule() &&
3060         !VD->getOwningModule()->isModuleMapModule()) {
3061       // For CXX20, module-owned initializers need to be deferred, since it is
3062       // not known at this point if they will be run for the current module or
3063       // as part of the initializer for an imported one.
3064       return false;
3065     }
3066   }
3067   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3068   // codegen for global variables, because they may be marked as threadprivate.
3069   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3070       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3071       !isTypeConstant(Global->getType(), false) &&
3072       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3073     return false;
3074 
3075   return true;
3076 }
3077 
3078 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3079   StringRef Name = getMangledName(GD);
3080 
3081   // The UUID descriptor should be pointer aligned.
3082   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3083 
3084   // Look for an existing global.
3085   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3086     return ConstantAddress(GV, GV->getValueType(), Alignment);
3087 
3088   ConstantEmitter Emitter(*this);
3089   llvm::Constant *Init;
3090 
3091   APValue &V = GD->getAsAPValue();
3092   if (!V.isAbsent()) {
3093     // If possible, emit the APValue version of the initializer. In particular,
3094     // this gets the type of the constant right.
3095     Init = Emitter.emitForInitializer(
3096         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3097   } else {
3098     // As a fallback, directly construct the constant.
3099     // FIXME: This may get padding wrong under esoteric struct layout rules.
3100     // MSVC appears to create a complete type 'struct __s_GUID' that it
3101     // presumably uses to represent these constants.
3102     MSGuidDecl::Parts Parts = GD->getParts();
3103     llvm::Constant *Fields[4] = {
3104         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3105         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3106         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3107         llvm::ConstantDataArray::getRaw(
3108             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3109             Int8Ty)};
3110     Init = llvm::ConstantStruct::getAnon(Fields);
3111   }
3112 
3113   auto *GV = new llvm::GlobalVariable(
3114       getModule(), Init->getType(),
3115       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3116   if (supportsCOMDAT())
3117     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3118   setDSOLocal(GV);
3119 
3120   if (!V.isAbsent()) {
3121     Emitter.finalize(GV);
3122     return ConstantAddress(GV, GV->getValueType(), Alignment);
3123   }
3124 
3125   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3126   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3127       GV, Ty->getPointerTo(GV->getAddressSpace()));
3128   return ConstantAddress(Addr, Ty, Alignment);
3129 }
3130 
3131 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3132     const UnnamedGlobalConstantDecl *GCD) {
3133   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3134 
3135   llvm::GlobalVariable **Entry = nullptr;
3136   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3137   if (*Entry)
3138     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3139 
3140   ConstantEmitter Emitter(*this);
3141   llvm::Constant *Init;
3142 
3143   const APValue &V = GCD->getValue();
3144 
3145   assert(!V.isAbsent());
3146   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3147                                     GCD->getType());
3148 
3149   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3150                                       /*isConstant=*/true,
3151                                       llvm::GlobalValue::PrivateLinkage, Init,
3152                                       ".constant");
3153   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3154   GV->setAlignment(Alignment.getAsAlign());
3155 
3156   Emitter.finalize(GV);
3157 
3158   *Entry = GV;
3159   return ConstantAddress(GV, GV->getValueType(), Alignment);
3160 }
3161 
3162 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3163     const TemplateParamObjectDecl *TPO) {
3164   StringRef Name = getMangledName(TPO);
3165   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3166 
3167   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3168     return ConstantAddress(GV, GV->getValueType(), Alignment);
3169 
3170   ConstantEmitter Emitter(*this);
3171   llvm::Constant *Init = Emitter.emitForInitializer(
3172         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3173 
3174   if (!Init) {
3175     ErrorUnsupported(TPO, "template parameter object");
3176     return ConstantAddress::invalid();
3177   }
3178 
3179   auto *GV = new llvm::GlobalVariable(
3180       getModule(), Init->getType(),
3181       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3182   if (supportsCOMDAT())
3183     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3184   Emitter.finalize(GV);
3185 
3186   return ConstantAddress(GV, GV->getValueType(), Alignment);
3187 }
3188 
3189 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3190   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3191   assert(AA && "No alias?");
3192 
3193   CharUnits Alignment = getContext().getDeclAlign(VD);
3194   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3195 
3196   // See if there is already something with the target's name in the module.
3197   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3198   if (Entry) {
3199     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3200     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3201     return ConstantAddress(Ptr, DeclTy, Alignment);
3202   }
3203 
3204   llvm::Constant *Aliasee;
3205   if (isa<llvm::FunctionType>(DeclTy))
3206     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3207                                       GlobalDecl(cast<FunctionDecl>(VD)),
3208                                       /*ForVTable=*/false);
3209   else
3210     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3211                                     nullptr);
3212 
3213   auto *F = cast<llvm::GlobalValue>(Aliasee);
3214   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3215   WeakRefReferences.insert(F);
3216 
3217   return ConstantAddress(Aliasee, DeclTy, Alignment);
3218 }
3219 
3220 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3221   const auto *Global = cast<ValueDecl>(GD.getDecl());
3222 
3223   // Weak references don't produce any output by themselves.
3224   if (Global->hasAttr<WeakRefAttr>())
3225     return;
3226 
3227   // If this is an alias definition (which otherwise looks like a declaration)
3228   // emit it now.
3229   if (Global->hasAttr<AliasAttr>())
3230     return EmitAliasDefinition(GD);
3231 
3232   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3233   if (Global->hasAttr<IFuncAttr>())
3234     return emitIFuncDefinition(GD);
3235 
3236   // If this is a cpu_dispatch multiversion function, emit the resolver.
3237   if (Global->hasAttr<CPUDispatchAttr>())
3238     return emitCPUDispatchDefinition(GD);
3239 
3240   // If this is CUDA, be selective about which declarations we emit.
3241   if (LangOpts.CUDA) {
3242     if (LangOpts.CUDAIsDevice) {
3243       if (!Global->hasAttr<CUDADeviceAttr>() &&
3244           !Global->hasAttr<CUDAGlobalAttr>() &&
3245           !Global->hasAttr<CUDAConstantAttr>() &&
3246           !Global->hasAttr<CUDASharedAttr>() &&
3247           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3248           !Global->getType()->isCUDADeviceBuiltinTextureType())
3249         return;
3250     } else {
3251       // We need to emit host-side 'shadows' for all global
3252       // device-side variables because the CUDA runtime needs their
3253       // size and host-side address in order to provide access to
3254       // their device-side incarnations.
3255 
3256       // So device-only functions are the only things we skip.
3257       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3258           Global->hasAttr<CUDADeviceAttr>())
3259         return;
3260 
3261       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3262              "Expected Variable or Function");
3263     }
3264   }
3265 
3266   if (LangOpts.OpenMP) {
3267     // If this is OpenMP, check if it is legal to emit this global normally.
3268     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3269       return;
3270     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3271       if (MustBeEmitted(Global))
3272         EmitOMPDeclareReduction(DRD);
3273       return;
3274     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3275       if (MustBeEmitted(Global))
3276         EmitOMPDeclareMapper(DMD);
3277       return;
3278     }
3279   }
3280 
3281   // Ignore declarations, they will be emitted on their first use.
3282   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3283     // Forward declarations are emitted lazily on first use.
3284     if (!FD->doesThisDeclarationHaveABody()) {
3285       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3286         return;
3287 
3288       StringRef MangledName = getMangledName(GD);
3289 
3290       // Compute the function info and LLVM type.
3291       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3292       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3293 
3294       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3295                               /*DontDefer=*/false);
3296       return;
3297     }
3298   } else {
3299     const auto *VD = cast<VarDecl>(Global);
3300     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3301     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3302         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3303       if (LangOpts.OpenMP) {
3304         // Emit declaration of the must-be-emitted declare target variable.
3305         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3306                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3307           bool UnifiedMemoryEnabled =
3308               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3309           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3310                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3311               !UnifiedMemoryEnabled) {
3312             (void)GetAddrOfGlobalVar(VD);
3313           } else {
3314             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3315                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3316                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3317                      UnifiedMemoryEnabled)) &&
3318                    "Link clause or to clause with unified memory expected.");
3319             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3320           }
3321 
3322           return;
3323         }
3324       }
3325       // If this declaration may have caused an inline variable definition to
3326       // change linkage, make sure that it's emitted.
3327       if (Context.getInlineVariableDefinitionKind(VD) ==
3328           ASTContext::InlineVariableDefinitionKind::Strong)
3329         GetAddrOfGlobalVar(VD);
3330       return;
3331     }
3332   }
3333 
3334   // Defer code generation to first use when possible, e.g. if this is an inline
3335   // function. If the global must always be emitted, do it eagerly if possible
3336   // to benefit from cache locality.
3337   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3338     // Emit the definition if it can't be deferred.
3339     EmitGlobalDefinition(GD);
3340     return;
3341   }
3342 
3343   // If we're deferring emission of a C++ variable with an
3344   // initializer, remember the order in which it appeared in the file.
3345   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3346       cast<VarDecl>(Global)->hasInit()) {
3347     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3348     CXXGlobalInits.push_back(nullptr);
3349   }
3350 
3351   StringRef MangledName = getMangledName(GD);
3352   if (GetGlobalValue(MangledName) != nullptr) {
3353     // The value has already been used and should therefore be emitted.
3354     addDeferredDeclToEmit(GD);
3355   } else if (MustBeEmitted(Global)) {
3356     // The value must be emitted, but cannot be emitted eagerly.
3357     assert(!MayBeEmittedEagerly(Global));
3358     addDeferredDeclToEmit(GD);
3359     EmittedDeferredDecls[MangledName] = GD;
3360   } else {
3361     // Otherwise, remember that we saw a deferred decl with this name.  The
3362     // first use of the mangled name will cause it to move into
3363     // DeferredDeclsToEmit.
3364     DeferredDecls[MangledName] = GD;
3365   }
3366 }
3367 
3368 // Check if T is a class type with a destructor that's not dllimport.
3369 static bool HasNonDllImportDtor(QualType T) {
3370   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3371     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3372       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3373         return true;
3374 
3375   return false;
3376 }
3377 
3378 namespace {
3379   struct FunctionIsDirectlyRecursive
3380       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3381     const StringRef Name;
3382     const Builtin::Context &BI;
3383     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3384         : Name(N), BI(C) {}
3385 
3386     bool VisitCallExpr(const CallExpr *E) {
3387       const FunctionDecl *FD = E->getDirectCallee();
3388       if (!FD)
3389         return false;
3390       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3391       if (Attr && Name == Attr->getLabel())
3392         return true;
3393       unsigned BuiltinID = FD->getBuiltinID();
3394       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3395         return false;
3396       StringRef BuiltinName = BI.getName(BuiltinID);
3397       if (BuiltinName.startswith("__builtin_") &&
3398           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3399         return true;
3400       }
3401       return false;
3402     }
3403 
3404     bool VisitStmt(const Stmt *S) {
3405       for (const Stmt *Child : S->children())
3406         if (Child && this->Visit(Child))
3407           return true;
3408       return false;
3409     }
3410   };
3411 
3412   // Make sure we're not referencing non-imported vars or functions.
3413   struct DLLImportFunctionVisitor
3414       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3415     bool SafeToInline = true;
3416 
3417     bool shouldVisitImplicitCode() const { return true; }
3418 
3419     bool VisitVarDecl(VarDecl *VD) {
3420       if (VD->getTLSKind()) {
3421         // A thread-local variable cannot be imported.
3422         SafeToInline = false;
3423         return SafeToInline;
3424       }
3425 
3426       // A variable definition might imply a destructor call.
3427       if (VD->isThisDeclarationADefinition())
3428         SafeToInline = !HasNonDllImportDtor(VD->getType());
3429 
3430       return SafeToInline;
3431     }
3432 
3433     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3434       if (const auto *D = E->getTemporary()->getDestructor())
3435         SafeToInline = D->hasAttr<DLLImportAttr>();
3436       return SafeToInline;
3437     }
3438 
3439     bool VisitDeclRefExpr(DeclRefExpr *E) {
3440       ValueDecl *VD = E->getDecl();
3441       if (isa<FunctionDecl>(VD))
3442         SafeToInline = VD->hasAttr<DLLImportAttr>();
3443       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3444         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3445       return SafeToInline;
3446     }
3447 
3448     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3449       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3450       return SafeToInline;
3451     }
3452 
3453     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3454       CXXMethodDecl *M = E->getMethodDecl();
3455       if (!M) {
3456         // Call through a pointer to member function. This is safe to inline.
3457         SafeToInline = true;
3458       } else {
3459         SafeToInline = M->hasAttr<DLLImportAttr>();
3460       }
3461       return SafeToInline;
3462     }
3463 
3464     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3465       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3466       return SafeToInline;
3467     }
3468 
3469     bool VisitCXXNewExpr(CXXNewExpr *E) {
3470       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3471       return SafeToInline;
3472     }
3473   };
3474 }
3475 
3476 // isTriviallyRecursive - Check if this function calls another
3477 // decl that, because of the asm attribute or the other decl being a builtin,
3478 // ends up pointing to itself.
3479 bool
3480 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3481   StringRef Name;
3482   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3483     // asm labels are a special kind of mangling we have to support.
3484     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3485     if (!Attr)
3486       return false;
3487     Name = Attr->getLabel();
3488   } else {
3489     Name = FD->getName();
3490   }
3491 
3492   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3493   const Stmt *Body = FD->getBody();
3494   return Body ? Walker.Visit(Body) : false;
3495 }
3496 
3497 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3498   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3499     return true;
3500   const auto *F = cast<FunctionDecl>(GD.getDecl());
3501   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3502     return false;
3503 
3504   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3505     // Check whether it would be safe to inline this dllimport function.
3506     DLLImportFunctionVisitor Visitor;
3507     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3508     if (!Visitor.SafeToInline)
3509       return false;
3510 
3511     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3512       // Implicit destructor invocations aren't captured in the AST, so the
3513       // check above can't see them. Check for them manually here.
3514       for (const Decl *Member : Dtor->getParent()->decls())
3515         if (isa<FieldDecl>(Member))
3516           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3517             return false;
3518       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3519         if (HasNonDllImportDtor(B.getType()))
3520           return false;
3521     }
3522   }
3523 
3524   // Inline builtins declaration must be emitted. They often are fortified
3525   // functions.
3526   if (F->isInlineBuiltinDeclaration())
3527     return true;
3528 
3529   // PR9614. Avoid cases where the source code is lying to us. An available
3530   // externally function should have an equivalent function somewhere else,
3531   // but a function that calls itself through asm label/`__builtin_` trickery is
3532   // clearly not equivalent to the real implementation.
3533   // This happens in glibc's btowc and in some configure checks.
3534   return !isTriviallyRecursive(F);
3535 }
3536 
3537 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3538   return CodeGenOpts.OptimizationLevel > 0;
3539 }
3540 
3541 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3542                                                        llvm::GlobalValue *GV) {
3543   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3544 
3545   if (FD->isCPUSpecificMultiVersion()) {
3546     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3547     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3548       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3549   } else if (FD->isTargetClonesMultiVersion()) {
3550     auto *Clone = FD->getAttr<TargetClonesAttr>();
3551     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3552       if (Clone->isFirstOfVersion(I))
3553         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3554     // Ensure that the resolver function is also emitted.
3555     GetOrCreateMultiVersionResolver(GD);
3556   } else
3557     EmitGlobalFunctionDefinition(GD, GV);
3558 }
3559 
3560 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3561   const auto *D = cast<ValueDecl>(GD.getDecl());
3562 
3563   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3564                                  Context.getSourceManager(),
3565                                  "Generating code for declaration");
3566 
3567   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3568     // At -O0, don't generate IR for functions with available_externally
3569     // linkage.
3570     if (!shouldEmitFunction(GD))
3571       return;
3572 
3573     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3574       std::string Name;
3575       llvm::raw_string_ostream OS(Name);
3576       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3577                                /*Qualified=*/true);
3578       return Name;
3579     });
3580 
3581     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3582       // Make sure to emit the definition(s) before we emit the thunks.
3583       // This is necessary for the generation of certain thunks.
3584       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3585         ABI->emitCXXStructor(GD);
3586       else if (FD->isMultiVersion())
3587         EmitMultiVersionFunctionDefinition(GD, GV);
3588       else
3589         EmitGlobalFunctionDefinition(GD, GV);
3590 
3591       if (Method->isVirtual())
3592         getVTables().EmitThunks(GD);
3593 
3594       return;
3595     }
3596 
3597     if (FD->isMultiVersion())
3598       return EmitMultiVersionFunctionDefinition(GD, GV);
3599     return EmitGlobalFunctionDefinition(GD, GV);
3600   }
3601 
3602   if (const auto *VD = dyn_cast<VarDecl>(D))
3603     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3604 
3605   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3606 }
3607 
3608 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3609                                                       llvm::Function *NewFn);
3610 
3611 static unsigned
3612 TargetMVPriority(const TargetInfo &TI,
3613                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3614   unsigned Priority = 0;
3615   for (StringRef Feat : RO.Conditions.Features)
3616     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3617 
3618   if (!RO.Conditions.Architecture.empty())
3619     Priority = std::max(
3620         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3621   return Priority;
3622 }
3623 
3624 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3625 // TU can forward declare the function without causing problems.  Particularly
3626 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3627 // work with internal linkage functions, so that the same function name can be
3628 // used with internal linkage in multiple TUs.
3629 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3630                                                        GlobalDecl GD) {
3631   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3632   if (FD->getFormalLinkage() == InternalLinkage)
3633     return llvm::GlobalValue::InternalLinkage;
3634   return llvm::GlobalValue::WeakODRLinkage;
3635 }
3636 
3637 void CodeGenModule::emitMultiVersionFunctions() {
3638   std::vector<GlobalDecl> MVFuncsToEmit;
3639   MultiVersionFuncs.swap(MVFuncsToEmit);
3640   for (GlobalDecl GD : MVFuncsToEmit) {
3641     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3642     assert(FD && "Expected a FunctionDecl");
3643 
3644     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3645     if (FD->isTargetMultiVersion()) {
3646       getContext().forEachMultiversionedFunctionVersion(
3647           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3648             GlobalDecl CurGD{
3649                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3650             StringRef MangledName = getMangledName(CurGD);
3651             llvm::Constant *Func = GetGlobalValue(MangledName);
3652             if (!Func) {
3653               if (CurFD->isDefined()) {
3654                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3655                 Func = GetGlobalValue(MangledName);
3656               } else {
3657                 const CGFunctionInfo &FI =
3658                     getTypes().arrangeGlobalDeclaration(GD);
3659                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3660                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3661                                          /*DontDefer=*/false, ForDefinition);
3662               }
3663               assert(Func && "This should have just been created");
3664             }
3665 
3666             const auto *TA = CurFD->getAttr<TargetAttr>();
3667             llvm::SmallVector<StringRef, 8> Feats;
3668             TA->getAddedFeatures(Feats);
3669 
3670             Options.emplace_back(cast<llvm::Function>(Func),
3671                                  TA->getArchitecture(), Feats);
3672           });
3673     } else if (FD->isTargetClonesMultiVersion()) {
3674       const auto *TC = FD->getAttr<TargetClonesAttr>();
3675       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3676            ++VersionIndex) {
3677         if (!TC->isFirstOfVersion(VersionIndex))
3678           continue;
3679         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3680                          VersionIndex};
3681         StringRef Version = TC->getFeatureStr(VersionIndex);
3682         StringRef MangledName = getMangledName(CurGD);
3683         llvm::Constant *Func = GetGlobalValue(MangledName);
3684         if (!Func) {
3685           if (FD->isDefined()) {
3686             EmitGlobalFunctionDefinition(CurGD, nullptr);
3687             Func = GetGlobalValue(MangledName);
3688           } else {
3689             const CGFunctionInfo &FI =
3690                 getTypes().arrangeGlobalDeclaration(CurGD);
3691             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3692             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3693                                      /*DontDefer=*/false, ForDefinition);
3694           }
3695           assert(Func && "This should have just been created");
3696         }
3697 
3698         StringRef Architecture;
3699         llvm::SmallVector<StringRef, 1> Feature;
3700 
3701         if (Version.startswith("arch="))
3702           Architecture = Version.drop_front(sizeof("arch=") - 1);
3703         else if (Version != "default")
3704           Feature.push_back(Version);
3705 
3706         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3707       }
3708     } else {
3709       assert(0 && "Expected a target or target_clones multiversion function");
3710       continue;
3711     }
3712 
3713     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3714     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3715       ResolverConstant = IFunc->getResolver();
3716     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3717 
3718     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3719 
3720     if (supportsCOMDAT())
3721       ResolverFunc->setComdat(
3722           getModule().getOrInsertComdat(ResolverFunc->getName()));
3723 
3724     const TargetInfo &TI = getTarget();
3725     llvm::stable_sort(
3726         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3727                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3728           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3729         });
3730     CodeGenFunction CGF(*this);
3731     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3732   }
3733 
3734   // Ensure that any additions to the deferred decls list caused by emitting a
3735   // variant are emitted.  This can happen when the variant itself is inline and
3736   // calls a function without linkage.
3737   if (!MVFuncsToEmit.empty())
3738     EmitDeferred();
3739 
3740   // Ensure that any additions to the multiversion funcs list from either the
3741   // deferred decls or the multiversion functions themselves are emitted.
3742   if (!MultiVersionFuncs.empty())
3743     emitMultiVersionFunctions();
3744 }
3745 
3746 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3747   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3748   assert(FD && "Not a FunctionDecl?");
3749   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3750   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3751   assert(DD && "Not a cpu_dispatch Function?");
3752 
3753   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3754   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3755 
3756   StringRef ResolverName = getMangledName(GD);
3757   UpdateMultiVersionNames(GD, FD, ResolverName);
3758 
3759   llvm::Type *ResolverType;
3760   GlobalDecl ResolverGD;
3761   if (getTarget().supportsIFunc()) {
3762     ResolverType = llvm::FunctionType::get(
3763         llvm::PointerType::get(DeclTy,
3764                                Context.getTargetAddressSpace(FD->getType())),
3765         false);
3766   }
3767   else {
3768     ResolverType = DeclTy;
3769     ResolverGD = GD;
3770   }
3771 
3772   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3773       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3774   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3775   if (supportsCOMDAT())
3776     ResolverFunc->setComdat(
3777         getModule().getOrInsertComdat(ResolverFunc->getName()));
3778 
3779   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3780   const TargetInfo &Target = getTarget();
3781   unsigned Index = 0;
3782   for (const IdentifierInfo *II : DD->cpus()) {
3783     // Get the name of the target function so we can look it up/create it.
3784     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3785                               getCPUSpecificMangling(*this, II->getName());
3786 
3787     llvm::Constant *Func = GetGlobalValue(MangledName);
3788 
3789     if (!Func) {
3790       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3791       if (ExistingDecl.getDecl() &&
3792           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3793         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3794         Func = GetGlobalValue(MangledName);
3795       } else {
3796         if (!ExistingDecl.getDecl())
3797           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3798 
3799       Func = GetOrCreateLLVMFunction(
3800           MangledName, DeclTy, ExistingDecl,
3801           /*ForVTable=*/false, /*DontDefer=*/true,
3802           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3803       }
3804     }
3805 
3806     llvm::SmallVector<StringRef, 32> Features;
3807     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3808     llvm::transform(Features, Features.begin(),
3809                     [](StringRef Str) { return Str.substr(1); });
3810     llvm::erase_if(Features, [&Target](StringRef Feat) {
3811       return !Target.validateCpuSupports(Feat);
3812     });
3813     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3814     ++Index;
3815   }
3816 
3817   llvm::stable_sort(
3818       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3819                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3820         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3821                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3822       });
3823 
3824   // If the list contains multiple 'default' versions, such as when it contains
3825   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3826   // always run on at least a 'pentium'). We do this by deleting the 'least
3827   // advanced' (read, lowest mangling letter).
3828   while (Options.size() > 1 &&
3829          llvm::X86::getCpuSupportsMask(
3830              (Options.end() - 2)->Conditions.Features) == 0) {
3831     StringRef LHSName = (Options.end() - 2)->Function->getName();
3832     StringRef RHSName = (Options.end() - 1)->Function->getName();
3833     if (LHSName.compare(RHSName) < 0)
3834       Options.erase(Options.end() - 2);
3835     else
3836       Options.erase(Options.end() - 1);
3837   }
3838 
3839   CodeGenFunction CGF(*this);
3840   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3841 
3842   if (getTarget().supportsIFunc()) {
3843     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3844     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3845 
3846     // Fix up function declarations that were created for cpu_specific before
3847     // cpu_dispatch was known
3848     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3849       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3850       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3851                                            &getModule());
3852       GI->takeName(IFunc);
3853       IFunc->replaceAllUsesWith(GI);
3854       IFunc->eraseFromParent();
3855       IFunc = GI;
3856     }
3857 
3858     std::string AliasName = getMangledNameImpl(
3859         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3860     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3861     if (!AliasFunc) {
3862       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3863                                            &getModule());
3864       SetCommonAttributes(GD, GA);
3865     }
3866   }
3867 }
3868 
3869 /// If a dispatcher for the specified mangled name is not in the module, create
3870 /// and return an llvm Function with the specified type.
3871 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3872   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3873   assert(FD && "Not a FunctionDecl?");
3874 
3875   std::string MangledName =
3876       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3877 
3878   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3879   // a separate resolver).
3880   std::string ResolverName = MangledName;
3881   if (getTarget().supportsIFunc())
3882     ResolverName += ".ifunc";
3883   else if (FD->isTargetMultiVersion())
3884     ResolverName += ".resolver";
3885 
3886   // If the resolver has already been created, just return it.
3887   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3888     return ResolverGV;
3889 
3890   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3891   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3892 
3893   // The resolver needs to be created. For target and target_clones, defer
3894   // creation until the end of the TU.
3895   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3896     MultiVersionFuncs.push_back(GD);
3897 
3898   // For cpu_specific, don't create an ifunc yet because we don't know if the
3899   // cpu_dispatch will be emitted in this translation unit.
3900   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3901     llvm::Type *ResolverType = llvm::FunctionType::get(
3902         llvm::PointerType::get(
3903             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3904         false);
3905     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3906         MangledName + ".resolver", ResolverType, GlobalDecl{},
3907         /*ForVTable=*/false);
3908     llvm::GlobalIFunc *GIF =
3909         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3910                                   "", Resolver, &getModule());
3911     GIF->setName(ResolverName);
3912     SetCommonAttributes(FD, GIF);
3913 
3914     return GIF;
3915   }
3916 
3917   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3918       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3919   assert(isa<llvm::GlobalValue>(Resolver) &&
3920          "Resolver should be created for the first time");
3921   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3922   return Resolver;
3923 }
3924 
3925 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3926 /// module, create and return an llvm Function with the specified type. If there
3927 /// is something in the module with the specified name, return it potentially
3928 /// bitcasted to the right type.
3929 ///
3930 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3931 /// to set the attributes on the function when it is first created.
3932 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3933     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3934     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3935     ForDefinition_t IsForDefinition) {
3936   const Decl *D = GD.getDecl();
3937 
3938   // Any attempts to use a MultiVersion function should result in retrieving
3939   // the iFunc instead. Name Mangling will handle the rest of the changes.
3940   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3941     // For the device mark the function as one that should be emitted.
3942     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3943         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3944         !DontDefer && !IsForDefinition) {
3945       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3946         GlobalDecl GDDef;
3947         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3948           GDDef = GlobalDecl(CD, GD.getCtorType());
3949         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3950           GDDef = GlobalDecl(DD, GD.getDtorType());
3951         else
3952           GDDef = GlobalDecl(FDDef);
3953         EmitGlobal(GDDef);
3954       }
3955     }
3956 
3957     if (FD->isMultiVersion()) {
3958       UpdateMultiVersionNames(GD, FD, MangledName);
3959       if (!IsForDefinition)
3960         return GetOrCreateMultiVersionResolver(GD);
3961     }
3962   }
3963 
3964   // Lookup the entry, lazily creating it if necessary.
3965   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3966   if (Entry) {
3967     if (WeakRefReferences.erase(Entry)) {
3968       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3969       if (FD && !FD->hasAttr<WeakAttr>())
3970         Entry->setLinkage(llvm::Function::ExternalLinkage);
3971     }
3972 
3973     // Handle dropped DLL attributes.
3974     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3975         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3976       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3977       setDSOLocal(Entry);
3978     }
3979 
3980     // If there are two attempts to define the same mangled name, issue an
3981     // error.
3982     if (IsForDefinition && !Entry->isDeclaration()) {
3983       GlobalDecl OtherGD;
3984       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3985       // to make sure that we issue an error only once.
3986       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3987           (GD.getCanonicalDecl().getDecl() !=
3988            OtherGD.getCanonicalDecl().getDecl()) &&
3989           DiagnosedConflictingDefinitions.insert(GD).second) {
3990         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3991             << MangledName;
3992         getDiags().Report(OtherGD.getDecl()->getLocation(),
3993                           diag::note_previous_definition);
3994       }
3995     }
3996 
3997     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3998         (Entry->getValueType() == Ty)) {
3999       return Entry;
4000     }
4001 
4002     // Make sure the result is of the correct type.
4003     // (If function is requested for a definition, we always need to create a new
4004     // function, not just return a bitcast.)
4005     if (!IsForDefinition)
4006       return llvm::ConstantExpr::getBitCast(
4007           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4008   }
4009 
4010   // This function doesn't have a complete type (for example, the return
4011   // type is an incomplete struct). Use a fake type instead, and make
4012   // sure not to try to set attributes.
4013   bool IsIncompleteFunction = false;
4014 
4015   llvm::FunctionType *FTy;
4016   if (isa<llvm::FunctionType>(Ty)) {
4017     FTy = cast<llvm::FunctionType>(Ty);
4018   } else {
4019     FTy = llvm::FunctionType::get(VoidTy, false);
4020     IsIncompleteFunction = true;
4021   }
4022 
4023   llvm::Function *F =
4024       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4025                              Entry ? StringRef() : MangledName, &getModule());
4026 
4027   // If we already created a function with the same mangled name (but different
4028   // type) before, take its name and add it to the list of functions to be
4029   // replaced with F at the end of CodeGen.
4030   //
4031   // This happens if there is a prototype for a function (e.g. "int f()") and
4032   // then a definition of a different type (e.g. "int f(int x)").
4033   if (Entry) {
4034     F->takeName(Entry);
4035 
4036     // This might be an implementation of a function without a prototype, in
4037     // which case, try to do special replacement of calls which match the new
4038     // prototype.  The really key thing here is that we also potentially drop
4039     // arguments from the call site so as to make a direct call, which makes the
4040     // inliner happier and suppresses a number of optimizer warnings (!) about
4041     // dropping arguments.
4042     if (!Entry->use_empty()) {
4043       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4044       Entry->removeDeadConstantUsers();
4045     }
4046 
4047     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4048         F, Entry->getValueType()->getPointerTo());
4049     addGlobalValReplacement(Entry, BC);
4050   }
4051 
4052   assert(F->getName() == MangledName && "name was uniqued!");
4053   if (D)
4054     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4055   if (ExtraAttrs.hasFnAttrs()) {
4056     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4057     F->addFnAttrs(B);
4058   }
4059 
4060   if (!DontDefer) {
4061     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4062     // each other bottoming out with the base dtor.  Therefore we emit non-base
4063     // dtors on usage, even if there is no dtor definition in the TU.
4064     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4065         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4066                                            GD.getDtorType()))
4067       addDeferredDeclToEmit(GD);
4068 
4069     // This is the first use or definition of a mangled name.  If there is a
4070     // deferred decl with this name, remember that we need to emit it at the end
4071     // of the file.
4072     auto DDI = DeferredDecls.find(MangledName);
4073     if (DDI != DeferredDecls.end()) {
4074       // Move the potentially referenced deferred decl to the
4075       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4076       // don't need it anymore).
4077       addDeferredDeclToEmit(DDI->second);
4078       EmittedDeferredDecls[DDI->first] = DDI->second;
4079       DeferredDecls.erase(DDI);
4080 
4081       // Otherwise, there are cases we have to worry about where we're
4082       // using a declaration for which we must emit a definition but where
4083       // we might not find a top-level definition:
4084       //   - member functions defined inline in their classes
4085       //   - friend functions defined inline in some class
4086       //   - special member functions with implicit definitions
4087       // If we ever change our AST traversal to walk into class methods,
4088       // this will be unnecessary.
4089       //
4090       // We also don't emit a definition for a function if it's going to be an
4091       // entry in a vtable, unless it's already marked as used.
4092     } else if (getLangOpts().CPlusPlus && D) {
4093       // Look for a declaration that's lexically in a record.
4094       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4095            FD = FD->getPreviousDecl()) {
4096         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4097           if (FD->doesThisDeclarationHaveABody()) {
4098             addDeferredDeclToEmit(GD.getWithDecl(FD));
4099             break;
4100           }
4101         }
4102       }
4103     }
4104   }
4105 
4106   // Make sure the result is of the requested type.
4107   if (!IsIncompleteFunction) {
4108     assert(F->getFunctionType() == Ty);
4109     return F;
4110   }
4111 
4112   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4113   return llvm::ConstantExpr::getBitCast(F, PTy);
4114 }
4115 
4116 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4117 /// non-null, then this function will use the specified type if it has to
4118 /// create it (this occurs when we see a definition of the function).
4119 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4120                                                  llvm::Type *Ty,
4121                                                  bool ForVTable,
4122                                                  bool DontDefer,
4123                                               ForDefinition_t IsForDefinition) {
4124   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4125          "consteval function should never be emitted");
4126   // If there was no specific requested type, just convert it now.
4127   if (!Ty) {
4128     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4129     Ty = getTypes().ConvertType(FD->getType());
4130   }
4131 
4132   // Devirtualized destructor calls may come through here instead of via
4133   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4134   // of the complete destructor when necessary.
4135   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4136     if (getTarget().getCXXABI().isMicrosoft() &&
4137         GD.getDtorType() == Dtor_Complete &&
4138         DD->getParent()->getNumVBases() == 0)
4139       GD = GlobalDecl(DD, Dtor_Base);
4140   }
4141 
4142   StringRef MangledName = getMangledName(GD);
4143   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4144                                     /*IsThunk=*/false, llvm::AttributeList(),
4145                                     IsForDefinition);
4146   // Returns kernel handle for HIP kernel stub function.
4147   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4148       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4149     auto *Handle = getCUDARuntime().getKernelHandle(
4150         cast<llvm::Function>(F->stripPointerCasts()), GD);
4151     if (IsForDefinition)
4152       return F;
4153     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4154   }
4155   return F;
4156 }
4157 
4158 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4159   llvm::GlobalValue *F =
4160       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4161 
4162   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4163                                         llvm::Type::getInt8PtrTy(VMContext));
4164 }
4165 
4166 static const FunctionDecl *
4167 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4168   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4169   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4170 
4171   IdentifierInfo &CII = C.Idents.get(Name);
4172   for (const auto *Result : DC->lookup(&CII))
4173     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4174       return FD;
4175 
4176   if (!C.getLangOpts().CPlusPlus)
4177     return nullptr;
4178 
4179   // Demangle the premangled name from getTerminateFn()
4180   IdentifierInfo &CXXII =
4181       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4182           ? C.Idents.get("terminate")
4183           : C.Idents.get(Name);
4184 
4185   for (const auto &N : {"__cxxabiv1", "std"}) {
4186     IdentifierInfo &NS = C.Idents.get(N);
4187     for (const auto *Result : DC->lookup(&NS)) {
4188       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4189       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4190         for (const auto *Result : LSD->lookup(&NS))
4191           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4192             break;
4193 
4194       if (ND)
4195         for (const auto *Result : ND->lookup(&CXXII))
4196           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4197             return FD;
4198     }
4199   }
4200 
4201   return nullptr;
4202 }
4203 
4204 /// CreateRuntimeFunction - Create a new runtime function with the specified
4205 /// type and name.
4206 llvm::FunctionCallee
4207 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4208                                      llvm::AttributeList ExtraAttrs, bool Local,
4209                                      bool AssumeConvergent) {
4210   if (AssumeConvergent) {
4211     ExtraAttrs =
4212         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4213   }
4214 
4215   llvm::Constant *C =
4216       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4217                               /*DontDefer=*/false, /*IsThunk=*/false,
4218                               ExtraAttrs);
4219 
4220   if (auto *F = dyn_cast<llvm::Function>(C)) {
4221     if (F->empty()) {
4222       F->setCallingConv(getRuntimeCC());
4223 
4224       // In Windows Itanium environments, try to mark runtime functions
4225       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4226       // will link their standard library statically or dynamically. Marking
4227       // functions imported when they are not imported can cause linker errors
4228       // and warnings.
4229       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4230           !getCodeGenOpts().LTOVisibilityPublicStd) {
4231         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4232         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4233           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4234           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4235         }
4236       }
4237       setDSOLocal(F);
4238     }
4239   }
4240 
4241   return {FTy, C};
4242 }
4243 
4244 /// isTypeConstant - Determine whether an object of this type can be emitted
4245 /// as a constant.
4246 ///
4247 /// If ExcludeCtor is true, the duration when the object's constructor runs
4248 /// will not be considered. The caller will need to verify that the object is
4249 /// not written to during its construction.
4250 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4251   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4252     return false;
4253 
4254   if (Context.getLangOpts().CPlusPlus) {
4255     if (const CXXRecordDecl *Record
4256           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4257       return ExcludeCtor && !Record->hasMutableFields() &&
4258              Record->hasTrivialDestructor();
4259   }
4260 
4261   return true;
4262 }
4263 
4264 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4265 /// create and return an llvm GlobalVariable with the specified type and address
4266 /// space. If there is something in the module with the specified name, return
4267 /// it potentially bitcasted to the right type.
4268 ///
4269 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4270 /// to set the attributes on the global when it is first created.
4271 ///
4272 /// If IsForDefinition is true, it is guaranteed that an actual global with
4273 /// type Ty will be returned, not conversion of a variable with the same
4274 /// mangled name but some other type.
4275 llvm::Constant *
4276 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4277                                      LangAS AddrSpace, const VarDecl *D,
4278                                      ForDefinition_t IsForDefinition) {
4279   // Lookup the entry, lazily creating it if necessary.
4280   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4281   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4282   if (Entry) {
4283     if (WeakRefReferences.erase(Entry)) {
4284       if (D && !D->hasAttr<WeakAttr>())
4285         Entry->setLinkage(llvm::Function::ExternalLinkage);
4286     }
4287 
4288     // Handle dropped DLL attributes.
4289     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4290         !shouldMapVisibilityToDLLExport(D))
4291       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4292 
4293     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4294       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4295 
4296     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4297       return Entry;
4298 
4299     // If there are two attempts to define the same mangled name, issue an
4300     // error.
4301     if (IsForDefinition && !Entry->isDeclaration()) {
4302       GlobalDecl OtherGD;
4303       const VarDecl *OtherD;
4304 
4305       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4306       // to make sure that we issue an error only once.
4307       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4308           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4309           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4310           OtherD->hasInit() &&
4311           DiagnosedConflictingDefinitions.insert(D).second) {
4312         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4313             << MangledName;
4314         getDiags().Report(OtherGD.getDecl()->getLocation(),
4315                           diag::note_previous_definition);
4316       }
4317     }
4318 
4319     // Make sure the result is of the correct type.
4320     if (Entry->getType()->getAddressSpace() != TargetAS) {
4321       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4322                                                   Ty->getPointerTo(TargetAS));
4323     }
4324 
4325     // (If global is requested for a definition, we always need to create a new
4326     // global, not just return a bitcast.)
4327     if (!IsForDefinition)
4328       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4329   }
4330 
4331   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4332 
4333   auto *GV = new llvm::GlobalVariable(
4334       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4335       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4336       getContext().getTargetAddressSpace(DAddrSpace));
4337 
4338   // If we already created a global with the same mangled name (but different
4339   // type) before, take its name and remove it from its parent.
4340   if (Entry) {
4341     GV->takeName(Entry);
4342 
4343     if (!Entry->use_empty()) {
4344       llvm::Constant *NewPtrForOldDecl =
4345           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4346       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4347     }
4348 
4349     Entry->eraseFromParent();
4350   }
4351 
4352   // This is the first use or definition of a mangled name.  If there is a
4353   // deferred decl with this name, remember that we need to emit it at the end
4354   // of the file.
4355   auto DDI = DeferredDecls.find(MangledName);
4356   if (DDI != DeferredDecls.end()) {
4357     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4358     // list, and remove it from DeferredDecls (since we don't need it anymore).
4359     addDeferredDeclToEmit(DDI->second);
4360     EmittedDeferredDecls[DDI->first] = DDI->second;
4361     DeferredDecls.erase(DDI);
4362   }
4363 
4364   // Handle things which are present even on external declarations.
4365   if (D) {
4366     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4367       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4368 
4369     // FIXME: This code is overly simple and should be merged with other global
4370     // handling.
4371     GV->setConstant(isTypeConstant(D->getType(), false));
4372 
4373     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4374 
4375     setLinkageForGV(GV, D);
4376 
4377     if (D->getTLSKind()) {
4378       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4379         CXXThreadLocals.push_back(D);
4380       setTLSMode(GV, *D);
4381     }
4382 
4383     setGVProperties(GV, D);
4384 
4385     // If required by the ABI, treat declarations of static data members with
4386     // inline initializers as definitions.
4387     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4388       EmitGlobalVarDefinition(D);
4389     }
4390 
4391     // Emit section information for extern variables.
4392     if (D->hasExternalStorage()) {
4393       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4394         GV->setSection(SA->getName());
4395     }
4396 
4397     // Handle XCore specific ABI requirements.
4398     if (getTriple().getArch() == llvm::Triple::xcore &&
4399         D->getLanguageLinkage() == CLanguageLinkage &&
4400         D->getType().isConstant(Context) &&
4401         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4402       GV->setSection(".cp.rodata");
4403 
4404     // Check if we a have a const declaration with an initializer, we may be
4405     // able to emit it as available_externally to expose it's value to the
4406     // optimizer.
4407     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4408         D->getType().isConstQualified() && !GV->hasInitializer() &&
4409         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4410       const auto *Record =
4411           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4412       bool HasMutableFields = Record && Record->hasMutableFields();
4413       if (!HasMutableFields) {
4414         const VarDecl *InitDecl;
4415         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4416         if (InitExpr) {
4417           ConstantEmitter emitter(*this);
4418           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4419           if (Init) {
4420             auto *InitType = Init->getType();
4421             if (GV->getValueType() != InitType) {
4422               // The type of the initializer does not match the definition.
4423               // This happens when an initializer has a different type from
4424               // the type of the global (because of padding at the end of a
4425               // structure for instance).
4426               GV->setName(StringRef());
4427               // Make a new global with the correct type, this is now guaranteed
4428               // to work.
4429               auto *NewGV = cast<llvm::GlobalVariable>(
4430                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4431                       ->stripPointerCasts());
4432 
4433               // Erase the old global, since it is no longer used.
4434               GV->eraseFromParent();
4435               GV = NewGV;
4436             } else {
4437               GV->setInitializer(Init);
4438               GV->setConstant(true);
4439               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4440             }
4441             emitter.finalize(GV);
4442           }
4443         }
4444       }
4445     }
4446   }
4447 
4448   if (GV->isDeclaration()) {
4449     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4450     // External HIP managed variables needed to be recorded for transformation
4451     // in both device and host compilations.
4452     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4453         D->hasExternalStorage())
4454       getCUDARuntime().handleVarRegistration(D, *GV);
4455   }
4456 
4457   if (D)
4458     SanitizerMD->reportGlobal(GV, *D);
4459 
4460   LangAS ExpectedAS =
4461       D ? D->getType().getAddressSpace()
4462         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4463   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4464   if (DAddrSpace != ExpectedAS) {
4465     return getTargetCodeGenInfo().performAddrSpaceCast(
4466         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4467   }
4468 
4469   return GV;
4470 }
4471 
4472 llvm::Constant *
4473 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4474   const Decl *D = GD.getDecl();
4475 
4476   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4477     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4478                                 /*DontDefer=*/false, IsForDefinition);
4479 
4480   if (isa<CXXMethodDecl>(D)) {
4481     auto FInfo =
4482         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4483     auto Ty = getTypes().GetFunctionType(*FInfo);
4484     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4485                              IsForDefinition);
4486   }
4487 
4488   if (isa<FunctionDecl>(D)) {
4489     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4490     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4491     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4492                              IsForDefinition);
4493   }
4494 
4495   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4496 }
4497 
4498 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4499     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4500     unsigned Alignment) {
4501   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4502   llvm::GlobalVariable *OldGV = nullptr;
4503 
4504   if (GV) {
4505     // Check if the variable has the right type.
4506     if (GV->getValueType() == Ty)
4507       return GV;
4508 
4509     // Because C++ name mangling, the only way we can end up with an already
4510     // existing global with the same name is if it has been declared extern "C".
4511     assert(GV->isDeclaration() && "Declaration has wrong type!");
4512     OldGV = GV;
4513   }
4514 
4515   // Create a new variable.
4516   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4517                                 Linkage, nullptr, Name);
4518 
4519   if (OldGV) {
4520     // Replace occurrences of the old variable if needed.
4521     GV->takeName(OldGV);
4522 
4523     if (!OldGV->use_empty()) {
4524       llvm::Constant *NewPtrForOldDecl =
4525       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4526       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4527     }
4528 
4529     OldGV->eraseFromParent();
4530   }
4531 
4532   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4533       !GV->hasAvailableExternallyLinkage())
4534     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4535 
4536   GV->setAlignment(llvm::MaybeAlign(Alignment));
4537 
4538   return GV;
4539 }
4540 
4541 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4542 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4543 /// then it will be created with the specified type instead of whatever the
4544 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4545 /// that an actual global with type Ty will be returned, not conversion of a
4546 /// variable with the same mangled name but some other type.
4547 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4548                                                   llvm::Type *Ty,
4549                                            ForDefinition_t IsForDefinition) {
4550   assert(D->hasGlobalStorage() && "Not a global variable");
4551   QualType ASTTy = D->getType();
4552   if (!Ty)
4553     Ty = getTypes().ConvertTypeForMem(ASTTy);
4554 
4555   StringRef MangledName = getMangledName(D);
4556   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4557                                IsForDefinition);
4558 }
4559 
4560 /// CreateRuntimeVariable - Create a new runtime global variable with the
4561 /// specified type and name.
4562 llvm::Constant *
4563 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4564                                      StringRef Name) {
4565   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4566                                                        : LangAS::Default;
4567   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4568   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4569   return Ret;
4570 }
4571 
4572 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4573   assert(!D->getInit() && "Cannot emit definite definitions here!");
4574 
4575   StringRef MangledName = getMangledName(D);
4576   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4577 
4578   // We already have a definition, not declaration, with the same mangled name.
4579   // Emitting of declaration is not required (and actually overwrites emitted
4580   // definition).
4581   if (GV && !GV->isDeclaration())
4582     return;
4583 
4584   // If we have not seen a reference to this variable yet, place it into the
4585   // deferred declarations table to be emitted if needed later.
4586   if (!MustBeEmitted(D) && !GV) {
4587       DeferredDecls[MangledName] = D;
4588       return;
4589   }
4590 
4591   // The tentative definition is the only definition.
4592   EmitGlobalVarDefinition(D);
4593 }
4594 
4595 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4596   EmitExternalVarDeclaration(D);
4597 }
4598 
4599 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4600   return Context.toCharUnitsFromBits(
4601       getDataLayout().getTypeStoreSizeInBits(Ty));
4602 }
4603 
4604 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4605   if (LangOpts.OpenCL) {
4606     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4607     assert(AS == LangAS::opencl_global ||
4608            AS == LangAS::opencl_global_device ||
4609            AS == LangAS::opencl_global_host ||
4610            AS == LangAS::opencl_constant ||
4611            AS == LangAS::opencl_local ||
4612            AS >= LangAS::FirstTargetAddressSpace);
4613     return AS;
4614   }
4615 
4616   if (LangOpts.SYCLIsDevice &&
4617       (!D || D->getType().getAddressSpace() == LangAS::Default))
4618     return LangAS::sycl_global;
4619 
4620   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4621     if (D && D->hasAttr<CUDAConstantAttr>())
4622       return LangAS::cuda_constant;
4623     else if (D && D->hasAttr<CUDASharedAttr>())
4624       return LangAS::cuda_shared;
4625     else if (D && D->hasAttr<CUDADeviceAttr>())
4626       return LangAS::cuda_device;
4627     else if (D && D->getType().isConstQualified())
4628       return LangAS::cuda_constant;
4629     else
4630       return LangAS::cuda_device;
4631   }
4632 
4633   if (LangOpts.OpenMP) {
4634     LangAS AS;
4635     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4636       return AS;
4637   }
4638   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4639 }
4640 
4641 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4642   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4643   if (LangOpts.OpenCL)
4644     return LangAS::opencl_constant;
4645   if (LangOpts.SYCLIsDevice)
4646     return LangAS::sycl_global;
4647   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4648     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4649     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4650     // with OpVariable instructions with Generic storage class which is not
4651     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4652     // UniformConstant storage class is not viable as pointers to it may not be
4653     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4654     return LangAS::cuda_device;
4655   if (auto AS = getTarget().getConstantAddressSpace())
4656     return *AS;
4657   return LangAS::Default;
4658 }
4659 
4660 // In address space agnostic languages, string literals are in default address
4661 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4662 // emitted in constant address space in LLVM IR. To be consistent with other
4663 // parts of AST, string literal global variables in constant address space
4664 // need to be casted to default address space before being put into address
4665 // map and referenced by other part of CodeGen.
4666 // In OpenCL, string literals are in constant address space in AST, therefore
4667 // they should not be casted to default address space.
4668 static llvm::Constant *
4669 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4670                                        llvm::GlobalVariable *GV) {
4671   llvm::Constant *Cast = GV;
4672   if (!CGM.getLangOpts().OpenCL) {
4673     auto AS = CGM.GetGlobalConstantAddressSpace();
4674     if (AS != LangAS::Default)
4675       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4676           CGM, GV, AS, LangAS::Default,
4677           GV->getValueType()->getPointerTo(
4678               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4679   }
4680   return Cast;
4681 }
4682 
4683 template<typename SomeDecl>
4684 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4685                                                llvm::GlobalValue *GV) {
4686   if (!getLangOpts().CPlusPlus)
4687     return;
4688 
4689   // Must have 'used' attribute, or else inline assembly can't rely on
4690   // the name existing.
4691   if (!D->template hasAttr<UsedAttr>())
4692     return;
4693 
4694   // Must have internal linkage and an ordinary name.
4695   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4696     return;
4697 
4698   // Must be in an extern "C" context. Entities declared directly within
4699   // a record are not extern "C" even if the record is in such a context.
4700   const SomeDecl *First = D->getFirstDecl();
4701   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4702     return;
4703 
4704   // OK, this is an internal linkage entity inside an extern "C" linkage
4705   // specification. Make a note of that so we can give it the "expected"
4706   // mangled name if nothing else is using that name.
4707   std::pair<StaticExternCMap::iterator, bool> R =
4708       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4709 
4710   // If we have multiple internal linkage entities with the same name
4711   // in extern "C" regions, none of them gets that name.
4712   if (!R.second)
4713     R.first->second = nullptr;
4714 }
4715 
4716 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4717   if (!CGM.supportsCOMDAT())
4718     return false;
4719 
4720   if (D.hasAttr<SelectAnyAttr>())
4721     return true;
4722 
4723   GVALinkage Linkage;
4724   if (auto *VD = dyn_cast<VarDecl>(&D))
4725     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4726   else
4727     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4728 
4729   switch (Linkage) {
4730   case GVA_Internal:
4731   case GVA_AvailableExternally:
4732   case GVA_StrongExternal:
4733     return false;
4734   case GVA_DiscardableODR:
4735   case GVA_StrongODR:
4736     return true;
4737   }
4738   llvm_unreachable("No such linkage");
4739 }
4740 
4741 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4742                                           llvm::GlobalObject &GO) {
4743   if (!shouldBeInCOMDAT(*this, D))
4744     return;
4745   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4746 }
4747 
4748 /// Pass IsTentative as true if you want to create a tentative definition.
4749 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4750                                             bool IsTentative) {
4751   // OpenCL global variables of sampler type are translated to function calls,
4752   // therefore no need to be translated.
4753   QualType ASTTy = D->getType();
4754   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4755     return;
4756 
4757   // If this is OpenMP device, check if it is legal to emit this global
4758   // normally.
4759   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4760       OpenMPRuntime->emitTargetGlobalVariable(D))
4761     return;
4762 
4763   llvm::TrackingVH<llvm::Constant> Init;
4764   bool NeedsGlobalCtor = false;
4765   bool NeedsGlobalDtor =
4766       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4767 
4768   const VarDecl *InitDecl;
4769   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4770 
4771   Optional<ConstantEmitter> emitter;
4772 
4773   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4774   // as part of their declaration."  Sema has already checked for
4775   // error cases, so we just need to set Init to UndefValue.
4776   bool IsCUDASharedVar =
4777       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4778   // Shadows of initialized device-side global variables are also left
4779   // undefined.
4780   // Managed Variables should be initialized on both host side and device side.
4781   bool IsCUDAShadowVar =
4782       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4783       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4784        D->hasAttr<CUDASharedAttr>());
4785   bool IsCUDADeviceShadowVar =
4786       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4787       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4788        D->getType()->isCUDADeviceBuiltinTextureType());
4789   if (getLangOpts().CUDA &&
4790       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4791     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4792   else if (D->hasAttr<LoaderUninitializedAttr>())
4793     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4794   else if (!InitExpr) {
4795     // This is a tentative definition; tentative definitions are
4796     // implicitly initialized with { 0 }.
4797     //
4798     // Note that tentative definitions are only emitted at the end of
4799     // a translation unit, so they should never have incomplete
4800     // type. In addition, EmitTentativeDefinition makes sure that we
4801     // never attempt to emit a tentative definition if a real one
4802     // exists. A use may still exists, however, so we still may need
4803     // to do a RAUW.
4804     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4805     Init = EmitNullConstant(D->getType());
4806   } else {
4807     initializedGlobalDecl = GlobalDecl(D);
4808     emitter.emplace(*this);
4809     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4810     if (!Initializer) {
4811       QualType T = InitExpr->getType();
4812       if (D->getType()->isReferenceType())
4813         T = D->getType();
4814 
4815       if (getLangOpts().CPlusPlus) {
4816         if (InitDecl->hasFlexibleArrayInit(getContext()))
4817           ErrorUnsupported(D, "flexible array initializer");
4818         Init = EmitNullConstant(T);
4819         NeedsGlobalCtor = true;
4820       } else {
4821         ErrorUnsupported(D, "static initializer");
4822         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4823       }
4824     } else {
4825       Init = Initializer;
4826       // We don't need an initializer, so remove the entry for the delayed
4827       // initializer position (just in case this entry was delayed) if we
4828       // also don't need to register a destructor.
4829       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4830         DelayedCXXInitPosition.erase(D);
4831 
4832 #ifndef NDEBUG
4833       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4834                           InitDecl->getFlexibleArrayInitChars(getContext());
4835       CharUnits CstSize = CharUnits::fromQuantity(
4836           getDataLayout().getTypeAllocSize(Init->getType()));
4837       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4838 #endif
4839     }
4840   }
4841 
4842   llvm::Type* InitType = Init->getType();
4843   llvm::Constant *Entry =
4844       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4845 
4846   // Strip off pointer casts if we got them.
4847   Entry = Entry->stripPointerCasts();
4848 
4849   // Entry is now either a Function or GlobalVariable.
4850   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4851 
4852   // We have a definition after a declaration with the wrong type.
4853   // We must make a new GlobalVariable* and update everything that used OldGV
4854   // (a declaration or tentative definition) with the new GlobalVariable*
4855   // (which will be a definition).
4856   //
4857   // This happens if there is a prototype for a global (e.g.
4858   // "extern int x[];") and then a definition of a different type (e.g.
4859   // "int x[10];"). This also happens when an initializer has a different type
4860   // from the type of the global (this happens with unions).
4861   if (!GV || GV->getValueType() != InitType ||
4862       GV->getType()->getAddressSpace() !=
4863           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4864 
4865     // Move the old entry aside so that we'll create a new one.
4866     Entry->setName(StringRef());
4867 
4868     // Make a new global with the correct type, this is now guaranteed to work.
4869     GV = cast<llvm::GlobalVariable>(
4870         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4871             ->stripPointerCasts());
4872 
4873     // Replace all uses of the old global with the new global
4874     llvm::Constant *NewPtrForOldDecl =
4875         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4876                                                              Entry->getType());
4877     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4878 
4879     // Erase the old global, since it is no longer used.
4880     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4881   }
4882 
4883   MaybeHandleStaticInExternC(D, GV);
4884 
4885   if (D->hasAttr<AnnotateAttr>())
4886     AddGlobalAnnotations(D, GV);
4887 
4888   // Set the llvm linkage type as appropriate.
4889   llvm::GlobalValue::LinkageTypes Linkage =
4890       getLLVMLinkageVarDefinition(D, GV->isConstant());
4891 
4892   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4893   // the device. [...]"
4894   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4895   // __device__, declares a variable that: [...]
4896   // Is accessible from all the threads within the grid and from the host
4897   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4898   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4899   if (GV && LangOpts.CUDA) {
4900     if (LangOpts.CUDAIsDevice) {
4901       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4902           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4903            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4904            D->getType()->isCUDADeviceBuiltinTextureType()))
4905         GV->setExternallyInitialized(true);
4906     } else {
4907       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4908     }
4909     getCUDARuntime().handleVarRegistration(D, *GV);
4910   }
4911 
4912   GV->setInitializer(Init);
4913   if (emitter)
4914     emitter->finalize(GV);
4915 
4916   // If it is safe to mark the global 'constant', do so now.
4917   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4918                   isTypeConstant(D->getType(), true));
4919 
4920   // If it is in a read-only section, mark it 'constant'.
4921   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4922     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4923     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4924       GV->setConstant(true);
4925   }
4926 
4927   CharUnits AlignVal = getContext().getDeclAlign(D);
4928   // Check for alignment specifed in an 'omp allocate' directive.
4929   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4930           getOMPAllocateAlignment(D))
4931     AlignVal = *AlignValFromAllocate;
4932   GV->setAlignment(AlignVal.getAsAlign());
4933 
4934   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4935   // function is only defined alongside the variable, not also alongside
4936   // callers. Normally, all accesses to a thread_local go through the
4937   // thread-wrapper in order to ensure initialization has occurred, underlying
4938   // variable will never be used other than the thread-wrapper, so it can be
4939   // converted to internal linkage.
4940   //
4941   // However, if the variable has the 'constinit' attribute, it _can_ be
4942   // referenced directly, without calling the thread-wrapper, so the linkage
4943   // must not be changed.
4944   //
4945   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4946   // weak or linkonce, the de-duplication semantics are important to preserve,
4947   // so we don't change the linkage.
4948   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4949       Linkage == llvm::GlobalValue::ExternalLinkage &&
4950       Context.getTargetInfo().getTriple().isOSDarwin() &&
4951       !D->hasAttr<ConstInitAttr>())
4952     Linkage = llvm::GlobalValue::InternalLinkage;
4953 
4954   GV->setLinkage(Linkage);
4955   if (D->hasAttr<DLLImportAttr>())
4956     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4957   else if (D->hasAttr<DLLExportAttr>())
4958     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4959   else
4960     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4961 
4962   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4963     // common vars aren't constant even if declared const.
4964     GV->setConstant(false);
4965     // Tentative definition of global variables may be initialized with
4966     // non-zero null pointers. In this case they should have weak linkage
4967     // since common linkage must have zero initializer and must not have
4968     // explicit section therefore cannot have non-zero initial value.
4969     if (!GV->getInitializer()->isNullValue())
4970       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4971   }
4972 
4973   setNonAliasAttributes(D, GV);
4974 
4975   if (D->getTLSKind() && !GV->isThreadLocal()) {
4976     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4977       CXXThreadLocals.push_back(D);
4978     setTLSMode(GV, *D);
4979   }
4980 
4981   maybeSetTrivialComdat(*D, *GV);
4982 
4983   // Emit the initializer function if necessary.
4984   if (NeedsGlobalCtor || NeedsGlobalDtor)
4985     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4986 
4987   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4988 
4989   // Emit global variable debug information.
4990   if (CGDebugInfo *DI = getModuleDebugInfo())
4991     if (getCodeGenOpts().hasReducedDebugInfo())
4992       DI->EmitGlobalVariable(GV, D);
4993 }
4994 
4995 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4996   if (CGDebugInfo *DI = getModuleDebugInfo())
4997     if (getCodeGenOpts().hasReducedDebugInfo()) {
4998       QualType ASTTy = D->getType();
4999       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5000       llvm::Constant *GV =
5001           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5002       DI->EmitExternalVariable(
5003           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5004     }
5005 }
5006 
5007 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5008                                       CodeGenModule &CGM, const VarDecl *D,
5009                                       bool NoCommon) {
5010   // Don't give variables common linkage if -fno-common was specified unless it
5011   // was overridden by a NoCommon attribute.
5012   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5013     return true;
5014 
5015   // C11 6.9.2/2:
5016   //   A declaration of an identifier for an object that has file scope without
5017   //   an initializer, and without a storage-class specifier or with the
5018   //   storage-class specifier static, constitutes a tentative definition.
5019   if (D->getInit() || D->hasExternalStorage())
5020     return true;
5021 
5022   // A variable cannot be both common and exist in a section.
5023   if (D->hasAttr<SectionAttr>())
5024     return true;
5025 
5026   // A variable cannot be both common and exist in a section.
5027   // We don't try to determine which is the right section in the front-end.
5028   // If no specialized section name is applicable, it will resort to default.
5029   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5030       D->hasAttr<PragmaClangDataSectionAttr>() ||
5031       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5032       D->hasAttr<PragmaClangRodataSectionAttr>())
5033     return true;
5034 
5035   // Thread local vars aren't considered common linkage.
5036   if (D->getTLSKind())
5037     return true;
5038 
5039   // Tentative definitions marked with WeakImportAttr are true definitions.
5040   if (D->hasAttr<WeakImportAttr>())
5041     return true;
5042 
5043   // A variable cannot be both common and exist in a comdat.
5044   if (shouldBeInCOMDAT(CGM, *D))
5045     return true;
5046 
5047   // Declarations with a required alignment do not have common linkage in MSVC
5048   // mode.
5049   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5050     if (D->hasAttr<AlignedAttr>())
5051       return true;
5052     QualType VarType = D->getType();
5053     if (Context.isAlignmentRequired(VarType))
5054       return true;
5055 
5056     if (const auto *RT = VarType->getAs<RecordType>()) {
5057       const RecordDecl *RD = RT->getDecl();
5058       for (const FieldDecl *FD : RD->fields()) {
5059         if (FD->isBitField())
5060           continue;
5061         if (FD->hasAttr<AlignedAttr>())
5062           return true;
5063         if (Context.isAlignmentRequired(FD->getType()))
5064           return true;
5065       }
5066     }
5067   }
5068 
5069   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5070   // common symbols, so symbols with greater alignment requirements cannot be
5071   // common.
5072   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5073   // alignments for common symbols via the aligncomm directive, so this
5074   // restriction only applies to MSVC environments.
5075   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5076       Context.getTypeAlignIfKnown(D->getType()) >
5077           Context.toBits(CharUnits::fromQuantity(32)))
5078     return true;
5079 
5080   return false;
5081 }
5082 
5083 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5084     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5085   if (Linkage == GVA_Internal)
5086     return llvm::Function::InternalLinkage;
5087 
5088   if (D->hasAttr<WeakAttr>())
5089     return llvm::GlobalVariable::WeakAnyLinkage;
5090 
5091   if (const auto *FD = D->getAsFunction())
5092     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5093       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5094 
5095   // We are guaranteed to have a strong definition somewhere else,
5096   // so we can use available_externally linkage.
5097   if (Linkage == GVA_AvailableExternally)
5098     return llvm::GlobalValue::AvailableExternallyLinkage;
5099 
5100   // Note that Apple's kernel linker doesn't support symbol
5101   // coalescing, so we need to avoid linkonce and weak linkages there.
5102   // Normally, this means we just map to internal, but for explicit
5103   // instantiations we'll map to external.
5104 
5105   // In C++, the compiler has to emit a definition in every translation unit
5106   // that references the function.  We should use linkonce_odr because
5107   // a) if all references in this translation unit are optimized away, we
5108   // don't need to codegen it.  b) if the function persists, it needs to be
5109   // merged with other definitions. c) C++ has the ODR, so we know the
5110   // definition is dependable.
5111   if (Linkage == GVA_DiscardableODR)
5112     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5113                                             : llvm::Function::InternalLinkage;
5114 
5115   // An explicit instantiation of a template has weak linkage, since
5116   // explicit instantiations can occur in multiple translation units
5117   // and must all be equivalent. However, we are not allowed to
5118   // throw away these explicit instantiations.
5119   //
5120   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5121   // so say that CUDA templates are either external (for kernels) or internal.
5122   // This lets llvm perform aggressive inter-procedural optimizations. For
5123   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5124   // therefore we need to follow the normal linkage paradigm.
5125   if (Linkage == GVA_StrongODR) {
5126     if (getLangOpts().AppleKext)
5127       return llvm::Function::ExternalLinkage;
5128     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5129         !getLangOpts().GPURelocatableDeviceCode)
5130       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5131                                           : llvm::Function::InternalLinkage;
5132     return llvm::Function::WeakODRLinkage;
5133   }
5134 
5135   // C++ doesn't have tentative definitions and thus cannot have common
5136   // linkage.
5137   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5138       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5139                                  CodeGenOpts.NoCommon))
5140     return llvm::GlobalVariable::CommonLinkage;
5141 
5142   // selectany symbols are externally visible, so use weak instead of
5143   // linkonce.  MSVC optimizes away references to const selectany globals, so
5144   // all definitions should be the same and ODR linkage should be used.
5145   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5146   if (D->hasAttr<SelectAnyAttr>())
5147     return llvm::GlobalVariable::WeakODRLinkage;
5148 
5149   // Otherwise, we have strong external linkage.
5150   assert(Linkage == GVA_StrongExternal);
5151   return llvm::GlobalVariable::ExternalLinkage;
5152 }
5153 
5154 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5155     const VarDecl *VD, bool IsConstant) {
5156   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5157   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5158 }
5159 
5160 /// Replace the uses of a function that was declared with a non-proto type.
5161 /// We want to silently drop extra arguments from call sites
5162 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5163                                           llvm::Function *newFn) {
5164   // Fast path.
5165   if (old->use_empty()) return;
5166 
5167   llvm::Type *newRetTy = newFn->getReturnType();
5168   SmallVector<llvm::Value*, 4> newArgs;
5169 
5170   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5171          ui != ue; ) {
5172     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5173     llvm::User *user = use->getUser();
5174 
5175     // Recognize and replace uses of bitcasts.  Most calls to
5176     // unprototyped functions will use bitcasts.
5177     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5178       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5179         replaceUsesOfNonProtoConstant(bitcast, newFn);
5180       continue;
5181     }
5182 
5183     // Recognize calls to the function.
5184     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5185     if (!callSite) continue;
5186     if (!callSite->isCallee(&*use))
5187       continue;
5188 
5189     // If the return types don't match exactly, then we can't
5190     // transform this call unless it's dead.
5191     if (callSite->getType() != newRetTy && !callSite->use_empty())
5192       continue;
5193 
5194     // Get the call site's attribute list.
5195     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5196     llvm::AttributeList oldAttrs = callSite->getAttributes();
5197 
5198     // If the function was passed too few arguments, don't transform.
5199     unsigned newNumArgs = newFn->arg_size();
5200     if (callSite->arg_size() < newNumArgs)
5201       continue;
5202 
5203     // If extra arguments were passed, we silently drop them.
5204     // If any of the types mismatch, we don't transform.
5205     unsigned argNo = 0;
5206     bool dontTransform = false;
5207     for (llvm::Argument &A : newFn->args()) {
5208       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5209         dontTransform = true;
5210         break;
5211       }
5212 
5213       // Add any parameter attributes.
5214       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5215       argNo++;
5216     }
5217     if (dontTransform)
5218       continue;
5219 
5220     // Okay, we can transform this.  Create the new call instruction and copy
5221     // over the required information.
5222     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5223 
5224     // Copy over any operand bundles.
5225     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5226     callSite->getOperandBundlesAsDefs(newBundles);
5227 
5228     llvm::CallBase *newCall;
5229     if (isa<llvm::CallInst>(callSite)) {
5230       newCall =
5231           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5232     } else {
5233       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5234       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5235                                          oldInvoke->getUnwindDest(), newArgs,
5236                                          newBundles, "", callSite);
5237     }
5238     newArgs.clear(); // for the next iteration
5239 
5240     if (!newCall->getType()->isVoidTy())
5241       newCall->takeName(callSite);
5242     newCall->setAttributes(
5243         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5244                                  oldAttrs.getRetAttrs(), newArgAttrs));
5245     newCall->setCallingConv(callSite->getCallingConv());
5246 
5247     // Finally, remove the old call, replacing any uses with the new one.
5248     if (!callSite->use_empty())
5249       callSite->replaceAllUsesWith(newCall);
5250 
5251     // Copy debug location attached to CI.
5252     if (callSite->getDebugLoc())
5253       newCall->setDebugLoc(callSite->getDebugLoc());
5254 
5255     callSite->eraseFromParent();
5256   }
5257 }
5258 
5259 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5260 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5261 /// existing call uses of the old function in the module, this adjusts them to
5262 /// call the new function directly.
5263 ///
5264 /// This is not just a cleanup: the always_inline pass requires direct calls to
5265 /// functions to be able to inline them.  If there is a bitcast in the way, it
5266 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5267 /// run at -O0.
5268 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5269                                                       llvm::Function *NewFn) {
5270   // If we're redefining a global as a function, don't transform it.
5271   if (!isa<llvm::Function>(Old)) return;
5272 
5273   replaceUsesOfNonProtoConstant(Old, NewFn);
5274 }
5275 
5276 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5277   auto DK = VD->isThisDeclarationADefinition();
5278   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5279     return;
5280 
5281   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5282   // If we have a definition, this might be a deferred decl. If the
5283   // instantiation is explicit, make sure we emit it at the end.
5284   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5285     GetAddrOfGlobalVar(VD);
5286 
5287   EmitTopLevelDecl(VD);
5288 }
5289 
5290 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5291                                                  llvm::GlobalValue *GV) {
5292   const auto *D = cast<FunctionDecl>(GD.getDecl());
5293 
5294   // Compute the function info and LLVM type.
5295   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5296   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5297 
5298   // Get or create the prototype for the function.
5299   if (!GV || (GV->getValueType() != Ty))
5300     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5301                                                    /*DontDefer=*/true,
5302                                                    ForDefinition));
5303 
5304   // Already emitted.
5305   if (!GV->isDeclaration())
5306     return;
5307 
5308   // We need to set linkage and visibility on the function before
5309   // generating code for it because various parts of IR generation
5310   // want to propagate this information down (e.g. to local static
5311   // declarations).
5312   auto *Fn = cast<llvm::Function>(GV);
5313   setFunctionLinkage(GD, Fn);
5314 
5315   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5316   setGVProperties(Fn, GD);
5317 
5318   MaybeHandleStaticInExternC(D, Fn);
5319 
5320   maybeSetTrivialComdat(*D, *Fn);
5321 
5322   // Set CodeGen attributes that represent floating point environment.
5323   setLLVMFunctionFEnvAttributes(D, Fn);
5324 
5325   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5326 
5327   setNonAliasAttributes(GD, Fn);
5328   SetLLVMFunctionAttributesForDefinition(D, Fn);
5329 
5330   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5331     AddGlobalCtor(Fn, CA->getPriority());
5332   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5333     AddGlobalDtor(Fn, DA->getPriority(), true);
5334   if (D->hasAttr<AnnotateAttr>())
5335     AddGlobalAnnotations(D, Fn);
5336 }
5337 
5338 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5339   const auto *D = cast<ValueDecl>(GD.getDecl());
5340   const AliasAttr *AA = D->getAttr<AliasAttr>();
5341   assert(AA && "Not an alias?");
5342 
5343   StringRef MangledName = getMangledName(GD);
5344 
5345   if (AA->getAliasee() == MangledName) {
5346     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5347     return;
5348   }
5349 
5350   // If there is a definition in the module, then it wins over the alias.
5351   // This is dubious, but allow it to be safe.  Just ignore the alias.
5352   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5353   if (Entry && !Entry->isDeclaration())
5354     return;
5355 
5356   Aliases.push_back(GD);
5357 
5358   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5359 
5360   // Create a reference to the named value.  This ensures that it is emitted
5361   // if a deferred decl.
5362   llvm::Constant *Aliasee;
5363   llvm::GlobalValue::LinkageTypes LT;
5364   if (isa<llvm::FunctionType>(DeclTy)) {
5365     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5366                                       /*ForVTable=*/false);
5367     LT = getFunctionLinkage(GD);
5368   } else {
5369     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5370                                     /*D=*/nullptr);
5371     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5372       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5373     else
5374       LT = getFunctionLinkage(GD);
5375   }
5376 
5377   // Create the new alias itself, but don't set a name yet.
5378   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5379   auto *GA =
5380       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5381 
5382   if (Entry) {
5383     if (GA->getAliasee() == Entry) {
5384       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5385       return;
5386     }
5387 
5388     assert(Entry->isDeclaration());
5389 
5390     // If there is a declaration in the module, then we had an extern followed
5391     // by the alias, as in:
5392     //   extern int test6();
5393     //   ...
5394     //   int test6() __attribute__((alias("test7")));
5395     //
5396     // Remove it and replace uses of it with the alias.
5397     GA->takeName(Entry);
5398 
5399     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5400                                                           Entry->getType()));
5401     Entry->eraseFromParent();
5402   } else {
5403     GA->setName(MangledName);
5404   }
5405 
5406   // Set attributes which are particular to an alias; this is a
5407   // specialization of the attributes which may be set on a global
5408   // variable/function.
5409   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5410       D->isWeakImported()) {
5411     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5412   }
5413 
5414   if (const auto *VD = dyn_cast<VarDecl>(D))
5415     if (VD->getTLSKind())
5416       setTLSMode(GA, *VD);
5417 
5418   SetCommonAttributes(GD, GA);
5419 
5420   // Emit global alias debug information.
5421   if (isa<VarDecl>(D))
5422     if (CGDebugInfo *DI = getModuleDebugInfo())
5423       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5424 }
5425 
5426 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5427   const auto *D = cast<ValueDecl>(GD.getDecl());
5428   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5429   assert(IFA && "Not an ifunc?");
5430 
5431   StringRef MangledName = getMangledName(GD);
5432 
5433   if (IFA->getResolver() == MangledName) {
5434     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5435     return;
5436   }
5437 
5438   // Report an error if some definition overrides ifunc.
5439   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5440   if (Entry && !Entry->isDeclaration()) {
5441     GlobalDecl OtherGD;
5442     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5443         DiagnosedConflictingDefinitions.insert(GD).second) {
5444       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5445           << MangledName;
5446       Diags.Report(OtherGD.getDecl()->getLocation(),
5447                    diag::note_previous_definition);
5448     }
5449     return;
5450   }
5451 
5452   Aliases.push_back(GD);
5453 
5454   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5455   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5456   llvm::Constant *Resolver =
5457       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5458                               /*ForVTable=*/false);
5459   llvm::GlobalIFunc *GIF =
5460       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5461                                 "", Resolver, &getModule());
5462   if (Entry) {
5463     if (GIF->getResolver() == Entry) {
5464       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5465       return;
5466     }
5467     assert(Entry->isDeclaration());
5468 
5469     // If there is a declaration in the module, then we had an extern followed
5470     // by the ifunc, as in:
5471     //   extern int test();
5472     //   ...
5473     //   int test() __attribute__((ifunc("resolver")));
5474     //
5475     // Remove it and replace uses of it with the ifunc.
5476     GIF->takeName(Entry);
5477 
5478     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5479                                                           Entry->getType()));
5480     Entry->eraseFromParent();
5481   } else
5482     GIF->setName(MangledName);
5483 
5484   SetCommonAttributes(GD, GIF);
5485 }
5486 
5487 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5488                                             ArrayRef<llvm::Type*> Tys) {
5489   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5490                                          Tys);
5491 }
5492 
5493 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5494 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5495                          const StringLiteral *Literal, bool TargetIsLSB,
5496                          bool &IsUTF16, unsigned &StringLength) {
5497   StringRef String = Literal->getString();
5498   unsigned NumBytes = String.size();
5499 
5500   // Check for simple case.
5501   if (!Literal->containsNonAsciiOrNull()) {
5502     StringLength = NumBytes;
5503     return *Map.insert(std::make_pair(String, nullptr)).first;
5504   }
5505 
5506   // Otherwise, convert the UTF8 literals into a string of shorts.
5507   IsUTF16 = true;
5508 
5509   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5510   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5511   llvm::UTF16 *ToPtr = &ToBuf[0];
5512 
5513   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5514                                  ToPtr + NumBytes, llvm::strictConversion);
5515 
5516   // ConvertUTF8toUTF16 returns the length in ToPtr.
5517   StringLength = ToPtr - &ToBuf[0];
5518 
5519   // Add an explicit null.
5520   *ToPtr = 0;
5521   return *Map.insert(std::make_pair(
5522                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5523                                    (StringLength + 1) * 2),
5524                          nullptr)).first;
5525 }
5526 
5527 ConstantAddress
5528 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5529   unsigned StringLength = 0;
5530   bool isUTF16 = false;
5531   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5532       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5533                                getDataLayout().isLittleEndian(), isUTF16,
5534                                StringLength);
5535 
5536   if (auto *C = Entry.second)
5537     return ConstantAddress(
5538         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5539 
5540   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5541   llvm::Constant *Zeros[] = { Zero, Zero };
5542 
5543   const ASTContext &Context = getContext();
5544   const llvm::Triple &Triple = getTriple();
5545 
5546   const auto CFRuntime = getLangOpts().CFRuntime;
5547   const bool IsSwiftABI =
5548       static_cast<unsigned>(CFRuntime) >=
5549       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5550   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5551 
5552   // If we don't already have it, get __CFConstantStringClassReference.
5553   if (!CFConstantStringClassRef) {
5554     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5555     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5556     Ty = llvm::ArrayType::get(Ty, 0);
5557 
5558     switch (CFRuntime) {
5559     default: break;
5560     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5561     case LangOptions::CoreFoundationABI::Swift5_0:
5562       CFConstantStringClassName =
5563           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5564                               : "$s10Foundation19_NSCFConstantStringCN";
5565       Ty = IntPtrTy;
5566       break;
5567     case LangOptions::CoreFoundationABI::Swift4_2:
5568       CFConstantStringClassName =
5569           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5570                               : "$S10Foundation19_NSCFConstantStringCN";
5571       Ty = IntPtrTy;
5572       break;
5573     case LangOptions::CoreFoundationABI::Swift4_1:
5574       CFConstantStringClassName =
5575           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5576                               : "__T010Foundation19_NSCFConstantStringCN";
5577       Ty = IntPtrTy;
5578       break;
5579     }
5580 
5581     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5582 
5583     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5584       llvm::GlobalValue *GV = nullptr;
5585 
5586       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5587         IdentifierInfo &II = Context.Idents.get(GV->getName());
5588         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5589         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5590 
5591         const VarDecl *VD = nullptr;
5592         for (const auto *Result : DC->lookup(&II))
5593           if ((VD = dyn_cast<VarDecl>(Result)))
5594             break;
5595 
5596         if (Triple.isOSBinFormatELF()) {
5597           if (!VD)
5598             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5599         } else {
5600           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5601           if (!VD || !VD->hasAttr<DLLExportAttr>())
5602             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5603           else
5604             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5605         }
5606 
5607         setDSOLocal(GV);
5608       }
5609     }
5610 
5611     // Decay array -> ptr
5612     CFConstantStringClassRef =
5613         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5614                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5615   }
5616 
5617   QualType CFTy = Context.getCFConstantStringType();
5618 
5619   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5620 
5621   ConstantInitBuilder Builder(*this);
5622   auto Fields = Builder.beginStruct(STy);
5623 
5624   // Class pointer.
5625   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5626 
5627   // Flags.
5628   if (IsSwiftABI) {
5629     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5630     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5631   } else {
5632     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5633   }
5634 
5635   // String pointer.
5636   llvm::Constant *C = nullptr;
5637   if (isUTF16) {
5638     auto Arr = llvm::makeArrayRef(
5639         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5640         Entry.first().size() / 2);
5641     C = llvm::ConstantDataArray::get(VMContext, Arr);
5642   } else {
5643     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5644   }
5645 
5646   // Note: -fwritable-strings doesn't make the backing store strings of
5647   // CFStrings writable. (See <rdar://problem/10657500>)
5648   auto *GV =
5649       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5650                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5651   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5652   // Don't enforce the target's minimum global alignment, since the only use
5653   // of the string is via this class initializer.
5654   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5655                             : Context.getTypeAlignInChars(Context.CharTy);
5656   GV->setAlignment(Align.getAsAlign());
5657 
5658   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5659   // Without it LLVM can merge the string with a non unnamed_addr one during
5660   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5661   if (Triple.isOSBinFormatMachO())
5662     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5663                            : "__TEXT,__cstring,cstring_literals");
5664   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5665   // the static linker to adjust permissions to read-only later on.
5666   else if (Triple.isOSBinFormatELF())
5667     GV->setSection(".rodata");
5668 
5669   // String.
5670   llvm::Constant *Str =
5671       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5672 
5673   if (isUTF16)
5674     // Cast the UTF16 string to the correct type.
5675     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5676   Fields.add(Str);
5677 
5678   // String length.
5679   llvm::IntegerType *LengthTy =
5680       llvm::IntegerType::get(getModule().getContext(),
5681                              Context.getTargetInfo().getLongWidth());
5682   if (IsSwiftABI) {
5683     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5684         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5685       LengthTy = Int32Ty;
5686     else
5687       LengthTy = IntPtrTy;
5688   }
5689   Fields.addInt(LengthTy, StringLength);
5690 
5691   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5692   // properly aligned on 32-bit platforms.
5693   CharUnits Alignment =
5694       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5695 
5696   // The struct.
5697   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5698                                     /*isConstant=*/false,
5699                                     llvm::GlobalVariable::PrivateLinkage);
5700   GV->addAttribute("objc_arc_inert");
5701   switch (Triple.getObjectFormat()) {
5702   case llvm::Triple::UnknownObjectFormat:
5703     llvm_unreachable("unknown file format");
5704   case llvm::Triple::DXContainer:
5705   case llvm::Triple::GOFF:
5706   case llvm::Triple::SPIRV:
5707   case llvm::Triple::XCOFF:
5708     llvm_unreachable("unimplemented");
5709   case llvm::Triple::COFF:
5710   case llvm::Triple::ELF:
5711   case llvm::Triple::Wasm:
5712     GV->setSection("cfstring");
5713     break;
5714   case llvm::Triple::MachO:
5715     GV->setSection("__DATA,__cfstring");
5716     break;
5717   }
5718   Entry.second = GV;
5719 
5720   return ConstantAddress(GV, GV->getValueType(), Alignment);
5721 }
5722 
5723 bool CodeGenModule::getExpressionLocationsEnabled() const {
5724   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5725 }
5726 
5727 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5728   if (ObjCFastEnumerationStateType.isNull()) {
5729     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5730     D->startDefinition();
5731 
5732     QualType FieldTypes[] = {
5733       Context.UnsignedLongTy,
5734       Context.getPointerType(Context.getObjCIdType()),
5735       Context.getPointerType(Context.UnsignedLongTy),
5736       Context.getConstantArrayType(Context.UnsignedLongTy,
5737                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5738     };
5739 
5740     for (size_t i = 0; i < 4; ++i) {
5741       FieldDecl *Field = FieldDecl::Create(Context,
5742                                            D,
5743                                            SourceLocation(),
5744                                            SourceLocation(), nullptr,
5745                                            FieldTypes[i], /*TInfo=*/nullptr,
5746                                            /*BitWidth=*/nullptr,
5747                                            /*Mutable=*/false,
5748                                            ICIS_NoInit);
5749       Field->setAccess(AS_public);
5750       D->addDecl(Field);
5751     }
5752 
5753     D->completeDefinition();
5754     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5755   }
5756 
5757   return ObjCFastEnumerationStateType;
5758 }
5759 
5760 llvm::Constant *
5761 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5762   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5763 
5764   // Don't emit it as the address of the string, emit the string data itself
5765   // as an inline array.
5766   if (E->getCharByteWidth() == 1) {
5767     SmallString<64> Str(E->getString());
5768 
5769     // Resize the string to the right size, which is indicated by its type.
5770     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5771     Str.resize(CAT->getSize().getZExtValue());
5772     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5773   }
5774 
5775   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5776   llvm::Type *ElemTy = AType->getElementType();
5777   unsigned NumElements = AType->getNumElements();
5778 
5779   // Wide strings have either 2-byte or 4-byte elements.
5780   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5781     SmallVector<uint16_t, 32> Elements;
5782     Elements.reserve(NumElements);
5783 
5784     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5785       Elements.push_back(E->getCodeUnit(i));
5786     Elements.resize(NumElements);
5787     return llvm::ConstantDataArray::get(VMContext, Elements);
5788   }
5789 
5790   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5791   SmallVector<uint32_t, 32> Elements;
5792   Elements.reserve(NumElements);
5793 
5794   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5795     Elements.push_back(E->getCodeUnit(i));
5796   Elements.resize(NumElements);
5797   return llvm::ConstantDataArray::get(VMContext, Elements);
5798 }
5799 
5800 static llvm::GlobalVariable *
5801 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5802                       CodeGenModule &CGM, StringRef GlobalName,
5803                       CharUnits Alignment) {
5804   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5805       CGM.GetGlobalConstantAddressSpace());
5806 
5807   llvm::Module &M = CGM.getModule();
5808   // Create a global variable for this string
5809   auto *GV = new llvm::GlobalVariable(
5810       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5811       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5812   GV->setAlignment(Alignment.getAsAlign());
5813   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5814   if (GV->isWeakForLinker()) {
5815     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5816     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5817   }
5818   CGM.setDSOLocal(GV);
5819 
5820   return GV;
5821 }
5822 
5823 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5824 /// constant array for the given string literal.
5825 ConstantAddress
5826 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5827                                                   StringRef Name) {
5828   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5829 
5830   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5831   llvm::GlobalVariable **Entry = nullptr;
5832   if (!LangOpts.WritableStrings) {
5833     Entry = &ConstantStringMap[C];
5834     if (auto GV = *Entry) {
5835       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5836         GV->setAlignment(Alignment.getAsAlign());
5837       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5838                              GV->getValueType(), Alignment);
5839     }
5840   }
5841 
5842   SmallString<256> MangledNameBuffer;
5843   StringRef GlobalVariableName;
5844   llvm::GlobalValue::LinkageTypes LT;
5845 
5846   // Mangle the string literal if that's how the ABI merges duplicate strings.
5847   // Don't do it if they are writable, since we don't want writes in one TU to
5848   // affect strings in another.
5849   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5850       !LangOpts.WritableStrings) {
5851     llvm::raw_svector_ostream Out(MangledNameBuffer);
5852     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5853     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5854     GlobalVariableName = MangledNameBuffer;
5855   } else {
5856     LT = llvm::GlobalValue::PrivateLinkage;
5857     GlobalVariableName = Name;
5858   }
5859 
5860   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5861 
5862   CGDebugInfo *DI = getModuleDebugInfo();
5863   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5864     DI->AddStringLiteralDebugInfo(GV, S);
5865 
5866   if (Entry)
5867     *Entry = GV;
5868 
5869   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5870 
5871   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5872                          GV->getValueType(), Alignment);
5873 }
5874 
5875 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5876 /// array for the given ObjCEncodeExpr node.
5877 ConstantAddress
5878 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5879   std::string Str;
5880   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5881 
5882   return GetAddrOfConstantCString(Str);
5883 }
5884 
5885 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5886 /// the literal and a terminating '\0' character.
5887 /// The result has pointer to array type.
5888 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5889     const std::string &Str, const char *GlobalName) {
5890   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5891   CharUnits Alignment =
5892     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5893 
5894   llvm::Constant *C =
5895       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5896 
5897   // Don't share any string literals if strings aren't constant.
5898   llvm::GlobalVariable **Entry = nullptr;
5899   if (!LangOpts.WritableStrings) {
5900     Entry = &ConstantStringMap[C];
5901     if (auto GV = *Entry) {
5902       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5903         GV->setAlignment(Alignment.getAsAlign());
5904       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5905                              GV->getValueType(), Alignment);
5906     }
5907   }
5908 
5909   // Get the default prefix if a name wasn't specified.
5910   if (!GlobalName)
5911     GlobalName = ".str";
5912   // Create a global variable for this.
5913   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5914                                   GlobalName, Alignment);
5915   if (Entry)
5916     *Entry = GV;
5917 
5918   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5919                          GV->getValueType(), Alignment);
5920 }
5921 
5922 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5923     const MaterializeTemporaryExpr *E, const Expr *Init) {
5924   assert((E->getStorageDuration() == SD_Static ||
5925           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5926   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5927 
5928   // If we're not materializing a subobject of the temporary, keep the
5929   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5930   QualType MaterializedType = Init->getType();
5931   if (Init == E->getSubExpr())
5932     MaterializedType = E->getType();
5933 
5934   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5935 
5936   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5937   if (!InsertResult.second) {
5938     // We've seen this before: either we already created it or we're in the
5939     // process of doing so.
5940     if (!InsertResult.first->second) {
5941       // We recursively re-entered this function, probably during emission of
5942       // the initializer. Create a placeholder. We'll clean this up in the
5943       // outer call, at the end of this function.
5944       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5945       InsertResult.first->second = new llvm::GlobalVariable(
5946           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5947           nullptr);
5948     }
5949     return ConstantAddress(InsertResult.first->second,
5950                            llvm::cast<llvm::GlobalVariable>(
5951                                InsertResult.first->second->stripPointerCasts())
5952                                ->getValueType(),
5953                            Align);
5954   }
5955 
5956   // FIXME: If an externally-visible declaration extends multiple temporaries,
5957   // we need to give each temporary the same name in every translation unit (and
5958   // we also need to make the temporaries externally-visible).
5959   SmallString<256> Name;
5960   llvm::raw_svector_ostream Out(Name);
5961   getCXXABI().getMangleContext().mangleReferenceTemporary(
5962       VD, E->getManglingNumber(), Out);
5963 
5964   APValue *Value = nullptr;
5965   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5966     // If the initializer of the extending declaration is a constant
5967     // initializer, we should have a cached constant initializer for this
5968     // temporary. Note that this might have a different value from the value
5969     // computed by evaluating the initializer if the surrounding constant
5970     // expression modifies the temporary.
5971     Value = E->getOrCreateValue(false);
5972   }
5973 
5974   // Try evaluating it now, it might have a constant initializer.
5975   Expr::EvalResult EvalResult;
5976   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5977       !EvalResult.hasSideEffects())
5978     Value = &EvalResult.Val;
5979 
5980   LangAS AddrSpace =
5981       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5982 
5983   Optional<ConstantEmitter> emitter;
5984   llvm::Constant *InitialValue = nullptr;
5985   bool Constant = false;
5986   llvm::Type *Type;
5987   if (Value) {
5988     // The temporary has a constant initializer, use it.
5989     emitter.emplace(*this);
5990     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5991                                                MaterializedType);
5992     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5993     Type = InitialValue->getType();
5994   } else {
5995     // No initializer, the initialization will be provided when we
5996     // initialize the declaration which performed lifetime extension.
5997     Type = getTypes().ConvertTypeForMem(MaterializedType);
5998   }
5999 
6000   // Create a global variable for this lifetime-extended temporary.
6001   llvm::GlobalValue::LinkageTypes Linkage =
6002       getLLVMLinkageVarDefinition(VD, Constant);
6003   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6004     const VarDecl *InitVD;
6005     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6006         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6007       // Temporaries defined inside a class get linkonce_odr linkage because the
6008       // class can be defined in multiple translation units.
6009       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6010     } else {
6011       // There is no need for this temporary to have external linkage if the
6012       // VarDecl has external linkage.
6013       Linkage = llvm::GlobalVariable::InternalLinkage;
6014     }
6015   }
6016   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6017   auto *GV = new llvm::GlobalVariable(
6018       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6019       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6020   if (emitter) emitter->finalize(GV);
6021   // Don't assign dllimport or dllexport to local linkage globals.
6022   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6023     setGVProperties(GV, VD);
6024     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6025       // The reference temporary should never be dllexport.
6026       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6027   }
6028   GV->setAlignment(Align.getAsAlign());
6029   if (supportsCOMDAT() && GV->isWeakForLinker())
6030     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6031   if (VD->getTLSKind())
6032     setTLSMode(GV, *VD);
6033   llvm::Constant *CV = GV;
6034   if (AddrSpace != LangAS::Default)
6035     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6036         *this, GV, AddrSpace, LangAS::Default,
6037         Type->getPointerTo(
6038             getContext().getTargetAddressSpace(LangAS::Default)));
6039 
6040   // Update the map with the new temporary. If we created a placeholder above,
6041   // replace it with the new global now.
6042   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6043   if (Entry) {
6044     Entry->replaceAllUsesWith(
6045         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6046     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6047   }
6048   Entry = CV;
6049 
6050   return ConstantAddress(CV, Type, Align);
6051 }
6052 
6053 /// EmitObjCPropertyImplementations - Emit information for synthesized
6054 /// properties for an implementation.
6055 void CodeGenModule::EmitObjCPropertyImplementations(const
6056                                                     ObjCImplementationDecl *D) {
6057   for (const auto *PID : D->property_impls()) {
6058     // Dynamic is just for type-checking.
6059     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6060       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6061 
6062       // Determine which methods need to be implemented, some may have
6063       // been overridden. Note that ::isPropertyAccessor is not the method
6064       // we want, that just indicates if the decl came from a
6065       // property. What we want to know is if the method is defined in
6066       // this implementation.
6067       auto *Getter = PID->getGetterMethodDecl();
6068       if (!Getter || Getter->isSynthesizedAccessorStub())
6069         CodeGenFunction(*this).GenerateObjCGetter(
6070             const_cast<ObjCImplementationDecl *>(D), PID);
6071       auto *Setter = PID->getSetterMethodDecl();
6072       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6073         CodeGenFunction(*this).GenerateObjCSetter(
6074                                  const_cast<ObjCImplementationDecl *>(D), PID);
6075     }
6076   }
6077 }
6078 
6079 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6080   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6081   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6082        ivar; ivar = ivar->getNextIvar())
6083     if (ivar->getType().isDestructedType())
6084       return true;
6085 
6086   return false;
6087 }
6088 
6089 static bool AllTrivialInitializers(CodeGenModule &CGM,
6090                                    ObjCImplementationDecl *D) {
6091   CodeGenFunction CGF(CGM);
6092   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6093        E = D->init_end(); B != E; ++B) {
6094     CXXCtorInitializer *CtorInitExp = *B;
6095     Expr *Init = CtorInitExp->getInit();
6096     if (!CGF.isTrivialInitializer(Init))
6097       return false;
6098   }
6099   return true;
6100 }
6101 
6102 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6103 /// for an implementation.
6104 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6105   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6106   if (needsDestructMethod(D)) {
6107     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6108     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6109     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6110         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6111         getContext().VoidTy, nullptr, D,
6112         /*isInstance=*/true, /*isVariadic=*/false,
6113         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6114         /*isImplicitlyDeclared=*/true,
6115         /*isDefined=*/false, ObjCMethodDecl::Required);
6116     D->addInstanceMethod(DTORMethod);
6117     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6118     D->setHasDestructors(true);
6119   }
6120 
6121   // If the implementation doesn't have any ivar initializers, we don't need
6122   // a .cxx_construct.
6123   if (D->getNumIvarInitializers() == 0 ||
6124       AllTrivialInitializers(*this, D))
6125     return;
6126 
6127   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6128   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6129   // The constructor returns 'self'.
6130   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6131       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6132       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6133       /*isVariadic=*/false,
6134       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6135       /*isImplicitlyDeclared=*/true,
6136       /*isDefined=*/false, ObjCMethodDecl::Required);
6137   D->addInstanceMethod(CTORMethod);
6138   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6139   D->setHasNonZeroConstructors(true);
6140 }
6141 
6142 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6143 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6144   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6145       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6146     ErrorUnsupported(LSD, "linkage spec");
6147     return;
6148   }
6149 
6150   EmitDeclContext(LSD);
6151 }
6152 
6153 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6154   for (auto *I : DC->decls()) {
6155     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6156     // are themselves considered "top-level", so EmitTopLevelDecl on an
6157     // ObjCImplDecl does not recursively visit them. We need to do that in
6158     // case they're nested inside another construct (LinkageSpecDecl /
6159     // ExportDecl) that does stop them from being considered "top-level".
6160     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6161       for (auto *M : OID->methods())
6162         EmitTopLevelDecl(M);
6163     }
6164 
6165     EmitTopLevelDecl(I);
6166   }
6167 }
6168 
6169 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6170 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6171   // Ignore dependent declarations.
6172   if (D->isTemplated())
6173     return;
6174 
6175   // Consteval function shouldn't be emitted.
6176   if (auto *FD = dyn_cast<FunctionDecl>(D))
6177     if (FD->isConsteval())
6178       return;
6179 
6180   switch (D->getKind()) {
6181   case Decl::CXXConversion:
6182   case Decl::CXXMethod:
6183   case Decl::Function:
6184     EmitGlobal(cast<FunctionDecl>(D));
6185     // Always provide some coverage mapping
6186     // even for the functions that aren't emitted.
6187     AddDeferredUnusedCoverageMapping(D);
6188     break;
6189 
6190   case Decl::CXXDeductionGuide:
6191     // Function-like, but does not result in code emission.
6192     break;
6193 
6194   case Decl::Var:
6195   case Decl::Decomposition:
6196   case Decl::VarTemplateSpecialization:
6197     EmitGlobal(cast<VarDecl>(D));
6198     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6199       for (auto *B : DD->bindings())
6200         if (auto *HD = B->getHoldingVar())
6201           EmitGlobal(HD);
6202     break;
6203 
6204   // Indirect fields from global anonymous structs and unions can be
6205   // ignored; only the actual variable requires IR gen support.
6206   case Decl::IndirectField:
6207     break;
6208 
6209   // C++ Decls
6210   case Decl::Namespace:
6211     EmitDeclContext(cast<NamespaceDecl>(D));
6212     break;
6213   case Decl::ClassTemplateSpecialization: {
6214     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6215     if (CGDebugInfo *DI = getModuleDebugInfo())
6216       if (Spec->getSpecializationKind() ==
6217               TSK_ExplicitInstantiationDefinition &&
6218           Spec->hasDefinition())
6219         DI->completeTemplateDefinition(*Spec);
6220   } [[fallthrough]];
6221   case Decl::CXXRecord: {
6222     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6223     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6224       if (CRD->hasDefinition())
6225         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6226       if (auto *ES = D->getASTContext().getExternalSource())
6227         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6228           DI->completeUnusedClass(*CRD);
6229     }
6230     // Emit any static data members, they may be definitions.
6231     for (auto *I : CRD->decls())
6232       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6233         EmitTopLevelDecl(I);
6234     break;
6235   }
6236     // No code generation needed.
6237   case Decl::UsingShadow:
6238   case Decl::ClassTemplate:
6239   case Decl::VarTemplate:
6240   case Decl::Concept:
6241   case Decl::VarTemplatePartialSpecialization:
6242   case Decl::FunctionTemplate:
6243   case Decl::TypeAliasTemplate:
6244   case Decl::Block:
6245   case Decl::Empty:
6246   case Decl::Binding:
6247     break;
6248   case Decl::Using:          // using X; [C++]
6249     if (CGDebugInfo *DI = getModuleDebugInfo())
6250         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6251     break;
6252   case Decl::UsingEnum: // using enum X; [C++]
6253     if (CGDebugInfo *DI = getModuleDebugInfo())
6254       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6255     break;
6256   case Decl::NamespaceAlias:
6257     if (CGDebugInfo *DI = getModuleDebugInfo())
6258         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6259     break;
6260   case Decl::UsingDirective: // using namespace X; [C++]
6261     if (CGDebugInfo *DI = getModuleDebugInfo())
6262       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6263     break;
6264   case Decl::CXXConstructor:
6265     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6266     break;
6267   case Decl::CXXDestructor:
6268     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6269     break;
6270 
6271   case Decl::StaticAssert:
6272     // Nothing to do.
6273     break;
6274 
6275   // Objective-C Decls
6276 
6277   // Forward declarations, no (immediate) code generation.
6278   case Decl::ObjCInterface:
6279   case Decl::ObjCCategory:
6280     break;
6281 
6282   case Decl::ObjCProtocol: {
6283     auto *Proto = cast<ObjCProtocolDecl>(D);
6284     if (Proto->isThisDeclarationADefinition())
6285       ObjCRuntime->GenerateProtocol(Proto);
6286     break;
6287   }
6288 
6289   case Decl::ObjCCategoryImpl:
6290     // Categories have properties but don't support synthesize so we
6291     // can ignore them here.
6292     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6293     break;
6294 
6295   case Decl::ObjCImplementation: {
6296     auto *OMD = cast<ObjCImplementationDecl>(D);
6297     EmitObjCPropertyImplementations(OMD);
6298     EmitObjCIvarInitializations(OMD);
6299     ObjCRuntime->GenerateClass(OMD);
6300     // Emit global variable debug information.
6301     if (CGDebugInfo *DI = getModuleDebugInfo())
6302       if (getCodeGenOpts().hasReducedDebugInfo())
6303         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6304             OMD->getClassInterface()), OMD->getLocation());
6305     break;
6306   }
6307   case Decl::ObjCMethod: {
6308     auto *OMD = cast<ObjCMethodDecl>(D);
6309     // If this is not a prototype, emit the body.
6310     if (OMD->getBody())
6311       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6312     break;
6313   }
6314   case Decl::ObjCCompatibleAlias:
6315     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6316     break;
6317 
6318   case Decl::PragmaComment: {
6319     const auto *PCD = cast<PragmaCommentDecl>(D);
6320     switch (PCD->getCommentKind()) {
6321     case PCK_Unknown:
6322       llvm_unreachable("unexpected pragma comment kind");
6323     case PCK_Linker:
6324       AppendLinkerOptions(PCD->getArg());
6325       break;
6326     case PCK_Lib:
6327         AddDependentLib(PCD->getArg());
6328       break;
6329     case PCK_Compiler:
6330     case PCK_ExeStr:
6331     case PCK_User:
6332       break; // We ignore all of these.
6333     }
6334     break;
6335   }
6336 
6337   case Decl::PragmaDetectMismatch: {
6338     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6339     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6340     break;
6341   }
6342 
6343   case Decl::LinkageSpec:
6344     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6345     break;
6346 
6347   case Decl::FileScopeAsm: {
6348     // File-scope asm is ignored during device-side CUDA compilation.
6349     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6350       break;
6351     // File-scope asm is ignored during device-side OpenMP compilation.
6352     if (LangOpts.OpenMPIsDevice)
6353       break;
6354     // File-scope asm is ignored during device-side SYCL compilation.
6355     if (LangOpts.SYCLIsDevice)
6356       break;
6357     auto *AD = cast<FileScopeAsmDecl>(D);
6358     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6359     break;
6360   }
6361 
6362   case Decl::Import: {
6363     auto *Import = cast<ImportDecl>(D);
6364 
6365     // If we've already imported this module, we're done.
6366     if (!ImportedModules.insert(Import->getImportedModule()))
6367       break;
6368 
6369     // Emit debug information for direct imports.
6370     if (!Import->getImportedOwningModule()) {
6371       if (CGDebugInfo *DI = getModuleDebugInfo())
6372         DI->EmitImportDecl(*Import);
6373     }
6374 
6375     // For C++ standard modules we are done - we will call the module
6376     // initializer for imported modules, and that will likewise call those for
6377     // any imports it has.
6378     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6379         !Import->getImportedOwningModule()->isModuleMapModule())
6380       break;
6381 
6382     // For clang C++ module map modules the initializers for sub-modules are
6383     // emitted here.
6384 
6385     // Find all of the submodules and emit the module initializers.
6386     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6387     SmallVector<clang::Module *, 16> Stack;
6388     Visited.insert(Import->getImportedModule());
6389     Stack.push_back(Import->getImportedModule());
6390 
6391     while (!Stack.empty()) {
6392       clang::Module *Mod = Stack.pop_back_val();
6393       if (!EmittedModuleInitializers.insert(Mod).second)
6394         continue;
6395 
6396       for (auto *D : Context.getModuleInitializers(Mod))
6397         EmitTopLevelDecl(D);
6398 
6399       // Visit the submodules of this module.
6400       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6401                                              SubEnd = Mod->submodule_end();
6402            Sub != SubEnd; ++Sub) {
6403         // Skip explicit children; they need to be explicitly imported to emit
6404         // the initializers.
6405         if ((*Sub)->IsExplicit)
6406           continue;
6407 
6408         if (Visited.insert(*Sub).second)
6409           Stack.push_back(*Sub);
6410       }
6411     }
6412     break;
6413   }
6414 
6415   case Decl::Export:
6416     EmitDeclContext(cast<ExportDecl>(D));
6417     break;
6418 
6419   case Decl::OMPThreadPrivate:
6420     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6421     break;
6422 
6423   case Decl::OMPAllocate:
6424     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6425     break;
6426 
6427   case Decl::OMPDeclareReduction:
6428     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6429     break;
6430 
6431   case Decl::OMPDeclareMapper:
6432     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6433     break;
6434 
6435   case Decl::OMPRequires:
6436     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6437     break;
6438 
6439   case Decl::Typedef:
6440   case Decl::TypeAlias: // using foo = bar; [C++11]
6441     if (CGDebugInfo *DI = getModuleDebugInfo())
6442       DI->EmitAndRetainType(
6443           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6444     break;
6445 
6446   case Decl::Record:
6447     if (CGDebugInfo *DI = getModuleDebugInfo())
6448       if (cast<RecordDecl>(D)->getDefinition())
6449         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6450     break;
6451 
6452   case Decl::Enum:
6453     if (CGDebugInfo *DI = getModuleDebugInfo())
6454       if (cast<EnumDecl>(D)->getDefinition())
6455         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6456     break;
6457 
6458   case Decl::HLSLBuffer:
6459     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6460     break;
6461 
6462   default:
6463     // Make sure we handled everything we should, every other kind is a
6464     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6465     // function. Need to recode Decl::Kind to do that easily.
6466     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6467     break;
6468   }
6469 }
6470 
6471 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6472   // Do we need to generate coverage mapping?
6473   if (!CodeGenOpts.CoverageMapping)
6474     return;
6475   switch (D->getKind()) {
6476   case Decl::CXXConversion:
6477   case Decl::CXXMethod:
6478   case Decl::Function:
6479   case Decl::ObjCMethod:
6480   case Decl::CXXConstructor:
6481   case Decl::CXXDestructor: {
6482     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6483       break;
6484     SourceManager &SM = getContext().getSourceManager();
6485     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6486       break;
6487     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6488     if (I == DeferredEmptyCoverageMappingDecls.end())
6489       DeferredEmptyCoverageMappingDecls[D] = true;
6490     break;
6491   }
6492   default:
6493     break;
6494   };
6495 }
6496 
6497 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6498   // Do we need to generate coverage mapping?
6499   if (!CodeGenOpts.CoverageMapping)
6500     return;
6501   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6502     if (Fn->isTemplateInstantiation())
6503       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6504   }
6505   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6506   if (I == DeferredEmptyCoverageMappingDecls.end())
6507     DeferredEmptyCoverageMappingDecls[D] = false;
6508   else
6509     I->second = false;
6510 }
6511 
6512 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6513   // We call takeVector() here to avoid use-after-free.
6514   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6515   // we deserialize function bodies to emit coverage info for them, and that
6516   // deserializes more declarations. How should we handle that case?
6517   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6518     if (!Entry.second)
6519       continue;
6520     const Decl *D = Entry.first;
6521     switch (D->getKind()) {
6522     case Decl::CXXConversion:
6523     case Decl::CXXMethod:
6524     case Decl::Function:
6525     case Decl::ObjCMethod: {
6526       CodeGenPGO PGO(*this);
6527       GlobalDecl GD(cast<FunctionDecl>(D));
6528       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6529                                   getFunctionLinkage(GD));
6530       break;
6531     }
6532     case Decl::CXXConstructor: {
6533       CodeGenPGO PGO(*this);
6534       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6535       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6536                                   getFunctionLinkage(GD));
6537       break;
6538     }
6539     case Decl::CXXDestructor: {
6540       CodeGenPGO PGO(*this);
6541       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6542       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6543                                   getFunctionLinkage(GD));
6544       break;
6545     }
6546     default:
6547       break;
6548     };
6549   }
6550 }
6551 
6552 void CodeGenModule::EmitMainVoidAlias() {
6553   // In order to transition away from "__original_main" gracefully, emit an
6554   // alias for "main" in the no-argument case so that libc can detect when
6555   // new-style no-argument main is in used.
6556   if (llvm::Function *F = getModule().getFunction("main")) {
6557     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6558         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6559       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6560       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6561     }
6562   }
6563 }
6564 
6565 /// Turns the given pointer into a constant.
6566 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6567                                           const void *Ptr) {
6568   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6569   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6570   return llvm::ConstantInt::get(i64, PtrInt);
6571 }
6572 
6573 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6574                                    llvm::NamedMDNode *&GlobalMetadata,
6575                                    GlobalDecl D,
6576                                    llvm::GlobalValue *Addr) {
6577   if (!GlobalMetadata)
6578     GlobalMetadata =
6579       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6580 
6581   // TODO: should we report variant information for ctors/dtors?
6582   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6583                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6584                                CGM.getLLVMContext(), D.getDecl()))};
6585   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6586 }
6587 
6588 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6589                                                  llvm::GlobalValue *CppFunc) {
6590   // Store the list of ifuncs we need to replace uses in.
6591   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6592   // List of ConstantExprs that we should be able to delete when we're done
6593   // here.
6594   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6595 
6596   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6597   if (Elem == CppFunc)
6598     return false;
6599 
6600   // First make sure that all users of this are ifuncs (or ifuncs via a
6601   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6602   // later.
6603   for (llvm::User *User : Elem->users()) {
6604     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6605     // ifunc directly. In any other case, just give up, as we don't know what we
6606     // could break by changing those.
6607     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6608       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6609         return false;
6610 
6611       for (llvm::User *CEUser : ConstExpr->users()) {
6612         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6613           IFuncs.push_back(IFunc);
6614         } else {
6615           return false;
6616         }
6617       }
6618       CEs.push_back(ConstExpr);
6619     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6620       IFuncs.push_back(IFunc);
6621     } else {
6622       // This user is one we don't know how to handle, so fail redirection. This
6623       // will result in an ifunc retaining a resolver name that will ultimately
6624       // fail to be resolved to a defined function.
6625       return false;
6626     }
6627   }
6628 
6629   // Now we know this is a valid case where we can do this alias replacement, we
6630   // need to remove all of the references to Elem (and the bitcasts!) so we can
6631   // delete it.
6632   for (llvm::GlobalIFunc *IFunc : IFuncs)
6633     IFunc->setResolver(nullptr);
6634   for (llvm::ConstantExpr *ConstExpr : CEs)
6635     ConstExpr->destroyConstant();
6636 
6637   // We should now be out of uses for the 'old' version of this function, so we
6638   // can erase it as well.
6639   Elem->eraseFromParent();
6640 
6641   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6642     // The type of the resolver is always just a function-type that returns the
6643     // type of the IFunc, so create that here. If the type of the actual
6644     // resolver doesn't match, it just gets bitcast to the right thing.
6645     auto *ResolverTy =
6646         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6647     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6648         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6649     IFunc->setResolver(Resolver);
6650   }
6651   return true;
6652 }
6653 
6654 /// For each function which is declared within an extern "C" region and marked
6655 /// as 'used', but has internal linkage, create an alias from the unmangled
6656 /// name to the mangled name if possible. People expect to be able to refer
6657 /// to such functions with an unmangled name from inline assembly within the
6658 /// same translation unit.
6659 void CodeGenModule::EmitStaticExternCAliases() {
6660   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6661     return;
6662   for (auto &I : StaticExternCValues) {
6663     IdentifierInfo *Name = I.first;
6664     llvm::GlobalValue *Val = I.second;
6665 
6666     // If Val is null, that implies there were multiple declarations that each
6667     // had a claim to the unmangled name. In this case, generation of the alias
6668     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6669     if (!Val)
6670       break;
6671 
6672     llvm::GlobalValue *ExistingElem =
6673         getModule().getNamedValue(Name->getName());
6674 
6675     // If there is either not something already by this name, or we were able to
6676     // replace all uses from IFuncs, create the alias.
6677     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6678       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6679   }
6680 }
6681 
6682 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6683                                              GlobalDecl &Result) const {
6684   auto Res = Manglings.find(MangledName);
6685   if (Res == Manglings.end())
6686     return false;
6687   Result = Res->getValue();
6688   return true;
6689 }
6690 
6691 /// Emits metadata nodes associating all the global values in the
6692 /// current module with the Decls they came from.  This is useful for
6693 /// projects using IR gen as a subroutine.
6694 ///
6695 /// Since there's currently no way to associate an MDNode directly
6696 /// with an llvm::GlobalValue, we create a global named metadata
6697 /// with the name 'clang.global.decl.ptrs'.
6698 void CodeGenModule::EmitDeclMetadata() {
6699   llvm::NamedMDNode *GlobalMetadata = nullptr;
6700 
6701   for (auto &I : MangledDeclNames) {
6702     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6703     // Some mangled names don't necessarily have an associated GlobalValue
6704     // in this module, e.g. if we mangled it for DebugInfo.
6705     if (Addr)
6706       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6707   }
6708 }
6709 
6710 /// Emits metadata nodes for all the local variables in the current
6711 /// function.
6712 void CodeGenFunction::EmitDeclMetadata() {
6713   if (LocalDeclMap.empty()) return;
6714 
6715   llvm::LLVMContext &Context = getLLVMContext();
6716 
6717   // Find the unique metadata ID for this name.
6718   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6719 
6720   llvm::NamedMDNode *GlobalMetadata = nullptr;
6721 
6722   for (auto &I : LocalDeclMap) {
6723     const Decl *D = I.first;
6724     llvm::Value *Addr = I.second.getPointer();
6725     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6726       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6727       Alloca->setMetadata(
6728           DeclPtrKind, llvm::MDNode::get(
6729                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6730     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6731       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6732       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6733     }
6734   }
6735 }
6736 
6737 void CodeGenModule::EmitVersionIdentMetadata() {
6738   llvm::NamedMDNode *IdentMetadata =
6739     TheModule.getOrInsertNamedMetadata("llvm.ident");
6740   std::string Version = getClangFullVersion();
6741   llvm::LLVMContext &Ctx = TheModule.getContext();
6742 
6743   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6744   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6745 }
6746 
6747 void CodeGenModule::EmitCommandLineMetadata() {
6748   llvm::NamedMDNode *CommandLineMetadata =
6749     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6750   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6751   llvm::LLVMContext &Ctx = TheModule.getContext();
6752 
6753   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6754   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6755 }
6756 
6757 void CodeGenModule::EmitCoverageFile() {
6758   if (getCodeGenOpts().CoverageDataFile.empty() &&
6759       getCodeGenOpts().CoverageNotesFile.empty())
6760     return;
6761 
6762   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6763   if (!CUNode)
6764     return;
6765 
6766   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6767   llvm::LLVMContext &Ctx = TheModule.getContext();
6768   auto *CoverageDataFile =
6769       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6770   auto *CoverageNotesFile =
6771       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6772   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6773     llvm::MDNode *CU = CUNode->getOperand(i);
6774     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6775     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6776   }
6777 }
6778 
6779 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6780                                                        bool ForEH) {
6781   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6782   // FIXME: should we even be calling this method if RTTI is disabled
6783   // and it's not for EH?
6784   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6785       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6786        getTriple().isNVPTX()))
6787     return llvm::Constant::getNullValue(Int8PtrTy);
6788 
6789   if (ForEH && Ty->isObjCObjectPointerType() &&
6790       LangOpts.ObjCRuntime.isGNUFamily())
6791     return ObjCRuntime->GetEHType(Ty);
6792 
6793   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6794 }
6795 
6796 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6797   // Do not emit threadprivates in simd-only mode.
6798   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6799     return;
6800   for (auto RefExpr : D->varlists()) {
6801     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6802     bool PerformInit =
6803         VD->getAnyInitializer() &&
6804         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6805                                                         /*ForRef=*/false);
6806 
6807     Address Addr(GetAddrOfGlobalVar(VD),
6808                  getTypes().ConvertTypeForMem(VD->getType()),
6809                  getContext().getDeclAlign(VD));
6810     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6811             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6812       CXXGlobalInits.push_back(InitFunction);
6813   }
6814 }
6815 
6816 llvm::Metadata *
6817 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6818                                             StringRef Suffix) {
6819   if (auto *FnType = T->getAs<FunctionProtoType>())
6820     T = getContext().getFunctionType(
6821         FnType->getReturnType(), FnType->getParamTypes(),
6822         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6823 
6824   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6825   if (InternalId)
6826     return InternalId;
6827 
6828   if (isExternallyVisible(T->getLinkage())) {
6829     std::string OutName;
6830     llvm::raw_string_ostream Out(OutName);
6831     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6832     Out << Suffix;
6833 
6834     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6835   } else {
6836     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6837                                            llvm::ArrayRef<llvm::Metadata *>());
6838   }
6839 
6840   return InternalId;
6841 }
6842 
6843 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6844   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6845 }
6846 
6847 llvm::Metadata *
6848 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6849   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6850 }
6851 
6852 // Generalize pointer types to a void pointer with the qualifiers of the
6853 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6854 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6855 // 'void *'.
6856 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6857   if (!Ty->isPointerType())
6858     return Ty;
6859 
6860   return Ctx.getPointerType(
6861       QualType(Ctx.VoidTy).withCVRQualifiers(
6862           Ty->getPointeeType().getCVRQualifiers()));
6863 }
6864 
6865 // Apply type generalization to a FunctionType's return and argument types
6866 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6867   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6868     SmallVector<QualType, 8> GeneralizedParams;
6869     for (auto &Param : FnType->param_types())
6870       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6871 
6872     return Ctx.getFunctionType(
6873         GeneralizeType(Ctx, FnType->getReturnType()),
6874         GeneralizedParams, FnType->getExtProtoInfo());
6875   }
6876 
6877   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6878     return Ctx.getFunctionNoProtoType(
6879         GeneralizeType(Ctx, FnType->getReturnType()));
6880 
6881   llvm_unreachable("Encountered unknown FunctionType");
6882 }
6883 
6884 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6885   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6886                                       GeneralizedMetadataIdMap, ".generalized");
6887 }
6888 
6889 /// Returns whether this module needs the "all-vtables" type identifier.
6890 bool CodeGenModule::NeedAllVtablesTypeId() const {
6891   // Returns true if at least one of vtable-based CFI checkers is enabled and
6892   // is not in the trapping mode.
6893   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6894            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6895           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6896            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6897           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6898            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6899           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6900            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6901 }
6902 
6903 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6904                                           CharUnits Offset,
6905                                           const CXXRecordDecl *RD) {
6906   llvm::Metadata *MD =
6907       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6908   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6909 
6910   if (CodeGenOpts.SanitizeCfiCrossDso)
6911     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6912       VTable->addTypeMetadata(Offset.getQuantity(),
6913                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6914 
6915   if (NeedAllVtablesTypeId()) {
6916     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6917     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6918   }
6919 }
6920 
6921 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6922   if (!SanStats)
6923     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6924 
6925   return *SanStats;
6926 }
6927 
6928 llvm::Value *
6929 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6930                                                   CodeGenFunction &CGF) {
6931   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6932   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6933   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6934   auto *Call = CGF.EmitRuntimeCall(
6935       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6936   return Call;
6937 }
6938 
6939 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6940     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6941   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6942                                  /* forPointeeType= */ true);
6943 }
6944 
6945 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6946                                                  LValueBaseInfo *BaseInfo,
6947                                                  TBAAAccessInfo *TBAAInfo,
6948                                                  bool forPointeeType) {
6949   if (TBAAInfo)
6950     *TBAAInfo = getTBAAAccessInfo(T);
6951 
6952   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6953   // that doesn't return the information we need to compute BaseInfo.
6954 
6955   // Honor alignment typedef attributes even on incomplete types.
6956   // We also honor them straight for C++ class types, even as pointees;
6957   // there's an expressivity gap here.
6958   if (auto TT = T->getAs<TypedefType>()) {
6959     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6960       if (BaseInfo)
6961         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6962       return getContext().toCharUnitsFromBits(Align);
6963     }
6964   }
6965 
6966   bool AlignForArray = T->isArrayType();
6967 
6968   // Analyze the base element type, so we don't get confused by incomplete
6969   // array types.
6970   T = getContext().getBaseElementType(T);
6971 
6972   if (T->isIncompleteType()) {
6973     // We could try to replicate the logic from
6974     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6975     // type is incomplete, so it's impossible to test. We could try to reuse
6976     // getTypeAlignIfKnown, but that doesn't return the information we need
6977     // to set BaseInfo.  So just ignore the possibility that the alignment is
6978     // greater than one.
6979     if (BaseInfo)
6980       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6981     return CharUnits::One();
6982   }
6983 
6984   if (BaseInfo)
6985     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6986 
6987   CharUnits Alignment;
6988   const CXXRecordDecl *RD;
6989   if (T.getQualifiers().hasUnaligned()) {
6990     Alignment = CharUnits::One();
6991   } else if (forPointeeType && !AlignForArray &&
6992              (RD = T->getAsCXXRecordDecl())) {
6993     // For C++ class pointees, we don't know whether we're pointing at a
6994     // base or a complete object, so we generally need to use the
6995     // non-virtual alignment.
6996     Alignment = getClassPointerAlignment(RD);
6997   } else {
6998     Alignment = getContext().getTypeAlignInChars(T);
6999   }
7000 
7001   // Cap to the global maximum type alignment unless the alignment
7002   // was somehow explicit on the type.
7003   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7004     if (Alignment.getQuantity() > MaxAlign &&
7005         !getContext().isAlignmentRequired(T))
7006       Alignment = CharUnits::fromQuantity(MaxAlign);
7007   }
7008   return Alignment;
7009 }
7010 
7011 bool CodeGenModule::stopAutoInit() {
7012   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7013   if (StopAfter) {
7014     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7015     // used
7016     if (NumAutoVarInit >= StopAfter) {
7017       return true;
7018     }
7019     if (!NumAutoVarInit) {
7020       unsigned DiagID = getDiags().getCustomDiagID(
7021           DiagnosticsEngine::Warning,
7022           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7023           "number of times ftrivial-auto-var-init=%1 gets applied.");
7024       getDiags().Report(DiagID)
7025           << StopAfter
7026           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7027                       LangOptions::TrivialAutoVarInitKind::Zero
7028                   ? "zero"
7029                   : "pattern");
7030     }
7031     ++NumAutoVarInit;
7032   }
7033   return false;
7034 }
7035 
7036 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7037                                                     const Decl *D) const {
7038   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7039   // postfix beginning with '.' since the symbol name can be demangled.
7040   if (LangOpts.HIP)
7041     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7042   else
7043     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7044 
7045   // If the CUID is not specified we try to generate a unique postfix.
7046   if (getLangOpts().CUID.empty()) {
7047     SourceManager &SM = getContext().getSourceManager();
7048     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7049     assert(PLoc.isValid() && "Source location is expected to be valid.");
7050 
7051     // Get the hash of the user defined macros.
7052     llvm::MD5 Hash;
7053     llvm::MD5::MD5Result Result;
7054     for (const auto &Arg : PreprocessorOpts.Macros)
7055       Hash.update(Arg.first);
7056     Hash.final(Result);
7057 
7058     // Get the UniqueID for the file containing the decl.
7059     llvm::sys::fs::UniqueID ID;
7060     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7061       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7062       assert(PLoc.isValid() && "Source location is expected to be valid.");
7063       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7064         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7065             << PLoc.getFilename() << EC.message();
7066     }
7067     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7068        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7069   } else {
7070     OS << getContext().getCUIDHash();
7071   }
7072 }
7073 
7074 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7075   assert(DeferredDeclsToEmit.empty() &&
7076          "Should have emitted all decls deferred to emit.");
7077   assert(NewBuilder->DeferredDecls.empty() &&
7078          "Newly created module should not have deferred decls");
7079   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7080 
7081   assert(NewBuilder->DeferredVTables.empty() &&
7082          "Newly created module should not have deferred vtables");
7083   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7084 
7085   assert(NewBuilder->MangledDeclNames.empty() &&
7086          "Newly created module should not have mangled decl names");
7087   assert(NewBuilder->Manglings.empty() &&
7088          "Newly created module should not have manglings");
7089   NewBuilder->Manglings = std::move(Manglings);
7090 
7091   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7092   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7093 
7094   NewBuilder->TBAA = std::move(TBAA);
7095 
7096   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7097          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7098 
7099   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7100 
7101   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7102 }
7103