1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 423 if (PGOStats.hasDiagnostics()) 424 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 425 } 426 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 427 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 428 EmitGlobalAnnotations(); 429 EmitStaticExternCAliases(); 430 EmitDeferredUnusedCoverageMappings(); 431 if (CoverageMapping) 432 CoverageMapping->emit(); 433 if (CodeGenOpts.SanitizeCfiCrossDso) { 434 CodeGenFunction(*this).EmitCfiCheckFail(); 435 CodeGenFunction(*this).EmitCfiCheckStub(); 436 } 437 emitAtAvailableLinkGuard(); 438 emitLLVMUsed(); 439 if (SanStats) 440 SanStats->finish(); 441 442 if (CodeGenOpts.Autolink && 443 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 444 EmitModuleLinkOptions(); 445 } 446 447 // Record mregparm value now so it is visible through rest of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 452 if (CodeGenOpts.DwarfVersion) { 453 // We actually want the latest version when there are conflicts. 454 // We can change from Warning to Latest if such mode is supported. 455 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 456 CodeGenOpts.DwarfVersion); 457 } 458 if (CodeGenOpts.EmitCodeView) { 459 // Indicate that we want CodeView in the metadata. 460 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 461 } 462 if (CodeGenOpts.ControlFlowGuard) { 463 // We want function ID tables for Control Flow Guard. 464 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 465 } 466 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 467 // We don't support LTO with 2 with different StrictVTablePointers 468 // FIXME: we could support it by stripping all the information introduced 469 // by StrictVTablePointers. 470 471 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 472 473 llvm::Metadata *Ops[2] = { 474 llvm::MDString::get(VMContext, "StrictVTablePointers"), 475 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 476 llvm::Type::getInt32Ty(VMContext), 1))}; 477 478 getModule().addModuleFlag(llvm::Module::Require, 479 "StrictVTablePointersRequirement", 480 llvm::MDNode::get(VMContext, Ops)); 481 } 482 if (DebugInfo) 483 // We support a single version in the linked module. The LLVM 484 // parser will drop debug info with a different version number 485 // (and warn about it, too). 486 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 487 llvm::DEBUG_METADATA_VERSION); 488 489 // We need to record the widths of enums and wchar_t, so that we can generate 490 // the correct build attributes in the ARM backend. wchar_size is also used by 491 // TargetLibraryInfo. 492 uint64_t WCharWidth = 493 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 494 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 495 496 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 497 if ( Arch == llvm::Triple::arm 498 || Arch == llvm::Triple::armeb 499 || Arch == llvm::Triple::thumb 500 || Arch == llvm::Triple::thumbeb) { 501 // The minimum width of an enum in bytes 502 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 503 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 504 } 505 506 if (CodeGenOpts.SanitizeCfiCrossDso) { 507 // Indicate that we want cross-DSO control flow integrity checks. 508 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 509 } 510 511 if (CodeGenOpts.CFProtectionReturn && 512 Target.checkCFProtectionReturnSupported(getDiags())) { 513 // Indicate that we want to instrument return control flow protection. 514 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 515 1); 516 } 517 518 if (CodeGenOpts.CFProtectionBranch && 519 Target.checkCFProtectionBranchSupported(getDiags())) { 520 // Indicate that we want to instrument branch control flow protection. 521 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 522 1); 523 } 524 525 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 526 // Indicate whether __nvvm_reflect should be configured to flush denormal 527 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 528 // property.) 529 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 530 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 531 } 532 533 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 534 if (LangOpts.OpenCL) { 535 EmitOpenCLMetadata(); 536 // Emit SPIR version. 537 if (getTriple().getArch() == llvm::Triple::spir || 538 getTriple().getArch() == llvm::Triple::spir64) { 539 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 540 // opencl.spir.version named metadata. 541 llvm::Metadata *SPIRVerElts[] = { 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, LangOpts.OpenCLVersion / 100)), 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 546 llvm::NamedMDNode *SPIRVerMD = 547 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 548 llvm::LLVMContext &Ctx = TheModule.getContext(); 549 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 550 } 551 } 552 553 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 554 assert(PLevel < 3 && "Invalid PIC Level"); 555 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 556 if (Context.getLangOpts().PIE) 557 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 558 } 559 560 if (CodeGenOpts.NoPLT) 561 getModule().setRtLibUseGOT(); 562 563 SimplifyPersonality(); 564 565 if (getCodeGenOpts().EmitDeclMetadata) 566 EmitDeclMetadata(); 567 568 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 569 EmitCoverageFile(); 570 571 if (DebugInfo) 572 DebugInfo->finalize(); 573 574 if (getCodeGenOpts().EmitVersionIdentMetadata) 575 EmitVersionIdentMetadata(); 576 577 EmitTargetMetadata(); 578 } 579 580 void CodeGenModule::EmitOpenCLMetadata() { 581 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 582 // opencl.ocl.version named metadata node. 583 llvm::Metadata *OCLVerElts[] = { 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 Int32Ty, LangOpts.OpenCLVersion / 100)), 586 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 587 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 588 llvm::NamedMDNode *OCLVerMD = 589 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 590 llvm::LLVMContext &Ctx = TheModule.getContext(); 591 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 592 } 593 594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 595 // Make sure that this type is translated. 596 Types.UpdateCompletedType(TD); 597 } 598 599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 600 // Make sure that this type is translated. 601 Types.RefreshTypeCacheForClass(RD); 602 } 603 604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 605 if (!TBAA) 606 return nullptr; 607 return TBAA->getTypeInfo(QTy); 608 } 609 610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 611 if (!TBAA) 612 return TBAAAccessInfo(); 613 return TBAA->getAccessInfo(AccessType); 614 } 615 616 TBAAAccessInfo 617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 618 if (!TBAA) 619 return TBAAAccessInfo(); 620 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 621 } 622 623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 624 if (!TBAA) 625 return nullptr; 626 return TBAA->getTBAAStructInfo(QTy); 627 } 628 629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 630 if (!TBAA) 631 return nullptr; 632 return TBAA->getBaseTypeInfo(QTy); 633 } 634 635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 636 if (!TBAA) 637 return nullptr; 638 return TBAA->getAccessTagInfo(Info); 639 } 640 641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 642 TBAAAccessInfo TargetInfo) { 643 if (!TBAA) 644 return TBAAAccessInfo(); 645 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 646 } 647 648 TBAAAccessInfo 649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 650 TBAAAccessInfo InfoB) { 651 if (!TBAA) 652 return TBAAAccessInfo(); 653 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 654 } 655 656 TBAAAccessInfo 657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 658 TBAAAccessInfo SrcInfo) { 659 if (!TBAA) 660 return TBAAAccessInfo(); 661 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 662 } 663 664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 665 TBAAAccessInfo TBAAInfo) { 666 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 667 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 668 } 669 670 void CodeGenModule::DecorateInstructionWithInvariantGroup( 671 llvm::Instruction *I, const CXXRecordDecl *RD) { 672 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 673 llvm::MDNode::get(getLLVMContext(), {})); 674 } 675 676 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 677 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 678 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 679 } 680 681 /// ErrorUnsupported - Print out an error that codegen doesn't support the 682 /// specified stmt yet. 683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 684 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 685 "cannot compile this %0 yet"); 686 std::string Msg = Type; 687 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 688 << Msg << S->getSourceRange(); 689 } 690 691 /// ErrorUnsupported - Print out an error that codegen doesn't support the 692 /// specified decl yet. 693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 694 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 695 "cannot compile this %0 yet"); 696 std::string Msg = Type; 697 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 698 } 699 700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 701 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 702 } 703 704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 705 const NamedDecl *D) const { 706 if (GV->hasDLLImportStorageClass()) 707 return; 708 // Internal definitions always have default visibility. 709 if (GV->hasLocalLinkage()) { 710 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 711 return; 712 } 713 if (!D) 714 return; 715 // Set visibility for definitions. 716 LinkageInfo LV = D->getLinkageAndVisibility(); 717 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 718 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 719 } 720 721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 722 llvm::GlobalValue *GV) { 723 if (GV->hasLocalLinkage()) 724 return true; 725 726 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 727 return true; 728 729 // DLLImport explicitly marks the GV as external. 730 if (GV->hasDLLImportStorageClass()) 731 return false; 732 733 const llvm::Triple &TT = CGM.getTriple(); 734 // Every other GV is local on COFF. 735 // Make an exception for windows OS in the triple: Some firmware builds use 736 // *-win32-macho triples. This (accidentally?) produced windows relocations 737 // without GOT tables in older clang versions; Keep this behaviour. 738 // FIXME: even thread local variables? 739 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 740 return true; 741 742 // Only handle COFF and ELF for now. 743 if (!TT.isOSBinFormatELF()) 744 return false; 745 746 // If this is not an executable, don't assume anything is local. 747 const auto &CGOpts = CGM.getCodeGenOpts(); 748 llvm::Reloc::Model RM = CGOpts.RelocationModel; 749 const auto &LOpts = CGM.getLangOpts(); 750 if (RM != llvm::Reloc::Static && !LOpts.PIE) 751 return false; 752 753 // A definition cannot be preempted from an executable. 754 if (!GV->isDeclarationForLinker()) 755 return true; 756 757 // Most PIC code sequences that assume that a symbol is local cannot produce a 758 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 759 // depended, it seems worth it to handle it here. 760 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 761 return false; 762 763 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 764 llvm::Triple::ArchType Arch = TT.getArch(); 765 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 766 Arch == llvm::Triple::ppc64le) 767 return false; 768 769 // If we can use copy relocations we can assume it is local. 770 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 771 if (!Var->isThreadLocal() && 772 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 773 return true; 774 775 // If we can use a plt entry as the symbol address we can assume it 776 // is local. 777 // FIXME: This should work for PIE, but the gold linker doesn't support it. 778 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 779 return true; 780 781 // Otherwise don't assue it is local. 782 return false; 783 } 784 785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 786 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 787 } 788 789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 790 GlobalDecl GD) const { 791 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 792 // C++ destructors have a few C++ ABI specific special cases. 793 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 794 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 795 return; 796 } 797 setDLLImportDLLExport(GV, D); 798 } 799 800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 801 const NamedDecl *D) const { 802 if (D && D->isExternallyVisible()) { 803 if (D->hasAttr<DLLImportAttr>()) 804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 805 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 806 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 807 } 808 } 809 810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 setDLLImportDLLExport(GV, GD); 813 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 814 } 815 816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 817 const NamedDecl *D) const { 818 setDLLImportDLLExport(GV, D); 819 setGlobalVisibilityAndLocal(GV, D); 820 } 821 822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 823 const NamedDecl *D) const { 824 setGlobalVisibility(GV, D); 825 setDSOLocal(GV); 826 } 827 828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 829 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 830 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 831 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 832 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 833 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 834 } 835 836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 837 CodeGenOptions::TLSModel M) { 838 switch (M) { 839 case CodeGenOptions::GeneralDynamicTLSModel: 840 return llvm::GlobalVariable::GeneralDynamicTLSModel; 841 case CodeGenOptions::LocalDynamicTLSModel: 842 return llvm::GlobalVariable::LocalDynamicTLSModel; 843 case CodeGenOptions::InitialExecTLSModel: 844 return llvm::GlobalVariable::InitialExecTLSModel; 845 case CodeGenOptions::LocalExecTLSModel: 846 return llvm::GlobalVariable::LocalExecTLSModel; 847 } 848 llvm_unreachable("Invalid TLS model!"); 849 } 850 851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 852 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 853 854 llvm::GlobalValue::ThreadLocalMode TLM; 855 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 856 857 // Override the TLS model if it is explicitly specified. 858 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 859 TLM = GetLLVMTLSModel(Attr->getModel()); 860 } 861 862 GV->setThreadLocalMode(TLM); 863 } 864 865 static void AppendTargetMangling(const CodeGenModule &CGM, 866 const TargetAttr *Attr, raw_ostream &Out) { 867 if (Attr->isDefaultVersion()) 868 return; 869 870 Out << '.'; 871 const auto &Target = CGM.getTarget(); 872 TargetAttr::ParsedTargetAttr Info = 873 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 874 // Multiversioning doesn't allow "no-${feature}", so we can 875 // only have "+" prefixes here. 876 assert(LHS.startswith("+") && RHS.startswith("+") && 877 "Features should always have a prefix."); 878 return Target.multiVersionSortPriority(LHS.substr(1)) > 879 Target.multiVersionSortPriority(RHS.substr(1)); 880 }); 881 882 bool IsFirst = true; 883 884 if (!Info.Architecture.empty()) { 885 IsFirst = false; 886 Out << "arch_" << Info.Architecture; 887 } 888 889 for (StringRef Feat : Info.Features) { 890 if (!IsFirst) 891 Out << '_'; 892 IsFirst = false; 893 Out << Feat.substr(1); 894 } 895 } 896 897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 898 const NamedDecl *ND, 899 bool OmitTargetMangling = false) { 900 SmallString<256> Buffer; 901 llvm::raw_svector_ostream Out(Buffer); 902 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 903 if (MC.shouldMangleDeclName(ND)) { 904 llvm::raw_svector_ostream Out(Buffer); 905 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 906 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 907 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 908 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 909 else 910 MC.mangleName(ND, Out); 911 } else { 912 IdentifierInfo *II = ND->getIdentifier(); 913 assert(II && "Attempt to mangle unnamed decl."); 914 const auto *FD = dyn_cast<FunctionDecl>(ND); 915 916 if (FD && 917 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 918 llvm::raw_svector_ostream Out(Buffer); 919 Out << "__regcall3__" << II->getName(); 920 } else { 921 Out << II->getName(); 922 } 923 } 924 925 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 926 if (FD->isMultiVersion() && !OmitTargetMangling) 927 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 928 return Out.str(); 929 } 930 931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 932 const FunctionDecl *FD) { 933 if (!FD->isMultiVersion()) 934 return; 935 936 // Get the name of what this would be without the 'target' attribute. This 937 // allows us to lookup the version that was emitted when this wasn't a 938 // multiversion function. 939 std::string NonTargetName = 940 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 941 GlobalDecl OtherGD; 942 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 943 assert(OtherGD.getCanonicalDecl() 944 .getDecl() 945 ->getAsFunction() 946 ->isMultiVersion() && 947 "Other GD should now be a multiversioned function"); 948 // OtherFD is the version of this function that was mangled BEFORE 949 // becoming a MultiVersion function. It potentially needs to be updated. 950 const FunctionDecl *OtherFD = 951 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 952 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 953 // This is so that if the initial version was already the 'default' 954 // version, we don't try to update it. 955 if (OtherName != NonTargetName) { 956 // Remove instead of erase, since others may have stored the StringRef 957 // to this. 958 const auto ExistingRecord = Manglings.find(NonTargetName); 959 if (ExistingRecord != std::end(Manglings)) 960 Manglings.remove(&(*ExistingRecord)); 961 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 962 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 963 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 964 Entry->setName(OtherName); 965 } 966 } 967 } 968 969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 970 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 971 972 // Some ABIs don't have constructor variants. Make sure that base and 973 // complete constructors get mangled the same. 974 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 975 if (!getTarget().getCXXABI().hasConstructorVariants()) { 976 CXXCtorType OrigCtorType = GD.getCtorType(); 977 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 978 if (OrigCtorType == Ctor_Base) 979 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 980 } 981 } 982 983 auto FoundName = MangledDeclNames.find(CanonicalGD); 984 if (FoundName != MangledDeclNames.end()) 985 return FoundName->second; 986 987 988 // Keep the first result in the case of a mangling collision. 989 const auto *ND = cast<NamedDecl>(GD.getDecl()); 990 auto Result = 991 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 992 return MangledDeclNames[CanonicalGD] = Result.first->first(); 993 } 994 995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 996 const BlockDecl *BD) { 997 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 998 const Decl *D = GD.getDecl(); 999 1000 SmallString<256> Buffer; 1001 llvm::raw_svector_ostream Out(Buffer); 1002 if (!D) 1003 MangleCtx.mangleGlobalBlock(BD, 1004 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1005 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1006 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1007 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1008 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1009 else 1010 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1011 1012 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1013 return Result.first->first(); 1014 } 1015 1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1017 return getModule().getNamedValue(Name); 1018 } 1019 1020 /// AddGlobalCtor - Add a function to the list that will be called before 1021 /// main() runs. 1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1023 llvm::Constant *AssociatedData) { 1024 // FIXME: Type coercion of void()* types. 1025 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1026 } 1027 1028 /// AddGlobalDtor - Add a function to the list that will be called 1029 /// when the module is unloaded. 1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1031 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1032 DtorsUsingAtExit[Priority].push_back(Dtor); 1033 return; 1034 } 1035 1036 // FIXME: Type coercion of void()* types. 1037 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1038 } 1039 1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1041 if (Fns.empty()) return; 1042 1043 // Ctor function type is void()*. 1044 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1045 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1046 1047 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1048 llvm::StructType *CtorStructTy = llvm::StructType::get( 1049 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1050 1051 // Construct the constructor and destructor arrays. 1052 ConstantInitBuilder builder(*this); 1053 auto ctors = builder.beginArray(CtorStructTy); 1054 for (const auto &I : Fns) { 1055 auto ctor = ctors.beginStruct(CtorStructTy); 1056 ctor.addInt(Int32Ty, I.Priority); 1057 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1058 if (I.AssociatedData) 1059 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1060 else 1061 ctor.addNullPointer(VoidPtrTy); 1062 ctor.finishAndAddTo(ctors); 1063 } 1064 1065 auto list = 1066 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1067 /*constant*/ false, 1068 llvm::GlobalValue::AppendingLinkage); 1069 1070 // The LTO linker doesn't seem to like it when we set an alignment 1071 // on appending variables. Take it off as a workaround. 1072 list->setAlignment(0); 1073 1074 Fns.clear(); 1075 } 1076 1077 llvm::GlobalValue::LinkageTypes 1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1079 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1080 1081 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1082 1083 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1084 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1085 1086 if (isa<CXXConstructorDecl>(D) && 1087 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1088 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1089 // Our approach to inheriting constructors is fundamentally different from 1090 // that used by the MS ABI, so keep our inheriting constructor thunks 1091 // internal rather than trying to pick an unambiguous mangling for them. 1092 return llvm::GlobalValue::InternalLinkage; 1093 } 1094 1095 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1096 } 1097 1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1099 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1100 if (!MDS) return nullptr; 1101 1102 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1103 } 1104 1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1106 const CGFunctionInfo &Info, 1107 llvm::Function *F) { 1108 unsigned CallingConv; 1109 llvm::AttributeList PAL; 1110 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1111 F->setAttributes(PAL); 1112 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1113 } 1114 1115 /// Determines whether the language options require us to model 1116 /// unwind exceptions. We treat -fexceptions as mandating this 1117 /// except under the fragile ObjC ABI with only ObjC exceptions 1118 /// enabled. This means, for example, that C with -fexceptions 1119 /// enables this. 1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1121 // If exceptions are completely disabled, obviously this is false. 1122 if (!LangOpts.Exceptions) return false; 1123 1124 // If C++ exceptions are enabled, this is true. 1125 if (LangOpts.CXXExceptions) return true; 1126 1127 // If ObjC exceptions are enabled, this depends on the ABI. 1128 if (LangOpts.ObjCExceptions) { 1129 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1130 } 1131 1132 return true; 1133 } 1134 1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1136 llvm::Function *F) { 1137 llvm::AttrBuilder B; 1138 1139 if (CodeGenOpts.UnwindTables) 1140 B.addAttribute(llvm::Attribute::UWTable); 1141 1142 if (!hasUnwindExceptions(LangOpts)) 1143 B.addAttribute(llvm::Attribute::NoUnwind); 1144 1145 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1146 B.addAttribute(llvm::Attribute::StackProtect); 1147 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1148 B.addAttribute(llvm::Attribute::StackProtectStrong); 1149 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1150 B.addAttribute(llvm::Attribute::StackProtectReq); 1151 1152 if (!D) { 1153 // If we don't have a declaration to control inlining, the function isn't 1154 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1155 // disabled, mark the function as noinline. 1156 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1157 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1158 B.addAttribute(llvm::Attribute::NoInline); 1159 1160 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1161 return; 1162 } 1163 1164 // Track whether we need to add the optnone LLVM attribute, 1165 // starting with the default for this optimization level. 1166 bool ShouldAddOptNone = 1167 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1168 // We can't add optnone in the following cases, it won't pass the verifier. 1169 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1170 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1171 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1172 1173 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1174 B.addAttribute(llvm::Attribute::OptimizeNone); 1175 1176 // OptimizeNone implies noinline; we should not be inlining such functions. 1177 B.addAttribute(llvm::Attribute::NoInline); 1178 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1179 "OptimizeNone and AlwaysInline on same function!"); 1180 1181 // We still need to handle naked functions even though optnone subsumes 1182 // much of their semantics. 1183 if (D->hasAttr<NakedAttr>()) 1184 B.addAttribute(llvm::Attribute::Naked); 1185 1186 // OptimizeNone wins over OptimizeForSize and MinSize. 1187 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1188 F->removeFnAttr(llvm::Attribute::MinSize); 1189 } else if (D->hasAttr<NakedAttr>()) { 1190 // Naked implies noinline: we should not be inlining such functions. 1191 B.addAttribute(llvm::Attribute::Naked); 1192 B.addAttribute(llvm::Attribute::NoInline); 1193 } else if (D->hasAttr<NoDuplicateAttr>()) { 1194 B.addAttribute(llvm::Attribute::NoDuplicate); 1195 } else if (D->hasAttr<NoInlineAttr>()) { 1196 B.addAttribute(llvm::Attribute::NoInline); 1197 } else if (D->hasAttr<AlwaysInlineAttr>() && 1198 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1199 // (noinline wins over always_inline, and we can't specify both in IR) 1200 B.addAttribute(llvm::Attribute::AlwaysInline); 1201 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1202 // If we're not inlining, then force everything that isn't always_inline to 1203 // carry an explicit noinline attribute. 1204 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1205 B.addAttribute(llvm::Attribute::NoInline); 1206 } else { 1207 // Otherwise, propagate the inline hint attribute and potentially use its 1208 // absence to mark things as noinline. 1209 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1210 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1211 return Redecl->isInlineSpecified(); 1212 })) { 1213 B.addAttribute(llvm::Attribute::InlineHint); 1214 } else if (CodeGenOpts.getInlining() == 1215 CodeGenOptions::OnlyHintInlining && 1216 !FD->isInlined() && 1217 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1218 B.addAttribute(llvm::Attribute::NoInline); 1219 } 1220 } 1221 } 1222 1223 // Add other optimization related attributes if we are optimizing this 1224 // function. 1225 if (!D->hasAttr<OptimizeNoneAttr>()) { 1226 if (D->hasAttr<ColdAttr>()) { 1227 if (!ShouldAddOptNone) 1228 B.addAttribute(llvm::Attribute::OptimizeForSize); 1229 B.addAttribute(llvm::Attribute::Cold); 1230 } 1231 1232 if (D->hasAttr<MinSizeAttr>()) 1233 B.addAttribute(llvm::Attribute::MinSize); 1234 } 1235 1236 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1237 1238 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1239 if (alignment) 1240 F->setAlignment(alignment); 1241 1242 if (!D->hasAttr<AlignedAttr>()) 1243 if (LangOpts.FunctionAlignment) 1244 F->setAlignment(1 << LangOpts.FunctionAlignment); 1245 1246 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1247 // reserve a bit for differentiating between virtual and non-virtual member 1248 // functions. If the current target's C++ ABI requires this and this is a 1249 // member function, set its alignment accordingly. 1250 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1251 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1252 F->setAlignment(2); 1253 } 1254 1255 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1256 if (CodeGenOpts.SanitizeCfiCrossDso) 1257 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1258 CreateFunctionTypeMetadata(FD, F); 1259 } 1260 1261 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1262 const Decl *D = GD.getDecl(); 1263 if (dyn_cast_or_null<NamedDecl>(D)) 1264 setGVProperties(GV, GD); 1265 else 1266 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1267 1268 if (D && D->hasAttr<UsedAttr>()) 1269 addUsedGlobal(GV); 1270 } 1271 1272 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1273 llvm::AttrBuilder &Attrs) { 1274 // Add target-cpu and target-features attributes to functions. If 1275 // we have a decl for the function and it has a target attribute then 1276 // parse that and add it to the feature set. 1277 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1278 std::vector<std::string> Features; 1279 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1280 FD = FD ? FD->getMostRecentDecl() : FD; 1281 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1282 bool AddedAttr = false; 1283 if (TD) { 1284 llvm::StringMap<bool> FeatureMap; 1285 getFunctionFeatureMap(FeatureMap, FD); 1286 1287 // Produce the canonical string for this set of features. 1288 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1289 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1290 1291 // Now add the target-cpu and target-features to the function. 1292 // While we populated the feature map above, we still need to 1293 // get and parse the target attribute so we can get the cpu for 1294 // the function. 1295 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1296 if (ParsedAttr.Architecture != "" && 1297 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1298 TargetCPU = ParsedAttr.Architecture; 1299 } else { 1300 // Otherwise just add the existing target cpu and target features to the 1301 // function. 1302 Features = getTarget().getTargetOpts().Features; 1303 } 1304 1305 if (TargetCPU != "") { 1306 Attrs.addAttribute("target-cpu", TargetCPU); 1307 AddedAttr = true; 1308 } 1309 if (!Features.empty()) { 1310 llvm::sort(Features.begin(), Features.end()); 1311 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1312 AddedAttr = true; 1313 } 1314 1315 return AddedAttr; 1316 } 1317 1318 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1319 llvm::GlobalObject *GO) { 1320 const Decl *D = GD.getDecl(); 1321 SetCommonAttributes(GD, GO); 1322 1323 if (D) { 1324 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1325 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1326 GV->addAttribute("bss-section", SA->getName()); 1327 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1328 GV->addAttribute("data-section", SA->getName()); 1329 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1330 GV->addAttribute("rodata-section", SA->getName()); 1331 } 1332 1333 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1334 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1335 if (!D->getAttr<SectionAttr>()) 1336 F->addFnAttr("implicit-section-name", SA->getName()); 1337 1338 llvm::AttrBuilder Attrs; 1339 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1340 // We know that GetCPUAndFeaturesAttributes will always have the 1341 // newest set, since it has the newest possible FunctionDecl, so the 1342 // new ones should replace the old. 1343 F->removeFnAttr("target-cpu"); 1344 F->removeFnAttr("target-features"); 1345 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1346 } 1347 } 1348 1349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1350 GO->setSection(SA->getName()); 1351 } 1352 1353 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1354 } 1355 1356 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1357 llvm::Function *F, 1358 const CGFunctionInfo &FI) { 1359 const Decl *D = GD.getDecl(); 1360 SetLLVMFunctionAttributes(D, FI, F); 1361 SetLLVMFunctionAttributesForDefinition(D, F); 1362 1363 F->setLinkage(llvm::Function::InternalLinkage); 1364 1365 setNonAliasAttributes(GD, F); 1366 } 1367 1368 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1369 // Set linkage and visibility in case we never see a definition. 1370 LinkageInfo LV = ND->getLinkageAndVisibility(); 1371 // Don't set internal linkage on declarations. 1372 // "extern_weak" is overloaded in LLVM; we probably should have 1373 // separate linkage types for this. 1374 if (isExternallyVisible(LV.getLinkage()) && 1375 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1376 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1377 } 1378 1379 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1380 llvm::Function *F) { 1381 // Only if we are checking indirect calls. 1382 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1383 return; 1384 1385 // Non-static class methods are handled via vtable pointer checks elsewhere. 1386 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1387 return; 1388 1389 // Additionally, if building with cross-DSO support... 1390 if (CodeGenOpts.SanitizeCfiCrossDso) { 1391 // Skip available_externally functions. They won't be codegen'ed in the 1392 // current module anyway. 1393 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1394 return; 1395 } 1396 1397 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1398 F->addTypeMetadata(0, MD); 1399 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1400 1401 // Emit a hash-based bit set entry for cross-DSO calls. 1402 if (CodeGenOpts.SanitizeCfiCrossDso) 1403 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1404 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1405 } 1406 1407 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1408 bool IsIncompleteFunction, 1409 bool IsThunk) { 1410 1411 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1412 // If this is an intrinsic function, set the function's attributes 1413 // to the intrinsic's attributes. 1414 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1415 return; 1416 } 1417 1418 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1419 1420 if (!IsIncompleteFunction) { 1421 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1422 // Setup target-specific attributes. 1423 if (F->isDeclaration()) 1424 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1425 } 1426 1427 // Add the Returned attribute for "this", except for iOS 5 and earlier 1428 // where substantial code, including the libstdc++ dylib, was compiled with 1429 // GCC and does not actually return "this". 1430 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1431 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1432 assert(!F->arg_empty() && 1433 F->arg_begin()->getType() 1434 ->canLosslesslyBitCastTo(F->getReturnType()) && 1435 "unexpected this return"); 1436 F->addAttribute(1, llvm::Attribute::Returned); 1437 } 1438 1439 // Only a few attributes are set on declarations; these may later be 1440 // overridden by a definition. 1441 1442 setLinkageForGV(F, FD); 1443 setGVProperties(F, FD); 1444 1445 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1446 F->addFnAttr("implicit-section-name"); 1447 } 1448 1449 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1450 F->setSection(SA->getName()); 1451 1452 if (FD->isReplaceableGlobalAllocationFunction()) { 1453 // A replaceable global allocation function does not act like a builtin by 1454 // default, only if it is invoked by a new-expression or delete-expression. 1455 F->addAttribute(llvm::AttributeList::FunctionIndex, 1456 llvm::Attribute::NoBuiltin); 1457 1458 // A sane operator new returns a non-aliasing pointer. 1459 // FIXME: Also add NonNull attribute to the return value 1460 // for the non-nothrow forms? 1461 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1462 if (getCodeGenOpts().AssumeSaneOperatorNew && 1463 (Kind == OO_New || Kind == OO_Array_New)) 1464 F->addAttribute(llvm::AttributeList::ReturnIndex, 1465 llvm::Attribute::NoAlias); 1466 } 1467 1468 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1469 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1470 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1471 if (MD->isVirtual()) 1472 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1473 1474 // Don't emit entries for function declarations in the cross-DSO mode. This 1475 // is handled with better precision by the receiving DSO. 1476 if (!CodeGenOpts.SanitizeCfiCrossDso) 1477 CreateFunctionTypeMetadata(FD, F); 1478 1479 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1480 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1481 } 1482 1483 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1484 assert(!GV->isDeclaration() && 1485 "Only globals with definition can force usage."); 1486 LLVMUsed.emplace_back(GV); 1487 } 1488 1489 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1490 assert(!GV->isDeclaration() && 1491 "Only globals with definition can force usage."); 1492 LLVMCompilerUsed.emplace_back(GV); 1493 } 1494 1495 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1496 std::vector<llvm::WeakTrackingVH> &List) { 1497 // Don't create llvm.used if there is no need. 1498 if (List.empty()) 1499 return; 1500 1501 // Convert List to what ConstantArray needs. 1502 SmallVector<llvm::Constant*, 8> UsedArray; 1503 UsedArray.resize(List.size()); 1504 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1505 UsedArray[i] = 1506 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1507 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1508 } 1509 1510 if (UsedArray.empty()) 1511 return; 1512 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1513 1514 auto *GV = new llvm::GlobalVariable( 1515 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1516 llvm::ConstantArray::get(ATy, UsedArray), Name); 1517 1518 GV->setSection("llvm.metadata"); 1519 } 1520 1521 void CodeGenModule::emitLLVMUsed() { 1522 emitUsed(*this, "llvm.used", LLVMUsed); 1523 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1524 } 1525 1526 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1527 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1528 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1529 } 1530 1531 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1532 llvm::SmallString<32> Opt; 1533 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1534 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1535 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1536 } 1537 1538 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1539 auto &C = getLLVMContext(); 1540 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1541 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1542 } 1543 1544 void CodeGenModule::AddDependentLib(StringRef Lib) { 1545 llvm::SmallString<24> Opt; 1546 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1547 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1548 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1549 } 1550 1551 /// \brief Add link options implied by the given module, including modules 1552 /// it depends on, using a postorder walk. 1553 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1554 SmallVectorImpl<llvm::MDNode *> &Metadata, 1555 llvm::SmallPtrSet<Module *, 16> &Visited) { 1556 // Import this module's parent. 1557 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1558 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1559 } 1560 1561 // Import this module's dependencies. 1562 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1563 if (Visited.insert(Mod->Imports[I - 1]).second) 1564 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1565 } 1566 1567 // Add linker options to link against the libraries/frameworks 1568 // described by this module. 1569 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1570 1571 // For modules that use export_as for linking, use that module 1572 // name instead. 1573 if (Mod->UseExportAsModuleLinkName) 1574 return; 1575 1576 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1577 // Link against a framework. Frameworks are currently Darwin only, so we 1578 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1579 if (Mod->LinkLibraries[I-1].IsFramework) { 1580 llvm::Metadata *Args[2] = { 1581 llvm::MDString::get(Context, "-framework"), 1582 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1583 1584 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1585 continue; 1586 } 1587 1588 // Link against a library. 1589 llvm::SmallString<24> Opt; 1590 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1591 Mod->LinkLibraries[I-1].Library, Opt); 1592 auto *OptString = llvm::MDString::get(Context, Opt); 1593 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1594 } 1595 } 1596 1597 void CodeGenModule::EmitModuleLinkOptions() { 1598 // Collect the set of all of the modules we want to visit to emit link 1599 // options, which is essentially the imported modules and all of their 1600 // non-explicit child modules. 1601 llvm::SetVector<clang::Module *> LinkModules; 1602 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1603 SmallVector<clang::Module *, 16> Stack; 1604 1605 // Seed the stack with imported modules. 1606 for (Module *M : ImportedModules) { 1607 // Do not add any link flags when an implementation TU of a module imports 1608 // a header of that same module. 1609 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1610 !getLangOpts().isCompilingModule()) 1611 continue; 1612 if (Visited.insert(M).second) 1613 Stack.push_back(M); 1614 } 1615 1616 // Find all of the modules to import, making a little effort to prune 1617 // non-leaf modules. 1618 while (!Stack.empty()) { 1619 clang::Module *Mod = Stack.pop_back_val(); 1620 1621 bool AnyChildren = false; 1622 1623 // Visit the submodules of this module. 1624 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1625 SubEnd = Mod->submodule_end(); 1626 Sub != SubEnd; ++Sub) { 1627 // Skip explicit children; they need to be explicitly imported to be 1628 // linked against. 1629 if ((*Sub)->IsExplicit) 1630 continue; 1631 1632 if (Visited.insert(*Sub).second) { 1633 Stack.push_back(*Sub); 1634 AnyChildren = true; 1635 } 1636 } 1637 1638 // We didn't find any children, so add this module to the list of 1639 // modules to link against. 1640 if (!AnyChildren) { 1641 LinkModules.insert(Mod); 1642 } 1643 } 1644 1645 // Add link options for all of the imported modules in reverse topological 1646 // order. We don't do anything to try to order import link flags with respect 1647 // to linker options inserted by things like #pragma comment(). 1648 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1649 Visited.clear(); 1650 for (Module *M : LinkModules) 1651 if (Visited.insert(M).second) 1652 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1653 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1654 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1655 1656 // Add the linker options metadata flag. 1657 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1658 for (auto *MD : LinkerOptionsMetadata) 1659 NMD->addOperand(MD); 1660 } 1661 1662 void CodeGenModule::EmitDeferred() { 1663 // Emit code for any potentially referenced deferred decls. Since a 1664 // previously unused static decl may become used during the generation of code 1665 // for a static function, iterate until no changes are made. 1666 1667 if (!DeferredVTables.empty()) { 1668 EmitDeferredVTables(); 1669 1670 // Emitting a vtable doesn't directly cause more vtables to 1671 // become deferred, although it can cause functions to be 1672 // emitted that then need those vtables. 1673 assert(DeferredVTables.empty()); 1674 } 1675 1676 // Stop if we're out of both deferred vtables and deferred declarations. 1677 if (DeferredDeclsToEmit.empty()) 1678 return; 1679 1680 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1681 // work, it will not interfere with this. 1682 std::vector<GlobalDecl> CurDeclsToEmit; 1683 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1684 1685 for (GlobalDecl &D : CurDeclsToEmit) { 1686 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1687 // to get GlobalValue with exactly the type we need, not something that 1688 // might had been created for another decl with the same mangled name but 1689 // different type. 1690 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1691 GetAddrOfGlobal(D, ForDefinition)); 1692 1693 // In case of different address spaces, we may still get a cast, even with 1694 // IsForDefinition equal to true. Query mangled names table to get 1695 // GlobalValue. 1696 if (!GV) 1697 GV = GetGlobalValue(getMangledName(D)); 1698 1699 // Make sure GetGlobalValue returned non-null. 1700 assert(GV); 1701 1702 // Check to see if we've already emitted this. This is necessary 1703 // for a couple of reasons: first, decls can end up in the 1704 // deferred-decls queue multiple times, and second, decls can end 1705 // up with definitions in unusual ways (e.g. by an extern inline 1706 // function acquiring a strong function redefinition). Just 1707 // ignore these cases. 1708 if (!GV->isDeclaration()) 1709 continue; 1710 1711 // Otherwise, emit the definition and move on to the next one. 1712 EmitGlobalDefinition(D, GV); 1713 1714 // If we found out that we need to emit more decls, do that recursively. 1715 // This has the advantage that the decls are emitted in a DFS and related 1716 // ones are close together, which is convenient for testing. 1717 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1718 EmitDeferred(); 1719 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1720 } 1721 } 1722 } 1723 1724 void CodeGenModule::EmitVTablesOpportunistically() { 1725 // Try to emit external vtables as available_externally if they have emitted 1726 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1727 // is not allowed to create new references to things that need to be emitted 1728 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1729 1730 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1731 && "Only emit opportunistic vtables with optimizations"); 1732 1733 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1734 assert(getVTables().isVTableExternal(RD) && 1735 "This queue should only contain external vtables"); 1736 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1737 VTables.GenerateClassData(RD); 1738 } 1739 OpportunisticVTables.clear(); 1740 } 1741 1742 void CodeGenModule::EmitGlobalAnnotations() { 1743 if (Annotations.empty()) 1744 return; 1745 1746 // Create a new global variable for the ConstantStruct in the Module. 1747 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1748 Annotations[0]->getType(), Annotations.size()), Annotations); 1749 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1750 llvm::GlobalValue::AppendingLinkage, 1751 Array, "llvm.global.annotations"); 1752 gv->setSection(AnnotationSection); 1753 } 1754 1755 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1756 llvm::Constant *&AStr = AnnotationStrings[Str]; 1757 if (AStr) 1758 return AStr; 1759 1760 // Not found yet, create a new global. 1761 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1762 auto *gv = 1763 new llvm::GlobalVariable(getModule(), s->getType(), true, 1764 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1765 gv->setSection(AnnotationSection); 1766 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1767 AStr = gv; 1768 return gv; 1769 } 1770 1771 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1772 SourceManager &SM = getContext().getSourceManager(); 1773 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1774 if (PLoc.isValid()) 1775 return EmitAnnotationString(PLoc.getFilename()); 1776 return EmitAnnotationString(SM.getBufferName(Loc)); 1777 } 1778 1779 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1780 SourceManager &SM = getContext().getSourceManager(); 1781 PresumedLoc PLoc = SM.getPresumedLoc(L); 1782 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1783 SM.getExpansionLineNumber(L); 1784 return llvm::ConstantInt::get(Int32Ty, LineNo); 1785 } 1786 1787 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1788 const AnnotateAttr *AA, 1789 SourceLocation L) { 1790 // Get the globals for file name, annotation, and the line number. 1791 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1792 *UnitGV = EmitAnnotationUnit(L), 1793 *LineNoCst = EmitAnnotationLineNo(L); 1794 1795 // Create the ConstantStruct for the global annotation. 1796 llvm::Constant *Fields[4] = { 1797 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1798 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1799 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1800 LineNoCst 1801 }; 1802 return llvm::ConstantStruct::getAnon(Fields); 1803 } 1804 1805 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1806 llvm::GlobalValue *GV) { 1807 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1808 // Get the struct elements for these annotations. 1809 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1810 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1811 } 1812 1813 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1814 llvm::Function *Fn, 1815 SourceLocation Loc) const { 1816 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1817 // Blacklist by function name. 1818 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1819 return true; 1820 // Blacklist by location. 1821 if (Loc.isValid()) 1822 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1823 // If location is unknown, this may be a compiler-generated function. Assume 1824 // it's located in the main file. 1825 auto &SM = Context.getSourceManager(); 1826 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1827 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1828 } 1829 return false; 1830 } 1831 1832 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1833 SourceLocation Loc, QualType Ty, 1834 StringRef Category) const { 1835 // For now globals can be blacklisted only in ASan and KASan. 1836 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1837 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1838 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1839 if (!EnabledAsanMask) 1840 return false; 1841 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1842 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1843 return true; 1844 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1845 return true; 1846 // Check global type. 1847 if (!Ty.isNull()) { 1848 // Drill down the array types: if global variable of a fixed type is 1849 // blacklisted, we also don't instrument arrays of them. 1850 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1851 Ty = AT->getElementType(); 1852 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1853 // We allow to blacklist only record types (classes, structs etc.) 1854 if (Ty->isRecordType()) { 1855 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1856 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1857 return true; 1858 } 1859 } 1860 return false; 1861 } 1862 1863 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1864 StringRef Category) const { 1865 if (!LangOpts.XRayInstrument) 1866 return false; 1867 1868 const auto &XRayFilter = getContext().getXRayFilter(); 1869 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1870 auto Attr = ImbueAttr::NONE; 1871 if (Loc.isValid()) 1872 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1873 if (Attr == ImbueAttr::NONE) 1874 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1875 switch (Attr) { 1876 case ImbueAttr::NONE: 1877 return false; 1878 case ImbueAttr::ALWAYS: 1879 Fn->addFnAttr("function-instrument", "xray-always"); 1880 break; 1881 case ImbueAttr::ALWAYS_ARG1: 1882 Fn->addFnAttr("function-instrument", "xray-always"); 1883 Fn->addFnAttr("xray-log-args", "1"); 1884 break; 1885 case ImbueAttr::NEVER: 1886 Fn->addFnAttr("function-instrument", "xray-never"); 1887 break; 1888 } 1889 return true; 1890 } 1891 1892 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1893 // Never defer when EmitAllDecls is specified. 1894 if (LangOpts.EmitAllDecls) 1895 return true; 1896 1897 return getContext().DeclMustBeEmitted(Global); 1898 } 1899 1900 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1901 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1902 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1903 // Implicit template instantiations may change linkage if they are later 1904 // explicitly instantiated, so they should not be emitted eagerly. 1905 return false; 1906 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1907 if (Context.getInlineVariableDefinitionKind(VD) == 1908 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1909 // A definition of an inline constexpr static data member may change 1910 // linkage later if it's redeclared outside the class. 1911 return false; 1912 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1913 // codegen for global variables, because they may be marked as threadprivate. 1914 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1915 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1916 return false; 1917 1918 return true; 1919 } 1920 1921 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1922 const CXXUuidofExpr* E) { 1923 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1924 // well-formed. 1925 StringRef Uuid = E->getUuidStr(); 1926 std::string Name = "_GUID_" + Uuid.lower(); 1927 std::replace(Name.begin(), Name.end(), '-', '_'); 1928 1929 // The UUID descriptor should be pointer aligned. 1930 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1931 1932 // Look for an existing global. 1933 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1934 return ConstantAddress(GV, Alignment); 1935 1936 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1937 assert(Init && "failed to initialize as constant"); 1938 1939 auto *GV = new llvm::GlobalVariable( 1940 getModule(), Init->getType(), 1941 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1942 if (supportsCOMDAT()) 1943 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1944 setDSOLocal(GV); 1945 return ConstantAddress(GV, Alignment); 1946 } 1947 1948 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1949 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1950 assert(AA && "No alias?"); 1951 1952 CharUnits Alignment = getContext().getDeclAlign(VD); 1953 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1954 1955 // See if there is already something with the target's name in the module. 1956 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1957 if (Entry) { 1958 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1959 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1960 return ConstantAddress(Ptr, Alignment); 1961 } 1962 1963 llvm::Constant *Aliasee; 1964 if (isa<llvm::FunctionType>(DeclTy)) 1965 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1966 GlobalDecl(cast<FunctionDecl>(VD)), 1967 /*ForVTable=*/false); 1968 else 1969 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1970 llvm::PointerType::getUnqual(DeclTy), 1971 nullptr); 1972 1973 auto *F = cast<llvm::GlobalValue>(Aliasee); 1974 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1975 WeakRefReferences.insert(F); 1976 1977 return ConstantAddress(Aliasee, Alignment); 1978 } 1979 1980 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1981 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1982 1983 // Weak references don't produce any output by themselves. 1984 if (Global->hasAttr<WeakRefAttr>()) 1985 return; 1986 1987 // If this is an alias definition (which otherwise looks like a declaration) 1988 // emit it now. 1989 if (Global->hasAttr<AliasAttr>()) 1990 return EmitAliasDefinition(GD); 1991 1992 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1993 if (Global->hasAttr<IFuncAttr>()) 1994 return emitIFuncDefinition(GD); 1995 1996 // If this is CUDA, be selective about which declarations we emit. 1997 if (LangOpts.CUDA) { 1998 if (LangOpts.CUDAIsDevice) { 1999 if (!Global->hasAttr<CUDADeviceAttr>() && 2000 !Global->hasAttr<CUDAGlobalAttr>() && 2001 !Global->hasAttr<CUDAConstantAttr>() && 2002 !Global->hasAttr<CUDASharedAttr>()) 2003 return; 2004 } else { 2005 // We need to emit host-side 'shadows' for all global 2006 // device-side variables because the CUDA runtime needs their 2007 // size and host-side address in order to provide access to 2008 // their device-side incarnations. 2009 2010 // So device-only functions are the only things we skip. 2011 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2012 Global->hasAttr<CUDADeviceAttr>()) 2013 return; 2014 2015 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2016 "Expected Variable or Function"); 2017 } 2018 } 2019 2020 if (LangOpts.OpenMP) { 2021 // If this is OpenMP device, check if it is legal to emit this global 2022 // normally. 2023 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2024 return; 2025 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2026 if (MustBeEmitted(Global)) 2027 EmitOMPDeclareReduction(DRD); 2028 return; 2029 } 2030 } 2031 2032 // Ignore declarations, they will be emitted on their first use. 2033 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2034 // Forward declarations are emitted lazily on first use. 2035 if (!FD->doesThisDeclarationHaveABody()) { 2036 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2037 return; 2038 2039 StringRef MangledName = getMangledName(GD); 2040 2041 // Compute the function info and LLVM type. 2042 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2043 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2044 2045 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2046 /*DontDefer=*/false); 2047 return; 2048 } 2049 } else { 2050 const auto *VD = cast<VarDecl>(Global); 2051 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2052 // We need to emit device-side global CUDA variables even if a 2053 // variable does not have a definition -- we still need to define 2054 // host-side shadow for it. 2055 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2056 !VD->hasDefinition() && 2057 (VD->hasAttr<CUDAConstantAttr>() || 2058 VD->hasAttr<CUDADeviceAttr>()); 2059 if (!MustEmitForCuda && 2060 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2061 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2062 // If this declaration may have caused an inline variable definition to 2063 // change linkage, make sure that it's emitted. 2064 if (Context.getInlineVariableDefinitionKind(VD) == 2065 ASTContext::InlineVariableDefinitionKind::Strong) 2066 GetAddrOfGlobalVar(VD); 2067 return; 2068 } 2069 } 2070 2071 // Defer code generation to first use when possible, e.g. if this is an inline 2072 // function. If the global must always be emitted, do it eagerly if possible 2073 // to benefit from cache locality. 2074 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2075 // Emit the definition if it can't be deferred. 2076 EmitGlobalDefinition(GD); 2077 return; 2078 } 2079 2080 // If we're deferring emission of a C++ variable with an 2081 // initializer, remember the order in which it appeared in the file. 2082 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2083 cast<VarDecl>(Global)->hasInit()) { 2084 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2085 CXXGlobalInits.push_back(nullptr); 2086 } 2087 2088 StringRef MangledName = getMangledName(GD); 2089 if (GetGlobalValue(MangledName) != nullptr) { 2090 // The value has already been used and should therefore be emitted. 2091 addDeferredDeclToEmit(GD); 2092 } else if (MustBeEmitted(Global)) { 2093 // The value must be emitted, but cannot be emitted eagerly. 2094 assert(!MayBeEmittedEagerly(Global)); 2095 addDeferredDeclToEmit(GD); 2096 } else { 2097 // Otherwise, remember that we saw a deferred decl with this name. The 2098 // first use of the mangled name will cause it to move into 2099 // DeferredDeclsToEmit. 2100 DeferredDecls[MangledName] = GD; 2101 } 2102 } 2103 2104 // Check if T is a class type with a destructor that's not dllimport. 2105 static bool HasNonDllImportDtor(QualType T) { 2106 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2107 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2108 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2109 return true; 2110 2111 return false; 2112 } 2113 2114 namespace { 2115 struct FunctionIsDirectlyRecursive : 2116 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2117 const StringRef Name; 2118 const Builtin::Context &BI; 2119 bool Result; 2120 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2121 Name(N), BI(C), Result(false) { 2122 } 2123 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2124 2125 bool TraverseCallExpr(CallExpr *E) { 2126 const FunctionDecl *FD = E->getDirectCallee(); 2127 if (!FD) 2128 return true; 2129 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2130 if (Attr && Name == Attr->getLabel()) { 2131 Result = true; 2132 return false; 2133 } 2134 unsigned BuiltinID = FD->getBuiltinID(); 2135 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2136 return true; 2137 StringRef BuiltinName = BI.getName(BuiltinID); 2138 if (BuiltinName.startswith("__builtin_") && 2139 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2140 Result = true; 2141 return false; 2142 } 2143 return true; 2144 } 2145 }; 2146 2147 // Make sure we're not referencing non-imported vars or functions. 2148 struct DLLImportFunctionVisitor 2149 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2150 bool SafeToInline = true; 2151 2152 bool shouldVisitImplicitCode() const { return true; } 2153 2154 bool VisitVarDecl(VarDecl *VD) { 2155 if (VD->getTLSKind()) { 2156 // A thread-local variable cannot be imported. 2157 SafeToInline = false; 2158 return SafeToInline; 2159 } 2160 2161 // A variable definition might imply a destructor call. 2162 if (VD->isThisDeclarationADefinition()) 2163 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2164 2165 return SafeToInline; 2166 } 2167 2168 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2169 if (const auto *D = E->getTemporary()->getDestructor()) 2170 SafeToInline = D->hasAttr<DLLImportAttr>(); 2171 return SafeToInline; 2172 } 2173 2174 bool VisitDeclRefExpr(DeclRefExpr *E) { 2175 ValueDecl *VD = E->getDecl(); 2176 if (isa<FunctionDecl>(VD)) 2177 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2178 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2179 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2180 return SafeToInline; 2181 } 2182 2183 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2184 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2185 return SafeToInline; 2186 } 2187 2188 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2189 CXXMethodDecl *M = E->getMethodDecl(); 2190 if (!M) { 2191 // Call through a pointer to member function. This is safe to inline. 2192 SafeToInline = true; 2193 } else { 2194 SafeToInline = M->hasAttr<DLLImportAttr>(); 2195 } 2196 return SafeToInline; 2197 } 2198 2199 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2200 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2201 return SafeToInline; 2202 } 2203 2204 bool VisitCXXNewExpr(CXXNewExpr *E) { 2205 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2206 return SafeToInline; 2207 } 2208 }; 2209 } 2210 2211 // isTriviallyRecursive - Check if this function calls another 2212 // decl that, because of the asm attribute or the other decl being a builtin, 2213 // ends up pointing to itself. 2214 bool 2215 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2216 StringRef Name; 2217 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2218 // asm labels are a special kind of mangling we have to support. 2219 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2220 if (!Attr) 2221 return false; 2222 Name = Attr->getLabel(); 2223 } else { 2224 Name = FD->getName(); 2225 } 2226 2227 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2228 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2229 return Walker.Result; 2230 } 2231 2232 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2233 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2234 return true; 2235 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2236 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2237 return false; 2238 2239 if (F->hasAttr<DLLImportAttr>()) { 2240 // Check whether it would be safe to inline this dllimport function. 2241 DLLImportFunctionVisitor Visitor; 2242 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2243 if (!Visitor.SafeToInline) 2244 return false; 2245 2246 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2247 // Implicit destructor invocations aren't captured in the AST, so the 2248 // check above can't see them. Check for them manually here. 2249 for (const Decl *Member : Dtor->getParent()->decls()) 2250 if (isa<FieldDecl>(Member)) 2251 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2252 return false; 2253 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2254 if (HasNonDllImportDtor(B.getType())) 2255 return false; 2256 } 2257 } 2258 2259 // PR9614. Avoid cases where the source code is lying to us. An available 2260 // externally function should have an equivalent function somewhere else, 2261 // but a function that calls itself is clearly not equivalent to the real 2262 // implementation. 2263 // This happens in glibc's btowc and in some configure checks. 2264 return !isTriviallyRecursive(F); 2265 } 2266 2267 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2268 return CodeGenOpts.OptimizationLevel > 0; 2269 } 2270 2271 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2272 const auto *D = cast<ValueDecl>(GD.getDecl()); 2273 2274 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2275 Context.getSourceManager(), 2276 "Generating code for declaration"); 2277 2278 if (isa<FunctionDecl>(D)) { 2279 // At -O0, don't generate IR for functions with available_externally 2280 // linkage. 2281 if (!shouldEmitFunction(GD)) 2282 return; 2283 2284 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2285 // Make sure to emit the definition(s) before we emit the thunks. 2286 // This is necessary for the generation of certain thunks. 2287 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2288 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2289 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2290 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2291 else 2292 EmitGlobalFunctionDefinition(GD, GV); 2293 2294 if (Method->isVirtual()) 2295 getVTables().EmitThunks(GD); 2296 2297 return; 2298 } 2299 2300 return EmitGlobalFunctionDefinition(GD, GV); 2301 } 2302 2303 if (const auto *VD = dyn_cast<VarDecl>(D)) 2304 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2305 2306 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2307 } 2308 2309 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2310 llvm::Function *NewFn); 2311 2312 void CodeGenModule::emitMultiVersionFunctions() { 2313 for (GlobalDecl GD : MultiVersionFuncs) { 2314 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2315 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2316 getContext().forEachMultiversionedFunctionVersion( 2317 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2318 GlobalDecl CurGD{ 2319 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2320 StringRef MangledName = getMangledName(CurGD); 2321 llvm::Constant *Func = GetGlobalValue(MangledName); 2322 if (!Func) { 2323 if (CurFD->isDefined()) { 2324 EmitGlobalFunctionDefinition(CurGD, nullptr); 2325 Func = GetGlobalValue(MangledName); 2326 } else { 2327 const CGFunctionInfo &FI = 2328 getTypes().arrangeGlobalDeclaration(GD); 2329 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2330 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2331 /*DontDefer=*/false, ForDefinition); 2332 } 2333 assert(Func && "This should have just been created"); 2334 } 2335 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2336 CurFD->getAttr<TargetAttr>()->parse()); 2337 }); 2338 2339 llvm::Function *ResolverFunc = cast<llvm::Function>( 2340 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2341 if (supportsCOMDAT()) 2342 ResolverFunc->setComdat( 2343 getModule().getOrInsertComdat(ResolverFunc->getName())); 2344 std::stable_sort( 2345 Options.begin(), Options.end(), 2346 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2347 CodeGenFunction CGF(*this); 2348 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2349 } 2350 } 2351 2352 /// If an ifunc for the specified mangled name is not in the module, create and 2353 /// return an llvm IFunc Function with the specified type. 2354 llvm::Constant * 2355 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2356 StringRef MangledName, 2357 const FunctionDecl *FD) { 2358 std::string IFuncName = (MangledName + ".ifunc").str(); 2359 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2360 return IFuncGV; 2361 2362 // Since this is the first time we've created this IFunc, make sure 2363 // that we put this multiversioned function into the list to be 2364 // replaced later. 2365 MultiVersionFuncs.push_back(GD); 2366 2367 std::string ResolverName = (MangledName + ".resolver").str(); 2368 llvm::Type *ResolverType = llvm::FunctionType::get( 2369 llvm::PointerType::get(DeclTy, 2370 Context.getTargetAddressSpace(FD->getType())), 2371 false); 2372 llvm::Constant *Resolver = 2373 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2374 /*ForVTable=*/false); 2375 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2376 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2377 GIF->setName(IFuncName); 2378 SetCommonAttributes(FD, GIF); 2379 2380 return GIF; 2381 } 2382 2383 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2384 /// module, create and return an llvm Function with the specified type. If there 2385 /// is something in the module with the specified name, return it potentially 2386 /// bitcasted to the right type. 2387 /// 2388 /// If D is non-null, it specifies a decl that correspond to this. This is used 2389 /// to set the attributes on the function when it is first created. 2390 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2391 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2392 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2393 ForDefinition_t IsForDefinition) { 2394 const Decl *D = GD.getDecl(); 2395 2396 // Any attempts to use a MultiVersion function should result in retrieving 2397 // the iFunc instead. Name Mangling will handle the rest of the changes. 2398 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2399 // For the device mark the function as one that should be emitted. 2400 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2401 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() && 2402 !DontDefer && !IsForDefinition) 2403 addDeferredDeclToEmit(GD); 2404 2405 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2406 UpdateMultiVersionNames(GD, FD); 2407 if (!IsForDefinition) 2408 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2409 } 2410 } 2411 2412 // Lookup the entry, lazily creating it if necessary. 2413 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2414 if (Entry) { 2415 if (WeakRefReferences.erase(Entry)) { 2416 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2417 if (FD && !FD->hasAttr<WeakAttr>()) 2418 Entry->setLinkage(llvm::Function::ExternalLinkage); 2419 } 2420 2421 // Handle dropped DLL attributes. 2422 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2423 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2424 setDSOLocal(Entry); 2425 } 2426 2427 // If there are two attempts to define the same mangled name, issue an 2428 // error. 2429 if (IsForDefinition && !Entry->isDeclaration()) { 2430 GlobalDecl OtherGD; 2431 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2432 // to make sure that we issue an error only once. 2433 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2434 (GD.getCanonicalDecl().getDecl() != 2435 OtherGD.getCanonicalDecl().getDecl()) && 2436 DiagnosedConflictingDefinitions.insert(GD).second) { 2437 getDiags().Report(D->getLocation(), 2438 diag::err_duplicate_mangled_name); 2439 getDiags().Report(OtherGD.getDecl()->getLocation(), 2440 diag::note_previous_definition); 2441 } 2442 } 2443 2444 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2445 (Entry->getType()->getElementType() == Ty)) { 2446 return Entry; 2447 } 2448 2449 // Make sure the result is of the correct type. 2450 // (If function is requested for a definition, we always need to create a new 2451 // function, not just return a bitcast.) 2452 if (!IsForDefinition) 2453 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2454 } 2455 2456 // This function doesn't have a complete type (for example, the return 2457 // type is an incomplete struct). Use a fake type instead, and make 2458 // sure not to try to set attributes. 2459 bool IsIncompleteFunction = false; 2460 2461 llvm::FunctionType *FTy; 2462 if (isa<llvm::FunctionType>(Ty)) { 2463 FTy = cast<llvm::FunctionType>(Ty); 2464 } else { 2465 FTy = llvm::FunctionType::get(VoidTy, false); 2466 IsIncompleteFunction = true; 2467 } 2468 2469 llvm::Function *F = 2470 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2471 Entry ? StringRef() : MangledName, &getModule()); 2472 2473 // If we already created a function with the same mangled name (but different 2474 // type) before, take its name and add it to the list of functions to be 2475 // replaced with F at the end of CodeGen. 2476 // 2477 // This happens if there is a prototype for a function (e.g. "int f()") and 2478 // then a definition of a different type (e.g. "int f(int x)"). 2479 if (Entry) { 2480 F->takeName(Entry); 2481 2482 // This might be an implementation of a function without a prototype, in 2483 // which case, try to do special replacement of calls which match the new 2484 // prototype. The really key thing here is that we also potentially drop 2485 // arguments from the call site so as to make a direct call, which makes the 2486 // inliner happier and suppresses a number of optimizer warnings (!) about 2487 // dropping arguments. 2488 if (!Entry->use_empty()) { 2489 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2490 Entry->removeDeadConstantUsers(); 2491 } 2492 2493 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2494 F, Entry->getType()->getElementType()->getPointerTo()); 2495 addGlobalValReplacement(Entry, BC); 2496 } 2497 2498 assert(F->getName() == MangledName && "name was uniqued!"); 2499 if (D) 2500 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2501 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2502 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2503 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2504 } 2505 2506 if (!DontDefer) { 2507 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2508 // each other bottoming out with the base dtor. Therefore we emit non-base 2509 // dtors on usage, even if there is no dtor definition in the TU. 2510 if (D && isa<CXXDestructorDecl>(D) && 2511 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2512 GD.getDtorType())) 2513 addDeferredDeclToEmit(GD); 2514 2515 // This is the first use or definition of a mangled name. If there is a 2516 // deferred decl with this name, remember that we need to emit it at the end 2517 // of the file. 2518 auto DDI = DeferredDecls.find(MangledName); 2519 if (DDI != DeferredDecls.end()) { 2520 // Move the potentially referenced deferred decl to the 2521 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2522 // don't need it anymore). 2523 addDeferredDeclToEmit(DDI->second); 2524 DeferredDecls.erase(DDI); 2525 2526 // Otherwise, there are cases we have to worry about where we're 2527 // using a declaration for which we must emit a definition but where 2528 // we might not find a top-level definition: 2529 // - member functions defined inline in their classes 2530 // - friend functions defined inline in some class 2531 // - special member functions with implicit definitions 2532 // If we ever change our AST traversal to walk into class methods, 2533 // this will be unnecessary. 2534 // 2535 // We also don't emit a definition for a function if it's going to be an 2536 // entry in a vtable, unless it's already marked as used. 2537 } else if (getLangOpts().CPlusPlus && D) { 2538 // Look for a declaration that's lexically in a record. 2539 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2540 FD = FD->getPreviousDecl()) { 2541 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2542 if (FD->doesThisDeclarationHaveABody()) { 2543 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2544 break; 2545 } 2546 } 2547 } 2548 } 2549 } 2550 2551 // Make sure the result is of the requested type. 2552 if (!IsIncompleteFunction) { 2553 assert(F->getType()->getElementType() == Ty); 2554 return F; 2555 } 2556 2557 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2558 return llvm::ConstantExpr::getBitCast(F, PTy); 2559 } 2560 2561 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2562 /// non-null, then this function will use the specified type if it has to 2563 /// create it (this occurs when we see a definition of the function). 2564 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2565 llvm::Type *Ty, 2566 bool ForVTable, 2567 bool DontDefer, 2568 ForDefinition_t IsForDefinition) { 2569 // If there was no specific requested type, just convert it now. 2570 if (!Ty) { 2571 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2572 auto CanonTy = Context.getCanonicalType(FD->getType()); 2573 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2574 } 2575 2576 // Devirtualized destructor calls may come through here instead of via 2577 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2578 // of the complete destructor when necessary. 2579 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2580 if (getTarget().getCXXABI().isMicrosoft() && 2581 GD.getDtorType() == Dtor_Complete && 2582 DD->getParent()->getNumVBases() == 0) 2583 GD = GlobalDecl(DD, Dtor_Base); 2584 } 2585 2586 StringRef MangledName = getMangledName(GD); 2587 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2588 /*IsThunk=*/false, llvm::AttributeList(), 2589 IsForDefinition); 2590 } 2591 2592 static const FunctionDecl * 2593 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2594 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2595 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2596 2597 IdentifierInfo &CII = C.Idents.get(Name); 2598 for (const auto &Result : DC->lookup(&CII)) 2599 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2600 return FD; 2601 2602 if (!C.getLangOpts().CPlusPlus) 2603 return nullptr; 2604 2605 // Demangle the premangled name from getTerminateFn() 2606 IdentifierInfo &CXXII = 2607 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2608 ? C.Idents.get("terminate") 2609 : C.Idents.get(Name); 2610 2611 for (const auto &N : {"__cxxabiv1", "std"}) { 2612 IdentifierInfo &NS = C.Idents.get(N); 2613 for (const auto &Result : DC->lookup(&NS)) { 2614 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2615 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2616 for (const auto &Result : LSD->lookup(&NS)) 2617 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2618 break; 2619 2620 if (ND) 2621 for (const auto &Result : ND->lookup(&CXXII)) 2622 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2623 return FD; 2624 } 2625 } 2626 2627 return nullptr; 2628 } 2629 2630 /// CreateRuntimeFunction - Create a new runtime function with the specified 2631 /// type and name. 2632 llvm::Constant * 2633 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2634 llvm::AttributeList ExtraAttrs, 2635 bool Local) { 2636 llvm::Constant *C = 2637 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2638 /*DontDefer=*/false, /*IsThunk=*/false, 2639 ExtraAttrs); 2640 2641 if (auto *F = dyn_cast<llvm::Function>(C)) { 2642 if (F->empty()) { 2643 F->setCallingConv(getRuntimeCC()); 2644 2645 if (!Local && getTriple().isOSBinFormatCOFF() && 2646 !getCodeGenOpts().LTOVisibilityPublicStd && 2647 !getTriple().isWindowsGNUEnvironment()) { 2648 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2649 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2650 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2651 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2652 } 2653 } 2654 setDSOLocal(F); 2655 } 2656 } 2657 2658 return C; 2659 } 2660 2661 /// CreateBuiltinFunction - Create a new builtin function with the specified 2662 /// type and name. 2663 llvm::Constant * 2664 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2665 llvm::AttributeList ExtraAttrs) { 2666 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2667 } 2668 2669 /// isTypeConstant - Determine whether an object of this type can be emitted 2670 /// as a constant. 2671 /// 2672 /// If ExcludeCtor is true, the duration when the object's constructor runs 2673 /// will not be considered. The caller will need to verify that the object is 2674 /// not written to during its construction. 2675 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2676 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2677 return false; 2678 2679 if (Context.getLangOpts().CPlusPlus) { 2680 if (const CXXRecordDecl *Record 2681 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2682 return ExcludeCtor && !Record->hasMutableFields() && 2683 Record->hasTrivialDestructor(); 2684 } 2685 2686 return true; 2687 } 2688 2689 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2690 /// create and return an llvm GlobalVariable with the specified type. If there 2691 /// is something in the module with the specified name, return it potentially 2692 /// bitcasted to the right type. 2693 /// 2694 /// If D is non-null, it specifies a decl that correspond to this. This is used 2695 /// to set the attributes on the global when it is first created. 2696 /// 2697 /// If IsForDefinition is true, it is guaranteed that an actual global with 2698 /// type Ty will be returned, not conversion of a variable with the same 2699 /// mangled name but some other type. 2700 llvm::Constant * 2701 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2702 llvm::PointerType *Ty, 2703 const VarDecl *D, 2704 ForDefinition_t IsForDefinition) { 2705 // Lookup the entry, lazily creating it if necessary. 2706 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2707 if (Entry) { 2708 if (WeakRefReferences.erase(Entry)) { 2709 if (D && !D->hasAttr<WeakAttr>()) 2710 Entry->setLinkage(llvm::Function::ExternalLinkage); 2711 } 2712 2713 // Handle dropped DLL attributes. 2714 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2715 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2716 2717 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2718 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2719 2720 if (Entry->getType() == Ty) 2721 return Entry; 2722 2723 // If there are two attempts to define the same mangled name, issue an 2724 // error. 2725 if (IsForDefinition && !Entry->isDeclaration()) { 2726 GlobalDecl OtherGD; 2727 const VarDecl *OtherD; 2728 2729 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2730 // to make sure that we issue an error only once. 2731 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2732 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2733 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2734 OtherD->hasInit() && 2735 DiagnosedConflictingDefinitions.insert(D).second) { 2736 getDiags().Report(D->getLocation(), 2737 diag::err_duplicate_mangled_name); 2738 getDiags().Report(OtherGD.getDecl()->getLocation(), 2739 diag::note_previous_definition); 2740 } 2741 } 2742 2743 // Make sure the result is of the correct type. 2744 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2745 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2746 2747 // (If global is requested for a definition, we always need to create a new 2748 // global, not just return a bitcast.) 2749 if (!IsForDefinition) 2750 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2751 } 2752 2753 auto AddrSpace = GetGlobalVarAddressSpace(D); 2754 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2755 2756 auto *GV = new llvm::GlobalVariable( 2757 getModule(), Ty->getElementType(), false, 2758 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2759 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2760 2761 // If we already created a global with the same mangled name (but different 2762 // type) before, take its name and remove it from its parent. 2763 if (Entry) { 2764 GV->takeName(Entry); 2765 2766 if (!Entry->use_empty()) { 2767 llvm::Constant *NewPtrForOldDecl = 2768 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2769 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2770 } 2771 2772 Entry->eraseFromParent(); 2773 } 2774 2775 // This is the first use or definition of a mangled name. If there is a 2776 // deferred decl with this name, remember that we need to emit it at the end 2777 // of the file. 2778 auto DDI = DeferredDecls.find(MangledName); 2779 if (DDI != DeferredDecls.end()) { 2780 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2781 // list, and remove it from DeferredDecls (since we don't need it anymore). 2782 addDeferredDeclToEmit(DDI->second); 2783 DeferredDecls.erase(DDI); 2784 } 2785 2786 // Handle things which are present even on external declarations. 2787 if (D) { 2788 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2789 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2790 2791 // FIXME: This code is overly simple and should be merged with other global 2792 // handling. 2793 GV->setConstant(isTypeConstant(D->getType(), false)); 2794 2795 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2796 2797 setLinkageForGV(GV, D); 2798 2799 if (D->getTLSKind()) { 2800 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2801 CXXThreadLocals.push_back(D); 2802 setTLSMode(GV, *D); 2803 } 2804 2805 setGVProperties(GV, D); 2806 2807 // If required by the ABI, treat declarations of static data members with 2808 // inline initializers as definitions. 2809 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2810 EmitGlobalVarDefinition(D); 2811 } 2812 2813 // Emit section information for extern variables. 2814 if (D->hasExternalStorage()) { 2815 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2816 GV->setSection(SA->getName()); 2817 } 2818 2819 // Handle XCore specific ABI requirements. 2820 if (getTriple().getArch() == llvm::Triple::xcore && 2821 D->getLanguageLinkage() == CLanguageLinkage && 2822 D->getType().isConstant(Context) && 2823 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2824 GV->setSection(".cp.rodata"); 2825 2826 // Check if we a have a const declaration with an initializer, we may be 2827 // able to emit it as available_externally to expose it's value to the 2828 // optimizer. 2829 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2830 D->getType().isConstQualified() && !GV->hasInitializer() && 2831 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2832 const auto *Record = 2833 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2834 bool HasMutableFields = Record && Record->hasMutableFields(); 2835 if (!HasMutableFields) { 2836 const VarDecl *InitDecl; 2837 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2838 if (InitExpr) { 2839 ConstantEmitter emitter(*this); 2840 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2841 if (Init) { 2842 auto *InitType = Init->getType(); 2843 if (GV->getType()->getElementType() != InitType) { 2844 // The type of the initializer does not match the definition. 2845 // This happens when an initializer has a different type from 2846 // the type of the global (because of padding at the end of a 2847 // structure for instance). 2848 GV->setName(StringRef()); 2849 // Make a new global with the correct type, this is now guaranteed 2850 // to work. 2851 auto *NewGV = cast<llvm::GlobalVariable>( 2852 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2853 2854 // Erase the old global, since it is no longer used. 2855 GV->eraseFromParent(); 2856 GV = NewGV; 2857 } else { 2858 GV->setInitializer(Init); 2859 GV->setConstant(true); 2860 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2861 } 2862 emitter.finalize(GV); 2863 } 2864 } 2865 } 2866 } 2867 } 2868 2869 LangAS ExpectedAS = 2870 D ? D->getType().getAddressSpace() 2871 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2872 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2873 Ty->getPointerAddressSpace()); 2874 if (AddrSpace != ExpectedAS) 2875 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2876 ExpectedAS, Ty); 2877 2878 return GV; 2879 } 2880 2881 llvm::Constant * 2882 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2883 ForDefinition_t IsForDefinition) { 2884 const Decl *D = GD.getDecl(); 2885 if (isa<CXXConstructorDecl>(D)) 2886 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2887 getFromCtorType(GD.getCtorType()), 2888 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2889 /*DontDefer=*/false, IsForDefinition); 2890 else if (isa<CXXDestructorDecl>(D)) 2891 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2892 getFromDtorType(GD.getDtorType()), 2893 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2894 /*DontDefer=*/false, IsForDefinition); 2895 else if (isa<CXXMethodDecl>(D)) { 2896 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2897 cast<CXXMethodDecl>(D)); 2898 auto Ty = getTypes().GetFunctionType(*FInfo); 2899 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2900 IsForDefinition); 2901 } else if (isa<FunctionDecl>(D)) { 2902 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2903 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2904 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2905 IsForDefinition); 2906 } else 2907 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2908 IsForDefinition); 2909 } 2910 2911 llvm::GlobalVariable * 2912 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2913 llvm::Type *Ty, 2914 llvm::GlobalValue::LinkageTypes Linkage) { 2915 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2916 llvm::GlobalVariable *OldGV = nullptr; 2917 2918 if (GV) { 2919 // Check if the variable has the right type. 2920 if (GV->getType()->getElementType() == Ty) 2921 return GV; 2922 2923 // Because C++ name mangling, the only way we can end up with an already 2924 // existing global with the same name is if it has been declared extern "C". 2925 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2926 OldGV = GV; 2927 } 2928 2929 // Create a new variable. 2930 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2931 Linkage, nullptr, Name); 2932 2933 if (OldGV) { 2934 // Replace occurrences of the old variable if needed. 2935 GV->takeName(OldGV); 2936 2937 if (!OldGV->use_empty()) { 2938 llvm::Constant *NewPtrForOldDecl = 2939 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2940 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2941 } 2942 2943 OldGV->eraseFromParent(); 2944 } 2945 2946 if (supportsCOMDAT() && GV->isWeakForLinker() && 2947 !GV->hasAvailableExternallyLinkage()) 2948 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2949 2950 return GV; 2951 } 2952 2953 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2954 /// given global variable. If Ty is non-null and if the global doesn't exist, 2955 /// then it will be created with the specified type instead of whatever the 2956 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2957 /// that an actual global with type Ty will be returned, not conversion of a 2958 /// variable with the same mangled name but some other type. 2959 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2960 llvm::Type *Ty, 2961 ForDefinition_t IsForDefinition) { 2962 assert(D->hasGlobalStorage() && "Not a global variable"); 2963 QualType ASTTy = D->getType(); 2964 if (!Ty) 2965 Ty = getTypes().ConvertTypeForMem(ASTTy); 2966 2967 llvm::PointerType *PTy = 2968 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2969 2970 StringRef MangledName = getMangledName(D); 2971 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2972 } 2973 2974 /// CreateRuntimeVariable - Create a new runtime global variable with the 2975 /// specified type and name. 2976 llvm::Constant * 2977 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2978 StringRef Name) { 2979 auto *Ret = 2980 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2981 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2982 return Ret; 2983 } 2984 2985 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2986 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2987 2988 StringRef MangledName = getMangledName(D); 2989 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2990 2991 // We already have a definition, not declaration, with the same mangled name. 2992 // Emitting of declaration is not required (and actually overwrites emitted 2993 // definition). 2994 if (GV && !GV->isDeclaration()) 2995 return; 2996 2997 // If we have not seen a reference to this variable yet, place it into the 2998 // deferred declarations table to be emitted if needed later. 2999 if (!MustBeEmitted(D) && !GV) { 3000 DeferredDecls[MangledName] = D; 3001 return; 3002 } 3003 3004 // The tentative definition is the only definition. 3005 EmitGlobalVarDefinition(D); 3006 } 3007 3008 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3009 return Context.toCharUnitsFromBits( 3010 getDataLayout().getTypeStoreSizeInBits(Ty)); 3011 } 3012 3013 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3014 LangAS AddrSpace = LangAS::Default; 3015 if (LangOpts.OpenCL) { 3016 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3017 assert(AddrSpace == LangAS::opencl_global || 3018 AddrSpace == LangAS::opencl_constant || 3019 AddrSpace == LangAS::opencl_local || 3020 AddrSpace >= LangAS::FirstTargetAddressSpace); 3021 return AddrSpace; 3022 } 3023 3024 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3025 if (D && D->hasAttr<CUDAConstantAttr>()) 3026 return LangAS::cuda_constant; 3027 else if (D && D->hasAttr<CUDASharedAttr>()) 3028 return LangAS::cuda_shared; 3029 else 3030 return LangAS::cuda_device; 3031 } 3032 3033 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3034 } 3035 3036 template<typename SomeDecl> 3037 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3038 llvm::GlobalValue *GV) { 3039 if (!getLangOpts().CPlusPlus) 3040 return; 3041 3042 // Must have 'used' attribute, or else inline assembly can't rely on 3043 // the name existing. 3044 if (!D->template hasAttr<UsedAttr>()) 3045 return; 3046 3047 // Must have internal linkage and an ordinary name. 3048 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3049 return; 3050 3051 // Must be in an extern "C" context. Entities declared directly within 3052 // a record are not extern "C" even if the record is in such a context. 3053 const SomeDecl *First = D->getFirstDecl(); 3054 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3055 return; 3056 3057 // OK, this is an internal linkage entity inside an extern "C" linkage 3058 // specification. Make a note of that so we can give it the "expected" 3059 // mangled name if nothing else is using that name. 3060 std::pair<StaticExternCMap::iterator, bool> R = 3061 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3062 3063 // If we have multiple internal linkage entities with the same name 3064 // in extern "C" regions, none of them gets that name. 3065 if (!R.second) 3066 R.first->second = nullptr; 3067 } 3068 3069 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3070 if (!CGM.supportsCOMDAT()) 3071 return false; 3072 3073 if (D.hasAttr<SelectAnyAttr>()) 3074 return true; 3075 3076 GVALinkage Linkage; 3077 if (auto *VD = dyn_cast<VarDecl>(&D)) 3078 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3079 else 3080 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3081 3082 switch (Linkage) { 3083 case GVA_Internal: 3084 case GVA_AvailableExternally: 3085 case GVA_StrongExternal: 3086 return false; 3087 case GVA_DiscardableODR: 3088 case GVA_StrongODR: 3089 return true; 3090 } 3091 llvm_unreachable("No such linkage"); 3092 } 3093 3094 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3095 llvm::GlobalObject &GO) { 3096 if (!shouldBeInCOMDAT(*this, D)) 3097 return; 3098 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3099 } 3100 3101 /// Pass IsTentative as true if you want to create a tentative definition. 3102 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3103 bool IsTentative) { 3104 // OpenCL global variables of sampler type are translated to function calls, 3105 // therefore no need to be translated. 3106 QualType ASTTy = D->getType(); 3107 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3108 return; 3109 3110 // If this is OpenMP device, check if it is legal to emit this global 3111 // normally. 3112 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3113 OpenMPRuntime->emitTargetGlobalVariable(D)) 3114 return; 3115 3116 llvm::Constant *Init = nullptr; 3117 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3118 bool NeedsGlobalCtor = false; 3119 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3120 3121 const VarDecl *InitDecl; 3122 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3123 3124 Optional<ConstantEmitter> emitter; 3125 3126 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3127 // as part of their declaration." Sema has already checked for 3128 // error cases, so we just need to set Init to UndefValue. 3129 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3130 D->hasAttr<CUDASharedAttr>()) 3131 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3132 else if (!InitExpr) { 3133 // This is a tentative definition; tentative definitions are 3134 // implicitly initialized with { 0 }. 3135 // 3136 // Note that tentative definitions are only emitted at the end of 3137 // a translation unit, so they should never have incomplete 3138 // type. In addition, EmitTentativeDefinition makes sure that we 3139 // never attempt to emit a tentative definition if a real one 3140 // exists. A use may still exists, however, so we still may need 3141 // to do a RAUW. 3142 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3143 Init = EmitNullConstant(D->getType()); 3144 } else { 3145 initializedGlobalDecl = GlobalDecl(D); 3146 emitter.emplace(*this); 3147 Init = emitter->tryEmitForInitializer(*InitDecl); 3148 3149 if (!Init) { 3150 QualType T = InitExpr->getType(); 3151 if (D->getType()->isReferenceType()) 3152 T = D->getType(); 3153 3154 if (getLangOpts().CPlusPlus) { 3155 Init = EmitNullConstant(T); 3156 NeedsGlobalCtor = true; 3157 } else { 3158 ErrorUnsupported(D, "static initializer"); 3159 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3160 } 3161 } else { 3162 // We don't need an initializer, so remove the entry for the delayed 3163 // initializer position (just in case this entry was delayed) if we 3164 // also don't need to register a destructor. 3165 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3166 DelayedCXXInitPosition.erase(D); 3167 } 3168 } 3169 3170 llvm::Type* InitType = Init->getType(); 3171 llvm::Constant *Entry = 3172 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3173 3174 // Strip off a bitcast if we got one back. 3175 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3176 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3177 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3178 // All zero index gep. 3179 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3180 Entry = CE->getOperand(0); 3181 } 3182 3183 // Entry is now either a Function or GlobalVariable. 3184 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3185 3186 // We have a definition after a declaration with the wrong type. 3187 // We must make a new GlobalVariable* and update everything that used OldGV 3188 // (a declaration or tentative definition) with the new GlobalVariable* 3189 // (which will be a definition). 3190 // 3191 // This happens if there is a prototype for a global (e.g. 3192 // "extern int x[];") and then a definition of a different type (e.g. 3193 // "int x[10];"). This also happens when an initializer has a different type 3194 // from the type of the global (this happens with unions). 3195 if (!GV || GV->getType()->getElementType() != InitType || 3196 GV->getType()->getAddressSpace() != 3197 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3198 3199 // Move the old entry aside so that we'll create a new one. 3200 Entry->setName(StringRef()); 3201 3202 // Make a new global with the correct type, this is now guaranteed to work. 3203 GV = cast<llvm::GlobalVariable>( 3204 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3205 3206 // Replace all uses of the old global with the new global 3207 llvm::Constant *NewPtrForOldDecl = 3208 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3209 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3210 3211 // Erase the old global, since it is no longer used. 3212 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3213 } 3214 3215 MaybeHandleStaticInExternC(D, GV); 3216 3217 if (D->hasAttr<AnnotateAttr>()) 3218 AddGlobalAnnotations(D, GV); 3219 3220 // Set the llvm linkage type as appropriate. 3221 llvm::GlobalValue::LinkageTypes Linkage = 3222 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3223 3224 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3225 // the device. [...]" 3226 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3227 // __device__, declares a variable that: [...] 3228 // Is accessible from all the threads within the grid and from the host 3229 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3230 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3231 if (GV && LangOpts.CUDA) { 3232 if (LangOpts.CUDAIsDevice) { 3233 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3234 GV->setExternallyInitialized(true); 3235 } else { 3236 // Host-side shadows of external declarations of device-side 3237 // global variables become internal definitions. These have to 3238 // be internal in order to prevent name conflicts with global 3239 // host variables with the same name in a different TUs. 3240 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3241 Linkage = llvm::GlobalValue::InternalLinkage; 3242 3243 // Shadow variables and their properties must be registered 3244 // with CUDA runtime. 3245 unsigned Flags = 0; 3246 if (!D->hasDefinition()) 3247 Flags |= CGCUDARuntime::ExternDeviceVar; 3248 if (D->hasAttr<CUDAConstantAttr>()) 3249 Flags |= CGCUDARuntime::ConstantDeviceVar; 3250 getCUDARuntime().registerDeviceVar(*GV, Flags); 3251 } else if (D->hasAttr<CUDASharedAttr>()) 3252 // __shared__ variables are odd. Shadows do get created, but 3253 // they are not registered with the CUDA runtime, so they 3254 // can't really be used to access their device-side 3255 // counterparts. It's not clear yet whether it's nvcc's bug or 3256 // a feature, but we've got to do the same for compatibility. 3257 Linkage = llvm::GlobalValue::InternalLinkage; 3258 } 3259 } 3260 3261 GV->setInitializer(Init); 3262 if (emitter) emitter->finalize(GV); 3263 3264 // If it is safe to mark the global 'constant', do so now. 3265 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3266 isTypeConstant(D->getType(), true)); 3267 3268 // If it is in a read-only section, mark it 'constant'. 3269 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3270 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3271 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3272 GV->setConstant(true); 3273 } 3274 3275 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3276 3277 3278 // On Darwin, if the normal linkage of a C++ thread_local variable is 3279 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3280 // copies within a linkage unit; otherwise, the backing variable has 3281 // internal linkage and all accesses should just be calls to the 3282 // Itanium-specified entry point, which has the normal linkage of the 3283 // variable. This is to preserve the ability to change the implementation 3284 // behind the scenes. 3285 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3286 Context.getTargetInfo().getTriple().isOSDarwin() && 3287 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3288 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3289 Linkage = llvm::GlobalValue::InternalLinkage; 3290 3291 GV->setLinkage(Linkage); 3292 if (D->hasAttr<DLLImportAttr>()) 3293 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3294 else if (D->hasAttr<DLLExportAttr>()) 3295 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3296 else 3297 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3298 3299 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3300 // common vars aren't constant even if declared const. 3301 GV->setConstant(false); 3302 // Tentative definition of global variables may be initialized with 3303 // non-zero null pointers. In this case they should have weak linkage 3304 // since common linkage must have zero initializer and must not have 3305 // explicit section therefore cannot have non-zero initial value. 3306 if (!GV->getInitializer()->isNullValue()) 3307 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3308 } 3309 3310 setNonAliasAttributes(D, GV); 3311 3312 if (D->getTLSKind() && !GV->isThreadLocal()) { 3313 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3314 CXXThreadLocals.push_back(D); 3315 setTLSMode(GV, *D); 3316 } 3317 3318 maybeSetTrivialComdat(*D, *GV); 3319 3320 // Emit the initializer function if necessary. 3321 if (NeedsGlobalCtor || NeedsGlobalDtor) 3322 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3323 3324 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3325 3326 // Emit global variable debug information. 3327 if (CGDebugInfo *DI = getModuleDebugInfo()) 3328 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3329 DI->EmitGlobalVariable(GV, D); 3330 } 3331 3332 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3333 CodeGenModule &CGM, const VarDecl *D, 3334 bool NoCommon) { 3335 // Don't give variables common linkage if -fno-common was specified unless it 3336 // was overridden by a NoCommon attribute. 3337 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3338 return true; 3339 3340 // C11 6.9.2/2: 3341 // A declaration of an identifier for an object that has file scope without 3342 // an initializer, and without a storage-class specifier or with the 3343 // storage-class specifier static, constitutes a tentative definition. 3344 if (D->getInit() || D->hasExternalStorage()) 3345 return true; 3346 3347 // A variable cannot be both common and exist in a section. 3348 if (D->hasAttr<SectionAttr>()) 3349 return true; 3350 3351 // A variable cannot be both common and exist in a section. 3352 // We don't try to determine which is the right section in the front-end. 3353 // If no specialized section name is applicable, it will resort to default. 3354 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3355 D->hasAttr<PragmaClangDataSectionAttr>() || 3356 D->hasAttr<PragmaClangRodataSectionAttr>()) 3357 return true; 3358 3359 // Thread local vars aren't considered common linkage. 3360 if (D->getTLSKind()) 3361 return true; 3362 3363 // Tentative definitions marked with WeakImportAttr are true definitions. 3364 if (D->hasAttr<WeakImportAttr>()) 3365 return true; 3366 3367 // A variable cannot be both common and exist in a comdat. 3368 if (shouldBeInCOMDAT(CGM, *D)) 3369 return true; 3370 3371 // Declarations with a required alignment do not have common linkage in MSVC 3372 // mode. 3373 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3374 if (D->hasAttr<AlignedAttr>()) 3375 return true; 3376 QualType VarType = D->getType(); 3377 if (Context.isAlignmentRequired(VarType)) 3378 return true; 3379 3380 if (const auto *RT = VarType->getAs<RecordType>()) { 3381 const RecordDecl *RD = RT->getDecl(); 3382 for (const FieldDecl *FD : RD->fields()) { 3383 if (FD->isBitField()) 3384 continue; 3385 if (FD->hasAttr<AlignedAttr>()) 3386 return true; 3387 if (Context.isAlignmentRequired(FD->getType())) 3388 return true; 3389 } 3390 } 3391 } 3392 3393 return false; 3394 } 3395 3396 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3397 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3398 if (Linkage == GVA_Internal) 3399 return llvm::Function::InternalLinkage; 3400 3401 if (D->hasAttr<WeakAttr>()) { 3402 if (IsConstantVariable) 3403 return llvm::GlobalVariable::WeakODRLinkage; 3404 else 3405 return llvm::GlobalVariable::WeakAnyLinkage; 3406 } 3407 3408 // We are guaranteed to have a strong definition somewhere else, 3409 // so we can use available_externally linkage. 3410 if (Linkage == GVA_AvailableExternally) 3411 return llvm::GlobalValue::AvailableExternallyLinkage; 3412 3413 // Note that Apple's kernel linker doesn't support symbol 3414 // coalescing, so we need to avoid linkonce and weak linkages there. 3415 // Normally, this means we just map to internal, but for explicit 3416 // instantiations we'll map to external. 3417 3418 // In C++, the compiler has to emit a definition in every translation unit 3419 // that references the function. We should use linkonce_odr because 3420 // a) if all references in this translation unit are optimized away, we 3421 // don't need to codegen it. b) if the function persists, it needs to be 3422 // merged with other definitions. c) C++ has the ODR, so we know the 3423 // definition is dependable. 3424 if (Linkage == GVA_DiscardableODR) 3425 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3426 : llvm::Function::InternalLinkage; 3427 3428 // An explicit instantiation of a template has weak linkage, since 3429 // explicit instantiations can occur in multiple translation units 3430 // and must all be equivalent. However, we are not allowed to 3431 // throw away these explicit instantiations. 3432 // 3433 // We don't currently support CUDA device code spread out across multiple TUs, 3434 // so say that CUDA templates are either external (for kernels) or internal. 3435 // This lets llvm perform aggressive inter-procedural optimizations. 3436 if (Linkage == GVA_StrongODR) { 3437 if (Context.getLangOpts().AppleKext) 3438 return llvm::Function::ExternalLinkage; 3439 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3440 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3441 : llvm::Function::InternalLinkage; 3442 return llvm::Function::WeakODRLinkage; 3443 } 3444 3445 // C++ doesn't have tentative definitions and thus cannot have common 3446 // linkage. 3447 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3448 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3449 CodeGenOpts.NoCommon)) 3450 return llvm::GlobalVariable::CommonLinkage; 3451 3452 // selectany symbols are externally visible, so use weak instead of 3453 // linkonce. MSVC optimizes away references to const selectany globals, so 3454 // all definitions should be the same and ODR linkage should be used. 3455 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3456 if (D->hasAttr<SelectAnyAttr>()) 3457 return llvm::GlobalVariable::WeakODRLinkage; 3458 3459 // Otherwise, we have strong external linkage. 3460 assert(Linkage == GVA_StrongExternal); 3461 return llvm::GlobalVariable::ExternalLinkage; 3462 } 3463 3464 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3465 const VarDecl *VD, bool IsConstant) { 3466 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3467 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3468 } 3469 3470 /// Replace the uses of a function that was declared with a non-proto type. 3471 /// We want to silently drop extra arguments from call sites 3472 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3473 llvm::Function *newFn) { 3474 // Fast path. 3475 if (old->use_empty()) return; 3476 3477 llvm::Type *newRetTy = newFn->getReturnType(); 3478 SmallVector<llvm::Value*, 4> newArgs; 3479 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3480 3481 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3482 ui != ue; ) { 3483 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3484 llvm::User *user = use->getUser(); 3485 3486 // Recognize and replace uses of bitcasts. Most calls to 3487 // unprototyped functions will use bitcasts. 3488 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3489 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3490 replaceUsesOfNonProtoConstant(bitcast, newFn); 3491 continue; 3492 } 3493 3494 // Recognize calls to the function. 3495 llvm::CallSite callSite(user); 3496 if (!callSite) continue; 3497 if (!callSite.isCallee(&*use)) continue; 3498 3499 // If the return types don't match exactly, then we can't 3500 // transform this call unless it's dead. 3501 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3502 continue; 3503 3504 // Get the call site's attribute list. 3505 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3506 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3507 3508 // If the function was passed too few arguments, don't transform. 3509 unsigned newNumArgs = newFn->arg_size(); 3510 if (callSite.arg_size() < newNumArgs) continue; 3511 3512 // If extra arguments were passed, we silently drop them. 3513 // If any of the types mismatch, we don't transform. 3514 unsigned argNo = 0; 3515 bool dontTransform = false; 3516 for (llvm::Argument &A : newFn->args()) { 3517 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3518 dontTransform = true; 3519 break; 3520 } 3521 3522 // Add any parameter attributes. 3523 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3524 argNo++; 3525 } 3526 if (dontTransform) 3527 continue; 3528 3529 // Okay, we can transform this. Create the new call instruction and copy 3530 // over the required information. 3531 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3532 3533 // Copy over any operand bundles. 3534 callSite.getOperandBundlesAsDefs(newBundles); 3535 3536 llvm::CallSite newCall; 3537 if (callSite.isCall()) { 3538 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3539 callSite.getInstruction()); 3540 } else { 3541 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3542 newCall = llvm::InvokeInst::Create(newFn, 3543 oldInvoke->getNormalDest(), 3544 oldInvoke->getUnwindDest(), 3545 newArgs, newBundles, "", 3546 callSite.getInstruction()); 3547 } 3548 newArgs.clear(); // for the next iteration 3549 3550 if (!newCall->getType()->isVoidTy()) 3551 newCall->takeName(callSite.getInstruction()); 3552 newCall.setAttributes(llvm::AttributeList::get( 3553 newFn->getContext(), oldAttrs.getFnAttributes(), 3554 oldAttrs.getRetAttributes(), newArgAttrs)); 3555 newCall.setCallingConv(callSite.getCallingConv()); 3556 3557 // Finally, remove the old call, replacing any uses with the new one. 3558 if (!callSite->use_empty()) 3559 callSite->replaceAllUsesWith(newCall.getInstruction()); 3560 3561 // Copy debug location attached to CI. 3562 if (callSite->getDebugLoc()) 3563 newCall->setDebugLoc(callSite->getDebugLoc()); 3564 3565 callSite->eraseFromParent(); 3566 } 3567 } 3568 3569 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3570 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3571 /// existing call uses of the old function in the module, this adjusts them to 3572 /// call the new function directly. 3573 /// 3574 /// This is not just a cleanup: the always_inline pass requires direct calls to 3575 /// functions to be able to inline them. If there is a bitcast in the way, it 3576 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3577 /// run at -O0. 3578 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3579 llvm::Function *NewFn) { 3580 // If we're redefining a global as a function, don't transform it. 3581 if (!isa<llvm::Function>(Old)) return; 3582 3583 replaceUsesOfNonProtoConstant(Old, NewFn); 3584 } 3585 3586 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3587 auto DK = VD->isThisDeclarationADefinition(); 3588 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3589 return; 3590 3591 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3592 // If we have a definition, this might be a deferred decl. If the 3593 // instantiation is explicit, make sure we emit it at the end. 3594 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3595 GetAddrOfGlobalVar(VD); 3596 3597 EmitTopLevelDecl(VD); 3598 } 3599 3600 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3601 llvm::GlobalValue *GV) { 3602 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3603 3604 // Compute the function info and LLVM type. 3605 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3606 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3607 3608 // Get or create the prototype for the function. 3609 if (!GV || (GV->getType()->getElementType() != Ty)) 3610 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3611 /*DontDefer=*/true, 3612 ForDefinition)); 3613 3614 // Already emitted. 3615 if (!GV->isDeclaration()) 3616 return; 3617 3618 // We need to set linkage and visibility on the function before 3619 // generating code for it because various parts of IR generation 3620 // want to propagate this information down (e.g. to local static 3621 // declarations). 3622 auto *Fn = cast<llvm::Function>(GV); 3623 setFunctionLinkage(GD, Fn); 3624 3625 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3626 setGVProperties(Fn, GD); 3627 3628 MaybeHandleStaticInExternC(D, Fn); 3629 3630 if (D->hasAttr<CUDAGlobalAttr>()) 3631 getTargetCodeGenInfo().setCUDAKernelCallingConvention(Fn); 3632 3633 maybeSetTrivialComdat(*D, *Fn); 3634 3635 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3636 3637 setNonAliasAttributes(GD, Fn); 3638 SetLLVMFunctionAttributesForDefinition(D, Fn); 3639 3640 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3641 AddGlobalCtor(Fn, CA->getPriority()); 3642 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3643 AddGlobalDtor(Fn, DA->getPriority()); 3644 if (D->hasAttr<AnnotateAttr>()) 3645 AddGlobalAnnotations(D, Fn); 3646 } 3647 3648 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3649 const auto *D = cast<ValueDecl>(GD.getDecl()); 3650 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3651 assert(AA && "Not an alias?"); 3652 3653 StringRef MangledName = getMangledName(GD); 3654 3655 if (AA->getAliasee() == MangledName) { 3656 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3657 return; 3658 } 3659 3660 // If there is a definition in the module, then it wins over the alias. 3661 // This is dubious, but allow it to be safe. Just ignore the alias. 3662 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3663 if (Entry && !Entry->isDeclaration()) 3664 return; 3665 3666 Aliases.push_back(GD); 3667 3668 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3669 3670 // Create a reference to the named value. This ensures that it is emitted 3671 // if a deferred decl. 3672 llvm::Constant *Aliasee; 3673 if (isa<llvm::FunctionType>(DeclTy)) 3674 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3675 /*ForVTable=*/false); 3676 else 3677 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3678 llvm::PointerType::getUnqual(DeclTy), 3679 /*D=*/nullptr); 3680 3681 // Create the new alias itself, but don't set a name yet. 3682 auto *GA = llvm::GlobalAlias::create( 3683 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3684 3685 if (Entry) { 3686 if (GA->getAliasee() == Entry) { 3687 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3688 return; 3689 } 3690 3691 assert(Entry->isDeclaration()); 3692 3693 // If there is a declaration in the module, then we had an extern followed 3694 // by the alias, as in: 3695 // extern int test6(); 3696 // ... 3697 // int test6() __attribute__((alias("test7"))); 3698 // 3699 // Remove it and replace uses of it with the alias. 3700 GA->takeName(Entry); 3701 3702 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3703 Entry->getType())); 3704 Entry->eraseFromParent(); 3705 } else { 3706 GA->setName(MangledName); 3707 } 3708 3709 // Set attributes which are particular to an alias; this is a 3710 // specialization of the attributes which may be set on a global 3711 // variable/function. 3712 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3713 D->isWeakImported()) { 3714 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3715 } 3716 3717 if (const auto *VD = dyn_cast<VarDecl>(D)) 3718 if (VD->getTLSKind()) 3719 setTLSMode(GA, *VD); 3720 3721 SetCommonAttributes(GD, GA); 3722 } 3723 3724 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3725 const auto *D = cast<ValueDecl>(GD.getDecl()); 3726 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3727 assert(IFA && "Not an ifunc?"); 3728 3729 StringRef MangledName = getMangledName(GD); 3730 3731 if (IFA->getResolver() == MangledName) { 3732 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3733 return; 3734 } 3735 3736 // Report an error if some definition overrides ifunc. 3737 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3738 if (Entry && !Entry->isDeclaration()) { 3739 GlobalDecl OtherGD; 3740 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3741 DiagnosedConflictingDefinitions.insert(GD).second) { 3742 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3743 Diags.Report(OtherGD.getDecl()->getLocation(), 3744 diag::note_previous_definition); 3745 } 3746 return; 3747 } 3748 3749 Aliases.push_back(GD); 3750 3751 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3752 llvm::Constant *Resolver = 3753 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3754 /*ForVTable=*/false); 3755 llvm::GlobalIFunc *GIF = 3756 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3757 "", Resolver, &getModule()); 3758 if (Entry) { 3759 if (GIF->getResolver() == Entry) { 3760 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3761 return; 3762 } 3763 assert(Entry->isDeclaration()); 3764 3765 // If there is a declaration in the module, then we had an extern followed 3766 // by the ifunc, as in: 3767 // extern int test(); 3768 // ... 3769 // int test() __attribute__((ifunc("resolver"))); 3770 // 3771 // Remove it and replace uses of it with the ifunc. 3772 GIF->takeName(Entry); 3773 3774 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3775 Entry->getType())); 3776 Entry->eraseFromParent(); 3777 } else 3778 GIF->setName(MangledName); 3779 3780 SetCommonAttributes(GD, GIF); 3781 } 3782 3783 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3784 ArrayRef<llvm::Type*> Tys) { 3785 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3786 Tys); 3787 } 3788 3789 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3790 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3791 const StringLiteral *Literal, bool TargetIsLSB, 3792 bool &IsUTF16, unsigned &StringLength) { 3793 StringRef String = Literal->getString(); 3794 unsigned NumBytes = String.size(); 3795 3796 // Check for simple case. 3797 if (!Literal->containsNonAsciiOrNull()) { 3798 StringLength = NumBytes; 3799 return *Map.insert(std::make_pair(String, nullptr)).first; 3800 } 3801 3802 // Otherwise, convert the UTF8 literals into a string of shorts. 3803 IsUTF16 = true; 3804 3805 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3806 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3807 llvm::UTF16 *ToPtr = &ToBuf[0]; 3808 3809 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3810 ToPtr + NumBytes, llvm::strictConversion); 3811 3812 // ConvertUTF8toUTF16 returns the length in ToPtr. 3813 StringLength = ToPtr - &ToBuf[0]; 3814 3815 // Add an explicit null. 3816 *ToPtr = 0; 3817 return *Map.insert(std::make_pair( 3818 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3819 (StringLength + 1) * 2), 3820 nullptr)).first; 3821 } 3822 3823 ConstantAddress 3824 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3825 unsigned StringLength = 0; 3826 bool isUTF16 = false; 3827 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3828 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3829 getDataLayout().isLittleEndian(), isUTF16, 3830 StringLength); 3831 3832 if (auto *C = Entry.second) 3833 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3834 3835 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3836 llvm::Constant *Zeros[] = { Zero, Zero }; 3837 3838 // If we don't already have it, get __CFConstantStringClassReference. 3839 if (!CFConstantStringClassRef) { 3840 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3841 Ty = llvm::ArrayType::get(Ty, 0); 3842 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3843 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3844 3845 if (getTriple().isOSBinFormatCOFF()) { 3846 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3847 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3848 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3849 3850 const VarDecl *VD = nullptr; 3851 for (const auto &Result : DC->lookup(&II)) 3852 if ((VD = dyn_cast<VarDecl>(Result))) 3853 break; 3854 3855 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3856 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3857 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3858 } else { 3859 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3860 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3861 } 3862 } 3863 setDSOLocal(GV); 3864 3865 // Decay array -> ptr 3866 CFConstantStringClassRef = 3867 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3868 } 3869 3870 QualType CFTy = getContext().getCFConstantStringType(); 3871 3872 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3873 3874 ConstantInitBuilder Builder(*this); 3875 auto Fields = Builder.beginStruct(STy); 3876 3877 // Class pointer. 3878 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3879 3880 // Flags. 3881 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3882 3883 // String pointer. 3884 llvm::Constant *C = nullptr; 3885 if (isUTF16) { 3886 auto Arr = llvm::makeArrayRef( 3887 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3888 Entry.first().size() / 2); 3889 C = llvm::ConstantDataArray::get(VMContext, Arr); 3890 } else { 3891 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3892 } 3893 3894 // Note: -fwritable-strings doesn't make the backing store strings of 3895 // CFStrings writable. (See <rdar://problem/10657500>) 3896 auto *GV = 3897 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3898 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3899 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3900 // Don't enforce the target's minimum global alignment, since the only use 3901 // of the string is via this class initializer. 3902 CharUnits Align = isUTF16 3903 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3904 : getContext().getTypeAlignInChars(getContext().CharTy); 3905 GV->setAlignment(Align.getQuantity()); 3906 3907 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3908 // Without it LLVM can merge the string with a non unnamed_addr one during 3909 // LTO. Doing that changes the section it ends in, which surprises ld64. 3910 if (getTriple().isOSBinFormatMachO()) 3911 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3912 : "__TEXT,__cstring,cstring_literals"); 3913 3914 // String. 3915 llvm::Constant *Str = 3916 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3917 3918 if (isUTF16) 3919 // Cast the UTF16 string to the correct type. 3920 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3921 Fields.add(Str); 3922 3923 // String length. 3924 auto Ty = getTypes().ConvertType(getContext().LongTy); 3925 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3926 3927 CharUnits Alignment = getPointerAlign(); 3928 3929 // The struct. 3930 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3931 /*isConstant=*/false, 3932 llvm::GlobalVariable::PrivateLinkage); 3933 switch (getTriple().getObjectFormat()) { 3934 case llvm::Triple::UnknownObjectFormat: 3935 llvm_unreachable("unknown file format"); 3936 case llvm::Triple::COFF: 3937 case llvm::Triple::ELF: 3938 case llvm::Triple::Wasm: 3939 GV->setSection("cfstring"); 3940 break; 3941 case llvm::Triple::MachO: 3942 GV->setSection("__DATA,__cfstring"); 3943 break; 3944 } 3945 Entry.second = GV; 3946 3947 return ConstantAddress(GV, Alignment); 3948 } 3949 3950 bool CodeGenModule::getExpressionLocationsEnabled() const { 3951 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3952 } 3953 3954 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3955 if (ObjCFastEnumerationStateType.isNull()) { 3956 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3957 D->startDefinition(); 3958 3959 QualType FieldTypes[] = { 3960 Context.UnsignedLongTy, 3961 Context.getPointerType(Context.getObjCIdType()), 3962 Context.getPointerType(Context.UnsignedLongTy), 3963 Context.getConstantArrayType(Context.UnsignedLongTy, 3964 llvm::APInt(32, 5), ArrayType::Normal, 0) 3965 }; 3966 3967 for (size_t i = 0; i < 4; ++i) { 3968 FieldDecl *Field = FieldDecl::Create(Context, 3969 D, 3970 SourceLocation(), 3971 SourceLocation(), nullptr, 3972 FieldTypes[i], /*TInfo=*/nullptr, 3973 /*BitWidth=*/nullptr, 3974 /*Mutable=*/false, 3975 ICIS_NoInit); 3976 Field->setAccess(AS_public); 3977 D->addDecl(Field); 3978 } 3979 3980 D->completeDefinition(); 3981 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3982 } 3983 3984 return ObjCFastEnumerationStateType; 3985 } 3986 3987 llvm::Constant * 3988 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3989 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3990 3991 // Don't emit it as the address of the string, emit the string data itself 3992 // as an inline array. 3993 if (E->getCharByteWidth() == 1) { 3994 SmallString<64> Str(E->getString()); 3995 3996 // Resize the string to the right size, which is indicated by its type. 3997 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3998 Str.resize(CAT->getSize().getZExtValue()); 3999 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4000 } 4001 4002 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4003 llvm::Type *ElemTy = AType->getElementType(); 4004 unsigned NumElements = AType->getNumElements(); 4005 4006 // Wide strings have either 2-byte or 4-byte elements. 4007 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4008 SmallVector<uint16_t, 32> Elements; 4009 Elements.reserve(NumElements); 4010 4011 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4012 Elements.push_back(E->getCodeUnit(i)); 4013 Elements.resize(NumElements); 4014 return llvm::ConstantDataArray::get(VMContext, Elements); 4015 } 4016 4017 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4018 SmallVector<uint32_t, 32> Elements; 4019 Elements.reserve(NumElements); 4020 4021 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4022 Elements.push_back(E->getCodeUnit(i)); 4023 Elements.resize(NumElements); 4024 return llvm::ConstantDataArray::get(VMContext, Elements); 4025 } 4026 4027 static llvm::GlobalVariable * 4028 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4029 CodeGenModule &CGM, StringRef GlobalName, 4030 CharUnits Alignment) { 4031 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4032 unsigned AddrSpace = 0; 4033 if (CGM.getLangOpts().OpenCL) 4034 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 4035 4036 llvm::Module &M = CGM.getModule(); 4037 // Create a global variable for this string 4038 auto *GV = new llvm::GlobalVariable( 4039 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4040 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4041 GV->setAlignment(Alignment.getQuantity()); 4042 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4043 if (GV->isWeakForLinker()) { 4044 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4045 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4046 } 4047 CGM.setDSOLocal(GV); 4048 4049 return GV; 4050 } 4051 4052 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4053 /// constant array for the given string literal. 4054 ConstantAddress 4055 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4056 StringRef Name) { 4057 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4058 4059 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4060 llvm::GlobalVariable **Entry = nullptr; 4061 if (!LangOpts.WritableStrings) { 4062 Entry = &ConstantStringMap[C]; 4063 if (auto GV = *Entry) { 4064 if (Alignment.getQuantity() > GV->getAlignment()) 4065 GV->setAlignment(Alignment.getQuantity()); 4066 return ConstantAddress(GV, Alignment); 4067 } 4068 } 4069 4070 SmallString<256> MangledNameBuffer; 4071 StringRef GlobalVariableName; 4072 llvm::GlobalValue::LinkageTypes LT; 4073 4074 // Mangle the string literal if the ABI allows for it. However, we cannot 4075 // do this if we are compiling with ASan or -fwritable-strings because they 4076 // rely on strings having normal linkage. 4077 if (!LangOpts.WritableStrings && 4078 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4079 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4080 llvm::raw_svector_ostream Out(MangledNameBuffer); 4081 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4082 4083 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4084 GlobalVariableName = MangledNameBuffer; 4085 } else { 4086 LT = llvm::GlobalValue::PrivateLinkage; 4087 GlobalVariableName = Name; 4088 } 4089 4090 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4091 if (Entry) 4092 *Entry = GV; 4093 4094 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4095 QualType()); 4096 return ConstantAddress(GV, Alignment); 4097 } 4098 4099 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4100 /// array for the given ObjCEncodeExpr node. 4101 ConstantAddress 4102 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4103 std::string Str; 4104 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4105 4106 return GetAddrOfConstantCString(Str); 4107 } 4108 4109 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4110 /// the literal and a terminating '\0' character. 4111 /// The result has pointer to array type. 4112 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4113 const std::string &Str, const char *GlobalName) { 4114 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4115 CharUnits Alignment = 4116 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4117 4118 llvm::Constant *C = 4119 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4120 4121 // Don't share any string literals if strings aren't constant. 4122 llvm::GlobalVariable **Entry = nullptr; 4123 if (!LangOpts.WritableStrings) { 4124 Entry = &ConstantStringMap[C]; 4125 if (auto GV = *Entry) { 4126 if (Alignment.getQuantity() > GV->getAlignment()) 4127 GV->setAlignment(Alignment.getQuantity()); 4128 return ConstantAddress(GV, Alignment); 4129 } 4130 } 4131 4132 // Get the default prefix if a name wasn't specified. 4133 if (!GlobalName) 4134 GlobalName = ".str"; 4135 // Create a global variable for this. 4136 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4137 GlobalName, Alignment); 4138 if (Entry) 4139 *Entry = GV; 4140 return ConstantAddress(GV, Alignment); 4141 } 4142 4143 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4144 const MaterializeTemporaryExpr *E, const Expr *Init) { 4145 assert((E->getStorageDuration() == SD_Static || 4146 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4147 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4148 4149 // If we're not materializing a subobject of the temporary, keep the 4150 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4151 QualType MaterializedType = Init->getType(); 4152 if (Init == E->GetTemporaryExpr()) 4153 MaterializedType = E->getType(); 4154 4155 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4156 4157 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4158 return ConstantAddress(Slot, Align); 4159 4160 // FIXME: If an externally-visible declaration extends multiple temporaries, 4161 // we need to give each temporary the same name in every translation unit (and 4162 // we also need to make the temporaries externally-visible). 4163 SmallString<256> Name; 4164 llvm::raw_svector_ostream Out(Name); 4165 getCXXABI().getMangleContext().mangleReferenceTemporary( 4166 VD, E->getManglingNumber(), Out); 4167 4168 APValue *Value = nullptr; 4169 if (E->getStorageDuration() == SD_Static) { 4170 // We might have a cached constant initializer for this temporary. Note 4171 // that this might have a different value from the value computed by 4172 // evaluating the initializer if the surrounding constant expression 4173 // modifies the temporary. 4174 Value = getContext().getMaterializedTemporaryValue(E, false); 4175 if (Value && Value->isUninit()) 4176 Value = nullptr; 4177 } 4178 4179 // Try evaluating it now, it might have a constant initializer. 4180 Expr::EvalResult EvalResult; 4181 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4182 !EvalResult.hasSideEffects()) 4183 Value = &EvalResult.Val; 4184 4185 LangAS AddrSpace = 4186 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4187 4188 Optional<ConstantEmitter> emitter; 4189 llvm::Constant *InitialValue = nullptr; 4190 bool Constant = false; 4191 llvm::Type *Type; 4192 if (Value) { 4193 // The temporary has a constant initializer, use it. 4194 emitter.emplace(*this); 4195 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4196 MaterializedType); 4197 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4198 Type = InitialValue->getType(); 4199 } else { 4200 // No initializer, the initialization will be provided when we 4201 // initialize the declaration which performed lifetime extension. 4202 Type = getTypes().ConvertTypeForMem(MaterializedType); 4203 } 4204 4205 // Create a global variable for this lifetime-extended temporary. 4206 llvm::GlobalValue::LinkageTypes Linkage = 4207 getLLVMLinkageVarDefinition(VD, Constant); 4208 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4209 const VarDecl *InitVD; 4210 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4211 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4212 // Temporaries defined inside a class get linkonce_odr linkage because the 4213 // class can be defined in multiple translation units. 4214 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4215 } else { 4216 // There is no need for this temporary to have external linkage if the 4217 // VarDecl has external linkage. 4218 Linkage = llvm::GlobalVariable::InternalLinkage; 4219 } 4220 } 4221 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4222 auto *GV = new llvm::GlobalVariable( 4223 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4224 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4225 if (emitter) emitter->finalize(GV); 4226 setGVProperties(GV, VD); 4227 GV->setAlignment(Align.getQuantity()); 4228 if (supportsCOMDAT() && GV->isWeakForLinker()) 4229 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4230 if (VD->getTLSKind()) 4231 setTLSMode(GV, *VD); 4232 llvm::Constant *CV = GV; 4233 if (AddrSpace != LangAS::Default) 4234 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4235 *this, GV, AddrSpace, LangAS::Default, 4236 Type->getPointerTo( 4237 getContext().getTargetAddressSpace(LangAS::Default))); 4238 MaterializedGlobalTemporaryMap[E] = CV; 4239 return ConstantAddress(CV, Align); 4240 } 4241 4242 /// EmitObjCPropertyImplementations - Emit information for synthesized 4243 /// properties for an implementation. 4244 void CodeGenModule::EmitObjCPropertyImplementations(const 4245 ObjCImplementationDecl *D) { 4246 for (const auto *PID : D->property_impls()) { 4247 // Dynamic is just for type-checking. 4248 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4249 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4250 4251 // Determine which methods need to be implemented, some may have 4252 // been overridden. Note that ::isPropertyAccessor is not the method 4253 // we want, that just indicates if the decl came from a 4254 // property. What we want to know is if the method is defined in 4255 // this implementation. 4256 if (!D->getInstanceMethod(PD->getGetterName())) 4257 CodeGenFunction(*this).GenerateObjCGetter( 4258 const_cast<ObjCImplementationDecl *>(D), PID); 4259 if (!PD->isReadOnly() && 4260 !D->getInstanceMethod(PD->getSetterName())) 4261 CodeGenFunction(*this).GenerateObjCSetter( 4262 const_cast<ObjCImplementationDecl *>(D), PID); 4263 } 4264 } 4265 } 4266 4267 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4268 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4269 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4270 ivar; ivar = ivar->getNextIvar()) 4271 if (ivar->getType().isDestructedType()) 4272 return true; 4273 4274 return false; 4275 } 4276 4277 static bool AllTrivialInitializers(CodeGenModule &CGM, 4278 ObjCImplementationDecl *D) { 4279 CodeGenFunction CGF(CGM); 4280 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4281 E = D->init_end(); B != E; ++B) { 4282 CXXCtorInitializer *CtorInitExp = *B; 4283 Expr *Init = CtorInitExp->getInit(); 4284 if (!CGF.isTrivialInitializer(Init)) 4285 return false; 4286 } 4287 return true; 4288 } 4289 4290 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4291 /// for an implementation. 4292 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4293 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4294 if (needsDestructMethod(D)) { 4295 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4296 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4297 ObjCMethodDecl *DTORMethod = 4298 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4299 cxxSelector, getContext().VoidTy, nullptr, D, 4300 /*isInstance=*/true, /*isVariadic=*/false, 4301 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4302 /*isDefined=*/false, ObjCMethodDecl::Required); 4303 D->addInstanceMethod(DTORMethod); 4304 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4305 D->setHasDestructors(true); 4306 } 4307 4308 // If the implementation doesn't have any ivar initializers, we don't need 4309 // a .cxx_construct. 4310 if (D->getNumIvarInitializers() == 0 || 4311 AllTrivialInitializers(*this, D)) 4312 return; 4313 4314 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4315 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4316 // The constructor returns 'self'. 4317 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4318 D->getLocation(), 4319 D->getLocation(), 4320 cxxSelector, 4321 getContext().getObjCIdType(), 4322 nullptr, D, /*isInstance=*/true, 4323 /*isVariadic=*/false, 4324 /*isPropertyAccessor=*/true, 4325 /*isImplicitlyDeclared=*/true, 4326 /*isDefined=*/false, 4327 ObjCMethodDecl::Required); 4328 D->addInstanceMethod(CTORMethod); 4329 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4330 D->setHasNonZeroConstructors(true); 4331 } 4332 4333 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4334 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4335 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4336 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4337 ErrorUnsupported(LSD, "linkage spec"); 4338 return; 4339 } 4340 4341 EmitDeclContext(LSD); 4342 } 4343 4344 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4345 for (auto *I : DC->decls()) { 4346 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4347 // are themselves considered "top-level", so EmitTopLevelDecl on an 4348 // ObjCImplDecl does not recursively visit them. We need to do that in 4349 // case they're nested inside another construct (LinkageSpecDecl / 4350 // ExportDecl) that does stop them from being considered "top-level". 4351 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4352 for (auto *M : OID->methods()) 4353 EmitTopLevelDecl(M); 4354 } 4355 4356 EmitTopLevelDecl(I); 4357 } 4358 } 4359 4360 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4361 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4362 // Ignore dependent declarations. 4363 if (D->isTemplated()) 4364 return; 4365 4366 switch (D->getKind()) { 4367 case Decl::CXXConversion: 4368 case Decl::CXXMethod: 4369 case Decl::Function: 4370 EmitGlobal(cast<FunctionDecl>(D)); 4371 // Always provide some coverage mapping 4372 // even for the functions that aren't emitted. 4373 AddDeferredUnusedCoverageMapping(D); 4374 break; 4375 4376 case Decl::CXXDeductionGuide: 4377 // Function-like, but does not result in code emission. 4378 break; 4379 4380 case Decl::Var: 4381 case Decl::Decomposition: 4382 case Decl::VarTemplateSpecialization: 4383 EmitGlobal(cast<VarDecl>(D)); 4384 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4385 for (auto *B : DD->bindings()) 4386 if (auto *HD = B->getHoldingVar()) 4387 EmitGlobal(HD); 4388 break; 4389 4390 // Indirect fields from global anonymous structs and unions can be 4391 // ignored; only the actual variable requires IR gen support. 4392 case Decl::IndirectField: 4393 break; 4394 4395 // C++ Decls 4396 case Decl::Namespace: 4397 EmitDeclContext(cast<NamespaceDecl>(D)); 4398 break; 4399 case Decl::ClassTemplateSpecialization: { 4400 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4401 if (DebugInfo && 4402 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4403 Spec->hasDefinition()) 4404 DebugInfo->completeTemplateDefinition(*Spec); 4405 } LLVM_FALLTHROUGH; 4406 case Decl::CXXRecord: 4407 if (DebugInfo) { 4408 if (auto *ES = D->getASTContext().getExternalSource()) 4409 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4410 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4411 } 4412 // Emit any static data members, they may be definitions. 4413 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4414 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4415 EmitTopLevelDecl(I); 4416 break; 4417 // No code generation needed. 4418 case Decl::UsingShadow: 4419 case Decl::ClassTemplate: 4420 case Decl::VarTemplate: 4421 case Decl::VarTemplatePartialSpecialization: 4422 case Decl::FunctionTemplate: 4423 case Decl::TypeAliasTemplate: 4424 case Decl::Block: 4425 case Decl::Empty: 4426 break; 4427 case Decl::Using: // using X; [C++] 4428 if (CGDebugInfo *DI = getModuleDebugInfo()) 4429 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4430 return; 4431 case Decl::NamespaceAlias: 4432 if (CGDebugInfo *DI = getModuleDebugInfo()) 4433 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4434 return; 4435 case Decl::UsingDirective: // using namespace X; [C++] 4436 if (CGDebugInfo *DI = getModuleDebugInfo()) 4437 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4438 return; 4439 case Decl::CXXConstructor: 4440 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4441 break; 4442 case Decl::CXXDestructor: 4443 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4444 break; 4445 4446 case Decl::StaticAssert: 4447 // Nothing to do. 4448 break; 4449 4450 // Objective-C Decls 4451 4452 // Forward declarations, no (immediate) code generation. 4453 case Decl::ObjCInterface: 4454 case Decl::ObjCCategory: 4455 break; 4456 4457 case Decl::ObjCProtocol: { 4458 auto *Proto = cast<ObjCProtocolDecl>(D); 4459 if (Proto->isThisDeclarationADefinition()) 4460 ObjCRuntime->GenerateProtocol(Proto); 4461 break; 4462 } 4463 4464 case Decl::ObjCCategoryImpl: 4465 // Categories have properties but don't support synthesize so we 4466 // can ignore them here. 4467 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4468 break; 4469 4470 case Decl::ObjCImplementation: { 4471 auto *OMD = cast<ObjCImplementationDecl>(D); 4472 EmitObjCPropertyImplementations(OMD); 4473 EmitObjCIvarInitializations(OMD); 4474 ObjCRuntime->GenerateClass(OMD); 4475 // Emit global variable debug information. 4476 if (CGDebugInfo *DI = getModuleDebugInfo()) 4477 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4478 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4479 OMD->getClassInterface()), OMD->getLocation()); 4480 break; 4481 } 4482 case Decl::ObjCMethod: { 4483 auto *OMD = cast<ObjCMethodDecl>(D); 4484 // If this is not a prototype, emit the body. 4485 if (OMD->getBody()) 4486 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4487 break; 4488 } 4489 case Decl::ObjCCompatibleAlias: 4490 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4491 break; 4492 4493 case Decl::PragmaComment: { 4494 const auto *PCD = cast<PragmaCommentDecl>(D); 4495 switch (PCD->getCommentKind()) { 4496 case PCK_Unknown: 4497 llvm_unreachable("unexpected pragma comment kind"); 4498 case PCK_Linker: 4499 AppendLinkerOptions(PCD->getArg()); 4500 break; 4501 case PCK_Lib: 4502 if (getTarget().getTriple().isOSBinFormatELF() && 4503 !getTarget().getTriple().isPS4()) 4504 AddELFLibDirective(PCD->getArg()); 4505 else 4506 AddDependentLib(PCD->getArg()); 4507 break; 4508 case PCK_Compiler: 4509 case PCK_ExeStr: 4510 case PCK_User: 4511 break; // We ignore all of these. 4512 } 4513 break; 4514 } 4515 4516 case Decl::PragmaDetectMismatch: { 4517 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4518 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4519 break; 4520 } 4521 4522 case Decl::LinkageSpec: 4523 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4524 break; 4525 4526 case Decl::FileScopeAsm: { 4527 // File-scope asm is ignored during device-side CUDA compilation. 4528 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4529 break; 4530 // File-scope asm is ignored during device-side OpenMP compilation. 4531 if (LangOpts.OpenMPIsDevice) 4532 break; 4533 auto *AD = cast<FileScopeAsmDecl>(D); 4534 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4535 break; 4536 } 4537 4538 case Decl::Import: { 4539 auto *Import = cast<ImportDecl>(D); 4540 4541 // If we've already imported this module, we're done. 4542 if (!ImportedModules.insert(Import->getImportedModule())) 4543 break; 4544 4545 // Emit debug information for direct imports. 4546 if (!Import->getImportedOwningModule()) { 4547 if (CGDebugInfo *DI = getModuleDebugInfo()) 4548 DI->EmitImportDecl(*Import); 4549 } 4550 4551 // Find all of the submodules and emit the module initializers. 4552 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4553 SmallVector<clang::Module *, 16> Stack; 4554 Visited.insert(Import->getImportedModule()); 4555 Stack.push_back(Import->getImportedModule()); 4556 4557 while (!Stack.empty()) { 4558 clang::Module *Mod = Stack.pop_back_val(); 4559 if (!EmittedModuleInitializers.insert(Mod).second) 4560 continue; 4561 4562 for (auto *D : Context.getModuleInitializers(Mod)) 4563 EmitTopLevelDecl(D); 4564 4565 // Visit the submodules of this module. 4566 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4567 SubEnd = Mod->submodule_end(); 4568 Sub != SubEnd; ++Sub) { 4569 // Skip explicit children; they need to be explicitly imported to emit 4570 // the initializers. 4571 if ((*Sub)->IsExplicit) 4572 continue; 4573 4574 if (Visited.insert(*Sub).second) 4575 Stack.push_back(*Sub); 4576 } 4577 } 4578 break; 4579 } 4580 4581 case Decl::Export: 4582 EmitDeclContext(cast<ExportDecl>(D)); 4583 break; 4584 4585 case Decl::OMPThreadPrivate: 4586 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4587 break; 4588 4589 case Decl::OMPDeclareReduction: 4590 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4591 break; 4592 4593 default: 4594 // Make sure we handled everything we should, every other kind is a 4595 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4596 // function. Need to recode Decl::Kind to do that easily. 4597 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4598 break; 4599 } 4600 } 4601 4602 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4603 // Do we need to generate coverage mapping? 4604 if (!CodeGenOpts.CoverageMapping) 4605 return; 4606 switch (D->getKind()) { 4607 case Decl::CXXConversion: 4608 case Decl::CXXMethod: 4609 case Decl::Function: 4610 case Decl::ObjCMethod: 4611 case Decl::CXXConstructor: 4612 case Decl::CXXDestructor: { 4613 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4614 return; 4615 SourceManager &SM = getContext().getSourceManager(); 4616 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4617 return; 4618 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4619 if (I == DeferredEmptyCoverageMappingDecls.end()) 4620 DeferredEmptyCoverageMappingDecls[D] = true; 4621 break; 4622 } 4623 default: 4624 break; 4625 }; 4626 } 4627 4628 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4629 // Do we need to generate coverage mapping? 4630 if (!CodeGenOpts.CoverageMapping) 4631 return; 4632 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4633 if (Fn->isTemplateInstantiation()) 4634 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4635 } 4636 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4637 if (I == DeferredEmptyCoverageMappingDecls.end()) 4638 DeferredEmptyCoverageMappingDecls[D] = false; 4639 else 4640 I->second = false; 4641 } 4642 4643 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4644 // We call takeVector() here to avoid use-after-free. 4645 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4646 // we deserialize function bodies to emit coverage info for them, and that 4647 // deserializes more declarations. How should we handle that case? 4648 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4649 if (!Entry.second) 4650 continue; 4651 const Decl *D = Entry.first; 4652 switch (D->getKind()) { 4653 case Decl::CXXConversion: 4654 case Decl::CXXMethod: 4655 case Decl::Function: 4656 case Decl::ObjCMethod: { 4657 CodeGenPGO PGO(*this); 4658 GlobalDecl GD(cast<FunctionDecl>(D)); 4659 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4660 getFunctionLinkage(GD)); 4661 break; 4662 } 4663 case Decl::CXXConstructor: { 4664 CodeGenPGO PGO(*this); 4665 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4666 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4667 getFunctionLinkage(GD)); 4668 break; 4669 } 4670 case Decl::CXXDestructor: { 4671 CodeGenPGO PGO(*this); 4672 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4673 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4674 getFunctionLinkage(GD)); 4675 break; 4676 } 4677 default: 4678 break; 4679 }; 4680 } 4681 } 4682 4683 /// Turns the given pointer into a constant. 4684 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4685 const void *Ptr) { 4686 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4687 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4688 return llvm::ConstantInt::get(i64, PtrInt); 4689 } 4690 4691 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4692 llvm::NamedMDNode *&GlobalMetadata, 4693 GlobalDecl D, 4694 llvm::GlobalValue *Addr) { 4695 if (!GlobalMetadata) 4696 GlobalMetadata = 4697 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4698 4699 // TODO: should we report variant information for ctors/dtors? 4700 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4701 llvm::ConstantAsMetadata::get(GetPointerConstant( 4702 CGM.getLLVMContext(), D.getDecl()))}; 4703 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4704 } 4705 4706 /// For each function which is declared within an extern "C" region and marked 4707 /// as 'used', but has internal linkage, create an alias from the unmangled 4708 /// name to the mangled name if possible. People expect to be able to refer 4709 /// to such functions with an unmangled name from inline assembly within the 4710 /// same translation unit. 4711 void CodeGenModule::EmitStaticExternCAliases() { 4712 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4713 return; 4714 for (auto &I : StaticExternCValues) { 4715 IdentifierInfo *Name = I.first; 4716 llvm::GlobalValue *Val = I.second; 4717 if (Val && !getModule().getNamedValue(Name->getName())) 4718 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4719 } 4720 } 4721 4722 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4723 GlobalDecl &Result) const { 4724 auto Res = Manglings.find(MangledName); 4725 if (Res == Manglings.end()) 4726 return false; 4727 Result = Res->getValue(); 4728 return true; 4729 } 4730 4731 /// Emits metadata nodes associating all the global values in the 4732 /// current module with the Decls they came from. This is useful for 4733 /// projects using IR gen as a subroutine. 4734 /// 4735 /// Since there's currently no way to associate an MDNode directly 4736 /// with an llvm::GlobalValue, we create a global named metadata 4737 /// with the name 'clang.global.decl.ptrs'. 4738 void CodeGenModule::EmitDeclMetadata() { 4739 llvm::NamedMDNode *GlobalMetadata = nullptr; 4740 4741 for (auto &I : MangledDeclNames) { 4742 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4743 // Some mangled names don't necessarily have an associated GlobalValue 4744 // in this module, e.g. if we mangled it for DebugInfo. 4745 if (Addr) 4746 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4747 } 4748 } 4749 4750 /// Emits metadata nodes for all the local variables in the current 4751 /// function. 4752 void CodeGenFunction::EmitDeclMetadata() { 4753 if (LocalDeclMap.empty()) return; 4754 4755 llvm::LLVMContext &Context = getLLVMContext(); 4756 4757 // Find the unique metadata ID for this name. 4758 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4759 4760 llvm::NamedMDNode *GlobalMetadata = nullptr; 4761 4762 for (auto &I : LocalDeclMap) { 4763 const Decl *D = I.first; 4764 llvm::Value *Addr = I.second.getPointer(); 4765 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4766 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4767 Alloca->setMetadata( 4768 DeclPtrKind, llvm::MDNode::get( 4769 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4770 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4771 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4772 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4773 } 4774 } 4775 } 4776 4777 void CodeGenModule::EmitVersionIdentMetadata() { 4778 llvm::NamedMDNode *IdentMetadata = 4779 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4780 std::string Version = getClangFullVersion(); 4781 llvm::LLVMContext &Ctx = TheModule.getContext(); 4782 4783 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4784 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4785 } 4786 4787 void CodeGenModule::EmitTargetMetadata() { 4788 // Warning, new MangledDeclNames may be appended within this loop. 4789 // We rely on MapVector insertions adding new elements to the end 4790 // of the container. 4791 // FIXME: Move this loop into the one target that needs it, and only 4792 // loop over those declarations for which we couldn't emit the target 4793 // metadata when we emitted the declaration. 4794 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4795 auto Val = *(MangledDeclNames.begin() + I); 4796 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4797 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4798 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4799 } 4800 } 4801 4802 void CodeGenModule::EmitCoverageFile() { 4803 if (getCodeGenOpts().CoverageDataFile.empty() && 4804 getCodeGenOpts().CoverageNotesFile.empty()) 4805 return; 4806 4807 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4808 if (!CUNode) 4809 return; 4810 4811 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4812 llvm::LLVMContext &Ctx = TheModule.getContext(); 4813 auto *CoverageDataFile = 4814 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4815 auto *CoverageNotesFile = 4816 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4817 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4818 llvm::MDNode *CU = CUNode->getOperand(i); 4819 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4820 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4821 } 4822 } 4823 4824 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4825 // Sema has checked that all uuid strings are of the form 4826 // "12345678-1234-1234-1234-1234567890ab". 4827 assert(Uuid.size() == 36); 4828 for (unsigned i = 0; i < 36; ++i) { 4829 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4830 else assert(isHexDigit(Uuid[i])); 4831 } 4832 4833 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4834 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4835 4836 llvm::Constant *Field3[8]; 4837 for (unsigned Idx = 0; Idx < 8; ++Idx) 4838 Field3[Idx] = llvm::ConstantInt::get( 4839 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4840 4841 llvm::Constant *Fields[4] = { 4842 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4843 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4844 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4845 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4846 }; 4847 4848 return llvm::ConstantStruct::getAnon(Fields); 4849 } 4850 4851 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4852 bool ForEH) { 4853 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4854 // FIXME: should we even be calling this method if RTTI is disabled 4855 // and it's not for EH? 4856 if (!ForEH && !getLangOpts().RTTI) 4857 return llvm::Constant::getNullValue(Int8PtrTy); 4858 4859 if (ForEH && Ty->isObjCObjectPointerType() && 4860 LangOpts.ObjCRuntime.isGNUFamily()) 4861 return ObjCRuntime->GetEHType(Ty); 4862 4863 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4864 } 4865 4866 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4867 // Do not emit threadprivates in simd-only mode. 4868 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4869 return; 4870 for (auto RefExpr : D->varlists()) { 4871 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4872 bool PerformInit = 4873 VD->getAnyInitializer() && 4874 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4875 /*ForRef=*/false); 4876 4877 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4878 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4879 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4880 CXXGlobalInits.push_back(InitFunction); 4881 } 4882 } 4883 4884 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4885 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4886 if (InternalId) 4887 return InternalId; 4888 4889 if (isExternallyVisible(T->getLinkage())) { 4890 std::string OutName; 4891 llvm::raw_string_ostream Out(OutName); 4892 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4893 4894 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4895 } else { 4896 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4897 llvm::ArrayRef<llvm::Metadata *>()); 4898 } 4899 4900 return InternalId; 4901 } 4902 4903 // Generalize pointer types to a void pointer with the qualifiers of the 4904 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4905 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4906 // 'void *'. 4907 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4908 if (!Ty->isPointerType()) 4909 return Ty; 4910 4911 return Ctx.getPointerType( 4912 QualType(Ctx.VoidTy).withCVRQualifiers( 4913 Ty->getPointeeType().getCVRQualifiers())); 4914 } 4915 4916 // Apply type generalization to a FunctionType's return and argument types 4917 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4918 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4919 SmallVector<QualType, 8> GeneralizedParams; 4920 for (auto &Param : FnType->param_types()) 4921 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4922 4923 return Ctx.getFunctionType( 4924 GeneralizeType(Ctx, FnType->getReturnType()), 4925 GeneralizedParams, FnType->getExtProtoInfo()); 4926 } 4927 4928 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4929 return Ctx.getFunctionNoProtoType( 4930 GeneralizeType(Ctx, FnType->getReturnType())); 4931 4932 llvm_unreachable("Encountered unknown FunctionType"); 4933 } 4934 4935 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4936 T = GeneralizeFunctionType(getContext(), T); 4937 4938 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4939 if (InternalId) 4940 return InternalId; 4941 4942 if (isExternallyVisible(T->getLinkage())) { 4943 std::string OutName; 4944 llvm::raw_string_ostream Out(OutName); 4945 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4946 Out << ".generalized"; 4947 4948 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4949 } else { 4950 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4951 llvm::ArrayRef<llvm::Metadata *>()); 4952 } 4953 4954 return InternalId; 4955 } 4956 4957 /// Returns whether this module needs the "all-vtables" type identifier. 4958 bool CodeGenModule::NeedAllVtablesTypeId() const { 4959 // Returns true if at least one of vtable-based CFI checkers is enabled and 4960 // is not in the trapping mode. 4961 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4962 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4963 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4964 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4965 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4966 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4967 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4968 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4969 } 4970 4971 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4972 CharUnits Offset, 4973 const CXXRecordDecl *RD) { 4974 llvm::Metadata *MD = 4975 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4976 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4977 4978 if (CodeGenOpts.SanitizeCfiCrossDso) 4979 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4980 VTable->addTypeMetadata(Offset.getQuantity(), 4981 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4982 4983 if (NeedAllVtablesTypeId()) { 4984 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4985 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4986 } 4987 } 4988 4989 // Fills in the supplied string map with the set of target features for the 4990 // passed in function. 4991 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4992 const FunctionDecl *FD) { 4993 StringRef TargetCPU = Target.getTargetOpts().CPU; 4994 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4995 // If we have a TargetAttr build up the feature map based on that. 4996 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4997 4998 ParsedAttr.Features.erase( 4999 llvm::remove_if(ParsedAttr.Features, 5000 [&](const std::string &Feat) { 5001 return !Target.isValidFeatureName( 5002 StringRef{Feat}.substr(1)); 5003 }), 5004 ParsedAttr.Features.end()); 5005 5006 // Make a copy of the features as passed on the command line into the 5007 // beginning of the additional features from the function to override. 5008 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5009 Target.getTargetOpts().FeaturesAsWritten.begin(), 5010 Target.getTargetOpts().FeaturesAsWritten.end()); 5011 5012 if (ParsedAttr.Architecture != "" && 5013 Target.isValidCPUName(ParsedAttr.Architecture)) 5014 TargetCPU = ParsedAttr.Architecture; 5015 5016 // Now populate the feature map, first with the TargetCPU which is either 5017 // the default or a new one from the target attribute string. Then we'll use 5018 // the passed in features (FeaturesAsWritten) along with the new ones from 5019 // the attribute. 5020 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5021 ParsedAttr.Features); 5022 } else { 5023 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5024 Target.getTargetOpts().Features); 5025 } 5026 } 5027 5028 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5029 if (!SanStats) 5030 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5031 5032 return *SanStats; 5033 } 5034 llvm::Value * 5035 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5036 CodeGenFunction &CGF) { 5037 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5038 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5039 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5040 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5041 "__translate_sampler_initializer"), 5042 {C}); 5043 } 5044