xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a534f07f8c790c6a2244a183aed4b38d5485236a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419     OpenMPRuntime->clear();
420   }
421   if (PGOReader) {
422     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
423     if (PGOStats.hasDiagnostics())
424       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
425   }
426   EmitCtorList(GlobalCtors, "llvm.global_ctors");
427   EmitCtorList(GlobalDtors, "llvm.global_dtors");
428   EmitGlobalAnnotations();
429   EmitStaticExternCAliases();
430   EmitDeferredUnusedCoverageMappings();
431   if (CoverageMapping)
432     CoverageMapping->emit();
433   if (CodeGenOpts.SanitizeCfiCrossDso) {
434     CodeGenFunction(*this).EmitCfiCheckFail();
435     CodeGenFunction(*this).EmitCfiCheckStub();
436   }
437   emitAtAvailableLinkGuard();
438   emitLLVMUsed();
439   if (SanStats)
440     SanStats->finish();
441 
442   if (CodeGenOpts.Autolink &&
443       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
444     EmitModuleLinkOptions();
445   }
446 
447   // Record mregparm value now so it is visible through rest of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 
452   if (CodeGenOpts.DwarfVersion) {
453     // We actually want the latest version when there are conflicts.
454     // We can change from Warning to Latest if such mode is supported.
455     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
456                               CodeGenOpts.DwarfVersion);
457   }
458   if (CodeGenOpts.EmitCodeView) {
459     // Indicate that we want CodeView in the metadata.
460     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
461   }
462   if (CodeGenOpts.ControlFlowGuard) {
463     // We want function ID tables for Control Flow Guard.
464     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
465   }
466   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
467     // We don't support LTO with 2 with different StrictVTablePointers
468     // FIXME: we could support it by stripping all the information introduced
469     // by StrictVTablePointers.
470 
471     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
472 
473     llvm::Metadata *Ops[2] = {
474               llvm::MDString::get(VMContext, "StrictVTablePointers"),
475               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
476                   llvm::Type::getInt32Ty(VMContext), 1))};
477 
478     getModule().addModuleFlag(llvm::Module::Require,
479                               "StrictVTablePointersRequirement",
480                               llvm::MDNode::get(VMContext, Ops));
481   }
482   if (DebugInfo)
483     // We support a single version in the linked module. The LLVM
484     // parser will drop debug info with a different version number
485     // (and warn about it, too).
486     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
487                               llvm::DEBUG_METADATA_VERSION);
488 
489   // We need to record the widths of enums and wchar_t, so that we can generate
490   // the correct build attributes in the ARM backend. wchar_size is also used by
491   // TargetLibraryInfo.
492   uint64_t WCharWidth =
493       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
494   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
495 
496   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
497   if (   Arch == llvm::Triple::arm
498       || Arch == llvm::Triple::armeb
499       || Arch == llvm::Triple::thumb
500       || Arch == llvm::Triple::thumbeb) {
501     // The minimum width of an enum in bytes
502     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
503     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
504   }
505 
506   if (CodeGenOpts.SanitizeCfiCrossDso) {
507     // Indicate that we want cross-DSO control flow integrity checks.
508     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
509   }
510 
511   if (CodeGenOpts.CFProtectionReturn &&
512       Target.checkCFProtectionReturnSupported(getDiags())) {
513     // Indicate that we want to instrument return control flow protection.
514     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
515                               1);
516   }
517 
518   if (CodeGenOpts.CFProtectionBranch &&
519       Target.checkCFProtectionBranchSupported(getDiags())) {
520     // Indicate that we want to instrument branch control flow protection.
521     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
522                               1);
523   }
524 
525   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
526     // Indicate whether __nvvm_reflect should be configured to flush denormal
527     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
528     // property.)
529     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
530                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
531   }
532 
533   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
534   if (LangOpts.OpenCL) {
535     EmitOpenCLMetadata();
536     // Emit SPIR version.
537     if (getTriple().getArch() == llvm::Triple::spir ||
538         getTriple().getArch() == llvm::Triple::spir64) {
539       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
540       // opencl.spir.version named metadata.
541       llvm::Metadata *SPIRVerElts[] = {
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, LangOpts.OpenCLVersion / 100)),
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
546       llvm::NamedMDNode *SPIRVerMD =
547           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
548       llvm::LLVMContext &Ctx = TheModule.getContext();
549       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
550     }
551   }
552 
553   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
554     assert(PLevel < 3 && "Invalid PIC Level");
555     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
556     if (Context.getLangOpts().PIE)
557       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
558   }
559 
560   if (CodeGenOpts.NoPLT)
561     getModule().setRtLibUseGOT();
562 
563   SimplifyPersonality();
564 
565   if (getCodeGenOpts().EmitDeclMetadata)
566     EmitDeclMetadata();
567 
568   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
569     EmitCoverageFile();
570 
571   if (DebugInfo)
572     DebugInfo->finalize();
573 
574   if (getCodeGenOpts().EmitVersionIdentMetadata)
575     EmitVersionIdentMetadata();
576 
577   EmitTargetMetadata();
578 }
579 
580 void CodeGenModule::EmitOpenCLMetadata() {
581   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
582   // opencl.ocl.version named metadata node.
583   llvm::Metadata *OCLVerElts[] = {
584       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585           Int32Ty, LangOpts.OpenCLVersion / 100)),
586       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
587           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
588   llvm::NamedMDNode *OCLVerMD =
589       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
590   llvm::LLVMContext &Ctx = TheModule.getContext();
591   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
592 }
593 
594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
595   // Make sure that this type is translated.
596   Types.UpdateCompletedType(TD);
597 }
598 
599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
600   // Make sure that this type is translated.
601   Types.RefreshTypeCacheForClass(RD);
602 }
603 
604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
605   if (!TBAA)
606     return nullptr;
607   return TBAA->getTypeInfo(QTy);
608 }
609 
610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
611   if (!TBAA)
612     return TBAAAccessInfo();
613   return TBAA->getAccessInfo(AccessType);
614 }
615 
616 TBAAAccessInfo
617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
618   if (!TBAA)
619     return TBAAAccessInfo();
620   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTBAAStructInfo(QTy);
627 }
628 
629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
630   if (!TBAA)
631     return nullptr;
632   return TBAA->getBaseTypeInfo(QTy);
633 }
634 
635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
636   if (!TBAA)
637     return nullptr;
638   return TBAA->getAccessTagInfo(Info);
639 }
640 
641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
642                                                    TBAAAccessInfo TargetInfo) {
643   if (!TBAA)
644     return TBAAAccessInfo();
645   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
646 }
647 
648 TBAAAccessInfo
649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
650                                                    TBAAAccessInfo InfoB) {
651   if (!TBAA)
652     return TBAAAccessInfo();
653   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
654 }
655 
656 TBAAAccessInfo
657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
658                                               TBAAAccessInfo SrcInfo) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
662 }
663 
664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
665                                                 TBAAAccessInfo TBAAInfo) {
666   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
667     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
668 }
669 
670 void CodeGenModule::DecorateInstructionWithInvariantGroup(
671     llvm::Instruction *I, const CXXRecordDecl *RD) {
672   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
673                  llvm::MDNode::get(getLLVMContext(), {}));
674 }
675 
676 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
677   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
678   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified stmt yet.
683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
684   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
685                                                "cannot compile this %0 yet");
686   std::string Msg = Type;
687   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
688     << Msg << S->getSourceRange();
689 }
690 
691 /// ErrorUnsupported - Print out an error that codegen doesn't support the
692 /// specified decl yet.
693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
694   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
695                                                "cannot compile this %0 yet");
696   std::string Msg = Type;
697   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
698 }
699 
700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
701   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
702 }
703 
704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
705                                         const NamedDecl *D) const {
706   if (GV->hasDLLImportStorageClass())
707     return;
708   // Internal definitions always have default visibility.
709   if (GV->hasLocalLinkage()) {
710     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
711     return;
712   }
713   if (!D)
714     return;
715   // Set visibility for definitions.
716   LinkageInfo LV = D->getLinkageAndVisibility();
717   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
718     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
719 }
720 
721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
722                                  llvm::GlobalValue *GV) {
723   if (GV->hasLocalLinkage())
724     return true;
725 
726   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
727     return true;
728 
729   // DLLImport explicitly marks the GV as external.
730   if (GV->hasDLLImportStorageClass())
731     return false;
732 
733   const llvm::Triple &TT = CGM.getTriple();
734   // Every other GV is local on COFF.
735   // Make an exception for windows OS in the triple: Some firmware builds use
736   // *-win32-macho triples. This (accidentally?) produced windows relocations
737   // without GOT tables in older clang versions; Keep this behaviour.
738   // FIXME: even thread local variables?
739   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
740     return true;
741 
742   // Only handle COFF and ELF for now.
743   if (!TT.isOSBinFormatELF())
744     return false;
745 
746   // If this is not an executable, don't assume anything is local.
747   const auto &CGOpts = CGM.getCodeGenOpts();
748   llvm::Reloc::Model RM = CGOpts.RelocationModel;
749   const auto &LOpts = CGM.getLangOpts();
750   if (RM != llvm::Reloc::Static && !LOpts.PIE)
751     return false;
752 
753   // A definition cannot be preempted from an executable.
754   if (!GV->isDeclarationForLinker())
755     return true;
756 
757   // Most PIC code sequences that assume that a symbol is local cannot produce a
758   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
759   // depended, it seems worth it to handle it here.
760   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
761     return false;
762 
763   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
764   llvm::Triple::ArchType Arch = TT.getArch();
765   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
766       Arch == llvm::Triple::ppc64le)
767     return false;
768 
769   // If we can use copy relocations we can assume it is local.
770   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
771     if (!Var->isThreadLocal() &&
772         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
773       return true;
774 
775   // If we can use a plt entry as the symbol address we can assume it
776   // is local.
777   // FIXME: This should work for PIE, but the gold linker doesn't support it.
778   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
779     return true;
780 
781   // Otherwise don't assue it is local.
782   return false;
783 }
784 
785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
786   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
787 }
788 
789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
790                                           GlobalDecl GD) const {
791   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
792   // C++ destructors have a few C++ ABI specific special cases.
793   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
794     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
795     return;
796   }
797   setDLLImportDLLExport(GV, D);
798 }
799 
800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
801                                           const NamedDecl *D) const {
802   if (D && D->isExternallyVisible()) {
803     if (D->hasAttr<DLLImportAttr>())
804       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
805     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
806       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
807   }
808 }
809 
810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
811                                     GlobalDecl GD) const {
812   setDLLImportDLLExport(GV, GD);
813   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
814 }
815 
816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
817                                     const NamedDecl *D) const {
818   setDLLImportDLLExport(GV, D);
819   setGlobalVisibilityAndLocal(GV, D);
820 }
821 
822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
823                                                 const NamedDecl *D) const {
824   setGlobalVisibility(GV, D);
825   setDSOLocal(GV);
826 }
827 
828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
829   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
830       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
831       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
832       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
833       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
834 }
835 
836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
837     CodeGenOptions::TLSModel M) {
838   switch (M) {
839   case CodeGenOptions::GeneralDynamicTLSModel:
840     return llvm::GlobalVariable::GeneralDynamicTLSModel;
841   case CodeGenOptions::LocalDynamicTLSModel:
842     return llvm::GlobalVariable::LocalDynamicTLSModel;
843   case CodeGenOptions::InitialExecTLSModel:
844     return llvm::GlobalVariable::InitialExecTLSModel;
845   case CodeGenOptions::LocalExecTLSModel:
846     return llvm::GlobalVariable::LocalExecTLSModel;
847   }
848   llvm_unreachable("Invalid TLS model!");
849 }
850 
851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
852   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
853 
854   llvm::GlobalValue::ThreadLocalMode TLM;
855   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
856 
857   // Override the TLS model if it is explicitly specified.
858   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
859     TLM = GetLLVMTLSModel(Attr->getModel());
860   }
861 
862   GV->setThreadLocalMode(TLM);
863 }
864 
865 static void AppendTargetMangling(const CodeGenModule &CGM,
866                                  const TargetAttr *Attr, raw_ostream &Out) {
867   if (Attr->isDefaultVersion())
868     return;
869 
870   Out << '.';
871   const auto &Target = CGM.getTarget();
872   TargetAttr::ParsedTargetAttr Info =
873       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
874                     // Multiversioning doesn't allow "no-${feature}", so we can
875                     // only have "+" prefixes here.
876                     assert(LHS.startswith("+") && RHS.startswith("+") &&
877                            "Features should always have a prefix.");
878                     return Target.multiVersionSortPriority(LHS.substr(1)) >
879                            Target.multiVersionSortPriority(RHS.substr(1));
880                   });
881 
882   bool IsFirst = true;
883 
884   if (!Info.Architecture.empty()) {
885     IsFirst = false;
886     Out << "arch_" << Info.Architecture;
887   }
888 
889   for (StringRef Feat : Info.Features) {
890     if (!IsFirst)
891       Out << '_';
892     IsFirst = false;
893     Out << Feat.substr(1);
894   }
895 }
896 
897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
898                                       const NamedDecl *ND,
899                                       bool OmitTargetMangling = false) {
900   SmallString<256> Buffer;
901   llvm::raw_svector_ostream Out(Buffer);
902   MangleContext &MC = CGM.getCXXABI().getMangleContext();
903   if (MC.shouldMangleDeclName(ND)) {
904     llvm::raw_svector_ostream Out(Buffer);
905     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
906       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
907     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
908       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
909     else
910       MC.mangleName(ND, Out);
911   } else {
912     IdentifierInfo *II = ND->getIdentifier();
913     assert(II && "Attempt to mangle unnamed decl.");
914     const auto *FD = dyn_cast<FunctionDecl>(ND);
915 
916     if (FD &&
917         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
918       llvm::raw_svector_ostream Out(Buffer);
919       Out << "__regcall3__" << II->getName();
920     } else {
921       Out << II->getName();
922     }
923   }
924 
925   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
926     if (FD->isMultiVersion() && !OmitTargetMangling)
927       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
928   return Out.str();
929 }
930 
931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
932                                             const FunctionDecl *FD) {
933   if (!FD->isMultiVersion())
934     return;
935 
936   // Get the name of what this would be without the 'target' attribute.  This
937   // allows us to lookup the version that was emitted when this wasn't a
938   // multiversion function.
939   std::string NonTargetName =
940       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
941   GlobalDecl OtherGD;
942   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
943     assert(OtherGD.getCanonicalDecl()
944                .getDecl()
945                ->getAsFunction()
946                ->isMultiVersion() &&
947            "Other GD should now be a multiversioned function");
948     // OtherFD is the version of this function that was mangled BEFORE
949     // becoming a MultiVersion function.  It potentially needs to be updated.
950     const FunctionDecl *OtherFD =
951         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
952     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
953     // This is so that if the initial version was already the 'default'
954     // version, we don't try to update it.
955     if (OtherName != NonTargetName) {
956       // Remove instead of erase, since others may have stored the StringRef
957       // to this.
958       const auto ExistingRecord = Manglings.find(NonTargetName);
959       if (ExistingRecord != std::end(Manglings))
960         Manglings.remove(&(*ExistingRecord));
961       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
962       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
963       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
964         Entry->setName(OtherName);
965     }
966   }
967 }
968 
969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
970   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
971 
972   // Some ABIs don't have constructor variants.  Make sure that base and
973   // complete constructors get mangled the same.
974   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
975     if (!getTarget().getCXXABI().hasConstructorVariants()) {
976       CXXCtorType OrigCtorType = GD.getCtorType();
977       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
978       if (OrigCtorType == Ctor_Base)
979         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
980     }
981   }
982 
983   auto FoundName = MangledDeclNames.find(CanonicalGD);
984   if (FoundName != MangledDeclNames.end())
985     return FoundName->second;
986 
987 
988   // Keep the first result in the case of a mangling collision.
989   const auto *ND = cast<NamedDecl>(GD.getDecl());
990   auto Result =
991       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
992   return MangledDeclNames[CanonicalGD] = Result.first->first();
993 }
994 
995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
996                                              const BlockDecl *BD) {
997   MangleContext &MangleCtx = getCXXABI().getMangleContext();
998   const Decl *D = GD.getDecl();
999 
1000   SmallString<256> Buffer;
1001   llvm::raw_svector_ostream Out(Buffer);
1002   if (!D)
1003     MangleCtx.mangleGlobalBlock(BD,
1004       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1005   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1006     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1007   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1008     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1009   else
1010     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1011 
1012   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1013   return Result.first->first();
1014 }
1015 
1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1017   return getModule().getNamedValue(Name);
1018 }
1019 
1020 /// AddGlobalCtor - Add a function to the list that will be called before
1021 /// main() runs.
1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1023                                   llvm::Constant *AssociatedData) {
1024   // FIXME: Type coercion of void()* types.
1025   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1026 }
1027 
1028 /// AddGlobalDtor - Add a function to the list that will be called
1029 /// when the module is unloaded.
1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1031   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1032     DtorsUsingAtExit[Priority].push_back(Dtor);
1033     return;
1034   }
1035 
1036   // FIXME: Type coercion of void()* types.
1037   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1038 }
1039 
1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1041   if (Fns.empty()) return;
1042 
1043   // Ctor function type is void()*.
1044   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1045   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1046 
1047   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1048   llvm::StructType *CtorStructTy = llvm::StructType::get(
1049       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1050 
1051   // Construct the constructor and destructor arrays.
1052   ConstantInitBuilder builder(*this);
1053   auto ctors = builder.beginArray(CtorStructTy);
1054   for (const auto &I : Fns) {
1055     auto ctor = ctors.beginStruct(CtorStructTy);
1056     ctor.addInt(Int32Ty, I.Priority);
1057     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1058     if (I.AssociatedData)
1059       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1060     else
1061       ctor.addNullPointer(VoidPtrTy);
1062     ctor.finishAndAddTo(ctors);
1063   }
1064 
1065   auto list =
1066     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1067                                 /*constant*/ false,
1068                                 llvm::GlobalValue::AppendingLinkage);
1069 
1070   // The LTO linker doesn't seem to like it when we set an alignment
1071   // on appending variables.  Take it off as a workaround.
1072   list->setAlignment(0);
1073 
1074   Fns.clear();
1075 }
1076 
1077 llvm::GlobalValue::LinkageTypes
1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1079   const auto *D = cast<FunctionDecl>(GD.getDecl());
1080 
1081   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1082 
1083   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1084     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1085 
1086   if (isa<CXXConstructorDecl>(D) &&
1087       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1088       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1089     // Our approach to inheriting constructors is fundamentally different from
1090     // that used by the MS ABI, so keep our inheriting constructor thunks
1091     // internal rather than trying to pick an unambiguous mangling for them.
1092     return llvm::GlobalValue::InternalLinkage;
1093   }
1094 
1095   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1096 }
1097 
1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1099   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1100   if (!MDS) return nullptr;
1101 
1102   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1103 }
1104 
1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1106                                               const CGFunctionInfo &Info,
1107                                               llvm::Function *F) {
1108   unsigned CallingConv;
1109   llvm::AttributeList PAL;
1110   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1111   F->setAttributes(PAL);
1112   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1113 }
1114 
1115 /// Determines whether the language options require us to model
1116 /// unwind exceptions.  We treat -fexceptions as mandating this
1117 /// except under the fragile ObjC ABI with only ObjC exceptions
1118 /// enabled.  This means, for example, that C with -fexceptions
1119 /// enables this.
1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1121   // If exceptions are completely disabled, obviously this is false.
1122   if (!LangOpts.Exceptions) return false;
1123 
1124   // If C++ exceptions are enabled, this is true.
1125   if (LangOpts.CXXExceptions) return true;
1126 
1127   // If ObjC exceptions are enabled, this depends on the ABI.
1128   if (LangOpts.ObjCExceptions) {
1129     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1130   }
1131 
1132   return true;
1133 }
1134 
1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1136                                                            llvm::Function *F) {
1137   llvm::AttrBuilder B;
1138 
1139   if (CodeGenOpts.UnwindTables)
1140     B.addAttribute(llvm::Attribute::UWTable);
1141 
1142   if (!hasUnwindExceptions(LangOpts))
1143     B.addAttribute(llvm::Attribute::NoUnwind);
1144 
1145   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1146     B.addAttribute(llvm::Attribute::StackProtect);
1147   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1148     B.addAttribute(llvm::Attribute::StackProtectStrong);
1149   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1150     B.addAttribute(llvm::Attribute::StackProtectReq);
1151 
1152   if (!D) {
1153     // If we don't have a declaration to control inlining, the function isn't
1154     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1155     // disabled, mark the function as noinline.
1156     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1157         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1158       B.addAttribute(llvm::Attribute::NoInline);
1159 
1160     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1161     return;
1162   }
1163 
1164   // Track whether we need to add the optnone LLVM attribute,
1165   // starting with the default for this optimization level.
1166   bool ShouldAddOptNone =
1167       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1168   // We can't add optnone in the following cases, it won't pass the verifier.
1169   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1170   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1171   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1172 
1173   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1174     B.addAttribute(llvm::Attribute::OptimizeNone);
1175 
1176     // OptimizeNone implies noinline; we should not be inlining such functions.
1177     B.addAttribute(llvm::Attribute::NoInline);
1178     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1179            "OptimizeNone and AlwaysInline on same function!");
1180 
1181     // We still need to handle naked functions even though optnone subsumes
1182     // much of their semantics.
1183     if (D->hasAttr<NakedAttr>())
1184       B.addAttribute(llvm::Attribute::Naked);
1185 
1186     // OptimizeNone wins over OptimizeForSize and MinSize.
1187     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1188     F->removeFnAttr(llvm::Attribute::MinSize);
1189   } else if (D->hasAttr<NakedAttr>()) {
1190     // Naked implies noinline: we should not be inlining such functions.
1191     B.addAttribute(llvm::Attribute::Naked);
1192     B.addAttribute(llvm::Attribute::NoInline);
1193   } else if (D->hasAttr<NoDuplicateAttr>()) {
1194     B.addAttribute(llvm::Attribute::NoDuplicate);
1195   } else if (D->hasAttr<NoInlineAttr>()) {
1196     B.addAttribute(llvm::Attribute::NoInline);
1197   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1198              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1199     // (noinline wins over always_inline, and we can't specify both in IR)
1200     B.addAttribute(llvm::Attribute::AlwaysInline);
1201   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1202     // If we're not inlining, then force everything that isn't always_inline to
1203     // carry an explicit noinline attribute.
1204     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1205       B.addAttribute(llvm::Attribute::NoInline);
1206   } else {
1207     // Otherwise, propagate the inline hint attribute and potentially use its
1208     // absence to mark things as noinline.
1209     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1210       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1211             return Redecl->isInlineSpecified();
1212           })) {
1213         B.addAttribute(llvm::Attribute::InlineHint);
1214       } else if (CodeGenOpts.getInlining() ==
1215                      CodeGenOptions::OnlyHintInlining &&
1216                  !FD->isInlined() &&
1217                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1218         B.addAttribute(llvm::Attribute::NoInline);
1219       }
1220     }
1221   }
1222 
1223   // Add other optimization related attributes if we are optimizing this
1224   // function.
1225   if (!D->hasAttr<OptimizeNoneAttr>()) {
1226     if (D->hasAttr<ColdAttr>()) {
1227       if (!ShouldAddOptNone)
1228         B.addAttribute(llvm::Attribute::OptimizeForSize);
1229       B.addAttribute(llvm::Attribute::Cold);
1230     }
1231 
1232     if (D->hasAttr<MinSizeAttr>())
1233       B.addAttribute(llvm::Attribute::MinSize);
1234   }
1235 
1236   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1237 
1238   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1239   if (alignment)
1240     F->setAlignment(alignment);
1241 
1242   if (!D->hasAttr<AlignedAttr>())
1243     if (LangOpts.FunctionAlignment)
1244       F->setAlignment(1 << LangOpts.FunctionAlignment);
1245 
1246   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1247   // reserve a bit for differentiating between virtual and non-virtual member
1248   // functions. If the current target's C++ ABI requires this and this is a
1249   // member function, set its alignment accordingly.
1250   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1251     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1252       F->setAlignment(2);
1253   }
1254 
1255   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1256   if (CodeGenOpts.SanitizeCfiCrossDso)
1257     if (auto *FD = dyn_cast<FunctionDecl>(D))
1258       CreateFunctionTypeMetadata(FD, F);
1259 }
1260 
1261 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1262   const Decl *D = GD.getDecl();
1263   if (dyn_cast_or_null<NamedDecl>(D))
1264     setGVProperties(GV, GD);
1265   else
1266     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1267 
1268   if (D && D->hasAttr<UsedAttr>())
1269     addUsedGlobal(GV);
1270 }
1271 
1272 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1273                                                 llvm::AttrBuilder &Attrs) {
1274   // Add target-cpu and target-features attributes to functions. If
1275   // we have a decl for the function and it has a target attribute then
1276   // parse that and add it to the feature set.
1277   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1278   std::vector<std::string> Features;
1279   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1280   FD = FD ? FD->getMostRecentDecl() : FD;
1281   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1282   bool AddedAttr = false;
1283   if (TD) {
1284     llvm::StringMap<bool> FeatureMap;
1285     getFunctionFeatureMap(FeatureMap, FD);
1286 
1287     // Produce the canonical string for this set of features.
1288     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1289       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1290 
1291     // Now add the target-cpu and target-features to the function.
1292     // While we populated the feature map above, we still need to
1293     // get and parse the target attribute so we can get the cpu for
1294     // the function.
1295     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1296     if (ParsedAttr.Architecture != "" &&
1297         getTarget().isValidCPUName(ParsedAttr.Architecture))
1298       TargetCPU = ParsedAttr.Architecture;
1299   } else {
1300     // Otherwise just add the existing target cpu and target features to the
1301     // function.
1302     Features = getTarget().getTargetOpts().Features;
1303   }
1304 
1305   if (TargetCPU != "") {
1306     Attrs.addAttribute("target-cpu", TargetCPU);
1307     AddedAttr = true;
1308   }
1309   if (!Features.empty()) {
1310     llvm::sort(Features.begin(), Features.end());
1311     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1312     AddedAttr = true;
1313   }
1314 
1315   return AddedAttr;
1316 }
1317 
1318 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1319                                           llvm::GlobalObject *GO) {
1320   const Decl *D = GD.getDecl();
1321   SetCommonAttributes(GD, GO);
1322 
1323   if (D) {
1324     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1325       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1326         GV->addAttribute("bss-section", SA->getName());
1327       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1328         GV->addAttribute("data-section", SA->getName());
1329       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1330         GV->addAttribute("rodata-section", SA->getName());
1331     }
1332 
1333     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1334       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1335         if (!D->getAttr<SectionAttr>())
1336           F->addFnAttr("implicit-section-name", SA->getName());
1337 
1338       llvm::AttrBuilder Attrs;
1339       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1340         // We know that GetCPUAndFeaturesAttributes will always have the
1341         // newest set, since it has the newest possible FunctionDecl, so the
1342         // new ones should replace the old.
1343         F->removeFnAttr("target-cpu");
1344         F->removeFnAttr("target-features");
1345         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1346       }
1347     }
1348 
1349     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1350       GO->setSection(SA->getName());
1351   }
1352 
1353   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1354 }
1355 
1356 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1357                                                   llvm::Function *F,
1358                                                   const CGFunctionInfo &FI) {
1359   const Decl *D = GD.getDecl();
1360   SetLLVMFunctionAttributes(D, FI, F);
1361   SetLLVMFunctionAttributesForDefinition(D, F);
1362 
1363   F->setLinkage(llvm::Function::InternalLinkage);
1364 
1365   setNonAliasAttributes(GD, F);
1366 }
1367 
1368 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1369   // Set linkage and visibility in case we never see a definition.
1370   LinkageInfo LV = ND->getLinkageAndVisibility();
1371   // Don't set internal linkage on declarations.
1372   // "extern_weak" is overloaded in LLVM; we probably should have
1373   // separate linkage types for this.
1374   if (isExternallyVisible(LV.getLinkage()) &&
1375       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1376     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1377 }
1378 
1379 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1380                                                llvm::Function *F) {
1381   // Only if we are checking indirect calls.
1382   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1383     return;
1384 
1385   // Non-static class methods are handled via vtable pointer checks elsewhere.
1386   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1387     return;
1388 
1389   // Additionally, if building with cross-DSO support...
1390   if (CodeGenOpts.SanitizeCfiCrossDso) {
1391     // Skip available_externally functions. They won't be codegen'ed in the
1392     // current module anyway.
1393     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1394       return;
1395   }
1396 
1397   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1398   F->addTypeMetadata(0, MD);
1399   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1400 
1401   // Emit a hash-based bit set entry for cross-DSO calls.
1402   if (CodeGenOpts.SanitizeCfiCrossDso)
1403     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1404       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1405 }
1406 
1407 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1408                                           bool IsIncompleteFunction,
1409                                           bool IsThunk) {
1410 
1411   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1412     // If this is an intrinsic function, set the function's attributes
1413     // to the intrinsic's attributes.
1414     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1415     return;
1416   }
1417 
1418   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1419 
1420   if (!IsIncompleteFunction) {
1421     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1422     // Setup target-specific attributes.
1423     if (F->isDeclaration())
1424       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1425   }
1426 
1427   // Add the Returned attribute for "this", except for iOS 5 and earlier
1428   // where substantial code, including the libstdc++ dylib, was compiled with
1429   // GCC and does not actually return "this".
1430   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1431       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1432     assert(!F->arg_empty() &&
1433            F->arg_begin()->getType()
1434              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1435            "unexpected this return");
1436     F->addAttribute(1, llvm::Attribute::Returned);
1437   }
1438 
1439   // Only a few attributes are set on declarations; these may later be
1440   // overridden by a definition.
1441 
1442   setLinkageForGV(F, FD);
1443   setGVProperties(F, FD);
1444 
1445   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1446     F->addFnAttr("implicit-section-name");
1447   }
1448 
1449   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1450     F->setSection(SA->getName());
1451 
1452   if (FD->isReplaceableGlobalAllocationFunction()) {
1453     // A replaceable global allocation function does not act like a builtin by
1454     // default, only if it is invoked by a new-expression or delete-expression.
1455     F->addAttribute(llvm::AttributeList::FunctionIndex,
1456                     llvm::Attribute::NoBuiltin);
1457 
1458     // A sane operator new returns a non-aliasing pointer.
1459     // FIXME: Also add NonNull attribute to the return value
1460     // for the non-nothrow forms?
1461     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1462     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1463         (Kind == OO_New || Kind == OO_Array_New))
1464       F->addAttribute(llvm::AttributeList::ReturnIndex,
1465                       llvm::Attribute::NoAlias);
1466   }
1467 
1468   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1469     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1470   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1471     if (MD->isVirtual())
1472       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1473 
1474   // Don't emit entries for function declarations in the cross-DSO mode. This
1475   // is handled with better precision by the receiving DSO.
1476   if (!CodeGenOpts.SanitizeCfiCrossDso)
1477     CreateFunctionTypeMetadata(FD, F);
1478 
1479   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1480     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1481 }
1482 
1483 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1484   assert(!GV->isDeclaration() &&
1485          "Only globals with definition can force usage.");
1486   LLVMUsed.emplace_back(GV);
1487 }
1488 
1489 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1490   assert(!GV->isDeclaration() &&
1491          "Only globals with definition can force usage.");
1492   LLVMCompilerUsed.emplace_back(GV);
1493 }
1494 
1495 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1496                      std::vector<llvm::WeakTrackingVH> &List) {
1497   // Don't create llvm.used if there is no need.
1498   if (List.empty())
1499     return;
1500 
1501   // Convert List to what ConstantArray needs.
1502   SmallVector<llvm::Constant*, 8> UsedArray;
1503   UsedArray.resize(List.size());
1504   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1505     UsedArray[i] =
1506         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1507             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1508   }
1509 
1510   if (UsedArray.empty())
1511     return;
1512   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1513 
1514   auto *GV = new llvm::GlobalVariable(
1515       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1516       llvm::ConstantArray::get(ATy, UsedArray), Name);
1517 
1518   GV->setSection("llvm.metadata");
1519 }
1520 
1521 void CodeGenModule::emitLLVMUsed() {
1522   emitUsed(*this, "llvm.used", LLVMUsed);
1523   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1524 }
1525 
1526 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1527   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1528   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1529 }
1530 
1531 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1532   llvm::SmallString<32> Opt;
1533   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1534   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1535   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1536 }
1537 
1538 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1539   auto &C = getLLVMContext();
1540   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1541       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1542 }
1543 
1544 void CodeGenModule::AddDependentLib(StringRef Lib) {
1545   llvm::SmallString<24> Opt;
1546   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1547   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1548   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1549 }
1550 
1551 /// \brief Add link options implied by the given module, including modules
1552 /// it depends on, using a postorder walk.
1553 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1554                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1555                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1556   // Import this module's parent.
1557   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1558     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1559   }
1560 
1561   // Import this module's dependencies.
1562   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1563     if (Visited.insert(Mod->Imports[I - 1]).second)
1564       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1565   }
1566 
1567   // Add linker options to link against the libraries/frameworks
1568   // described by this module.
1569   llvm::LLVMContext &Context = CGM.getLLVMContext();
1570 
1571   // For modules that use export_as for linking, use that module
1572   // name instead.
1573   if (Mod->UseExportAsModuleLinkName)
1574     return;
1575 
1576   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1577     // Link against a framework.  Frameworks are currently Darwin only, so we
1578     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1579     if (Mod->LinkLibraries[I-1].IsFramework) {
1580       llvm::Metadata *Args[2] = {
1581           llvm::MDString::get(Context, "-framework"),
1582           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1583 
1584       Metadata.push_back(llvm::MDNode::get(Context, Args));
1585       continue;
1586     }
1587 
1588     // Link against a library.
1589     llvm::SmallString<24> Opt;
1590     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1591       Mod->LinkLibraries[I-1].Library, Opt);
1592     auto *OptString = llvm::MDString::get(Context, Opt);
1593     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1594   }
1595 }
1596 
1597 void CodeGenModule::EmitModuleLinkOptions() {
1598   // Collect the set of all of the modules we want to visit to emit link
1599   // options, which is essentially the imported modules and all of their
1600   // non-explicit child modules.
1601   llvm::SetVector<clang::Module *> LinkModules;
1602   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1603   SmallVector<clang::Module *, 16> Stack;
1604 
1605   // Seed the stack with imported modules.
1606   for (Module *M : ImportedModules) {
1607     // Do not add any link flags when an implementation TU of a module imports
1608     // a header of that same module.
1609     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1610         !getLangOpts().isCompilingModule())
1611       continue;
1612     if (Visited.insert(M).second)
1613       Stack.push_back(M);
1614   }
1615 
1616   // Find all of the modules to import, making a little effort to prune
1617   // non-leaf modules.
1618   while (!Stack.empty()) {
1619     clang::Module *Mod = Stack.pop_back_val();
1620 
1621     bool AnyChildren = false;
1622 
1623     // Visit the submodules of this module.
1624     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1625                                         SubEnd = Mod->submodule_end();
1626          Sub != SubEnd; ++Sub) {
1627       // Skip explicit children; they need to be explicitly imported to be
1628       // linked against.
1629       if ((*Sub)->IsExplicit)
1630         continue;
1631 
1632       if (Visited.insert(*Sub).second) {
1633         Stack.push_back(*Sub);
1634         AnyChildren = true;
1635       }
1636     }
1637 
1638     // We didn't find any children, so add this module to the list of
1639     // modules to link against.
1640     if (!AnyChildren) {
1641       LinkModules.insert(Mod);
1642     }
1643   }
1644 
1645   // Add link options for all of the imported modules in reverse topological
1646   // order.  We don't do anything to try to order import link flags with respect
1647   // to linker options inserted by things like #pragma comment().
1648   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1649   Visited.clear();
1650   for (Module *M : LinkModules)
1651     if (Visited.insert(M).second)
1652       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1653   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1654   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1655 
1656   // Add the linker options metadata flag.
1657   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1658   for (auto *MD : LinkerOptionsMetadata)
1659     NMD->addOperand(MD);
1660 }
1661 
1662 void CodeGenModule::EmitDeferred() {
1663   // Emit code for any potentially referenced deferred decls.  Since a
1664   // previously unused static decl may become used during the generation of code
1665   // for a static function, iterate until no changes are made.
1666 
1667   if (!DeferredVTables.empty()) {
1668     EmitDeferredVTables();
1669 
1670     // Emitting a vtable doesn't directly cause more vtables to
1671     // become deferred, although it can cause functions to be
1672     // emitted that then need those vtables.
1673     assert(DeferredVTables.empty());
1674   }
1675 
1676   // Stop if we're out of both deferred vtables and deferred declarations.
1677   if (DeferredDeclsToEmit.empty())
1678     return;
1679 
1680   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1681   // work, it will not interfere with this.
1682   std::vector<GlobalDecl> CurDeclsToEmit;
1683   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1684 
1685   for (GlobalDecl &D : CurDeclsToEmit) {
1686     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1687     // to get GlobalValue with exactly the type we need, not something that
1688     // might had been created for another decl with the same mangled name but
1689     // different type.
1690     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1691         GetAddrOfGlobal(D, ForDefinition));
1692 
1693     // In case of different address spaces, we may still get a cast, even with
1694     // IsForDefinition equal to true. Query mangled names table to get
1695     // GlobalValue.
1696     if (!GV)
1697       GV = GetGlobalValue(getMangledName(D));
1698 
1699     // Make sure GetGlobalValue returned non-null.
1700     assert(GV);
1701 
1702     // Check to see if we've already emitted this.  This is necessary
1703     // for a couple of reasons: first, decls can end up in the
1704     // deferred-decls queue multiple times, and second, decls can end
1705     // up with definitions in unusual ways (e.g. by an extern inline
1706     // function acquiring a strong function redefinition).  Just
1707     // ignore these cases.
1708     if (!GV->isDeclaration())
1709       continue;
1710 
1711     // Otherwise, emit the definition and move on to the next one.
1712     EmitGlobalDefinition(D, GV);
1713 
1714     // If we found out that we need to emit more decls, do that recursively.
1715     // This has the advantage that the decls are emitted in a DFS and related
1716     // ones are close together, which is convenient for testing.
1717     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1718       EmitDeferred();
1719       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1720     }
1721   }
1722 }
1723 
1724 void CodeGenModule::EmitVTablesOpportunistically() {
1725   // Try to emit external vtables as available_externally if they have emitted
1726   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1727   // is not allowed to create new references to things that need to be emitted
1728   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1729 
1730   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1731          && "Only emit opportunistic vtables with optimizations");
1732 
1733   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1734     assert(getVTables().isVTableExternal(RD) &&
1735            "This queue should only contain external vtables");
1736     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1737       VTables.GenerateClassData(RD);
1738   }
1739   OpportunisticVTables.clear();
1740 }
1741 
1742 void CodeGenModule::EmitGlobalAnnotations() {
1743   if (Annotations.empty())
1744     return;
1745 
1746   // Create a new global variable for the ConstantStruct in the Module.
1747   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1748     Annotations[0]->getType(), Annotations.size()), Annotations);
1749   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1750                                       llvm::GlobalValue::AppendingLinkage,
1751                                       Array, "llvm.global.annotations");
1752   gv->setSection(AnnotationSection);
1753 }
1754 
1755 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1756   llvm::Constant *&AStr = AnnotationStrings[Str];
1757   if (AStr)
1758     return AStr;
1759 
1760   // Not found yet, create a new global.
1761   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1762   auto *gv =
1763       new llvm::GlobalVariable(getModule(), s->getType(), true,
1764                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1765   gv->setSection(AnnotationSection);
1766   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1767   AStr = gv;
1768   return gv;
1769 }
1770 
1771 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1772   SourceManager &SM = getContext().getSourceManager();
1773   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1774   if (PLoc.isValid())
1775     return EmitAnnotationString(PLoc.getFilename());
1776   return EmitAnnotationString(SM.getBufferName(Loc));
1777 }
1778 
1779 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1780   SourceManager &SM = getContext().getSourceManager();
1781   PresumedLoc PLoc = SM.getPresumedLoc(L);
1782   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1783     SM.getExpansionLineNumber(L);
1784   return llvm::ConstantInt::get(Int32Ty, LineNo);
1785 }
1786 
1787 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1788                                                 const AnnotateAttr *AA,
1789                                                 SourceLocation L) {
1790   // Get the globals for file name, annotation, and the line number.
1791   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1792                  *UnitGV = EmitAnnotationUnit(L),
1793                  *LineNoCst = EmitAnnotationLineNo(L);
1794 
1795   // Create the ConstantStruct for the global annotation.
1796   llvm::Constant *Fields[4] = {
1797     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1798     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1799     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1800     LineNoCst
1801   };
1802   return llvm::ConstantStruct::getAnon(Fields);
1803 }
1804 
1805 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1806                                          llvm::GlobalValue *GV) {
1807   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1808   // Get the struct elements for these annotations.
1809   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1810     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1811 }
1812 
1813 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1814                                            llvm::Function *Fn,
1815                                            SourceLocation Loc) const {
1816   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1817   // Blacklist by function name.
1818   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1819     return true;
1820   // Blacklist by location.
1821   if (Loc.isValid())
1822     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1823   // If location is unknown, this may be a compiler-generated function. Assume
1824   // it's located in the main file.
1825   auto &SM = Context.getSourceManager();
1826   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1827     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1828   }
1829   return false;
1830 }
1831 
1832 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1833                                            SourceLocation Loc, QualType Ty,
1834                                            StringRef Category) const {
1835   // For now globals can be blacklisted only in ASan and KASan.
1836   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1837       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1838        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1839   if (!EnabledAsanMask)
1840     return false;
1841   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1842   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1843     return true;
1844   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1845     return true;
1846   // Check global type.
1847   if (!Ty.isNull()) {
1848     // Drill down the array types: if global variable of a fixed type is
1849     // blacklisted, we also don't instrument arrays of them.
1850     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1851       Ty = AT->getElementType();
1852     Ty = Ty.getCanonicalType().getUnqualifiedType();
1853     // We allow to blacklist only record types (classes, structs etc.)
1854     if (Ty->isRecordType()) {
1855       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1856       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1857         return true;
1858     }
1859   }
1860   return false;
1861 }
1862 
1863 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1864                                    StringRef Category) const {
1865   if (!LangOpts.XRayInstrument)
1866     return false;
1867 
1868   const auto &XRayFilter = getContext().getXRayFilter();
1869   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1870   auto Attr = ImbueAttr::NONE;
1871   if (Loc.isValid())
1872     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1873   if (Attr == ImbueAttr::NONE)
1874     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1875   switch (Attr) {
1876   case ImbueAttr::NONE:
1877     return false;
1878   case ImbueAttr::ALWAYS:
1879     Fn->addFnAttr("function-instrument", "xray-always");
1880     break;
1881   case ImbueAttr::ALWAYS_ARG1:
1882     Fn->addFnAttr("function-instrument", "xray-always");
1883     Fn->addFnAttr("xray-log-args", "1");
1884     break;
1885   case ImbueAttr::NEVER:
1886     Fn->addFnAttr("function-instrument", "xray-never");
1887     break;
1888   }
1889   return true;
1890 }
1891 
1892 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1893   // Never defer when EmitAllDecls is specified.
1894   if (LangOpts.EmitAllDecls)
1895     return true;
1896 
1897   return getContext().DeclMustBeEmitted(Global);
1898 }
1899 
1900 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1901   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1902     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1903       // Implicit template instantiations may change linkage if they are later
1904       // explicitly instantiated, so they should not be emitted eagerly.
1905       return false;
1906   if (const auto *VD = dyn_cast<VarDecl>(Global))
1907     if (Context.getInlineVariableDefinitionKind(VD) ==
1908         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1909       // A definition of an inline constexpr static data member may change
1910       // linkage later if it's redeclared outside the class.
1911       return false;
1912   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1913   // codegen for global variables, because they may be marked as threadprivate.
1914   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1915       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1916     return false;
1917 
1918   return true;
1919 }
1920 
1921 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1922     const CXXUuidofExpr* E) {
1923   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1924   // well-formed.
1925   StringRef Uuid = E->getUuidStr();
1926   std::string Name = "_GUID_" + Uuid.lower();
1927   std::replace(Name.begin(), Name.end(), '-', '_');
1928 
1929   // The UUID descriptor should be pointer aligned.
1930   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1931 
1932   // Look for an existing global.
1933   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1934     return ConstantAddress(GV, Alignment);
1935 
1936   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1937   assert(Init && "failed to initialize as constant");
1938 
1939   auto *GV = new llvm::GlobalVariable(
1940       getModule(), Init->getType(),
1941       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1942   if (supportsCOMDAT())
1943     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1944   setDSOLocal(GV);
1945   return ConstantAddress(GV, Alignment);
1946 }
1947 
1948 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1949   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1950   assert(AA && "No alias?");
1951 
1952   CharUnits Alignment = getContext().getDeclAlign(VD);
1953   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1954 
1955   // See if there is already something with the target's name in the module.
1956   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1957   if (Entry) {
1958     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1959     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1960     return ConstantAddress(Ptr, Alignment);
1961   }
1962 
1963   llvm::Constant *Aliasee;
1964   if (isa<llvm::FunctionType>(DeclTy))
1965     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1966                                       GlobalDecl(cast<FunctionDecl>(VD)),
1967                                       /*ForVTable=*/false);
1968   else
1969     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1970                                     llvm::PointerType::getUnqual(DeclTy),
1971                                     nullptr);
1972 
1973   auto *F = cast<llvm::GlobalValue>(Aliasee);
1974   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1975   WeakRefReferences.insert(F);
1976 
1977   return ConstantAddress(Aliasee, Alignment);
1978 }
1979 
1980 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1981   const auto *Global = cast<ValueDecl>(GD.getDecl());
1982 
1983   // Weak references don't produce any output by themselves.
1984   if (Global->hasAttr<WeakRefAttr>())
1985     return;
1986 
1987   // If this is an alias definition (which otherwise looks like a declaration)
1988   // emit it now.
1989   if (Global->hasAttr<AliasAttr>())
1990     return EmitAliasDefinition(GD);
1991 
1992   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1993   if (Global->hasAttr<IFuncAttr>())
1994     return emitIFuncDefinition(GD);
1995 
1996   // If this is CUDA, be selective about which declarations we emit.
1997   if (LangOpts.CUDA) {
1998     if (LangOpts.CUDAIsDevice) {
1999       if (!Global->hasAttr<CUDADeviceAttr>() &&
2000           !Global->hasAttr<CUDAGlobalAttr>() &&
2001           !Global->hasAttr<CUDAConstantAttr>() &&
2002           !Global->hasAttr<CUDASharedAttr>())
2003         return;
2004     } else {
2005       // We need to emit host-side 'shadows' for all global
2006       // device-side variables because the CUDA runtime needs their
2007       // size and host-side address in order to provide access to
2008       // their device-side incarnations.
2009 
2010       // So device-only functions are the only things we skip.
2011       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2012           Global->hasAttr<CUDADeviceAttr>())
2013         return;
2014 
2015       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2016              "Expected Variable or Function");
2017     }
2018   }
2019 
2020   if (LangOpts.OpenMP) {
2021     // If this is OpenMP device, check if it is legal to emit this global
2022     // normally.
2023     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2024       return;
2025     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2026       if (MustBeEmitted(Global))
2027         EmitOMPDeclareReduction(DRD);
2028       return;
2029     }
2030   }
2031 
2032   // Ignore declarations, they will be emitted on their first use.
2033   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2034     // Forward declarations are emitted lazily on first use.
2035     if (!FD->doesThisDeclarationHaveABody()) {
2036       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2037         return;
2038 
2039       StringRef MangledName = getMangledName(GD);
2040 
2041       // Compute the function info and LLVM type.
2042       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2043       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2044 
2045       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2046                               /*DontDefer=*/false);
2047       return;
2048     }
2049   } else {
2050     const auto *VD = cast<VarDecl>(Global);
2051     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2052     // We need to emit device-side global CUDA variables even if a
2053     // variable does not have a definition -- we still need to define
2054     // host-side shadow for it.
2055     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2056                            !VD->hasDefinition() &&
2057                            (VD->hasAttr<CUDAConstantAttr>() ||
2058                             VD->hasAttr<CUDADeviceAttr>());
2059     if (!MustEmitForCuda &&
2060         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2061         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2062       // If this declaration may have caused an inline variable definition to
2063       // change linkage, make sure that it's emitted.
2064       if (Context.getInlineVariableDefinitionKind(VD) ==
2065           ASTContext::InlineVariableDefinitionKind::Strong)
2066         GetAddrOfGlobalVar(VD);
2067       return;
2068     }
2069   }
2070 
2071   // Defer code generation to first use when possible, e.g. if this is an inline
2072   // function. If the global must always be emitted, do it eagerly if possible
2073   // to benefit from cache locality.
2074   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2075     // Emit the definition if it can't be deferred.
2076     EmitGlobalDefinition(GD);
2077     return;
2078   }
2079 
2080   // If we're deferring emission of a C++ variable with an
2081   // initializer, remember the order in which it appeared in the file.
2082   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2083       cast<VarDecl>(Global)->hasInit()) {
2084     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2085     CXXGlobalInits.push_back(nullptr);
2086   }
2087 
2088   StringRef MangledName = getMangledName(GD);
2089   if (GetGlobalValue(MangledName) != nullptr) {
2090     // The value has already been used and should therefore be emitted.
2091     addDeferredDeclToEmit(GD);
2092   } else if (MustBeEmitted(Global)) {
2093     // The value must be emitted, but cannot be emitted eagerly.
2094     assert(!MayBeEmittedEagerly(Global));
2095     addDeferredDeclToEmit(GD);
2096   } else {
2097     // Otherwise, remember that we saw a deferred decl with this name.  The
2098     // first use of the mangled name will cause it to move into
2099     // DeferredDeclsToEmit.
2100     DeferredDecls[MangledName] = GD;
2101   }
2102 }
2103 
2104 // Check if T is a class type with a destructor that's not dllimport.
2105 static bool HasNonDllImportDtor(QualType T) {
2106   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2107     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2108       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2109         return true;
2110 
2111   return false;
2112 }
2113 
2114 namespace {
2115   struct FunctionIsDirectlyRecursive :
2116     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2117     const StringRef Name;
2118     const Builtin::Context &BI;
2119     bool Result;
2120     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2121       Name(N), BI(C), Result(false) {
2122     }
2123     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2124 
2125     bool TraverseCallExpr(CallExpr *E) {
2126       const FunctionDecl *FD = E->getDirectCallee();
2127       if (!FD)
2128         return true;
2129       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2130       if (Attr && Name == Attr->getLabel()) {
2131         Result = true;
2132         return false;
2133       }
2134       unsigned BuiltinID = FD->getBuiltinID();
2135       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2136         return true;
2137       StringRef BuiltinName = BI.getName(BuiltinID);
2138       if (BuiltinName.startswith("__builtin_") &&
2139           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2140         Result = true;
2141         return false;
2142       }
2143       return true;
2144     }
2145   };
2146 
2147   // Make sure we're not referencing non-imported vars or functions.
2148   struct DLLImportFunctionVisitor
2149       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2150     bool SafeToInline = true;
2151 
2152     bool shouldVisitImplicitCode() const { return true; }
2153 
2154     bool VisitVarDecl(VarDecl *VD) {
2155       if (VD->getTLSKind()) {
2156         // A thread-local variable cannot be imported.
2157         SafeToInline = false;
2158         return SafeToInline;
2159       }
2160 
2161       // A variable definition might imply a destructor call.
2162       if (VD->isThisDeclarationADefinition())
2163         SafeToInline = !HasNonDllImportDtor(VD->getType());
2164 
2165       return SafeToInline;
2166     }
2167 
2168     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2169       if (const auto *D = E->getTemporary()->getDestructor())
2170         SafeToInline = D->hasAttr<DLLImportAttr>();
2171       return SafeToInline;
2172     }
2173 
2174     bool VisitDeclRefExpr(DeclRefExpr *E) {
2175       ValueDecl *VD = E->getDecl();
2176       if (isa<FunctionDecl>(VD))
2177         SafeToInline = VD->hasAttr<DLLImportAttr>();
2178       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2179         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2180       return SafeToInline;
2181     }
2182 
2183     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2184       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2185       return SafeToInline;
2186     }
2187 
2188     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2189       CXXMethodDecl *M = E->getMethodDecl();
2190       if (!M) {
2191         // Call through a pointer to member function. This is safe to inline.
2192         SafeToInline = true;
2193       } else {
2194         SafeToInline = M->hasAttr<DLLImportAttr>();
2195       }
2196       return SafeToInline;
2197     }
2198 
2199     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2200       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2201       return SafeToInline;
2202     }
2203 
2204     bool VisitCXXNewExpr(CXXNewExpr *E) {
2205       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2206       return SafeToInline;
2207     }
2208   };
2209 }
2210 
2211 // isTriviallyRecursive - Check if this function calls another
2212 // decl that, because of the asm attribute or the other decl being a builtin,
2213 // ends up pointing to itself.
2214 bool
2215 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2216   StringRef Name;
2217   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2218     // asm labels are a special kind of mangling we have to support.
2219     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2220     if (!Attr)
2221       return false;
2222     Name = Attr->getLabel();
2223   } else {
2224     Name = FD->getName();
2225   }
2226 
2227   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2228   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2229   return Walker.Result;
2230 }
2231 
2232 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2233   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2234     return true;
2235   const auto *F = cast<FunctionDecl>(GD.getDecl());
2236   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2237     return false;
2238 
2239   if (F->hasAttr<DLLImportAttr>()) {
2240     // Check whether it would be safe to inline this dllimport function.
2241     DLLImportFunctionVisitor Visitor;
2242     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2243     if (!Visitor.SafeToInline)
2244       return false;
2245 
2246     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2247       // Implicit destructor invocations aren't captured in the AST, so the
2248       // check above can't see them. Check for them manually here.
2249       for (const Decl *Member : Dtor->getParent()->decls())
2250         if (isa<FieldDecl>(Member))
2251           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2252             return false;
2253       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2254         if (HasNonDllImportDtor(B.getType()))
2255           return false;
2256     }
2257   }
2258 
2259   // PR9614. Avoid cases where the source code is lying to us. An available
2260   // externally function should have an equivalent function somewhere else,
2261   // but a function that calls itself is clearly not equivalent to the real
2262   // implementation.
2263   // This happens in glibc's btowc and in some configure checks.
2264   return !isTriviallyRecursive(F);
2265 }
2266 
2267 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2268   return CodeGenOpts.OptimizationLevel > 0;
2269 }
2270 
2271 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2272   const auto *D = cast<ValueDecl>(GD.getDecl());
2273 
2274   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2275                                  Context.getSourceManager(),
2276                                  "Generating code for declaration");
2277 
2278   if (isa<FunctionDecl>(D)) {
2279     // At -O0, don't generate IR for functions with available_externally
2280     // linkage.
2281     if (!shouldEmitFunction(GD))
2282       return;
2283 
2284     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2285       // Make sure to emit the definition(s) before we emit the thunks.
2286       // This is necessary for the generation of certain thunks.
2287       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2288         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2289       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2290         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2291       else
2292         EmitGlobalFunctionDefinition(GD, GV);
2293 
2294       if (Method->isVirtual())
2295         getVTables().EmitThunks(GD);
2296 
2297       return;
2298     }
2299 
2300     return EmitGlobalFunctionDefinition(GD, GV);
2301   }
2302 
2303   if (const auto *VD = dyn_cast<VarDecl>(D))
2304     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2305 
2306   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2307 }
2308 
2309 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2310                                                       llvm::Function *NewFn);
2311 
2312 void CodeGenModule::emitMultiVersionFunctions() {
2313   for (GlobalDecl GD : MultiVersionFuncs) {
2314     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2315     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2316     getContext().forEachMultiversionedFunctionVersion(
2317         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2318           GlobalDecl CurGD{
2319               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2320           StringRef MangledName = getMangledName(CurGD);
2321           llvm::Constant *Func = GetGlobalValue(MangledName);
2322           if (!Func) {
2323             if (CurFD->isDefined()) {
2324               EmitGlobalFunctionDefinition(CurGD, nullptr);
2325               Func = GetGlobalValue(MangledName);
2326             } else {
2327               const CGFunctionInfo &FI =
2328                   getTypes().arrangeGlobalDeclaration(GD);
2329               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2330               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2331                                        /*DontDefer=*/false, ForDefinition);
2332             }
2333             assert(Func && "This should have just been created");
2334           }
2335           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2336                                CurFD->getAttr<TargetAttr>()->parse());
2337         });
2338 
2339     llvm::Function *ResolverFunc = cast<llvm::Function>(
2340         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2341     if (supportsCOMDAT())
2342       ResolverFunc->setComdat(
2343           getModule().getOrInsertComdat(ResolverFunc->getName()));
2344     std::stable_sort(
2345         Options.begin(), Options.end(),
2346         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2347     CodeGenFunction CGF(*this);
2348     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2349   }
2350 }
2351 
2352 /// If an ifunc for the specified mangled name is not in the module, create and
2353 /// return an llvm IFunc Function with the specified type.
2354 llvm::Constant *
2355 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2356                                             StringRef MangledName,
2357                                             const FunctionDecl *FD) {
2358   std::string IFuncName = (MangledName + ".ifunc").str();
2359   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2360     return IFuncGV;
2361 
2362   // Since this is the first time we've created this IFunc, make sure
2363   // that we put this multiversioned function into the list to be
2364   // replaced later.
2365   MultiVersionFuncs.push_back(GD);
2366 
2367   std::string ResolverName = (MangledName + ".resolver").str();
2368   llvm::Type *ResolverType = llvm::FunctionType::get(
2369       llvm::PointerType::get(DeclTy,
2370                              Context.getTargetAddressSpace(FD->getType())),
2371       false);
2372   llvm::Constant *Resolver =
2373       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2374                               /*ForVTable=*/false);
2375   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2376       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2377   GIF->setName(IFuncName);
2378   SetCommonAttributes(FD, GIF);
2379 
2380   return GIF;
2381 }
2382 
2383 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2384 /// module, create and return an llvm Function with the specified type. If there
2385 /// is something in the module with the specified name, return it potentially
2386 /// bitcasted to the right type.
2387 ///
2388 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2389 /// to set the attributes on the function when it is first created.
2390 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2391     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2392     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2393     ForDefinition_t IsForDefinition) {
2394   const Decl *D = GD.getDecl();
2395 
2396   // Any attempts to use a MultiVersion function should result in retrieving
2397   // the iFunc instead. Name Mangling will handle the rest of the changes.
2398   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2399     // For the device mark the function as one that should be emitted.
2400     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2401         !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() &&
2402         !DontDefer && !IsForDefinition)
2403       addDeferredDeclToEmit(GD);
2404 
2405     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2406       UpdateMultiVersionNames(GD, FD);
2407       if (!IsForDefinition)
2408         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2409     }
2410   }
2411 
2412   // Lookup the entry, lazily creating it if necessary.
2413   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2414   if (Entry) {
2415     if (WeakRefReferences.erase(Entry)) {
2416       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2417       if (FD && !FD->hasAttr<WeakAttr>())
2418         Entry->setLinkage(llvm::Function::ExternalLinkage);
2419     }
2420 
2421     // Handle dropped DLL attributes.
2422     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2423       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2424       setDSOLocal(Entry);
2425     }
2426 
2427     // If there are two attempts to define the same mangled name, issue an
2428     // error.
2429     if (IsForDefinition && !Entry->isDeclaration()) {
2430       GlobalDecl OtherGD;
2431       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2432       // to make sure that we issue an error only once.
2433       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2434           (GD.getCanonicalDecl().getDecl() !=
2435            OtherGD.getCanonicalDecl().getDecl()) &&
2436           DiagnosedConflictingDefinitions.insert(GD).second) {
2437         getDiags().Report(D->getLocation(),
2438                           diag::err_duplicate_mangled_name);
2439         getDiags().Report(OtherGD.getDecl()->getLocation(),
2440                           diag::note_previous_definition);
2441       }
2442     }
2443 
2444     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2445         (Entry->getType()->getElementType() == Ty)) {
2446       return Entry;
2447     }
2448 
2449     // Make sure the result is of the correct type.
2450     // (If function is requested for a definition, we always need to create a new
2451     // function, not just return a bitcast.)
2452     if (!IsForDefinition)
2453       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2454   }
2455 
2456   // This function doesn't have a complete type (for example, the return
2457   // type is an incomplete struct). Use a fake type instead, and make
2458   // sure not to try to set attributes.
2459   bool IsIncompleteFunction = false;
2460 
2461   llvm::FunctionType *FTy;
2462   if (isa<llvm::FunctionType>(Ty)) {
2463     FTy = cast<llvm::FunctionType>(Ty);
2464   } else {
2465     FTy = llvm::FunctionType::get(VoidTy, false);
2466     IsIncompleteFunction = true;
2467   }
2468 
2469   llvm::Function *F =
2470       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2471                              Entry ? StringRef() : MangledName, &getModule());
2472 
2473   // If we already created a function with the same mangled name (but different
2474   // type) before, take its name and add it to the list of functions to be
2475   // replaced with F at the end of CodeGen.
2476   //
2477   // This happens if there is a prototype for a function (e.g. "int f()") and
2478   // then a definition of a different type (e.g. "int f(int x)").
2479   if (Entry) {
2480     F->takeName(Entry);
2481 
2482     // This might be an implementation of a function without a prototype, in
2483     // which case, try to do special replacement of calls which match the new
2484     // prototype.  The really key thing here is that we also potentially drop
2485     // arguments from the call site so as to make a direct call, which makes the
2486     // inliner happier and suppresses a number of optimizer warnings (!) about
2487     // dropping arguments.
2488     if (!Entry->use_empty()) {
2489       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2490       Entry->removeDeadConstantUsers();
2491     }
2492 
2493     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2494         F, Entry->getType()->getElementType()->getPointerTo());
2495     addGlobalValReplacement(Entry, BC);
2496   }
2497 
2498   assert(F->getName() == MangledName && "name was uniqued!");
2499   if (D)
2500     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2501   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2502     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2503     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2504   }
2505 
2506   if (!DontDefer) {
2507     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2508     // each other bottoming out with the base dtor.  Therefore we emit non-base
2509     // dtors on usage, even if there is no dtor definition in the TU.
2510     if (D && isa<CXXDestructorDecl>(D) &&
2511         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2512                                            GD.getDtorType()))
2513       addDeferredDeclToEmit(GD);
2514 
2515     // This is the first use or definition of a mangled name.  If there is a
2516     // deferred decl with this name, remember that we need to emit it at the end
2517     // of the file.
2518     auto DDI = DeferredDecls.find(MangledName);
2519     if (DDI != DeferredDecls.end()) {
2520       // Move the potentially referenced deferred decl to the
2521       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2522       // don't need it anymore).
2523       addDeferredDeclToEmit(DDI->second);
2524       DeferredDecls.erase(DDI);
2525 
2526       // Otherwise, there are cases we have to worry about where we're
2527       // using a declaration for which we must emit a definition but where
2528       // we might not find a top-level definition:
2529       //   - member functions defined inline in their classes
2530       //   - friend functions defined inline in some class
2531       //   - special member functions with implicit definitions
2532       // If we ever change our AST traversal to walk into class methods,
2533       // this will be unnecessary.
2534       //
2535       // We also don't emit a definition for a function if it's going to be an
2536       // entry in a vtable, unless it's already marked as used.
2537     } else if (getLangOpts().CPlusPlus && D) {
2538       // Look for a declaration that's lexically in a record.
2539       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2540            FD = FD->getPreviousDecl()) {
2541         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2542           if (FD->doesThisDeclarationHaveABody()) {
2543             addDeferredDeclToEmit(GD.getWithDecl(FD));
2544             break;
2545           }
2546         }
2547       }
2548     }
2549   }
2550 
2551   // Make sure the result is of the requested type.
2552   if (!IsIncompleteFunction) {
2553     assert(F->getType()->getElementType() == Ty);
2554     return F;
2555   }
2556 
2557   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2558   return llvm::ConstantExpr::getBitCast(F, PTy);
2559 }
2560 
2561 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2562 /// non-null, then this function will use the specified type if it has to
2563 /// create it (this occurs when we see a definition of the function).
2564 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2565                                                  llvm::Type *Ty,
2566                                                  bool ForVTable,
2567                                                  bool DontDefer,
2568                                               ForDefinition_t IsForDefinition) {
2569   // If there was no specific requested type, just convert it now.
2570   if (!Ty) {
2571     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2572     auto CanonTy = Context.getCanonicalType(FD->getType());
2573     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2574   }
2575 
2576   // Devirtualized destructor calls may come through here instead of via
2577   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2578   // of the complete destructor when necessary.
2579   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2580     if (getTarget().getCXXABI().isMicrosoft() &&
2581         GD.getDtorType() == Dtor_Complete &&
2582         DD->getParent()->getNumVBases() == 0)
2583       GD = GlobalDecl(DD, Dtor_Base);
2584   }
2585 
2586   StringRef MangledName = getMangledName(GD);
2587   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2588                                  /*IsThunk=*/false, llvm::AttributeList(),
2589                                  IsForDefinition);
2590 }
2591 
2592 static const FunctionDecl *
2593 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2594   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2595   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2596 
2597   IdentifierInfo &CII = C.Idents.get(Name);
2598   for (const auto &Result : DC->lookup(&CII))
2599     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2600       return FD;
2601 
2602   if (!C.getLangOpts().CPlusPlus)
2603     return nullptr;
2604 
2605   // Demangle the premangled name from getTerminateFn()
2606   IdentifierInfo &CXXII =
2607       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2608           ? C.Idents.get("terminate")
2609           : C.Idents.get(Name);
2610 
2611   for (const auto &N : {"__cxxabiv1", "std"}) {
2612     IdentifierInfo &NS = C.Idents.get(N);
2613     for (const auto &Result : DC->lookup(&NS)) {
2614       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2615       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2616         for (const auto &Result : LSD->lookup(&NS))
2617           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2618             break;
2619 
2620       if (ND)
2621         for (const auto &Result : ND->lookup(&CXXII))
2622           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2623             return FD;
2624     }
2625   }
2626 
2627   return nullptr;
2628 }
2629 
2630 /// CreateRuntimeFunction - Create a new runtime function with the specified
2631 /// type and name.
2632 llvm::Constant *
2633 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2634                                      llvm::AttributeList ExtraAttrs,
2635                                      bool Local) {
2636   llvm::Constant *C =
2637       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2638                               /*DontDefer=*/false, /*IsThunk=*/false,
2639                               ExtraAttrs);
2640 
2641   if (auto *F = dyn_cast<llvm::Function>(C)) {
2642     if (F->empty()) {
2643       F->setCallingConv(getRuntimeCC());
2644 
2645       if (!Local && getTriple().isOSBinFormatCOFF() &&
2646           !getCodeGenOpts().LTOVisibilityPublicStd &&
2647           !getTriple().isWindowsGNUEnvironment()) {
2648         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2649         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2650           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2651           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2652         }
2653       }
2654       setDSOLocal(F);
2655     }
2656   }
2657 
2658   return C;
2659 }
2660 
2661 /// CreateBuiltinFunction - Create a new builtin function with the specified
2662 /// type and name.
2663 llvm::Constant *
2664 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2665                                      llvm::AttributeList ExtraAttrs) {
2666   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2667 }
2668 
2669 /// isTypeConstant - Determine whether an object of this type can be emitted
2670 /// as a constant.
2671 ///
2672 /// If ExcludeCtor is true, the duration when the object's constructor runs
2673 /// will not be considered. The caller will need to verify that the object is
2674 /// not written to during its construction.
2675 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2676   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2677     return false;
2678 
2679   if (Context.getLangOpts().CPlusPlus) {
2680     if (const CXXRecordDecl *Record
2681           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2682       return ExcludeCtor && !Record->hasMutableFields() &&
2683              Record->hasTrivialDestructor();
2684   }
2685 
2686   return true;
2687 }
2688 
2689 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2690 /// create and return an llvm GlobalVariable with the specified type.  If there
2691 /// is something in the module with the specified name, return it potentially
2692 /// bitcasted to the right type.
2693 ///
2694 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2695 /// to set the attributes on the global when it is first created.
2696 ///
2697 /// If IsForDefinition is true, it is guaranteed that an actual global with
2698 /// type Ty will be returned, not conversion of a variable with the same
2699 /// mangled name but some other type.
2700 llvm::Constant *
2701 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2702                                      llvm::PointerType *Ty,
2703                                      const VarDecl *D,
2704                                      ForDefinition_t IsForDefinition) {
2705   // Lookup the entry, lazily creating it if necessary.
2706   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2707   if (Entry) {
2708     if (WeakRefReferences.erase(Entry)) {
2709       if (D && !D->hasAttr<WeakAttr>())
2710         Entry->setLinkage(llvm::Function::ExternalLinkage);
2711     }
2712 
2713     // Handle dropped DLL attributes.
2714     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2715       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2716 
2717     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2718       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2719 
2720     if (Entry->getType() == Ty)
2721       return Entry;
2722 
2723     // If there are two attempts to define the same mangled name, issue an
2724     // error.
2725     if (IsForDefinition && !Entry->isDeclaration()) {
2726       GlobalDecl OtherGD;
2727       const VarDecl *OtherD;
2728 
2729       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2730       // to make sure that we issue an error only once.
2731       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2732           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2733           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2734           OtherD->hasInit() &&
2735           DiagnosedConflictingDefinitions.insert(D).second) {
2736         getDiags().Report(D->getLocation(),
2737                           diag::err_duplicate_mangled_name);
2738         getDiags().Report(OtherGD.getDecl()->getLocation(),
2739                           diag::note_previous_definition);
2740       }
2741     }
2742 
2743     // Make sure the result is of the correct type.
2744     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2745       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2746 
2747     // (If global is requested for a definition, we always need to create a new
2748     // global, not just return a bitcast.)
2749     if (!IsForDefinition)
2750       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2751   }
2752 
2753   auto AddrSpace = GetGlobalVarAddressSpace(D);
2754   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2755 
2756   auto *GV = new llvm::GlobalVariable(
2757       getModule(), Ty->getElementType(), false,
2758       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2759       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2760 
2761   // If we already created a global with the same mangled name (but different
2762   // type) before, take its name and remove it from its parent.
2763   if (Entry) {
2764     GV->takeName(Entry);
2765 
2766     if (!Entry->use_empty()) {
2767       llvm::Constant *NewPtrForOldDecl =
2768           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2769       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2770     }
2771 
2772     Entry->eraseFromParent();
2773   }
2774 
2775   // This is the first use or definition of a mangled name.  If there is a
2776   // deferred decl with this name, remember that we need to emit it at the end
2777   // of the file.
2778   auto DDI = DeferredDecls.find(MangledName);
2779   if (DDI != DeferredDecls.end()) {
2780     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2781     // list, and remove it from DeferredDecls (since we don't need it anymore).
2782     addDeferredDeclToEmit(DDI->second);
2783     DeferredDecls.erase(DDI);
2784   }
2785 
2786   // Handle things which are present even on external declarations.
2787   if (D) {
2788     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2789       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2790 
2791     // FIXME: This code is overly simple and should be merged with other global
2792     // handling.
2793     GV->setConstant(isTypeConstant(D->getType(), false));
2794 
2795     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2796 
2797     setLinkageForGV(GV, D);
2798 
2799     if (D->getTLSKind()) {
2800       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2801         CXXThreadLocals.push_back(D);
2802       setTLSMode(GV, *D);
2803     }
2804 
2805     setGVProperties(GV, D);
2806 
2807     // If required by the ABI, treat declarations of static data members with
2808     // inline initializers as definitions.
2809     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2810       EmitGlobalVarDefinition(D);
2811     }
2812 
2813     // Emit section information for extern variables.
2814     if (D->hasExternalStorage()) {
2815       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2816         GV->setSection(SA->getName());
2817     }
2818 
2819     // Handle XCore specific ABI requirements.
2820     if (getTriple().getArch() == llvm::Triple::xcore &&
2821         D->getLanguageLinkage() == CLanguageLinkage &&
2822         D->getType().isConstant(Context) &&
2823         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2824       GV->setSection(".cp.rodata");
2825 
2826     // Check if we a have a const declaration with an initializer, we may be
2827     // able to emit it as available_externally to expose it's value to the
2828     // optimizer.
2829     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2830         D->getType().isConstQualified() && !GV->hasInitializer() &&
2831         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2832       const auto *Record =
2833           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2834       bool HasMutableFields = Record && Record->hasMutableFields();
2835       if (!HasMutableFields) {
2836         const VarDecl *InitDecl;
2837         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2838         if (InitExpr) {
2839           ConstantEmitter emitter(*this);
2840           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2841           if (Init) {
2842             auto *InitType = Init->getType();
2843             if (GV->getType()->getElementType() != InitType) {
2844               // The type of the initializer does not match the definition.
2845               // This happens when an initializer has a different type from
2846               // the type of the global (because of padding at the end of a
2847               // structure for instance).
2848               GV->setName(StringRef());
2849               // Make a new global with the correct type, this is now guaranteed
2850               // to work.
2851               auto *NewGV = cast<llvm::GlobalVariable>(
2852                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2853 
2854               // Erase the old global, since it is no longer used.
2855               GV->eraseFromParent();
2856               GV = NewGV;
2857             } else {
2858               GV->setInitializer(Init);
2859               GV->setConstant(true);
2860               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2861             }
2862             emitter.finalize(GV);
2863           }
2864         }
2865       }
2866     }
2867   }
2868 
2869   LangAS ExpectedAS =
2870       D ? D->getType().getAddressSpace()
2871         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2872   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2873          Ty->getPointerAddressSpace());
2874   if (AddrSpace != ExpectedAS)
2875     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2876                                                        ExpectedAS, Ty);
2877 
2878   return GV;
2879 }
2880 
2881 llvm::Constant *
2882 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2883                                ForDefinition_t IsForDefinition) {
2884   const Decl *D = GD.getDecl();
2885   if (isa<CXXConstructorDecl>(D))
2886     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2887                                 getFromCtorType(GD.getCtorType()),
2888                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2889                                 /*DontDefer=*/false, IsForDefinition);
2890   else if (isa<CXXDestructorDecl>(D))
2891     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2892                                 getFromDtorType(GD.getDtorType()),
2893                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2894                                 /*DontDefer=*/false, IsForDefinition);
2895   else if (isa<CXXMethodDecl>(D)) {
2896     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2897         cast<CXXMethodDecl>(D));
2898     auto Ty = getTypes().GetFunctionType(*FInfo);
2899     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2900                              IsForDefinition);
2901   } else if (isa<FunctionDecl>(D)) {
2902     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2903     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2904     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2905                              IsForDefinition);
2906   } else
2907     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2908                               IsForDefinition);
2909 }
2910 
2911 llvm::GlobalVariable *
2912 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2913                                       llvm::Type *Ty,
2914                                       llvm::GlobalValue::LinkageTypes Linkage) {
2915   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2916   llvm::GlobalVariable *OldGV = nullptr;
2917 
2918   if (GV) {
2919     // Check if the variable has the right type.
2920     if (GV->getType()->getElementType() == Ty)
2921       return GV;
2922 
2923     // Because C++ name mangling, the only way we can end up with an already
2924     // existing global with the same name is if it has been declared extern "C".
2925     assert(GV->isDeclaration() && "Declaration has wrong type!");
2926     OldGV = GV;
2927   }
2928 
2929   // Create a new variable.
2930   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2931                                 Linkage, nullptr, Name);
2932 
2933   if (OldGV) {
2934     // Replace occurrences of the old variable if needed.
2935     GV->takeName(OldGV);
2936 
2937     if (!OldGV->use_empty()) {
2938       llvm::Constant *NewPtrForOldDecl =
2939       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2940       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2941     }
2942 
2943     OldGV->eraseFromParent();
2944   }
2945 
2946   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2947       !GV->hasAvailableExternallyLinkage())
2948     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2949 
2950   return GV;
2951 }
2952 
2953 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2954 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2955 /// then it will be created with the specified type instead of whatever the
2956 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
2957 /// that an actual global with type Ty will be returned, not conversion of a
2958 /// variable with the same mangled name but some other type.
2959 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2960                                                   llvm::Type *Ty,
2961                                            ForDefinition_t IsForDefinition) {
2962   assert(D->hasGlobalStorage() && "Not a global variable");
2963   QualType ASTTy = D->getType();
2964   if (!Ty)
2965     Ty = getTypes().ConvertTypeForMem(ASTTy);
2966 
2967   llvm::PointerType *PTy =
2968     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2969 
2970   StringRef MangledName = getMangledName(D);
2971   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2972 }
2973 
2974 /// CreateRuntimeVariable - Create a new runtime global variable with the
2975 /// specified type and name.
2976 llvm::Constant *
2977 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2978                                      StringRef Name) {
2979   auto *Ret =
2980       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2981   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
2982   return Ret;
2983 }
2984 
2985 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2986   assert(!D->getInit() && "Cannot emit definite definitions here!");
2987 
2988   StringRef MangledName = getMangledName(D);
2989   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2990 
2991   // We already have a definition, not declaration, with the same mangled name.
2992   // Emitting of declaration is not required (and actually overwrites emitted
2993   // definition).
2994   if (GV && !GV->isDeclaration())
2995     return;
2996 
2997   // If we have not seen a reference to this variable yet, place it into the
2998   // deferred declarations table to be emitted if needed later.
2999   if (!MustBeEmitted(D) && !GV) {
3000       DeferredDecls[MangledName] = D;
3001       return;
3002   }
3003 
3004   // The tentative definition is the only definition.
3005   EmitGlobalVarDefinition(D);
3006 }
3007 
3008 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3009   return Context.toCharUnitsFromBits(
3010       getDataLayout().getTypeStoreSizeInBits(Ty));
3011 }
3012 
3013 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3014   LangAS AddrSpace = LangAS::Default;
3015   if (LangOpts.OpenCL) {
3016     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3017     assert(AddrSpace == LangAS::opencl_global ||
3018            AddrSpace == LangAS::opencl_constant ||
3019            AddrSpace == LangAS::opencl_local ||
3020            AddrSpace >= LangAS::FirstTargetAddressSpace);
3021     return AddrSpace;
3022   }
3023 
3024   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3025     if (D && D->hasAttr<CUDAConstantAttr>())
3026       return LangAS::cuda_constant;
3027     else if (D && D->hasAttr<CUDASharedAttr>())
3028       return LangAS::cuda_shared;
3029     else
3030       return LangAS::cuda_device;
3031   }
3032 
3033   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3034 }
3035 
3036 template<typename SomeDecl>
3037 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3038                                                llvm::GlobalValue *GV) {
3039   if (!getLangOpts().CPlusPlus)
3040     return;
3041 
3042   // Must have 'used' attribute, or else inline assembly can't rely on
3043   // the name existing.
3044   if (!D->template hasAttr<UsedAttr>())
3045     return;
3046 
3047   // Must have internal linkage and an ordinary name.
3048   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3049     return;
3050 
3051   // Must be in an extern "C" context. Entities declared directly within
3052   // a record are not extern "C" even if the record is in such a context.
3053   const SomeDecl *First = D->getFirstDecl();
3054   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3055     return;
3056 
3057   // OK, this is an internal linkage entity inside an extern "C" linkage
3058   // specification. Make a note of that so we can give it the "expected"
3059   // mangled name if nothing else is using that name.
3060   std::pair<StaticExternCMap::iterator, bool> R =
3061       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3062 
3063   // If we have multiple internal linkage entities with the same name
3064   // in extern "C" regions, none of them gets that name.
3065   if (!R.second)
3066     R.first->second = nullptr;
3067 }
3068 
3069 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3070   if (!CGM.supportsCOMDAT())
3071     return false;
3072 
3073   if (D.hasAttr<SelectAnyAttr>())
3074     return true;
3075 
3076   GVALinkage Linkage;
3077   if (auto *VD = dyn_cast<VarDecl>(&D))
3078     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3079   else
3080     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3081 
3082   switch (Linkage) {
3083   case GVA_Internal:
3084   case GVA_AvailableExternally:
3085   case GVA_StrongExternal:
3086     return false;
3087   case GVA_DiscardableODR:
3088   case GVA_StrongODR:
3089     return true;
3090   }
3091   llvm_unreachable("No such linkage");
3092 }
3093 
3094 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3095                                           llvm::GlobalObject &GO) {
3096   if (!shouldBeInCOMDAT(*this, D))
3097     return;
3098   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3099 }
3100 
3101 /// Pass IsTentative as true if you want to create a tentative definition.
3102 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3103                                             bool IsTentative) {
3104   // OpenCL global variables of sampler type are translated to function calls,
3105   // therefore no need to be translated.
3106   QualType ASTTy = D->getType();
3107   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3108     return;
3109 
3110   // If this is OpenMP device, check if it is legal to emit this global
3111   // normally.
3112   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3113       OpenMPRuntime->emitTargetGlobalVariable(D))
3114     return;
3115 
3116   llvm::Constant *Init = nullptr;
3117   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3118   bool NeedsGlobalCtor = false;
3119   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3120 
3121   const VarDecl *InitDecl;
3122   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3123 
3124   Optional<ConstantEmitter> emitter;
3125 
3126   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3127   // as part of their declaration."  Sema has already checked for
3128   // error cases, so we just need to set Init to UndefValue.
3129   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3130       D->hasAttr<CUDASharedAttr>())
3131     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3132   else if (!InitExpr) {
3133     // This is a tentative definition; tentative definitions are
3134     // implicitly initialized with { 0 }.
3135     //
3136     // Note that tentative definitions are only emitted at the end of
3137     // a translation unit, so they should never have incomplete
3138     // type. In addition, EmitTentativeDefinition makes sure that we
3139     // never attempt to emit a tentative definition if a real one
3140     // exists. A use may still exists, however, so we still may need
3141     // to do a RAUW.
3142     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3143     Init = EmitNullConstant(D->getType());
3144   } else {
3145     initializedGlobalDecl = GlobalDecl(D);
3146     emitter.emplace(*this);
3147     Init = emitter->tryEmitForInitializer(*InitDecl);
3148 
3149     if (!Init) {
3150       QualType T = InitExpr->getType();
3151       if (D->getType()->isReferenceType())
3152         T = D->getType();
3153 
3154       if (getLangOpts().CPlusPlus) {
3155         Init = EmitNullConstant(T);
3156         NeedsGlobalCtor = true;
3157       } else {
3158         ErrorUnsupported(D, "static initializer");
3159         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3160       }
3161     } else {
3162       // We don't need an initializer, so remove the entry for the delayed
3163       // initializer position (just in case this entry was delayed) if we
3164       // also don't need to register a destructor.
3165       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3166         DelayedCXXInitPosition.erase(D);
3167     }
3168   }
3169 
3170   llvm::Type* InitType = Init->getType();
3171   llvm::Constant *Entry =
3172       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3173 
3174   // Strip off a bitcast if we got one back.
3175   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3176     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3177            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3178            // All zero index gep.
3179            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3180     Entry = CE->getOperand(0);
3181   }
3182 
3183   // Entry is now either a Function or GlobalVariable.
3184   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3185 
3186   // We have a definition after a declaration with the wrong type.
3187   // We must make a new GlobalVariable* and update everything that used OldGV
3188   // (a declaration or tentative definition) with the new GlobalVariable*
3189   // (which will be a definition).
3190   //
3191   // This happens if there is a prototype for a global (e.g.
3192   // "extern int x[];") and then a definition of a different type (e.g.
3193   // "int x[10];"). This also happens when an initializer has a different type
3194   // from the type of the global (this happens with unions).
3195   if (!GV || GV->getType()->getElementType() != InitType ||
3196       GV->getType()->getAddressSpace() !=
3197           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3198 
3199     // Move the old entry aside so that we'll create a new one.
3200     Entry->setName(StringRef());
3201 
3202     // Make a new global with the correct type, this is now guaranteed to work.
3203     GV = cast<llvm::GlobalVariable>(
3204         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3205 
3206     // Replace all uses of the old global with the new global
3207     llvm::Constant *NewPtrForOldDecl =
3208         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3209     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3210 
3211     // Erase the old global, since it is no longer used.
3212     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3213   }
3214 
3215   MaybeHandleStaticInExternC(D, GV);
3216 
3217   if (D->hasAttr<AnnotateAttr>())
3218     AddGlobalAnnotations(D, GV);
3219 
3220   // Set the llvm linkage type as appropriate.
3221   llvm::GlobalValue::LinkageTypes Linkage =
3222       getLLVMLinkageVarDefinition(D, GV->isConstant());
3223 
3224   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3225   // the device. [...]"
3226   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3227   // __device__, declares a variable that: [...]
3228   // Is accessible from all the threads within the grid and from the host
3229   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3230   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3231   if (GV && LangOpts.CUDA) {
3232     if (LangOpts.CUDAIsDevice) {
3233       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3234         GV->setExternallyInitialized(true);
3235     } else {
3236       // Host-side shadows of external declarations of device-side
3237       // global variables become internal definitions. These have to
3238       // be internal in order to prevent name conflicts with global
3239       // host variables with the same name in a different TUs.
3240       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3241         Linkage = llvm::GlobalValue::InternalLinkage;
3242 
3243         // Shadow variables and their properties must be registered
3244         // with CUDA runtime.
3245         unsigned Flags = 0;
3246         if (!D->hasDefinition())
3247           Flags |= CGCUDARuntime::ExternDeviceVar;
3248         if (D->hasAttr<CUDAConstantAttr>())
3249           Flags |= CGCUDARuntime::ConstantDeviceVar;
3250         getCUDARuntime().registerDeviceVar(*GV, Flags);
3251       } else if (D->hasAttr<CUDASharedAttr>())
3252         // __shared__ variables are odd. Shadows do get created, but
3253         // they are not registered with the CUDA runtime, so they
3254         // can't really be used to access their device-side
3255         // counterparts. It's not clear yet whether it's nvcc's bug or
3256         // a feature, but we've got to do the same for compatibility.
3257         Linkage = llvm::GlobalValue::InternalLinkage;
3258     }
3259   }
3260 
3261   GV->setInitializer(Init);
3262   if (emitter) emitter->finalize(GV);
3263 
3264   // If it is safe to mark the global 'constant', do so now.
3265   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3266                   isTypeConstant(D->getType(), true));
3267 
3268   // If it is in a read-only section, mark it 'constant'.
3269   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3270     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3271     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3272       GV->setConstant(true);
3273   }
3274 
3275   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3276 
3277 
3278   // On Darwin, if the normal linkage of a C++ thread_local variable is
3279   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3280   // copies within a linkage unit; otherwise, the backing variable has
3281   // internal linkage and all accesses should just be calls to the
3282   // Itanium-specified entry point, which has the normal linkage of the
3283   // variable. This is to preserve the ability to change the implementation
3284   // behind the scenes.
3285   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3286       Context.getTargetInfo().getTriple().isOSDarwin() &&
3287       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3288       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3289     Linkage = llvm::GlobalValue::InternalLinkage;
3290 
3291   GV->setLinkage(Linkage);
3292   if (D->hasAttr<DLLImportAttr>())
3293     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3294   else if (D->hasAttr<DLLExportAttr>())
3295     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3296   else
3297     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3298 
3299   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3300     // common vars aren't constant even if declared const.
3301     GV->setConstant(false);
3302     // Tentative definition of global variables may be initialized with
3303     // non-zero null pointers. In this case they should have weak linkage
3304     // since common linkage must have zero initializer and must not have
3305     // explicit section therefore cannot have non-zero initial value.
3306     if (!GV->getInitializer()->isNullValue())
3307       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3308   }
3309 
3310   setNonAliasAttributes(D, GV);
3311 
3312   if (D->getTLSKind() && !GV->isThreadLocal()) {
3313     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3314       CXXThreadLocals.push_back(D);
3315     setTLSMode(GV, *D);
3316   }
3317 
3318   maybeSetTrivialComdat(*D, *GV);
3319 
3320   // Emit the initializer function if necessary.
3321   if (NeedsGlobalCtor || NeedsGlobalDtor)
3322     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3323 
3324   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3325 
3326   // Emit global variable debug information.
3327   if (CGDebugInfo *DI = getModuleDebugInfo())
3328     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3329       DI->EmitGlobalVariable(GV, D);
3330 }
3331 
3332 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3333                                       CodeGenModule &CGM, const VarDecl *D,
3334                                       bool NoCommon) {
3335   // Don't give variables common linkage if -fno-common was specified unless it
3336   // was overridden by a NoCommon attribute.
3337   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3338     return true;
3339 
3340   // C11 6.9.2/2:
3341   //   A declaration of an identifier for an object that has file scope without
3342   //   an initializer, and without a storage-class specifier or with the
3343   //   storage-class specifier static, constitutes a tentative definition.
3344   if (D->getInit() || D->hasExternalStorage())
3345     return true;
3346 
3347   // A variable cannot be both common and exist in a section.
3348   if (D->hasAttr<SectionAttr>())
3349     return true;
3350 
3351   // A variable cannot be both common and exist in a section.
3352   // We don't try to determine which is the right section in the front-end.
3353   // If no specialized section name is applicable, it will resort to default.
3354   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3355       D->hasAttr<PragmaClangDataSectionAttr>() ||
3356       D->hasAttr<PragmaClangRodataSectionAttr>())
3357     return true;
3358 
3359   // Thread local vars aren't considered common linkage.
3360   if (D->getTLSKind())
3361     return true;
3362 
3363   // Tentative definitions marked with WeakImportAttr are true definitions.
3364   if (D->hasAttr<WeakImportAttr>())
3365     return true;
3366 
3367   // A variable cannot be both common and exist in a comdat.
3368   if (shouldBeInCOMDAT(CGM, *D))
3369     return true;
3370 
3371   // Declarations with a required alignment do not have common linkage in MSVC
3372   // mode.
3373   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3374     if (D->hasAttr<AlignedAttr>())
3375       return true;
3376     QualType VarType = D->getType();
3377     if (Context.isAlignmentRequired(VarType))
3378       return true;
3379 
3380     if (const auto *RT = VarType->getAs<RecordType>()) {
3381       const RecordDecl *RD = RT->getDecl();
3382       for (const FieldDecl *FD : RD->fields()) {
3383         if (FD->isBitField())
3384           continue;
3385         if (FD->hasAttr<AlignedAttr>())
3386           return true;
3387         if (Context.isAlignmentRequired(FD->getType()))
3388           return true;
3389       }
3390     }
3391   }
3392 
3393   return false;
3394 }
3395 
3396 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3397     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3398   if (Linkage == GVA_Internal)
3399     return llvm::Function::InternalLinkage;
3400 
3401   if (D->hasAttr<WeakAttr>()) {
3402     if (IsConstantVariable)
3403       return llvm::GlobalVariable::WeakODRLinkage;
3404     else
3405       return llvm::GlobalVariable::WeakAnyLinkage;
3406   }
3407 
3408   // We are guaranteed to have a strong definition somewhere else,
3409   // so we can use available_externally linkage.
3410   if (Linkage == GVA_AvailableExternally)
3411     return llvm::GlobalValue::AvailableExternallyLinkage;
3412 
3413   // Note that Apple's kernel linker doesn't support symbol
3414   // coalescing, so we need to avoid linkonce and weak linkages there.
3415   // Normally, this means we just map to internal, but for explicit
3416   // instantiations we'll map to external.
3417 
3418   // In C++, the compiler has to emit a definition in every translation unit
3419   // that references the function.  We should use linkonce_odr because
3420   // a) if all references in this translation unit are optimized away, we
3421   // don't need to codegen it.  b) if the function persists, it needs to be
3422   // merged with other definitions. c) C++ has the ODR, so we know the
3423   // definition is dependable.
3424   if (Linkage == GVA_DiscardableODR)
3425     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3426                                             : llvm::Function::InternalLinkage;
3427 
3428   // An explicit instantiation of a template has weak linkage, since
3429   // explicit instantiations can occur in multiple translation units
3430   // and must all be equivalent. However, we are not allowed to
3431   // throw away these explicit instantiations.
3432   //
3433   // We don't currently support CUDA device code spread out across multiple TUs,
3434   // so say that CUDA templates are either external (for kernels) or internal.
3435   // This lets llvm perform aggressive inter-procedural optimizations.
3436   if (Linkage == GVA_StrongODR) {
3437     if (Context.getLangOpts().AppleKext)
3438       return llvm::Function::ExternalLinkage;
3439     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3440       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3441                                           : llvm::Function::InternalLinkage;
3442     return llvm::Function::WeakODRLinkage;
3443   }
3444 
3445   // C++ doesn't have tentative definitions and thus cannot have common
3446   // linkage.
3447   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3448       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3449                                  CodeGenOpts.NoCommon))
3450     return llvm::GlobalVariable::CommonLinkage;
3451 
3452   // selectany symbols are externally visible, so use weak instead of
3453   // linkonce.  MSVC optimizes away references to const selectany globals, so
3454   // all definitions should be the same and ODR linkage should be used.
3455   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3456   if (D->hasAttr<SelectAnyAttr>())
3457     return llvm::GlobalVariable::WeakODRLinkage;
3458 
3459   // Otherwise, we have strong external linkage.
3460   assert(Linkage == GVA_StrongExternal);
3461   return llvm::GlobalVariable::ExternalLinkage;
3462 }
3463 
3464 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3465     const VarDecl *VD, bool IsConstant) {
3466   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3467   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3468 }
3469 
3470 /// Replace the uses of a function that was declared with a non-proto type.
3471 /// We want to silently drop extra arguments from call sites
3472 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3473                                           llvm::Function *newFn) {
3474   // Fast path.
3475   if (old->use_empty()) return;
3476 
3477   llvm::Type *newRetTy = newFn->getReturnType();
3478   SmallVector<llvm::Value*, 4> newArgs;
3479   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3480 
3481   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3482          ui != ue; ) {
3483     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3484     llvm::User *user = use->getUser();
3485 
3486     // Recognize and replace uses of bitcasts.  Most calls to
3487     // unprototyped functions will use bitcasts.
3488     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3489       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3490         replaceUsesOfNonProtoConstant(bitcast, newFn);
3491       continue;
3492     }
3493 
3494     // Recognize calls to the function.
3495     llvm::CallSite callSite(user);
3496     if (!callSite) continue;
3497     if (!callSite.isCallee(&*use)) continue;
3498 
3499     // If the return types don't match exactly, then we can't
3500     // transform this call unless it's dead.
3501     if (callSite->getType() != newRetTy && !callSite->use_empty())
3502       continue;
3503 
3504     // Get the call site's attribute list.
3505     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3506     llvm::AttributeList oldAttrs = callSite.getAttributes();
3507 
3508     // If the function was passed too few arguments, don't transform.
3509     unsigned newNumArgs = newFn->arg_size();
3510     if (callSite.arg_size() < newNumArgs) continue;
3511 
3512     // If extra arguments were passed, we silently drop them.
3513     // If any of the types mismatch, we don't transform.
3514     unsigned argNo = 0;
3515     bool dontTransform = false;
3516     for (llvm::Argument &A : newFn->args()) {
3517       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3518         dontTransform = true;
3519         break;
3520       }
3521 
3522       // Add any parameter attributes.
3523       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3524       argNo++;
3525     }
3526     if (dontTransform)
3527       continue;
3528 
3529     // Okay, we can transform this.  Create the new call instruction and copy
3530     // over the required information.
3531     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3532 
3533     // Copy over any operand bundles.
3534     callSite.getOperandBundlesAsDefs(newBundles);
3535 
3536     llvm::CallSite newCall;
3537     if (callSite.isCall()) {
3538       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3539                                        callSite.getInstruction());
3540     } else {
3541       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3542       newCall = llvm::InvokeInst::Create(newFn,
3543                                          oldInvoke->getNormalDest(),
3544                                          oldInvoke->getUnwindDest(),
3545                                          newArgs, newBundles, "",
3546                                          callSite.getInstruction());
3547     }
3548     newArgs.clear(); // for the next iteration
3549 
3550     if (!newCall->getType()->isVoidTy())
3551       newCall->takeName(callSite.getInstruction());
3552     newCall.setAttributes(llvm::AttributeList::get(
3553         newFn->getContext(), oldAttrs.getFnAttributes(),
3554         oldAttrs.getRetAttributes(), newArgAttrs));
3555     newCall.setCallingConv(callSite.getCallingConv());
3556 
3557     // Finally, remove the old call, replacing any uses with the new one.
3558     if (!callSite->use_empty())
3559       callSite->replaceAllUsesWith(newCall.getInstruction());
3560 
3561     // Copy debug location attached to CI.
3562     if (callSite->getDebugLoc())
3563       newCall->setDebugLoc(callSite->getDebugLoc());
3564 
3565     callSite->eraseFromParent();
3566   }
3567 }
3568 
3569 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3570 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3571 /// existing call uses of the old function in the module, this adjusts them to
3572 /// call the new function directly.
3573 ///
3574 /// This is not just a cleanup: the always_inline pass requires direct calls to
3575 /// functions to be able to inline them.  If there is a bitcast in the way, it
3576 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3577 /// run at -O0.
3578 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3579                                                       llvm::Function *NewFn) {
3580   // If we're redefining a global as a function, don't transform it.
3581   if (!isa<llvm::Function>(Old)) return;
3582 
3583   replaceUsesOfNonProtoConstant(Old, NewFn);
3584 }
3585 
3586 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3587   auto DK = VD->isThisDeclarationADefinition();
3588   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3589     return;
3590 
3591   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3592   // If we have a definition, this might be a deferred decl. If the
3593   // instantiation is explicit, make sure we emit it at the end.
3594   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3595     GetAddrOfGlobalVar(VD);
3596 
3597   EmitTopLevelDecl(VD);
3598 }
3599 
3600 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3601                                                  llvm::GlobalValue *GV) {
3602   const auto *D = cast<FunctionDecl>(GD.getDecl());
3603 
3604   // Compute the function info and LLVM type.
3605   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3606   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3607 
3608   // Get or create the prototype for the function.
3609   if (!GV || (GV->getType()->getElementType() != Ty))
3610     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3611                                                    /*DontDefer=*/true,
3612                                                    ForDefinition));
3613 
3614   // Already emitted.
3615   if (!GV->isDeclaration())
3616     return;
3617 
3618   // We need to set linkage and visibility on the function before
3619   // generating code for it because various parts of IR generation
3620   // want to propagate this information down (e.g. to local static
3621   // declarations).
3622   auto *Fn = cast<llvm::Function>(GV);
3623   setFunctionLinkage(GD, Fn);
3624 
3625   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3626   setGVProperties(Fn, GD);
3627 
3628   MaybeHandleStaticInExternC(D, Fn);
3629 
3630   if (D->hasAttr<CUDAGlobalAttr>())
3631     getTargetCodeGenInfo().setCUDAKernelCallingConvention(Fn);
3632 
3633   maybeSetTrivialComdat(*D, *Fn);
3634 
3635   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3636 
3637   setNonAliasAttributes(GD, Fn);
3638   SetLLVMFunctionAttributesForDefinition(D, Fn);
3639 
3640   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3641     AddGlobalCtor(Fn, CA->getPriority());
3642   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3643     AddGlobalDtor(Fn, DA->getPriority());
3644   if (D->hasAttr<AnnotateAttr>())
3645     AddGlobalAnnotations(D, Fn);
3646 }
3647 
3648 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3649   const auto *D = cast<ValueDecl>(GD.getDecl());
3650   const AliasAttr *AA = D->getAttr<AliasAttr>();
3651   assert(AA && "Not an alias?");
3652 
3653   StringRef MangledName = getMangledName(GD);
3654 
3655   if (AA->getAliasee() == MangledName) {
3656     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3657     return;
3658   }
3659 
3660   // If there is a definition in the module, then it wins over the alias.
3661   // This is dubious, but allow it to be safe.  Just ignore the alias.
3662   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3663   if (Entry && !Entry->isDeclaration())
3664     return;
3665 
3666   Aliases.push_back(GD);
3667 
3668   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3669 
3670   // Create a reference to the named value.  This ensures that it is emitted
3671   // if a deferred decl.
3672   llvm::Constant *Aliasee;
3673   if (isa<llvm::FunctionType>(DeclTy))
3674     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3675                                       /*ForVTable=*/false);
3676   else
3677     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3678                                     llvm::PointerType::getUnqual(DeclTy),
3679                                     /*D=*/nullptr);
3680 
3681   // Create the new alias itself, but don't set a name yet.
3682   auto *GA = llvm::GlobalAlias::create(
3683       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3684 
3685   if (Entry) {
3686     if (GA->getAliasee() == Entry) {
3687       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3688       return;
3689     }
3690 
3691     assert(Entry->isDeclaration());
3692 
3693     // If there is a declaration in the module, then we had an extern followed
3694     // by the alias, as in:
3695     //   extern int test6();
3696     //   ...
3697     //   int test6() __attribute__((alias("test7")));
3698     //
3699     // Remove it and replace uses of it with the alias.
3700     GA->takeName(Entry);
3701 
3702     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3703                                                           Entry->getType()));
3704     Entry->eraseFromParent();
3705   } else {
3706     GA->setName(MangledName);
3707   }
3708 
3709   // Set attributes which are particular to an alias; this is a
3710   // specialization of the attributes which may be set on a global
3711   // variable/function.
3712   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3713       D->isWeakImported()) {
3714     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3715   }
3716 
3717   if (const auto *VD = dyn_cast<VarDecl>(D))
3718     if (VD->getTLSKind())
3719       setTLSMode(GA, *VD);
3720 
3721   SetCommonAttributes(GD, GA);
3722 }
3723 
3724 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3725   const auto *D = cast<ValueDecl>(GD.getDecl());
3726   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3727   assert(IFA && "Not an ifunc?");
3728 
3729   StringRef MangledName = getMangledName(GD);
3730 
3731   if (IFA->getResolver() == MangledName) {
3732     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3733     return;
3734   }
3735 
3736   // Report an error if some definition overrides ifunc.
3737   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3738   if (Entry && !Entry->isDeclaration()) {
3739     GlobalDecl OtherGD;
3740     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3741         DiagnosedConflictingDefinitions.insert(GD).second) {
3742       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3743       Diags.Report(OtherGD.getDecl()->getLocation(),
3744                    diag::note_previous_definition);
3745     }
3746     return;
3747   }
3748 
3749   Aliases.push_back(GD);
3750 
3751   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3752   llvm::Constant *Resolver =
3753       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3754                               /*ForVTable=*/false);
3755   llvm::GlobalIFunc *GIF =
3756       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3757                                 "", Resolver, &getModule());
3758   if (Entry) {
3759     if (GIF->getResolver() == Entry) {
3760       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3761       return;
3762     }
3763     assert(Entry->isDeclaration());
3764 
3765     // If there is a declaration in the module, then we had an extern followed
3766     // by the ifunc, as in:
3767     //   extern int test();
3768     //   ...
3769     //   int test() __attribute__((ifunc("resolver")));
3770     //
3771     // Remove it and replace uses of it with the ifunc.
3772     GIF->takeName(Entry);
3773 
3774     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3775                                                           Entry->getType()));
3776     Entry->eraseFromParent();
3777   } else
3778     GIF->setName(MangledName);
3779 
3780   SetCommonAttributes(GD, GIF);
3781 }
3782 
3783 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3784                                             ArrayRef<llvm::Type*> Tys) {
3785   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3786                                          Tys);
3787 }
3788 
3789 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3790 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3791                          const StringLiteral *Literal, bool TargetIsLSB,
3792                          bool &IsUTF16, unsigned &StringLength) {
3793   StringRef String = Literal->getString();
3794   unsigned NumBytes = String.size();
3795 
3796   // Check for simple case.
3797   if (!Literal->containsNonAsciiOrNull()) {
3798     StringLength = NumBytes;
3799     return *Map.insert(std::make_pair(String, nullptr)).first;
3800   }
3801 
3802   // Otherwise, convert the UTF8 literals into a string of shorts.
3803   IsUTF16 = true;
3804 
3805   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3806   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3807   llvm::UTF16 *ToPtr = &ToBuf[0];
3808 
3809   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3810                                  ToPtr + NumBytes, llvm::strictConversion);
3811 
3812   // ConvertUTF8toUTF16 returns the length in ToPtr.
3813   StringLength = ToPtr - &ToBuf[0];
3814 
3815   // Add an explicit null.
3816   *ToPtr = 0;
3817   return *Map.insert(std::make_pair(
3818                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3819                                    (StringLength + 1) * 2),
3820                          nullptr)).first;
3821 }
3822 
3823 ConstantAddress
3824 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3825   unsigned StringLength = 0;
3826   bool isUTF16 = false;
3827   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3828       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3829                                getDataLayout().isLittleEndian(), isUTF16,
3830                                StringLength);
3831 
3832   if (auto *C = Entry.second)
3833     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3834 
3835   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3836   llvm::Constant *Zeros[] = { Zero, Zero };
3837 
3838   // If we don't already have it, get __CFConstantStringClassReference.
3839   if (!CFConstantStringClassRef) {
3840     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3841     Ty = llvm::ArrayType::get(Ty, 0);
3842     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3843         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3844 
3845     if (getTriple().isOSBinFormatCOFF()) {
3846       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3847       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3848       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3849 
3850       const VarDecl *VD = nullptr;
3851       for (const auto &Result : DC->lookup(&II))
3852         if ((VD = dyn_cast<VarDecl>(Result)))
3853           break;
3854 
3855       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3856         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3857         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3858       } else {
3859         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3860         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3861       }
3862     }
3863     setDSOLocal(GV);
3864 
3865     // Decay array -> ptr
3866     CFConstantStringClassRef =
3867         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3868   }
3869 
3870   QualType CFTy = getContext().getCFConstantStringType();
3871 
3872   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3873 
3874   ConstantInitBuilder Builder(*this);
3875   auto Fields = Builder.beginStruct(STy);
3876 
3877   // Class pointer.
3878   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3879 
3880   // Flags.
3881   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3882 
3883   // String pointer.
3884   llvm::Constant *C = nullptr;
3885   if (isUTF16) {
3886     auto Arr = llvm::makeArrayRef(
3887         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3888         Entry.first().size() / 2);
3889     C = llvm::ConstantDataArray::get(VMContext, Arr);
3890   } else {
3891     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3892   }
3893 
3894   // Note: -fwritable-strings doesn't make the backing store strings of
3895   // CFStrings writable. (See <rdar://problem/10657500>)
3896   auto *GV =
3897       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3898                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3899   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3900   // Don't enforce the target's minimum global alignment, since the only use
3901   // of the string is via this class initializer.
3902   CharUnits Align = isUTF16
3903                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3904                         : getContext().getTypeAlignInChars(getContext().CharTy);
3905   GV->setAlignment(Align.getQuantity());
3906 
3907   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3908   // Without it LLVM can merge the string with a non unnamed_addr one during
3909   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3910   if (getTriple().isOSBinFormatMachO())
3911     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3912                            : "__TEXT,__cstring,cstring_literals");
3913 
3914   // String.
3915   llvm::Constant *Str =
3916       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3917 
3918   if (isUTF16)
3919     // Cast the UTF16 string to the correct type.
3920     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3921   Fields.add(Str);
3922 
3923   // String length.
3924   auto Ty = getTypes().ConvertType(getContext().LongTy);
3925   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3926 
3927   CharUnits Alignment = getPointerAlign();
3928 
3929   // The struct.
3930   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3931                                     /*isConstant=*/false,
3932                                     llvm::GlobalVariable::PrivateLinkage);
3933   switch (getTriple().getObjectFormat()) {
3934   case llvm::Triple::UnknownObjectFormat:
3935     llvm_unreachable("unknown file format");
3936   case llvm::Triple::COFF:
3937   case llvm::Triple::ELF:
3938   case llvm::Triple::Wasm:
3939     GV->setSection("cfstring");
3940     break;
3941   case llvm::Triple::MachO:
3942     GV->setSection("__DATA,__cfstring");
3943     break;
3944   }
3945   Entry.second = GV;
3946 
3947   return ConstantAddress(GV, Alignment);
3948 }
3949 
3950 bool CodeGenModule::getExpressionLocationsEnabled() const {
3951   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3952 }
3953 
3954 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3955   if (ObjCFastEnumerationStateType.isNull()) {
3956     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3957     D->startDefinition();
3958 
3959     QualType FieldTypes[] = {
3960       Context.UnsignedLongTy,
3961       Context.getPointerType(Context.getObjCIdType()),
3962       Context.getPointerType(Context.UnsignedLongTy),
3963       Context.getConstantArrayType(Context.UnsignedLongTy,
3964                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3965     };
3966 
3967     for (size_t i = 0; i < 4; ++i) {
3968       FieldDecl *Field = FieldDecl::Create(Context,
3969                                            D,
3970                                            SourceLocation(),
3971                                            SourceLocation(), nullptr,
3972                                            FieldTypes[i], /*TInfo=*/nullptr,
3973                                            /*BitWidth=*/nullptr,
3974                                            /*Mutable=*/false,
3975                                            ICIS_NoInit);
3976       Field->setAccess(AS_public);
3977       D->addDecl(Field);
3978     }
3979 
3980     D->completeDefinition();
3981     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3982   }
3983 
3984   return ObjCFastEnumerationStateType;
3985 }
3986 
3987 llvm::Constant *
3988 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3989   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3990 
3991   // Don't emit it as the address of the string, emit the string data itself
3992   // as an inline array.
3993   if (E->getCharByteWidth() == 1) {
3994     SmallString<64> Str(E->getString());
3995 
3996     // Resize the string to the right size, which is indicated by its type.
3997     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3998     Str.resize(CAT->getSize().getZExtValue());
3999     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4000   }
4001 
4002   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4003   llvm::Type *ElemTy = AType->getElementType();
4004   unsigned NumElements = AType->getNumElements();
4005 
4006   // Wide strings have either 2-byte or 4-byte elements.
4007   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4008     SmallVector<uint16_t, 32> Elements;
4009     Elements.reserve(NumElements);
4010 
4011     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4012       Elements.push_back(E->getCodeUnit(i));
4013     Elements.resize(NumElements);
4014     return llvm::ConstantDataArray::get(VMContext, Elements);
4015   }
4016 
4017   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4018   SmallVector<uint32_t, 32> Elements;
4019   Elements.reserve(NumElements);
4020 
4021   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4022     Elements.push_back(E->getCodeUnit(i));
4023   Elements.resize(NumElements);
4024   return llvm::ConstantDataArray::get(VMContext, Elements);
4025 }
4026 
4027 static llvm::GlobalVariable *
4028 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4029                       CodeGenModule &CGM, StringRef GlobalName,
4030                       CharUnits Alignment) {
4031   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4032   unsigned AddrSpace = 0;
4033   if (CGM.getLangOpts().OpenCL)
4034     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
4035 
4036   llvm::Module &M = CGM.getModule();
4037   // Create a global variable for this string
4038   auto *GV = new llvm::GlobalVariable(
4039       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4040       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4041   GV->setAlignment(Alignment.getQuantity());
4042   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4043   if (GV->isWeakForLinker()) {
4044     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4045     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4046   }
4047   CGM.setDSOLocal(GV);
4048 
4049   return GV;
4050 }
4051 
4052 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4053 /// constant array for the given string literal.
4054 ConstantAddress
4055 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4056                                                   StringRef Name) {
4057   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4058 
4059   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4060   llvm::GlobalVariable **Entry = nullptr;
4061   if (!LangOpts.WritableStrings) {
4062     Entry = &ConstantStringMap[C];
4063     if (auto GV = *Entry) {
4064       if (Alignment.getQuantity() > GV->getAlignment())
4065         GV->setAlignment(Alignment.getQuantity());
4066       return ConstantAddress(GV, Alignment);
4067     }
4068   }
4069 
4070   SmallString<256> MangledNameBuffer;
4071   StringRef GlobalVariableName;
4072   llvm::GlobalValue::LinkageTypes LT;
4073 
4074   // Mangle the string literal if the ABI allows for it.  However, we cannot
4075   // do this if  we are compiling with ASan or -fwritable-strings because they
4076   // rely on strings having normal linkage.
4077   if (!LangOpts.WritableStrings &&
4078       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4079       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4080     llvm::raw_svector_ostream Out(MangledNameBuffer);
4081     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4082 
4083     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4084     GlobalVariableName = MangledNameBuffer;
4085   } else {
4086     LT = llvm::GlobalValue::PrivateLinkage;
4087     GlobalVariableName = Name;
4088   }
4089 
4090   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4091   if (Entry)
4092     *Entry = GV;
4093 
4094   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4095                                   QualType());
4096   return ConstantAddress(GV, Alignment);
4097 }
4098 
4099 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4100 /// array for the given ObjCEncodeExpr node.
4101 ConstantAddress
4102 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4103   std::string Str;
4104   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4105 
4106   return GetAddrOfConstantCString(Str);
4107 }
4108 
4109 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4110 /// the literal and a terminating '\0' character.
4111 /// The result has pointer to array type.
4112 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4113     const std::string &Str, const char *GlobalName) {
4114   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4115   CharUnits Alignment =
4116     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4117 
4118   llvm::Constant *C =
4119       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4120 
4121   // Don't share any string literals if strings aren't constant.
4122   llvm::GlobalVariable **Entry = nullptr;
4123   if (!LangOpts.WritableStrings) {
4124     Entry = &ConstantStringMap[C];
4125     if (auto GV = *Entry) {
4126       if (Alignment.getQuantity() > GV->getAlignment())
4127         GV->setAlignment(Alignment.getQuantity());
4128       return ConstantAddress(GV, Alignment);
4129     }
4130   }
4131 
4132   // Get the default prefix if a name wasn't specified.
4133   if (!GlobalName)
4134     GlobalName = ".str";
4135   // Create a global variable for this.
4136   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4137                                   GlobalName, Alignment);
4138   if (Entry)
4139     *Entry = GV;
4140   return ConstantAddress(GV, Alignment);
4141 }
4142 
4143 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4144     const MaterializeTemporaryExpr *E, const Expr *Init) {
4145   assert((E->getStorageDuration() == SD_Static ||
4146           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4147   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4148 
4149   // If we're not materializing a subobject of the temporary, keep the
4150   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4151   QualType MaterializedType = Init->getType();
4152   if (Init == E->GetTemporaryExpr())
4153     MaterializedType = E->getType();
4154 
4155   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4156 
4157   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4158     return ConstantAddress(Slot, Align);
4159 
4160   // FIXME: If an externally-visible declaration extends multiple temporaries,
4161   // we need to give each temporary the same name in every translation unit (and
4162   // we also need to make the temporaries externally-visible).
4163   SmallString<256> Name;
4164   llvm::raw_svector_ostream Out(Name);
4165   getCXXABI().getMangleContext().mangleReferenceTemporary(
4166       VD, E->getManglingNumber(), Out);
4167 
4168   APValue *Value = nullptr;
4169   if (E->getStorageDuration() == SD_Static) {
4170     // We might have a cached constant initializer for this temporary. Note
4171     // that this might have a different value from the value computed by
4172     // evaluating the initializer if the surrounding constant expression
4173     // modifies the temporary.
4174     Value = getContext().getMaterializedTemporaryValue(E, false);
4175     if (Value && Value->isUninit())
4176       Value = nullptr;
4177   }
4178 
4179   // Try evaluating it now, it might have a constant initializer.
4180   Expr::EvalResult EvalResult;
4181   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4182       !EvalResult.hasSideEffects())
4183     Value = &EvalResult.Val;
4184 
4185   LangAS AddrSpace =
4186       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4187 
4188   Optional<ConstantEmitter> emitter;
4189   llvm::Constant *InitialValue = nullptr;
4190   bool Constant = false;
4191   llvm::Type *Type;
4192   if (Value) {
4193     // The temporary has a constant initializer, use it.
4194     emitter.emplace(*this);
4195     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4196                                                MaterializedType);
4197     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4198     Type = InitialValue->getType();
4199   } else {
4200     // No initializer, the initialization will be provided when we
4201     // initialize the declaration which performed lifetime extension.
4202     Type = getTypes().ConvertTypeForMem(MaterializedType);
4203   }
4204 
4205   // Create a global variable for this lifetime-extended temporary.
4206   llvm::GlobalValue::LinkageTypes Linkage =
4207       getLLVMLinkageVarDefinition(VD, Constant);
4208   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4209     const VarDecl *InitVD;
4210     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4211         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4212       // Temporaries defined inside a class get linkonce_odr linkage because the
4213       // class can be defined in multiple translation units.
4214       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4215     } else {
4216       // There is no need for this temporary to have external linkage if the
4217       // VarDecl has external linkage.
4218       Linkage = llvm::GlobalVariable::InternalLinkage;
4219     }
4220   }
4221   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4222   auto *GV = new llvm::GlobalVariable(
4223       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4224       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4225   if (emitter) emitter->finalize(GV);
4226   setGVProperties(GV, VD);
4227   GV->setAlignment(Align.getQuantity());
4228   if (supportsCOMDAT() && GV->isWeakForLinker())
4229     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4230   if (VD->getTLSKind())
4231     setTLSMode(GV, *VD);
4232   llvm::Constant *CV = GV;
4233   if (AddrSpace != LangAS::Default)
4234     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4235         *this, GV, AddrSpace, LangAS::Default,
4236         Type->getPointerTo(
4237             getContext().getTargetAddressSpace(LangAS::Default)));
4238   MaterializedGlobalTemporaryMap[E] = CV;
4239   return ConstantAddress(CV, Align);
4240 }
4241 
4242 /// EmitObjCPropertyImplementations - Emit information for synthesized
4243 /// properties for an implementation.
4244 void CodeGenModule::EmitObjCPropertyImplementations(const
4245                                                     ObjCImplementationDecl *D) {
4246   for (const auto *PID : D->property_impls()) {
4247     // Dynamic is just for type-checking.
4248     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4249       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4250 
4251       // Determine which methods need to be implemented, some may have
4252       // been overridden. Note that ::isPropertyAccessor is not the method
4253       // we want, that just indicates if the decl came from a
4254       // property. What we want to know is if the method is defined in
4255       // this implementation.
4256       if (!D->getInstanceMethod(PD->getGetterName()))
4257         CodeGenFunction(*this).GenerateObjCGetter(
4258                                  const_cast<ObjCImplementationDecl *>(D), PID);
4259       if (!PD->isReadOnly() &&
4260           !D->getInstanceMethod(PD->getSetterName()))
4261         CodeGenFunction(*this).GenerateObjCSetter(
4262                                  const_cast<ObjCImplementationDecl *>(D), PID);
4263     }
4264   }
4265 }
4266 
4267 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4268   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4269   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4270        ivar; ivar = ivar->getNextIvar())
4271     if (ivar->getType().isDestructedType())
4272       return true;
4273 
4274   return false;
4275 }
4276 
4277 static bool AllTrivialInitializers(CodeGenModule &CGM,
4278                                    ObjCImplementationDecl *D) {
4279   CodeGenFunction CGF(CGM);
4280   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4281        E = D->init_end(); B != E; ++B) {
4282     CXXCtorInitializer *CtorInitExp = *B;
4283     Expr *Init = CtorInitExp->getInit();
4284     if (!CGF.isTrivialInitializer(Init))
4285       return false;
4286   }
4287   return true;
4288 }
4289 
4290 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4291 /// for an implementation.
4292 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4293   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4294   if (needsDestructMethod(D)) {
4295     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4296     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4297     ObjCMethodDecl *DTORMethod =
4298       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4299                              cxxSelector, getContext().VoidTy, nullptr, D,
4300                              /*isInstance=*/true, /*isVariadic=*/false,
4301                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4302                              /*isDefined=*/false, ObjCMethodDecl::Required);
4303     D->addInstanceMethod(DTORMethod);
4304     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4305     D->setHasDestructors(true);
4306   }
4307 
4308   // If the implementation doesn't have any ivar initializers, we don't need
4309   // a .cxx_construct.
4310   if (D->getNumIvarInitializers() == 0 ||
4311       AllTrivialInitializers(*this, D))
4312     return;
4313 
4314   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4315   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4316   // The constructor returns 'self'.
4317   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4318                                                 D->getLocation(),
4319                                                 D->getLocation(),
4320                                                 cxxSelector,
4321                                                 getContext().getObjCIdType(),
4322                                                 nullptr, D, /*isInstance=*/true,
4323                                                 /*isVariadic=*/false,
4324                                                 /*isPropertyAccessor=*/true,
4325                                                 /*isImplicitlyDeclared=*/true,
4326                                                 /*isDefined=*/false,
4327                                                 ObjCMethodDecl::Required);
4328   D->addInstanceMethod(CTORMethod);
4329   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4330   D->setHasNonZeroConstructors(true);
4331 }
4332 
4333 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4334 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4335   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4336       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4337     ErrorUnsupported(LSD, "linkage spec");
4338     return;
4339   }
4340 
4341   EmitDeclContext(LSD);
4342 }
4343 
4344 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4345   for (auto *I : DC->decls()) {
4346     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4347     // are themselves considered "top-level", so EmitTopLevelDecl on an
4348     // ObjCImplDecl does not recursively visit them. We need to do that in
4349     // case they're nested inside another construct (LinkageSpecDecl /
4350     // ExportDecl) that does stop them from being considered "top-level".
4351     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4352       for (auto *M : OID->methods())
4353         EmitTopLevelDecl(M);
4354     }
4355 
4356     EmitTopLevelDecl(I);
4357   }
4358 }
4359 
4360 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4361 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4362   // Ignore dependent declarations.
4363   if (D->isTemplated())
4364     return;
4365 
4366   switch (D->getKind()) {
4367   case Decl::CXXConversion:
4368   case Decl::CXXMethod:
4369   case Decl::Function:
4370     EmitGlobal(cast<FunctionDecl>(D));
4371     // Always provide some coverage mapping
4372     // even for the functions that aren't emitted.
4373     AddDeferredUnusedCoverageMapping(D);
4374     break;
4375 
4376   case Decl::CXXDeductionGuide:
4377     // Function-like, but does not result in code emission.
4378     break;
4379 
4380   case Decl::Var:
4381   case Decl::Decomposition:
4382   case Decl::VarTemplateSpecialization:
4383     EmitGlobal(cast<VarDecl>(D));
4384     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4385       for (auto *B : DD->bindings())
4386         if (auto *HD = B->getHoldingVar())
4387           EmitGlobal(HD);
4388     break;
4389 
4390   // Indirect fields from global anonymous structs and unions can be
4391   // ignored; only the actual variable requires IR gen support.
4392   case Decl::IndirectField:
4393     break;
4394 
4395   // C++ Decls
4396   case Decl::Namespace:
4397     EmitDeclContext(cast<NamespaceDecl>(D));
4398     break;
4399   case Decl::ClassTemplateSpecialization: {
4400     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4401     if (DebugInfo &&
4402         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4403         Spec->hasDefinition())
4404       DebugInfo->completeTemplateDefinition(*Spec);
4405   } LLVM_FALLTHROUGH;
4406   case Decl::CXXRecord:
4407     if (DebugInfo) {
4408       if (auto *ES = D->getASTContext().getExternalSource())
4409         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4410           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4411     }
4412     // Emit any static data members, they may be definitions.
4413     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4414       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4415         EmitTopLevelDecl(I);
4416     break;
4417     // No code generation needed.
4418   case Decl::UsingShadow:
4419   case Decl::ClassTemplate:
4420   case Decl::VarTemplate:
4421   case Decl::VarTemplatePartialSpecialization:
4422   case Decl::FunctionTemplate:
4423   case Decl::TypeAliasTemplate:
4424   case Decl::Block:
4425   case Decl::Empty:
4426     break;
4427   case Decl::Using:          // using X; [C++]
4428     if (CGDebugInfo *DI = getModuleDebugInfo())
4429         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4430     return;
4431   case Decl::NamespaceAlias:
4432     if (CGDebugInfo *DI = getModuleDebugInfo())
4433         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4434     return;
4435   case Decl::UsingDirective: // using namespace X; [C++]
4436     if (CGDebugInfo *DI = getModuleDebugInfo())
4437       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4438     return;
4439   case Decl::CXXConstructor:
4440     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4441     break;
4442   case Decl::CXXDestructor:
4443     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4444     break;
4445 
4446   case Decl::StaticAssert:
4447     // Nothing to do.
4448     break;
4449 
4450   // Objective-C Decls
4451 
4452   // Forward declarations, no (immediate) code generation.
4453   case Decl::ObjCInterface:
4454   case Decl::ObjCCategory:
4455     break;
4456 
4457   case Decl::ObjCProtocol: {
4458     auto *Proto = cast<ObjCProtocolDecl>(D);
4459     if (Proto->isThisDeclarationADefinition())
4460       ObjCRuntime->GenerateProtocol(Proto);
4461     break;
4462   }
4463 
4464   case Decl::ObjCCategoryImpl:
4465     // Categories have properties but don't support synthesize so we
4466     // can ignore them here.
4467     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4468     break;
4469 
4470   case Decl::ObjCImplementation: {
4471     auto *OMD = cast<ObjCImplementationDecl>(D);
4472     EmitObjCPropertyImplementations(OMD);
4473     EmitObjCIvarInitializations(OMD);
4474     ObjCRuntime->GenerateClass(OMD);
4475     // Emit global variable debug information.
4476     if (CGDebugInfo *DI = getModuleDebugInfo())
4477       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4478         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4479             OMD->getClassInterface()), OMD->getLocation());
4480     break;
4481   }
4482   case Decl::ObjCMethod: {
4483     auto *OMD = cast<ObjCMethodDecl>(D);
4484     // If this is not a prototype, emit the body.
4485     if (OMD->getBody())
4486       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4487     break;
4488   }
4489   case Decl::ObjCCompatibleAlias:
4490     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4491     break;
4492 
4493   case Decl::PragmaComment: {
4494     const auto *PCD = cast<PragmaCommentDecl>(D);
4495     switch (PCD->getCommentKind()) {
4496     case PCK_Unknown:
4497       llvm_unreachable("unexpected pragma comment kind");
4498     case PCK_Linker:
4499       AppendLinkerOptions(PCD->getArg());
4500       break;
4501     case PCK_Lib:
4502       if (getTarget().getTriple().isOSBinFormatELF() &&
4503           !getTarget().getTriple().isPS4())
4504         AddELFLibDirective(PCD->getArg());
4505       else
4506         AddDependentLib(PCD->getArg());
4507       break;
4508     case PCK_Compiler:
4509     case PCK_ExeStr:
4510     case PCK_User:
4511       break; // We ignore all of these.
4512     }
4513     break;
4514   }
4515 
4516   case Decl::PragmaDetectMismatch: {
4517     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4518     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4519     break;
4520   }
4521 
4522   case Decl::LinkageSpec:
4523     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4524     break;
4525 
4526   case Decl::FileScopeAsm: {
4527     // File-scope asm is ignored during device-side CUDA compilation.
4528     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4529       break;
4530     // File-scope asm is ignored during device-side OpenMP compilation.
4531     if (LangOpts.OpenMPIsDevice)
4532       break;
4533     auto *AD = cast<FileScopeAsmDecl>(D);
4534     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4535     break;
4536   }
4537 
4538   case Decl::Import: {
4539     auto *Import = cast<ImportDecl>(D);
4540 
4541     // If we've already imported this module, we're done.
4542     if (!ImportedModules.insert(Import->getImportedModule()))
4543       break;
4544 
4545     // Emit debug information for direct imports.
4546     if (!Import->getImportedOwningModule()) {
4547       if (CGDebugInfo *DI = getModuleDebugInfo())
4548         DI->EmitImportDecl(*Import);
4549     }
4550 
4551     // Find all of the submodules and emit the module initializers.
4552     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4553     SmallVector<clang::Module *, 16> Stack;
4554     Visited.insert(Import->getImportedModule());
4555     Stack.push_back(Import->getImportedModule());
4556 
4557     while (!Stack.empty()) {
4558       clang::Module *Mod = Stack.pop_back_val();
4559       if (!EmittedModuleInitializers.insert(Mod).second)
4560         continue;
4561 
4562       for (auto *D : Context.getModuleInitializers(Mod))
4563         EmitTopLevelDecl(D);
4564 
4565       // Visit the submodules of this module.
4566       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4567                                              SubEnd = Mod->submodule_end();
4568            Sub != SubEnd; ++Sub) {
4569         // Skip explicit children; they need to be explicitly imported to emit
4570         // the initializers.
4571         if ((*Sub)->IsExplicit)
4572           continue;
4573 
4574         if (Visited.insert(*Sub).second)
4575           Stack.push_back(*Sub);
4576       }
4577     }
4578     break;
4579   }
4580 
4581   case Decl::Export:
4582     EmitDeclContext(cast<ExportDecl>(D));
4583     break;
4584 
4585   case Decl::OMPThreadPrivate:
4586     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4587     break;
4588 
4589   case Decl::OMPDeclareReduction:
4590     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4591     break;
4592 
4593   default:
4594     // Make sure we handled everything we should, every other kind is a
4595     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4596     // function. Need to recode Decl::Kind to do that easily.
4597     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4598     break;
4599   }
4600 }
4601 
4602 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4603   // Do we need to generate coverage mapping?
4604   if (!CodeGenOpts.CoverageMapping)
4605     return;
4606   switch (D->getKind()) {
4607   case Decl::CXXConversion:
4608   case Decl::CXXMethod:
4609   case Decl::Function:
4610   case Decl::ObjCMethod:
4611   case Decl::CXXConstructor:
4612   case Decl::CXXDestructor: {
4613     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4614       return;
4615     SourceManager &SM = getContext().getSourceManager();
4616     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4617       return;
4618     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4619     if (I == DeferredEmptyCoverageMappingDecls.end())
4620       DeferredEmptyCoverageMappingDecls[D] = true;
4621     break;
4622   }
4623   default:
4624     break;
4625   };
4626 }
4627 
4628 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4629   // Do we need to generate coverage mapping?
4630   if (!CodeGenOpts.CoverageMapping)
4631     return;
4632   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4633     if (Fn->isTemplateInstantiation())
4634       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4635   }
4636   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4637   if (I == DeferredEmptyCoverageMappingDecls.end())
4638     DeferredEmptyCoverageMappingDecls[D] = false;
4639   else
4640     I->second = false;
4641 }
4642 
4643 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4644   // We call takeVector() here to avoid use-after-free.
4645   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4646   // we deserialize function bodies to emit coverage info for them, and that
4647   // deserializes more declarations. How should we handle that case?
4648   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4649     if (!Entry.second)
4650       continue;
4651     const Decl *D = Entry.first;
4652     switch (D->getKind()) {
4653     case Decl::CXXConversion:
4654     case Decl::CXXMethod:
4655     case Decl::Function:
4656     case Decl::ObjCMethod: {
4657       CodeGenPGO PGO(*this);
4658       GlobalDecl GD(cast<FunctionDecl>(D));
4659       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4660                                   getFunctionLinkage(GD));
4661       break;
4662     }
4663     case Decl::CXXConstructor: {
4664       CodeGenPGO PGO(*this);
4665       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4666       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4667                                   getFunctionLinkage(GD));
4668       break;
4669     }
4670     case Decl::CXXDestructor: {
4671       CodeGenPGO PGO(*this);
4672       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4673       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4674                                   getFunctionLinkage(GD));
4675       break;
4676     }
4677     default:
4678       break;
4679     };
4680   }
4681 }
4682 
4683 /// Turns the given pointer into a constant.
4684 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4685                                           const void *Ptr) {
4686   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4687   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4688   return llvm::ConstantInt::get(i64, PtrInt);
4689 }
4690 
4691 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4692                                    llvm::NamedMDNode *&GlobalMetadata,
4693                                    GlobalDecl D,
4694                                    llvm::GlobalValue *Addr) {
4695   if (!GlobalMetadata)
4696     GlobalMetadata =
4697       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4698 
4699   // TODO: should we report variant information for ctors/dtors?
4700   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4701                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4702                                CGM.getLLVMContext(), D.getDecl()))};
4703   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4704 }
4705 
4706 /// For each function which is declared within an extern "C" region and marked
4707 /// as 'used', but has internal linkage, create an alias from the unmangled
4708 /// name to the mangled name if possible. People expect to be able to refer
4709 /// to such functions with an unmangled name from inline assembly within the
4710 /// same translation unit.
4711 void CodeGenModule::EmitStaticExternCAliases() {
4712   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4713     return;
4714   for (auto &I : StaticExternCValues) {
4715     IdentifierInfo *Name = I.first;
4716     llvm::GlobalValue *Val = I.second;
4717     if (Val && !getModule().getNamedValue(Name->getName()))
4718       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4719   }
4720 }
4721 
4722 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4723                                              GlobalDecl &Result) const {
4724   auto Res = Manglings.find(MangledName);
4725   if (Res == Manglings.end())
4726     return false;
4727   Result = Res->getValue();
4728   return true;
4729 }
4730 
4731 /// Emits metadata nodes associating all the global values in the
4732 /// current module with the Decls they came from.  This is useful for
4733 /// projects using IR gen as a subroutine.
4734 ///
4735 /// Since there's currently no way to associate an MDNode directly
4736 /// with an llvm::GlobalValue, we create a global named metadata
4737 /// with the name 'clang.global.decl.ptrs'.
4738 void CodeGenModule::EmitDeclMetadata() {
4739   llvm::NamedMDNode *GlobalMetadata = nullptr;
4740 
4741   for (auto &I : MangledDeclNames) {
4742     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4743     // Some mangled names don't necessarily have an associated GlobalValue
4744     // in this module, e.g. if we mangled it for DebugInfo.
4745     if (Addr)
4746       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4747   }
4748 }
4749 
4750 /// Emits metadata nodes for all the local variables in the current
4751 /// function.
4752 void CodeGenFunction::EmitDeclMetadata() {
4753   if (LocalDeclMap.empty()) return;
4754 
4755   llvm::LLVMContext &Context = getLLVMContext();
4756 
4757   // Find the unique metadata ID for this name.
4758   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4759 
4760   llvm::NamedMDNode *GlobalMetadata = nullptr;
4761 
4762   for (auto &I : LocalDeclMap) {
4763     const Decl *D = I.first;
4764     llvm::Value *Addr = I.second.getPointer();
4765     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4766       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4767       Alloca->setMetadata(
4768           DeclPtrKind, llvm::MDNode::get(
4769                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4770     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4771       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4772       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4773     }
4774   }
4775 }
4776 
4777 void CodeGenModule::EmitVersionIdentMetadata() {
4778   llvm::NamedMDNode *IdentMetadata =
4779     TheModule.getOrInsertNamedMetadata("llvm.ident");
4780   std::string Version = getClangFullVersion();
4781   llvm::LLVMContext &Ctx = TheModule.getContext();
4782 
4783   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4784   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4785 }
4786 
4787 void CodeGenModule::EmitTargetMetadata() {
4788   // Warning, new MangledDeclNames may be appended within this loop.
4789   // We rely on MapVector insertions adding new elements to the end
4790   // of the container.
4791   // FIXME: Move this loop into the one target that needs it, and only
4792   // loop over those declarations for which we couldn't emit the target
4793   // metadata when we emitted the declaration.
4794   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4795     auto Val = *(MangledDeclNames.begin() + I);
4796     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4797     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4798     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4799   }
4800 }
4801 
4802 void CodeGenModule::EmitCoverageFile() {
4803   if (getCodeGenOpts().CoverageDataFile.empty() &&
4804       getCodeGenOpts().CoverageNotesFile.empty())
4805     return;
4806 
4807   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4808   if (!CUNode)
4809     return;
4810 
4811   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4812   llvm::LLVMContext &Ctx = TheModule.getContext();
4813   auto *CoverageDataFile =
4814       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4815   auto *CoverageNotesFile =
4816       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4817   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4818     llvm::MDNode *CU = CUNode->getOperand(i);
4819     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4820     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4821   }
4822 }
4823 
4824 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4825   // Sema has checked that all uuid strings are of the form
4826   // "12345678-1234-1234-1234-1234567890ab".
4827   assert(Uuid.size() == 36);
4828   for (unsigned i = 0; i < 36; ++i) {
4829     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4830     else                                         assert(isHexDigit(Uuid[i]));
4831   }
4832 
4833   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4834   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4835 
4836   llvm::Constant *Field3[8];
4837   for (unsigned Idx = 0; Idx < 8; ++Idx)
4838     Field3[Idx] = llvm::ConstantInt::get(
4839         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4840 
4841   llvm::Constant *Fields[4] = {
4842     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4843     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4844     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4845     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4846   };
4847 
4848   return llvm::ConstantStruct::getAnon(Fields);
4849 }
4850 
4851 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4852                                                        bool ForEH) {
4853   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4854   // FIXME: should we even be calling this method if RTTI is disabled
4855   // and it's not for EH?
4856   if (!ForEH && !getLangOpts().RTTI)
4857     return llvm::Constant::getNullValue(Int8PtrTy);
4858 
4859   if (ForEH && Ty->isObjCObjectPointerType() &&
4860       LangOpts.ObjCRuntime.isGNUFamily())
4861     return ObjCRuntime->GetEHType(Ty);
4862 
4863   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4864 }
4865 
4866 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4867   // Do not emit threadprivates in simd-only mode.
4868   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4869     return;
4870   for (auto RefExpr : D->varlists()) {
4871     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4872     bool PerformInit =
4873         VD->getAnyInitializer() &&
4874         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4875                                                         /*ForRef=*/false);
4876 
4877     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4878     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4879             VD, Addr, RefExpr->getLocStart(), PerformInit))
4880       CXXGlobalInits.push_back(InitFunction);
4881   }
4882 }
4883 
4884 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4885   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4886   if (InternalId)
4887     return InternalId;
4888 
4889   if (isExternallyVisible(T->getLinkage())) {
4890     std::string OutName;
4891     llvm::raw_string_ostream Out(OutName);
4892     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4893 
4894     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4895   } else {
4896     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4897                                            llvm::ArrayRef<llvm::Metadata *>());
4898   }
4899 
4900   return InternalId;
4901 }
4902 
4903 // Generalize pointer types to a void pointer with the qualifiers of the
4904 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4905 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4906 // 'void *'.
4907 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4908   if (!Ty->isPointerType())
4909     return Ty;
4910 
4911   return Ctx.getPointerType(
4912       QualType(Ctx.VoidTy).withCVRQualifiers(
4913           Ty->getPointeeType().getCVRQualifiers()));
4914 }
4915 
4916 // Apply type generalization to a FunctionType's return and argument types
4917 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4918   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4919     SmallVector<QualType, 8> GeneralizedParams;
4920     for (auto &Param : FnType->param_types())
4921       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4922 
4923     return Ctx.getFunctionType(
4924         GeneralizeType(Ctx, FnType->getReturnType()),
4925         GeneralizedParams, FnType->getExtProtoInfo());
4926   }
4927 
4928   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4929     return Ctx.getFunctionNoProtoType(
4930         GeneralizeType(Ctx, FnType->getReturnType()));
4931 
4932   llvm_unreachable("Encountered unknown FunctionType");
4933 }
4934 
4935 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4936   T = GeneralizeFunctionType(getContext(), T);
4937 
4938   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4939   if (InternalId)
4940     return InternalId;
4941 
4942   if (isExternallyVisible(T->getLinkage())) {
4943     std::string OutName;
4944     llvm::raw_string_ostream Out(OutName);
4945     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4946     Out << ".generalized";
4947 
4948     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4949   } else {
4950     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4951                                            llvm::ArrayRef<llvm::Metadata *>());
4952   }
4953 
4954   return InternalId;
4955 }
4956 
4957 /// Returns whether this module needs the "all-vtables" type identifier.
4958 bool CodeGenModule::NeedAllVtablesTypeId() const {
4959   // Returns true if at least one of vtable-based CFI checkers is enabled and
4960   // is not in the trapping mode.
4961   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4962            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4963           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4964            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4965           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4966            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4967           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4968            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4969 }
4970 
4971 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4972                                           CharUnits Offset,
4973                                           const CXXRecordDecl *RD) {
4974   llvm::Metadata *MD =
4975       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4976   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4977 
4978   if (CodeGenOpts.SanitizeCfiCrossDso)
4979     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4980       VTable->addTypeMetadata(Offset.getQuantity(),
4981                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4982 
4983   if (NeedAllVtablesTypeId()) {
4984     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4985     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4986   }
4987 }
4988 
4989 // Fills in the supplied string map with the set of target features for the
4990 // passed in function.
4991 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4992                                           const FunctionDecl *FD) {
4993   StringRef TargetCPU = Target.getTargetOpts().CPU;
4994   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4995     // If we have a TargetAttr build up the feature map based on that.
4996     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4997 
4998     ParsedAttr.Features.erase(
4999         llvm::remove_if(ParsedAttr.Features,
5000                         [&](const std::string &Feat) {
5001                           return !Target.isValidFeatureName(
5002                               StringRef{Feat}.substr(1));
5003                         }),
5004         ParsedAttr.Features.end());
5005 
5006     // Make a copy of the features as passed on the command line into the
5007     // beginning of the additional features from the function to override.
5008     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5009                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5010                             Target.getTargetOpts().FeaturesAsWritten.end());
5011 
5012     if (ParsedAttr.Architecture != "" &&
5013         Target.isValidCPUName(ParsedAttr.Architecture))
5014       TargetCPU = ParsedAttr.Architecture;
5015 
5016     // Now populate the feature map, first with the TargetCPU which is either
5017     // the default or a new one from the target attribute string. Then we'll use
5018     // the passed in features (FeaturesAsWritten) along with the new ones from
5019     // the attribute.
5020     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5021                           ParsedAttr.Features);
5022   } else {
5023     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5024                           Target.getTargetOpts().Features);
5025   }
5026 }
5027 
5028 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5029   if (!SanStats)
5030     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5031 
5032   return *SanStats;
5033 }
5034 llvm::Value *
5035 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5036                                                   CodeGenFunction &CGF) {
5037   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5038   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5039   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5040   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5041                                 "__translate_sampler_initializer"),
5042                                 {C});
5043 }
5044