1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Frontend/CodeGenOptions.h" 39 #include "llvm/ADT/APSInt.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ConvertUTF.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/Mangler.h" 50 51 using namespace clang; 52 using namespace CodeGen; 53 54 static const char AnnotationSection[] = "llvm.metadata"; 55 56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 57 switch (CGM.getTarget().getCXXABI().getKind()) { 58 case TargetCXXABI::GenericAArch64: 59 case TargetCXXABI::GenericARM: 60 case TargetCXXABI::iOS: 61 case TargetCXXABI::GenericItanium: 62 return *CreateItaniumCXXABI(CGM); 63 case TargetCXXABI::Microsoft: 64 return *CreateMicrosoftCXXABI(CGM); 65 } 66 67 llvm_unreachable("invalid C++ ABI kind"); 68 } 69 70 71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 72 llvm::Module &M, const llvm::DataLayout &TD, 73 DiagnosticsEngine &diags) 74 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 75 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 76 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 77 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), 78 ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 79 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 80 RRData(0), CFConstantStringClassRef(0), 81 ConstantStringClassRef(0), NSConstantStringType(0), 82 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 83 BlockObjectAssign(0), BlockObjectDispose(0), 84 BlockDescriptorType(0), GenericBlockLiteralType(0), 85 LifetimeStartFn(0), LifetimeEndFn(0), 86 SanitizerBlacklist(CGO.SanitizerBlacklistFile), 87 SanOpts(SanitizerBlacklist.isIn(M) ? 88 SanitizerOptions::Disabled : LangOpts.Sanitize) { 89 90 // Initialize the type cache. 91 llvm::LLVMContext &LLVMContext = M.getContext(); 92 VoidTy = llvm::Type::getVoidTy(LLVMContext); 93 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 94 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 95 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 96 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 97 FloatTy = llvm::Type::getFloatTy(LLVMContext); 98 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 99 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 100 PointerAlignInBytes = 101 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 102 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 103 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 104 Int8PtrTy = Int8Ty->getPointerTo(0); 105 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 106 107 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 108 109 if (LangOpts.ObjC1) 110 createObjCRuntime(); 111 if (LangOpts.OpenCL) 112 createOpenCLRuntime(); 113 if (LangOpts.CUDA) 114 createCUDARuntime(); 115 116 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 117 if (SanOpts.Thread || 118 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 119 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 120 ABI.getMangleContext()); 121 122 // If debug info or coverage generation is enabled, create the CGDebugInfo 123 // object. 124 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 125 CodeGenOpts.EmitGcovArcs || 126 CodeGenOpts.EmitGcovNotes) 127 DebugInfo = new CGDebugInfo(*this); 128 129 Block.GlobalUniqueCount = 0; 130 131 if (C.getLangOpts().ObjCAutoRefCount) 132 ARCData = new ARCEntrypoints(); 133 RRData = new RREntrypoints(); 134 } 135 136 CodeGenModule::~CodeGenModule() { 137 delete ObjCRuntime; 138 delete OpenCLRuntime; 139 delete CUDARuntime; 140 delete TheTargetCodeGenInfo; 141 delete &ABI; 142 delete TBAA; 143 delete DebugInfo; 144 delete ARCData; 145 delete RRData; 146 } 147 148 void CodeGenModule::createObjCRuntime() { 149 // This is just isGNUFamily(), but we want to force implementors of 150 // new ABIs to decide how best to do this. 151 switch (LangOpts.ObjCRuntime.getKind()) { 152 case ObjCRuntime::GNUstep: 153 case ObjCRuntime::GCC: 154 case ObjCRuntime::ObjFW: 155 ObjCRuntime = CreateGNUObjCRuntime(*this); 156 return; 157 158 case ObjCRuntime::FragileMacOSX: 159 case ObjCRuntime::MacOSX: 160 case ObjCRuntime::iOS: 161 ObjCRuntime = CreateMacObjCRuntime(*this); 162 return; 163 } 164 llvm_unreachable("bad runtime kind"); 165 } 166 167 void CodeGenModule::createOpenCLRuntime() { 168 OpenCLRuntime = new CGOpenCLRuntime(*this); 169 } 170 171 void CodeGenModule::createCUDARuntime() { 172 CUDARuntime = CreateNVCUDARuntime(*this); 173 } 174 175 void CodeGenModule::Release() { 176 EmitDeferred(); 177 EmitCXXGlobalInitFunc(); 178 EmitCXXGlobalDtorFunc(); 179 EmitCXXThreadLocalInitFunc(); 180 if (ObjCRuntime) 181 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 182 AddGlobalCtor(ObjCInitFunction); 183 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 184 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 185 EmitGlobalAnnotations(); 186 EmitStaticExternCAliases(); 187 EmitLLVMUsed(); 188 189 if (CodeGenOpts.Autolink && 190 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 191 EmitModuleLinkOptions(); 192 } 193 194 SimplifyPersonality(); 195 196 if (getCodeGenOpts().EmitDeclMetadata) 197 EmitDeclMetadata(); 198 199 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 200 EmitCoverageFile(); 201 202 if (DebugInfo) 203 DebugInfo->finalize(); 204 } 205 206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 207 // Make sure that this type is translated. 208 Types.UpdateCompletedType(TD); 209 } 210 211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 212 if (!TBAA) 213 return 0; 214 return TBAA->getTBAAInfo(QTy); 215 } 216 217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 218 if (!TBAA) 219 return 0; 220 return TBAA->getTBAAInfoForVTablePtr(); 221 } 222 223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 224 if (!TBAA) 225 return 0; 226 return TBAA->getTBAAStructInfo(QTy); 227 } 228 229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 230 if (!TBAA) 231 return 0; 232 return TBAA->getTBAAStructTypeInfo(QTy); 233 } 234 235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 236 llvm::MDNode *AccessN, 237 uint64_t O) { 238 if (!TBAA) 239 return 0; 240 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 241 } 242 243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag 244 /// is the same as the type. For struct-path aware TBAA, the tag 245 /// is different from the type: base type, access type and offset. 246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 248 llvm::MDNode *TBAAInfo, 249 bool ConvertTypeToTag) { 250 if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA) 251 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 252 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 253 else 254 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 255 } 256 257 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 258 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 259 getDiags().Report(Context.getFullLoc(loc), diagID); 260 } 261 262 /// ErrorUnsupported - Print out an error that codegen doesn't support the 263 /// specified stmt yet. 264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 265 bool OmitOnError) { 266 if (OmitOnError && getDiags().hasErrorOccurred()) 267 return; 268 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 269 "cannot compile this %0 yet"); 270 std::string Msg = Type; 271 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 272 << Msg << S->getSourceRange(); 273 } 274 275 /// ErrorUnsupported - Print out an error that codegen doesn't support the 276 /// specified decl yet. 277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 278 bool OmitOnError) { 279 if (OmitOnError && getDiags().hasErrorOccurred()) 280 return; 281 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 282 "cannot compile this %0 yet"); 283 std::string Msg = Type; 284 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 285 } 286 287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 288 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 289 } 290 291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 292 const NamedDecl *D) const { 293 // Internal definitions always have default visibility. 294 if (GV->hasLocalLinkage()) { 295 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 296 return; 297 } 298 299 // Set visibility for definitions. 300 LinkageInfo LV = D->getLinkageAndVisibility(); 301 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 302 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 303 } 304 305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 306 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 307 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 308 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 309 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 310 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 311 } 312 313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 314 CodeGenOptions::TLSModel M) { 315 switch (M) { 316 case CodeGenOptions::GeneralDynamicTLSModel: 317 return llvm::GlobalVariable::GeneralDynamicTLSModel; 318 case CodeGenOptions::LocalDynamicTLSModel: 319 return llvm::GlobalVariable::LocalDynamicTLSModel; 320 case CodeGenOptions::InitialExecTLSModel: 321 return llvm::GlobalVariable::InitialExecTLSModel; 322 case CodeGenOptions::LocalExecTLSModel: 323 return llvm::GlobalVariable::LocalExecTLSModel; 324 } 325 llvm_unreachable("Invalid TLS model!"); 326 } 327 328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 329 const VarDecl &D) const { 330 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 331 332 llvm::GlobalVariable::ThreadLocalMode TLM; 333 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 334 335 // Override the TLS model if it is explicitly specified. 336 if (D.hasAttr<TLSModelAttr>()) { 337 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 338 TLM = GetLLVMTLSModel(Attr->getModel()); 339 } 340 341 GV->setThreadLocalMode(TLM); 342 } 343 344 /// Set the symbol visibility of type information (vtable and RTTI) 345 /// associated with the given type. 346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 347 const CXXRecordDecl *RD, 348 TypeVisibilityKind TVK) const { 349 setGlobalVisibility(GV, RD); 350 351 if (!CodeGenOpts.HiddenWeakVTables) 352 return; 353 354 // We never want to drop the visibility for RTTI names. 355 if (TVK == TVK_ForRTTIName) 356 return; 357 358 // We want to drop the visibility to hidden for weak type symbols. 359 // This isn't possible if there might be unresolved references 360 // elsewhere that rely on this symbol being visible. 361 362 // This should be kept roughly in sync with setThunkVisibility 363 // in CGVTables.cpp. 364 365 // Preconditions. 366 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 367 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 368 return; 369 370 // Don't override an explicit visibility attribute. 371 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 372 return; 373 374 switch (RD->getTemplateSpecializationKind()) { 375 // We have to disable the optimization if this is an EI definition 376 // because there might be EI declarations in other shared objects. 377 case TSK_ExplicitInstantiationDefinition: 378 case TSK_ExplicitInstantiationDeclaration: 379 return; 380 381 // Every use of a non-template class's type information has to emit it. 382 case TSK_Undeclared: 383 break; 384 385 // In theory, implicit instantiations can ignore the possibility of 386 // an explicit instantiation declaration because there necessarily 387 // must be an EI definition somewhere with default visibility. In 388 // practice, it's possible to have an explicit instantiation for 389 // an arbitrary template class, and linkers aren't necessarily able 390 // to deal with mixed-visibility symbols. 391 case TSK_ExplicitSpecialization: 392 case TSK_ImplicitInstantiation: 393 return; 394 } 395 396 // If there's a key function, there may be translation units 397 // that don't have the key function's definition. But ignore 398 // this if we're emitting RTTI under -fno-rtti. 399 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 400 // FIXME: what should we do if we "lose" the key function during 401 // the emission of the file? 402 if (Context.getCurrentKeyFunction(RD)) 403 return; 404 } 405 406 // Otherwise, drop the visibility to hidden. 407 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 408 GV->setUnnamedAddr(true); 409 } 410 411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 412 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 413 414 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 415 if (!Str.empty()) 416 return Str; 417 418 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 419 IdentifierInfo *II = ND->getIdentifier(); 420 assert(II && "Attempt to mangle unnamed decl."); 421 422 Str = II->getName(); 423 return Str; 424 } 425 426 SmallString<256> Buffer; 427 llvm::raw_svector_ostream Out(Buffer); 428 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 429 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 430 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 431 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 432 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 433 getCXXABI().getMangleContext().mangleBlock(BD, Out, 434 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 435 else 436 getCXXABI().getMangleContext().mangleName(ND, Out); 437 438 // Allocate space for the mangled name. 439 Out.flush(); 440 size_t Length = Buffer.size(); 441 char *Name = MangledNamesAllocator.Allocate<char>(Length); 442 std::copy(Buffer.begin(), Buffer.end(), Name); 443 444 Str = StringRef(Name, Length); 445 446 return Str; 447 } 448 449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 450 const BlockDecl *BD) { 451 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 452 const Decl *D = GD.getDecl(); 453 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 454 if (D == 0) 455 MangleCtx.mangleGlobalBlock(BD, 456 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 457 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 458 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 459 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 460 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 461 else 462 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 463 } 464 465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 466 return getModule().getNamedValue(Name); 467 } 468 469 /// AddGlobalCtor - Add a function to the list that will be called before 470 /// main() runs. 471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 472 // FIXME: Type coercion of void()* types. 473 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 474 } 475 476 /// AddGlobalDtor - Add a function to the list that will be called 477 /// when the module is unloaded. 478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 479 // FIXME: Type coercion of void()* types. 480 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 481 } 482 483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 484 // Ctor function type is void()*. 485 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 486 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 487 488 // Get the type of a ctor entry, { i32, void ()* }. 489 llvm::StructType *CtorStructTy = 490 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 491 492 // Construct the constructor and destructor arrays. 493 SmallVector<llvm::Constant*, 8> Ctors; 494 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 495 llvm::Constant *S[] = { 496 llvm::ConstantInt::get(Int32Ty, I->second, false), 497 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 498 }; 499 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 500 } 501 502 if (!Ctors.empty()) { 503 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 504 new llvm::GlobalVariable(TheModule, AT, false, 505 llvm::GlobalValue::AppendingLinkage, 506 llvm::ConstantArray::get(AT, Ctors), 507 GlobalName); 508 } 509 } 510 511 llvm::GlobalValue::LinkageTypes 512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 513 return getFunctionLinkage(cast<FunctionDecl>(GD.getDecl())); 514 } 515 516 llvm::GlobalValue::LinkageTypes 517 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 518 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 519 520 if (Linkage == GVA_Internal) 521 return llvm::Function::InternalLinkage; 522 523 if (D->hasAttr<DLLExportAttr>()) 524 return llvm::Function::DLLExportLinkage; 525 526 if (D->hasAttr<WeakAttr>()) 527 return llvm::Function::WeakAnyLinkage; 528 529 // In C99 mode, 'inline' functions are guaranteed to have a strong 530 // definition somewhere else, so we can use available_externally linkage. 531 if (Linkage == GVA_C99Inline) 532 return llvm::Function::AvailableExternallyLinkage; 533 534 // Note that Apple's kernel linker doesn't support symbol 535 // coalescing, so we need to avoid linkonce and weak linkages there. 536 // Normally, this means we just map to internal, but for explicit 537 // instantiations we'll map to external. 538 539 // In C++, the compiler has to emit a definition in every translation unit 540 // that references the function. We should use linkonce_odr because 541 // a) if all references in this translation unit are optimized away, we 542 // don't need to codegen it. b) if the function persists, it needs to be 543 // merged with other definitions. c) C++ has the ODR, so we know the 544 // definition is dependable. 545 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 546 return !Context.getLangOpts().AppleKext 547 ? llvm::Function::LinkOnceODRLinkage 548 : llvm::Function::InternalLinkage; 549 550 // An explicit instantiation of a template has weak linkage, since 551 // explicit instantiations can occur in multiple translation units 552 // and must all be equivalent. However, we are not allowed to 553 // throw away these explicit instantiations. 554 if (Linkage == GVA_ExplicitTemplateInstantiation) 555 return !Context.getLangOpts().AppleKext 556 ? llvm::Function::WeakODRLinkage 557 : llvm::Function::ExternalLinkage; 558 559 // Otherwise, we have strong external linkage. 560 assert(Linkage == GVA_StrongExternal); 561 return llvm::Function::ExternalLinkage; 562 } 563 564 565 /// SetFunctionDefinitionAttributes - Set attributes for a global. 566 /// 567 /// FIXME: This is currently only done for aliases and functions, but not for 568 /// variables (these details are set in EmitGlobalVarDefinition for variables). 569 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 570 llvm::GlobalValue *GV) { 571 SetCommonAttributes(D, GV); 572 } 573 574 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 575 const CGFunctionInfo &Info, 576 llvm::Function *F) { 577 unsigned CallingConv; 578 AttributeListType AttributeList; 579 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 580 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 581 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 582 } 583 584 /// Determines whether the language options require us to model 585 /// unwind exceptions. We treat -fexceptions as mandating this 586 /// except under the fragile ObjC ABI with only ObjC exceptions 587 /// enabled. This means, for example, that C with -fexceptions 588 /// enables this. 589 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 590 // If exceptions are completely disabled, obviously this is false. 591 if (!LangOpts.Exceptions) return false; 592 593 // If C++ exceptions are enabled, this is true. 594 if (LangOpts.CXXExceptions) return true; 595 596 // If ObjC exceptions are enabled, this depends on the ABI. 597 if (LangOpts.ObjCExceptions) { 598 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 599 } 600 601 return true; 602 } 603 604 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 605 llvm::Function *F) { 606 llvm::AttrBuilder B; 607 608 if (CodeGenOpts.UnwindTables) 609 B.addAttribute(llvm::Attribute::UWTable); 610 611 if (!hasUnwindExceptions(LangOpts)) 612 B.addAttribute(llvm::Attribute::NoUnwind); 613 614 if (D->hasAttr<NakedAttr>()) { 615 // Naked implies noinline: we should not be inlining such functions. 616 B.addAttribute(llvm::Attribute::Naked); 617 B.addAttribute(llvm::Attribute::NoInline); 618 } else if (D->hasAttr<NoInlineAttr>()) { 619 B.addAttribute(llvm::Attribute::NoInline); 620 } else if ((D->hasAttr<AlwaysInlineAttr>() || 621 D->hasAttr<ForceInlineAttr>()) && 622 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 623 llvm::Attribute::NoInline)) { 624 // (noinline wins over always_inline, and we can't specify both in IR) 625 B.addAttribute(llvm::Attribute::AlwaysInline); 626 } 627 628 if (D->hasAttr<ColdAttr>()) { 629 B.addAttribute(llvm::Attribute::OptimizeForSize); 630 B.addAttribute(llvm::Attribute::Cold); 631 } 632 633 if (D->hasAttr<MinSizeAttr>()) 634 B.addAttribute(llvm::Attribute::MinSize); 635 636 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 637 B.addAttribute(llvm::Attribute::StackProtect); 638 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 639 B.addAttribute(llvm::Attribute::StackProtectReq); 640 641 // Add sanitizer attributes if function is not blacklisted. 642 if (!SanitizerBlacklist.isIn(*F)) { 643 // When AddressSanitizer is enabled, set SanitizeAddress attribute 644 // unless __attribute__((no_sanitize_address)) is used. 645 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 646 B.addAttribute(llvm::Attribute::SanitizeAddress); 647 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 648 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 649 B.addAttribute(llvm::Attribute::SanitizeThread); 650 } 651 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 652 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 653 B.addAttribute(llvm::Attribute::SanitizeMemory); 654 } 655 656 F->addAttributes(llvm::AttributeSet::FunctionIndex, 657 llvm::AttributeSet::get( 658 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 659 660 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 661 F->setUnnamedAddr(true); 662 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 663 if (MD->isVirtual()) 664 F->setUnnamedAddr(true); 665 666 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 667 if (alignment) 668 F->setAlignment(alignment); 669 670 // C++ ABI requires 2-byte alignment for member functions. 671 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 672 F->setAlignment(2); 673 } 674 675 void CodeGenModule::SetCommonAttributes(const Decl *D, 676 llvm::GlobalValue *GV) { 677 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 678 setGlobalVisibility(GV, ND); 679 else 680 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 681 682 if (D->hasAttr<UsedAttr>()) 683 AddUsedGlobal(GV); 684 685 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 686 GV->setSection(SA->getName()); 687 688 // Alias cannot have attributes. Filter them here. 689 if (!isa<llvm::GlobalAlias>(GV)) 690 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 691 } 692 693 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 694 llvm::Function *F, 695 const CGFunctionInfo &FI) { 696 SetLLVMFunctionAttributes(D, FI, F); 697 SetLLVMFunctionAttributesForDefinition(D, F); 698 699 F->setLinkage(llvm::Function::InternalLinkage); 700 701 SetCommonAttributes(D, F); 702 } 703 704 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 705 llvm::Function *F, 706 bool IsIncompleteFunction) { 707 if (unsigned IID = F->getIntrinsicID()) { 708 // If this is an intrinsic function, set the function's attributes 709 // to the intrinsic's attributes. 710 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 711 (llvm::Intrinsic::ID)IID)); 712 return; 713 } 714 715 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 716 717 if (!IsIncompleteFunction) 718 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 719 720 // Only a few attributes are set on declarations; these may later be 721 // overridden by a definition. 722 723 if (FD->hasAttr<DLLImportAttr>()) { 724 F->setLinkage(llvm::Function::DLLImportLinkage); 725 } else if (FD->hasAttr<WeakAttr>() || 726 FD->isWeakImported()) { 727 // "extern_weak" is overloaded in LLVM; we probably should have 728 // separate linkage types for this. 729 F->setLinkage(llvm::Function::ExternalWeakLinkage); 730 } else { 731 F->setLinkage(llvm::Function::ExternalLinkage); 732 733 LinkageInfo LV = FD->getLinkageAndVisibility(); 734 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 735 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 736 } 737 } 738 739 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 740 F->setSection(SA->getName()); 741 } 742 743 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 744 assert(!GV->isDeclaration() && 745 "Only globals with definition can force usage."); 746 LLVMUsed.push_back(GV); 747 } 748 749 void CodeGenModule::EmitLLVMUsed() { 750 // Don't create llvm.used if there is no need. 751 if (LLVMUsed.empty()) 752 return; 753 754 // Convert LLVMUsed to what ConstantArray needs. 755 SmallVector<llvm::Constant*, 8> UsedArray; 756 UsedArray.resize(LLVMUsed.size()); 757 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 758 UsedArray[i] = 759 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 760 Int8PtrTy); 761 } 762 763 if (UsedArray.empty()) 764 return; 765 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 766 767 llvm::GlobalVariable *GV = 768 new llvm::GlobalVariable(getModule(), ATy, false, 769 llvm::GlobalValue::AppendingLinkage, 770 llvm::ConstantArray::get(ATy, UsedArray), 771 "llvm.used"); 772 773 GV->setSection("llvm.metadata"); 774 } 775 776 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 777 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 778 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 779 } 780 781 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 782 llvm::SmallString<32> Opt; 783 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 784 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 785 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 786 } 787 788 void CodeGenModule::AddDependentLib(StringRef Lib) { 789 llvm::SmallString<24> Opt; 790 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 791 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 792 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 793 } 794 795 /// \brief Add link options implied by the given module, including modules 796 /// it depends on, using a postorder walk. 797 static void addLinkOptionsPostorder(CodeGenModule &CGM, 798 Module *Mod, 799 SmallVectorImpl<llvm::Value *> &Metadata, 800 llvm::SmallPtrSet<Module *, 16> &Visited) { 801 // Import this module's parent. 802 if (Mod->Parent && Visited.insert(Mod->Parent)) { 803 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 804 } 805 806 // Import this module's dependencies. 807 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 808 if (Visited.insert(Mod->Imports[I-1])) 809 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 810 } 811 812 // Add linker options to link against the libraries/frameworks 813 // described by this module. 814 llvm::LLVMContext &Context = CGM.getLLVMContext(); 815 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 816 // Link against a framework. Frameworks are currently Darwin only, so we 817 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 818 if (Mod->LinkLibraries[I-1].IsFramework) { 819 llvm::Value *Args[2] = { 820 llvm::MDString::get(Context, "-framework"), 821 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 822 }; 823 824 Metadata.push_back(llvm::MDNode::get(Context, Args)); 825 continue; 826 } 827 828 // Link against a library. 829 llvm::SmallString<24> Opt; 830 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 831 Mod->LinkLibraries[I-1].Library, Opt); 832 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 833 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 834 } 835 } 836 837 void CodeGenModule::EmitModuleLinkOptions() { 838 // Collect the set of all of the modules we want to visit to emit link 839 // options, which is essentially the imported modules and all of their 840 // non-explicit child modules. 841 llvm::SetVector<clang::Module *> LinkModules; 842 llvm::SmallPtrSet<clang::Module *, 16> Visited; 843 SmallVector<clang::Module *, 16> Stack; 844 845 // Seed the stack with imported modules. 846 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 847 MEnd = ImportedModules.end(); 848 M != MEnd; ++M) { 849 if (Visited.insert(*M)) 850 Stack.push_back(*M); 851 } 852 853 // Find all of the modules to import, making a little effort to prune 854 // non-leaf modules. 855 while (!Stack.empty()) { 856 clang::Module *Mod = Stack.back(); 857 Stack.pop_back(); 858 859 bool AnyChildren = false; 860 861 // Visit the submodules of this module. 862 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 863 SubEnd = Mod->submodule_end(); 864 Sub != SubEnd; ++Sub) { 865 // Skip explicit children; they need to be explicitly imported to be 866 // linked against. 867 if ((*Sub)->IsExplicit) 868 continue; 869 870 if (Visited.insert(*Sub)) { 871 Stack.push_back(*Sub); 872 AnyChildren = true; 873 } 874 } 875 876 // We didn't find any children, so add this module to the list of 877 // modules to link against. 878 if (!AnyChildren) { 879 LinkModules.insert(Mod); 880 } 881 } 882 883 // Add link options for all of the imported modules in reverse topological 884 // order. We don't do anything to try to order import link flags with respect 885 // to linker options inserted by things like #pragma comment(). 886 SmallVector<llvm::Value *, 16> MetadataArgs; 887 Visited.clear(); 888 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 889 MEnd = LinkModules.end(); 890 M != MEnd; ++M) { 891 if (Visited.insert(*M)) 892 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 893 } 894 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 895 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 896 897 // Add the linker options metadata flag. 898 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 899 llvm::MDNode::get(getLLVMContext(), 900 LinkerOptionsMetadata)); 901 } 902 903 void CodeGenModule::EmitDeferred() { 904 // Emit code for any potentially referenced deferred decls. Since a 905 // previously unused static decl may become used during the generation of code 906 // for a static function, iterate until no changes are made. 907 908 while (true) { 909 if (!DeferredVTables.empty()) { 910 EmitDeferredVTables(); 911 912 // Emitting a v-table doesn't directly cause more v-tables to 913 // become deferred, although it can cause functions to be 914 // emitted that then need those v-tables. 915 assert(DeferredVTables.empty()); 916 } 917 918 // Stop if we're out of both deferred v-tables and deferred declarations. 919 if (DeferredDeclsToEmit.empty()) break; 920 921 GlobalDecl D = DeferredDeclsToEmit.back(); 922 DeferredDeclsToEmit.pop_back(); 923 924 // Check to see if we've already emitted this. This is necessary 925 // for a couple of reasons: first, decls can end up in the 926 // deferred-decls queue multiple times, and second, decls can end 927 // up with definitions in unusual ways (e.g. by an extern inline 928 // function acquiring a strong function redefinition). Just 929 // ignore these cases. 930 // 931 // TODO: That said, looking this up multiple times is very wasteful. 932 StringRef Name = getMangledName(D); 933 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 934 assert(CGRef && "Deferred decl wasn't referenced?"); 935 936 if (!CGRef->isDeclaration()) 937 continue; 938 939 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 940 // purposes an alias counts as a definition. 941 if (isa<llvm::GlobalAlias>(CGRef)) 942 continue; 943 944 // Otherwise, emit the definition and move on to the next one. 945 EmitGlobalDefinition(D); 946 } 947 } 948 949 void CodeGenModule::EmitGlobalAnnotations() { 950 if (Annotations.empty()) 951 return; 952 953 // Create a new global variable for the ConstantStruct in the Module. 954 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 955 Annotations[0]->getType(), Annotations.size()), Annotations); 956 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 957 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 958 "llvm.global.annotations"); 959 gv->setSection(AnnotationSection); 960 } 961 962 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 963 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 964 if (i != AnnotationStrings.end()) 965 return i->second; 966 967 // Not found yet, create a new global. 968 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 969 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 970 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 971 gv->setSection(AnnotationSection); 972 gv->setUnnamedAddr(true); 973 AnnotationStrings[Str] = gv; 974 return gv; 975 } 976 977 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 978 SourceManager &SM = getContext().getSourceManager(); 979 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 980 if (PLoc.isValid()) 981 return EmitAnnotationString(PLoc.getFilename()); 982 return EmitAnnotationString(SM.getBufferName(Loc)); 983 } 984 985 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 986 SourceManager &SM = getContext().getSourceManager(); 987 PresumedLoc PLoc = SM.getPresumedLoc(L); 988 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 989 SM.getExpansionLineNumber(L); 990 return llvm::ConstantInt::get(Int32Ty, LineNo); 991 } 992 993 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 994 const AnnotateAttr *AA, 995 SourceLocation L) { 996 // Get the globals for file name, annotation, and the line number. 997 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 998 *UnitGV = EmitAnnotationUnit(L), 999 *LineNoCst = EmitAnnotationLineNo(L); 1000 1001 // Create the ConstantStruct for the global annotation. 1002 llvm::Constant *Fields[4] = { 1003 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1004 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1005 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1006 LineNoCst 1007 }; 1008 return llvm::ConstantStruct::getAnon(Fields); 1009 } 1010 1011 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1012 llvm::GlobalValue *GV) { 1013 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1014 // Get the struct elements for these annotations. 1015 for (specific_attr_iterator<AnnotateAttr> 1016 ai = D->specific_attr_begin<AnnotateAttr>(), 1017 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1018 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1019 } 1020 1021 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1022 // Never defer when EmitAllDecls is specified. 1023 if (LangOpts.EmitAllDecls) 1024 return false; 1025 1026 return !getContext().DeclMustBeEmitted(Global); 1027 } 1028 1029 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1030 const CXXUuidofExpr* E) { 1031 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1032 // well-formed. 1033 StringRef Uuid; 1034 if (E->isTypeOperand()) 1035 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 1036 else { 1037 // Special case: __uuidof(0) means an all-zero GUID. 1038 Expr *Op = E->getExprOperand(); 1039 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 1040 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 1041 else 1042 Uuid = "00000000-0000-0000-0000-000000000000"; 1043 } 1044 std::string Name = "__uuid_" + Uuid.str(); 1045 1046 // Look for an existing global. 1047 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1048 return GV; 1049 1050 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1051 assert(Init && "failed to initialize as constant"); 1052 1053 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 1054 // first field is declared as "long", which for many targets is 8 bytes. 1055 // Those architectures are not supported. (With the MS abi, long is always 4 1056 // bytes.) 1057 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 1058 if (Init->getType() != GuidType) { 1059 DiagnosticsEngine &Diags = getDiags(); 1060 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1061 "__uuidof codegen is not supported on this architecture"); 1062 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 1063 Init = llvm::UndefValue::get(GuidType); 1064 } 1065 1066 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 1067 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 1068 GV->setUnnamedAddr(true); 1069 return GV; 1070 } 1071 1072 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1073 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1074 assert(AA && "No alias?"); 1075 1076 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1077 1078 // See if there is already something with the target's name in the module. 1079 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1080 if (Entry) { 1081 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1082 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1083 } 1084 1085 llvm::Constant *Aliasee; 1086 if (isa<llvm::FunctionType>(DeclTy)) 1087 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1088 GlobalDecl(cast<FunctionDecl>(VD)), 1089 /*ForVTable=*/false); 1090 else 1091 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1092 llvm::PointerType::getUnqual(DeclTy), 0); 1093 1094 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1095 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1096 WeakRefReferences.insert(F); 1097 1098 return Aliasee; 1099 } 1100 1101 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1102 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1103 1104 // Weak references don't produce any output by themselves. 1105 if (Global->hasAttr<WeakRefAttr>()) 1106 return; 1107 1108 // If this is an alias definition (which otherwise looks like a declaration) 1109 // emit it now. 1110 if (Global->hasAttr<AliasAttr>()) 1111 return EmitAliasDefinition(GD); 1112 1113 // If this is CUDA, be selective about which declarations we emit. 1114 if (LangOpts.CUDA) { 1115 if (CodeGenOpts.CUDAIsDevice) { 1116 if (!Global->hasAttr<CUDADeviceAttr>() && 1117 !Global->hasAttr<CUDAGlobalAttr>() && 1118 !Global->hasAttr<CUDAConstantAttr>() && 1119 !Global->hasAttr<CUDASharedAttr>()) 1120 return; 1121 } else { 1122 if (!Global->hasAttr<CUDAHostAttr>() && ( 1123 Global->hasAttr<CUDADeviceAttr>() || 1124 Global->hasAttr<CUDAConstantAttr>() || 1125 Global->hasAttr<CUDASharedAttr>())) 1126 return; 1127 } 1128 } 1129 1130 // Ignore declarations, they will be emitted on their first use. 1131 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1132 // Forward declarations are emitted lazily on first use. 1133 if (!FD->doesThisDeclarationHaveABody()) { 1134 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1135 return; 1136 1137 const FunctionDecl *InlineDefinition = 0; 1138 FD->getBody(InlineDefinition); 1139 1140 StringRef MangledName = getMangledName(GD); 1141 DeferredDecls.erase(MangledName); 1142 EmitGlobalDefinition(InlineDefinition); 1143 return; 1144 } 1145 } else { 1146 const VarDecl *VD = cast<VarDecl>(Global); 1147 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1148 1149 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1150 return; 1151 } 1152 1153 // Defer code generation when possible if this is a static definition, inline 1154 // function etc. These we only want to emit if they are used. 1155 if (!MayDeferGeneration(Global)) { 1156 // Emit the definition if it can't be deferred. 1157 EmitGlobalDefinition(GD); 1158 return; 1159 } 1160 1161 // If we're deferring emission of a C++ variable with an 1162 // initializer, remember the order in which it appeared in the file. 1163 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1164 cast<VarDecl>(Global)->hasInit()) { 1165 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1166 CXXGlobalInits.push_back(0); 1167 } 1168 1169 // If the value has already been used, add it directly to the 1170 // DeferredDeclsToEmit list. 1171 StringRef MangledName = getMangledName(GD); 1172 if (GetGlobalValue(MangledName)) 1173 DeferredDeclsToEmit.push_back(GD); 1174 else { 1175 // Otherwise, remember that we saw a deferred decl with this name. The 1176 // first use of the mangled name will cause it to move into 1177 // DeferredDeclsToEmit. 1178 DeferredDecls[MangledName] = GD; 1179 } 1180 } 1181 1182 namespace { 1183 struct FunctionIsDirectlyRecursive : 1184 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1185 const StringRef Name; 1186 const Builtin::Context &BI; 1187 bool Result; 1188 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1189 Name(N), BI(C), Result(false) { 1190 } 1191 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1192 1193 bool TraverseCallExpr(CallExpr *E) { 1194 const FunctionDecl *FD = E->getDirectCallee(); 1195 if (!FD) 1196 return true; 1197 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1198 if (Attr && Name == Attr->getLabel()) { 1199 Result = true; 1200 return false; 1201 } 1202 unsigned BuiltinID = FD->getBuiltinID(); 1203 if (!BuiltinID) 1204 return true; 1205 StringRef BuiltinName = BI.GetName(BuiltinID); 1206 if (BuiltinName.startswith("__builtin_") && 1207 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1208 Result = true; 1209 return false; 1210 } 1211 return true; 1212 } 1213 }; 1214 } 1215 1216 // isTriviallyRecursive - Check if this function calls another 1217 // decl that, because of the asm attribute or the other decl being a builtin, 1218 // ends up pointing to itself. 1219 bool 1220 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1221 StringRef Name; 1222 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1223 // asm labels are a special kind of mangling we have to support. 1224 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1225 if (!Attr) 1226 return false; 1227 Name = Attr->getLabel(); 1228 } else { 1229 Name = FD->getName(); 1230 } 1231 1232 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1233 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1234 return Walker.Result; 1235 } 1236 1237 bool 1238 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1239 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1240 return true; 1241 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1242 if (CodeGenOpts.OptimizationLevel == 0 && 1243 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1244 return false; 1245 // PR9614. Avoid cases where the source code is lying to us. An available 1246 // externally function should have an equivalent function somewhere else, 1247 // but a function that calls itself is clearly not equivalent to the real 1248 // implementation. 1249 // This happens in glibc's btowc and in some configure checks. 1250 return !isTriviallyRecursive(F); 1251 } 1252 1253 /// If the type for the method's class was generated by 1254 /// CGDebugInfo::createContextChain(), the cache contains only a 1255 /// limited DIType without any declarations. Since EmitFunctionStart() 1256 /// needs to find the canonical declaration for each method, we need 1257 /// to construct the complete type prior to emitting the method. 1258 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1259 if (!D->isInstance()) 1260 return; 1261 1262 if (CGDebugInfo *DI = getModuleDebugInfo()) 1263 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1264 const PointerType *ThisPtr = 1265 cast<PointerType>(D->getThisType(getContext())); 1266 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1267 } 1268 } 1269 1270 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1271 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1272 1273 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1274 Context.getSourceManager(), 1275 "Generating code for declaration"); 1276 1277 if (isa<FunctionDecl>(D)) { 1278 // At -O0, don't generate IR for functions with available_externally 1279 // linkage. 1280 if (!shouldEmitFunction(GD)) 1281 return; 1282 1283 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1284 CompleteDIClassType(Method); 1285 // Make sure to emit the definition(s) before we emit the thunks. 1286 // This is necessary for the generation of certain thunks. 1287 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1288 EmitCXXConstructor(CD, GD.getCtorType()); 1289 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1290 EmitCXXDestructor(DD, GD.getDtorType()); 1291 else 1292 EmitGlobalFunctionDefinition(GD); 1293 1294 if (Method->isVirtual()) 1295 getVTables().EmitThunks(GD); 1296 1297 return; 1298 } 1299 1300 return EmitGlobalFunctionDefinition(GD); 1301 } 1302 1303 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1304 return EmitGlobalVarDefinition(VD); 1305 1306 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1307 } 1308 1309 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1310 /// module, create and return an llvm Function with the specified type. If there 1311 /// is something in the module with the specified name, return it potentially 1312 /// bitcasted to the right type. 1313 /// 1314 /// If D is non-null, it specifies a decl that correspond to this. This is used 1315 /// to set the attributes on the function when it is first created. 1316 llvm::Constant * 1317 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1318 llvm::Type *Ty, 1319 GlobalDecl D, bool ForVTable, 1320 llvm::AttributeSet ExtraAttrs) { 1321 // Lookup the entry, lazily creating it if necessary. 1322 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1323 if (Entry) { 1324 if (WeakRefReferences.erase(Entry)) { 1325 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1326 if (FD && !FD->hasAttr<WeakAttr>()) 1327 Entry->setLinkage(llvm::Function::ExternalLinkage); 1328 } 1329 1330 if (Entry->getType()->getElementType() == Ty) 1331 return Entry; 1332 1333 // Make sure the result is of the correct type. 1334 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1335 } 1336 1337 // This function doesn't have a complete type (for example, the return 1338 // type is an incomplete struct). Use a fake type instead, and make 1339 // sure not to try to set attributes. 1340 bool IsIncompleteFunction = false; 1341 1342 llvm::FunctionType *FTy; 1343 if (isa<llvm::FunctionType>(Ty)) { 1344 FTy = cast<llvm::FunctionType>(Ty); 1345 } else { 1346 FTy = llvm::FunctionType::get(VoidTy, false); 1347 IsIncompleteFunction = true; 1348 } 1349 1350 llvm::Function *F = llvm::Function::Create(FTy, 1351 llvm::Function::ExternalLinkage, 1352 MangledName, &getModule()); 1353 assert(F->getName() == MangledName && "name was uniqued!"); 1354 if (D.getDecl()) 1355 SetFunctionAttributes(D, F, IsIncompleteFunction); 1356 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1357 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1358 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1359 llvm::AttributeSet::get(VMContext, 1360 llvm::AttributeSet::FunctionIndex, 1361 B)); 1362 } 1363 1364 // This is the first use or definition of a mangled name. If there is a 1365 // deferred decl with this name, remember that we need to emit it at the end 1366 // of the file. 1367 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1368 if (DDI != DeferredDecls.end()) { 1369 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1370 // list, and remove it from DeferredDecls (since we don't need it anymore). 1371 DeferredDeclsToEmit.push_back(DDI->second); 1372 DeferredDecls.erase(DDI); 1373 1374 // Otherwise, there are cases we have to worry about where we're 1375 // using a declaration for which we must emit a definition but where 1376 // we might not find a top-level definition: 1377 // - member functions defined inline in their classes 1378 // - friend functions defined inline in some class 1379 // - special member functions with implicit definitions 1380 // If we ever change our AST traversal to walk into class methods, 1381 // this will be unnecessary. 1382 // 1383 // We also don't emit a definition for a function if it's going to be an entry 1384 // in a vtable, unless it's already marked as used. 1385 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1386 // Look for a declaration that's lexically in a record. 1387 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1388 FD = FD->getMostRecentDecl(); 1389 do { 1390 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1391 if (FD->isImplicit() && !ForVTable) { 1392 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1393 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1394 break; 1395 } else if (FD->doesThisDeclarationHaveABody()) { 1396 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1397 break; 1398 } 1399 } 1400 FD = FD->getPreviousDecl(); 1401 } while (FD); 1402 } 1403 1404 // Make sure the result is of the requested type. 1405 if (!IsIncompleteFunction) { 1406 assert(F->getType()->getElementType() == Ty); 1407 return F; 1408 } 1409 1410 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1411 return llvm::ConstantExpr::getBitCast(F, PTy); 1412 } 1413 1414 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1415 /// non-null, then this function will use the specified type if it has to 1416 /// create it (this occurs when we see a definition of the function). 1417 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1418 llvm::Type *Ty, 1419 bool ForVTable) { 1420 // If there was no specific requested type, just convert it now. 1421 if (!Ty) 1422 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1423 1424 StringRef MangledName = getMangledName(GD); 1425 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1426 } 1427 1428 /// CreateRuntimeFunction - Create a new runtime function with the specified 1429 /// type and name. 1430 llvm::Constant * 1431 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1432 StringRef Name, 1433 llvm::AttributeSet ExtraAttrs) { 1434 llvm::Constant *C 1435 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1436 ExtraAttrs); 1437 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1438 if (F->empty()) 1439 F->setCallingConv(getRuntimeCC()); 1440 return C; 1441 } 1442 1443 /// isTypeConstant - Determine whether an object of this type can be emitted 1444 /// as a constant. 1445 /// 1446 /// If ExcludeCtor is true, the duration when the object's constructor runs 1447 /// will not be considered. The caller will need to verify that the object is 1448 /// not written to during its construction. 1449 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1450 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1451 return false; 1452 1453 if (Context.getLangOpts().CPlusPlus) { 1454 if (const CXXRecordDecl *Record 1455 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1456 return ExcludeCtor && !Record->hasMutableFields() && 1457 Record->hasTrivialDestructor(); 1458 } 1459 1460 return true; 1461 } 1462 1463 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1464 /// create and return an llvm GlobalVariable with the specified type. If there 1465 /// is something in the module with the specified name, return it potentially 1466 /// bitcasted to the right type. 1467 /// 1468 /// If D is non-null, it specifies a decl that correspond to this. This is used 1469 /// to set the attributes on the global when it is first created. 1470 llvm::Constant * 1471 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1472 llvm::PointerType *Ty, 1473 const VarDecl *D, 1474 bool UnnamedAddr) { 1475 // Lookup the entry, lazily creating it if necessary. 1476 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1477 if (Entry) { 1478 if (WeakRefReferences.erase(Entry)) { 1479 if (D && !D->hasAttr<WeakAttr>()) 1480 Entry->setLinkage(llvm::Function::ExternalLinkage); 1481 } 1482 1483 if (UnnamedAddr) 1484 Entry->setUnnamedAddr(true); 1485 1486 if (Entry->getType() == Ty) 1487 return Entry; 1488 1489 // Make sure the result is of the correct type. 1490 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1491 } 1492 1493 // This is the first use or definition of a mangled name. If there is a 1494 // deferred decl with this name, remember that we need to emit it at the end 1495 // of the file. 1496 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1497 if (DDI != DeferredDecls.end()) { 1498 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1499 // list, and remove it from DeferredDecls (since we don't need it anymore). 1500 DeferredDeclsToEmit.push_back(DDI->second); 1501 DeferredDecls.erase(DDI); 1502 } 1503 1504 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1505 llvm::GlobalVariable *GV = 1506 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1507 llvm::GlobalValue::ExternalLinkage, 1508 0, MangledName, 0, 1509 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1510 1511 // Handle things which are present even on external declarations. 1512 if (D) { 1513 // FIXME: This code is overly simple and should be merged with other global 1514 // handling. 1515 GV->setConstant(isTypeConstant(D->getType(), false)); 1516 1517 // Set linkage and visibility in case we never see a definition. 1518 LinkageInfo LV = D->getLinkageAndVisibility(); 1519 if (LV.getLinkage() != ExternalLinkage) { 1520 // Don't set internal linkage on declarations. 1521 } else { 1522 if (D->hasAttr<DLLImportAttr>()) 1523 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1524 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1525 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1526 1527 // Set visibility on a declaration only if it's explicit. 1528 if (LV.isVisibilityExplicit()) 1529 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1530 } 1531 1532 if (D->getTLSKind()) { 1533 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1534 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1535 setTLSMode(GV, *D); 1536 } 1537 } 1538 1539 if (AddrSpace != Ty->getAddressSpace()) 1540 return llvm::ConstantExpr::getBitCast(GV, Ty); 1541 else 1542 return GV; 1543 } 1544 1545 1546 llvm::GlobalVariable * 1547 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1548 llvm::Type *Ty, 1549 llvm::GlobalValue::LinkageTypes Linkage) { 1550 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1551 llvm::GlobalVariable *OldGV = 0; 1552 1553 1554 if (GV) { 1555 // Check if the variable has the right type. 1556 if (GV->getType()->getElementType() == Ty) 1557 return GV; 1558 1559 // Because C++ name mangling, the only way we can end up with an already 1560 // existing global with the same name is if it has been declared extern "C". 1561 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1562 OldGV = GV; 1563 } 1564 1565 // Create a new variable. 1566 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1567 Linkage, 0, Name); 1568 1569 if (OldGV) { 1570 // Replace occurrences of the old variable if needed. 1571 GV->takeName(OldGV); 1572 1573 if (!OldGV->use_empty()) { 1574 llvm::Constant *NewPtrForOldDecl = 1575 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1576 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1577 } 1578 1579 OldGV->eraseFromParent(); 1580 } 1581 1582 return GV; 1583 } 1584 1585 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1586 /// given global variable. If Ty is non-null and if the global doesn't exist, 1587 /// then it will be created with the specified type instead of whatever the 1588 /// normal requested type would be. 1589 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1590 llvm::Type *Ty) { 1591 assert(D->hasGlobalStorage() && "Not a global variable"); 1592 QualType ASTTy = D->getType(); 1593 if (Ty == 0) 1594 Ty = getTypes().ConvertTypeForMem(ASTTy); 1595 1596 llvm::PointerType *PTy = 1597 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1598 1599 StringRef MangledName = getMangledName(D); 1600 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1601 } 1602 1603 /// CreateRuntimeVariable - Create a new runtime global variable with the 1604 /// specified type and name. 1605 llvm::Constant * 1606 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1607 StringRef Name) { 1608 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1609 true); 1610 } 1611 1612 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1613 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1614 1615 if (MayDeferGeneration(D)) { 1616 // If we have not seen a reference to this variable yet, place it 1617 // into the deferred declarations table to be emitted if needed 1618 // later. 1619 StringRef MangledName = getMangledName(D); 1620 if (!GetGlobalValue(MangledName)) { 1621 DeferredDecls[MangledName] = D; 1622 return; 1623 } 1624 } 1625 1626 // The tentative definition is the only definition. 1627 EmitGlobalVarDefinition(D); 1628 } 1629 1630 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1631 return Context.toCharUnitsFromBits( 1632 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1633 } 1634 1635 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1636 unsigned AddrSpace) { 1637 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1638 if (D->hasAttr<CUDAConstantAttr>()) 1639 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1640 else if (D->hasAttr<CUDASharedAttr>()) 1641 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1642 else 1643 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1644 } 1645 1646 return AddrSpace; 1647 } 1648 1649 template<typename SomeDecl> 1650 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1651 llvm::GlobalValue *GV) { 1652 if (!getLangOpts().CPlusPlus) 1653 return; 1654 1655 // Must have 'used' attribute, or else inline assembly can't rely on 1656 // the name existing. 1657 if (!D->template hasAttr<UsedAttr>()) 1658 return; 1659 1660 // Must have internal linkage and an ordinary name. 1661 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1662 return; 1663 1664 // Must be in an extern "C" context. Entities declared directly within 1665 // a record are not extern "C" even if the record is in such a context. 1666 const SomeDecl *First = D->getFirstDeclaration(); 1667 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1668 return; 1669 1670 // OK, this is an internal linkage entity inside an extern "C" linkage 1671 // specification. Make a note of that so we can give it the "expected" 1672 // mangled name if nothing else is using that name. 1673 std::pair<StaticExternCMap::iterator, bool> R = 1674 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1675 1676 // If we have multiple internal linkage entities with the same name 1677 // in extern "C" regions, none of them gets that name. 1678 if (!R.second) 1679 R.first->second = 0; 1680 } 1681 1682 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1683 llvm::Constant *Init = 0; 1684 QualType ASTTy = D->getType(); 1685 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1686 bool NeedsGlobalCtor = false; 1687 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1688 1689 const VarDecl *InitDecl; 1690 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1691 1692 if (!InitExpr) { 1693 // This is a tentative definition; tentative definitions are 1694 // implicitly initialized with { 0 }. 1695 // 1696 // Note that tentative definitions are only emitted at the end of 1697 // a translation unit, so they should never have incomplete 1698 // type. In addition, EmitTentativeDefinition makes sure that we 1699 // never attempt to emit a tentative definition if a real one 1700 // exists. A use may still exists, however, so we still may need 1701 // to do a RAUW. 1702 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1703 Init = EmitNullConstant(D->getType()); 1704 } else { 1705 initializedGlobalDecl = GlobalDecl(D); 1706 Init = EmitConstantInit(*InitDecl); 1707 1708 if (!Init) { 1709 QualType T = InitExpr->getType(); 1710 if (D->getType()->isReferenceType()) 1711 T = D->getType(); 1712 1713 if (getLangOpts().CPlusPlus) { 1714 Init = EmitNullConstant(T); 1715 NeedsGlobalCtor = true; 1716 } else { 1717 ErrorUnsupported(D, "static initializer"); 1718 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1719 } 1720 } else { 1721 // We don't need an initializer, so remove the entry for the delayed 1722 // initializer position (just in case this entry was delayed) if we 1723 // also don't need to register a destructor. 1724 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1725 DelayedCXXInitPosition.erase(D); 1726 } 1727 } 1728 1729 llvm::Type* InitType = Init->getType(); 1730 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1731 1732 // Strip off a bitcast if we got one back. 1733 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1734 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1735 // all zero index gep. 1736 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1737 Entry = CE->getOperand(0); 1738 } 1739 1740 // Entry is now either a Function or GlobalVariable. 1741 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1742 1743 // We have a definition after a declaration with the wrong type. 1744 // We must make a new GlobalVariable* and update everything that used OldGV 1745 // (a declaration or tentative definition) with the new GlobalVariable* 1746 // (which will be a definition). 1747 // 1748 // This happens if there is a prototype for a global (e.g. 1749 // "extern int x[];") and then a definition of a different type (e.g. 1750 // "int x[10];"). This also happens when an initializer has a different type 1751 // from the type of the global (this happens with unions). 1752 if (GV == 0 || 1753 GV->getType()->getElementType() != InitType || 1754 GV->getType()->getAddressSpace() != 1755 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1756 1757 // Move the old entry aside so that we'll create a new one. 1758 Entry->setName(StringRef()); 1759 1760 // Make a new global with the correct type, this is now guaranteed to work. 1761 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1762 1763 // Replace all uses of the old global with the new global 1764 llvm::Constant *NewPtrForOldDecl = 1765 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1766 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1767 1768 // Erase the old global, since it is no longer used. 1769 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1770 } 1771 1772 MaybeHandleStaticInExternC(D, GV); 1773 1774 if (D->hasAttr<AnnotateAttr>()) 1775 AddGlobalAnnotations(D, GV); 1776 1777 GV->setInitializer(Init); 1778 1779 // If it is safe to mark the global 'constant', do so now. 1780 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1781 isTypeConstant(D->getType(), true)); 1782 1783 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1784 1785 // Set the llvm linkage type as appropriate. 1786 llvm::GlobalValue::LinkageTypes Linkage = 1787 GetLLVMLinkageVarDefinition(D, GV); 1788 GV->setLinkage(Linkage); 1789 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1790 // common vars aren't constant even if declared const. 1791 GV->setConstant(false); 1792 1793 SetCommonAttributes(D, GV); 1794 1795 // Emit the initializer function if necessary. 1796 if (NeedsGlobalCtor || NeedsGlobalDtor) 1797 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1798 1799 // If we are compiling with ASan, add metadata indicating dynamically 1800 // initialized globals. 1801 if (SanOpts.Address && NeedsGlobalCtor) { 1802 llvm::Module &M = getModule(); 1803 1804 llvm::NamedMDNode *DynamicInitializers = 1805 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1806 llvm::Value *GlobalToAdd[] = { GV }; 1807 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1808 DynamicInitializers->addOperand(ThisGlobal); 1809 } 1810 1811 // Emit global variable debug information. 1812 if (CGDebugInfo *DI = getModuleDebugInfo()) 1813 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1814 DI->EmitGlobalVariable(GV, D); 1815 } 1816 1817 llvm::GlobalValue::LinkageTypes 1818 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1819 llvm::GlobalVariable *GV) { 1820 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1821 if (Linkage == GVA_Internal) 1822 return llvm::Function::InternalLinkage; 1823 else if (D->hasAttr<DLLImportAttr>()) 1824 return llvm::Function::DLLImportLinkage; 1825 else if (D->hasAttr<DLLExportAttr>()) 1826 return llvm::Function::DLLExportLinkage; 1827 else if (D->hasAttr<SelectAnyAttr>()) { 1828 // selectany symbols are externally visible, so use weak instead of 1829 // linkonce. MSVC optimizes away references to const selectany globals, so 1830 // all definitions should be the same and ODR linkage should be used. 1831 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1832 return llvm::GlobalVariable::WeakODRLinkage; 1833 } else if (D->hasAttr<WeakAttr>()) { 1834 if (GV->isConstant()) 1835 return llvm::GlobalVariable::WeakODRLinkage; 1836 else 1837 return llvm::GlobalVariable::WeakAnyLinkage; 1838 } else if (Linkage == GVA_TemplateInstantiation || 1839 Linkage == GVA_ExplicitTemplateInstantiation) 1840 return llvm::GlobalVariable::WeakODRLinkage; 1841 else if (!getLangOpts().CPlusPlus && 1842 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1843 D->getAttr<CommonAttr>()) && 1844 !D->hasExternalStorage() && !D->getInit() && 1845 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1846 !D->getAttr<WeakImportAttr>()) { 1847 // Thread local vars aren't considered common linkage. 1848 return llvm::GlobalVariable::CommonLinkage; 1849 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1850 getTarget().getTriple().isMacOSX()) 1851 // On Darwin, the backing variable for a C++11 thread_local variable always 1852 // has internal linkage; all accesses should just be calls to the 1853 // Itanium-specified entry point, which has the normal linkage of the 1854 // variable. 1855 return llvm::GlobalValue::InternalLinkage; 1856 return llvm::GlobalVariable::ExternalLinkage; 1857 } 1858 1859 /// Replace the uses of a function that was declared with a non-proto type. 1860 /// We want to silently drop extra arguments from call sites 1861 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1862 llvm::Function *newFn) { 1863 // Fast path. 1864 if (old->use_empty()) return; 1865 1866 llvm::Type *newRetTy = newFn->getReturnType(); 1867 SmallVector<llvm::Value*, 4> newArgs; 1868 1869 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1870 ui != ue; ) { 1871 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1872 llvm::User *user = *use; 1873 1874 // Recognize and replace uses of bitcasts. Most calls to 1875 // unprototyped functions will use bitcasts. 1876 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1877 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1878 replaceUsesOfNonProtoConstant(bitcast, newFn); 1879 continue; 1880 } 1881 1882 // Recognize calls to the function. 1883 llvm::CallSite callSite(user); 1884 if (!callSite) continue; 1885 if (!callSite.isCallee(use)) continue; 1886 1887 // If the return types don't match exactly, then we can't 1888 // transform this call unless it's dead. 1889 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1890 continue; 1891 1892 // Get the call site's attribute list. 1893 SmallVector<llvm::AttributeSet, 8> newAttrs; 1894 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1895 1896 // Collect any return attributes from the call. 1897 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1898 newAttrs.push_back( 1899 llvm::AttributeSet::get(newFn->getContext(), 1900 oldAttrs.getRetAttributes())); 1901 1902 // If the function was passed too few arguments, don't transform. 1903 unsigned newNumArgs = newFn->arg_size(); 1904 if (callSite.arg_size() < newNumArgs) continue; 1905 1906 // If extra arguments were passed, we silently drop them. 1907 // If any of the types mismatch, we don't transform. 1908 unsigned argNo = 0; 1909 bool dontTransform = false; 1910 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1911 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1912 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1913 dontTransform = true; 1914 break; 1915 } 1916 1917 // Add any parameter attributes. 1918 if (oldAttrs.hasAttributes(argNo + 1)) 1919 newAttrs. 1920 push_back(llvm:: 1921 AttributeSet::get(newFn->getContext(), 1922 oldAttrs.getParamAttributes(argNo + 1))); 1923 } 1924 if (dontTransform) 1925 continue; 1926 1927 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1928 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1929 oldAttrs.getFnAttributes())); 1930 1931 // Okay, we can transform this. Create the new call instruction and copy 1932 // over the required information. 1933 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1934 1935 llvm::CallSite newCall; 1936 if (callSite.isCall()) { 1937 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1938 callSite.getInstruction()); 1939 } else { 1940 llvm::InvokeInst *oldInvoke = 1941 cast<llvm::InvokeInst>(callSite.getInstruction()); 1942 newCall = llvm::InvokeInst::Create(newFn, 1943 oldInvoke->getNormalDest(), 1944 oldInvoke->getUnwindDest(), 1945 newArgs, "", 1946 callSite.getInstruction()); 1947 } 1948 newArgs.clear(); // for the next iteration 1949 1950 if (!newCall->getType()->isVoidTy()) 1951 newCall->takeName(callSite.getInstruction()); 1952 newCall.setAttributes( 1953 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1954 newCall.setCallingConv(callSite.getCallingConv()); 1955 1956 // Finally, remove the old call, replacing any uses with the new one. 1957 if (!callSite->use_empty()) 1958 callSite->replaceAllUsesWith(newCall.getInstruction()); 1959 1960 // Copy debug location attached to CI. 1961 if (!callSite->getDebugLoc().isUnknown()) 1962 newCall->setDebugLoc(callSite->getDebugLoc()); 1963 callSite->eraseFromParent(); 1964 } 1965 } 1966 1967 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1968 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1969 /// existing call uses of the old function in the module, this adjusts them to 1970 /// call the new function directly. 1971 /// 1972 /// This is not just a cleanup: the always_inline pass requires direct calls to 1973 /// functions to be able to inline them. If there is a bitcast in the way, it 1974 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1975 /// run at -O0. 1976 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1977 llvm::Function *NewFn) { 1978 // If we're redefining a global as a function, don't transform it. 1979 if (!isa<llvm::Function>(Old)) return; 1980 1981 replaceUsesOfNonProtoConstant(Old, NewFn); 1982 } 1983 1984 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1985 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1986 // If we have a definition, this might be a deferred decl. If the 1987 // instantiation is explicit, make sure we emit it at the end. 1988 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1989 GetAddrOfGlobalVar(VD); 1990 1991 EmitTopLevelDecl(VD); 1992 } 1993 1994 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1995 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1996 1997 // Compute the function info and LLVM type. 1998 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1999 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2000 2001 // Get or create the prototype for the function. 2002 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2003 2004 // Strip off a bitcast if we got one back. 2005 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2006 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2007 Entry = CE->getOperand(0); 2008 } 2009 2010 2011 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2012 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2013 2014 // If the types mismatch then we have to rewrite the definition. 2015 assert(OldFn->isDeclaration() && 2016 "Shouldn't replace non-declaration"); 2017 2018 // F is the Function* for the one with the wrong type, we must make a new 2019 // Function* and update everything that used F (a declaration) with the new 2020 // Function* (which will be a definition). 2021 // 2022 // This happens if there is a prototype for a function 2023 // (e.g. "int f()") and then a definition of a different type 2024 // (e.g. "int f(int x)"). Move the old function aside so that it 2025 // doesn't interfere with GetAddrOfFunction. 2026 OldFn->setName(StringRef()); 2027 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2028 2029 // This might be an implementation of a function without a 2030 // prototype, in which case, try to do special replacement of 2031 // calls which match the new prototype. The really key thing here 2032 // is that we also potentially drop arguments from the call site 2033 // so as to make a direct call, which makes the inliner happier 2034 // and suppresses a number of optimizer warnings (!) about 2035 // dropping arguments. 2036 if (!OldFn->use_empty()) { 2037 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2038 OldFn->removeDeadConstantUsers(); 2039 } 2040 2041 // Replace uses of F with the Function we will endow with a body. 2042 if (!Entry->use_empty()) { 2043 llvm::Constant *NewPtrForOldDecl = 2044 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2045 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2046 } 2047 2048 // Ok, delete the old function now, which is dead. 2049 OldFn->eraseFromParent(); 2050 2051 Entry = NewFn; 2052 } 2053 2054 // We need to set linkage and visibility on the function before 2055 // generating code for it because various parts of IR generation 2056 // want to propagate this information down (e.g. to local static 2057 // declarations). 2058 llvm::Function *Fn = cast<llvm::Function>(Entry); 2059 setFunctionLinkage(GD, Fn); 2060 2061 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2062 setGlobalVisibility(Fn, D); 2063 2064 MaybeHandleStaticInExternC(D, Fn); 2065 2066 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2067 2068 SetFunctionDefinitionAttributes(D, Fn); 2069 SetLLVMFunctionAttributesForDefinition(D, Fn); 2070 2071 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2072 AddGlobalCtor(Fn, CA->getPriority()); 2073 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2074 AddGlobalDtor(Fn, DA->getPriority()); 2075 if (D->hasAttr<AnnotateAttr>()) 2076 AddGlobalAnnotations(D, Fn); 2077 } 2078 2079 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2080 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2081 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2082 assert(AA && "Not an alias?"); 2083 2084 StringRef MangledName = getMangledName(GD); 2085 2086 // If there is a definition in the module, then it wins over the alias. 2087 // This is dubious, but allow it to be safe. Just ignore the alias. 2088 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2089 if (Entry && !Entry->isDeclaration()) 2090 return; 2091 2092 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2093 2094 // Create a reference to the named value. This ensures that it is emitted 2095 // if a deferred decl. 2096 llvm::Constant *Aliasee; 2097 if (isa<llvm::FunctionType>(DeclTy)) 2098 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2099 /*ForVTable=*/false); 2100 else 2101 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2102 llvm::PointerType::getUnqual(DeclTy), 0); 2103 2104 // Create the new alias itself, but don't set a name yet. 2105 llvm::GlobalValue *GA = 2106 new llvm::GlobalAlias(Aliasee->getType(), 2107 llvm::Function::ExternalLinkage, 2108 "", Aliasee, &getModule()); 2109 2110 if (Entry) { 2111 assert(Entry->isDeclaration()); 2112 2113 // If there is a declaration in the module, then we had an extern followed 2114 // by the alias, as in: 2115 // extern int test6(); 2116 // ... 2117 // int test6() __attribute__((alias("test7"))); 2118 // 2119 // Remove it and replace uses of it with the alias. 2120 GA->takeName(Entry); 2121 2122 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2123 Entry->getType())); 2124 Entry->eraseFromParent(); 2125 } else { 2126 GA->setName(MangledName); 2127 } 2128 2129 // Set attributes which are particular to an alias; this is a 2130 // specialization of the attributes which may be set on a global 2131 // variable/function. 2132 if (D->hasAttr<DLLExportAttr>()) { 2133 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2134 // The dllexport attribute is ignored for undefined symbols. 2135 if (FD->hasBody()) 2136 GA->setLinkage(llvm::Function::DLLExportLinkage); 2137 } else { 2138 GA->setLinkage(llvm::Function::DLLExportLinkage); 2139 } 2140 } else if (D->hasAttr<WeakAttr>() || 2141 D->hasAttr<WeakRefAttr>() || 2142 D->isWeakImported()) { 2143 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2144 } 2145 2146 SetCommonAttributes(D, GA); 2147 } 2148 2149 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2150 ArrayRef<llvm::Type*> Tys) { 2151 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2152 Tys); 2153 } 2154 2155 static llvm::StringMapEntry<llvm::Constant*> & 2156 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2157 const StringLiteral *Literal, 2158 bool TargetIsLSB, 2159 bool &IsUTF16, 2160 unsigned &StringLength) { 2161 StringRef String = Literal->getString(); 2162 unsigned NumBytes = String.size(); 2163 2164 // Check for simple case. 2165 if (!Literal->containsNonAsciiOrNull()) { 2166 StringLength = NumBytes; 2167 return Map.GetOrCreateValue(String); 2168 } 2169 2170 // Otherwise, convert the UTF8 literals into a string of shorts. 2171 IsUTF16 = true; 2172 2173 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2174 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2175 UTF16 *ToPtr = &ToBuf[0]; 2176 2177 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2178 &ToPtr, ToPtr + NumBytes, 2179 strictConversion); 2180 2181 // ConvertUTF8toUTF16 returns the length in ToPtr. 2182 StringLength = ToPtr - &ToBuf[0]; 2183 2184 // Add an explicit null. 2185 *ToPtr = 0; 2186 return Map. 2187 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2188 (StringLength + 1) * 2)); 2189 } 2190 2191 static llvm::StringMapEntry<llvm::Constant*> & 2192 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2193 const StringLiteral *Literal, 2194 unsigned &StringLength) { 2195 StringRef String = Literal->getString(); 2196 StringLength = String.size(); 2197 return Map.GetOrCreateValue(String); 2198 } 2199 2200 llvm::Constant * 2201 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2202 unsigned StringLength = 0; 2203 bool isUTF16 = false; 2204 llvm::StringMapEntry<llvm::Constant*> &Entry = 2205 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2206 getDataLayout().isLittleEndian(), 2207 isUTF16, StringLength); 2208 2209 if (llvm::Constant *C = Entry.getValue()) 2210 return C; 2211 2212 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2213 llvm::Constant *Zeros[] = { Zero, Zero }; 2214 llvm::Value *V; 2215 2216 // If we don't already have it, get __CFConstantStringClassReference. 2217 if (!CFConstantStringClassRef) { 2218 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2219 Ty = llvm::ArrayType::get(Ty, 0); 2220 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2221 "__CFConstantStringClassReference"); 2222 // Decay array -> ptr 2223 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2224 CFConstantStringClassRef = V; 2225 } 2226 else 2227 V = CFConstantStringClassRef; 2228 2229 QualType CFTy = getContext().getCFConstantStringType(); 2230 2231 llvm::StructType *STy = 2232 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2233 2234 llvm::Constant *Fields[4]; 2235 2236 // Class pointer. 2237 Fields[0] = cast<llvm::ConstantExpr>(V); 2238 2239 // Flags. 2240 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2241 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2242 llvm::ConstantInt::get(Ty, 0x07C8); 2243 2244 // String pointer. 2245 llvm::Constant *C = 0; 2246 if (isUTF16) { 2247 ArrayRef<uint16_t> Arr = 2248 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2249 const_cast<char *>(Entry.getKey().data())), 2250 Entry.getKey().size() / 2); 2251 C = llvm::ConstantDataArray::get(VMContext, Arr); 2252 } else { 2253 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2254 } 2255 2256 llvm::GlobalValue::LinkageTypes Linkage; 2257 if (isUTF16) 2258 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2259 Linkage = llvm::GlobalValue::InternalLinkage; 2260 else 2261 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2262 // when using private linkage. It is not clear if this is a bug in ld 2263 // or a reasonable new restriction. 2264 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2265 2266 // Note: -fwritable-strings doesn't make the backing store strings of 2267 // CFStrings writable. (See <rdar://problem/10657500>) 2268 llvm::GlobalVariable *GV = 2269 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2270 Linkage, C, ".str"); 2271 GV->setUnnamedAddr(true); 2272 // Don't enforce the target's minimum global alignment, since the only use 2273 // of the string is via this class initializer. 2274 if (isUTF16) { 2275 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2276 GV->setAlignment(Align.getQuantity()); 2277 } else { 2278 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2279 GV->setAlignment(Align.getQuantity()); 2280 } 2281 2282 // String. 2283 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2284 2285 if (isUTF16) 2286 // Cast the UTF16 string to the correct type. 2287 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2288 2289 // String length. 2290 Ty = getTypes().ConvertType(getContext().LongTy); 2291 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2292 2293 // The struct. 2294 C = llvm::ConstantStruct::get(STy, Fields); 2295 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2296 llvm::GlobalVariable::PrivateLinkage, C, 2297 "_unnamed_cfstring_"); 2298 if (const char *Sect = getTarget().getCFStringSection()) 2299 GV->setSection(Sect); 2300 Entry.setValue(GV); 2301 2302 return GV; 2303 } 2304 2305 static RecordDecl * 2306 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2307 DeclContext *DC, IdentifierInfo *Id) { 2308 SourceLocation Loc; 2309 if (Ctx.getLangOpts().CPlusPlus) 2310 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2311 else 2312 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2313 } 2314 2315 llvm::Constant * 2316 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2317 unsigned StringLength = 0; 2318 llvm::StringMapEntry<llvm::Constant*> &Entry = 2319 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2320 2321 if (llvm::Constant *C = Entry.getValue()) 2322 return C; 2323 2324 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2325 llvm::Constant *Zeros[] = { Zero, Zero }; 2326 llvm::Value *V; 2327 // If we don't already have it, get _NSConstantStringClassReference. 2328 if (!ConstantStringClassRef) { 2329 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2330 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2331 llvm::Constant *GV; 2332 if (LangOpts.ObjCRuntime.isNonFragile()) { 2333 std::string str = 2334 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2335 : "OBJC_CLASS_$_" + StringClass; 2336 GV = getObjCRuntime().GetClassGlobal(str); 2337 // Make sure the result is of the correct type. 2338 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2339 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2340 ConstantStringClassRef = V; 2341 } else { 2342 std::string str = 2343 StringClass.empty() ? "_NSConstantStringClassReference" 2344 : "_" + StringClass + "ClassReference"; 2345 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2346 GV = CreateRuntimeVariable(PTy, str); 2347 // Decay array -> ptr 2348 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2349 ConstantStringClassRef = V; 2350 } 2351 } 2352 else 2353 V = ConstantStringClassRef; 2354 2355 if (!NSConstantStringType) { 2356 // Construct the type for a constant NSString. 2357 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2358 Context.getTranslationUnitDecl(), 2359 &Context.Idents.get("__builtin_NSString")); 2360 D->startDefinition(); 2361 2362 QualType FieldTypes[3]; 2363 2364 // const int *isa; 2365 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2366 // const char *str; 2367 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2368 // unsigned int length; 2369 FieldTypes[2] = Context.UnsignedIntTy; 2370 2371 // Create fields 2372 for (unsigned i = 0; i < 3; ++i) { 2373 FieldDecl *Field = FieldDecl::Create(Context, D, 2374 SourceLocation(), 2375 SourceLocation(), 0, 2376 FieldTypes[i], /*TInfo=*/0, 2377 /*BitWidth=*/0, 2378 /*Mutable=*/false, 2379 ICIS_NoInit); 2380 Field->setAccess(AS_public); 2381 D->addDecl(Field); 2382 } 2383 2384 D->completeDefinition(); 2385 QualType NSTy = Context.getTagDeclType(D); 2386 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2387 } 2388 2389 llvm::Constant *Fields[3]; 2390 2391 // Class pointer. 2392 Fields[0] = cast<llvm::ConstantExpr>(V); 2393 2394 // String pointer. 2395 llvm::Constant *C = 2396 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2397 2398 llvm::GlobalValue::LinkageTypes Linkage; 2399 bool isConstant; 2400 Linkage = llvm::GlobalValue::PrivateLinkage; 2401 isConstant = !LangOpts.WritableStrings; 2402 2403 llvm::GlobalVariable *GV = 2404 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2405 ".str"); 2406 GV->setUnnamedAddr(true); 2407 // Don't enforce the target's minimum global alignment, since the only use 2408 // of the string is via this class initializer. 2409 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2410 GV->setAlignment(Align.getQuantity()); 2411 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2412 2413 // String length. 2414 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2415 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2416 2417 // The struct. 2418 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2419 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2420 llvm::GlobalVariable::PrivateLinkage, C, 2421 "_unnamed_nsstring_"); 2422 // FIXME. Fix section. 2423 if (const char *Sect = 2424 LangOpts.ObjCRuntime.isNonFragile() 2425 ? getTarget().getNSStringNonFragileABISection() 2426 : getTarget().getNSStringSection()) 2427 GV->setSection(Sect); 2428 Entry.setValue(GV); 2429 2430 return GV; 2431 } 2432 2433 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2434 if (ObjCFastEnumerationStateType.isNull()) { 2435 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2436 Context.getTranslationUnitDecl(), 2437 &Context.Idents.get("__objcFastEnumerationState")); 2438 D->startDefinition(); 2439 2440 QualType FieldTypes[] = { 2441 Context.UnsignedLongTy, 2442 Context.getPointerType(Context.getObjCIdType()), 2443 Context.getPointerType(Context.UnsignedLongTy), 2444 Context.getConstantArrayType(Context.UnsignedLongTy, 2445 llvm::APInt(32, 5), ArrayType::Normal, 0) 2446 }; 2447 2448 for (size_t i = 0; i < 4; ++i) { 2449 FieldDecl *Field = FieldDecl::Create(Context, 2450 D, 2451 SourceLocation(), 2452 SourceLocation(), 0, 2453 FieldTypes[i], /*TInfo=*/0, 2454 /*BitWidth=*/0, 2455 /*Mutable=*/false, 2456 ICIS_NoInit); 2457 Field->setAccess(AS_public); 2458 D->addDecl(Field); 2459 } 2460 2461 D->completeDefinition(); 2462 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2463 } 2464 2465 return ObjCFastEnumerationStateType; 2466 } 2467 2468 llvm::Constant * 2469 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2470 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2471 2472 // Don't emit it as the address of the string, emit the string data itself 2473 // as an inline array. 2474 if (E->getCharByteWidth() == 1) { 2475 SmallString<64> Str(E->getString()); 2476 2477 // Resize the string to the right size, which is indicated by its type. 2478 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2479 Str.resize(CAT->getSize().getZExtValue()); 2480 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2481 } 2482 2483 llvm::ArrayType *AType = 2484 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2485 llvm::Type *ElemTy = AType->getElementType(); 2486 unsigned NumElements = AType->getNumElements(); 2487 2488 // Wide strings have either 2-byte or 4-byte elements. 2489 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2490 SmallVector<uint16_t, 32> Elements; 2491 Elements.reserve(NumElements); 2492 2493 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2494 Elements.push_back(E->getCodeUnit(i)); 2495 Elements.resize(NumElements); 2496 return llvm::ConstantDataArray::get(VMContext, Elements); 2497 } 2498 2499 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2500 SmallVector<uint32_t, 32> Elements; 2501 Elements.reserve(NumElements); 2502 2503 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2504 Elements.push_back(E->getCodeUnit(i)); 2505 Elements.resize(NumElements); 2506 return llvm::ConstantDataArray::get(VMContext, Elements); 2507 } 2508 2509 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2510 /// constant array for the given string literal. 2511 llvm::Constant * 2512 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2513 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2514 if (S->isAscii() || S->isUTF8()) { 2515 SmallString<64> Str(S->getString()); 2516 2517 // Resize the string to the right size, which is indicated by its type. 2518 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2519 Str.resize(CAT->getSize().getZExtValue()); 2520 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2521 } 2522 2523 // FIXME: the following does not memoize wide strings. 2524 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2525 llvm::GlobalVariable *GV = 2526 new llvm::GlobalVariable(getModule(),C->getType(), 2527 !LangOpts.WritableStrings, 2528 llvm::GlobalValue::PrivateLinkage, 2529 C,".str"); 2530 2531 GV->setAlignment(Align.getQuantity()); 2532 GV->setUnnamedAddr(true); 2533 return GV; 2534 } 2535 2536 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2537 /// array for the given ObjCEncodeExpr node. 2538 llvm::Constant * 2539 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2540 std::string Str; 2541 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2542 2543 return GetAddrOfConstantCString(Str); 2544 } 2545 2546 2547 /// GenerateWritableString -- Creates storage for a string literal. 2548 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2549 bool constant, 2550 CodeGenModule &CGM, 2551 const char *GlobalName, 2552 unsigned Alignment) { 2553 // Create Constant for this string literal. Don't add a '\0'. 2554 llvm::Constant *C = 2555 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2556 2557 // Create a global variable for this string 2558 llvm::GlobalVariable *GV = 2559 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2560 llvm::GlobalValue::PrivateLinkage, 2561 C, GlobalName); 2562 GV->setAlignment(Alignment); 2563 GV->setUnnamedAddr(true); 2564 return GV; 2565 } 2566 2567 /// GetAddrOfConstantString - Returns a pointer to a character array 2568 /// containing the literal. This contents are exactly that of the 2569 /// given string, i.e. it will not be null terminated automatically; 2570 /// see GetAddrOfConstantCString. Note that whether the result is 2571 /// actually a pointer to an LLVM constant depends on 2572 /// Feature.WriteableStrings. 2573 /// 2574 /// The result has pointer to array type. 2575 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2576 const char *GlobalName, 2577 unsigned Alignment) { 2578 // Get the default prefix if a name wasn't specified. 2579 if (!GlobalName) 2580 GlobalName = ".str"; 2581 2582 if (Alignment == 0) 2583 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2584 .getQuantity(); 2585 2586 // Don't share any string literals if strings aren't constant. 2587 if (LangOpts.WritableStrings) 2588 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2589 2590 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2591 ConstantStringMap.GetOrCreateValue(Str); 2592 2593 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2594 if (Alignment > GV->getAlignment()) { 2595 GV->setAlignment(Alignment); 2596 } 2597 return GV; 2598 } 2599 2600 // Create a global variable for this. 2601 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2602 Alignment); 2603 Entry.setValue(GV); 2604 return GV; 2605 } 2606 2607 /// GetAddrOfConstantCString - Returns a pointer to a character 2608 /// array containing the literal and a terminating '\0' 2609 /// character. The result has pointer to array type. 2610 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2611 const char *GlobalName, 2612 unsigned Alignment) { 2613 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2614 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2615 } 2616 2617 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2618 const MaterializeTemporaryExpr *E, const Expr *Init) { 2619 assert((E->getStorageDuration() == SD_Static || 2620 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2621 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2622 2623 // If we're not materializing a subobject of the temporary, keep the 2624 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2625 QualType MaterializedType = Init->getType(); 2626 if (Init == E->GetTemporaryExpr()) 2627 MaterializedType = E->getType(); 2628 2629 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2630 if (Slot) 2631 return Slot; 2632 2633 // FIXME: If an externally-visible declaration extends multiple temporaries, 2634 // we need to give each temporary the same name in every translation unit (and 2635 // we also need to make the temporaries externally-visible). 2636 SmallString<256> Name; 2637 llvm::raw_svector_ostream Out(Name); 2638 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2639 Out.flush(); 2640 2641 APValue *Value = 0; 2642 if (E->getStorageDuration() == SD_Static) { 2643 // We might have a cached constant initializer for this temporary. Note 2644 // that this might have a different value from the value computed by 2645 // evaluating the initializer if the surrounding constant expression 2646 // modifies the temporary. 2647 Value = getContext().getMaterializedTemporaryValue(E, false); 2648 if (Value && Value->isUninit()) 2649 Value = 0; 2650 } 2651 2652 // Try evaluating it now, it might have a constant initializer. 2653 Expr::EvalResult EvalResult; 2654 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2655 !EvalResult.hasSideEffects()) 2656 Value = &EvalResult.Val; 2657 2658 llvm::Constant *InitialValue = 0; 2659 bool Constant = false; 2660 llvm::Type *Type; 2661 if (Value) { 2662 // The temporary has a constant initializer, use it. 2663 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2664 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2665 Type = InitialValue->getType(); 2666 } else { 2667 // No initializer, the initialization will be provided when we 2668 // initialize the declaration which performed lifetime extension. 2669 Type = getTypes().ConvertTypeForMem(MaterializedType); 2670 } 2671 2672 // Create a global variable for this lifetime-extended temporary. 2673 llvm::GlobalVariable *GV = 2674 new llvm::GlobalVariable(getModule(), Type, Constant, 2675 llvm::GlobalValue::PrivateLinkage, 2676 InitialValue, Name.c_str()); 2677 GV->setAlignment( 2678 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2679 if (VD->getTLSKind()) 2680 setTLSMode(GV, *VD); 2681 Slot = GV; 2682 return GV; 2683 } 2684 2685 /// EmitObjCPropertyImplementations - Emit information for synthesized 2686 /// properties for an implementation. 2687 void CodeGenModule::EmitObjCPropertyImplementations(const 2688 ObjCImplementationDecl *D) { 2689 for (ObjCImplementationDecl::propimpl_iterator 2690 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2691 ObjCPropertyImplDecl *PID = *i; 2692 2693 // Dynamic is just for type-checking. 2694 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2695 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2696 2697 // Determine which methods need to be implemented, some may have 2698 // been overridden. Note that ::isPropertyAccessor is not the method 2699 // we want, that just indicates if the decl came from a 2700 // property. What we want to know is if the method is defined in 2701 // this implementation. 2702 if (!D->getInstanceMethod(PD->getGetterName())) 2703 CodeGenFunction(*this).GenerateObjCGetter( 2704 const_cast<ObjCImplementationDecl *>(D), PID); 2705 if (!PD->isReadOnly() && 2706 !D->getInstanceMethod(PD->getSetterName())) 2707 CodeGenFunction(*this).GenerateObjCSetter( 2708 const_cast<ObjCImplementationDecl *>(D), PID); 2709 } 2710 } 2711 } 2712 2713 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2714 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2715 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2716 ivar; ivar = ivar->getNextIvar()) 2717 if (ivar->getType().isDestructedType()) 2718 return true; 2719 2720 return false; 2721 } 2722 2723 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2724 /// for an implementation. 2725 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2726 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2727 if (needsDestructMethod(D)) { 2728 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2729 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2730 ObjCMethodDecl *DTORMethod = 2731 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2732 cxxSelector, getContext().VoidTy, 0, D, 2733 /*isInstance=*/true, /*isVariadic=*/false, 2734 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2735 /*isDefined=*/false, ObjCMethodDecl::Required); 2736 D->addInstanceMethod(DTORMethod); 2737 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2738 D->setHasDestructors(true); 2739 } 2740 2741 // If the implementation doesn't have any ivar initializers, we don't need 2742 // a .cxx_construct. 2743 if (D->getNumIvarInitializers() == 0) 2744 return; 2745 2746 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2747 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2748 // The constructor returns 'self'. 2749 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2750 D->getLocation(), 2751 D->getLocation(), 2752 cxxSelector, 2753 getContext().getObjCIdType(), 0, 2754 D, /*isInstance=*/true, 2755 /*isVariadic=*/false, 2756 /*isPropertyAccessor=*/true, 2757 /*isImplicitlyDeclared=*/true, 2758 /*isDefined=*/false, 2759 ObjCMethodDecl::Required); 2760 D->addInstanceMethod(CTORMethod); 2761 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2762 D->setHasNonZeroConstructors(true); 2763 } 2764 2765 /// EmitNamespace - Emit all declarations in a namespace. 2766 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2767 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2768 I != E; ++I) 2769 EmitTopLevelDecl(*I); 2770 } 2771 2772 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2773 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2774 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2775 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2776 ErrorUnsupported(LSD, "linkage spec"); 2777 return; 2778 } 2779 2780 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2781 I != E; ++I) { 2782 // Meta-data for ObjC class includes references to implemented methods. 2783 // Generate class's method definitions first. 2784 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2785 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2786 MEnd = OID->meth_end(); 2787 M != MEnd; ++M) 2788 EmitTopLevelDecl(*M); 2789 } 2790 EmitTopLevelDecl(*I); 2791 } 2792 } 2793 2794 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2795 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2796 // If an error has occurred, stop code generation, but continue 2797 // parsing and semantic analysis (to ensure all warnings and errors 2798 // are emitted). 2799 if (Diags.hasErrorOccurred()) 2800 return; 2801 2802 // Ignore dependent declarations. 2803 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2804 return; 2805 2806 switch (D->getKind()) { 2807 case Decl::CXXConversion: 2808 case Decl::CXXMethod: 2809 case Decl::Function: 2810 // Skip function templates 2811 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2812 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2813 return; 2814 2815 EmitGlobal(cast<FunctionDecl>(D)); 2816 break; 2817 2818 case Decl::Var: 2819 EmitGlobal(cast<VarDecl>(D)); 2820 break; 2821 2822 // Indirect fields from global anonymous structs and unions can be 2823 // ignored; only the actual variable requires IR gen support. 2824 case Decl::IndirectField: 2825 break; 2826 2827 // C++ Decls 2828 case Decl::Namespace: 2829 EmitNamespace(cast<NamespaceDecl>(D)); 2830 break; 2831 // No code generation needed. 2832 case Decl::UsingShadow: 2833 case Decl::Using: 2834 case Decl::ClassTemplate: 2835 case Decl::FunctionTemplate: 2836 case Decl::TypeAliasTemplate: 2837 case Decl::Block: 2838 case Decl::Empty: 2839 break; 2840 case Decl::NamespaceAlias: 2841 if (CGDebugInfo *DI = getModuleDebugInfo()) 2842 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2843 return; 2844 case Decl::UsingDirective: // using namespace X; [C++] 2845 if (CGDebugInfo *DI = getModuleDebugInfo()) 2846 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2847 return; 2848 case Decl::CXXConstructor: 2849 // Skip function templates 2850 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2851 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2852 return; 2853 2854 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2855 break; 2856 case Decl::CXXDestructor: 2857 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2858 return; 2859 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2860 break; 2861 2862 case Decl::StaticAssert: 2863 // Nothing to do. 2864 break; 2865 2866 // Objective-C Decls 2867 2868 // Forward declarations, no (immediate) code generation. 2869 case Decl::ObjCInterface: 2870 case Decl::ObjCCategory: 2871 break; 2872 2873 case Decl::ObjCProtocol: { 2874 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2875 if (Proto->isThisDeclarationADefinition()) 2876 ObjCRuntime->GenerateProtocol(Proto); 2877 break; 2878 } 2879 2880 case Decl::ObjCCategoryImpl: 2881 // Categories have properties but don't support synthesize so we 2882 // can ignore them here. 2883 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2884 break; 2885 2886 case Decl::ObjCImplementation: { 2887 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2888 EmitObjCPropertyImplementations(OMD); 2889 EmitObjCIvarInitializations(OMD); 2890 ObjCRuntime->GenerateClass(OMD); 2891 // Emit global variable debug information. 2892 if (CGDebugInfo *DI = getModuleDebugInfo()) 2893 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2894 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2895 OMD->getClassInterface()), OMD->getLocation()); 2896 break; 2897 } 2898 case Decl::ObjCMethod: { 2899 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2900 // If this is not a prototype, emit the body. 2901 if (OMD->getBody()) 2902 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2903 break; 2904 } 2905 case Decl::ObjCCompatibleAlias: 2906 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2907 break; 2908 2909 case Decl::LinkageSpec: 2910 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2911 break; 2912 2913 case Decl::FileScopeAsm: { 2914 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2915 StringRef AsmString = AD->getAsmString()->getString(); 2916 2917 const std::string &S = getModule().getModuleInlineAsm(); 2918 if (S.empty()) 2919 getModule().setModuleInlineAsm(AsmString); 2920 else if (S.end()[-1] == '\n') 2921 getModule().setModuleInlineAsm(S + AsmString.str()); 2922 else 2923 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2924 break; 2925 } 2926 2927 case Decl::Import: { 2928 ImportDecl *Import = cast<ImportDecl>(D); 2929 2930 // Ignore import declarations that come from imported modules. 2931 if (clang::Module *Owner = Import->getOwningModule()) { 2932 if (getLangOpts().CurrentModule.empty() || 2933 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2934 break; 2935 } 2936 2937 ImportedModules.insert(Import->getImportedModule()); 2938 break; 2939 } 2940 2941 default: 2942 // Make sure we handled everything we should, every other kind is a 2943 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2944 // function. Need to recode Decl::Kind to do that easily. 2945 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2946 } 2947 } 2948 2949 /// Turns the given pointer into a constant. 2950 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2951 const void *Ptr) { 2952 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2953 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2954 return llvm::ConstantInt::get(i64, PtrInt); 2955 } 2956 2957 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2958 llvm::NamedMDNode *&GlobalMetadata, 2959 GlobalDecl D, 2960 llvm::GlobalValue *Addr) { 2961 if (!GlobalMetadata) 2962 GlobalMetadata = 2963 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2964 2965 // TODO: should we report variant information for ctors/dtors? 2966 llvm::Value *Ops[] = { 2967 Addr, 2968 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2969 }; 2970 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2971 } 2972 2973 /// For each function which is declared within an extern "C" region and marked 2974 /// as 'used', but has internal linkage, create an alias from the unmangled 2975 /// name to the mangled name if possible. People expect to be able to refer 2976 /// to such functions with an unmangled name from inline assembly within the 2977 /// same translation unit. 2978 void CodeGenModule::EmitStaticExternCAliases() { 2979 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 2980 E = StaticExternCValues.end(); 2981 I != E; ++I) { 2982 IdentifierInfo *Name = I->first; 2983 llvm::GlobalValue *Val = I->second; 2984 if (Val && !getModule().getNamedValue(Name->getName())) 2985 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 2986 Name->getName(), Val, &getModule())); 2987 } 2988 } 2989 2990 /// Emits metadata nodes associating all the global values in the 2991 /// current module with the Decls they came from. This is useful for 2992 /// projects using IR gen as a subroutine. 2993 /// 2994 /// Since there's currently no way to associate an MDNode directly 2995 /// with an llvm::GlobalValue, we create a global named metadata 2996 /// with the name 'clang.global.decl.ptrs'. 2997 void CodeGenModule::EmitDeclMetadata() { 2998 llvm::NamedMDNode *GlobalMetadata = 0; 2999 3000 // StaticLocalDeclMap 3001 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3002 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3003 I != E; ++I) { 3004 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3005 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3006 } 3007 } 3008 3009 /// Emits metadata nodes for all the local variables in the current 3010 /// function. 3011 void CodeGenFunction::EmitDeclMetadata() { 3012 if (LocalDeclMap.empty()) return; 3013 3014 llvm::LLVMContext &Context = getLLVMContext(); 3015 3016 // Find the unique metadata ID for this name. 3017 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3018 3019 llvm::NamedMDNode *GlobalMetadata = 0; 3020 3021 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3022 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3023 const Decl *D = I->first; 3024 llvm::Value *Addr = I->second; 3025 3026 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3027 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3028 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3029 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3030 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3031 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3032 } 3033 } 3034 } 3035 3036 void CodeGenModule::EmitCoverageFile() { 3037 if (!getCodeGenOpts().CoverageFile.empty()) { 3038 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3039 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3040 llvm::LLVMContext &Ctx = TheModule.getContext(); 3041 llvm::MDString *CoverageFile = 3042 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3043 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3044 llvm::MDNode *CU = CUNode->getOperand(i); 3045 llvm::Value *node[] = { CoverageFile, CU }; 3046 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3047 GCov->addOperand(N); 3048 } 3049 } 3050 } 3051 } 3052 3053 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3054 QualType GuidType) { 3055 // Sema has checked that all uuid strings are of the form 3056 // "12345678-1234-1234-1234-1234567890ab". 3057 assert(Uuid.size() == 36); 3058 const char *Uuidstr = Uuid.data(); 3059 for (int i = 0; i < 36; ++i) { 3060 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 3061 else assert(isHexDigit(Uuidstr[i])); 3062 } 3063 3064 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 3065 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 3066 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 3067 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3068 3069 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 3070 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 3071 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 3072 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 3073 APValue& Arr = InitStruct.getStructField(3); 3074 Arr = APValue(APValue::UninitArray(), 8, 8); 3075 for (int t = 0; t < 8; ++t) 3076 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 3077 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 3078 3079 return EmitConstantValue(InitStruct, GuidType); 3080 } 3081