xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a509f2fdfa8ffb4ce9edaee84daca44bcb07ee78)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193 
194   SimplifyPersonality();
195 
196   if (getCodeGenOpts().EmitDeclMetadata)
197     EmitDeclMetadata();
198 
199   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200     EmitCoverageFile();
201 
202   if (DebugInfo)
203     DebugInfo->finalize();
204 }
205 
206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207   // Make sure that this type is translated.
208   Types.UpdateCompletedType(TD);
209 }
210 
211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212   if (!TBAA)
213     return 0;
214   return TBAA->getTBAAInfo(QTy);
215 }
216 
217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218   if (!TBAA)
219     return 0;
220   return TBAA->getTBAAInfoForVTablePtr();
221 }
222 
223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224   if (!TBAA)
225     return 0;
226   return TBAA->getTBAAStructInfo(QTy);
227 }
228 
229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230   if (!TBAA)
231     return 0;
232   return TBAA->getTBAAStructTypeInfo(QTy);
233 }
234 
235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                   llvm::MDNode *AccessN,
237                                                   uint64_t O) {
238   if (!TBAA)
239     return 0;
240   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241 }
242 
243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244 /// is the same as the type. For struct-path aware TBAA, the tag
245 /// is different from the type: base type, access type and offset.
246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                         llvm::MDNode *TBAAInfo,
249                                         bool ConvertTypeToTag) {
250   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
253   else
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255 }
256 
257 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259   getDiags().Report(Context.getFullLoc(loc), diagID);
260 }
261 
262 /// ErrorUnsupported - Print out an error that codegen doesn't support the
263 /// specified stmt yet.
264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                      bool OmitOnError) {
266   if (OmitOnError && getDiags().hasErrorOccurred())
267     return;
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                      bool OmitOnError) {
279   if (OmitOnError && getDiags().hasErrorOccurred())
280     return;
281   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                                "cannot compile this %0 yet");
283   std::string Msg = Type;
284   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285 }
286 
287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289 }
290 
291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                         const NamedDecl *D) const {
293   // Internal definitions always have default visibility.
294   if (GV->hasLocalLinkage()) {
295     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296     return;
297   }
298 
299   // Set visibility for definitions.
300   LinkageInfo LV = D->getLinkageAndVisibility();
301   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303 }
304 
305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311 }
312 
313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314     CodeGenOptions::TLSModel M) {
315   switch (M) {
316   case CodeGenOptions::GeneralDynamicTLSModel:
317     return llvm::GlobalVariable::GeneralDynamicTLSModel;
318   case CodeGenOptions::LocalDynamicTLSModel:
319     return llvm::GlobalVariable::LocalDynamicTLSModel;
320   case CodeGenOptions::InitialExecTLSModel:
321     return llvm::GlobalVariable::InitialExecTLSModel;
322   case CodeGenOptions::LocalExecTLSModel:
323     return llvm::GlobalVariable::LocalExecTLSModel;
324   }
325   llvm_unreachable("Invalid TLS model!");
326 }
327 
328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                                const VarDecl &D) const {
330   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331 
332   llvm::GlobalVariable::ThreadLocalMode TLM;
333   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334 
335   // Override the TLS model if it is explicitly specified.
336   if (D.hasAttr<TLSModelAttr>()) {
337     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338     TLM = GetLLVMTLSModel(Attr->getModel());
339   }
340 
341   GV->setThreadLocalMode(TLM);
342 }
343 
344 /// Set the symbol visibility of type information (vtable and RTTI)
345 /// associated with the given type.
346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                       const CXXRecordDecl *RD,
348                                       TypeVisibilityKind TVK) const {
349   setGlobalVisibility(GV, RD);
350 
351   if (!CodeGenOpts.HiddenWeakVTables)
352     return;
353 
354   // We never want to drop the visibility for RTTI names.
355   if (TVK == TVK_ForRTTIName)
356     return;
357 
358   // We want to drop the visibility to hidden for weak type symbols.
359   // This isn't possible if there might be unresolved references
360   // elsewhere that rely on this symbol being visible.
361 
362   // This should be kept roughly in sync with setThunkVisibility
363   // in CGVTables.cpp.
364 
365   // Preconditions.
366   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368     return;
369 
370   // Don't override an explicit visibility attribute.
371   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372     return;
373 
374   switch (RD->getTemplateSpecializationKind()) {
375   // We have to disable the optimization if this is an EI definition
376   // because there might be EI declarations in other shared objects.
377   case TSK_ExplicitInstantiationDefinition:
378   case TSK_ExplicitInstantiationDeclaration:
379     return;
380 
381   // Every use of a non-template class's type information has to emit it.
382   case TSK_Undeclared:
383     break;
384 
385   // In theory, implicit instantiations can ignore the possibility of
386   // an explicit instantiation declaration because there necessarily
387   // must be an EI definition somewhere with default visibility.  In
388   // practice, it's possible to have an explicit instantiation for
389   // an arbitrary template class, and linkers aren't necessarily able
390   // to deal with mixed-visibility symbols.
391   case TSK_ExplicitSpecialization:
392   case TSK_ImplicitInstantiation:
393     return;
394   }
395 
396   // If there's a key function, there may be translation units
397   // that don't have the key function's definition.  But ignore
398   // this if we're emitting RTTI under -fno-rtti.
399   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400     // FIXME: what should we do if we "lose" the key function during
401     // the emission of the file?
402     if (Context.getCurrentKeyFunction(RD))
403       return;
404   }
405 
406   // Otherwise, drop the visibility to hidden.
407   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408   GV->setUnnamedAddr(true);
409 }
410 
411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413 
414   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415   if (!Str.empty())
416     return Str;
417 
418   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419     IdentifierInfo *II = ND->getIdentifier();
420     assert(II && "Attempt to mangle unnamed decl.");
421 
422     Str = II->getName();
423     return Str;
424   }
425 
426   SmallString<256> Buffer;
427   llvm::raw_svector_ostream Out(Buffer);
428   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433     getCXXABI().getMangleContext().mangleBlock(BD, Out,
434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
513   return getFunctionLinkage(cast<FunctionDecl>(GD.getDecl()));
514 }
515 
516 llvm::GlobalValue::LinkageTypes
517 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
518   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
519 
520   if (Linkage == GVA_Internal)
521     return llvm::Function::InternalLinkage;
522 
523   if (D->hasAttr<DLLExportAttr>())
524     return llvm::Function::DLLExportLinkage;
525 
526   if (D->hasAttr<WeakAttr>())
527     return llvm::Function::WeakAnyLinkage;
528 
529   // In C99 mode, 'inline' functions are guaranteed to have a strong
530   // definition somewhere else, so we can use available_externally linkage.
531   if (Linkage == GVA_C99Inline)
532     return llvm::Function::AvailableExternallyLinkage;
533 
534   // Note that Apple's kernel linker doesn't support symbol
535   // coalescing, so we need to avoid linkonce and weak linkages there.
536   // Normally, this means we just map to internal, but for explicit
537   // instantiations we'll map to external.
538 
539   // In C++, the compiler has to emit a definition in every translation unit
540   // that references the function.  We should use linkonce_odr because
541   // a) if all references in this translation unit are optimized away, we
542   // don't need to codegen it.  b) if the function persists, it needs to be
543   // merged with other definitions. c) C++ has the ODR, so we know the
544   // definition is dependable.
545   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
546     return !Context.getLangOpts().AppleKext
547              ? llvm::Function::LinkOnceODRLinkage
548              : llvm::Function::InternalLinkage;
549 
550   // An explicit instantiation of a template has weak linkage, since
551   // explicit instantiations can occur in multiple translation units
552   // and must all be equivalent. However, we are not allowed to
553   // throw away these explicit instantiations.
554   if (Linkage == GVA_ExplicitTemplateInstantiation)
555     return !Context.getLangOpts().AppleKext
556              ? llvm::Function::WeakODRLinkage
557              : llvm::Function::ExternalLinkage;
558 
559   // Otherwise, we have strong external linkage.
560   assert(Linkage == GVA_StrongExternal);
561   return llvm::Function::ExternalLinkage;
562 }
563 
564 
565 /// SetFunctionDefinitionAttributes - Set attributes for a global.
566 ///
567 /// FIXME: This is currently only done for aliases and functions, but not for
568 /// variables (these details are set in EmitGlobalVarDefinition for variables).
569 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
570                                                     llvm::GlobalValue *GV) {
571   SetCommonAttributes(D, GV);
572 }
573 
574 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
575                                               const CGFunctionInfo &Info,
576                                               llvm::Function *F) {
577   unsigned CallingConv;
578   AttributeListType AttributeList;
579   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
580   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
581   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
582 }
583 
584 /// Determines whether the language options require us to model
585 /// unwind exceptions.  We treat -fexceptions as mandating this
586 /// except under the fragile ObjC ABI with only ObjC exceptions
587 /// enabled.  This means, for example, that C with -fexceptions
588 /// enables this.
589 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
590   // If exceptions are completely disabled, obviously this is false.
591   if (!LangOpts.Exceptions) return false;
592 
593   // If C++ exceptions are enabled, this is true.
594   if (LangOpts.CXXExceptions) return true;
595 
596   // If ObjC exceptions are enabled, this depends on the ABI.
597   if (LangOpts.ObjCExceptions) {
598     return LangOpts.ObjCRuntime.hasUnwindExceptions();
599   }
600 
601   return true;
602 }
603 
604 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
605                                                            llvm::Function *F) {
606   llvm::AttrBuilder B;
607 
608   if (CodeGenOpts.UnwindTables)
609     B.addAttribute(llvm::Attribute::UWTable);
610 
611   if (!hasUnwindExceptions(LangOpts))
612     B.addAttribute(llvm::Attribute::NoUnwind);
613 
614   if (D->hasAttr<NakedAttr>()) {
615     // Naked implies noinline: we should not be inlining such functions.
616     B.addAttribute(llvm::Attribute::Naked);
617     B.addAttribute(llvm::Attribute::NoInline);
618   } else if (D->hasAttr<NoInlineAttr>()) {
619     B.addAttribute(llvm::Attribute::NoInline);
620   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
621               D->hasAttr<ForceInlineAttr>()) &&
622              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
623                                               llvm::Attribute::NoInline)) {
624     // (noinline wins over always_inline, and we can't specify both in IR)
625     B.addAttribute(llvm::Attribute::AlwaysInline);
626   }
627 
628   if (D->hasAttr<ColdAttr>()) {
629     B.addAttribute(llvm::Attribute::OptimizeForSize);
630     B.addAttribute(llvm::Attribute::Cold);
631   }
632 
633   if (D->hasAttr<MinSizeAttr>())
634     B.addAttribute(llvm::Attribute::MinSize);
635 
636   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
637     B.addAttribute(llvm::Attribute::StackProtect);
638   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
639     B.addAttribute(llvm::Attribute::StackProtectReq);
640 
641   // Add sanitizer attributes if function is not blacklisted.
642   if (!SanitizerBlacklist.isIn(*F)) {
643     // When AddressSanitizer is enabled, set SanitizeAddress attribute
644     // unless __attribute__((no_sanitize_address)) is used.
645     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
646       B.addAttribute(llvm::Attribute::SanitizeAddress);
647     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
648     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
649       B.addAttribute(llvm::Attribute::SanitizeThread);
650     }
651     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
652     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
653       B.addAttribute(llvm::Attribute::SanitizeMemory);
654   }
655 
656   F->addAttributes(llvm::AttributeSet::FunctionIndex,
657                    llvm::AttributeSet::get(
658                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
659 
660   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
661     F->setUnnamedAddr(true);
662   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
663     if (MD->isVirtual())
664       F->setUnnamedAddr(true);
665 
666   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
667   if (alignment)
668     F->setAlignment(alignment);
669 
670   // C++ ABI requires 2-byte alignment for member functions.
671   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
672     F->setAlignment(2);
673 }
674 
675 void CodeGenModule::SetCommonAttributes(const Decl *D,
676                                         llvm::GlobalValue *GV) {
677   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
678     setGlobalVisibility(GV, ND);
679   else
680     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
681 
682   if (D->hasAttr<UsedAttr>())
683     AddUsedGlobal(GV);
684 
685   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
686     GV->setSection(SA->getName());
687 
688   // Alias cannot have attributes. Filter them here.
689   if (!isa<llvm::GlobalAlias>(GV))
690     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
691 }
692 
693 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
694                                                   llvm::Function *F,
695                                                   const CGFunctionInfo &FI) {
696   SetLLVMFunctionAttributes(D, FI, F);
697   SetLLVMFunctionAttributesForDefinition(D, F);
698 
699   F->setLinkage(llvm::Function::InternalLinkage);
700 
701   SetCommonAttributes(D, F);
702 }
703 
704 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
705                                           llvm::Function *F,
706                                           bool IsIncompleteFunction) {
707   if (unsigned IID = F->getIntrinsicID()) {
708     // If this is an intrinsic function, set the function's attributes
709     // to the intrinsic's attributes.
710     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
711                                                     (llvm::Intrinsic::ID)IID));
712     return;
713   }
714 
715   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
716 
717   if (!IsIncompleteFunction)
718     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
719 
720   // Only a few attributes are set on declarations; these may later be
721   // overridden by a definition.
722 
723   if (FD->hasAttr<DLLImportAttr>()) {
724     F->setLinkage(llvm::Function::DLLImportLinkage);
725   } else if (FD->hasAttr<WeakAttr>() ||
726              FD->isWeakImported()) {
727     // "extern_weak" is overloaded in LLVM; we probably should have
728     // separate linkage types for this.
729     F->setLinkage(llvm::Function::ExternalWeakLinkage);
730   } else {
731     F->setLinkage(llvm::Function::ExternalLinkage);
732 
733     LinkageInfo LV = FD->getLinkageAndVisibility();
734     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
735       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
736     }
737   }
738 
739   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
740     F->setSection(SA->getName());
741 }
742 
743 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
744   assert(!GV->isDeclaration() &&
745          "Only globals with definition can force usage.");
746   LLVMUsed.push_back(GV);
747 }
748 
749 void CodeGenModule::EmitLLVMUsed() {
750   // Don't create llvm.used if there is no need.
751   if (LLVMUsed.empty())
752     return;
753 
754   // Convert LLVMUsed to what ConstantArray needs.
755   SmallVector<llvm::Constant*, 8> UsedArray;
756   UsedArray.resize(LLVMUsed.size());
757   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
758     UsedArray[i] =
759      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
760                                     Int8PtrTy);
761   }
762 
763   if (UsedArray.empty())
764     return;
765   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
766 
767   llvm::GlobalVariable *GV =
768     new llvm::GlobalVariable(getModule(), ATy, false,
769                              llvm::GlobalValue::AppendingLinkage,
770                              llvm::ConstantArray::get(ATy, UsedArray),
771                              "llvm.used");
772 
773   GV->setSection("llvm.metadata");
774 }
775 
776 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
777   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
778   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
779 }
780 
781 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
782   llvm::SmallString<32> Opt;
783   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
784   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
785   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
786 }
787 
788 void CodeGenModule::AddDependentLib(StringRef Lib) {
789   llvm::SmallString<24> Opt;
790   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
791   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
792   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
793 }
794 
795 /// \brief Add link options implied by the given module, including modules
796 /// it depends on, using a postorder walk.
797 static void addLinkOptionsPostorder(CodeGenModule &CGM,
798                                     Module *Mod,
799                                     SmallVectorImpl<llvm::Value *> &Metadata,
800                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
801   // Import this module's parent.
802   if (Mod->Parent && Visited.insert(Mod->Parent)) {
803     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
804   }
805 
806   // Import this module's dependencies.
807   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
808     if (Visited.insert(Mod->Imports[I-1]))
809       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
810   }
811 
812   // Add linker options to link against the libraries/frameworks
813   // described by this module.
814   llvm::LLVMContext &Context = CGM.getLLVMContext();
815   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
816     // Link against a framework.  Frameworks are currently Darwin only, so we
817     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
818     if (Mod->LinkLibraries[I-1].IsFramework) {
819       llvm::Value *Args[2] = {
820         llvm::MDString::get(Context, "-framework"),
821         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
822       };
823 
824       Metadata.push_back(llvm::MDNode::get(Context, Args));
825       continue;
826     }
827 
828     // Link against a library.
829     llvm::SmallString<24> Opt;
830     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
831       Mod->LinkLibraries[I-1].Library, Opt);
832     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
833     Metadata.push_back(llvm::MDNode::get(Context, OptString));
834   }
835 }
836 
837 void CodeGenModule::EmitModuleLinkOptions() {
838   // Collect the set of all of the modules we want to visit to emit link
839   // options, which is essentially the imported modules and all of their
840   // non-explicit child modules.
841   llvm::SetVector<clang::Module *> LinkModules;
842   llvm::SmallPtrSet<clang::Module *, 16> Visited;
843   SmallVector<clang::Module *, 16> Stack;
844 
845   // Seed the stack with imported modules.
846   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
847                                                MEnd = ImportedModules.end();
848        M != MEnd; ++M) {
849     if (Visited.insert(*M))
850       Stack.push_back(*M);
851   }
852 
853   // Find all of the modules to import, making a little effort to prune
854   // non-leaf modules.
855   while (!Stack.empty()) {
856     clang::Module *Mod = Stack.back();
857     Stack.pop_back();
858 
859     bool AnyChildren = false;
860 
861     // Visit the submodules of this module.
862     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
863                                         SubEnd = Mod->submodule_end();
864          Sub != SubEnd; ++Sub) {
865       // Skip explicit children; they need to be explicitly imported to be
866       // linked against.
867       if ((*Sub)->IsExplicit)
868         continue;
869 
870       if (Visited.insert(*Sub)) {
871         Stack.push_back(*Sub);
872         AnyChildren = true;
873       }
874     }
875 
876     // We didn't find any children, so add this module to the list of
877     // modules to link against.
878     if (!AnyChildren) {
879       LinkModules.insert(Mod);
880     }
881   }
882 
883   // Add link options for all of the imported modules in reverse topological
884   // order.  We don't do anything to try to order import link flags with respect
885   // to linker options inserted by things like #pragma comment().
886   SmallVector<llvm::Value *, 16> MetadataArgs;
887   Visited.clear();
888   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
889                                                MEnd = LinkModules.end();
890        M != MEnd; ++M) {
891     if (Visited.insert(*M))
892       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
893   }
894   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
895   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
896 
897   // Add the linker options metadata flag.
898   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
899                             llvm::MDNode::get(getLLVMContext(),
900                                               LinkerOptionsMetadata));
901 }
902 
903 void CodeGenModule::EmitDeferred() {
904   // Emit code for any potentially referenced deferred decls.  Since a
905   // previously unused static decl may become used during the generation of code
906   // for a static function, iterate until no changes are made.
907 
908   while (true) {
909     if (!DeferredVTables.empty()) {
910       EmitDeferredVTables();
911 
912       // Emitting a v-table doesn't directly cause more v-tables to
913       // become deferred, although it can cause functions to be
914       // emitted that then need those v-tables.
915       assert(DeferredVTables.empty());
916     }
917 
918     // Stop if we're out of both deferred v-tables and deferred declarations.
919     if (DeferredDeclsToEmit.empty()) break;
920 
921     GlobalDecl D = DeferredDeclsToEmit.back();
922     DeferredDeclsToEmit.pop_back();
923 
924     // Check to see if we've already emitted this.  This is necessary
925     // for a couple of reasons: first, decls can end up in the
926     // deferred-decls queue multiple times, and second, decls can end
927     // up with definitions in unusual ways (e.g. by an extern inline
928     // function acquiring a strong function redefinition).  Just
929     // ignore these cases.
930     //
931     // TODO: That said, looking this up multiple times is very wasteful.
932     StringRef Name = getMangledName(D);
933     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
934     assert(CGRef && "Deferred decl wasn't referenced?");
935 
936     if (!CGRef->isDeclaration())
937       continue;
938 
939     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
940     // purposes an alias counts as a definition.
941     if (isa<llvm::GlobalAlias>(CGRef))
942       continue;
943 
944     // Otherwise, emit the definition and move on to the next one.
945     EmitGlobalDefinition(D);
946   }
947 }
948 
949 void CodeGenModule::EmitGlobalAnnotations() {
950   if (Annotations.empty())
951     return;
952 
953   // Create a new global variable for the ConstantStruct in the Module.
954   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
955     Annotations[0]->getType(), Annotations.size()), Annotations);
956   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
957     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
958     "llvm.global.annotations");
959   gv->setSection(AnnotationSection);
960 }
961 
962 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
963   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
964   if (i != AnnotationStrings.end())
965     return i->second;
966 
967   // Not found yet, create a new global.
968   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
969   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
970     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
971   gv->setSection(AnnotationSection);
972   gv->setUnnamedAddr(true);
973   AnnotationStrings[Str] = gv;
974   return gv;
975 }
976 
977 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
978   SourceManager &SM = getContext().getSourceManager();
979   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
980   if (PLoc.isValid())
981     return EmitAnnotationString(PLoc.getFilename());
982   return EmitAnnotationString(SM.getBufferName(Loc));
983 }
984 
985 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
986   SourceManager &SM = getContext().getSourceManager();
987   PresumedLoc PLoc = SM.getPresumedLoc(L);
988   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
989     SM.getExpansionLineNumber(L);
990   return llvm::ConstantInt::get(Int32Ty, LineNo);
991 }
992 
993 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
994                                                 const AnnotateAttr *AA,
995                                                 SourceLocation L) {
996   // Get the globals for file name, annotation, and the line number.
997   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
998                  *UnitGV = EmitAnnotationUnit(L),
999                  *LineNoCst = EmitAnnotationLineNo(L);
1000 
1001   // Create the ConstantStruct for the global annotation.
1002   llvm::Constant *Fields[4] = {
1003     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1004     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1005     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1006     LineNoCst
1007   };
1008   return llvm::ConstantStruct::getAnon(Fields);
1009 }
1010 
1011 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1012                                          llvm::GlobalValue *GV) {
1013   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1014   // Get the struct elements for these annotations.
1015   for (specific_attr_iterator<AnnotateAttr>
1016        ai = D->specific_attr_begin<AnnotateAttr>(),
1017        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1018     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1019 }
1020 
1021 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1022   // Never defer when EmitAllDecls is specified.
1023   if (LangOpts.EmitAllDecls)
1024     return false;
1025 
1026   return !getContext().DeclMustBeEmitted(Global);
1027 }
1028 
1029 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1030     const CXXUuidofExpr* E) {
1031   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1032   // well-formed.
1033   StringRef Uuid;
1034   if (E->isTypeOperand())
1035     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1036   else {
1037     // Special case: __uuidof(0) means an all-zero GUID.
1038     Expr *Op = E->getExprOperand();
1039     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1040       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1041     else
1042       Uuid = "00000000-0000-0000-0000-000000000000";
1043   }
1044   std::string Name = "__uuid_" + Uuid.str();
1045 
1046   // Look for an existing global.
1047   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1048     return GV;
1049 
1050   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1051   assert(Init && "failed to initialize as constant");
1052 
1053   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1054   // first field is declared as "long", which for many targets is 8 bytes.
1055   // Those architectures are not supported. (With the MS abi, long is always 4
1056   // bytes.)
1057   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1058   if (Init->getType() != GuidType) {
1059     DiagnosticsEngine &Diags = getDiags();
1060     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1061         "__uuidof codegen is not supported on this architecture");
1062     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1063     Init = llvm::UndefValue::get(GuidType);
1064   }
1065 
1066   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1067       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1068   GV->setUnnamedAddr(true);
1069   return GV;
1070 }
1071 
1072 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1073   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1074   assert(AA && "No alias?");
1075 
1076   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1077 
1078   // See if there is already something with the target's name in the module.
1079   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1080   if (Entry) {
1081     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1082     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1083   }
1084 
1085   llvm::Constant *Aliasee;
1086   if (isa<llvm::FunctionType>(DeclTy))
1087     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1088                                       GlobalDecl(cast<FunctionDecl>(VD)),
1089                                       /*ForVTable=*/false);
1090   else
1091     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1092                                     llvm::PointerType::getUnqual(DeclTy), 0);
1093 
1094   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1095   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1096   WeakRefReferences.insert(F);
1097 
1098   return Aliasee;
1099 }
1100 
1101 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1102   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1103 
1104   // Weak references don't produce any output by themselves.
1105   if (Global->hasAttr<WeakRefAttr>())
1106     return;
1107 
1108   // If this is an alias definition (which otherwise looks like a declaration)
1109   // emit it now.
1110   if (Global->hasAttr<AliasAttr>())
1111     return EmitAliasDefinition(GD);
1112 
1113   // If this is CUDA, be selective about which declarations we emit.
1114   if (LangOpts.CUDA) {
1115     if (CodeGenOpts.CUDAIsDevice) {
1116       if (!Global->hasAttr<CUDADeviceAttr>() &&
1117           !Global->hasAttr<CUDAGlobalAttr>() &&
1118           !Global->hasAttr<CUDAConstantAttr>() &&
1119           !Global->hasAttr<CUDASharedAttr>())
1120         return;
1121     } else {
1122       if (!Global->hasAttr<CUDAHostAttr>() && (
1123             Global->hasAttr<CUDADeviceAttr>() ||
1124             Global->hasAttr<CUDAConstantAttr>() ||
1125             Global->hasAttr<CUDASharedAttr>()))
1126         return;
1127     }
1128   }
1129 
1130   // Ignore declarations, they will be emitted on their first use.
1131   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1132     // Forward declarations are emitted lazily on first use.
1133     if (!FD->doesThisDeclarationHaveABody()) {
1134       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1135         return;
1136 
1137       const FunctionDecl *InlineDefinition = 0;
1138       FD->getBody(InlineDefinition);
1139 
1140       StringRef MangledName = getMangledName(GD);
1141       DeferredDecls.erase(MangledName);
1142       EmitGlobalDefinition(InlineDefinition);
1143       return;
1144     }
1145   } else {
1146     const VarDecl *VD = cast<VarDecl>(Global);
1147     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1148 
1149     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1150       return;
1151   }
1152 
1153   // Defer code generation when possible if this is a static definition, inline
1154   // function etc.  These we only want to emit if they are used.
1155   if (!MayDeferGeneration(Global)) {
1156     // Emit the definition if it can't be deferred.
1157     EmitGlobalDefinition(GD);
1158     return;
1159   }
1160 
1161   // If we're deferring emission of a C++ variable with an
1162   // initializer, remember the order in which it appeared in the file.
1163   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1164       cast<VarDecl>(Global)->hasInit()) {
1165     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1166     CXXGlobalInits.push_back(0);
1167   }
1168 
1169   // If the value has already been used, add it directly to the
1170   // DeferredDeclsToEmit list.
1171   StringRef MangledName = getMangledName(GD);
1172   if (GetGlobalValue(MangledName))
1173     DeferredDeclsToEmit.push_back(GD);
1174   else {
1175     // Otherwise, remember that we saw a deferred decl with this name.  The
1176     // first use of the mangled name will cause it to move into
1177     // DeferredDeclsToEmit.
1178     DeferredDecls[MangledName] = GD;
1179   }
1180 }
1181 
1182 namespace {
1183   struct FunctionIsDirectlyRecursive :
1184     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1185     const StringRef Name;
1186     const Builtin::Context &BI;
1187     bool Result;
1188     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1189       Name(N), BI(C), Result(false) {
1190     }
1191     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1192 
1193     bool TraverseCallExpr(CallExpr *E) {
1194       const FunctionDecl *FD = E->getDirectCallee();
1195       if (!FD)
1196         return true;
1197       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1198       if (Attr && Name == Attr->getLabel()) {
1199         Result = true;
1200         return false;
1201       }
1202       unsigned BuiltinID = FD->getBuiltinID();
1203       if (!BuiltinID)
1204         return true;
1205       StringRef BuiltinName = BI.GetName(BuiltinID);
1206       if (BuiltinName.startswith("__builtin_") &&
1207           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1208         Result = true;
1209         return false;
1210       }
1211       return true;
1212     }
1213   };
1214 }
1215 
1216 // isTriviallyRecursive - Check if this function calls another
1217 // decl that, because of the asm attribute or the other decl being a builtin,
1218 // ends up pointing to itself.
1219 bool
1220 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1221   StringRef Name;
1222   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1223     // asm labels are a special kind of mangling we have to support.
1224     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1225     if (!Attr)
1226       return false;
1227     Name = Attr->getLabel();
1228   } else {
1229     Name = FD->getName();
1230   }
1231 
1232   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1233   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1234   return Walker.Result;
1235 }
1236 
1237 bool
1238 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1239   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1240     return true;
1241   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1242   if (CodeGenOpts.OptimizationLevel == 0 &&
1243       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1244     return false;
1245   // PR9614. Avoid cases where the source code is lying to us. An available
1246   // externally function should have an equivalent function somewhere else,
1247   // but a function that calls itself is clearly not equivalent to the real
1248   // implementation.
1249   // This happens in glibc's btowc and in some configure checks.
1250   return !isTriviallyRecursive(F);
1251 }
1252 
1253 /// If the type for the method's class was generated by
1254 /// CGDebugInfo::createContextChain(), the cache contains only a
1255 /// limited DIType without any declarations. Since EmitFunctionStart()
1256 /// needs to find the canonical declaration for each method, we need
1257 /// to construct the complete type prior to emitting the method.
1258 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1259   if (!D->isInstance())
1260     return;
1261 
1262   if (CGDebugInfo *DI = getModuleDebugInfo())
1263     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1264       const PointerType *ThisPtr =
1265         cast<PointerType>(D->getThisType(getContext()));
1266       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1267     }
1268 }
1269 
1270 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1271   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1272 
1273   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1274                                  Context.getSourceManager(),
1275                                  "Generating code for declaration");
1276 
1277   if (isa<FunctionDecl>(D)) {
1278     // At -O0, don't generate IR for functions with available_externally
1279     // linkage.
1280     if (!shouldEmitFunction(GD))
1281       return;
1282 
1283     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1284       CompleteDIClassType(Method);
1285       // Make sure to emit the definition(s) before we emit the thunks.
1286       // This is necessary for the generation of certain thunks.
1287       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1288         EmitCXXConstructor(CD, GD.getCtorType());
1289       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1290         EmitCXXDestructor(DD, GD.getDtorType());
1291       else
1292         EmitGlobalFunctionDefinition(GD);
1293 
1294       if (Method->isVirtual())
1295         getVTables().EmitThunks(GD);
1296 
1297       return;
1298     }
1299 
1300     return EmitGlobalFunctionDefinition(GD);
1301   }
1302 
1303   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1304     return EmitGlobalVarDefinition(VD);
1305 
1306   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1307 }
1308 
1309 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1310 /// module, create and return an llvm Function with the specified type. If there
1311 /// is something in the module with the specified name, return it potentially
1312 /// bitcasted to the right type.
1313 ///
1314 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1315 /// to set the attributes on the function when it is first created.
1316 llvm::Constant *
1317 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1318                                        llvm::Type *Ty,
1319                                        GlobalDecl D, bool ForVTable,
1320                                        llvm::AttributeSet ExtraAttrs) {
1321   // Lookup the entry, lazily creating it if necessary.
1322   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1323   if (Entry) {
1324     if (WeakRefReferences.erase(Entry)) {
1325       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1326       if (FD && !FD->hasAttr<WeakAttr>())
1327         Entry->setLinkage(llvm::Function::ExternalLinkage);
1328     }
1329 
1330     if (Entry->getType()->getElementType() == Ty)
1331       return Entry;
1332 
1333     // Make sure the result is of the correct type.
1334     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1335   }
1336 
1337   // This function doesn't have a complete type (for example, the return
1338   // type is an incomplete struct). Use a fake type instead, and make
1339   // sure not to try to set attributes.
1340   bool IsIncompleteFunction = false;
1341 
1342   llvm::FunctionType *FTy;
1343   if (isa<llvm::FunctionType>(Ty)) {
1344     FTy = cast<llvm::FunctionType>(Ty);
1345   } else {
1346     FTy = llvm::FunctionType::get(VoidTy, false);
1347     IsIncompleteFunction = true;
1348   }
1349 
1350   llvm::Function *F = llvm::Function::Create(FTy,
1351                                              llvm::Function::ExternalLinkage,
1352                                              MangledName, &getModule());
1353   assert(F->getName() == MangledName && "name was uniqued!");
1354   if (D.getDecl())
1355     SetFunctionAttributes(D, F, IsIncompleteFunction);
1356   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1357     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1358     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1359                      llvm::AttributeSet::get(VMContext,
1360                                              llvm::AttributeSet::FunctionIndex,
1361                                              B));
1362   }
1363 
1364   // This is the first use or definition of a mangled name.  If there is a
1365   // deferred decl with this name, remember that we need to emit it at the end
1366   // of the file.
1367   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1368   if (DDI != DeferredDecls.end()) {
1369     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1370     // list, and remove it from DeferredDecls (since we don't need it anymore).
1371     DeferredDeclsToEmit.push_back(DDI->second);
1372     DeferredDecls.erase(DDI);
1373 
1374   // Otherwise, there are cases we have to worry about where we're
1375   // using a declaration for which we must emit a definition but where
1376   // we might not find a top-level definition:
1377   //   - member functions defined inline in their classes
1378   //   - friend functions defined inline in some class
1379   //   - special member functions with implicit definitions
1380   // If we ever change our AST traversal to walk into class methods,
1381   // this will be unnecessary.
1382   //
1383   // We also don't emit a definition for a function if it's going to be an entry
1384   // in a vtable, unless it's already marked as used.
1385   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1386     // Look for a declaration that's lexically in a record.
1387     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1388     FD = FD->getMostRecentDecl();
1389     do {
1390       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1391         if (FD->isImplicit() && !ForVTable) {
1392           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1393           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1394           break;
1395         } else if (FD->doesThisDeclarationHaveABody()) {
1396           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1397           break;
1398         }
1399       }
1400       FD = FD->getPreviousDecl();
1401     } while (FD);
1402   }
1403 
1404   // Make sure the result is of the requested type.
1405   if (!IsIncompleteFunction) {
1406     assert(F->getType()->getElementType() == Ty);
1407     return F;
1408   }
1409 
1410   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1411   return llvm::ConstantExpr::getBitCast(F, PTy);
1412 }
1413 
1414 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1415 /// non-null, then this function will use the specified type if it has to
1416 /// create it (this occurs when we see a definition of the function).
1417 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1418                                                  llvm::Type *Ty,
1419                                                  bool ForVTable) {
1420   // If there was no specific requested type, just convert it now.
1421   if (!Ty)
1422     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1423 
1424   StringRef MangledName = getMangledName(GD);
1425   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1426 }
1427 
1428 /// CreateRuntimeFunction - Create a new runtime function with the specified
1429 /// type and name.
1430 llvm::Constant *
1431 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1432                                      StringRef Name,
1433                                      llvm::AttributeSet ExtraAttrs) {
1434   llvm::Constant *C
1435     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1436                               ExtraAttrs);
1437   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1438     if (F->empty())
1439       F->setCallingConv(getRuntimeCC());
1440   return C;
1441 }
1442 
1443 /// isTypeConstant - Determine whether an object of this type can be emitted
1444 /// as a constant.
1445 ///
1446 /// If ExcludeCtor is true, the duration when the object's constructor runs
1447 /// will not be considered. The caller will need to verify that the object is
1448 /// not written to during its construction.
1449 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1450   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1451     return false;
1452 
1453   if (Context.getLangOpts().CPlusPlus) {
1454     if (const CXXRecordDecl *Record
1455           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1456       return ExcludeCtor && !Record->hasMutableFields() &&
1457              Record->hasTrivialDestructor();
1458   }
1459 
1460   return true;
1461 }
1462 
1463 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1464 /// create and return an llvm GlobalVariable with the specified type.  If there
1465 /// is something in the module with the specified name, return it potentially
1466 /// bitcasted to the right type.
1467 ///
1468 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1469 /// to set the attributes on the global when it is first created.
1470 llvm::Constant *
1471 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1472                                      llvm::PointerType *Ty,
1473                                      const VarDecl *D,
1474                                      bool UnnamedAddr) {
1475   // Lookup the entry, lazily creating it if necessary.
1476   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1477   if (Entry) {
1478     if (WeakRefReferences.erase(Entry)) {
1479       if (D && !D->hasAttr<WeakAttr>())
1480         Entry->setLinkage(llvm::Function::ExternalLinkage);
1481     }
1482 
1483     if (UnnamedAddr)
1484       Entry->setUnnamedAddr(true);
1485 
1486     if (Entry->getType() == Ty)
1487       return Entry;
1488 
1489     // Make sure the result is of the correct type.
1490     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1491   }
1492 
1493   // This is the first use or definition of a mangled name.  If there is a
1494   // deferred decl with this name, remember that we need to emit it at the end
1495   // of the file.
1496   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1497   if (DDI != DeferredDecls.end()) {
1498     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1499     // list, and remove it from DeferredDecls (since we don't need it anymore).
1500     DeferredDeclsToEmit.push_back(DDI->second);
1501     DeferredDecls.erase(DDI);
1502   }
1503 
1504   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1505   llvm::GlobalVariable *GV =
1506     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1507                              llvm::GlobalValue::ExternalLinkage,
1508                              0, MangledName, 0,
1509                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1510 
1511   // Handle things which are present even on external declarations.
1512   if (D) {
1513     // FIXME: This code is overly simple and should be merged with other global
1514     // handling.
1515     GV->setConstant(isTypeConstant(D->getType(), false));
1516 
1517     // Set linkage and visibility in case we never see a definition.
1518     LinkageInfo LV = D->getLinkageAndVisibility();
1519     if (LV.getLinkage() != ExternalLinkage) {
1520       // Don't set internal linkage on declarations.
1521     } else {
1522       if (D->hasAttr<DLLImportAttr>())
1523         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1524       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1525         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1526 
1527       // Set visibility on a declaration only if it's explicit.
1528       if (LV.isVisibilityExplicit())
1529         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1530     }
1531 
1532     if (D->getTLSKind()) {
1533       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1534         CXXThreadLocals.push_back(std::make_pair(D, GV));
1535       setTLSMode(GV, *D);
1536     }
1537   }
1538 
1539   if (AddrSpace != Ty->getAddressSpace())
1540     return llvm::ConstantExpr::getBitCast(GV, Ty);
1541   else
1542     return GV;
1543 }
1544 
1545 
1546 llvm::GlobalVariable *
1547 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1548                                       llvm::Type *Ty,
1549                                       llvm::GlobalValue::LinkageTypes Linkage) {
1550   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1551   llvm::GlobalVariable *OldGV = 0;
1552 
1553 
1554   if (GV) {
1555     // Check if the variable has the right type.
1556     if (GV->getType()->getElementType() == Ty)
1557       return GV;
1558 
1559     // Because C++ name mangling, the only way we can end up with an already
1560     // existing global with the same name is if it has been declared extern "C".
1561     assert(GV->isDeclaration() && "Declaration has wrong type!");
1562     OldGV = GV;
1563   }
1564 
1565   // Create a new variable.
1566   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1567                                 Linkage, 0, Name);
1568 
1569   if (OldGV) {
1570     // Replace occurrences of the old variable if needed.
1571     GV->takeName(OldGV);
1572 
1573     if (!OldGV->use_empty()) {
1574       llvm::Constant *NewPtrForOldDecl =
1575       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1576       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1577     }
1578 
1579     OldGV->eraseFromParent();
1580   }
1581 
1582   return GV;
1583 }
1584 
1585 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1586 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1587 /// then it will be created with the specified type instead of whatever the
1588 /// normal requested type would be.
1589 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1590                                                   llvm::Type *Ty) {
1591   assert(D->hasGlobalStorage() && "Not a global variable");
1592   QualType ASTTy = D->getType();
1593   if (Ty == 0)
1594     Ty = getTypes().ConvertTypeForMem(ASTTy);
1595 
1596   llvm::PointerType *PTy =
1597     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1598 
1599   StringRef MangledName = getMangledName(D);
1600   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1601 }
1602 
1603 /// CreateRuntimeVariable - Create a new runtime global variable with the
1604 /// specified type and name.
1605 llvm::Constant *
1606 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1607                                      StringRef Name) {
1608   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1609                                true);
1610 }
1611 
1612 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1613   assert(!D->getInit() && "Cannot emit definite definitions here!");
1614 
1615   if (MayDeferGeneration(D)) {
1616     // If we have not seen a reference to this variable yet, place it
1617     // into the deferred declarations table to be emitted if needed
1618     // later.
1619     StringRef MangledName = getMangledName(D);
1620     if (!GetGlobalValue(MangledName)) {
1621       DeferredDecls[MangledName] = D;
1622       return;
1623     }
1624   }
1625 
1626   // The tentative definition is the only definition.
1627   EmitGlobalVarDefinition(D);
1628 }
1629 
1630 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1631     return Context.toCharUnitsFromBits(
1632       TheDataLayout.getTypeStoreSizeInBits(Ty));
1633 }
1634 
1635 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1636                                                  unsigned AddrSpace) {
1637   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1638     if (D->hasAttr<CUDAConstantAttr>())
1639       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1640     else if (D->hasAttr<CUDASharedAttr>())
1641       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1642     else
1643       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1644   }
1645 
1646   return AddrSpace;
1647 }
1648 
1649 template<typename SomeDecl>
1650 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1651                                                llvm::GlobalValue *GV) {
1652   if (!getLangOpts().CPlusPlus)
1653     return;
1654 
1655   // Must have 'used' attribute, or else inline assembly can't rely on
1656   // the name existing.
1657   if (!D->template hasAttr<UsedAttr>())
1658     return;
1659 
1660   // Must have internal linkage and an ordinary name.
1661   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1662     return;
1663 
1664   // Must be in an extern "C" context. Entities declared directly within
1665   // a record are not extern "C" even if the record is in such a context.
1666   const SomeDecl *First = D->getFirstDeclaration();
1667   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1668     return;
1669 
1670   // OK, this is an internal linkage entity inside an extern "C" linkage
1671   // specification. Make a note of that so we can give it the "expected"
1672   // mangled name if nothing else is using that name.
1673   std::pair<StaticExternCMap::iterator, bool> R =
1674       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1675 
1676   // If we have multiple internal linkage entities with the same name
1677   // in extern "C" regions, none of them gets that name.
1678   if (!R.second)
1679     R.first->second = 0;
1680 }
1681 
1682 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1683   llvm::Constant *Init = 0;
1684   QualType ASTTy = D->getType();
1685   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1686   bool NeedsGlobalCtor = false;
1687   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1688 
1689   const VarDecl *InitDecl;
1690   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1691 
1692   if (!InitExpr) {
1693     // This is a tentative definition; tentative definitions are
1694     // implicitly initialized with { 0 }.
1695     //
1696     // Note that tentative definitions are only emitted at the end of
1697     // a translation unit, so they should never have incomplete
1698     // type. In addition, EmitTentativeDefinition makes sure that we
1699     // never attempt to emit a tentative definition if a real one
1700     // exists. A use may still exists, however, so we still may need
1701     // to do a RAUW.
1702     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1703     Init = EmitNullConstant(D->getType());
1704   } else {
1705     initializedGlobalDecl = GlobalDecl(D);
1706     Init = EmitConstantInit(*InitDecl);
1707 
1708     if (!Init) {
1709       QualType T = InitExpr->getType();
1710       if (D->getType()->isReferenceType())
1711         T = D->getType();
1712 
1713       if (getLangOpts().CPlusPlus) {
1714         Init = EmitNullConstant(T);
1715         NeedsGlobalCtor = true;
1716       } else {
1717         ErrorUnsupported(D, "static initializer");
1718         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1719       }
1720     } else {
1721       // We don't need an initializer, so remove the entry for the delayed
1722       // initializer position (just in case this entry was delayed) if we
1723       // also don't need to register a destructor.
1724       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1725         DelayedCXXInitPosition.erase(D);
1726     }
1727   }
1728 
1729   llvm::Type* InitType = Init->getType();
1730   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1731 
1732   // Strip off a bitcast if we got one back.
1733   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1734     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1735            // all zero index gep.
1736            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1737     Entry = CE->getOperand(0);
1738   }
1739 
1740   // Entry is now either a Function or GlobalVariable.
1741   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1742 
1743   // We have a definition after a declaration with the wrong type.
1744   // We must make a new GlobalVariable* and update everything that used OldGV
1745   // (a declaration or tentative definition) with the new GlobalVariable*
1746   // (which will be a definition).
1747   //
1748   // This happens if there is a prototype for a global (e.g.
1749   // "extern int x[];") and then a definition of a different type (e.g.
1750   // "int x[10];"). This also happens when an initializer has a different type
1751   // from the type of the global (this happens with unions).
1752   if (GV == 0 ||
1753       GV->getType()->getElementType() != InitType ||
1754       GV->getType()->getAddressSpace() !=
1755        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1756 
1757     // Move the old entry aside so that we'll create a new one.
1758     Entry->setName(StringRef());
1759 
1760     // Make a new global with the correct type, this is now guaranteed to work.
1761     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1762 
1763     // Replace all uses of the old global with the new global
1764     llvm::Constant *NewPtrForOldDecl =
1765         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1766     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1767 
1768     // Erase the old global, since it is no longer used.
1769     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1770   }
1771 
1772   MaybeHandleStaticInExternC(D, GV);
1773 
1774   if (D->hasAttr<AnnotateAttr>())
1775     AddGlobalAnnotations(D, GV);
1776 
1777   GV->setInitializer(Init);
1778 
1779   // If it is safe to mark the global 'constant', do so now.
1780   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1781                   isTypeConstant(D->getType(), true));
1782 
1783   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1784 
1785   // Set the llvm linkage type as appropriate.
1786   llvm::GlobalValue::LinkageTypes Linkage =
1787     GetLLVMLinkageVarDefinition(D, GV);
1788   GV->setLinkage(Linkage);
1789   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1790     // common vars aren't constant even if declared const.
1791     GV->setConstant(false);
1792 
1793   SetCommonAttributes(D, GV);
1794 
1795   // Emit the initializer function if necessary.
1796   if (NeedsGlobalCtor || NeedsGlobalDtor)
1797     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1798 
1799   // If we are compiling with ASan, add metadata indicating dynamically
1800   // initialized globals.
1801   if (SanOpts.Address && NeedsGlobalCtor) {
1802     llvm::Module &M = getModule();
1803 
1804     llvm::NamedMDNode *DynamicInitializers =
1805         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1806     llvm::Value *GlobalToAdd[] = { GV };
1807     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1808     DynamicInitializers->addOperand(ThisGlobal);
1809   }
1810 
1811   // Emit global variable debug information.
1812   if (CGDebugInfo *DI = getModuleDebugInfo())
1813     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1814       DI->EmitGlobalVariable(GV, D);
1815 }
1816 
1817 llvm::GlobalValue::LinkageTypes
1818 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1819                                            llvm::GlobalVariable *GV) {
1820   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1821   if (Linkage == GVA_Internal)
1822     return llvm::Function::InternalLinkage;
1823   else if (D->hasAttr<DLLImportAttr>())
1824     return llvm::Function::DLLImportLinkage;
1825   else if (D->hasAttr<DLLExportAttr>())
1826     return llvm::Function::DLLExportLinkage;
1827   else if (D->hasAttr<SelectAnyAttr>()) {
1828     // selectany symbols are externally visible, so use weak instead of
1829     // linkonce.  MSVC optimizes away references to const selectany globals, so
1830     // all definitions should be the same and ODR linkage should be used.
1831     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1832     return llvm::GlobalVariable::WeakODRLinkage;
1833   } else if (D->hasAttr<WeakAttr>()) {
1834     if (GV->isConstant())
1835       return llvm::GlobalVariable::WeakODRLinkage;
1836     else
1837       return llvm::GlobalVariable::WeakAnyLinkage;
1838   } else if (Linkage == GVA_TemplateInstantiation ||
1839              Linkage == GVA_ExplicitTemplateInstantiation)
1840     return llvm::GlobalVariable::WeakODRLinkage;
1841   else if (!getLangOpts().CPlusPlus &&
1842            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1843              D->getAttr<CommonAttr>()) &&
1844            !D->hasExternalStorage() && !D->getInit() &&
1845            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1846            !D->getAttr<WeakImportAttr>()) {
1847     // Thread local vars aren't considered common linkage.
1848     return llvm::GlobalVariable::CommonLinkage;
1849   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1850              getTarget().getTriple().isMacOSX())
1851     // On Darwin, the backing variable for a C++11 thread_local variable always
1852     // has internal linkage; all accesses should just be calls to the
1853     // Itanium-specified entry point, which has the normal linkage of the
1854     // variable.
1855     return llvm::GlobalValue::InternalLinkage;
1856   return llvm::GlobalVariable::ExternalLinkage;
1857 }
1858 
1859 /// Replace the uses of a function that was declared with a non-proto type.
1860 /// We want to silently drop extra arguments from call sites
1861 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1862                                           llvm::Function *newFn) {
1863   // Fast path.
1864   if (old->use_empty()) return;
1865 
1866   llvm::Type *newRetTy = newFn->getReturnType();
1867   SmallVector<llvm::Value*, 4> newArgs;
1868 
1869   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1870          ui != ue; ) {
1871     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1872     llvm::User *user = *use;
1873 
1874     // Recognize and replace uses of bitcasts.  Most calls to
1875     // unprototyped functions will use bitcasts.
1876     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1877       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1878         replaceUsesOfNonProtoConstant(bitcast, newFn);
1879       continue;
1880     }
1881 
1882     // Recognize calls to the function.
1883     llvm::CallSite callSite(user);
1884     if (!callSite) continue;
1885     if (!callSite.isCallee(use)) continue;
1886 
1887     // If the return types don't match exactly, then we can't
1888     // transform this call unless it's dead.
1889     if (callSite->getType() != newRetTy && !callSite->use_empty())
1890       continue;
1891 
1892     // Get the call site's attribute list.
1893     SmallVector<llvm::AttributeSet, 8> newAttrs;
1894     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1895 
1896     // Collect any return attributes from the call.
1897     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1898       newAttrs.push_back(
1899         llvm::AttributeSet::get(newFn->getContext(),
1900                                 oldAttrs.getRetAttributes()));
1901 
1902     // If the function was passed too few arguments, don't transform.
1903     unsigned newNumArgs = newFn->arg_size();
1904     if (callSite.arg_size() < newNumArgs) continue;
1905 
1906     // If extra arguments were passed, we silently drop them.
1907     // If any of the types mismatch, we don't transform.
1908     unsigned argNo = 0;
1909     bool dontTransform = false;
1910     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1911            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1912       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1913         dontTransform = true;
1914         break;
1915       }
1916 
1917       // Add any parameter attributes.
1918       if (oldAttrs.hasAttributes(argNo + 1))
1919         newAttrs.
1920           push_back(llvm::
1921                     AttributeSet::get(newFn->getContext(),
1922                                       oldAttrs.getParamAttributes(argNo + 1)));
1923     }
1924     if (dontTransform)
1925       continue;
1926 
1927     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1928       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1929                                                  oldAttrs.getFnAttributes()));
1930 
1931     // Okay, we can transform this.  Create the new call instruction and copy
1932     // over the required information.
1933     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1934 
1935     llvm::CallSite newCall;
1936     if (callSite.isCall()) {
1937       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1938                                        callSite.getInstruction());
1939     } else {
1940       llvm::InvokeInst *oldInvoke =
1941         cast<llvm::InvokeInst>(callSite.getInstruction());
1942       newCall = llvm::InvokeInst::Create(newFn,
1943                                          oldInvoke->getNormalDest(),
1944                                          oldInvoke->getUnwindDest(),
1945                                          newArgs, "",
1946                                          callSite.getInstruction());
1947     }
1948     newArgs.clear(); // for the next iteration
1949 
1950     if (!newCall->getType()->isVoidTy())
1951       newCall->takeName(callSite.getInstruction());
1952     newCall.setAttributes(
1953                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1954     newCall.setCallingConv(callSite.getCallingConv());
1955 
1956     // Finally, remove the old call, replacing any uses with the new one.
1957     if (!callSite->use_empty())
1958       callSite->replaceAllUsesWith(newCall.getInstruction());
1959 
1960     // Copy debug location attached to CI.
1961     if (!callSite->getDebugLoc().isUnknown())
1962       newCall->setDebugLoc(callSite->getDebugLoc());
1963     callSite->eraseFromParent();
1964   }
1965 }
1966 
1967 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1968 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1969 /// existing call uses of the old function in the module, this adjusts them to
1970 /// call the new function directly.
1971 ///
1972 /// This is not just a cleanup: the always_inline pass requires direct calls to
1973 /// functions to be able to inline them.  If there is a bitcast in the way, it
1974 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1975 /// run at -O0.
1976 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1977                                                       llvm::Function *NewFn) {
1978   // If we're redefining a global as a function, don't transform it.
1979   if (!isa<llvm::Function>(Old)) return;
1980 
1981   replaceUsesOfNonProtoConstant(Old, NewFn);
1982 }
1983 
1984 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1985   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1986   // If we have a definition, this might be a deferred decl. If the
1987   // instantiation is explicit, make sure we emit it at the end.
1988   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1989     GetAddrOfGlobalVar(VD);
1990 
1991   EmitTopLevelDecl(VD);
1992 }
1993 
1994 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1995   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1996 
1997   // Compute the function info and LLVM type.
1998   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1999   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2000 
2001   // Get or create the prototype for the function.
2002   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2003 
2004   // Strip off a bitcast if we got one back.
2005   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2006     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2007     Entry = CE->getOperand(0);
2008   }
2009 
2010 
2011   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2012     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2013 
2014     // If the types mismatch then we have to rewrite the definition.
2015     assert(OldFn->isDeclaration() &&
2016            "Shouldn't replace non-declaration");
2017 
2018     // F is the Function* for the one with the wrong type, we must make a new
2019     // Function* and update everything that used F (a declaration) with the new
2020     // Function* (which will be a definition).
2021     //
2022     // This happens if there is a prototype for a function
2023     // (e.g. "int f()") and then a definition of a different type
2024     // (e.g. "int f(int x)").  Move the old function aside so that it
2025     // doesn't interfere with GetAddrOfFunction.
2026     OldFn->setName(StringRef());
2027     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2028 
2029     // This might be an implementation of a function without a
2030     // prototype, in which case, try to do special replacement of
2031     // calls which match the new prototype.  The really key thing here
2032     // is that we also potentially drop arguments from the call site
2033     // so as to make a direct call, which makes the inliner happier
2034     // and suppresses a number of optimizer warnings (!) about
2035     // dropping arguments.
2036     if (!OldFn->use_empty()) {
2037       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2038       OldFn->removeDeadConstantUsers();
2039     }
2040 
2041     // Replace uses of F with the Function we will endow with a body.
2042     if (!Entry->use_empty()) {
2043       llvm::Constant *NewPtrForOldDecl =
2044         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2045       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2046     }
2047 
2048     // Ok, delete the old function now, which is dead.
2049     OldFn->eraseFromParent();
2050 
2051     Entry = NewFn;
2052   }
2053 
2054   // We need to set linkage and visibility on the function before
2055   // generating code for it because various parts of IR generation
2056   // want to propagate this information down (e.g. to local static
2057   // declarations).
2058   llvm::Function *Fn = cast<llvm::Function>(Entry);
2059   setFunctionLinkage(GD, Fn);
2060 
2061   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2062   setGlobalVisibility(Fn, D);
2063 
2064   MaybeHandleStaticInExternC(D, Fn);
2065 
2066   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2067 
2068   SetFunctionDefinitionAttributes(D, Fn);
2069   SetLLVMFunctionAttributesForDefinition(D, Fn);
2070 
2071   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2072     AddGlobalCtor(Fn, CA->getPriority());
2073   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2074     AddGlobalDtor(Fn, DA->getPriority());
2075   if (D->hasAttr<AnnotateAttr>())
2076     AddGlobalAnnotations(D, Fn);
2077 }
2078 
2079 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2080   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2081   const AliasAttr *AA = D->getAttr<AliasAttr>();
2082   assert(AA && "Not an alias?");
2083 
2084   StringRef MangledName = getMangledName(GD);
2085 
2086   // If there is a definition in the module, then it wins over the alias.
2087   // This is dubious, but allow it to be safe.  Just ignore the alias.
2088   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2089   if (Entry && !Entry->isDeclaration())
2090     return;
2091 
2092   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2093 
2094   // Create a reference to the named value.  This ensures that it is emitted
2095   // if a deferred decl.
2096   llvm::Constant *Aliasee;
2097   if (isa<llvm::FunctionType>(DeclTy))
2098     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2099                                       /*ForVTable=*/false);
2100   else
2101     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2102                                     llvm::PointerType::getUnqual(DeclTy), 0);
2103 
2104   // Create the new alias itself, but don't set a name yet.
2105   llvm::GlobalValue *GA =
2106     new llvm::GlobalAlias(Aliasee->getType(),
2107                           llvm::Function::ExternalLinkage,
2108                           "", Aliasee, &getModule());
2109 
2110   if (Entry) {
2111     assert(Entry->isDeclaration());
2112 
2113     // If there is a declaration in the module, then we had an extern followed
2114     // by the alias, as in:
2115     //   extern int test6();
2116     //   ...
2117     //   int test6() __attribute__((alias("test7")));
2118     //
2119     // Remove it and replace uses of it with the alias.
2120     GA->takeName(Entry);
2121 
2122     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2123                                                           Entry->getType()));
2124     Entry->eraseFromParent();
2125   } else {
2126     GA->setName(MangledName);
2127   }
2128 
2129   // Set attributes which are particular to an alias; this is a
2130   // specialization of the attributes which may be set on a global
2131   // variable/function.
2132   if (D->hasAttr<DLLExportAttr>()) {
2133     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2134       // The dllexport attribute is ignored for undefined symbols.
2135       if (FD->hasBody())
2136         GA->setLinkage(llvm::Function::DLLExportLinkage);
2137     } else {
2138       GA->setLinkage(llvm::Function::DLLExportLinkage);
2139     }
2140   } else if (D->hasAttr<WeakAttr>() ||
2141              D->hasAttr<WeakRefAttr>() ||
2142              D->isWeakImported()) {
2143     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2144   }
2145 
2146   SetCommonAttributes(D, GA);
2147 }
2148 
2149 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2150                                             ArrayRef<llvm::Type*> Tys) {
2151   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2152                                          Tys);
2153 }
2154 
2155 static llvm::StringMapEntry<llvm::Constant*> &
2156 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2157                          const StringLiteral *Literal,
2158                          bool TargetIsLSB,
2159                          bool &IsUTF16,
2160                          unsigned &StringLength) {
2161   StringRef String = Literal->getString();
2162   unsigned NumBytes = String.size();
2163 
2164   // Check for simple case.
2165   if (!Literal->containsNonAsciiOrNull()) {
2166     StringLength = NumBytes;
2167     return Map.GetOrCreateValue(String);
2168   }
2169 
2170   // Otherwise, convert the UTF8 literals into a string of shorts.
2171   IsUTF16 = true;
2172 
2173   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2174   const UTF8 *FromPtr = (const UTF8 *)String.data();
2175   UTF16 *ToPtr = &ToBuf[0];
2176 
2177   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2178                            &ToPtr, ToPtr + NumBytes,
2179                            strictConversion);
2180 
2181   // ConvertUTF8toUTF16 returns the length in ToPtr.
2182   StringLength = ToPtr - &ToBuf[0];
2183 
2184   // Add an explicit null.
2185   *ToPtr = 0;
2186   return Map.
2187     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2188                                (StringLength + 1) * 2));
2189 }
2190 
2191 static llvm::StringMapEntry<llvm::Constant*> &
2192 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2193                        const StringLiteral *Literal,
2194                        unsigned &StringLength) {
2195   StringRef String = Literal->getString();
2196   StringLength = String.size();
2197   return Map.GetOrCreateValue(String);
2198 }
2199 
2200 llvm::Constant *
2201 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2202   unsigned StringLength = 0;
2203   bool isUTF16 = false;
2204   llvm::StringMapEntry<llvm::Constant*> &Entry =
2205     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2206                              getDataLayout().isLittleEndian(),
2207                              isUTF16, StringLength);
2208 
2209   if (llvm::Constant *C = Entry.getValue())
2210     return C;
2211 
2212   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2213   llvm::Constant *Zeros[] = { Zero, Zero };
2214   llvm::Value *V;
2215 
2216   // If we don't already have it, get __CFConstantStringClassReference.
2217   if (!CFConstantStringClassRef) {
2218     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2219     Ty = llvm::ArrayType::get(Ty, 0);
2220     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2221                                            "__CFConstantStringClassReference");
2222     // Decay array -> ptr
2223     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2224     CFConstantStringClassRef = V;
2225   }
2226   else
2227     V = CFConstantStringClassRef;
2228 
2229   QualType CFTy = getContext().getCFConstantStringType();
2230 
2231   llvm::StructType *STy =
2232     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2233 
2234   llvm::Constant *Fields[4];
2235 
2236   // Class pointer.
2237   Fields[0] = cast<llvm::ConstantExpr>(V);
2238 
2239   // Flags.
2240   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2241   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2242     llvm::ConstantInt::get(Ty, 0x07C8);
2243 
2244   // String pointer.
2245   llvm::Constant *C = 0;
2246   if (isUTF16) {
2247     ArrayRef<uint16_t> Arr =
2248       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2249                                      const_cast<char *>(Entry.getKey().data())),
2250                                    Entry.getKey().size() / 2);
2251     C = llvm::ConstantDataArray::get(VMContext, Arr);
2252   } else {
2253     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2254   }
2255 
2256   llvm::GlobalValue::LinkageTypes Linkage;
2257   if (isUTF16)
2258     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2259     Linkage = llvm::GlobalValue::InternalLinkage;
2260   else
2261     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2262     // when using private linkage. It is not clear if this is a bug in ld
2263     // or a reasonable new restriction.
2264     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2265 
2266   // Note: -fwritable-strings doesn't make the backing store strings of
2267   // CFStrings writable. (See <rdar://problem/10657500>)
2268   llvm::GlobalVariable *GV =
2269     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2270                              Linkage, C, ".str");
2271   GV->setUnnamedAddr(true);
2272   // Don't enforce the target's minimum global alignment, since the only use
2273   // of the string is via this class initializer.
2274   if (isUTF16) {
2275     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2276     GV->setAlignment(Align.getQuantity());
2277   } else {
2278     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2279     GV->setAlignment(Align.getQuantity());
2280   }
2281 
2282   // String.
2283   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2284 
2285   if (isUTF16)
2286     // Cast the UTF16 string to the correct type.
2287     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2288 
2289   // String length.
2290   Ty = getTypes().ConvertType(getContext().LongTy);
2291   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2292 
2293   // The struct.
2294   C = llvm::ConstantStruct::get(STy, Fields);
2295   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2296                                 llvm::GlobalVariable::PrivateLinkage, C,
2297                                 "_unnamed_cfstring_");
2298   if (const char *Sect = getTarget().getCFStringSection())
2299     GV->setSection(Sect);
2300   Entry.setValue(GV);
2301 
2302   return GV;
2303 }
2304 
2305 static RecordDecl *
2306 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2307                  DeclContext *DC, IdentifierInfo *Id) {
2308   SourceLocation Loc;
2309   if (Ctx.getLangOpts().CPlusPlus)
2310     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2311   else
2312     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2313 }
2314 
2315 llvm::Constant *
2316 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2317   unsigned StringLength = 0;
2318   llvm::StringMapEntry<llvm::Constant*> &Entry =
2319     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2320 
2321   if (llvm::Constant *C = Entry.getValue())
2322     return C;
2323 
2324   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2325   llvm::Constant *Zeros[] = { Zero, Zero };
2326   llvm::Value *V;
2327   // If we don't already have it, get _NSConstantStringClassReference.
2328   if (!ConstantStringClassRef) {
2329     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2330     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2331     llvm::Constant *GV;
2332     if (LangOpts.ObjCRuntime.isNonFragile()) {
2333       std::string str =
2334         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2335                             : "OBJC_CLASS_$_" + StringClass;
2336       GV = getObjCRuntime().GetClassGlobal(str);
2337       // Make sure the result is of the correct type.
2338       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2339       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2340       ConstantStringClassRef = V;
2341     } else {
2342       std::string str =
2343         StringClass.empty() ? "_NSConstantStringClassReference"
2344                             : "_" + StringClass + "ClassReference";
2345       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2346       GV = CreateRuntimeVariable(PTy, str);
2347       // Decay array -> ptr
2348       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2349       ConstantStringClassRef = V;
2350     }
2351   }
2352   else
2353     V = ConstantStringClassRef;
2354 
2355   if (!NSConstantStringType) {
2356     // Construct the type for a constant NSString.
2357     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2358                                      Context.getTranslationUnitDecl(),
2359                                    &Context.Idents.get("__builtin_NSString"));
2360     D->startDefinition();
2361 
2362     QualType FieldTypes[3];
2363 
2364     // const int *isa;
2365     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2366     // const char *str;
2367     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2368     // unsigned int length;
2369     FieldTypes[2] = Context.UnsignedIntTy;
2370 
2371     // Create fields
2372     for (unsigned i = 0; i < 3; ++i) {
2373       FieldDecl *Field = FieldDecl::Create(Context, D,
2374                                            SourceLocation(),
2375                                            SourceLocation(), 0,
2376                                            FieldTypes[i], /*TInfo=*/0,
2377                                            /*BitWidth=*/0,
2378                                            /*Mutable=*/false,
2379                                            ICIS_NoInit);
2380       Field->setAccess(AS_public);
2381       D->addDecl(Field);
2382     }
2383 
2384     D->completeDefinition();
2385     QualType NSTy = Context.getTagDeclType(D);
2386     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2387   }
2388 
2389   llvm::Constant *Fields[3];
2390 
2391   // Class pointer.
2392   Fields[0] = cast<llvm::ConstantExpr>(V);
2393 
2394   // String pointer.
2395   llvm::Constant *C =
2396     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2397 
2398   llvm::GlobalValue::LinkageTypes Linkage;
2399   bool isConstant;
2400   Linkage = llvm::GlobalValue::PrivateLinkage;
2401   isConstant = !LangOpts.WritableStrings;
2402 
2403   llvm::GlobalVariable *GV =
2404   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2405                            ".str");
2406   GV->setUnnamedAddr(true);
2407   // Don't enforce the target's minimum global alignment, since the only use
2408   // of the string is via this class initializer.
2409   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2410   GV->setAlignment(Align.getQuantity());
2411   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2412 
2413   // String length.
2414   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2415   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2416 
2417   // The struct.
2418   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2419   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2420                                 llvm::GlobalVariable::PrivateLinkage, C,
2421                                 "_unnamed_nsstring_");
2422   // FIXME. Fix section.
2423   if (const char *Sect =
2424         LangOpts.ObjCRuntime.isNonFragile()
2425           ? getTarget().getNSStringNonFragileABISection()
2426           : getTarget().getNSStringSection())
2427     GV->setSection(Sect);
2428   Entry.setValue(GV);
2429 
2430   return GV;
2431 }
2432 
2433 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2434   if (ObjCFastEnumerationStateType.isNull()) {
2435     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2436                                      Context.getTranslationUnitDecl(),
2437                       &Context.Idents.get("__objcFastEnumerationState"));
2438     D->startDefinition();
2439 
2440     QualType FieldTypes[] = {
2441       Context.UnsignedLongTy,
2442       Context.getPointerType(Context.getObjCIdType()),
2443       Context.getPointerType(Context.UnsignedLongTy),
2444       Context.getConstantArrayType(Context.UnsignedLongTy,
2445                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2446     };
2447 
2448     for (size_t i = 0; i < 4; ++i) {
2449       FieldDecl *Field = FieldDecl::Create(Context,
2450                                            D,
2451                                            SourceLocation(),
2452                                            SourceLocation(), 0,
2453                                            FieldTypes[i], /*TInfo=*/0,
2454                                            /*BitWidth=*/0,
2455                                            /*Mutable=*/false,
2456                                            ICIS_NoInit);
2457       Field->setAccess(AS_public);
2458       D->addDecl(Field);
2459     }
2460 
2461     D->completeDefinition();
2462     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2463   }
2464 
2465   return ObjCFastEnumerationStateType;
2466 }
2467 
2468 llvm::Constant *
2469 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2470   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2471 
2472   // Don't emit it as the address of the string, emit the string data itself
2473   // as an inline array.
2474   if (E->getCharByteWidth() == 1) {
2475     SmallString<64> Str(E->getString());
2476 
2477     // Resize the string to the right size, which is indicated by its type.
2478     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2479     Str.resize(CAT->getSize().getZExtValue());
2480     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2481   }
2482 
2483   llvm::ArrayType *AType =
2484     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2485   llvm::Type *ElemTy = AType->getElementType();
2486   unsigned NumElements = AType->getNumElements();
2487 
2488   // Wide strings have either 2-byte or 4-byte elements.
2489   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2490     SmallVector<uint16_t, 32> Elements;
2491     Elements.reserve(NumElements);
2492 
2493     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2494       Elements.push_back(E->getCodeUnit(i));
2495     Elements.resize(NumElements);
2496     return llvm::ConstantDataArray::get(VMContext, Elements);
2497   }
2498 
2499   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2500   SmallVector<uint32_t, 32> Elements;
2501   Elements.reserve(NumElements);
2502 
2503   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2504     Elements.push_back(E->getCodeUnit(i));
2505   Elements.resize(NumElements);
2506   return llvm::ConstantDataArray::get(VMContext, Elements);
2507 }
2508 
2509 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2510 /// constant array for the given string literal.
2511 llvm::Constant *
2512 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2513   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2514   if (S->isAscii() || S->isUTF8()) {
2515     SmallString<64> Str(S->getString());
2516 
2517     // Resize the string to the right size, which is indicated by its type.
2518     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2519     Str.resize(CAT->getSize().getZExtValue());
2520     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2521   }
2522 
2523   // FIXME: the following does not memoize wide strings.
2524   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2525   llvm::GlobalVariable *GV =
2526     new llvm::GlobalVariable(getModule(),C->getType(),
2527                              !LangOpts.WritableStrings,
2528                              llvm::GlobalValue::PrivateLinkage,
2529                              C,".str");
2530 
2531   GV->setAlignment(Align.getQuantity());
2532   GV->setUnnamedAddr(true);
2533   return GV;
2534 }
2535 
2536 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2537 /// array for the given ObjCEncodeExpr node.
2538 llvm::Constant *
2539 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2540   std::string Str;
2541   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2542 
2543   return GetAddrOfConstantCString(Str);
2544 }
2545 
2546 
2547 /// GenerateWritableString -- Creates storage for a string literal.
2548 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2549                                              bool constant,
2550                                              CodeGenModule &CGM,
2551                                              const char *GlobalName,
2552                                              unsigned Alignment) {
2553   // Create Constant for this string literal. Don't add a '\0'.
2554   llvm::Constant *C =
2555       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2556 
2557   // Create a global variable for this string
2558   llvm::GlobalVariable *GV =
2559     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2560                              llvm::GlobalValue::PrivateLinkage,
2561                              C, GlobalName);
2562   GV->setAlignment(Alignment);
2563   GV->setUnnamedAddr(true);
2564   return GV;
2565 }
2566 
2567 /// GetAddrOfConstantString - Returns a pointer to a character array
2568 /// containing the literal. This contents are exactly that of the
2569 /// given string, i.e. it will not be null terminated automatically;
2570 /// see GetAddrOfConstantCString. Note that whether the result is
2571 /// actually a pointer to an LLVM constant depends on
2572 /// Feature.WriteableStrings.
2573 ///
2574 /// The result has pointer to array type.
2575 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2576                                                        const char *GlobalName,
2577                                                        unsigned Alignment) {
2578   // Get the default prefix if a name wasn't specified.
2579   if (!GlobalName)
2580     GlobalName = ".str";
2581 
2582   if (Alignment == 0)
2583     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2584       .getQuantity();
2585 
2586   // Don't share any string literals if strings aren't constant.
2587   if (LangOpts.WritableStrings)
2588     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2589 
2590   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2591     ConstantStringMap.GetOrCreateValue(Str);
2592 
2593   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2594     if (Alignment > GV->getAlignment()) {
2595       GV->setAlignment(Alignment);
2596     }
2597     return GV;
2598   }
2599 
2600   // Create a global variable for this.
2601   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2602                                                    Alignment);
2603   Entry.setValue(GV);
2604   return GV;
2605 }
2606 
2607 /// GetAddrOfConstantCString - Returns a pointer to a character
2608 /// array containing the literal and a terminating '\0'
2609 /// character. The result has pointer to array type.
2610 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2611                                                         const char *GlobalName,
2612                                                         unsigned Alignment) {
2613   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2614   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2615 }
2616 
2617 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2618     const MaterializeTemporaryExpr *E, const Expr *Init) {
2619   assert((E->getStorageDuration() == SD_Static ||
2620           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2621   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2622 
2623   // If we're not materializing a subobject of the temporary, keep the
2624   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2625   QualType MaterializedType = Init->getType();
2626   if (Init == E->GetTemporaryExpr())
2627     MaterializedType = E->getType();
2628 
2629   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2630   if (Slot)
2631     return Slot;
2632 
2633   // FIXME: If an externally-visible declaration extends multiple temporaries,
2634   // we need to give each temporary the same name in every translation unit (and
2635   // we also need to make the temporaries externally-visible).
2636   SmallString<256> Name;
2637   llvm::raw_svector_ostream Out(Name);
2638   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2639   Out.flush();
2640 
2641   APValue *Value = 0;
2642   if (E->getStorageDuration() == SD_Static) {
2643     // We might have a cached constant initializer for this temporary. Note
2644     // that this might have a different value from the value computed by
2645     // evaluating the initializer if the surrounding constant expression
2646     // modifies the temporary.
2647     Value = getContext().getMaterializedTemporaryValue(E, false);
2648     if (Value && Value->isUninit())
2649       Value = 0;
2650   }
2651 
2652   // Try evaluating it now, it might have a constant initializer.
2653   Expr::EvalResult EvalResult;
2654   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2655       !EvalResult.hasSideEffects())
2656     Value = &EvalResult.Val;
2657 
2658   llvm::Constant *InitialValue = 0;
2659   bool Constant = false;
2660   llvm::Type *Type;
2661   if (Value) {
2662     // The temporary has a constant initializer, use it.
2663     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2664     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2665     Type = InitialValue->getType();
2666   } else {
2667     // No initializer, the initialization will be provided when we
2668     // initialize the declaration which performed lifetime extension.
2669     Type = getTypes().ConvertTypeForMem(MaterializedType);
2670   }
2671 
2672   // Create a global variable for this lifetime-extended temporary.
2673   llvm::GlobalVariable *GV =
2674     new llvm::GlobalVariable(getModule(), Type, Constant,
2675                              llvm::GlobalValue::PrivateLinkage,
2676                              InitialValue, Name.c_str());
2677   GV->setAlignment(
2678       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2679   if (VD->getTLSKind())
2680     setTLSMode(GV, *VD);
2681   Slot = GV;
2682   return GV;
2683 }
2684 
2685 /// EmitObjCPropertyImplementations - Emit information for synthesized
2686 /// properties for an implementation.
2687 void CodeGenModule::EmitObjCPropertyImplementations(const
2688                                                     ObjCImplementationDecl *D) {
2689   for (ObjCImplementationDecl::propimpl_iterator
2690          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2691     ObjCPropertyImplDecl *PID = *i;
2692 
2693     // Dynamic is just for type-checking.
2694     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2695       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2696 
2697       // Determine which methods need to be implemented, some may have
2698       // been overridden. Note that ::isPropertyAccessor is not the method
2699       // we want, that just indicates if the decl came from a
2700       // property. What we want to know is if the method is defined in
2701       // this implementation.
2702       if (!D->getInstanceMethod(PD->getGetterName()))
2703         CodeGenFunction(*this).GenerateObjCGetter(
2704                                  const_cast<ObjCImplementationDecl *>(D), PID);
2705       if (!PD->isReadOnly() &&
2706           !D->getInstanceMethod(PD->getSetterName()))
2707         CodeGenFunction(*this).GenerateObjCSetter(
2708                                  const_cast<ObjCImplementationDecl *>(D), PID);
2709     }
2710   }
2711 }
2712 
2713 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2714   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2715   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2716        ivar; ivar = ivar->getNextIvar())
2717     if (ivar->getType().isDestructedType())
2718       return true;
2719 
2720   return false;
2721 }
2722 
2723 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2724 /// for an implementation.
2725 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2726   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2727   if (needsDestructMethod(D)) {
2728     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2729     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2730     ObjCMethodDecl *DTORMethod =
2731       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2732                              cxxSelector, getContext().VoidTy, 0, D,
2733                              /*isInstance=*/true, /*isVariadic=*/false,
2734                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2735                              /*isDefined=*/false, ObjCMethodDecl::Required);
2736     D->addInstanceMethod(DTORMethod);
2737     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2738     D->setHasDestructors(true);
2739   }
2740 
2741   // If the implementation doesn't have any ivar initializers, we don't need
2742   // a .cxx_construct.
2743   if (D->getNumIvarInitializers() == 0)
2744     return;
2745 
2746   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2747   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2748   // The constructor returns 'self'.
2749   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2750                                                 D->getLocation(),
2751                                                 D->getLocation(),
2752                                                 cxxSelector,
2753                                                 getContext().getObjCIdType(), 0,
2754                                                 D, /*isInstance=*/true,
2755                                                 /*isVariadic=*/false,
2756                                                 /*isPropertyAccessor=*/true,
2757                                                 /*isImplicitlyDeclared=*/true,
2758                                                 /*isDefined=*/false,
2759                                                 ObjCMethodDecl::Required);
2760   D->addInstanceMethod(CTORMethod);
2761   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2762   D->setHasNonZeroConstructors(true);
2763 }
2764 
2765 /// EmitNamespace - Emit all declarations in a namespace.
2766 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2767   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2768        I != E; ++I)
2769     EmitTopLevelDecl(*I);
2770 }
2771 
2772 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2773 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2774   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2775       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2776     ErrorUnsupported(LSD, "linkage spec");
2777     return;
2778   }
2779 
2780   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2781        I != E; ++I) {
2782     // Meta-data for ObjC class includes references to implemented methods.
2783     // Generate class's method definitions first.
2784     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2785       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2786            MEnd = OID->meth_end();
2787            M != MEnd; ++M)
2788         EmitTopLevelDecl(*M);
2789     }
2790     EmitTopLevelDecl(*I);
2791   }
2792 }
2793 
2794 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2795 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2796   // If an error has occurred, stop code generation, but continue
2797   // parsing and semantic analysis (to ensure all warnings and errors
2798   // are emitted).
2799   if (Diags.hasErrorOccurred())
2800     return;
2801 
2802   // Ignore dependent declarations.
2803   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2804     return;
2805 
2806   switch (D->getKind()) {
2807   case Decl::CXXConversion:
2808   case Decl::CXXMethod:
2809   case Decl::Function:
2810     // Skip function templates
2811     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2812         cast<FunctionDecl>(D)->isLateTemplateParsed())
2813       return;
2814 
2815     EmitGlobal(cast<FunctionDecl>(D));
2816     break;
2817 
2818   case Decl::Var:
2819     EmitGlobal(cast<VarDecl>(D));
2820     break;
2821 
2822   // Indirect fields from global anonymous structs and unions can be
2823   // ignored; only the actual variable requires IR gen support.
2824   case Decl::IndirectField:
2825     break;
2826 
2827   // C++ Decls
2828   case Decl::Namespace:
2829     EmitNamespace(cast<NamespaceDecl>(D));
2830     break;
2831     // No code generation needed.
2832   case Decl::UsingShadow:
2833   case Decl::Using:
2834   case Decl::ClassTemplate:
2835   case Decl::FunctionTemplate:
2836   case Decl::TypeAliasTemplate:
2837   case Decl::Block:
2838   case Decl::Empty:
2839     break;
2840   case Decl::NamespaceAlias:
2841     if (CGDebugInfo *DI = getModuleDebugInfo())
2842         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2843     return;
2844   case Decl::UsingDirective: // using namespace X; [C++]
2845     if (CGDebugInfo *DI = getModuleDebugInfo())
2846       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2847     return;
2848   case Decl::CXXConstructor:
2849     // Skip function templates
2850     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2851         cast<FunctionDecl>(D)->isLateTemplateParsed())
2852       return;
2853 
2854     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2855     break;
2856   case Decl::CXXDestructor:
2857     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2858       return;
2859     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2860     break;
2861 
2862   case Decl::StaticAssert:
2863     // Nothing to do.
2864     break;
2865 
2866   // Objective-C Decls
2867 
2868   // Forward declarations, no (immediate) code generation.
2869   case Decl::ObjCInterface:
2870   case Decl::ObjCCategory:
2871     break;
2872 
2873   case Decl::ObjCProtocol: {
2874     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2875     if (Proto->isThisDeclarationADefinition())
2876       ObjCRuntime->GenerateProtocol(Proto);
2877     break;
2878   }
2879 
2880   case Decl::ObjCCategoryImpl:
2881     // Categories have properties but don't support synthesize so we
2882     // can ignore them here.
2883     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2884     break;
2885 
2886   case Decl::ObjCImplementation: {
2887     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2888     EmitObjCPropertyImplementations(OMD);
2889     EmitObjCIvarInitializations(OMD);
2890     ObjCRuntime->GenerateClass(OMD);
2891     // Emit global variable debug information.
2892     if (CGDebugInfo *DI = getModuleDebugInfo())
2893       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2894         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2895             OMD->getClassInterface()), OMD->getLocation());
2896     break;
2897   }
2898   case Decl::ObjCMethod: {
2899     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2900     // If this is not a prototype, emit the body.
2901     if (OMD->getBody())
2902       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2903     break;
2904   }
2905   case Decl::ObjCCompatibleAlias:
2906     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2907     break;
2908 
2909   case Decl::LinkageSpec:
2910     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2911     break;
2912 
2913   case Decl::FileScopeAsm: {
2914     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2915     StringRef AsmString = AD->getAsmString()->getString();
2916 
2917     const std::string &S = getModule().getModuleInlineAsm();
2918     if (S.empty())
2919       getModule().setModuleInlineAsm(AsmString);
2920     else if (S.end()[-1] == '\n')
2921       getModule().setModuleInlineAsm(S + AsmString.str());
2922     else
2923       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2924     break;
2925   }
2926 
2927   case Decl::Import: {
2928     ImportDecl *Import = cast<ImportDecl>(D);
2929 
2930     // Ignore import declarations that come from imported modules.
2931     if (clang::Module *Owner = Import->getOwningModule()) {
2932       if (getLangOpts().CurrentModule.empty() ||
2933           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2934         break;
2935     }
2936 
2937     ImportedModules.insert(Import->getImportedModule());
2938     break;
2939  }
2940 
2941   default:
2942     // Make sure we handled everything we should, every other kind is a
2943     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2944     // function. Need to recode Decl::Kind to do that easily.
2945     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2946   }
2947 }
2948 
2949 /// Turns the given pointer into a constant.
2950 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2951                                           const void *Ptr) {
2952   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2953   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2954   return llvm::ConstantInt::get(i64, PtrInt);
2955 }
2956 
2957 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2958                                    llvm::NamedMDNode *&GlobalMetadata,
2959                                    GlobalDecl D,
2960                                    llvm::GlobalValue *Addr) {
2961   if (!GlobalMetadata)
2962     GlobalMetadata =
2963       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2964 
2965   // TODO: should we report variant information for ctors/dtors?
2966   llvm::Value *Ops[] = {
2967     Addr,
2968     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2969   };
2970   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2971 }
2972 
2973 /// For each function which is declared within an extern "C" region and marked
2974 /// as 'used', but has internal linkage, create an alias from the unmangled
2975 /// name to the mangled name if possible. People expect to be able to refer
2976 /// to such functions with an unmangled name from inline assembly within the
2977 /// same translation unit.
2978 void CodeGenModule::EmitStaticExternCAliases() {
2979   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2980                                   E = StaticExternCValues.end();
2981        I != E; ++I) {
2982     IdentifierInfo *Name = I->first;
2983     llvm::GlobalValue *Val = I->second;
2984     if (Val && !getModule().getNamedValue(Name->getName()))
2985       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2986                                           Name->getName(), Val, &getModule()));
2987   }
2988 }
2989 
2990 /// Emits metadata nodes associating all the global values in the
2991 /// current module with the Decls they came from.  This is useful for
2992 /// projects using IR gen as a subroutine.
2993 ///
2994 /// Since there's currently no way to associate an MDNode directly
2995 /// with an llvm::GlobalValue, we create a global named metadata
2996 /// with the name 'clang.global.decl.ptrs'.
2997 void CodeGenModule::EmitDeclMetadata() {
2998   llvm::NamedMDNode *GlobalMetadata = 0;
2999 
3000   // StaticLocalDeclMap
3001   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3002          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3003        I != E; ++I) {
3004     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3005     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3006   }
3007 }
3008 
3009 /// Emits metadata nodes for all the local variables in the current
3010 /// function.
3011 void CodeGenFunction::EmitDeclMetadata() {
3012   if (LocalDeclMap.empty()) return;
3013 
3014   llvm::LLVMContext &Context = getLLVMContext();
3015 
3016   // Find the unique metadata ID for this name.
3017   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3018 
3019   llvm::NamedMDNode *GlobalMetadata = 0;
3020 
3021   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3022          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3023     const Decl *D = I->first;
3024     llvm::Value *Addr = I->second;
3025 
3026     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3027       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3028       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3029     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3030       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3031       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3032     }
3033   }
3034 }
3035 
3036 void CodeGenModule::EmitCoverageFile() {
3037   if (!getCodeGenOpts().CoverageFile.empty()) {
3038     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3039       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3040       llvm::LLVMContext &Ctx = TheModule.getContext();
3041       llvm::MDString *CoverageFile =
3042           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3043       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3044         llvm::MDNode *CU = CUNode->getOperand(i);
3045         llvm::Value *node[] = { CoverageFile, CU };
3046         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3047         GCov->addOperand(N);
3048       }
3049     }
3050   }
3051 }
3052 
3053 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3054                                                      QualType GuidType) {
3055   // Sema has checked that all uuid strings are of the form
3056   // "12345678-1234-1234-1234-1234567890ab".
3057   assert(Uuid.size() == 36);
3058   const char *Uuidstr = Uuid.data();
3059   for (int i = 0; i < 36; ++i) {
3060     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3061     else                                         assert(isHexDigit(Uuidstr[i]));
3062   }
3063 
3064   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3065   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3066   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3067   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3068 
3069   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3070   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3071   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3072   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3073   APValue& Arr = InitStruct.getStructField(3);
3074   Arr = APValue(APValue::UninitArray(), 8, 8);
3075   for (int t = 0; t < 8; ++t)
3076     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3077           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3078 
3079   return EmitConstantValue(InitStruct, GuidType);
3080 }
3081