1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static const char AnnotationSection[] = "llvm.metadata"; 64 65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 66 switch (CGM.getTarget().getCXXABI().getKind()) { 67 case TargetCXXABI::GenericAArch64: 68 case TargetCXXABI::GenericARM: 69 case TargetCXXABI::iOS: 70 case TargetCXXABI::iOS64: 71 case TargetCXXABI::WatchOS: 72 case TargetCXXABI::GenericMIPS: 73 case TargetCXXABI::GenericItanium: 74 case TargetCXXABI::WebAssembly: 75 return CreateItaniumCXXABI(CGM); 76 case TargetCXXABI::Microsoft: 77 return CreateMicrosoftCXXABI(CGM); 78 } 79 80 llvm_unreachable("invalid C++ ABI kind"); 81 } 82 83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 84 const PreprocessorOptions &PPO, 85 const CodeGenOptions &CGO, llvm::Module &M, 86 DiagnosticsEngine &diags, 87 CoverageSourceInfo *CoverageInfo) 88 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 89 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 90 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 91 VMContext(M.getContext()), Types(*this), VTables(*this), 92 SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 SizeSizeInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 108 IntAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, 112 C.getTargetInfo().getMaxPointerWidth()); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 AllocaInt8PtrTy = Int8Ty->getPointerTo( 116 M.getDataLayout().getAllocaAddrSpace()); 117 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext())); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 141 DebugInfo.reset(new CGDebugInfo(*this)); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjC1) 146 ObjCData.reset(new ObjCEntrypoints()); 147 148 if (CodeGenOpts.hasProfileClangUse()) { 149 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 150 CodeGenOpts.ProfileInstrumentUsePath); 151 if (auto E = ReaderOrErr.takeError()) { 152 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 153 "Could not read profile %0: %1"); 154 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 155 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 156 << EI.message(); 157 }); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() {} 169 170 void CodeGenModule::createObjCRuntime() { 171 // This is just isGNUFamily(), but we want to force implementors of 172 // new ABIs to decide how best to do this. 173 switch (LangOpts.ObjCRuntime.getKind()) { 174 case ObjCRuntime::GNUstep: 175 case ObjCRuntime::GCC: 176 case ObjCRuntime::ObjFW: 177 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 178 return; 179 180 case ObjCRuntime::FragileMacOSX: 181 case ObjCRuntime::MacOSX: 182 case ObjCRuntime::iOS: 183 case ObjCRuntime::WatchOS: 184 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 185 return; 186 } 187 llvm_unreachable("bad runtime kind"); 188 } 189 190 void CodeGenModule::createOpenCLRuntime() { 191 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 192 } 193 194 void CodeGenModule::createOpenMPRuntime() { 195 // Select a specialized code generation class based on the target, if any. 196 // If it does not exist use the default implementation. 197 switch (getTriple().getArch()) { 198 case llvm::Triple::nvptx: 199 case llvm::Triple::nvptx64: 200 assert(getLangOpts().OpenMPIsDevice && 201 "OpenMP NVPTX is only prepared to deal with device code."); 202 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 203 break; 204 default: 205 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 206 break; 207 } 208 } 209 210 void CodeGenModule::createCUDARuntime() { 211 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 212 } 213 214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 215 Replacements[Name] = C; 216 } 217 218 void CodeGenModule::applyReplacements() { 219 for (auto &I : Replacements) { 220 StringRef MangledName = I.first(); 221 llvm::Constant *Replacement = I.second; 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 if (!Entry) 224 continue; 225 auto *OldF = cast<llvm::Function>(Entry); 226 auto *NewF = dyn_cast<llvm::Function>(Replacement); 227 if (!NewF) { 228 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 229 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 230 } else { 231 auto *CE = cast<llvm::ConstantExpr>(Replacement); 232 assert(CE->getOpcode() == llvm::Instruction::BitCast || 233 CE->getOpcode() == llvm::Instruction::GetElementPtr); 234 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 235 } 236 } 237 238 // Replace old with new, but keep the old order. 239 OldF->replaceAllUsesWith(Replacement); 240 if (NewF) { 241 NewF->removeFromParent(); 242 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 243 NewF); 244 } 245 OldF->eraseFromParent(); 246 } 247 } 248 249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 250 GlobalValReplacements.push_back(std::make_pair(GV, C)); 251 } 252 253 void CodeGenModule::applyGlobalValReplacements() { 254 for (auto &I : GlobalValReplacements) { 255 llvm::GlobalValue *GV = I.first; 256 llvm::Constant *C = I.second; 257 258 GV->replaceAllUsesWith(C); 259 GV->eraseFromParent(); 260 } 261 } 262 263 // This is only used in aliases that we created and we know they have a 264 // linear structure. 265 static const llvm::GlobalObject *getAliasedGlobal( 266 const llvm::GlobalIndirectSymbol &GIS) { 267 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 268 const llvm::Constant *C = &GIS; 269 for (;;) { 270 C = C->stripPointerCasts(); 271 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 272 return GO; 273 // stripPointerCasts will not walk over weak aliases. 274 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 275 if (!GIS2) 276 return nullptr; 277 if (!Visited.insert(GIS2).second) 278 return nullptr; 279 C = GIS2->getIndirectSymbol(); 280 } 281 } 282 283 void CodeGenModule::checkAliases() { 284 // Check if the constructed aliases are well formed. It is really unfortunate 285 // that we have to do this in CodeGen, but we only construct mangled names 286 // and aliases during codegen. 287 bool Error = false; 288 DiagnosticsEngine &Diags = getDiags(); 289 for (const GlobalDecl &GD : Aliases) { 290 const auto *D = cast<ValueDecl>(GD.getDecl()); 291 SourceLocation Location; 292 bool IsIFunc = D->hasAttr<IFuncAttr>(); 293 if (const Attr *A = D->getDefiningAttr()) 294 Location = A->getLocation(); 295 else 296 llvm_unreachable("Not an alias or ifunc?"); 297 StringRef MangledName = getMangledName(GD); 298 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 299 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 300 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 301 if (!GV) { 302 Error = true; 303 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 304 } else if (GV->isDeclaration()) { 305 Error = true; 306 Diags.Report(Location, diag::err_alias_to_undefined) 307 << IsIFunc << IsIFunc; 308 } else if (IsIFunc) { 309 // Check resolver function type. 310 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 311 GV->getType()->getPointerElementType()); 312 assert(FTy); 313 if (!FTy->getReturnType()->isPointerTy()) 314 Diags.Report(Location, diag::err_ifunc_resolver_return); 315 if (FTy->getNumParams()) 316 Diags.Report(Location, diag::err_ifunc_resolver_params); 317 } 318 319 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 320 llvm::GlobalValue *AliaseeGV; 321 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 322 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 323 else 324 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 325 326 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 327 StringRef AliasSection = SA->getName(); 328 if (AliasSection != AliaseeGV->getSection()) 329 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 330 << AliasSection << IsIFunc << IsIFunc; 331 } 332 333 // We have to handle alias to weak aliases in here. LLVM itself disallows 334 // this since the object semantics would not match the IL one. For 335 // compatibility with gcc we implement it by just pointing the alias 336 // to its aliasee's aliasee. We also warn, since the user is probably 337 // expecting the link to be weak. 338 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 339 if (GA->isInterposable()) { 340 Diags.Report(Location, diag::warn_alias_to_weak_alias) 341 << GV->getName() << GA->getName() << IsIFunc; 342 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 343 GA->getIndirectSymbol(), Alias->getType()); 344 Alias->setIndirectSymbol(Aliasee); 345 } 346 } 347 } 348 if (!Error) 349 return; 350 351 for (const GlobalDecl &GD : Aliases) { 352 StringRef MangledName = getMangledName(GD); 353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 354 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 355 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 356 Alias->eraseFromParent(); 357 } 358 } 359 360 void CodeGenModule::clear() { 361 DeferredDeclsToEmit.clear(); 362 if (OpenMPRuntime) 363 OpenMPRuntime->clear(); 364 } 365 366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 367 StringRef MainFile) { 368 if (!hasDiagnostics()) 369 return; 370 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 371 if (MainFile.empty()) 372 MainFile = "<stdin>"; 373 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 374 } else { 375 if (Mismatched > 0) 376 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 377 378 if (Missing > 0) 379 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 380 } 381 } 382 383 void CodeGenModule::Release() { 384 EmitDeferred(); 385 applyGlobalValReplacements(); 386 applyReplacements(); 387 checkAliases(); 388 EmitCXXGlobalInitFunc(); 389 EmitCXXGlobalDtorFunc(); 390 EmitCXXThreadLocalInitFunc(); 391 if (ObjCRuntime) 392 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 393 AddGlobalCtor(ObjCInitFunction); 394 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 395 CUDARuntime) { 396 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 397 AddGlobalCtor(CudaCtorFunction); 398 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 399 AddGlobalDtor(CudaDtorFunction); 400 } 401 if (OpenMPRuntime) 402 if (llvm::Function *OpenMPRegistrationFunction = 403 OpenMPRuntime->emitRegistrationFunction()) 404 AddGlobalCtor(OpenMPRegistrationFunction, 0); 405 if (PGOReader) { 406 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 407 if (PGOStats.hasDiagnostics()) 408 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 409 } 410 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 411 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 412 EmitGlobalAnnotations(); 413 EmitStaticExternCAliases(); 414 EmitDeferredUnusedCoverageMappings(); 415 if (CoverageMapping) 416 CoverageMapping->emit(); 417 if (CodeGenOpts.SanitizeCfiCrossDso) { 418 CodeGenFunction(*this).EmitCfiCheckFail(); 419 CodeGenFunction(*this).EmitCfiCheckStub(); 420 } 421 emitAtAvailableLinkGuard(); 422 emitLLVMUsed(); 423 if (SanStats) 424 SanStats->finish(); 425 426 if (CodeGenOpts.Autolink && 427 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 428 EmitModuleLinkOptions(); 429 } 430 431 // Record mregparm value now so it is visible through rest of codegen. 432 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 433 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 434 CodeGenOpts.NumRegisterParameters); 435 436 if (CodeGenOpts.DwarfVersion) { 437 // We actually want the latest version when there are conflicts. 438 // We can change from Warning to Latest if such mode is supported. 439 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 440 CodeGenOpts.DwarfVersion); 441 } 442 if (CodeGenOpts.EmitCodeView) { 443 // Indicate that we want CodeView in the metadata. 444 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 445 } 446 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 447 // We don't support LTO with 2 with different StrictVTablePointers 448 // FIXME: we could support it by stripping all the information introduced 449 // by StrictVTablePointers. 450 451 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 452 453 llvm::Metadata *Ops[2] = { 454 llvm::MDString::get(VMContext, "StrictVTablePointers"), 455 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 456 llvm::Type::getInt32Ty(VMContext), 1))}; 457 458 getModule().addModuleFlag(llvm::Module::Require, 459 "StrictVTablePointersRequirement", 460 llvm::MDNode::get(VMContext, Ops)); 461 } 462 if (DebugInfo) 463 // We support a single version in the linked module. The LLVM 464 // parser will drop debug info with a different version number 465 // (and warn about it, too). 466 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 467 llvm::DEBUG_METADATA_VERSION); 468 469 // Width of wchar_t in bytes 470 uint64_t WCharWidth = 471 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 472 assert(LangOpts.ShortWChar || 473 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 474 Target.getWCharWidth() / 8 && 475 "LLVM wchar_t size out of sync"); 476 477 // We need to record the widths of enums and wchar_t, so that we can generate 478 // the correct build attributes in the ARM backend. wchar_size is also used by 479 // TargetLibraryInfo. 480 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 481 482 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 483 if ( Arch == llvm::Triple::arm 484 || Arch == llvm::Triple::armeb 485 || Arch == llvm::Triple::thumb 486 || Arch == llvm::Triple::thumbeb) { 487 // The minimum width of an enum in bytes 488 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 489 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 490 } 491 492 if (CodeGenOpts.SanitizeCfiCrossDso) { 493 // Indicate that we want cross-DSO control flow integrity checks. 494 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 495 } 496 497 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 498 // Indicate whether __nvvm_reflect should be configured to flush denormal 499 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 500 // property.) 501 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 502 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 503 } 504 505 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 506 assert(PLevel < 3 && "Invalid PIC Level"); 507 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 508 if (Context.getLangOpts().PIE) 509 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 510 } 511 512 SimplifyPersonality(); 513 514 if (getCodeGenOpts().EmitDeclMetadata) 515 EmitDeclMetadata(); 516 517 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 518 EmitCoverageFile(); 519 520 if (DebugInfo) 521 DebugInfo->finalize(); 522 523 EmitVersionIdentMetadata(); 524 525 EmitTargetMetadata(); 526 } 527 528 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 529 // Make sure that this type is translated. 530 Types.UpdateCompletedType(TD); 531 } 532 533 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 534 // Make sure that this type is translated. 535 Types.RefreshTypeCacheForClass(RD); 536 } 537 538 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 539 if (!TBAA) 540 return nullptr; 541 return TBAA->getTBAAInfo(QTy); 542 } 543 544 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 545 if (!TBAA) 546 return nullptr; 547 return TBAA->getTBAAInfoForVTablePtr(); 548 } 549 550 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 551 if (!TBAA) 552 return nullptr; 553 return TBAA->getTBAAStructInfo(QTy); 554 } 555 556 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 557 llvm::MDNode *AccessN, 558 uint64_t O) { 559 if (!TBAA) 560 return nullptr; 561 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 562 } 563 564 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 565 /// and struct-path aware TBAA, the tag has the same format: 566 /// base type, access type and offset. 567 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 568 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 569 llvm::MDNode *TBAAInfo, 570 bool ConvertTypeToTag) { 571 if (ConvertTypeToTag && TBAA) 572 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 573 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 574 else 575 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 576 } 577 578 void CodeGenModule::DecorateInstructionWithInvariantGroup( 579 llvm::Instruction *I, const CXXRecordDecl *RD) { 580 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 581 llvm::MDNode::get(getLLVMContext(), {})); 582 } 583 584 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 585 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 586 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 587 } 588 589 /// ErrorUnsupported - Print out an error that codegen doesn't support the 590 /// specified stmt yet. 591 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 592 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 593 "cannot compile this %0 yet"); 594 std::string Msg = Type; 595 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 596 << Msg << S->getSourceRange(); 597 } 598 599 /// ErrorUnsupported - Print out an error that codegen doesn't support the 600 /// specified decl yet. 601 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 602 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 603 "cannot compile this %0 yet"); 604 std::string Msg = Type; 605 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 606 } 607 608 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 609 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 610 } 611 612 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 613 const NamedDecl *D) const { 614 // Internal definitions always have default visibility. 615 if (GV->hasLocalLinkage()) { 616 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 617 return; 618 } 619 620 // Set visibility for definitions. 621 LinkageInfo LV = D->getLinkageAndVisibility(); 622 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 623 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 624 } 625 626 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 627 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 628 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 629 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 630 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 631 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 632 } 633 634 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 635 CodeGenOptions::TLSModel M) { 636 switch (M) { 637 case CodeGenOptions::GeneralDynamicTLSModel: 638 return llvm::GlobalVariable::GeneralDynamicTLSModel; 639 case CodeGenOptions::LocalDynamicTLSModel: 640 return llvm::GlobalVariable::LocalDynamicTLSModel; 641 case CodeGenOptions::InitialExecTLSModel: 642 return llvm::GlobalVariable::InitialExecTLSModel; 643 case CodeGenOptions::LocalExecTLSModel: 644 return llvm::GlobalVariable::LocalExecTLSModel; 645 } 646 llvm_unreachable("Invalid TLS model!"); 647 } 648 649 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 650 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 651 652 llvm::GlobalValue::ThreadLocalMode TLM; 653 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 654 655 // Override the TLS model if it is explicitly specified. 656 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 657 TLM = GetLLVMTLSModel(Attr->getModel()); 658 } 659 660 GV->setThreadLocalMode(TLM); 661 } 662 663 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 664 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 665 666 // Some ABIs don't have constructor variants. Make sure that base and 667 // complete constructors get mangled the same. 668 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 669 if (!getTarget().getCXXABI().hasConstructorVariants()) { 670 CXXCtorType OrigCtorType = GD.getCtorType(); 671 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 672 if (OrigCtorType == Ctor_Base) 673 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 674 } 675 } 676 677 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 678 if (!FoundStr.empty()) 679 return FoundStr; 680 681 const auto *ND = cast<NamedDecl>(GD.getDecl()); 682 SmallString<256> Buffer; 683 StringRef Str; 684 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 685 llvm::raw_svector_ostream Out(Buffer); 686 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 687 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 688 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 689 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 690 else 691 getCXXABI().getMangleContext().mangleName(ND, Out); 692 Str = Out.str(); 693 } else { 694 IdentifierInfo *II = ND->getIdentifier(); 695 assert(II && "Attempt to mangle unnamed decl."); 696 const auto *FD = dyn_cast<FunctionDecl>(ND); 697 698 if (FD && 699 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 700 llvm::raw_svector_ostream Out(Buffer); 701 Out << "__regcall3__" << II->getName(); 702 Str = Out.str(); 703 } else { 704 Str = II->getName(); 705 } 706 } 707 708 // Keep the first result in the case of a mangling collision. 709 auto Result = Manglings.insert(std::make_pair(Str, GD)); 710 return FoundStr = Result.first->first(); 711 } 712 713 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 714 const BlockDecl *BD) { 715 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 716 const Decl *D = GD.getDecl(); 717 718 SmallString<256> Buffer; 719 llvm::raw_svector_ostream Out(Buffer); 720 if (!D) 721 MangleCtx.mangleGlobalBlock(BD, 722 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 723 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 724 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 725 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 726 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 727 else 728 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 729 730 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 731 return Result.first->first(); 732 } 733 734 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 735 return getModule().getNamedValue(Name); 736 } 737 738 /// AddGlobalCtor - Add a function to the list that will be called before 739 /// main() runs. 740 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 741 llvm::Constant *AssociatedData) { 742 // FIXME: Type coercion of void()* types. 743 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 744 } 745 746 /// AddGlobalDtor - Add a function to the list that will be called 747 /// when the module is unloaded. 748 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 749 // FIXME: Type coercion of void()* types. 750 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 751 } 752 753 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 754 if (Fns.empty()) return; 755 756 // Ctor function type is void()*. 757 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 758 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 759 760 // Get the type of a ctor entry, { i32, void ()*, i8* }. 761 llvm::StructType *CtorStructTy = llvm::StructType::get( 762 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 763 764 // Construct the constructor and destructor arrays. 765 ConstantInitBuilder builder(*this); 766 auto ctors = builder.beginArray(CtorStructTy); 767 for (const auto &I : Fns) { 768 auto ctor = ctors.beginStruct(CtorStructTy); 769 ctor.addInt(Int32Ty, I.Priority); 770 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 771 if (I.AssociatedData) 772 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 773 else 774 ctor.addNullPointer(VoidPtrTy); 775 ctor.finishAndAddTo(ctors); 776 } 777 778 auto list = 779 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 780 /*constant*/ false, 781 llvm::GlobalValue::AppendingLinkage); 782 783 // The LTO linker doesn't seem to like it when we set an alignment 784 // on appending variables. Take it off as a workaround. 785 list->setAlignment(0); 786 787 Fns.clear(); 788 } 789 790 llvm::GlobalValue::LinkageTypes 791 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 792 const auto *D = cast<FunctionDecl>(GD.getDecl()); 793 794 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 795 796 if (isa<CXXDestructorDecl>(D) && 797 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 798 GD.getDtorType())) { 799 // Destructor variants in the Microsoft C++ ABI are always internal or 800 // linkonce_odr thunks emitted on an as-needed basis. 801 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 802 : llvm::GlobalValue::LinkOnceODRLinkage; 803 } 804 805 if (isa<CXXConstructorDecl>(D) && 806 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 807 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 808 // Our approach to inheriting constructors is fundamentally different from 809 // that used by the MS ABI, so keep our inheriting constructor thunks 810 // internal rather than trying to pick an unambiguous mangling for them. 811 return llvm::GlobalValue::InternalLinkage; 812 } 813 814 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 815 } 816 817 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 818 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 819 820 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 821 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 822 // Don't dllexport/import destructor thunks. 823 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 824 return; 825 } 826 } 827 828 if (FD->hasAttr<DLLImportAttr>()) 829 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 830 else if (FD->hasAttr<DLLExportAttr>()) 831 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 832 else 833 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 834 } 835 836 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 837 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 838 if (!MDS) return nullptr; 839 840 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 841 } 842 843 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 844 llvm::Function *F) { 845 setNonAliasAttributes(D, F); 846 } 847 848 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 849 const CGFunctionInfo &Info, 850 llvm::Function *F) { 851 unsigned CallingConv; 852 llvm::AttributeList PAL; 853 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 854 F->setAttributes(PAL); 855 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 856 } 857 858 /// Determines whether the language options require us to model 859 /// unwind exceptions. We treat -fexceptions as mandating this 860 /// except under the fragile ObjC ABI with only ObjC exceptions 861 /// enabled. This means, for example, that C with -fexceptions 862 /// enables this. 863 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 864 // If exceptions are completely disabled, obviously this is false. 865 if (!LangOpts.Exceptions) return false; 866 867 // If C++ exceptions are enabled, this is true. 868 if (LangOpts.CXXExceptions) return true; 869 870 // If ObjC exceptions are enabled, this depends on the ABI. 871 if (LangOpts.ObjCExceptions) { 872 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 873 } 874 875 return true; 876 } 877 878 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 879 llvm::Function *F) { 880 llvm::AttrBuilder B; 881 882 if (CodeGenOpts.UnwindTables) 883 B.addAttribute(llvm::Attribute::UWTable); 884 885 if (!hasUnwindExceptions(LangOpts)) 886 B.addAttribute(llvm::Attribute::NoUnwind); 887 888 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 889 B.addAttribute(llvm::Attribute::StackProtect); 890 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 891 B.addAttribute(llvm::Attribute::StackProtectStrong); 892 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 893 B.addAttribute(llvm::Attribute::StackProtectReq); 894 895 if (!D) { 896 // If we don't have a declaration to control inlining, the function isn't 897 // explicitly marked as alwaysinline for semantic reasons, and inlining is 898 // disabled, mark the function as noinline. 899 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 900 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 901 B.addAttribute(llvm::Attribute::NoInline); 902 903 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 904 return; 905 } 906 907 if (D->hasAttr<OptimizeNoneAttr>()) { 908 B.addAttribute(llvm::Attribute::OptimizeNone); 909 910 // OptimizeNone implies noinline; we should not be inlining such functions. 911 B.addAttribute(llvm::Attribute::NoInline); 912 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 913 "OptimizeNone and AlwaysInline on same function!"); 914 915 // We still need to handle naked functions even though optnone subsumes 916 // much of their semantics. 917 if (D->hasAttr<NakedAttr>()) 918 B.addAttribute(llvm::Attribute::Naked); 919 920 // OptimizeNone wins over OptimizeForSize and MinSize. 921 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 922 F->removeFnAttr(llvm::Attribute::MinSize); 923 } else if (D->hasAttr<NakedAttr>()) { 924 // Naked implies noinline: we should not be inlining such functions. 925 B.addAttribute(llvm::Attribute::Naked); 926 B.addAttribute(llvm::Attribute::NoInline); 927 } else if (D->hasAttr<NoDuplicateAttr>()) { 928 B.addAttribute(llvm::Attribute::NoDuplicate); 929 } else if (D->hasAttr<NoInlineAttr>()) { 930 B.addAttribute(llvm::Attribute::NoInline); 931 } else if (D->hasAttr<AlwaysInlineAttr>() && 932 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 933 // (noinline wins over always_inline, and we can't specify both in IR) 934 B.addAttribute(llvm::Attribute::AlwaysInline); 935 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 936 // If we're not inlining, then force everything that isn't always_inline to 937 // carry an explicit noinline attribute. 938 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 939 B.addAttribute(llvm::Attribute::NoInline); 940 } else { 941 // Otherwise, propagate the inline hint attribute and potentially use its 942 // absence to mark things as noinline. 943 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 944 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 945 return Redecl->isInlineSpecified(); 946 })) { 947 B.addAttribute(llvm::Attribute::InlineHint); 948 } else if (CodeGenOpts.getInlining() == 949 CodeGenOptions::OnlyHintInlining && 950 !FD->isInlined() && 951 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 952 B.addAttribute(llvm::Attribute::NoInline); 953 } 954 } 955 } 956 957 // Add other optimization related attributes if we are optimizing this 958 // function. 959 if (!D->hasAttr<OptimizeNoneAttr>()) { 960 if (D->hasAttr<ColdAttr>()) { 961 B.addAttribute(llvm::Attribute::OptimizeForSize); 962 B.addAttribute(llvm::Attribute::Cold); 963 } 964 965 if (D->hasAttr<MinSizeAttr>()) 966 B.addAttribute(llvm::Attribute::MinSize); 967 } 968 969 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 970 971 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 972 if (alignment) 973 F->setAlignment(alignment); 974 975 // Some C++ ABIs require 2-byte alignment for member functions, in order to 976 // reserve a bit for differentiating between virtual and non-virtual member 977 // functions. If the current target's C++ ABI requires this and this is a 978 // member function, set its alignment accordingly. 979 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 980 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 981 F->setAlignment(2); 982 } 983 984 // In the cross-dso CFI mode, we want !type attributes on definitions only. 985 if (CodeGenOpts.SanitizeCfiCrossDso) 986 if (auto *FD = dyn_cast<FunctionDecl>(D)) 987 CreateFunctionTypeMetadata(FD, F); 988 } 989 990 void CodeGenModule::SetCommonAttributes(const Decl *D, 991 llvm::GlobalValue *GV) { 992 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 993 setGlobalVisibility(GV, ND); 994 else 995 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 996 997 if (D && D->hasAttr<UsedAttr>()) 998 addUsedGlobal(GV); 999 } 1000 1001 void CodeGenModule::setAliasAttributes(const Decl *D, 1002 llvm::GlobalValue *GV) { 1003 SetCommonAttributes(D, GV); 1004 1005 // Process the dllexport attribute based on whether the original definition 1006 // (not necessarily the aliasee) was exported. 1007 if (D->hasAttr<DLLExportAttr>()) 1008 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1009 } 1010 1011 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1012 llvm::GlobalObject *GO) { 1013 SetCommonAttributes(D, GO); 1014 1015 if (D) 1016 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1017 GO->setSection(SA->getName()); 1018 1019 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1020 } 1021 1022 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1023 llvm::Function *F, 1024 const CGFunctionInfo &FI) { 1025 SetLLVMFunctionAttributes(D, FI, F); 1026 SetLLVMFunctionAttributesForDefinition(D, F); 1027 1028 F->setLinkage(llvm::Function::InternalLinkage); 1029 1030 setNonAliasAttributes(D, F); 1031 } 1032 1033 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1034 const NamedDecl *ND) { 1035 // Set linkage and visibility in case we never see a definition. 1036 LinkageInfo LV = ND->getLinkageAndVisibility(); 1037 if (LV.getLinkage() != ExternalLinkage) { 1038 // Don't set internal linkage on declarations. 1039 } else { 1040 if (ND->hasAttr<DLLImportAttr>()) { 1041 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1042 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1043 } else if (ND->hasAttr<DLLExportAttr>()) { 1044 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1045 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1046 // "extern_weak" is overloaded in LLVM; we probably should have 1047 // separate linkage types for this. 1048 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1049 } 1050 1051 // Set visibility on a declaration only if it's explicit. 1052 if (LV.isVisibilityExplicit()) 1053 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1054 } 1055 } 1056 1057 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1058 llvm::Function *F) { 1059 // Only if we are checking indirect calls. 1060 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1061 return; 1062 1063 // Non-static class methods are handled via vtable pointer checks elsewhere. 1064 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1065 return; 1066 1067 // Additionally, if building with cross-DSO support... 1068 if (CodeGenOpts.SanitizeCfiCrossDso) { 1069 // Skip available_externally functions. They won't be codegen'ed in the 1070 // current module anyway. 1071 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1072 return; 1073 } 1074 1075 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1076 F->addTypeMetadata(0, MD); 1077 1078 // Emit a hash-based bit set entry for cross-DSO calls. 1079 if (CodeGenOpts.SanitizeCfiCrossDso) 1080 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1081 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1082 } 1083 1084 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1085 bool IsIncompleteFunction, 1086 bool IsThunk) { 1087 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1088 // If this is an intrinsic function, set the function's attributes 1089 // to the intrinsic's attributes. 1090 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1091 return; 1092 } 1093 1094 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1095 1096 if (!IsIncompleteFunction) 1097 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1098 1099 // Add the Returned attribute for "this", except for iOS 5 and earlier 1100 // where substantial code, including the libstdc++ dylib, was compiled with 1101 // GCC and does not actually return "this". 1102 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1103 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1104 assert(!F->arg_empty() && 1105 F->arg_begin()->getType() 1106 ->canLosslesslyBitCastTo(F->getReturnType()) && 1107 "unexpected this return"); 1108 F->addAttribute(1, llvm::Attribute::Returned); 1109 } 1110 1111 // Only a few attributes are set on declarations; these may later be 1112 // overridden by a definition. 1113 1114 setLinkageAndVisibilityForGV(F, FD); 1115 1116 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1117 F->setSection(SA->getName()); 1118 1119 if (FD->isReplaceableGlobalAllocationFunction()) { 1120 // A replaceable global allocation function does not act like a builtin by 1121 // default, only if it is invoked by a new-expression or delete-expression. 1122 F->addAttribute(llvm::AttributeList::FunctionIndex, 1123 llvm::Attribute::NoBuiltin); 1124 1125 // A sane operator new returns a non-aliasing pointer. 1126 // FIXME: Also add NonNull attribute to the return value 1127 // for the non-nothrow forms? 1128 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1129 if (getCodeGenOpts().AssumeSaneOperatorNew && 1130 (Kind == OO_New || Kind == OO_Array_New)) 1131 F->addAttribute(llvm::AttributeList::ReturnIndex, 1132 llvm::Attribute::NoAlias); 1133 } 1134 1135 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1136 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1137 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1138 if (MD->isVirtual()) 1139 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1140 1141 // Don't emit entries for function declarations in the cross-DSO mode. This 1142 // is handled with better precision by the receiving DSO. 1143 if (!CodeGenOpts.SanitizeCfiCrossDso) 1144 CreateFunctionTypeMetadata(FD, F); 1145 } 1146 1147 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1148 assert(!GV->isDeclaration() && 1149 "Only globals with definition can force usage."); 1150 LLVMUsed.emplace_back(GV); 1151 } 1152 1153 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1154 assert(!GV->isDeclaration() && 1155 "Only globals with definition can force usage."); 1156 LLVMCompilerUsed.emplace_back(GV); 1157 } 1158 1159 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1160 std::vector<llvm::WeakTrackingVH> &List) { 1161 // Don't create llvm.used if there is no need. 1162 if (List.empty()) 1163 return; 1164 1165 // Convert List to what ConstantArray needs. 1166 SmallVector<llvm::Constant*, 8> UsedArray; 1167 UsedArray.resize(List.size()); 1168 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1169 UsedArray[i] = 1170 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1171 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1172 } 1173 1174 if (UsedArray.empty()) 1175 return; 1176 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1177 1178 auto *GV = new llvm::GlobalVariable( 1179 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1180 llvm::ConstantArray::get(ATy, UsedArray), Name); 1181 1182 GV->setSection("llvm.metadata"); 1183 } 1184 1185 void CodeGenModule::emitLLVMUsed() { 1186 emitUsed(*this, "llvm.used", LLVMUsed); 1187 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1188 } 1189 1190 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1191 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1192 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1193 } 1194 1195 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1196 llvm::SmallString<32> Opt; 1197 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1198 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1199 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1200 } 1201 1202 void CodeGenModule::AddDependentLib(StringRef Lib) { 1203 llvm::SmallString<24> Opt; 1204 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1205 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1206 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1207 } 1208 1209 /// \brief Add link options implied by the given module, including modules 1210 /// it depends on, using a postorder walk. 1211 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1212 SmallVectorImpl<llvm::Metadata *> &Metadata, 1213 llvm::SmallPtrSet<Module *, 16> &Visited) { 1214 // Import this module's parent. 1215 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1216 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1217 } 1218 1219 // Import this module's dependencies. 1220 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1221 if (Visited.insert(Mod->Imports[I - 1]).second) 1222 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1223 } 1224 1225 // Add linker options to link against the libraries/frameworks 1226 // described by this module. 1227 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1228 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1229 // Link against a framework. Frameworks are currently Darwin only, so we 1230 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1231 if (Mod->LinkLibraries[I-1].IsFramework) { 1232 llvm::Metadata *Args[2] = { 1233 llvm::MDString::get(Context, "-framework"), 1234 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1235 1236 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1237 continue; 1238 } 1239 1240 // Link against a library. 1241 llvm::SmallString<24> Opt; 1242 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1243 Mod->LinkLibraries[I-1].Library, Opt); 1244 auto *OptString = llvm::MDString::get(Context, Opt); 1245 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1246 } 1247 } 1248 1249 void CodeGenModule::EmitModuleLinkOptions() { 1250 // Collect the set of all of the modules we want to visit to emit link 1251 // options, which is essentially the imported modules and all of their 1252 // non-explicit child modules. 1253 llvm::SetVector<clang::Module *> LinkModules; 1254 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1255 SmallVector<clang::Module *, 16> Stack; 1256 1257 // Seed the stack with imported modules. 1258 for (Module *M : ImportedModules) { 1259 // Do not add any link flags when an implementation TU of a module imports 1260 // a header of that same module. 1261 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1262 !getLangOpts().isCompilingModule()) 1263 continue; 1264 if (Visited.insert(M).second) 1265 Stack.push_back(M); 1266 } 1267 1268 // Find all of the modules to import, making a little effort to prune 1269 // non-leaf modules. 1270 while (!Stack.empty()) { 1271 clang::Module *Mod = Stack.pop_back_val(); 1272 1273 bool AnyChildren = false; 1274 1275 // Visit the submodules of this module. 1276 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1277 SubEnd = Mod->submodule_end(); 1278 Sub != SubEnd; ++Sub) { 1279 // Skip explicit children; they need to be explicitly imported to be 1280 // linked against. 1281 if ((*Sub)->IsExplicit) 1282 continue; 1283 1284 if (Visited.insert(*Sub).second) { 1285 Stack.push_back(*Sub); 1286 AnyChildren = true; 1287 } 1288 } 1289 1290 // We didn't find any children, so add this module to the list of 1291 // modules to link against. 1292 if (!AnyChildren) { 1293 LinkModules.insert(Mod); 1294 } 1295 } 1296 1297 // Add link options for all of the imported modules in reverse topological 1298 // order. We don't do anything to try to order import link flags with respect 1299 // to linker options inserted by things like #pragma comment(). 1300 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1301 Visited.clear(); 1302 for (Module *M : LinkModules) 1303 if (Visited.insert(M).second) 1304 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1305 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1306 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1307 1308 // Add the linker options metadata flag. 1309 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1310 llvm::MDNode::get(getLLVMContext(), 1311 LinkerOptionsMetadata)); 1312 } 1313 1314 void CodeGenModule::EmitDeferred() { 1315 // Emit code for any potentially referenced deferred decls. Since a 1316 // previously unused static decl may become used during the generation of code 1317 // for a static function, iterate until no changes are made. 1318 1319 if (!DeferredVTables.empty()) { 1320 EmitDeferredVTables(); 1321 1322 // Emitting a vtable doesn't directly cause more vtables to 1323 // become deferred, although it can cause functions to be 1324 // emitted that then need those vtables. 1325 assert(DeferredVTables.empty()); 1326 } 1327 1328 // Stop if we're out of both deferred vtables and deferred declarations. 1329 if (DeferredDeclsToEmit.empty()) 1330 return; 1331 1332 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1333 // work, it will not interfere with this. 1334 std::vector<GlobalDecl> CurDeclsToEmit; 1335 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1336 1337 for (GlobalDecl &D : CurDeclsToEmit) { 1338 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1339 // to get GlobalValue with exactly the type we need, not something that 1340 // might had been created for another decl with the same mangled name but 1341 // different type. 1342 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1343 GetAddrOfGlobal(D, ForDefinition)); 1344 1345 // In case of different address spaces, we may still get a cast, even with 1346 // IsForDefinition equal to true. Query mangled names table to get 1347 // GlobalValue. 1348 if (!GV) 1349 GV = GetGlobalValue(getMangledName(D)); 1350 1351 // Make sure GetGlobalValue returned non-null. 1352 assert(GV); 1353 1354 // Check to see if we've already emitted this. This is necessary 1355 // for a couple of reasons: first, decls can end up in the 1356 // deferred-decls queue multiple times, and second, decls can end 1357 // up with definitions in unusual ways (e.g. by an extern inline 1358 // function acquiring a strong function redefinition). Just 1359 // ignore these cases. 1360 if (!GV->isDeclaration()) 1361 continue; 1362 1363 // Otherwise, emit the definition and move on to the next one. 1364 EmitGlobalDefinition(D, GV); 1365 1366 // If we found out that we need to emit more decls, do that recursively. 1367 // This has the advantage that the decls are emitted in a DFS and related 1368 // ones are close together, which is convenient for testing. 1369 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1370 EmitDeferred(); 1371 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1372 } 1373 } 1374 } 1375 1376 void CodeGenModule::EmitGlobalAnnotations() { 1377 if (Annotations.empty()) 1378 return; 1379 1380 // Create a new global variable for the ConstantStruct in the Module. 1381 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1382 Annotations[0]->getType(), Annotations.size()), Annotations); 1383 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1384 llvm::GlobalValue::AppendingLinkage, 1385 Array, "llvm.global.annotations"); 1386 gv->setSection(AnnotationSection); 1387 } 1388 1389 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1390 llvm::Constant *&AStr = AnnotationStrings[Str]; 1391 if (AStr) 1392 return AStr; 1393 1394 // Not found yet, create a new global. 1395 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1396 auto *gv = 1397 new llvm::GlobalVariable(getModule(), s->getType(), true, 1398 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1399 gv->setSection(AnnotationSection); 1400 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1401 AStr = gv; 1402 return gv; 1403 } 1404 1405 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1406 SourceManager &SM = getContext().getSourceManager(); 1407 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1408 if (PLoc.isValid()) 1409 return EmitAnnotationString(PLoc.getFilename()); 1410 return EmitAnnotationString(SM.getBufferName(Loc)); 1411 } 1412 1413 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1414 SourceManager &SM = getContext().getSourceManager(); 1415 PresumedLoc PLoc = SM.getPresumedLoc(L); 1416 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1417 SM.getExpansionLineNumber(L); 1418 return llvm::ConstantInt::get(Int32Ty, LineNo); 1419 } 1420 1421 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1422 const AnnotateAttr *AA, 1423 SourceLocation L) { 1424 // Get the globals for file name, annotation, and the line number. 1425 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1426 *UnitGV = EmitAnnotationUnit(L), 1427 *LineNoCst = EmitAnnotationLineNo(L); 1428 1429 // Create the ConstantStruct for the global annotation. 1430 llvm::Constant *Fields[4] = { 1431 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1432 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1433 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1434 LineNoCst 1435 }; 1436 return llvm::ConstantStruct::getAnon(Fields); 1437 } 1438 1439 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1440 llvm::GlobalValue *GV) { 1441 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1442 // Get the struct elements for these annotations. 1443 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1444 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1445 } 1446 1447 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1448 SourceLocation Loc) const { 1449 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1450 // Blacklist by function name. 1451 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1452 return true; 1453 // Blacklist by location. 1454 if (Loc.isValid()) 1455 return SanitizerBL.isBlacklistedLocation(Loc); 1456 // If location is unknown, this may be a compiler-generated function. Assume 1457 // it's located in the main file. 1458 auto &SM = Context.getSourceManager(); 1459 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1460 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1461 } 1462 return false; 1463 } 1464 1465 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1466 SourceLocation Loc, QualType Ty, 1467 StringRef Category) const { 1468 // For now globals can be blacklisted only in ASan and KASan. 1469 if (!LangOpts.Sanitize.hasOneOf( 1470 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1471 return false; 1472 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1473 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1474 return true; 1475 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1476 return true; 1477 // Check global type. 1478 if (!Ty.isNull()) { 1479 // Drill down the array types: if global variable of a fixed type is 1480 // blacklisted, we also don't instrument arrays of them. 1481 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1482 Ty = AT->getElementType(); 1483 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1484 // We allow to blacklist only record types (classes, structs etc.) 1485 if (Ty->isRecordType()) { 1486 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1487 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1488 return true; 1489 } 1490 } 1491 return false; 1492 } 1493 1494 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1495 StringRef Category) const { 1496 if (!LangOpts.XRayInstrument) 1497 return false; 1498 const auto &XRayFilter = getContext().getXRayFilter(); 1499 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1500 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1501 if (Loc.isValid()) 1502 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1503 if (Attr == ImbueAttr::NONE) 1504 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1505 switch (Attr) { 1506 case ImbueAttr::NONE: 1507 return false; 1508 case ImbueAttr::ALWAYS: 1509 Fn->addFnAttr("function-instrument", "xray-always"); 1510 break; 1511 case ImbueAttr::NEVER: 1512 Fn->addFnAttr("function-instrument", "xray-never"); 1513 break; 1514 } 1515 return true; 1516 } 1517 1518 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1519 // Never defer when EmitAllDecls is specified. 1520 if (LangOpts.EmitAllDecls) 1521 return true; 1522 1523 return getContext().DeclMustBeEmitted(Global); 1524 } 1525 1526 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1527 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1528 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1529 // Implicit template instantiations may change linkage if they are later 1530 // explicitly instantiated, so they should not be emitted eagerly. 1531 return false; 1532 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1533 if (Context.getInlineVariableDefinitionKind(VD) == 1534 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1535 // A definition of an inline constexpr static data member may change 1536 // linkage later if it's redeclared outside the class. 1537 return false; 1538 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1539 // codegen for global variables, because they may be marked as threadprivate. 1540 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1541 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1548 const CXXUuidofExpr* E) { 1549 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1550 // well-formed. 1551 StringRef Uuid = E->getUuidStr(); 1552 std::string Name = "_GUID_" + Uuid.lower(); 1553 std::replace(Name.begin(), Name.end(), '-', '_'); 1554 1555 // The UUID descriptor should be pointer aligned. 1556 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1557 1558 // Look for an existing global. 1559 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1560 return ConstantAddress(GV, Alignment); 1561 1562 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1563 assert(Init && "failed to initialize as constant"); 1564 1565 auto *GV = new llvm::GlobalVariable( 1566 getModule(), Init->getType(), 1567 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1568 if (supportsCOMDAT()) 1569 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1570 return ConstantAddress(GV, Alignment); 1571 } 1572 1573 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1574 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1575 assert(AA && "No alias?"); 1576 1577 CharUnits Alignment = getContext().getDeclAlign(VD); 1578 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1579 1580 // See if there is already something with the target's name in the module. 1581 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1582 if (Entry) { 1583 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1584 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1585 return ConstantAddress(Ptr, Alignment); 1586 } 1587 1588 llvm::Constant *Aliasee; 1589 if (isa<llvm::FunctionType>(DeclTy)) 1590 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1591 GlobalDecl(cast<FunctionDecl>(VD)), 1592 /*ForVTable=*/false); 1593 else 1594 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1595 llvm::PointerType::getUnqual(DeclTy), 1596 nullptr); 1597 1598 auto *F = cast<llvm::GlobalValue>(Aliasee); 1599 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1600 WeakRefReferences.insert(F); 1601 1602 return ConstantAddress(Aliasee, Alignment); 1603 } 1604 1605 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1606 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1607 1608 // Weak references don't produce any output by themselves. 1609 if (Global->hasAttr<WeakRefAttr>()) 1610 return; 1611 1612 // If this is an alias definition (which otherwise looks like a declaration) 1613 // emit it now. 1614 if (Global->hasAttr<AliasAttr>()) 1615 return EmitAliasDefinition(GD); 1616 1617 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1618 if (Global->hasAttr<IFuncAttr>()) 1619 return emitIFuncDefinition(GD); 1620 1621 // If this is CUDA, be selective about which declarations we emit. 1622 if (LangOpts.CUDA) { 1623 if (LangOpts.CUDAIsDevice) { 1624 if (!Global->hasAttr<CUDADeviceAttr>() && 1625 !Global->hasAttr<CUDAGlobalAttr>() && 1626 !Global->hasAttr<CUDAConstantAttr>() && 1627 !Global->hasAttr<CUDASharedAttr>()) 1628 return; 1629 } else { 1630 // We need to emit host-side 'shadows' for all global 1631 // device-side variables because the CUDA runtime needs their 1632 // size and host-side address in order to provide access to 1633 // their device-side incarnations. 1634 1635 // So device-only functions are the only things we skip. 1636 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1637 Global->hasAttr<CUDADeviceAttr>()) 1638 return; 1639 1640 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1641 "Expected Variable or Function"); 1642 } 1643 } 1644 1645 if (LangOpts.OpenMP) { 1646 // If this is OpenMP device, check if it is legal to emit this global 1647 // normally. 1648 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1649 return; 1650 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1651 if (MustBeEmitted(Global)) 1652 EmitOMPDeclareReduction(DRD); 1653 return; 1654 } 1655 } 1656 1657 // Ignore declarations, they will be emitted on their first use. 1658 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1659 // Forward declarations are emitted lazily on first use. 1660 if (!FD->doesThisDeclarationHaveABody()) { 1661 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1662 return; 1663 1664 StringRef MangledName = getMangledName(GD); 1665 1666 // Compute the function info and LLVM type. 1667 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1668 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1669 1670 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1671 /*DontDefer=*/false); 1672 return; 1673 } 1674 } else { 1675 const auto *VD = cast<VarDecl>(Global); 1676 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1677 // We need to emit device-side global CUDA variables even if a 1678 // variable does not have a definition -- we still need to define 1679 // host-side shadow for it. 1680 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1681 !VD->hasDefinition() && 1682 (VD->hasAttr<CUDAConstantAttr>() || 1683 VD->hasAttr<CUDADeviceAttr>()); 1684 if (!MustEmitForCuda && 1685 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1686 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1687 // If this declaration may have caused an inline variable definition to 1688 // change linkage, make sure that it's emitted. 1689 if (Context.getInlineVariableDefinitionKind(VD) == 1690 ASTContext::InlineVariableDefinitionKind::Strong) 1691 GetAddrOfGlobalVar(VD); 1692 return; 1693 } 1694 } 1695 1696 // Defer code generation to first use when possible, e.g. if this is an inline 1697 // function. If the global must always be emitted, do it eagerly if possible 1698 // to benefit from cache locality. 1699 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1700 // Emit the definition if it can't be deferred. 1701 EmitGlobalDefinition(GD); 1702 return; 1703 } 1704 1705 // If we're deferring emission of a C++ variable with an 1706 // initializer, remember the order in which it appeared in the file. 1707 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1708 cast<VarDecl>(Global)->hasInit()) { 1709 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1710 CXXGlobalInits.push_back(nullptr); 1711 } 1712 1713 StringRef MangledName = getMangledName(GD); 1714 if (GetGlobalValue(MangledName) != nullptr) { 1715 // The value has already been used and should therefore be emitted. 1716 addDeferredDeclToEmit(GD); 1717 } else if (MustBeEmitted(Global)) { 1718 // The value must be emitted, but cannot be emitted eagerly. 1719 assert(!MayBeEmittedEagerly(Global)); 1720 addDeferredDeclToEmit(GD); 1721 } else { 1722 // Otherwise, remember that we saw a deferred decl with this name. The 1723 // first use of the mangled name will cause it to move into 1724 // DeferredDeclsToEmit. 1725 DeferredDecls[MangledName] = GD; 1726 } 1727 } 1728 1729 // Check if T is a class type with a destructor that's not dllimport. 1730 static bool HasNonDllImportDtor(QualType T) { 1731 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1732 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1733 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1734 return true; 1735 1736 return false; 1737 } 1738 1739 namespace { 1740 struct FunctionIsDirectlyRecursive : 1741 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1742 const StringRef Name; 1743 const Builtin::Context &BI; 1744 bool Result; 1745 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1746 Name(N), BI(C), Result(false) { 1747 } 1748 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1749 1750 bool TraverseCallExpr(CallExpr *E) { 1751 const FunctionDecl *FD = E->getDirectCallee(); 1752 if (!FD) 1753 return true; 1754 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1755 if (Attr && Name == Attr->getLabel()) { 1756 Result = true; 1757 return false; 1758 } 1759 unsigned BuiltinID = FD->getBuiltinID(); 1760 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1761 return true; 1762 StringRef BuiltinName = BI.getName(BuiltinID); 1763 if (BuiltinName.startswith("__builtin_") && 1764 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1765 Result = true; 1766 return false; 1767 } 1768 return true; 1769 } 1770 }; 1771 1772 // Make sure we're not referencing non-imported vars or functions. 1773 struct DLLImportFunctionVisitor 1774 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1775 bool SafeToInline = true; 1776 1777 bool shouldVisitImplicitCode() const { return true; } 1778 1779 bool VisitVarDecl(VarDecl *VD) { 1780 if (VD->getTLSKind()) { 1781 // A thread-local variable cannot be imported. 1782 SafeToInline = false; 1783 return SafeToInline; 1784 } 1785 1786 // A variable definition might imply a destructor call. 1787 if (VD->isThisDeclarationADefinition()) 1788 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1789 1790 return SafeToInline; 1791 } 1792 1793 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1794 if (const auto *D = E->getTemporary()->getDestructor()) 1795 SafeToInline = D->hasAttr<DLLImportAttr>(); 1796 return SafeToInline; 1797 } 1798 1799 bool VisitDeclRefExpr(DeclRefExpr *E) { 1800 ValueDecl *VD = E->getDecl(); 1801 if (isa<FunctionDecl>(VD)) 1802 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1803 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1804 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1805 return SafeToInline; 1806 } 1807 1808 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1809 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1810 return SafeToInline; 1811 } 1812 1813 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1814 CXXMethodDecl *M = E->getMethodDecl(); 1815 if (!M) { 1816 // Call through a pointer to member function. This is safe to inline. 1817 SafeToInline = true; 1818 } else { 1819 SafeToInline = M->hasAttr<DLLImportAttr>(); 1820 } 1821 return SafeToInline; 1822 } 1823 1824 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1825 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1826 return SafeToInline; 1827 } 1828 1829 bool VisitCXXNewExpr(CXXNewExpr *E) { 1830 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1831 return SafeToInline; 1832 } 1833 }; 1834 } 1835 1836 // isTriviallyRecursive - Check if this function calls another 1837 // decl that, because of the asm attribute or the other decl being a builtin, 1838 // ends up pointing to itself. 1839 bool 1840 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1841 StringRef Name; 1842 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1843 // asm labels are a special kind of mangling we have to support. 1844 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1845 if (!Attr) 1846 return false; 1847 Name = Attr->getLabel(); 1848 } else { 1849 Name = FD->getName(); 1850 } 1851 1852 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1853 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1854 return Walker.Result; 1855 } 1856 1857 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1858 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1859 return true; 1860 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1861 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1862 return false; 1863 1864 if (F->hasAttr<DLLImportAttr>()) { 1865 // Check whether it would be safe to inline this dllimport function. 1866 DLLImportFunctionVisitor Visitor; 1867 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1868 if (!Visitor.SafeToInline) 1869 return false; 1870 1871 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1872 // Implicit destructor invocations aren't captured in the AST, so the 1873 // check above can't see them. Check for them manually here. 1874 for (const Decl *Member : Dtor->getParent()->decls()) 1875 if (isa<FieldDecl>(Member)) 1876 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1877 return false; 1878 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1879 if (HasNonDllImportDtor(B.getType())) 1880 return false; 1881 } 1882 } 1883 1884 // PR9614. Avoid cases where the source code is lying to us. An available 1885 // externally function should have an equivalent function somewhere else, 1886 // but a function that calls itself is clearly not equivalent to the real 1887 // implementation. 1888 // This happens in glibc's btowc and in some configure checks. 1889 return !isTriviallyRecursive(F); 1890 } 1891 1892 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1893 const auto *D = cast<ValueDecl>(GD.getDecl()); 1894 1895 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1896 Context.getSourceManager(), 1897 "Generating code for declaration"); 1898 1899 if (isa<FunctionDecl>(D)) { 1900 // At -O0, don't generate IR for functions with available_externally 1901 // linkage. 1902 if (!shouldEmitFunction(GD)) 1903 return; 1904 1905 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1906 // Make sure to emit the definition(s) before we emit the thunks. 1907 // This is necessary for the generation of certain thunks. 1908 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1909 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1910 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1911 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1912 else 1913 EmitGlobalFunctionDefinition(GD, GV); 1914 1915 if (Method->isVirtual()) 1916 getVTables().EmitThunks(GD); 1917 1918 return; 1919 } 1920 1921 return EmitGlobalFunctionDefinition(GD, GV); 1922 } 1923 1924 if (const auto *VD = dyn_cast<VarDecl>(D)) 1925 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1926 1927 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1928 } 1929 1930 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1931 llvm::Function *NewFn); 1932 1933 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1934 /// module, create and return an llvm Function with the specified type. If there 1935 /// is something in the module with the specified name, return it potentially 1936 /// bitcasted to the right type. 1937 /// 1938 /// If D is non-null, it specifies a decl that correspond to this. This is used 1939 /// to set the attributes on the function when it is first created. 1940 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1941 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1942 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1943 ForDefinition_t IsForDefinition) { 1944 const Decl *D = GD.getDecl(); 1945 1946 // Lookup the entry, lazily creating it if necessary. 1947 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1948 if (Entry) { 1949 if (WeakRefReferences.erase(Entry)) { 1950 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1951 if (FD && !FD->hasAttr<WeakAttr>()) 1952 Entry->setLinkage(llvm::Function::ExternalLinkage); 1953 } 1954 1955 // Handle dropped DLL attributes. 1956 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1957 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1958 1959 // If there are two attempts to define the same mangled name, issue an 1960 // error. 1961 if (IsForDefinition && !Entry->isDeclaration()) { 1962 GlobalDecl OtherGD; 1963 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1964 // to make sure that we issue an error only once. 1965 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1966 (GD.getCanonicalDecl().getDecl() != 1967 OtherGD.getCanonicalDecl().getDecl()) && 1968 DiagnosedConflictingDefinitions.insert(GD).second) { 1969 getDiags().Report(D->getLocation(), 1970 diag::err_duplicate_mangled_name); 1971 getDiags().Report(OtherGD.getDecl()->getLocation(), 1972 diag::note_previous_definition); 1973 } 1974 } 1975 1976 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1977 (Entry->getType()->getElementType() == Ty)) { 1978 return Entry; 1979 } 1980 1981 // Make sure the result is of the correct type. 1982 // (If function is requested for a definition, we always need to create a new 1983 // function, not just return a bitcast.) 1984 if (!IsForDefinition) 1985 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1986 } 1987 1988 // This function doesn't have a complete type (for example, the return 1989 // type is an incomplete struct). Use a fake type instead, and make 1990 // sure not to try to set attributes. 1991 bool IsIncompleteFunction = false; 1992 1993 llvm::FunctionType *FTy; 1994 if (isa<llvm::FunctionType>(Ty)) { 1995 FTy = cast<llvm::FunctionType>(Ty); 1996 } else { 1997 FTy = llvm::FunctionType::get(VoidTy, false); 1998 IsIncompleteFunction = true; 1999 } 2000 2001 llvm::Function *F = 2002 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2003 Entry ? StringRef() : MangledName, &getModule()); 2004 2005 // If we already created a function with the same mangled name (but different 2006 // type) before, take its name and add it to the list of functions to be 2007 // replaced with F at the end of CodeGen. 2008 // 2009 // This happens if there is a prototype for a function (e.g. "int f()") and 2010 // then a definition of a different type (e.g. "int f(int x)"). 2011 if (Entry) { 2012 F->takeName(Entry); 2013 2014 // This might be an implementation of a function without a prototype, in 2015 // which case, try to do special replacement of calls which match the new 2016 // prototype. The really key thing here is that we also potentially drop 2017 // arguments from the call site so as to make a direct call, which makes the 2018 // inliner happier and suppresses a number of optimizer warnings (!) about 2019 // dropping arguments. 2020 if (!Entry->use_empty()) { 2021 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2022 Entry->removeDeadConstantUsers(); 2023 } 2024 2025 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2026 F, Entry->getType()->getElementType()->getPointerTo()); 2027 addGlobalValReplacement(Entry, BC); 2028 } 2029 2030 assert(F->getName() == MangledName && "name was uniqued!"); 2031 if (D) 2032 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2033 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2034 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2035 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2036 } 2037 2038 if (!DontDefer) { 2039 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2040 // each other bottoming out with the base dtor. Therefore we emit non-base 2041 // dtors on usage, even if there is no dtor definition in the TU. 2042 if (D && isa<CXXDestructorDecl>(D) && 2043 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2044 GD.getDtorType())) 2045 addDeferredDeclToEmit(GD); 2046 2047 // This is the first use or definition of a mangled name. If there is a 2048 // deferred decl with this name, remember that we need to emit it at the end 2049 // of the file. 2050 auto DDI = DeferredDecls.find(MangledName); 2051 if (DDI != DeferredDecls.end()) { 2052 // Move the potentially referenced deferred decl to the 2053 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2054 // don't need it anymore). 2055 addDeferredDeclToEmit(DDI->second); 2056 DeferredDecls.erase(DDI); 2057 2058 // Otherwise, there are cases we have to worry about where we're 2059 // using a declaration for which we must emit a definition but where 2060 // we might not find a top-level definition: 2061 // - member functions defined inline in their classes 2062 // - friend functions defined inline in some class 2063 // - special member functions with implicit definitions 2064 // If we ever change our AST traversal to walk into class methods, 2065 // this will be unnecessary. 2066 // 2067 // We also don't emit a definition for a function if it's going to be an 2068 // entry in a vtable, unless it's already marked as used. 2069 } else if (getLangOpts().CPlusPlus && D) { 2070 // Look for a declaration that's lexically in a record. 2071 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2072 FD = FD->getPreviousDecl()) { 2073 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2074 if (FD->doesThisDeclarationHaveABody()) { 2075 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2076 break; 2077 } 2078 } 2079 } 2080 } 2081 } 2082 2083 // Make sure the result is of the requested type. 2084 if (!IsIncompleteFunction) { 2085 assert(F->getType()->getElementType() == Ty); 2086 return F; 2087 } 2088 2089 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2090 return llvm::ConstantExpr::getBitCast(F, PTy); 2091 } 2092 2093 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2094 /// non-null, then this function will use the specified type if it has to 2095 /// create it (this occurs when we see a definition of the function). 2096 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2097 llvm::Type *Ty, 2098 bool ForVTable, 2099 bool DontDefer, 2100 ForDefinition_t IsForDefinition) { 2101 // If there was no specific requested type, just convert it now. 2102 if (!Ty) { 2103 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2104 auto CanonTy = Context.getCanonicalType(FD->getType()); 2105 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2106 } 2107 2108 StringRef MangledName = getMangledName(GD); 2109 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2110 /*IsThunk=*/false, llvm::AttributeList(), 2111 IsForDefinition); 2112 } 2113 2114 static const FunctionDecl * 2115 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2116 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2117 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2118 2119 IdentifierInfo &CII = C.Idents.get(Name); 2120 for (const auto &Result : DC->lookup(&CII)) 2121 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2122 return FD; 2123 2124 if (!C.getLangOpts().CPlusPlus) 2125 return nullptr; 2126 2127 // Demangle the premangled name from getTerminateFn() 2128 IdentifierInfo &CXXII = 2129 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2130 ? C.Idents.get("terminate") 2131 : C.Idents.get(Name); 2132 2133 for (const auto &N : {"__cxxabiv1", "std"}) { 2134 IdentifierInfo &NS = C.Idents.get(N); 2135 for (const auto &Result : DC->lookup(&NS)) { 2136 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2137 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2138 for (const auto &Result : LSD->lookup(&NS)) 2139 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2140 break; 2141 2142 if (ND) 2143 for (const auto &Result : ND->lookup(&CXXII)) 2144 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2145 return FD; 2146 } 2147 } 2148 2149 return nullptr; 2150 } 2151 2152 /// CreateRuntimeFunction - Create a new runtime function with the specified 2153 /// type and name. 2154 llvm::Constant * 2155 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2156 llvm::AttributeList ExtraAttrs, 2157 bool Local) { 2158 llvm::Constant *C = 2159 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2160 /*DontDefer=*/false, /*IsThunk=*/false, 2161 ExtraAttrs); 2162 2163 if (auto *F = dyn_cast<llvm::Function>(C)) { 2164 if (F->empty()) { 2165 F->setCallingConv(getRuntimeCC()); 2166 2167 if (!Local && getTriple().isOSBinFormatCOFF() && 2168 !getCodeGenOpts().LTOVisibilityPublicStd) { 2169 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2170 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2171 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2172 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2173 } 2174 } 2175 } 2176 } 2177 2178 return C; 2179 } 2180 2181 /// CreateBuiltinFunction - Create a new builtin function with the specified 2182 /// type and name. 2183 llvm::Constant * 2184 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2185 llvm::AttributeList ExtraAttrs) { 2186 llvm::Constant *C = 2187 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2188 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2189 if (auto *F = dyn_cast<llvm::Function>(C)) 2190 if (F->empty()) 2191 F->setCallingConv(getBuiltinCC()); 2192 return C; 2193 } 2194 2195 /// isTypeConstant - Determine whether an object of this type can be emitted 2196 /// as a constant. 2197 /// 2198 /// If ExcludeCtor is true, the duration when the object's constructor runs 2199 /// will not be considered. The caller will need to verify that the object is 2200 /// not written to during its construction. 2201 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2202 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2203 return false; 2204 2205 if (Context.getLangOpts().CPlusPlus) { 2206 if (const CXXRecordDecl *Record 2207 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2208 return ExcludeCtor && !Record->hasMutableFields() && 2209 Record->hasTrivialDestructor(); 2210 } 2211 2212 return true; 2213 } 2214 2215 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2216 /// create and return an llvm GlobalVariable with the specified type. If there 2217 /// is something in the module with the specified name, return it potentially 2218 /// bitcasted to the right type. 2219 /// 2220 /// If D is non-null, it specifies a decl that correspond to this. This is used 2221 /// to set the attributes on the global when it is first created. 2222 /// 2223 /// If IsForDefinition is true, it is guranteed that an actual global with 2224 /// type Ty will be returned, not conversion of a variable with the same 2225 /// mangled name but some other type. 2226 llvm::Constant * 2227 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2228 llvm::PointerType *Ty, 2229 const VarDecl *D, 2230 ForDefinition_t IsForDefinition) { 2231 // Lookup the entry, lazily creating it if necessary. 2232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2233 if (Entry) { 2234 if (WeakRefReferences.erase(Entry)) { 2235 if (D && !D->hasAttr<WeakAttr>()) 2236 Entry->setLinkage(llvm::Function::ExternalLinkage); 2237 } 2238 2239 // Handle dropped DLL attributes. 2240 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2241 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2242 2243 if (Entry->getType() == Ty) 2244 return Entry; 2245 2246 // If there are two attempts to define the same mangled name, issue an 2247 // error. 2248 if (IsForDefinition && !Entry->isDeclaration()) { 2249 GlobalDecl OtherGD; 2250 const VarDecl *OtherD; 2251 2252 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2253 // to make sure that we issue an error only once. 2254 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2255 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2256 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2257 OtherD->hasInit() && 2258 DiagnosedConflictingDefinitions.insert(D).second) { 2259 getDiags().Report(D->getLocation(), 2260 diag::err_duplicate_mangled_name); 2261 getDiags().Report(OtherGD.getDecl()->getLocation(), 2262 diag::note_previous_definition); 2263 } 2264 } 2265 2266 // Make sure the result is of the correct type. 2267 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2268 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2269 2270 // (If global is requested for a definition, we always need to create a new 2271 // global, not just return a bitcast.) 2272 if (!IsForDefinition) 2273 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2274 } 2275 2276 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2277 auto *GV = new llvm::GlobalVariable( 2278 getModule(), Ty->getElementType(), false, 2279 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2280 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2281 2282 // If we already created a global with the same mangled name (but different 2283 // type) before, take its name and remove it from its parent. 2284 if (Entry) { 2285 GV->takeName(Entry); 2286 2287 if (!Entry->use_empty()) { 2288 llvm::Constant *NewPtrForOldDecl = 2289 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2290 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2291 } 2292 2293 Entry->eraseFromParent(); 2294 } 2295 2296 // This is the first use or definition of a mangled name. If there is a 2297 // deferred decl with this name, remember that we need to emit it at the end 2298 // of the file. 2299 auto DDI = DeferredDecls.find(MangledName); 2300 if (DDI != DeferredDecls.end()) { 2301 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2302 // list, and remove it from DeferredDecls (since we don't need it anymore). 2303 addDeferredDeclToEmit(DDI->second); 2304 DeferredDecls.erase(DDI); 2305 } 2306 2307 // Handle things which are present even on external declarations. 2308 if (D) { 2309 // FIXME: This code is overly simple and should be merged with other global 2310 // handling. 2311 GV->setConstant(isTypeConstant(D->getType(), false)); 2312 2313 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2314 2315 setLinkageAndVisibilityForGV(GV, D); 2316 2317 if (D->getTLSKind()) { 2318 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2319 CXXThreadLocals.push_back(D); 2320 setTLSMode(GV, *D); 2321 } 2322 2323 // If required by the ABI, treat declarations of static data members with 2324 // inline initializers as definitions. 2325 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2326 EmitGlobalVarDefinition(D); 2327 } 2328 2329 // Handle XCore specific ABI requirements. 2330 if (getTriple().getArch() == llvm::Triple::xcore && 2331 D->getLanguageLinkage() == CLanguageLinkage && 2332 D->getType().isConstant(Context) && 2333 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2334 GV->setSection(".cp.rodata"); 2335 } 2336 2337 if (AddrSpace != Ty->getAddressSpace()) 2338 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2339 2340 return GV; 2341 } 2342 2343 llvm::Constant * 2344 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2345 ForDefinition_t IsForDefinition) { 2346 const Decl *D = GD.getDecl(); 2347 if (isa<CXXConstructorDecl>(D)) 2348 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2349 getFromCtorType(GD.getCtorType()), 2350 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2351 /*DontDefer=*/false, IsForDefinition); 2352 else if (isa<CXXDestructorDecl>(D)) 2353 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2354 getFromDtorType(GD.getDtorType()), 2355 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2356 /*DontDefer=*/false, IsForDefinition); 2357 else if (isa<CXXMethodDecl>(D)) { 2358 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2359 cast<CXXMethodDecl>(D)); 2360 auto Ty = getTypes().GetFunctionType(*FInfo); 2361 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2362 IsForDefinition); 2363 } else if (isa<FunctionDecl>(D)) { 2364 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2365 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2366 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2367 IsForDefinition); 2368 } else 2369 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2370 IsForDefinition); 2371 } 2372 2373 llvm::GlobalVariable * 2374 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2375 llvm::Type *Ty, 2376 llvm::GlobalValue::LinkageTypes Linkage) { 2377 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2378 llvm::GlobalVariable *OldGV = nullptr; 2379 2380 if (GV) { 2381 // Check if the variable has the right type. 2382 if (GV->getType()->getElementType() == Ty) 2383 return GV; 2384 2385 // Because C++ name mangling, the only way we can end up with an already 2386 // existing global with the same name is if it has been declared extern "C". 2387 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2388 OldGV = GV; 2389 } 2390 2391 // Create a new variable. 2392 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2393 Linkage, nullptr, Name); 2394 2395 if (OldGV) { 2396 // Replace occurrences of the old variable if needed. 2397 GV->takeName(OldGV); 2398 2399 if (!OldGV->use_empty()) { 2400 llvm::Constant *NewPtrForOldDecl = 2401 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2402 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2403 } 2404 2405 OldGV->eraseFromParent(); 2406 } 2407 2408 if (supportsCOMDAT() && GV->isWeakForLinker() && 2409 !GV->hasAvailableExternallyLinkage()) 2410 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2411 2412 return GV; 2413 } 2414 2415 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2416 /// given global variable. If Ty is non-null and if the global doesn't exist, 2417 /// then it will be created with the specified type instead of whatever the 2418 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2419 /// that an actual global with type Ty will be returned, not conversion of a 2420 /// variable with the same mangled name but some other type. 2421 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2422 llvm::Type *Ty, 2423 ForDefinition_t IsForDefinition) { 2424 assert(D->hasGlobalStorage() && "Not a global variable"); 2425 QualType ASTTy = D->getType(); 2426 if (!Ty) 2427 Ty = getTypes().ConvertTypeForMem(ASTTy); 2428 2429 llvm::PointerType *PTy = 2430 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2431 2432 StringRef MangledName = getMangledName(D); 2433 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2434 } 2435 2436 /// CreateRuntimeVariable - Create a new runtime global variable with the 2437 /// specified type and name. 2438 llvm::Constant * 2439 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2440 StringRef Name) { 2441 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2442 } 2443 2444 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2445 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2446 2447 StringRef MangledName = getMangledName(D); 2448 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2449 2450 // We already have a definition, not declaration, with the same mangled name. 2451 // Emitting of declaration is not required (and actually overwrites emitted 2452 // definition). 2453 if (GV && !GV->isDeclaration()) 2454 return; 2455 2456 // If we have not seen a reference to this variable yet, place it into the 2457 // deferred declarations table to be emitted if needed later. 2458 if (!MustBeEmitted(D) && !GV) { 2459 DeferredDecls[MangledName] = D; 2460 return; 2461 } 2462 2463 // The tentative definition is the only definition. 2464 EmitGlobalVarDefinition(D); 2465 } 2466 2467 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2468 return Context.toCharUnitsFromBits( 2469 getDataLayout().getTypeStoreSizeInBits(Ty)); 2470 } 2471 2472 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2473 unsigned AddrSpace) { 2474 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2475 if (D->hasAttr<CUDAConstantAttr>()) 2476 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2477 else if (D->hasAttr<CUDASharedAttr>()) 2478 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2479 else 2480 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2481 } 2482 2483 return AddrSpace; 2484 } 2485 2486 template<typename SomeDecl> 2487 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2488 llvm::GlobalValue *GV) { 2489 if (!getLangOpts().CPlusPlus) 2490 return; 2491 2492 // Must have 'used' attribute, or else inline assembly can't rely on 2493 // the name existing. 2494 if (!D->template hasAttr<UsedAttr>()) 2495 return; 2496 2497 // Must have internal linkage and an ordinary name. 2498 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2499 return; 2500 2501 // Must be in an extern "C" context. Entities declared directly within 2502 // a record are not extern "C" even if the record is in such a context. 2503 const SomeDecl *First = D->getFirstDecl(); 2504 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2505 return; 2506 2507 // OK, this is an internal linkage entity inside an extern "C" linkage 2508 // specification. Make a note of that so we can give it the "expected" 2509 // mangled name if nothing else is using that name. 2510 std::pair<StaticExternCMap::iterator, bool> R = 2511 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2512 2513 // If we have multiple internal linkage entities with the same name 2514 // in extern "C" regions, none of them gets that name. 2515 if (!R.second) 2516 R.first->second = nullptr; 2517 } 2518 2519 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2520 if (!CGM.supportsCOMDAT()) 2521 return false; 2522 2523 if (D.hasAttr<SelectAnyAttr>()) 2524 return true; 2525 2526 GVALinkage Linkage; 2527 if (auto *VD = dyn_cast<VarDecl>(&D)) 2528 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2529 else 2530 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2531 2532 switch (Linkage) { 2533 case GVA_Internal: 2534 case GVA_AvailableExternally: 2535 case GVA_StrongExternal: 2536 return false; 2537 case GVA_DiscardableODR: 2538 case GVA_StrongODR: 2539 return true; 2540 } 2541 llvm_unreachable("No such linkage"); 2542 } 2543 2544 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2545 llvm::GlobalObject &GO) { 2546 if (!shouldBeInCOMDAT(*this, D)) 2547 return; 2548 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2549 } 2550 2551 /// Pass IsTentative as true if you want to create a tentative definition. 2552 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2553 bool IsTentative) { 2554 // OpenCL global variables of sampler type are translated to function calls, 2555 // therefore no need to be translated. 2556 QualType ASTTy = D->getType(); 2557 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2558 return; 2559 2560 llvm::Constant *Init = nullptr; 2561 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2562 bool NeedsGlobalCtor = false; 2563 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2564 2565 const VarDecl *InitDecl; 2566 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2567 2568 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2569 // as part of their declaration." Sema has already checked for 2570 // error cases, so we just need to set Init to UndefValue. 2571 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2572 D->hasAttr<CUDASharedAttr>()) 2573 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2574 else if (!InitExpr) { 2575 // This is a tentative definition; tentative definitions are 2576 // implicitly initialized with { 0 }. 2577 // 2578 // Note that tentative definitions are only emitted at the end of 2579 // a translation unit, so they should never have incomplete 2580 // type. In addition, EmitTentativeDefinition makes sure that we 2581 // never attempt to emit a tentative definition if a real one 2582 // exists. A use may still exists, however, so we still may need 2583 // to do a RAUW. 2584 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2585 Init = EmitNullConstant(D->getType()); 2586 } else { 2587 initializedGlobalDecl = GlobalDecl(D); 2588 Init = EmitConstantInit(*InitDecl); 2589 2590 if (!Init) { 2591 QualType T = InitExpr->getType(); 2592 if (D->getType()->isReferenceType()) 2593 T = D->getType(); 2594 2595 if (getLangOpts().CPlusPlus) { 2596 Init = EmitNullConstant(T); 2597 NeedsGlobalCtor = true; 2598 } else { 2599 ErrorUnsupported(D, "static initializer"); 2600 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2601 } 2602 } else { 2603 // We don't need an initializer, so remove the entry for the delayed 2604 // initializer position (just in case this entry was delayed) if we 2605 // also don't need to register a destructor. 2606 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2607 DelayedCXXInitPosition.erase(D); 2608 } 2609 } 2610 2611 llvm::Type* InitType = Init->getType(); 2612 llvm::Constant *Entry = 2613 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2614 2615 // Strip off a bitcast if we got one back. 2616 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2617 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2618 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2619 // All zero index gep. 2620 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2621 Entry = CE->getOperand(0); 2622 } 2623 2624 // Entry is now either a Function or GlobalVariable. 2625 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2626 2627 // We have a definition after a declaration with the wrong type. 2628 // We must make a new GlobalVariable* and update everything that used OldGV 2629 // (a declaration or tentative definition) with the new GlobalVariable* 2630 // (which will be a definition). 2631 // 2632 // This happens if there is a prototype for a global (e.g. 2633 // "extern int x[];") and then a definition of a different type (e.g. 2634 // "int x[10];"). This also happens when an initializer has a different type 2635 // from the type of the global (this happens with unions). 2636 if (!GV || 2637 GV->getType()->getElementType() != InitType || 2638 GV->getType()->getAddressSpace() != 2639 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2640 2641 // Move the old entry aside so that we'll create a new one. 2642 Entry->setName(StringRef()); 2643 2644 // Make a new global with the correct type, this is now guaranteed to work. 2645 GV = cast<llvm::GlobalVariable>( 2646 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2647 2648 // Replace all uses of the old global with the new global 2649 llvm::Constant *NewPtrForOldDecl = 2650 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2651 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2652 2653 // Erase the old global, since it is no longer used. 2654 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2655 } 2656 2657 MaybeHandleStaticInExternC(D, GV); 2658 2659 if (D->hasAttr<AnnotateAttr>()) 2660 AddGlobalAnnotations(D, GV); 2661 2662 // Set the llvm linkage type as appropriate. 2663 llvm::GlobalValue::LinkageTypes Linkage = 2664 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2665 2666 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2667 // the device. [...]" 2668 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2669 // __device__, declares a variable that: [...] 2670 // Is accessible from all the threads within the grid and from the host 2671 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2672 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2673 if (GV && LangOpts.CUDA) { 2674 if (LangOpts.CUDAIsDevice) { 2675 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2676 GV->setExternallyInitialized(true); 2677 } else { 2678 // Host-side shadows of external declarations of device-side 2679 // global variables become internal definitions. These have to 2680 // be internal in order to prevent name conflicts with global 2681 // host variables with the same name in a different TUs. 2682 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2683 Linkage = llvm::GlobalValue::InternalLinkage; 2684 2685 // Shadow variables and their properties must be registered 2686 // with CUDA runtime. 2687 unsigned Flags = 0; 2688 if (!D->hasDefinition()) 2689 Flags |= CGCUDARuntime::ExternDeviceVar; 2690 if (D->hasAttr<CUDAConstantAttr>()) 2691 Flags |= CGCUDARuntime::ConstantDeviceVar; 2692 getCUDARuntime().registerDeviceVar(*GV, Flags); 2693 } else if (D->hasAttr<CUDASharedAttr>()) 2694 // __shared__ variables are odd. Shadows do get created, but 2695 // they are not registered with the CUDA runtime, so they 2696 // can't really be used to access their device-side 2697 // counterparts. It's not clear yet whether it's nvcc's bug or 2698 // a feature, but we've got to do the same for compatibility. 2699 Linkage = llvm::GlobalValue::InternalLinkage; 2700 } 2701 } 2702 GV->setInitializer(Init); 2703 2704 // If it is safe to mark the global 'constant', do so now. 2705 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2706 isTypeConstant(D->getType(), true)); 2707 2708 // If it is in a read-only section, mark it 'constant'. 2709 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2710 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2711 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2712 GV->setConstant(true); 2713 } 2714 2715 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2716 2717 2718 // On Darwin, if the normal linkage of a C++ thread_local variable is 2719 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2720 // copies within a linkage unit; otherwise, the backing variable has 2721 // internal linkage and all accesses should just be calls to the 2722 // Itanium-specified entry point, which has the normal linkage of the 2723 // variable. This is to preserve the ability to change the implementation 2724 // behind the scenes. 2725 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2726 Context.getTargetInfo().getTriple().isOSDarwin() && 2727 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2728 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2729 Linkage = llvm::GlobalValue::InternalLinkage; 2730 2731 GV->setLinkage(Linkage); 2732 if (D->hasAttr<DLLImportAttr>()) 2733 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2734 else if (D->hasAttr<DLLExportAttr>()) 2735 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2736 else 2737 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2738 2739 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2740 // common vars aren't constant even if declared const. 2741 GV->setConstant(false); 2742 // Tentative definition of global variables may be initialized with 2743 // non-zero null pointers. In this case they should have weak linkage 2744 // since common linkage must have zero initializer and must not have 2745 // explicit section therefore cannot have non-zero initial value. 2746 if (!GV->getInitializer()->isNullValue()) 2747 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2748 } 2749 2750 setNonAliasAttributes(D, GV); 2751 2752 if (D->getTLSKind() && !GV->isThreadLocal()) { 2753 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2754 CXXThreadLocals.push_back(D); 2755 setTLSMode(GV, *D); 2756 } 2757 2758 maybeSetTrivialComdat(*D, *GV); 2759 2760 // Emit the initializer function if necessary. 2761 if (NeedsGlobalCtor || NeedsGlobalDtor) 2762 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2763 2764 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2765 2766 // Emit global variable debug information. 2767 if (CGDebugInfo *DI = getModuleDebugInfo()) 2768 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2769 DI->EmitGlobalVariable(GV, D); 2770 } 2771 2772 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2773 CodeGenModule &CGM, const VarDecl *D, 2774 bool NoCommon) { 2775 // Don't give variables common linkage if -fno-common was specified unless it 2776 // was overridden by a NoCommon attribute. 2777 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2778 return true; 2779 2780 // C11 6.9.2/2: 2781 // A declaration of an identifier for an object that has file scope without 2782 // an initializer, and without a storage-class specifier or with the 2783 // storage-class specifier static, constitutes a tentative definition. 2784 if (D->getInit() || D->hasExternalStorage()) 2785 return true; 2786 2787 // A variable cannot be both common and exist in a section. 2788 if (D->hasAttr<SectionAttr>()) 2789 return true; 2790 2791 // Thread local vars aren't considered common linkage. 2792 if (D->getTLSKind()) 2793 return true; 2794 2795 // Tentative definitions marked with WeakImportAttr are true definitions. 2796 if (D->hasAttr<WeakImportAttr>()) 2797 return true; 2798 2799 // A variable cannot be both common and exist in a comdat. 2800 if (shouldBeInCOMDAT(CGM, *D)) 2801 return true; 2802 2803 // Declarations with a required alignment do not have common linkage in MSVC 2804 // mode. 2805 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2806 if (D->hasAttr<AlignedAttr>()) 2807 return true; 2808 QualType VarType = D->getType(); 2809 if (Context.isAlignmentRequired(VarType)) 2810 return true; 2811 2812 if (const auto *RT = VarType->getAs<RecordType>()) { 2813 const RecordDecl *RD = RT->getDecl(); 2814 for (const FieldDecl *FD : RD->fields()) { 2815 if (FD->isBitField()) 2816 continue; 2817 if (FD->hasAttr<AlignedAttr>()) 2818 return true; 2819 if (Context.isAlignmentRequired(FD->getType())) 2820 return true; 2821 } 2822 } 2823 } 2824 2825 return false; 2826 } 2827 2828 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2829 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2830 if (Linkage == GVA_Internal) 2831 return llvm::Function::InternalLinkage; 2832 2833 if (D->hasAttr<WeakAttr>()) { 2834 if (IsConstantVariable) 2835 return llvm::GlobalVariable::WeakODRLinkage; 2836 else 2837 return llvm::GlobalVariable::WeakAnyLinkage; 2838 } 2839 2840 // We are guaranteed to have a strong definition somewhere else, 2841 // so we can use available_externally linkage. 2842 if (Linkage == GVA_AvailableExternally) 2843 return llvm::GlobalValue::AvailableExternallyLinkage; 2844 2845 // Note that Apple's kernel linker doesn't support symbol 2846 // coalescing, so we need to avoid linkonce and weak linkages there. 2847 // Normally, this means we just map to internal, but for explicit 2848 // instantiations we'll map to external. 2849 2850 // In C++, the compiler has to emit a definition in every translation unit 2851 // that references the function. We should use linkonce_odr because 2852 // a) if all references in this translation unit are optimized away, we 2853 // don't need to codegen it. b) if the function persists, it needs to be 2854 // merged with other definitions. c) C++ has the ODR, so we know the 2855 // definition is dependable. 2856 if (Linkage == GVA_DiscardableODR) 2857 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2858 : llvm::Function::InternalLinkage; 2859 2860 // An explicit instantiation of a template has weak linkage, since 2861 // explicit instantiations can occur in multiple translation units 2862 // and must all be equivalent. However, we are not allowed to 2863 // throw away these explicit instantiations. 2864 // 2865 // We don't currently support CUDA device code spread out across multiple TUs, 2866 // so say that CUDA templates are either external (for kernels) or internal. 2867 // This lets llvm perform aggressive inter-procedural optimizations. 2868 if (Linkage == GVA_StrongODR) { 2869 if (Context.getLangOpts().AppleKext) 2870 return llvm::Function::ExternalLinkage; 2871 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2872 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2873 : llvm::Function::InternalLinkage; 2874 return llvm::Function::WeakODRLinkage; 2875 } 2876 2877 // C++ doesn't have tentative definitions and thus cannot have common 2878 // linkage. 2879 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2880 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2881 CodeGenOpts.NoCommon)) 2882 return llvm::GlobalVariable::CommonLinkage; 2883 2884 // selectany symbols are externally visible, so use weak instead of 2885 // linkonce. MSVC optimizes away references to const selectany globals, so 2886 // all definitions should be the same and ODR linkage should be used. 2887 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2888 if (D->hasAttr<SelectAnyAttr>()) 2889 return llvm::GlobalVariable::WeakODRLinkage; 2890 2891 // Otherwise, we have strong external linkage. 2892 assert(Linkage == GVA_StrongExternal); 2893 return llvm::GlobalVariable::ExternalLinkage; 2894 } 2895 2896 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2897 const VarDecl *VD, bool IsConstant) { 2898 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2899 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2900 } 2901 2902 /// Replace the uses of a function that was declared with a non-proto type. 2903 /// We want to silently drop extra arguments from call sites 2904 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2905 llvm::Function *newFn) { 2906 // Fast path. 2907 if (old->use_empty()) return; 2908 2909 llvm::Type *newRetTy = newFn->getReturnType(); 2910 SmallVector<llvm::Value*, 4> newArgs; 2911 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2912 2913 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2914 ui != ue; ) { 2915 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2916 llvm::User *user = use->getUser(); 2917 2918 // Recognize and replace uses of bitcasts. Most calls to 2919 // unprototyped functions will use bitcasts. 2920 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2921 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2922 replaceUsesOfNonProtoConstant(bitcast, newFn); 2923 continue; 2924 } 2925 2926 // Recognize calls to the function. 2927 llvm::CallSite callSite(user); 2928 if (!callSite) continue; 2929 if (!callSite.isCallee(&*use)) continue; 2930 2931 // If the return types don't match exactly, then we can't 2932 // transform this call unless it's dead. 2933 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2934 continue; 2935 2936 // Get the call site's attribute list. 2937 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 2938 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2939 2940 // If the function was passed too few arguments, don't transform. 2941 unsigned newNumArgs = newFn->arg_size(); 2942 if (callSite.arg_size() < newNumArgs) continue; 2943 2944 // If extra arguments were passed, we silently drop them. 2945 // If any of the types mismatch, we don't transform. 2946 unsigned argNo = 0; 2947 bool dontTransform = false; 2948 for (llvm::Argument &A : newFn->args()) { 2949 if (callSite.getArgument(argNo)->getType() != A.getType()) { 2950 dontTransform = true; 2951 break; 2952 } 2953 2954 // Add any parameter attributes. 2955 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 2956 argNo++; 2957 } 2958 if (dontTransform) 2959 continue; 2960 2961 // Okay, we can transform this. Create the new call instruction and copy 2962 // over the required information. 2963 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2964 2965 // Copy over any operand bundles. 2966 callSite.getOperandBundlesAsDefs(newBundles); 2967 2968 llvm::CallSite newCall; 2969 if (callSite.isCall()) { 2970 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2971 callSite.getInstruction()); 2972 } else { 2973 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2974 newCall = llvm::InvokeInst::Create(newFn, 2975 oldInvoke->getNormalDest(), 2976 oldInvoke->getUnwindDest(), 2977 newArgs, newBundles, "", 2978 callSite.getInstruction()); 2979 } 2980 newArgs.clear(); // for the next iteration 2981 2982 if (!newCall->getType()->isVoidTy()) 2983 newCall->takeName(callSite.getInstruction()); 2984 newCall.setAttributes(llvm::AttributeList::get( 2985 newFn->getContext(), oldAttrs.getFnAttributes(), 2986 oldAttrs.getRetAttributes(), newArgAttrs)); 2987 newCall.setCallingConv(callSite.getCallingConv()); 2988 2989 // Finally, remove the old call, replacing any uses with the new one. 2990 if (!callSite->use_empty()) 2991 callSite->replaceAllUsesWith(newCall.getInstruction()); 2992 2993 // Copy debug location attached to CI. 2994 if (callSite->getDebugLoc()) 2995 newCall->setDebugLoc(callSite->getDebugLoc()); 2996 2997 callSite->eraseFromParent(); 2998 } 2999 } 3000 3001 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3002 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3003 /// existing call uses of the old function in the module, this adjusts them to 3004 /// call the new function directly. 3005 /// 3006 /// This is not just a cleanup: the always_inline pass requires direct calls to 3007 /// functions to be able to inline them. If there is a bitcast in the way, it 3008 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3009 /// run at -O0. 3010 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3011 llvm::Function *NewFn) { 3012 // If we're redefining a global as a function, don't transform it. 3013 if (!isa<llvm::Function>(Old)) return; 3014 3015 replaceUsesOfNonProtoConstant(Old, NewFn); 3016 } 3017 3018 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3019 auto DK = VD->isThisDeclarationADefinition(); 3020 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3021 return; 3022 3023 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3024 // If we have a definition, this might be a deferred decl. If the 3025 // instantiation is explicit, make sure we emit it at the end. 3026 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3027 GetAddrOfGlobalVar(VD); 3028 3029 EmitTopLevelDecl(VD); 3030 } 3031 3032 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3033 llvm::GlobalValue *GV) { 3034 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3035 3036 // Compute the function info and LLVM type. 3037 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3038 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3039 3040 // Get or create the prototype for the function. 3041 if (!GV || (GV->getType()->getElementType() != Ty)) 3042 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3043 /*DontDefer=*/true, 3044 ForDefinition)); 3045 3046 // Already emitted. 3047 if (!GV->isDeclaration()) 3048 return; 3049 3050 // We need to set linkage and visibility on the function before 3051 // generating code for it because various parts of IR generation 3052 // want to propagate this information down (e.g. to local static 3053 // declarations). 3054 auto *Fn = cast<llvm::Function>(GV); 3055 setFunctionLinkage(GD, Fn); 3056 setFunctionDLLStorageClass(GD, Fn); 3057 3058 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3059 setGlobalVisibility(Fn, D); 3060 3061 MaybeHandleStaticInExternC(D, Fn); 3062 3063 maybeSetTrivialComdat(*D, *Fn); 3064 3065 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3066 3067 setFunctionDefinitionAttributes(D, Fn); 3068 SetLLVMFunctionAttributesForDefinition(D, Fn); 3069 3070 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3071 AddGlobalCtor(Fn, CA->getPriority()); 3072 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3073 AddGlobalDtor(Fn, DA->getPriority()); 3074 if (D->hasAttr<AnnotateAttr>()) 3075 AddGlobalAnnotations(D, Fn); 3076 } 3077 3078 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3079 const auto *D = cast<ValueDecl>(GD.getDecl()); 3080 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3081 assert(AA && "Not an alias?"); 3082 3083 StringRef MangledName = getMangledName(GD); 3084 3085 if (AA->getAliasee() == MangledName) { 3086 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3087 return; 3088 } 3089 3090 // If there is a definition in the module, then it wins over the alias. 3091 // This is dubious, but allow it to be safe. Just ignore the alias. 3092 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3093 if (Entry && !Entry->isDeclaration()) 3094 return; 3095 3096 Aliases.push_back(GD); 3097 3098 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3099 3100 // Create a reference to the named value. This ensures that it is emitted 3101 // if a deferred decl. 3102 llvm::Constant *Aliasee; 3103 if (isa<llvm::FunctionType>(DeclTy)) 3104 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3105 /*ForVTable=*/false); 3106 else 3107 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3108 llvm::PointerType::getUnqual(DeclTy), 3109 /*D=*/nullptr); 3110 3111 // Create the new alias itself, but don't set a name yet. 3112 auto *GA = llvm::GlobalAlias::create( 3113 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3114 3115 if (Entry) { 3116 if (GA->getAliasee() == Entry) { 3117 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3118 return; 3119 } 3120 3121 assert(Entry->isDeclaration()); 3122 3123 // If there is a declaration in the module, then we had an extern followed 3124 // by the alias, as in: 3125 // extern int test6(); 3126 // ... 3127 // int test6() __attribute__((alias("test7"))); 3128 // 3129 // Remove it and replace uses of it with the alias. 3130 GA->takeName(Entry); 3131 3132 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3133 Entry->getType())); 3134 Entry->eraseFromParent(); 3135 } else { 3136 GA->setName(MangledName); 3137 } 3138 3139 // Set attributes which are particular to an alias; this is a 3140 // specialization of the attributes which may be set on a global 3141 // variable/function. 3142 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3143 D->isWeakImported()) { 3144 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3145 } 3146 3147 if (const auto *VD = dyn_cast<VarDecl>(D)) 3148 if (VD->getTLSKind()) 3149 setTLSMode(GA, *VD); 3150 3151 setAliasAttributes(D, GA); 3152 } 3153 3154 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3155 const auto *D = cast<ValueDecl>(GD.getDecl()); 3156 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3157 assert(IFA && "Not an ifunc?"); 3158 3159 StringRef MangledName = getMangledName(GD); 3160 3161 if (IFA->getResolver() == MangledName) { 3162 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3163 return; 3164 } 3165 3166 // Report an error if some definition overrides ifunc. 3167 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3168 if (Entry && !Entry->isDeclaration()) { 3169 GlobalDecl OtherGD; 3170 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3171 DiagnosedConflictingDefinitions.insert(GD).second) { 3172 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3173 Diags.Report(OtherGD.getDecl()->getLocation(), 3174 diag::note_previous_definition); 3175 } 3176 return; 3177 } 3178 3179 Aliases.push_back(GD); 3180 3181 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3182 llvm::Constant *Resolver = 3183 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3184 /*ForVTable=*/false); 3185 llvm::GlobalIFunc *GIF = 3186 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3187 "", Resolver, &getModule()); 3188 if (Entry) { 3189 if (GIF->getResolver() == Entry) { 3190 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3191 return; 3192 } 3193 assert(Entry->isDeclaration()); 3194 3195 // If there is a declaration in the module, then we had an extern followed 3196 // by the ifunc, as in: 3197 // extern int test(); 3198 // ... 3199 // int test() __attribute__((ifunc("resolver"))); 3200 // 3201 // Remove it and replace uses of it with the ifunc. 3202 GIF->takeName(Entry); 3203 3204 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3205 Entry->getType())); 3206 Entry->eraseFromParent(); 3207 } else 3208 GIF->setName(MangledName); 3209 3210 SetCommonAttributes(D, GIF); 3211 } 3212 3213 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3214 ArrayRef<llvm::Type*> Tys) { 3215 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3216 Tys); 3217 } 3218 3219 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3220 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3221 const StringLiteral *Literal, bool TargetIsLSB, 3222 bool &IsUTF16, unsigned &StringLength) { 3223 StringRef String = Literal->getString(); 3224 unsigned NumBytes = String.size(); 3225 3226 // Check for simple case. 3227 if (!Literal->containsNonAsciiOrNull()) { 3228 StringLength = NumBytes; 3229 return *Map.insert(std::make_pair(String, nullptr)).first; 3230 } 3231 3232 // Otherwise, convert the UTF8 literals into a string of shorts. 3233 IsUTF16 = true; 3234 3235 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3236 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3237 llvm::UTF16 *ToPtr = &ToBuf[0]; 3238 3239 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3240 ToPtr + NumBytes, llvm::strictConversion); 3241 3242 // ConvertUTF8toUTF16 returns the length in ToPtr. 3243 StringLength = ToPtr - &ToBuf[0]; 3244 3245 // Add an explicit null. 3246 *ToPtr = 0; 3247 return *Map.insert(std::make_pair( 3248 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3249 (StringLength + 1) * 2), 3250 nullptr)).first; 3251 } 3252 3253 ConstantAddress 3254 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3255 unsigned StringLength = 0; 3256 bool isUTF16 = false; 3257 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3258 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3259 getDataLayout().isLittleEndian(), isUTF16, 3260 StringLength); 3261 3262 if (auto *C = Entry.second) 3263 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3264 3265 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3266 llvm::Constant *Zeros[] = { Zero, Zero }; 3267 3268 // If we don't already have it, get __CFConstantStringClassReference. 3269 if (!CFConstantStringClassRef) { 3270 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3271 Ty = llvm::ArrayType::get(Ty, 0); 3272 llvm::Constant *GV = 3273 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3274 3275 if (getTriple().isOSBinFormatCOFF()) { 3276 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3277 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3278 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3279 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3280 3281 const VarDecl *VD = nullptr; 3282 for (const auto &Result : DC->lookup(&II)) 3283 if ((VD = dyn_cast<VarDecl>(Result))) 3284 break; 3285 3286 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3287 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3288 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3289 } else { 3290 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3291 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3292 } 3293 } 3294 3295 // Decay array -> ptr 3296 CFConstantStringClassRef = 3297 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3298 } 3299 3300 QualType CFTy = getContext().getCFConstantStringType(); 3301 3302 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3303 3304 ConstantInitBuilder Builder(*this); 3305 auto Fields = Builder.beginStruct(STy); 3306 3307 // Class pointer. 3308 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3309 3310 // Flags. 3311 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3312 3313 // String pointer. 3314 llvm::Constant *C = nullptr; 3315 if (isUTF16) { 3316 auto Arr = llvm::makeArrayRef( 3317 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3318 Entry.first().size() / 2); 3319 C = llvm::ConstantDataArray::get(VMContext, Arr); 3320 } else { 3321 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3322 } 3323 3324 // Note: -fwritable-strings doesn't make the backing store strings of 3325 // CFStrings writable. (See <rdar://problem/10657500>) 3326 auto *GV = 3327 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3328 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3329 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3330 // Don't enforce the target's minimum global alignment, since the only use 3331 // of the string is via this class initializer. 3332 CharUnits Align = isUTF16 3333 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3334 : getContext().getTypeAlignInChars(getContext().CharTy); 3335 GV->setAlignment(Align.getQuantity()); 3336 3337 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3338 // Without it LLVM can merge the string with a non unnamed_addr one during 3339 // LTO. Doing that changes the section it ends in, which surprises ld64. 3340 if (getTriple().isOSBinFormatMachO()) 3341 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3342 : "__TEXT,__cstring,cstring_literals"); 3343 3344 // String. 3345 llvm::Constant *Str = 3346 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3347 3348 if (isUTF16) 3349 // Cast the UTF16 string to the correct type. 3350 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3351 Fields.add(Str); 3352 3353 // String length. 3354 auto Ty = getTypes().ConvertType(getContext().LongTy); 3355 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3356 3357 CharUnits Alignment = getPointerAlign(); 3358 3359 // The struct. 3360 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3361 /*isConstant=*/false, 3362 llvm::GlobalVariable::PrivateLinkage); 3363 switch (getTriple().getObjectFormat()) { 3364 case llvm::Triple::UnknownObjectFormat: 3365 llvm_unreachable("unknown file format"); 3366 case llvm::Triple::COFF: 3367 case llvm::Triple::ELF: 3368 case llvm::Triple::Wasm: 3369 GV->setSection("cfstring"); 3370 break; 3371 case llvm::Triple::MachO: 3372 GV->setSection("__DATA,__cfstring"); 3373 break; 3374 } 3375 Entry.second = GV; 3376 3377 return ConstantAddress(GV, Alignment); 3378 } 3379 3380 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3381 if (ObjCFastEnumerationStateType.isNull()) { 3382 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3383 D->startDefinition(); 3384 3385 QualType FieldTypes[] = { 3386 Context.UnsignedLongTy, 3387 Context.getPointerType(Context.getObjCIdType()), 3388 Context.getPointerType(Context.UnsignedLongTy), 3389 Context.getConstantArrayType(Context.UnsignedLongTy, 3390 llvm::APInt(32, 5), ArrayType::Normal, 0) 3391 }; 3392 3393 for (size_t i = 0; i < 4; ++i) { 3394 FieldDecl *Field = FieldDecl::Create(Context, 3395 D, 3396 SourceLocation(), 3397 SourceLocation(), nullptr, 3398 FieldTypes[i], /*TInfo=*/nullptr, 3399 /*BitWidth=*/nullptr, 3400 /*Mutable=*/false, 3401 ICIS_NoInit); 3402 Field->setAccess(AS_public); 3403 D->addDecl(Field); 3404 } 3405 3406 D->completeDefinition(); 3407 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3408 } 3409 3410 return ObjCFastEnumerationStateType; 3411 } 3412 3413 llvm::Constant * 3414 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3415 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3416 3417 // Don't emit it as the address of the string, emit the string data itself 3418 // as an inline array. 3419 if (E->getCharByteWidth() == 1) { 3420 SmallString<64> Str(E->getString()); 3421 3422 // Resize the string to the right size, which is indicated by its type. 3423 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3424 Str.resize(CAT->getSize().getZExtValue()); 3425 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3426 } 3427 3428 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3429 llvm::Type *ElemTy = AType->getElementType(); 3430 unsigned NumElements = AType->getNumElements(); 3431 3432 // Wide strings have either 2-byte or 4-byte elements. 3433 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3434 SmallVector<uint16_t, 32> Elements; 3435 Elements.reserve(NumElements); 3436 3437 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3438 Elements.push_back(E->getCodeUnit(i)); 3439 Elements.resize(NumElements); 3440 return llvm::ConstantDataArray::get(VMContext, Elements); 3441 } 3442 3443 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3444 SmallVector<uint32_t, 32> Elements; 3445 Elements.reserve(NumElements); 3446 3447 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3448 Elements.push_back(E->getCodeUnit(i)); 3449 Elements.resize(NumElements); 3450 return llvm::ConstantDataArray::get(VMContext, Elements); 3451 } 3452 3453 static llvm::GlobalVariable * 3454 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3455 CodeGenModule &CGM, StringRef GlobalName, 3456 CharUnits Alignment) { 3457 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3458 unsigned AddrSpace = 0; 3459 if (CGM.getLangOpts().OpenCL) 3460 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3461 3462 llvm::Module &M = CGM.getModule(); 3463 // Create a global variable for this string 3464 auto *GV = new llvm::GlobalVariable( 3465 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3466 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3467 GV->setAlignment(Alignment.getQuantity()); 3468 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3469 if (GV->isWeakForLinker()) { 3470 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3471 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3472 } 3473 3474 return GV; 3475 } 3476 3477 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3478 /// constant array for the given string literal. 3479 ConstantAddress 3480 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3481 StringRef Name) { 3482 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3483 3484 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3485 llvm::GlobalVariable **Entry = nullptr; 3486 if (!LangOpts.WritableStrings) { 3487 Entry = &ConstantStringMap[C]; 3488 if (auto GV = *Entry) { 3489 if (Alignment.getQuantity() > GV->getAlignment()) 3490 GV->setAlignment(Alignment.getQuantity()); 3491 return ConstantAddress(GV, Alignment); 3492 } 3493 } 3494 3495 SmallString<256> MangledNameBuffer; 3496 StringRef GlobalVariableName; 3497 llvm::GlobalValue::LinkageTypes LT; 3498 3499 // Mangle the string literal if the ABI allows for it. However, we cannot 3500 // do this if we are compiling with ASan or -fwritable-strings because they 3501 // rely on strings having normal linkage. 3502 if (!LangOpts.WritableStrings && 3503 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3504 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3505 llvm::raw_svector_ostream Out(MangledNameBuffer); 3506 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3507 3508 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3509 GlobalVariableName = MangledNameBuffer; 3510 } else { 3511 LT = llvm::GlobalValue::PrivateLinkage; 3512 GlobalVariableName = Name; 3513 } 3514 3515 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3516 if (Entry) 3517 *Entry = GV; 3518 3519 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3520 QualType()); 3521 return ConstantAddress(GV, Alignment); 3522 } 3523 3524 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3525 /// array for the given ObjCEncodeExpr node. 3526 ConstantAddress 3527 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3528 std::string Str; 3529 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3530 3531 return GetAddrOfConstantCString(Str); 3532 } 3533 3534 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3535 /// the literal and a terminating '\0' character. 3536 /// The result has pointer to array type. 3537 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3538 const std::string &Str, const char *GlobalName) { 3539 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3540 CharUnits Alignment = 3541 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3542 3543 llvm::Constant *C = 3544 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3545 3546 // Don't share any string literals if strings aren't constant. 3547 llvm::GlobalVariable **Entry = nullptr; 3548 if (!LangOpts.WritableStrings) { 3549 Entry = &ConstantStringMap[C]; 3550 if (auto GV = *Entry) { 3551 if (Alignment.getQuantity() > GV->getAlignment()) 3552 GV->setAlignment(Alignment.getQuantity()); 3553 return ConstantAddress(GV, Alignment); 3554 } 3555 } 3556 3557 // Get the default prefix if a name wasn't specified. 3558 if (!GlobalName) 3559 GlobalName = ".str"; 3560 // Create a global variable for this. 3561 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3562 GlobalName, Alignment); 3563 if (Entry) 3564 *Entry = GV; 3565 return ConstantAddress(GV, Alignment); 3566 } 3567 3568 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3569 const MaterializeTemporaryExpr *E, const Expr *Init) { 3570 assert((E->getStorageDuration() == SD_Static || 3571 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3572 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3573 3574 // If we're not materializing a subobject of the temporary, keep the 3575 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3576 QualType MaterializedType = Init->getType(); 3577 if (Init == E->GetTemporaryExpr()) 3578 MaterializedType = E->getType(); 3579 3580 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3581 3582 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3583 return ConstantAddress(Slot, Align); 3584 3585 // FIXME: If an externally-visible declaration extends multiple temporaries, 3586 // we need to give each temporary the same name in every translation unit (and 3587 // we also need to make the temporaries externally-visible). 3588 SmallString<256> Name; 3589 llvm::raw_svector_ostream Out(Name); 3590 getCXXABI().getMangleContext().mangleReferenceTemporary( 3591 VD, E->getManglingNumber(), Out); 3592 3593 APValue *Value = nullptr; 3594 if (E->getStorageDuration() == SD_Static) { 3595 // We might have a cached constant initializer for this temporary. Note 3596 // that this might have a different value from the value computed by 3597 // evaluating the initializer if the surrounding constant expression 3598 // modifies the temporary. 3599 Value = getContext().getMaterializedTemporaryValue(E, false); 3600 if (Value && Value->isUninit()) 3601 Value = nullptr; 3602 } 3603 3604 // Try evaluating it now, it might have a constant initializer. 3605 Expr::EvalResult EvalResult; 3606 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3607 !EvalResult.hasSideEffects()) 3608 Value = &EvalResult.Val; 3609 3610 llvm::Constant *InitialValue = nullptr; 3611 bool Constant = false; 3612 llvm::Type *Type; 3613 if (Value) { 3614 // The temporary has a constant initializer, use it. 3615 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3616 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3617 Type = InitialValue->getType(); 3618 } else { 3619 // No initializer, the initialization will be provided when we 3620 // initialize the declaration which performed lifetime extension. 3621 Type = getTypes().ConvertTypeForMem(MaterializedType); 3622 } 3623 3624 // Create a global variable for this lifetime-extended temporary. 3625 llvm::GlobalValue::LinkageTypes Linkage = 3626 getLLVMLinkageVarDefinition(VD, Constant); 3627 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3628 const VarDecl *InitVD; 3629 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3630 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3631 // Temporaries defined inside a class get linkonce_odr linkage because the 3632 // class can be defined in multipe translation units. 3633 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3634 } else { 3635 // There is no need for this temporary to have external linkage if the 3636 // VarDecl has external linkage. 3637 Linkage = llvm::GlobalVariable::InternalLinkage; 3638 } 3639 } 3640 unsigned AddrSpace = GetGlobalVarAddressSpace( 3641 VD, getContext().getTargetAddressSpace(MaterializedType)); 3642 auto *GV = new llvm::GlobalVariable( 3643 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3644 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3645 AddrSpace); 3646 setGlobalVisibility(GV, VD); 3647 GV->setAlignment(Align.getQuantity()); 3648 if (supportsCOMDAT() && GV->isWeakForLinker()) 3649 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3650 if (VD->getTLSKind()) 3651 setTLSMode(GV, *VD); 3652 MaterializedGlobalTemporaryMap[E] = GV; 3653 return ConstantAddress(GV, Align); 3654 } 3655 3656 /// EmitObjCPropertyImplementations - Emit information for synthesized 3657 /// properties for an implementation. 3658 void CodeGenModule::EmitObjCPropertyImplementations(const 3659 ObjCImplementationDecl *D) { 3660 for (const auto *PID : D->property_impls()) { 3661 // Dynamic is just for type-checking. 3662 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3663 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3664 3665 // Determine which methods need to be implemented, some may have 3666 // been overridden. Note that ::isPropertyAccessor is not the method 3667 // we want, that just indicates if the decl came from a 3668 // property. What we want to know is if the method is defined in 3669 // this implementation. 3670 if (!D->getInstanceMethod(PD->getGetterName())) 3671 CodeGenFunction(*this).GenerateObjCGetter( 3672 const_cast<ObjCImplementationDecl *>(D), PID); 3673 if (!PD->isReadOnly() && 3674 !D->getInstanceMethod(PD->getSetterName())) 3675 CodeGenFunction(*this).GenerateObjCSetter( 3676 const_cast<ObjCImplementationDecl *>(D), PID); 3677 } 3678 } 3679 } 3680 3681 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3682 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3683 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3684 ivar; ivar = ivar->getNextIvar()) 3685 if (ivar->getType().isDestructedType()) 3686 return true; 3687 3688 return false; 3689 } 3690 3691 static bool AllTrivialInitializers(CodeGenModule &CGM, 3692 ObjCImplementationDecl *D) { 3693 CodeGenFunction CGF(CGM); 3694 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3695 E = D->init_end(); B != E; ++B) { 3696 CXXCtorInitializer *CtorInitExp = *B; 3697 Expr *Init = CtorInitExp->getInit(); 3698 if (!CGF.isTrivialInitializer(Init)) 3699 return false; 3700 } 3701 return true; 3702 } 3703 3704 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3705 /// for an implementation. 3706 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3707 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3708 if (needsDestructMethod(D)) { 3709 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3710 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3711 ObjCMethodDecl *DTORMethod = 3712 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3713 cxxSelector, getContext().VoidTy, nullptr, D, 3714 /*isInstance=*/true, /*isVariadic=*/false, 3715 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3716 /*isDefined=*/false, ObjCMethodDecl::Required); 3717 D->addInstanceMethod(DTORMethod); 3718 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3719 D->setHasDestructors(true); 3720 } 3721 3722 // If the implementation doesn't have any ivar initializers, we don't need 3723 // a .cxx_construct. 3724 if (D->getNumIvarInitializers() == 0 || 3725 AllTrivialInitializers(*this, D)) 3726 return; 3727 3728 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3729 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3730 // The constructor returns 'self'. 3731 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3732 D->getLocation(), 3733 D->getLocation(), 3734 cxxSelector, 3735 getContext().getObjCIdType(), 3736 nullptr, D, /*isInstance=*/true, 3737 /*isVariadic=*/false, 3738 /*isPropertyAccessor=*/true, 3739 /*isImplicitlyDeclared=*/true, 3740 /*isDefined=*/false, 3741 ObjCMethodDecl::Required); 3742 D->addInstanceMethod(CTORMethod); 3743 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3744 D->setHasNonZeroConstructors(true); 3745 } 3746 3747 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3748 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3749 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3750 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3751 ErrorUnsupported(LSD, "linkage spec"); 3752 return; 3753 } 3754 3755 EmitDeclContext(LSD); 3756 } 3757 3758 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3759 for (auto *I : DC->decls()) { 3760 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3761 // are themselves considered "top-level", so EmitTopLevelDecl on an 3762 // ObjCImplDecl does not recursively visit them. We need to do that in 3763 // case they're nested inside another construct (LinkageSpecDecl / 3764 // ExportDecl) that does stop them from being considered "top-level". 3765 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3766 for (auto *M : OID->methods()) 3767 EmitTopLevelDecl(M); 3768 } 3769 3770 EmitTopLevelDecl(I); 3771 } 3772 } 3773 3774 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3775 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3776 // Ignore dependent declarations. 3777 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3778 return; 3779 3780 switch (D->getKind()) { 3781 case Decl::CXXConversion: 3782 case Decl::CXXMethod: 3783 case Decl::Function: 3784 // Skip function templates 3785 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3786 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3787 return; 3788 3789 EmitGlobal(cast<FunctionDecl>(D)); 3790 // Always provide some coverage mapping 3791 // even for the functions that aren't emitted. 3792 AddDeferredUnusedCoverageMapping(D); 3793 break; 3794 3795 case Decl::CXXDeductionGuide: 3796 // Function-like, but does not result in code emission. 3797 break; 3798 3799 case Decl::Var: 3800 case Decl::Decomposition: 3801 // Skip variable templates 3802 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3803 return; 3804 case Decl::VarTemplateSpecialization: 3805 EmitGlobal(cast<VarDecl>(D)); 3806 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3807 for (auto *B : DD->bindings()) 3808 if (auto *HD = B->getHoldingVar()) 3809 EmitGlobal(HD); 3810 break; 3811 3812 // Indirect fields from global anonymous structs and unions can be 3813 // ignored; only the actual variable requires IR gen support. 3814 case Decl::IndirectField: 3815 break; 3816 3817 // C++ Decls 3818 case Decl::Namespace: 3819 EmitDeclContext(cast<NamespaceDecl>(D)); 3820 break; 3821 case Decl::CXXRecord: 3822 if (DebugInfo) { 3823 if (auto *ES = D->getASTContext().getExternalSource()) 3824 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3825 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3826 } 3827 // Emit any static data members, they may be definitions. 3828 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3829 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3830 EmitTopLevelDecl(I); 3831 break; 3832 // No code generation needed. 3833 case Decl::UsingShadow: 3834 case Decl::ClassTemplate: 3835 case Decl::VarTemplate: 3836 case Decl::VarTemplatePartialSpecialization: 3837 case Decl::FunctionTemplate: 3838 case Decl::TypeAliasTemplate: 3839 case Decl::Block: 3840 case Decl::Empty: 3841 break; 3842 case Decl::Using: // using X; [C++] 3843 if (CGDebugInfo *DI = getModuleDebugInfo()) 3844 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3845 return; 3846 case Decl::NamespaceAlias: 3847 if (CGDebugInfo *DI = getModuleDebugInfo()) 3848 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3849 return; 3850 case Decl::UsingDirective: // using namespace X; [C++] 3851 if (CGDebugInfo *DI = getModuleDebugInfo()) 3852 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3853 return; 3854 case Decl::CXXConstructor: 3855 // Skip function templates 3856 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3857 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3858 return; 3859 3860 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3861 break; 3862 case Decl::CXXDestructor: 3863 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3864 return; 3865 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3866 break; 3867 3868 case Decl::StaticAssert: 3869 // Nothing to do. 3870 break; 3871 3872 // Objective-C Decls 3873 3874 // Forward declarations, no (immediate) code generation. 3875 case Decl::ObjCInterface: 3876 case Decl::ObjCCategory: 3877 break; 3878 3879 case Decl::ObjCProtocol: { 3880 auto *Proto = cast<ObjCProtocolDecl>(D); 3881 if (Proto->isThisDeclarationADefinition()) 3882 ObjCRuntime->GenerateProtocol(Proto); 3883 break; 3884 } 3885 3886 case Decl::ObjCCategoryImpl: 3887 // Categories have properties but don't support synthesize so we 3888 // can ignore them here. 3889 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3890 break; 3891 3892 case Decl::ObjCImplementation: { 3893 auto *OMD = cast<ObjCImplementationDecl>(D); 3894 EmitObjCPropertyImplementations(OMD); 3895 EmitObjCIvarInitializations(OMD); 3896 ObjCRuntime->GenerateClass(OMD); 3897 // Emit global variable debug information. 3898 if (CGDebugInfo *DI = getModuleDebugInfo()) 3899 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3900 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3901 OMD->getClassInterface()), OMD->getLocation()); 3902 break; 3903 } 3904 case Decl::ObjCMethod: { 3905 auto *OMD = cast<ObjCMethodDecl>(D); 3906 // If this is not a prototype, emit the body. 3907 if (OMD->getBody()) 3908 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3909 break; 3910 } 3911 case Decl::ObjCCompatibleAlias: 3912 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3913 break; 3914 3915 case Decl::PragmaComment: { 3916 const auto *PCD = cast<PragmaCommentDecl>(D); 3917 switch (PCD->getCommentKind()) { 3918 case PCK_Unknown: 3919 llvm_unreachable("unexpected pragma comment kind"); 3920 case PCK_Linker: 3921 AppendLinkerOptions(PCD->getArg()); 3922 break; 3923 case PCK_Lib: 3924 AddDependentLib(PCD->getArg()); 3925 break; 3926 case PCK_Compiler: 3927 case PCK_ExeStr: 3928 case PCK_User: 3929 break; // We ignore all of these. 3930 } 3931 break; 3932 } 3933 3934 case Decl::PragmaDetectMismatch: { 3935 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3936 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3937 break; 3938 } 3939 3940 case Decl::LinkageSpec: 3941 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3942 break; 3943 3944 case Decl::FileScopeAsm: { 3945 // File-scope asm is ignored during device-side CUDA compilation. 3946 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3947 break; 3948 // File-scope asm is ignored during device-side OpenMP compilation. 3949 if (LangOpts.OpenMPIsDevice) 3950 break; 3951 auto *AD = cast<FileScopeAsmDecl>(D); 3952 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3953 break; 3954 } 3955 3956 case Decl::Import: { 3957 auto *Import = cast<ImportDecl>(D); 3958 3959 // If we've already imported this module, we're done. 3960 if (!ImportedModules.insert(Import->getImportedModule())) 3961 break; 3962 3963 // Emit debug information for direct imports. 3964 if (!Import->getImportedOwningModule()) { 3965 if (CGDebugInfo *DI = getModuleDebugInfo()) 3966 DI->EmitImportDecl(*Import); 3967 } 3968 3969 // Find all of the submodules and emit the module initializers. 3970 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3971 SmallVector<clang::Module *, 16> Stack; 3972 Visited.insert(Import->getImportedModule()); 3973 Stack.push_back(Import->getImportedModule()); 3974 3975 while (!Stack.empty()) { 3976 clang::Module *Mod = Stack.pop_back_val(); 3977 if (!EmittedModuleInitializers.insert(Mod).second) 3978 continue; 3979 3980 for (auto *D : Context.getModuleInitializers(Mod)) 3981 EmitTopLevelDecl(D); 3982 3983 // Visit the submodules of this module. 3984 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3985 SubEnd = Mod->submodule_end(); 3986 Sub != SubEnd; ++Sub) { 3987 // Skip explicit children; they need to be explicitly imported to emit 3988 // the initializers. 3989 if ((*Sub)->IsExplicit) 3990 continue; 3991 3992 if (Visited.insert(*Sub).second) 3993 Stack.push_back(*Sub); 3994 } 3995 } 3996 break; 3997 } 3998 3999 case Decl::Export: 4000 EmitDeclContext(cast<ExportDecl>(D)); 4001 break; 4002 4003 case Decl::OMPThreadPrivate: 4004 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4005 break; 4006 4007 case Decl::ClassTemplateSpecialization: { 4008 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4009 if (DebugInfo && 4010 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4011 Spec->hasDefinition()) 4012 DebugInfo->completeTemplateDefinition(*Spec); 4013 break; 4014 } 4015 4016 case Decl::OMPDeclareReduction: 4017 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4018 break; 4019 4020 default: 4021 // Make sure we handled everything we should, every other kind is a 4022 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4023 // function. Need to recode Decl::Kind to do that easily. 4024 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4025 break; 4026 } 4027 } 4028 4029 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4030 // Do we need to generate coverage mapping? 4031 if (!CodeGenOpts.CoverageMapping) 4032 return; 4033 switch (D->getKind()) { 4034 case Decl::CXXConversion: 4035 case Decl::CXXMethod: 4036 case Decl::Function: 4037 case Decl::ObjCMethod: 4038 case Decl::CXXConstructor: 4039 case Decl::CXXDestructor: { 4040 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4041 return; 4042 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4043 if (I == DeferredEmptyCoverageMappingDecls.end()) 4044 DeferredEmptyCoverageMappingDecls[D] = true; 4045 break; 4046 } 4047 default: 4048 break; 4049 }; 4050 } 4051 4052 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4053 // Do we need to generate coverage mapping? 4054 if (!CodeGenOpts.CoverageMapping) 4055 return; 4056 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4057 if (Fn->isTemplateInstantiation()) 4058 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4059 } 4060 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4061 if (I == DeferredEmptyCoverageMappingDecls.end()) 4062 DeferredEmptyCoverageMappingDecls[D] = false; 4063 else 4064 I->second = false; 4065 } 4066 4067 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4068 std::vector<const Decl *> DeferredDecls; 4069 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4070 if (!I.second) 4071 continue; 4072 DeferredDecls.push_back(I.first); 4073 } 4074 // Sort the declarations by their location to make sure that the tests get a 4075 // predictable order for the coverage mapping for the unused declarations. 4076 if (CodeGenOpts.DumpCoverageMapping) 4077 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4078 [] (const Decl *LHS, const Decl *RHS) { 4079 return LHS->getLocStart() < RHS->getLocStart(); 4080 }); 4081 for (const auto *D : DeferredDecls) { 4082 switch (D->getKind()) { 4083 case Decl::CXXConversion: 4084 case Decl::CXXMethod: 4085 case Decl::Function: 4086 case Decl::ObjCMethod: { 4087 CodeGenPGO PGO(*this); 4088 GlobalDecl GD(cast<FunctionDecl>(D)); 4089 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4090 getFunctionLinkage(GD)); 4091 break; 4092 } 4093 case Decl::CXXConstructor: { 4094 CodeGenPGO PGO(*this); 4095 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4096 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4097 getFunctionLinkage(GD)); 4098 break; 4099 } 4100 case Decl::CXXDestructor: { 4101 CodeGenPGO PGO(*this); 4102 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4103 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4104 getFunctionLinkage(GD)); 4105 break; 4106 } 4107 default: 4108 break; 4109 }; 4110 } 4111 } 4112 4113 /// Turns the given pointer into a constant. 4114 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4115 const void *Ptr) { 4116 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4117 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4118 return llvm::ConstantInt::get(i64, PtrInt); 4119 } 4120 4121 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4122 llvm::NamedMDNode *&GlobalMetadata, 4123 GlobalDecl D, 4124 llvm::GlobalValue *Addr) { 4125 if (!GlobalMetadata) 4126 GlobalMetadata = 4127 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4128 4129 // TODO: should we report variant information for ctors/dtors? 4130 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4131 llvm::ConstantAsMetadata::get(GetPointerConstant( 4132 CGM.getLLVMContext(), D.getDecl()))}; 4133 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4134 } 4135 4136 /// For each function which is declared within an extern "C" region and marked 4137 /// as 'used', but has internal linkage, create an alias from the unmangled 4138 /// name to the mangled name if possible. People expect to be able to refer 4139 /// to such functions with an unmangled name from inline assembly within the 4140 /// same translation unit. 4141 void CodeGenModule::EmitStaticExternCAliases() { 4142 // Don't do anything if we're generating CUDA device code -- the NVPTX 4143 // assembly target doesn't support aliases. 4144 if (Context.getTargetInfo().getTriple().isNVPTX()) 4145 return; 4146 for (auto &I : StaticExternCValues) { 4147 IdentifierInfo *Name = I.first; 4148 llvm::GlobalValue *Val = I.second; 4149 if (Val && !getModule().getNamedValue(Name->getName())) 4150 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4151 } 4152 } 4153 4154 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4155 GlobalDecl &Result) const { 4156 auto Res = Manglings.find(MangledName); 4157 if (Res == Manglings.end()) 4158 return false; 4159 Result = Res->getValue(); 4160 return true; 4161 } 4162 4163 /// Emits metadata nodes associating all the global values in the 4164 /// current module with the Decls they came from. This is useful for 4165 /// projects using IR gen as a subroutine. 4166 /// 4167 /// Since there's currently no way to associate an MDNode directly 4168 /// with an llvm::GlobalValue, we create a global named metadata 4169 /// with the name 'clang.global.decl.ptrs'. 4170 void CodeGenModule::EmitDeclMetadata() { 4171 llvm::NamedMDNode *GlobalMetadata = nullptr; 4172 4173 for (auto &I : MangledDeclNames) { 4174 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4175 // Some mangled names don't necessarily have an associated GlobalValue 4176 // in this module, e.g. if we mangled it for DebugInfo. 4177 if (Addr) 4178 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4179 } 4180 } 4181 4182 /// Emits metadata nodes for all the local variables in the current 4183 /// function. 4184 void CodeGenFunction::EmitDeclMetadata() { 4185 if (LocalDeclMap.empty()) return; 4186 4187 llvm::LLVMContext &Context = getLLVMContext(); 4188 4189 // Find the unique metadata ID for this name. 4190 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4191 4192 llvm::NamedMDNode *GlobalMetadata = nullptr; 4193 4194 for (auto &I : LocalDeclMap) { 4195 const Decl *D = I.first; 4196 llvm::Value *Addr = I.second.getPointer(); 4197 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4198 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4199 Alloca->setMetadata( 4200 DeclPtrKind, llvm::MDNode::get( 4201 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4202 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4203 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4204 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4205 } 4206 } 4207 } 4208 4209 void CodeGenModule::EmitVersionIdentMetadata() { 4210 llvm::NamedMDNode *IdentMetadata = 4211 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4212 std::string Version = getClangFullVersion(); 4213 llvm::LLVMContext &Ctx = TheModule.getContext(); 4214 4215 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4216 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4217 } 4218 4219 void CodeGenModule::EmitTargetMetadata() { 4220 // Warning, new MangledDeclNames may be appended within this loop. 4221 // We rely on MapVector insertions adding new elements to the end 4222 // of the container. 4223 // FIXME: Move this loop into the one target that needs it, and only 4224 // loop over those declarations for which we couldn't emit the target 4225 // metadata when we emitted the declaration. 4226 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4227 auto Val = *(MangledDeclNames.begin() + I); 4228 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4229 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4230 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4231 } 4232 } 4233 4234 void CodeGenModule::EmitCoverageFile() { 4235 if (getCodeGenOpts().CoverageDataFile.empty() && 4236 getCodeGenOpts().CoverageNotesFile.empty()) 4237 return; 4238 4239 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4240 if (!CUNode) 4241 return; 4242 4243 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4244 llvm::LLVMContext &Ctx = TheModule.getContext(); 4245 auto *CoverageDataFile = 4246 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4247 auto *CoverageNotesFile = 4248 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4249 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4250 llvm::MDNode *CU = CUNode->getOperand(i); 4251 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4252 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4253 } 4254 } 4255 4256 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4257 // Sema has checked that all uuid strings are of the form 4258 // "12345678-1234-1234-1234-1234567890ab". 4259 assert(Uuid.size() == 36); 4260 for (unsigned i = 0; i < 36; ++i) { 4261 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4262 else assert(isHexDigit(Uuid[i])); 4263 } 4264 4265 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4266 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4267 4268 llvm::Constant *Field3[8]; 4269 for (unsigned Idx = 0; Idx < 8; ++Idx) 4270 Field3[Idx] = llvm::ConstantInt::get( 4271 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4272 4273 llvm::Constant *Fields[4] = { 4274 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4275 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4276 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4277 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4278 }; 4279 4280 return llvm::ConstantStruct::getAnon(Fields); 4281 } 4282 4283 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4284 bool ForEH) { 4285 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4286 // FIXME: should we even be calling this method if RTTI is disabled 4287 // and it's not for EH? 4288 if (!ForEH && !getLangOpts().RTTI) 4289 return llvm::Constant::getNullValue(Int8PtrTy); 4290 4291 if (ForEH && Ty->isObjCObjectPointerType() && 4292 LangOpts.ObjCRuntime.isGNUFamily()) 4293 return ObjCRuntime->GetEHType(Ty); 4294 4295 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4296 } 4297 4298 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4299 for (auto RefExpr : D->varlists()) { 4300 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4301 bool PerformInit = 4302 VD->getAnyInitializer() && 4303 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4304 /*ForRef=*/false); 4305 4306 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4307 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4308 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4309 CXXGlobalInits.push_back(InitFunction); 4310 } 4311 } 4312 4313 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4314 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4315 if (InternalId) 4316 return InternalId; 4317 4318 if (isExternallyVisible(T->getLinkage())) { 4319 std::string OutName; 4320 llvm::raw_string_ostream Out(OutName); 4321 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4322 4323 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4324 } else { 4325 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4326 llvm::ArrayRef<llvm::Metadata *>()); 4327 } 4328 4329 return InternalId; 4330 } 4331 4332 /// Returns whether this module needs the "all-vtables" type identifier. 4333 bool CodeGenModule::NeedAllVtablesTypeId() const { 4334 // Returns true if at least one of vtable-based CFI checkers is enabled and 4335 // is not in the trapping mode. 4336 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4338 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4339 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4340 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4341 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4342 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4343 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4344 } 4345 4346 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4347 CharUnits Offset, 4348 const CXXRecordDecl *RD) { 4349 llvm::Metadata *MD = 4350 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4351 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4352 4353 if (CodeGenOpts.SanitizeCfiCrossDso) 4354 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4355 VTable->addTypeMetadata(Offset.getQuantity(), 4356 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4357 4358 if (NeedAllVtablesTypeId()) { 4359 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4360 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4361 } 4362 } 4363 4364 // Fills in the supplied string map with the set of target features for the 4365 // passed in function. 4366 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4367 const FunctionDecl *FD) { 4368 StringRef TargetCPU = Target.getTargetOpts().CPU; 4369 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4370 // If we have a TargetAttr build up the feature map based on that. 4371 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4372 4373 // Make a copy of the features as passed on the command line into the 4374 // beginning of the additional features from the function to override. 4375 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4376 Target.getTargetOpts().FeaturesAsWritten.begin(), 4377 Target.getTargetOpts().FeaturesAsWritten.end()); 4378 4379 if (ParsedAttr.second != "") 4380 TargetCPU = ParsedAttr.second; 4381 4382 // Now populate the feature map, first with the TargetCPU which is either 4383 // the default or a new one from the target attribute string. Then we'll use 4384 // the passed in features (FeaturesAsWritten) along with the new ones from 4385 // the attribute. 4386 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4387 } else { 4388 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4389 Target.getTargetOpts().Features); 4390 } 4391 } 4392 4393 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4394 if (!SanStats) 4395 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4396 4397 return *SanStats; 4398 } 4399 llvm::Value * 4400 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4401 CodeGenFunction &CGF) { 4402 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4403 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4404 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4405 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4406 "__translate_sampler_initializer"), 4407 {C}); 4408 } 4409