xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a44e5f601d4235f8b2ab999dc3a9cc58585404a3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static const char AnnotationSection[] = "llvm.metadata";
64 
65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
66   switch (CGM.getTarget().getCXXABI().getKind()) {
67   case TargetCXXABI::GenericAArch64:
68   case TargetCXXABI::GenericARM:
69   case TargetCXXABI::iOS:
70   case TargetCXXABI::iOS64:
71   case TargetCXXABI::WatchOS:
72   case TargetCXXABI::GenericMIPS:
73   case TargetCXXABI::GenericItanium:
74   case TargetCXXABI::WebAssembly:
75     return CreateItaniumCXXABI(CGM);
76   case TargetCXXABI::Microsoft:
77     return CreateMicrosoftCXXABI(CGM);
78   }
79 
80   llvm_unreachable("invalid C++ ABI kind");
81 }
82 
83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
84                              const PreprocessorOptions &PPO,
85                              const CodeGenOptions &CGO, llvm::Module &M,
86                              DiagnosticsEngine &diags,
87                              CoverageSourceInfo *CoverageInfo)
88     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
89       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
90       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
91       VMContext(M.getContext()), Types(*this), VTables(*this),
92       SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   HalfTy = llvm::Type::getHalfTy(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   SizeSizeInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
109   IntAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
111   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112   IntPtrTy = llvm::IntegerType::get(LLVMContext,
113     C.getTargetInfo().getMaxPointerWidth());
114   Int8PtrTy = Int8Ty->getPointerTo(0);
115   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
116   AllocaInt8PtrTy = Int8Ty->getPointerTo(
117       M.getDataLayout().getAllocaAddrSpace());
118   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
119 
120   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
121   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
122 
123   if (LangOpts.ObjC1)
124     createObjCRuntime();
125   if (LangOpts.OpenCL)
126     createOpenCLRuntime();
127   if (LangOpts.OpenMP)
128     createOpenMPRuntime();
129   if (LangOpts.CUDA)
130     createCUDARuntime();
131 
132   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
133   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
134       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
135     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
136                                getCXXABI().getMangleContext()));
137 
138   // If debug info or coverage generation is enabled, create the CGDebugInfo
139   // object.
140   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
141       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
142     DebugInfo.reset(new CGDebugInfo(*this));
143 
144   Block.GlobalUniqueCount = 0;
145 
146   if (C.getLangOpts().ObjC1)
147     ObjCData.reset(new ObjCEntrypoints());
148 
149   if (CodeGenOpts.hasProfileClangUse()) {
150     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
151         CodeGenOpts.ProfileInstrumentUsePath);
152     if (auto E = ReaderOrErr.takeError()) {
153       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
154                                               "Could not read profile %0: %1");
155       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
156         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
157                                   << EI.message();
158       });
159     } else
160       PGOReader = std::move(ReaderOrErr.get());
161   }
162 
163   // If coverage mapping generation is enabled, create the
164   // CoverageMappingModuleGen object.
165   if (CodeGenOpts.CoverageMapping)
166     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
167 }
168 
169 CodeGenModule::~CodeGenModule() {}
170 
171 void CodeGenModule::createObjCRuntime() {
172   // This is just isGNUFamily(), but we want to force implementors of
173   // new ABIs to decide how best to do this.
174   switch (LangOpts.ObjCRuntime.getKind()) {
175   case ObjCRuntime::GNUstep:
176   case ObjCRuntime::GCC:
177   case ObjCRuntime::ObjFW:
178     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
179     return;
180 
181   case ObjCRuntime::FragileMacOSX:
182   case ObjCRuntime::MacOSX:
183   case ObjCRuntime::iOS:
184   case ObjCRuntime::WatchOS:
185     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
186     return;
187   }
188   llvm_unreachable("bad runtime kind");
189 }
190 
191 void CodeGenModule::createOpenCLRuntime() {
192   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
193 }
194 
195 void CodeGenModule::createOpenMPRuntime() {
196   // Select a specialized code generation class based on the target, if any.
197   // If it does not exist use the default implementation.
198   switch (getTriple().getArch()) {
199   case llvm::Triple::nvptx:
200   case llvm::Triple::nvptx64:
201     assert(getLangOpts().OpenMPIsDevice &&
202            "OpenMP NVPTX is only prepared to deal with device code.");
203     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
204     break;
205   default:
206     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
207     break;
208   }
209 }
210 
211 void CodeGenModule::createCUDARuntime() {
212   CUDARuntime.reset(CreateNVCUDARuntime(*this));
213 }
214 
215 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
216   Replacements[Name] = C;
217 }
218 
219 void CodeGenModule::applyReplacements() {
220   for (auto &I : Replacements) {
221     StringRef MangledName = I.first();
222     llvm::Constant *Replacement = I.second;
223     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
224     if (!Entry)
225       continue;
226     auto *OldF = cast<llvm::Function>(Entry);
227     auto *NewF = dyn_cast<llvm::Function>(Replacement);
228     if (!NewF) {
229       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
230         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
231       } else {
232         auto *CE = cast<llvm::ConstantExpr>(Replacement);
233         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
234                CE->getOpcode() == llvm::Instruction::GetElementPtr);
235         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
236       }
237     }
238 
239     // Replace old with new, but keep the old order.
240     OldF->replaceAllUsesWith(Replacement);
241     if (NewF) {
242       NewF->removeFromParent();
243       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
244                                                        NewF);
245     }
246     OldF->eraseFromParent();
247   }
248 }
249 
250 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
251   GlobalValReplacements.push_back(std::make_pair(GV, C));
252 }
253 
254 void CodeGenModule::applyGlobalValReplacements() {
255   for (auto &I : GlobalValReplacements) {
256     llvm::GlobalValue *GV = I.first;
257     llvm::Constant *C = I.second;
258 
259     GV->replaceAllUsesWith(C);
260     GV->eraseFromParent();
261   }
262 }
263 
264 // This is only used in aliases that we created and we know they have a
265 // linear structure.
266 static const llvm::GlobalObject *getAliasedGlobal(
267     const llvm::GlobalIndirectSymbol &GIS) {
268   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
269   const llvm::Constant *C = &GIS;
270   for (;;) {
271     C = C->stripPointerCasts();
272     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
273       return GO;
274     // stripPointerCasts will not walk over weak aliases.
275     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
276     if (!GIS2)
277       return nullptr;
278     if (!Visited.insert(GIS2).second)
279       return nullptr;
280     C = GIS2->getIndirectSymbol();
281   }
282 }
283 
284 void CodeGenModule::checkAliases() {
285   // Check if the constructed aliases are well formed. It is really unfortunate
286   // that we have to do this in CodeGen, but we only construct mangled names
287   // and aliases during codegen.
288   bool Error = false;
289   DiagnosticsEngine &Diags = getDiags();
290   for (const GlobalDecl &GD : Aliases) {
291     const auto *D = cast<ValueDecl>(GD.getDecl());
292     SourceLocation Location;
293     bool IsIFunc = D->hasAttr<IFuncAttr>();
294     if (const Attr *A = D->getDefiningAttr())
295       Location = A->getLocation();
296     else
297       llvm_unreachable("Not an alias or ifunc?");
298     StringRef MangledName = getMangledName(GD);
299     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
300     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
301     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
302     if (!GV) {
303       Error = true;
304       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
305     } else if (GV->isDeclaration()) {
306       Error = true;
307       Diags.Report(Location, diag::err_alias_to_undefined)
308           << IsIFunc << IsIFunc;
309     } else if (IsIFunc) {
310       // Check resolver function type.
311       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
312           GV->getType()->getPointerElementType());
313       assert(FTy);
314       if (!FTy->getReturnType()->isPointerTy())
315         Diags.Report(Location, diag::err_ifunc_resolver_return);
316       if (FTy->getNumParams())
317         Diags.Report(Location, diag::err_ifunc_resolver_params);
318     }
319 
320     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
321     llvm::GlobalValue *AliaseeGV;
322     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
323       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
324     else
325       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
326 
327     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
328       StringRef AliasSection = SA->getName();
329       if (AliasSection != AliaseeGV->getSection())
330         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
331             << AliasSection << IsIFunc << IsIFunc;
332     }
333 
334     // We have to handle alias to weak aliases in here. LLVM itself disallows
335     // this since the object semantics would not match the IL one. For
336     // compatibility with gcc we implement it by just pointing the alias
337     // to its aliasee's aliasee. We also warn, since the user is probably
338     // expecting the link to be weak.
339     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
340       if (GA->isInterposable()) {
341         Diags.Report(Location, diag::warn_alias_to_weak_alias)
342             << GV->getName() << GA->getName() << IsIFunc;
343         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
344             GA->getIndirectSymbol(), Alias->getType());
345         Alias->setIndirectSymbol(Aliasee);
346       }
347     }
348   }
349   if (!Error)
350     return;
351 
352   for (const GlobalDecl &GD : Aliases) {
353     StringRef MangledName = getMangledName(GD);
354     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
355     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
356     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
357     Alias->eraseFromParent();
358   }
359 }
360 
361 void CodeGenModule::clear() {
362   DeferredDeclsToEmit.clear();
363   if (OpenMPRuntime)
364     OpenMPRuntime->clear();
365 }
366 
367 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
368                                        StringRef MainFile) {
369   if (!hasDiagnostics())
370     return;
371   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
372     if (MainFile.empty())
373       MainFile = "<stdin>";
374     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
375   } else {
376     if (Mismatched > 0)
377       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
378 
379     if (Missing > 0)
380       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
381   }
382 }
383 
384 void CodeGenModule::Release() {
385   EmitDeferred();
386   EmitVTablesOpportunistically();
387   applyGlobalValReplacements();
388   applyReplacements();
389   checkAliases();
390   EmitCXXGlobalInitFunc();
391   EmitCXXGlobalDtorFunc();
392   EmitCXXThreadLocalInitFunc();
393   if (ObjCRuntime)
394     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
395       AddGlobalCtor(ObjCInitFunction);
396   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
397       CUDARuntime) {
398     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
399       AddGlobalCtor(CudaCtorFunction);
400     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
401       AddGlobalDtor(CudaDtorFunction);
402   }
403   if (OpenMPRuntime)
404     if (llvm::Function *OpenMPRegistrationFunction =
405             OpenMPRuntime->emitRegistrationFunction()) {
406       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
407         OpenMPRegistrationFunction : nullptr;
408       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
409     }
410   if (PGOReader) {
411     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
412     if (PGOStats.hasDiagnostics())
413       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
414   }
415   EmitCtorList(GlobalCtors, "llvm.global_ctors");
416   EmitCtorList(GlobalDtors, "llvm.global_dtors");
417   EmitGlobalAnnotations();
418   EmitStaticExternCAliases();
419   EmitDeferredUnusedCoverageMappings();
420   if (CoverageMapping)
421     CoverageMapping->emit();
422   if (CodeGenOpts.SanitizeCfiCrossDso) {
423     CodeGenFunction(*this).EmitCfiCheckFail();
424     CodeGenFunction(*this).EmitCfiCheckStub();
425   }
426   emitAtAvailableLinkGuard();
427   emitLLVMUsed();
428   if (SanStats)
429     SanStats->finish();
430 
431   if (CodeGenOpts.Autolink &&
432       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
433     EmitModuleLinkOptions();
434   }
435 
436   // Record mregparm value now so it is visible through rest of codegen.
437   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
438     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
439                               CodeGenOpts.NumRegisterParameters);
440 
441   if (CodeGenOpts.DwarfVersion) {
442     // We actually want the latest version when there are conflicts.
443     // We can change from Warning to Latest if such mode is supported.
444     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
445                               CodeGenOpts.DwarfVersion);
446   }
447   if (CodeGenOpts.EmitCodeView) {
448     // Indicate that we want CodeView in the metadata.
449     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
450   }
451   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
452     // We don't support LTO with 2 with different StrictVTablePointers
453     // FIXME: we could support it by stripping all the information introduced
454     // by StrictVTablePointers.
455 
456     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
457 
458     llvm::Metadata *Ops[2] = {
459               llvm::MDString::get(VMContext, "StrictVTablePointers"),
460               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
461                   llvm::Type::getInt32Ty(VMContext), 1))};
462 
463     getModule().addModuleFlag(llvm::Module::Require,
464                               "StrictVTablePointersRequirement",
465                               llvm::MDNode::get(VMContext, Ops));
466   }
467   if (DebugInfo)
468     // We support a single version in the linked module. The LLVM
469     // parser will drop debug info with a different version number
470     // (and warn about it, too).
471     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
472                               llvm::DEBUG_METADATA_VERSION);
473 
474   // Width of wchar_t in bytes
475   uint64_t WCharWidth =
476       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
477   assert((LangOpts.ShortWChar ||
478           llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) ==
479               Target.getWCharWidth() / 8) &&
480          "LLVM wchar_t size out of sync");
481 
482   // We need to record the widths of enums and wchar_t, so that we can generate
483   // the correct build attributes in the ARM backend. wchar_size is also used by
484   // TargetLibraryInfo.
485   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
486 
487   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
488   if (   Arch == llvm::Triple::arm
489       || Arch == llvm::Triple::armeb
490       || Arch == llvm::Triple::thumb
491       || Arch == llvm::Triple::thumbeb) {
492     // The minimum width of an enum in bytes
493     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
494     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
495   }
496 
497   if (CodeGenOpts.SanitizeCfiCrossDso) {
498     // Indicate that we want cross-DSO control flow integrity checks.
499     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
500   }
501 
502   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
503     // Indicate whether __nvvm_reflect should be configured to flush denormal
504     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
505     // property.)
506     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
507                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
508   }
509 
510   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
511     assert(PLevel < 3 && "Invalid PIC Level");
512     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
513     if (Context.getLangOpts().PIE)
514       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
515   }
516 
517   SimplifyPersonality();
518 
519   if (getCodeGenOpts().EmitDeclMetadata)
520     EmitDeclMetadata();
521 
522   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
523     EmitCoverageFile();
524 
525   if (DebugInfo)
526     DebugInfo->finalize();
527 
528   EmitVersionIdentMetadata();
529 
530   EmitTargetMetadata();
531 }
532 
533 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
534   // Make sure that this type is translated.
535   Types.UpdateCompletedType(TD);
536 }
537 
538 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
539   // Make sure that this type is translated.
540   Types.RefreshTypeCacheForClass(RD);
541 }
542 
543 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
544   if (!TBAA)
545     return nullptr;
546   return TBAA->getTBAAInfo(QTy);
547 }
548 
549 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
550   if (!TBAA)
551     return nullptr;
552   return TBAA->getTBAAInfoForVTablePtr();
553 }
554 
555 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
556   if (!TBAA)
557     return nullptr;
558   return TBAA->getTBAAStructInfo(QTy);
559 }
560 
561 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
562                                                   llvm::MDNode *AccessN,
563                                                   uint64_t O) {
564   if (!TBAA)
565     return nullptr;
566   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
567 }
568 
569 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
570 /// and struct-path aware TBAA, the tag has the same format:
571 /// base type, access type and offset.
572 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
573 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
574                                                 llvm::MDNode *TBAAInfo,
575                                                 bool ConvertTypeToTag) {
576   if (ConvertTypeToTag && TBAA)
577     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
578                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
579   else
580     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
581 }
582 
583 void CodeGenModule::DecorateInstructionWithInvariantGroup(
584     llvm::Instruction *I, const CXXRecordDecl *RD) {
585   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
586                  llvm::MDNode::get(getLLVMContext(), {}));
587 }
588 
589 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
590   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
591   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
592 }
593 
594 /// ErrorUnsupported - Print out an error that codegen doesn't support the
595 /// specified stmt yet.
596 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
597   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
598                                                "cannot compile this %0 yet");
599   std::string Msg = Type;
600   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
601     << Msg << S->getSourceRange();
602 }
603 
604 /// ErrorUnsupported - Print out an error that codegen doesn't support the
605 /// specified decl yet.
606 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
607   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
608                                                "cannot compile this %0 yet");
609   std::string Msg = Type;
610   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
611 }
612 
613 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
614   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
615 }
616 
617 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
618                                         const NamedDecl *D) const {
619   // Internal definitions always have default visibility.
620   if (GV->hasLocalLinkage()) {
621     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622     return;
623   }
624 
625   // Set visibility for definitions.
626   LinkageInfo LV = D->getLinkageAndVisibility();
627   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
628     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
629 }
630 
631 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
632   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
633       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
634       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
635       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
636       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
637 }
638 
639 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
640     CodeGenOptions::TLSModel M) {
641   switch (M) {
642   case CodeGenOptions::GeneralDynamicTLSModel:
643     return llvm::GlobalVariable::GeneralDynamicTLSModel;
644   case CodeGenOptions::LocalDynamicTLSModel:
645     return llvm::GlobalVariable::LocalDynamicTLSModel;
646   case CodeGenOptions::InitialExecTLSModel:
647     return llvm::GlobalVariable::InitialExecTLSModel;
648   case CodeGenOptions::LocalExecTLSModel:
649     return llvm::GlobalVariable::LocalExecTLSModel;
650   }
651   llvm_unreachable("Invalid TLS model!");
652 }
653 
654 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
655   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
656 
657   llvm::GlobalValue::ThreadLocalMode TLM;
658   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
659 
660   // Override the TLS model if it is explicitly specified.
661   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
662     TLM = GetLLVMTLSModel(Attr->getModel());
663   }
664 
665   GV->setThreadLocalMode(TLM);
666 }
667 
668 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
669   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
670 
671   // Some ABIs don't have constructor variants.  Make sure that base and
672   // complete constructors get mangled the same.
673   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
674     if (!getTarget().getCXXABI().hasConstructorVariants()) {
675       CXXCtorType OrigCtorType = GD.getCtorType();
676       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
677       if (OrigCtorType == Ctor_Base)
678         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
679     }
680   }
681 
682   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
683   if (!FoundStr.empty())
684     return FoundStr;
685 
686   const auto *ND = cast<NamedDecl>(GD.getDecl());
687   SmallString<256> Buffer;
688   StringRef Str;
689   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
690     llvm::raw_svector_ostream Out(Buffer);
691     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
692       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
693     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
694       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
695     else
696       getCXXABI().getMangleContext().mangleName(ND, Out);
697     Str = Out.str();
698   } else {
699     IdentifierInfo *II = ND->getIdentifier();
700     assert(II && "Attempt to mangle unnamed decl.");
701     const auto *FD = dyn_cast<FunctionDecl>(ND);
702 
703     if (FD &&
704         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
705       llvm::raw_svector_ostream Out(Buffer);
706       Out << "__regcall3__" << II->getName();
707       Str = Out.str();
708     } else {
709       Str = II->getName();
710     }
711   }
712 
713   // Keep the first result in the case of a mangling collision.
714   auto Result = Manglings.insert(std::make_pair(Str, GD));
715   return FoundStr = Result.first->first();
716 }
717 
718 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
719                                              const BlockDecl *BD) {
720   MangleContext &MangleCtx = getCXXABI().getMangleContext();
721   const Decl *D = GD.getDecl();
722 
723   SmallString<256> Buffer;
724   llvm::raw_svector_ostream Out(Buffer);
725   if (!D)
726     MangleCtx.mangleGlobalBlock(BD,
727       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
728   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
729     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
730   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
731     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
732   else
733     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
734 
735   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
736   return Result.first->first();
737 }
738 
739 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
740   return getModule().getNamedValue(Name);
741 }
742 
743 /// AddGlobalCtor - Add a function to the list that will be called before
744 /// main() runs.
745 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
746                                   llvm::Constant *AssociatedData) {
747   // FIXME: Type coercion of void()* types.
748   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
749 }
750 
751 /// AddGlobalDtor - Add a function to the list that will be called
752 /// when the module is unloaded.
753 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
754   // FIXME: Type coercion of void()* types.
755   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
756 }
757 
758 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
759   if (Fns.empty()) return;
760 
761   // Ctor function type is void()*.
762   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
763   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
764 
765   // Get the type of a ctor entry, { i32, void ()*, i8* }.
766   llvm::StructType *CtorStructTy = llvm::StructType::get(
767       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
768 
769   // Construct the constructor and destructor arrays.
770   ConstantInitBuilder builder(*this);
771   auto ctors = builder.beginArray(CtorStructTy);
772   for (const auto &I : Fns) {
773     auto ctor = ctors.beginStruct(CtorStructTy);
774     ctor.addInt(Int32Ty, I.Priority);
775     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
776     if (I.AssociatedData)
777       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
778     else
779       ctor.addNullPointer(VoidPtrTy);
780     ctor.finishAndAddTo(ctors);
781   }
782 
783   auto list =
784     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
785                                 /*constant*/ false,
786                                 llvm::GlobalValue::AppendingLinkage);
787 
788   // The LTO linker doesn't seem to like it when we set an alignment
789   // on appending variables.  Take it off as a workaround.
790   list->setAlignment(0);
791 
792   Fns.clear();
793 }
794 
795 llvm::GlobalValue::LinkageTypes
796 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
797   const auto *D = cast<FunctionDecl>(GD.getDecl());
798 
799   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
800 
801   if (isa<CXXDestructorDecl>(D) &&
802       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
803                                          GD.getDtorType())) {
804     // Destructor variants in the Microsoft C++ ABI are always internal or
805     // linkonce_odr thunks emitted on an as-needed basis.
806     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
807                                    : llvm::GlobalValue::LinkOnceODRLinkage;
808   }
809 
810   if (isa<CXXConstructorDecl>(D) &&
811       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
812       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
813     // Our approach to inheriting constructors is fundamentally different from
814     // that used by the MS ABI, so keep our inheriting constructor thunks
815     // internal rather than trying to pick an unambiguous mangling for them.
816     return llvm::GlobalValue::InternalLinkage;
817   }
818 
819   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
820 }
821 
822 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
823   const auto *FD = cast<FunctionDecl>(GD.getDecl());
824 
825   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
826     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
827       // Don't dllexport/import destructor thunks.
828       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
829       return;
830     }
831   }
832 
833   if (FD->hasAttr<DLLImportAttr>())
834     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
835   else if (FD->hasAttr<DLLExportAttr>())
836     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
837   else
838     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
839 }
840 
841 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
842   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
843   if (!MDS) return nullptr;
844 
845   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
846 }
847 
848 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
849                                                     llvm::Function *F) {
850   setNonAliasAttributes(D, F);
851 }
852 
853 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
854                                               const CGFunctionInfo &Info,
855                                               llvm::Function *F) {
856   unsigned CallingConv;
857   llvm::AttributeList PAL;
858   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
859   F->setAttributes(PAL);
860   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
861 }
862 
863 /// Determines whether the language options require us to model
864 /// unwind exceptions.  We treat -fexceptions as mandating this
865 /// except under the fragile ObjC ABI with only ObjC exceptions
866 /// enabled.  This means, for example, that C with -fexceptions
867 /// enables this.
868 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
869   // If exceptions are completely disabled, obviously this is false.
870   if (!LangOpts.Exceptions) return false;
871 
872   // If C++ exceptions are enabled, this is true.
873   if (LangOpts.CXXExceptions) return true;
874 
875   // If ObjC exceptions are enabled, this depends on the ABI.
876   if (LangOpts.ObjCExceptions) {
877     return LangOpts.ObjCRuntime.hasUnwindExceptions();
878   }
879 
880   return true;
881 }
882 
883 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
884                                                            llvm::Function *F) {
885   llvm::AttrBuilder B;
886 
887   if (CodeGenOpts.UnwindTables)
888     B.addAttribute(llvm::Attribute::UWTable);
889 
890   if (!hasUnwindExceptions(LangOpts))
891     B.addAttribute(llvm::Attribute::NoUnwind);
892 
893   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
894     B.addAttribute(llvm::Attribute::StackProtect);
895   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
896     B.addAttribute(llvm::Attribute::StackProtectStrong);
897   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
898     B.addAttribute(llvm::Attribute::StackProtectReq);
899 
900   if (!D) {
901     // If we don't have a declaration to control inlining, the function isn't
902     // explicitly marked as alwaysinline for semantic reasons, and inlining is
903     // disabled, mark the function as noinline.
904     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
905         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
906       B.addAttribute(llvm::Attribute::NoInline);
907 
908     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
909     return;
910   }
911 
912   // Track whether we need to add the optnone LLVM attribute,
913   // starting with the default for this optimization level.
914   bool ShouldAddOptNone =
915       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
916   // We can't add optnone in the following cases, it won't pass the verifier.
917   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
918   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
919   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
920 
921   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
922     B.addAttribute(llvm::Attribute::OptimizeNone);
923 
924     // OptimizeNone implies noinline; we should not be inlining such functions.
925     B.addAttribute(llvm::Attribute::NoInline);
926     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
927            "OptimizeNone and AlwaysInline on same function!");
928 
929     // We still need to handle naked functions even though optnone subsumes
930     // much of their semantics.
931     if (D->hasAttr<NakedAttr>())
932       B.addAttribute(llvm::Attribute::Naked);
933 
934     // OptimizeNone wins over OptimizeForSize and MinSize.
935     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
936     F->removeFnAttr(llvm::Attribute::MinSize);
937   } else if (D->hasAttr<NakedAttr>()) {
938     // Naked implies noinline: we should not be inlining such functions.
939     B.addAttribute(llvm::Attribute::Naked);
940     B.addAttribute(llvm::Attribute::NoInline);
941   } else if (D->hasAttr<NoDuplicateAttr>()) {
942     B.addAttribute(llvm::Attribute::NoDuplicate);
943   } else if (D->hasAttr<NoInlineAttr>()) {
944     B.addAttribute(llvm::Attribute::NoInline);
945   } else if (D->hasAttr<AlwaysInlineAttr>() &&
946              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
947     // (noinline wins over always_inline, and we can't specify both in IR)
948     B.addAttribute(llvm::Attribute::AlwaysInline);
949   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
950     // If we're not inlining, then force everything that isn't always_inline to
951     // carry an explicit noinline attribute.
952     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
953       B.addAttribute(llvm::Attribute::NoInline);
954   } else {
955     // Otherwise, propagate the inline hint attribute and potentially use its
956     // absence to mark things as noinline.
957     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
958       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
959             return Redecl->isInlineSpecified();
960           })) {
961         B.addAttribute(llvm::Attribute::InlineHint);
962       } else if (CodeGenOpts.getInlining() ==
963                      CodeGenOptions::OnlyHintInlining &&
964                  !FD->isInlined() &&
965                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
966         B.addAttribute(llvm::Attribute::NoInline);
967       }
968     }
969   }
970 
971   // Add other optimization related attributes if we are optimizing this
972   // function.
973   if (!D->hasAttr<OptimizeNoneAttr>()) {
974     if (D->hasAttr<ColdAttr>()) {
975       if (!ShouldAddOptNone)
976         B.addAttribute(llvm::Attribute::OptimizeForSize);
977       B.addAttribute(llvm::Attribute::Cold);
978     }
979 
980     if (D->hasAttr<MinSizeAttr>())
981       B.addAttribute(llvm::Attribute::MinSize);
982   }
983 
984   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
985 
986   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
987   if (alignment)
988     F->setAlignment(alignment);
989 
990   // Some C++ ABIs require 2-byte alignment for member functions, in order to
991   // reserve a bit for differentiating between virtual and non-virtual member
992   // functions. If the current target's C++ ABI requires this and this is a
993   // member function, set its alignment accordingly.
994   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
995     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
996       F->setAlignment(2);
997   }
998 
999   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1000   if (CodeGenOpts.SanitizeCfiCrossDso)
1001     if (auto *FD = dyn_cast<FunctionDecl>(D))
1002       CreateFunctionTypeMetadata(FD, F);
1003 }
1004 
1005 void CodeGenModule::SetCommonAttributes(const Decl *D,
1006                                         llvm::GlobalValue *GV) {
1007   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1008     setGlobalVisibility(GV, ND);
1009   else
1010     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1011 
1012   if (D && D->hasAttr<UsedAttr>())
1013     addUsedGlobal(GV);
1014 }
1015 
1016 void CodeGenModule::setAliasAttributes(const Decl *D,
1017                                        llvm::GlobalValue *GV) {
1018   SetCommonAttributes(D, GV);
1019 
1020   // Process the dllexport attribute based on whether the original definition
1021   // (not necessarily the aliasee) was exported.
1022   if (D->hasAttr<DLLExportAttr>())
1023     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1024 }
1025 
1026 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1027                                           llvm::GlobalObject *GO) {
1028   SetCommonAttributes(D, GO);
1029 
1030   if (D)
1031     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1032       GO->setSection(SA->getName());
1033 
1034   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1035 }
1036 
1037 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1038                                                   llvm::Function *F,
1039                                                   const CGFunctionInfo &FI) {
1040   SetLLVMFunctionAttributes(D, FI, F);
1041   SetLLVMFunctionAttributesForDefinition(D, F);
1042 
1043   F->setLinkage(llvm::Function::InternalLinkage);
1044 
1045   setNonAliasAttributes(D, F);
1046 }
1047 
1048 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1049                                          const NamedDecl *ND) {
1050   // Set linkage and visibility in case we never see a definition.
1051   LinkageInfo LV = ND->getLinkageAndVisibility();
1052   if (LV.getLinkage() != ExternalLinkage) {
1053     // Don't set internal linkage on declarations.
1054   } else {
1055     if (ND->hasAttr<DLLImportAttr>()) {
1056       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1057       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1058     } else if (ND->hasAttr<DLLExportAttr>()) {
1059       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1060     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1061       // "extern_weak" is overloaded in LLVM; we probably should have
1062       // separate linkage types for this.
1063       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1064     }
1065 
1066     // Set visibility on a declaration only if it's explicit.
1067     if (LV.isVisibilityExplicit())
1068       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1069   }
1070 }
1071 
1072 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1073                                                llvm::Function *F) {
1074   // Only if we are checking indirect calls.
1075   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1076     return;
1077 
1078   // Non-static class methods are handled via vtable pointer checks elsewhere.
1079   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1080     return;
1081 
1082   // Additionally, if building with cross-DSO support...
1083   if (CodeGenOpts.SanitizeCfiCrossDso) {
1084     // Skip available_externally functions. They won't be codegen'ed in the
1085     // current module anyway.
1086     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1087       return;
1088   }
1089 
1090   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1091   F->addTypeMetadata(0, MD);
1092 
1093   // Emit a hash-based bit set entry for cross-DSO calls.
1094   if (CodeGenOpts.SanitizeCfiCrossDso)
1095     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1096       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1097 }
1098 
1099 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1100                                           bool IsIncompleteFunction,
1101                                           bool IsThunk) {
1102   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1103     // If this is an intrinsic function, set the function's attributes
1104     // to the intrinsic's attributes.
1105     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1106     return;
1107   }
1108 
1109   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1110 
1111   if (!IsIncompleteFunction)
1112     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1113 
1114   // Add the Returned attribute for "this", except for iOS 5 and earlier
1115   // where substantial code, including the libstdc++ dylib, was compiled with
1116   // GCC and does not actually return "this".
1117   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1118       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1119     assert(!F->arg_empty() &&
1120            F->arg_begin()->getType()
1121              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1122            "unexpected this return");
1123     F->addAttribute(1, llvm::Attribute::Returned);
1124   }
1125 
1126   // Only a few attributes are set on declarations; these may later be
1127   // overridden by a definition.
1128 
1129   setLinkageAndVisibilityForGV(F, FD);
1130 
1131   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1132     F->setSection(SA->getName());
1133 
1134   if (FD->isReplaceableGlobalAllocationFunction()) {
1135     // A replaceable global allocation function does not act like a builtin by
1136     // default, only if it is invoked by a new-expression or delete-expression.
1137     F->addAttribute(llvm::AttributeList::FunctionIndex,
1138                     llvm::Attribute::NoBuiltin);
1139 
1140     // A sane operator new returns a non-aliasing pointer.
1141     // FIXME: Also add NonNull attribute to the return value
1142     // for the non-nothrow forms?
1143     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1144     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1145         (Kind == OO_New || Kind == OO_Array_New))
1146       F->addAttribute(llvm::AttributeList::ReturnIndex,
1147                       llvm::Attribute::NoAlias);
1148   }
1149 
1150   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1151     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1152   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1153     if (MD->isVirtual())
1154       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1155 
1156   // Don't emit entries for function declarations in the cross-DSO mode. This
1157   // is handled with better precision by the receiving DSO.
1158   if (!CodeGenOpts.SanitizeCfiCrossDso)
1159     CreateFunctionTypeMetadata(FD, F);
1160 }
1161 
1162 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1163   assert(!GV->isDeclaration() &&
1164          "Only globals with definition can force usage.");
1165   LLVMUsed.emplace_back(GV);
1166 }
1167 
1168 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1169   assert(!GV->isDeclaration() &&
1170          "Only globals with definition can force usage.");
1171   LLVMCompilerUsed.emplace_back(GV);
1172 }
1173 
1174 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1175                      std::vector<llvm::WeakTrackingVH> &List) {
1176   // Don't create llvm.used if there is no need.
1177   if (List.empty())
1178     return;
1179 
1180   // Convert List to what ConstantArray needs.
1181   SmallVector<llvm::Constant*, 8> UsedArray;
1182   UsedArray.resize(List.size());
1183   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1184     UsedArray[i] =
1185         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1186             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1187   }
1188 
1189   if (UsedArray.empty())
1190     return;
1191   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1192 
1193   auto *GV = new llvm::GlobalVariable(
1194       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1195       llvm::ConstantArray::get(ATy, UsedArray), Name);
1196 
1197   GV->setSection("llvm.metadata");
1198 }
1199 
1200 void CodeGenModule::emitLLVMUsed() {
1201   emitUsed(*this, "llvm.used", LLVMUsed);
1202   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1203 }
1204 
1205 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1206   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1207   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1208 }
1209 
1210 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1211   llvm::SmallString<32> Opt;
1212   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1213   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1214   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1215 }
1216 
1217 void CodeGenModule::AddDependentLib(StringRef Lib) {
1218   llvm::SmallString<24> Opt;
1219   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1220   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1221   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1222 }
1223 
1224 /// \brief Add link options implied by the given module, including modules
1225 /// it depends on, using a postorder walk.
1226 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1227                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1228                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1229   // Import this module's parent.
1230   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1231     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1232   }
1233 
1234   // Import this module's dependencies.
1235   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1236     if (Visited.insert(Mod->Imports[I - 1]).second)
1237       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1238   }
1239 
1240   // Add linker options to link against the libraries/frameworks
1241   // described by this module.
1242   llvm::LLVMContext &Context = CGM.getLLVMContext();
1243   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1244     // Link against a framework.  Frameworks are currently Darwin only, so we
1245     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1246     if (Mod->LinkLibraries[I-1].IsFramework) {
1247       llvm::Metadata *Args[2] = {
1248           llvm::MDString::get(Context, "-framework"),
1249           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1250 
1251       Metadata.push_back(llvm::MDNode::get(Context, Args));
1252       continue;
1253     }
1254 
1255     // Link against a library.
1256     llvm::SmallString<24> Opt;
1257     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1258       Mod->LinkLibraries[I-1].Library, Opt);
1259     auto *OptString = llvm::MDString::get(Context, Opt);
1260     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1261   }
1262 }
1263 
1264 void CodeGenModule::EmitModuleLinkOptions() {
1265   // Collect the set of all of the modules we want to visit to emit link
1266   // options, which is essentially the imported modules and all of their
1267   // non-explicit child modules.
1268   llvm::SetVector<clang::Module *> LinkModules;
1269   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1270   SmallVector<clang::Module *, 16> Stack;
1271 
1272   // Seed the stack with imported modules.
1273   for (Module *M : ImportedModules) {
1274     // Do not add any link flags when an implementation TU of a module imports
1275     // a header of that same module.
1276     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1277         !getLangOpts().isCompilingModule())
1278       continue;
1279     if (Visited.insert(M).second)
1280       Stack.push_back(M);
1281   }
1282 
1283   // Find all of the modules to import, making a little effort to prune
1284   // non-leaf modules.
1285   while (!Stack.empty()) {
1286     clang::Module *Mod = Stack.pop_back_val();
1287 
1288     bool AnyChildren = false;
1289 
1290     // Visit the submodules of this module.
1291     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1292                                         SubEnd = Mod->submodule_end();
1293          Sub != SubEnd; ++Sub) {
1294       // Skip explicit children; they need to be explicitly imported to be
1295       // linked against.
1296       if ((*Sub)->IsExplicit)
1297         continue;
1298 
1299       if (Visited.insert(*Sub).second) {
1300         Stack.push_back(*Sub);
1301         AnyChildren = true;
1302       }
1303     }
1304 
1305     // We didn't find any children, so add this module to the list of
1306     // modules to link against.
1307     if (!AnyChildren) {
1308       LinkModules.insert(Mod);
1309     }
1310   }
1311 
1312   // Add link options for all of the imported modules in reverse topological
1313   // order.  We don't do anything to try to order import link flags with respect
1314   // to linker options inserted by things like #pragma comment().
1315   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1316   Visited.clear();
1317   for (Module *M : LinkModules)
1318     if (Visited.insert(M).second)
1319       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1320   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1321   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1322 
1323   // Add the linker options metadata flag.
1324   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1325                             llvm::MDNode::get(getLLVMContext(),
1326                                               LinkerOptionsMetadata));
1327 }
1328 
1329 void CodeGenModule::EmitDeferred() {
1330   // Emit code for any potentially referenced deferred decls.  Since a
1331   // previously unused static decl may become used during the generation of code
1332   // for a static function, iterate until no changes are made.
1333 
1334   if (!DeferredVTables.empty()) {
1335     EmitDeferredVTables();
1336 
1337     // Emitting a vtable doesn't directly cause more vtables to
1338     // become deferred, although it can cause functions to be
1339     // emitted that then need those vtables.
1340     assert(DeferredVTables.empty());
1341   }
1342 
1343   // Stop if we're out of both deferred vtables and deferred declarations.
1344   if (DeferredDeclsToEmit.empty())
1345     return;
1346 
1347   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1348   // work, it will not interfere with this.
1349   std::vector<GlobalDecl> CurDeclsToEmit;
1350   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1351 
1352   for (GlobalDecl &D : CurDeclsToEmit) {
1353     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1354     // to get GlobalValue with exactly the type we need, not something that
1355     // might had been created for another decl with the same mangled name but
1356     // different type.
1357     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1358         GetAddrOfGlobal(D, ForDefinition));
1359 
1360     // In case of different address spaces, we may still get a cast, even with
1361     // IsForDefinition equal to true. Query mangled names table to get
1362     // GlobalValue.
1363     if (!GV)
1364       GV = GetGlobalValue(getMangledName(D));
1365 
1366     // Make sure GetGlobalValue returned non-null.
1367     assert(GV);
1368 
1369     // Check to see if we've already emitted this.  This is necessary
1370     // for a couple of reasons: first, decls can end up in the
1371     // deferred-decls queue multiple times, and second, decls can end
1372     // up with definitions in unusual ways (e.g. by an extern inline
1373     // function acquiring a strong function redefinition).  Just
1374     // ignore these cases.
1375     if (!GV->isDeclaration())
1376       continue;
1377 
1378     // Otherwise, emit the definition and move on to the next one.
1379     EmitGlobalDefinition(D, GV);
1380 
1381     // If we found out that we need to emit more decls, do that recursively.
1382     // This has the advantage that the decls are emitted in a DFS and related
1383     // ones are close together, which is convenient for testing.
1384     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1385       EmitDeferred();
1386       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1387     }
1388   }
1389 }
1390 
1391 void CodeGenModule::EmitVTablesOpportunistically() {
1392   // Try to emit external vtables as available_externally if they have emitted
1393   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1394   // is not allowed to create new references to things that need to be emitted
1395   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1396 
1397   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1398          && "Only emit opportunistic vtables with optimizations");
1399 
1400   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1401     assert(getVTables().isVTableExternal(RD) &&
1402            "This queue should only contain external vtables");
1403     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1404       VTables.GenerateClassData(RD);
1405   }
1406   OpportunisticVTables.clear();
1407 }
1408 
1409 void CodeGenModule::EmitGlobalAnnotations() {
1410   if (Annotations.empty())
1411     return;
1412 
1413   // Create a new global variable for the ConstantStruct in the Module.
1414   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1415     Annotations[0]->getType(), Annotations.size()), Annotations);
1416   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1417                                       llvm::GlobalValue::AppendingLinkage,
1418                                       Array, "llvm.global.annotations");
1419   gv->setSection(AnnotationSection);
1420 }
1421 
1422 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1423   llvm::Constant *&AStr = AnnotationStrings[Str];
1424   if (AStr)
1425     return AStr;
1426 
1427   // Not found yet, create a new global.
1428   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1429   auto *gv =
1430       new llvm::GlobalVariable(getModule(), s->getType(), true,
1431                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1432   gv->setSection(AnnotationSection);
1433   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1434   AStr = gv;
1435   return gv;
1436 }
1437 
1438 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1439   SourceManager &SM = getContext().getSourceManager();
1440   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1441   if (PLoc.isValid())
1442     return EmitAnnotationString(PLoc.getFilename());
1443   return EmitAnnotationString(SM.getBufferName(Loc));
1444 }
1445 
1446 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1447   SourceManager &SM = getContext().getSourceManager();
1448   PresumedLoc PLoc = SM.getPresumedLoc(L);
1449   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1450     SM.getExpansionLineNumber(L);
1451   return llvm::ConstantInt::get(Int32Ty, LineNo);
1452 }
1453 
1454 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1455                                                 const AnnotateAttr *AA,
1456                                                 SourceLocation L) {
1457   // Get the globals for file name, annotation, and the line number.
1458   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1459                  *UnitGV = EmitAnnotationUnit(L),
1460                  *LineNoCst = EmitAnnotationLineNo(L);
1461 
1462   // Create the ConstantStruct for the global annotation.
1463   llvm::Constant *Fields[4] = {
1464     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1465     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1466     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1467     LineNoCst
1468   };
1469   return llvm::ConstantStruct::getAnon(Fields);
1470 }
1471 
1472 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1473                                          llvm::GlobalValue *GV) {
1474   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1475   // Get the struct elements for these annotations.
1476   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1477     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1478 }
1479 
1480 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1481                                            SourceLocation Loc) const {
1482   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1483   // Blacklist by function name.
1484   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1485     return true;
1486   // Blacklist by location.
1487   if (Loc.isValid())
1488     return SanitizerBL.isBlacklistedLocation(Loc);
1489   // If location is unknown, this may be a compiler-generated function. Assume
1490   // it's located in the main file.
1491   auto &SM = Context.getSourceManager();
1492   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1493     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1494   }
1495   return false;
1496 }
1497 
1498 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1499                                            SourceLocation Loc, QualType Ty,
1500                                            StringRef Category) const {
1501   // For now globals can be blacklisted only in ASan and KASan.
1502   if (!LangOpts.Sanitize.hasOneOf(
1503           SanitizerKind::Address | SanitizerKind::KernelAddress))
1504     return false;
1505   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1506   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1507     return true;
1508   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1509     return true;
1510   // Check global type.
1511   if (!Ty.isNull()) {
1512     // Drill down the array types: if global variable of a fixed type is
1513     // blacklisted, we also don't instrument arrays of them.
1514     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1515       Ty = AT->getElementType();
1516     Ty = Ty.getCanonicalType().getUnqualifiedType();
1517     // We allow to blacklist only record types (classes, structs etc.)
1518     if (Ty->isRecordType()) {
1519       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1520       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1521         return true;
1522     }
1523   }
1524   return false;
1525 }
1526 
1527 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1528                                    StringRef Category) const {
1529   if (!LangOpts.XRayInstrument)
1530     return false;
1531   const auto &XRayFilter = getContext().getXRayFilter();
1532   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1533   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1534   if (Loc.isValid())
1535     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1536   if (Attr == ImbueAttr::NONE)
1537     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1538   switch (Attr) {
1539   case ImbueAttr::NONE:
1540     return false;
1541   case ImbueAttr::ALWAYS:
1542     Fn->addFnAttr("function-instrument", "xray-always");
1543     break;
1544   case ImbueAttr::ALWAYS_ARG1:
1545     Fn->addFnAttr("function-instrument", "xray-always");
1546     Fn->addFnAttr("xray-log-args", "1");
1547     break;
1548   case ImbueAttr::NEVER:
1549     Fn->addFnAttr("function-instrument", "xray-never");
1550     break;
1551   }
1552   return true;
1553 }
1554 
1555 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1556   // Never defer when EmitAllDecls is specified.
1557   if (LangOpts.EmitAllDecls)
1558     return true;
1559 
1560   return getContext().DeclMustBeEmitted(Global);
1561 }
1562 
1563 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1564   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1565     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1566       // Implicit template instantiations may change linkage if they are later
1567       // explicitly instantiated, so they should not be emitted eagerly.
1568       return false;
1569   if (const auto *VD = dyn_cast<VarDecl>(Global))
1570     if (Context.getInlineVariableDefinitionKind(VD) ==
1571         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1572       // A definition of an inline constexpr static data member may change
1573       // linkage later if it's redeclared outside the class.
1574       return false;
1575   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1576   // codegen for global variables, because they may be marked as threadprivate.
1577   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1578       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1579     return false;
1580 
1581   return true;
1582 }
1583 
1584 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1585     const CXXUuidofExpr* E) {
1586   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1587   // well-formed.
1588   StringRef Uuid = E->getUuidStr();
1589   std::string Name = "_GUID_" + Uuid.lower();
1590   std::replace(Name.begin(), Name.end(), '-', '_');
1591 
1592   // The UUID descriptor should be pointer aligned.
1593   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1594 
1595   // Look for an existing global.
1596   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1597     return ConstantAddress(GV, Alignment);
1598 
1599   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1600   assert(Init && "failed to initialize as constant");
1601 
1602   auto *GV = new llvm::GlobalVariable(
1603       getModule(), Init->getType(),
1604       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1605   if (supportsCOMDAT())
1606     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1607   return ConstantAddress(GV, Alignment);
1608 }
1609 
1610 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1611   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1612   assert(AA && "No alias?");
1613 
1614   CharUnits Alignment = getContext().getDeclAlign(VD);
1615   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1616 
1617   // See if there is already something with the target's name in the module.
1618   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1619   if (Entry) {
1620     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1621     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1622     return ConstantAddress(Ptr, Alignment);
1623   }
1624 
1625   llvm::Constant *Aliasee;
1626   if (isa<llvm::FunctionType>(DeclTy))
1627     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1628                                       GlobalDecl(cast<FunctionDecl>(VD)),
1629                                       /*ForVTable=*/false);
1630   else
1631     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1632                                     llvm::PointerType::getUnqual(DeclTy),
1633                                     nullptr);
1634 
1635   auto *F = cast<llvm::GlobalValue>(Aliasee);
1636   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1637   WeakRefReferences.insert(F);
1638 
1639   return ConstantAddress(Aliasee, Alignment);
1640 }
1641 
1642 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1643   const auto *Global = cast<ValueDecl>(GD.getDecl());
1644 
1645   // Weak references don't produce any output by themselves.
1646   if (Global->hasAttr<WeakRefAttr>())
1647     return;
1648 
1649   // If this is an alias definition (which otherwise looks like a declaration)
1650   // emit it now.
1651   if (Global->hasAttr<AliasAttr>())
1652     return EmitAliasDefinition(GD);
1653 
1654   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1655   if (Global->hasAttr<IFuncAttr>())
1656     return emitIFuncDefinition(GD);
1657 
1658   // If this is CUDA, be selective about which declarations we emit.
1659   if (LangOpts.CUDA) {
1660     if (LangOpts.CUDAIsDevice) {
1661       if (!Global->hasAttr<CUDADeviceAttr>() &&
1662           !Global->hasAttr<CUDAGlobalAttr>() &&
1663           !Global->hasAttr<CUDAConstantAttr>() &&
1664           !Global->hasAttr<CUDASharedAttr>())
1665         return;
1666     } else {
1667       // We need to emit host-side 'shadows' for all global
1668       // device-side variables because the CUDA runtime needs their
1669       // size and host-side address in order to provide access to
1670       // their device-side incarnations.
1671 
1672       // So device-only functions are the only things we skip.
1673       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1674           Global->hasAttr<CUDADeviceAttr>())
1675         return;
1676 
1677       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1678              "Expected Variable or Function");
1679     }
1680   }
1681 
1682   if (LangOpts.OpenMP) {
1683     // If this is OpenMP device, check if it is legal to emit this global
1684     // normally.
1685     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1686       return;
1687     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1688       if (MustBeEmitted(Global))
1689         EmitOMPDeclareReduction(DRD);
1690       return;
1691     }
1692   }
1693 
1694   // Ignore declarations, they will be emitted on their first use.
1695   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1696     // Forward declarations are emitted lazily on first use.
1697     if (!FD->doesThisDeclarationHaveABody()) {
1698       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1699         return;
1700 
1701       StringRef MangledName = getMangledName(GD);
1702 
1703       // Compute the function info and LLVM type.
1704       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1705       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1706 
1707       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1708                               /*DontDefer=*/false);
1709       return;
1710     }
1711   } else {
1712     const auto *VD = cast<VarDecl>(Global);
1713     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1714     // We need to emit device-side global CUDA variables even if a
1715     // variable does not have a definition -- we still need to define
1716     // host-side shadow for it.
1717     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1718                            !VD->hasDefinition() &&
1719                            (VD->hasAttr<CUDAConstantAttr>() ||
1720                             VD->hasAttr<CUDADeviceAttr>());
1721     if (!MustEmitForCuda &&
1722         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1723         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1724       // If this declaration may have caused an inline variable definition to
1725       // change linkage, make sure that it's emitted.
1726       if (Context.getInlineVariableDefinitionKind(VD) ==
1727           ASTContext::InlineVariableDefinitionKind::Strong)
1728         GetAddrOfGlobalVar(VD);
1729       return;
1730     }
1731   }
1732 
1733   // Defer code generation to first use when possible, e.g. if this is an inline
1734   // function. If the global must always be emitted, do it eagerly if possible
1735   // to benefit from cache locality.
1736   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1737     // Emit the definition if it can't be deferred.
1738     EmitGlobalDefinition(GD);
1739     return;
1740   }
1741 
1742   // If we're deferring emission of a C++ variable with an
1743   // initializer, remember the order in which it appeared in the file.
1744   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1745       cast<VarDecl>(Global)->hasInit()) {
1746     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1747     CXXGlobalInits.push_back(nullptr);
1748   }
1749 
1750   StringRef MangledName = getMangledName(GD);
1751   if (GetGlobalValue(MangledName) != nullptr) {
1752     // The value has already been used and should therefore be emitted.
1753     addDeferredDeclToEmit(GD);
1754   } else if (MustBeEmitted(Global)) {
1755     // The value must be emitted, but cannot be emitted eagerly.
1756     assert(!MayBeEmittedEagerly(Global));
1757     addDeferredDeclToEmit(GD);
1758   } else {
1759     // Otherwise, remember that we saw a deferred decl with this name.  The
1760     // first use of the mangled name will cause it to move into
1761     // DeferredDeclsToEmit.
1762     DeferredDecls[MangledName] = GD;
1763   }
1764 }
1765 
1766 // Check if T is a class type with a destructor that's not dllimport.
1767 static bool HasNonDllImportDtor(QualType T) {
1768   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1769     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1770       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1771         return true;
1772 
1773   return false;
1774 }
1775 
1776 namespace {
1777   struct FunctionIsDirectlyRecursive :
1778     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1779     const StringRef Name;
1780     const Builtin::Context &BI;
1781     bool Result;
1782     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1783       Name(N), BI(C), Result(false) {
1784     }
1785     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1786 
1787     bool TraverseCallExpr(CallExpr *E) {
1788       const FunctionDecl *FD = E->getDirectCallee();
1789       if (!FD)
1790         return true;
1791       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1792       if (Attr && Name == Attr->getLabel()) {
1793         Result = true;
1794         return false;
1795       }
1796       unsigned BuiltinID = FD->getBuiltinID();
1797       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1798         return true;
1799       StringRef BuiltinName = BI.getName(BuiltinID);
1800       if (BuiltinName.startswith("__builtin_") &&
1801           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1802         Result = true;
1803         return false;
1804       }
1805       return true;
1806     }
1807   };
1808 
1809   // Make sure we're not referencing non-imported vars or functions.
1810   struct DLLImportFunctionVisitor
1811       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1812     bool SafeToInline = true;
1813 
1814     bool shouldVisitImplicitCode() const { return true; }
1815 
1816     bool VisitVarDecl(VarDecl *VD) {
1817       if (VD->getTLSKind()) {
1818         // A thread-local variable cannot be imported.
1819         SafeToInline = false;
1820         return SafeToInline;
1821       }
1822 
1823       // A variable definition might imply a destructor call.
1824       if (VD->isThisDeclarationADefinition())
1825         SafeToInline = !HasNonDllImportDtor(VD->getType());
1826 
1827       return SafeToInline;
1828     }
1829 
1830     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1831       if (const auto *D = E->getTemporary()->getDestructor())
1832         SafeToInline = D->hasAttr<DLLImportAttr>();
1833       return SafeToInline;
1834     }
1835 
1836     bool VisitDeclRefExpr(DeclRefExpr *E) {
1837       ValueDecl *VD = E->getDecl();
1838       if (isa<FunctionDecl>(VD))
1839         SafeToInline = VD->hasAttr<DLLImportAttr>();
1840       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1841         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1842       return SafeToInline;
1843     }
1844 
1845     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1846       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1847       return SafeToInline;
1848     }
1849 
1850     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1851       CXXMethodDecl *M = E->getMethodDecl();
1852       if (!M) {
1853         // Call through a pointer to member function. This is safe to inline.
1854         SafeToInline = true;
1855       } else {
1856         SafeToInline = M->hasAttr<DLLImportAttr>();
1857       }
1858       return SafeToInline;
1859     }
1860 
1861     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1862       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1863       return SafeToInline;
1864     }
1865 
1866     bool VisitCXXNewExpr(CXXNewExpr *E) {
1867       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1868       return SafeToInline;
1869     }
1870   };
1871 }
1872 
1873 // isTriviallyRecursive - Check if this function calls another
1874 // decl that, because of the asm attribute or the other decl being a builtin,
1875 // ends up pointing to itself.
1876 bool
1877 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1878   StringRef Name;
1879   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1880     // asm labels are a special kind of mangling we have to support.
1881     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1882     if (!Attr)
1883       return false;
1884     Name = Attr->getLabel();
1885   } else {
1886     Name = FD->getName();
1887   }
1888 
1889   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1890   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1891   return Walker.Result;
1892 }
1893 
1894 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1895   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1896     return true;
1897   const auto *F = cast<FunctionDecl>(GD.getDecl());
1898   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1899     return false;
1900 
1901   if (F->hasAttr<DLLImportAttr>()) {
1902     // Check whether it would be safe to inline this dllimport function.
1903     DLLImportFunctionVisitor Visitor;
1904     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1905     if (!Visitor.SafeToInline)
1906       return false;
1907 
1908     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1909       // Implicit destructor invocations aren't captured in the AST, so the
1910       // check above can't see them. Check for them manually here.
1911       for (const Decl *Member : Dtor->getParent()->decls())
1912         if (isa<FieldDecl>(Member))
1913           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1914             return false;
1915       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1916         if (HasNonDllImportDtor(B.getType()))
1917           return false;
1918     }
1919   }
1920 
1921   // PR9614. Avoid cases where the source code is lying to us. An available
1922   // externally function should have an equivalent function somewhere else,
1923   // but a function that calls itself is clearly not equivalent to the real
1924   // implementation.
1925   // This happens in glibc's btowc and in some configure checks.
1926   return !isTriviallyRecursive(F);
1927 }
1928 
1929 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
1930   return CodeGenOpts.OptimizationLevel > 0;
1931 }
1932 
1933 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1934   const auto *D = cast<ValueDecl>(GD.getDecl());
1935 
1936   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1937                                  Context.getSourceManager(),
1938                                  "Generating code for declaration");
1939 
1940   if (isa<FunctionDecl>(D)) {
1941     // At -O0, don't generate IR for functions with available_externally
1942     // linkage.
1943     if (!shouldEmitFunction(GD))
1944       return;
1945 
1946     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1947       // Make sure to emit the definition(s) before we emit the thunks.
1948       // This is necessary for the generation of certain thunks.
1949       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1950         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1951       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1952         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1953       else
1954         EmitGlobalFunctionDefinition(GD, GV);
1955 
1956       if (Method->isVirtual())
1957         getVTables().EmitThunks(GD);
1958 
1959       return;
1960     }
1961 
1962     return EmitGlobalFunctionDefinition(GD, GV);
1963   }
1964 
1965   if (const auto *VD = dyn_cast<VarDecl>(D))
1966     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1967 
1968   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1969 }
1970 
1971 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1972                                                       llvm::Function *NewFn);
1973 
1974 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1975 /// module, create and return an llvm Function with the specified type. If there
1976 /// is something in the module with the specified name, return it potentially
1977 /// bitcasted to the right type.
1978 ///
1979 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1980 /// to set the attributes on the function when it is first created.
1981 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1982     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1983     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1984     ForDefinition_t IsForDefinition) {
1985   const Decl *D = GD.getDecl();
1986 
1987   // Lookup the entry, lazily creating it if necessary.
1988   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1989   if (Entry) {
1990     if (WeakRefReferences.erase(Entry)) {
1991       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1992       if (FD && !FD->hasAttr<WeakAttr>())
1993         Entry->setLinkage(llvm::Function::ExternalLinkage);
1994     }
1995 
1996     // Handle dropped DLL attributes.
1997     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1998       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1999 
2000     // If there are two attempts to define the same mangled name, issue an
2001     // error.
2002     if (IsForDefinition && !Entry->isDeclaration()) {
2003       GlobalDecl OtherGD;
2004       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2005       // to make sure that we issue an error only once.
2006       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2007           (GD.getCanonicalDecl().getDecl() !=
2008            OtherGD.getCanonicalDecl().getDecl()) &&
2009           DiagnosedConflictingDefinitions.insert(GD).second) {
2010         getDiags().Report(D->getLocation(),
2011                           diag::err_duplicate_mangled_name);
2012         getDiags().Report(OtherGD.getDecl()->getLocation(),
2013                           diag::note_previous_definition);
2014       }
2015     }
2016 
2017     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2018         (Entry->getType()->getElementType() == Ty)) {
2019       return Entry;
2020     }
2021 
2022     // Make sure the result is of the correct type.
2023     // (If function is requested for a definition, we always need to create a new
2024     // function, not just return a bitcast.)
2025     if (!IsForDefinition)
2026       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2027   }
2028 
2029   // This function doesn't have a complete type (for example, the return
2030   // type is an incomplete struct). Use a fake type instead, and make
2031   // sure not to try to set attributes.
2032   bool IsIncompleteFunction = false;
2033 
2034   llvm::FunctionType *FTy;
2035   if (isa<llvm::FunctionType>(Ty)) {
2036     FTy = cast<llvm::FunctionType>(Ty);
2037   } else {
2038     FTy = llvm::FunctionType::get(VoidTy, false);
2039     IsIncompleteFunction = true;
2040   }
2041 
2042   llvm::Function *F =
2043       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2044                              Entry ? StringRef() : MangledName, &getModule());
2045 
2046   // If we already created a function with the same mangled name (but different
2047   // type) before, take its name and add it to the list of functions to be
2048   // replaced with F at the end of CodeGen.
2049   //
2050   // This happens if there is a prototype for a function (e.g. "int f()") and
2051   // then a definition of a different type (e.g. "int f(int x)").
2052   if (Entry) {
2053     F->takeName(Entry);
2054 
2055     // This might be an implementation of a function without a prototype, in
2056     // which case, try to do special replacement of calls which match the new
2057     // prototype.  The really key thing here is that we also potentially drop
2058     // arguments from the call site so as to make a direct call, which makes the
2059     // inliner happier and suppresses a number of optimizer warnings (!) about
2060     // dropping arguments.
2061     if (!Entry->use_empty()) {
2062       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2063       Entry->removeDeadConstantUsers();
2064     }
2065 
2066     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2067         F, Entry->getType()->getElementType()->getPointerTo());
2068     addGlobalValReplacement(Entry, BC);
2069   }
2070 
2071   assert(F->getName() == MangledName && "name was uniqued!");
2072   if (D)
2073     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2074   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2075     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2076     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2077   }
2078 
2079   if (!DontDefer) {
2080     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2081     // each other bottoming out with the base dtor.  Therefore we emit non-base
2082     // dtors on usage, even if there is no dtor definition in the TU.
2083     if (D && isa<CXXDestructorDecl>(D) &&
2084         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2085                                            GD.getDtorType()))
2086       addDeferredDeclToEmit(GD);
2087 
2088     // This is the first use or definition of a mangled name.  If there is a
2089     // deferred decl with this name, remember that we need to emit it at the end
2090     // of the file.
2091     auto DDI = DeferredDecls.find(MangledName);
2092     if (DDI != DeferredDecls.end()) {
2093       // Move the potentially referenced deferred decl to the
2094       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2095       // don't need it anymore).
2096       addDeferredDeclToEmit(DDI->second);
2097       DeferredDecls.erase(DDI);
2098 
2099       // Otherwise, there are cases we have to worry about where we're
2100       // using a declaration for which we must emit a definition but where
2101       // we might not find a top-level definition:
2102       //   - member functions defined inline in their classes
2103       //   - friend functions defined inline in some class
2104       //   - special member functions with implicit definitions
2105       // If we ever change our AST traversal to walk into class methods,
2106       // this will be unnecessary.
2107       //
2108       // We also don't emit a definition for a function if it's going to be an
2109       // entry in a vtable, unless it's already marked as used.
2110     } else if (getLangOpts().CPlusPlus && D) {
2111       // Look for a declaration that's lexically in a record.
2112       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2113            FD = FD->getPreviousDecl()) {
2114         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2115           if (FD->doesThisDeclarationHaveABody()) {
2116             addDeferredDeclToEmit(GD.getWithDecl(FD));
2117             break;
2118           }
2119         }
2120       }
2121     }
2122   }
2123 
2124   // Make sure the result is of the requested type.
2125   if (!IsIncompleteFunction) {
2126     assert(F->getType()->getElementType() == Ty);
2127     return F;
2128   }
2129 
2130   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2131   return llvm::ConstantExpr::getBitCast(F, PTy);
2132 }
2133 
2134 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2135 /// non-null, then this function will use the specified type if it has to
2136 /// create it (this occurs when we see a definition of the function).
2137 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2138                                                  llvm::Type *Ty,
2139                                                  bool ForVTable,
2140                                                  bool DontDefer,
2141                                               ForDefinition_t IsForDefinition) {
2142   // If there was no specific requested type, just convert it now.
2143   if (!Ty) {
2144     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2145     auto CanonTy = Context.getCanonicalType(FD->getType());
2146     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2147   }
2148 
2149   StringRef MangledName = getMangledName(GD);
2150   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2151                                  /*IsThunk=*/false, llvm::AttributeList(),
2152                                  IsForDefinition);
2153 }
2154 
2155 static const FunctionDecl *
2156 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2157   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2158   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2159 
2160   IdentifierInfo &CII = C.Idents.get(Name);
2161   for (const auto &Result : DC->lookup(&CII))
2162     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2163       return FD;
2164 
2165   if (!C.getLangOpts().CPlusPlus)
2166     return nullptr;
2167 
2168   // Demangle the premangled name from getTerminateFn()
2169   IdentifierInfo &CXXII =
2170       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2171           ? C.Idents.get("terminate")
2172           : C.Idents.get(Name);
2173 
2174   for (const auto &N : {"__cxxabiv1", "std"}) {
2175     IdentifierInfo &NS = C.Idents.get(N);
2176     for (const auto &Result : DC->lookup(&NS)) {
2177       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2178       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2179         for (const auto &Result : LSD->lookup(&NS))
2180           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2181             break;
2182 
2183       if (ND)
2184         for (const auto &Result : ND->lookup(&CXXII))
2185           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2186             return FD;
2187     }
2188   }
2189 
2190   return nullptr;
2191 }
2192 
2193 /// CreateRuntimeFunction - Create a new runtime function with the specified
2194 /// type and name.
2195 llvm::Constant *
2196 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2197                                      llvm::AttributeList ExtraAttrs,
2198                                      bool Local) {
2199   llvm::Constant *C =
2200       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2201                               /*DontDefer=*/false, /*IsThunk=*/false,
2202                               ExtraAttrs);
2203 
2204   if (auto *F = dyn_cast<llvm::Function>(C)) {
2205     if (F->empty()) {
2206       F->setCallingConv(getRuntimeCC());
2207 
2208       if (!Local && getTriple().isOSBinFormatCOFF() &&
2209           !getCodeGenOpts().LTOVisibilityPublicStd) {
2210         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2211         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2212           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2213           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2214         }
2215       }
2216     }
2217   }
2218 
2219   return C;
2220 }
2221 
2222 /// CreateBuiltinFunction - Create a new builtin function with the specified
2223 /// type and name.
2224 llvm::Constant *
2225 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2226                                      llvm::AttributeList ExtraAttrs) {
2227   llvm::Constant *C =
2228       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2229                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2230   if (auto *F = dyn_cast<llvm::Function>(C))
2231     if (F->empty())
2232       F->setCallingConv(getBuiltinCC());
2233   return C;
2234 }
2235 
2236 /// isTypeConstant - Determine whether an object of this type can be emitted
2237 /// as a constant.
2238 ///
2239 /// If ExcludeCtor is true, the duration when the object's constructor runs
2240 /// will not be considered. The caller will need to verify that the object is
2241 /// not written to during its construction.
2242 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2243   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2244     return false;
2245 
2246   if (Context.getLangOpts().CPlusPlus) {
2247     if (const CXXRecordDecl *Record
2248           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2249       return ExcludeCtor && !Record->hasMutableFields() &&
2250              Record->hasTrivialDestructor();
2251   }
2252 
2253   return true;
2254 }
2255 
2256 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2257 /// create and return an llvm GlobalVariable with the specified type.  If there
2258 /// is something in the module with the specified name, return it potentially
2259 /// bitcasted to the right type.
2260 ///
2261 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2262 /// to set the attributes on the global when it is first created.
2263 ///
2264 /// If IsForDefinition is true, it is guranteed that an actual global with
2265 /// type Ty will be returned, not conversion of a variable with the same
2266 /// mangled name but some other type.
2267 llvm::Constant *
2268 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2269                                      llvm::PointerType *Ty,
2270                                      const VarDecl *D,
2271                                      ForDefinition_t IsForDefinition) {
2272   // Lookup the entry, lazily creating it if necessary.
2273   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2274   if (Entry) {
2275     if (WeakRefReferences.erase(Entry)) {
2276       if (D && !D->hasAttr<WeakAttr>())
2277         Entry->setLinkage(llvm::Function::ExternalLinkage);
2278     }
2279 
2280     // Handle dropped DLL attributes.
2281     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2282       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2283 
2284     if (Entry->getType() == Ty)
2285       return Entry;
2286 
2287     // If there are two attempts to define the same mangled name, issue an
2288     // error.
2289     if (IsForDefinition && !Entry->isDeclaration()) {
2290       GlobalDecl OtherGD;
2291       const VarDecl *OtherD;
2292 
2293       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2294       // to make sure that we issue an error only once.
2295       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2296           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2297           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2298           OtherD->hasInit() &&
2299           DiagnosedConflictingDefinitions.insert(D).second) {
2300         getDiags().Report(D->getLocation(),
2301                           diag::err_duplicate_mangled_name);
2302         getDiags().Report(OtherGD.getDecl()->getLocation(),
2303                           diag::note_previous_definition);
2304       }
2305     }
2306 
2307     // Make sure the result is of the correct type.
2308     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2309       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2310 
2311     // (If global is requested for a definition, we always need to create a new
2312     // global, not just return a bitcast.)
2313     if (!IsForDefinition)
2314       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2315   }
2316 
2317   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2318   auto *GV = new llvm::GlobalVariable(
2319       getModule(), Ty->getElementType(), false,
2320       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2321       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2322 
2323   // If we already created a global with the same mangled name (but different
2324   // type) before, take its name and remove it from its parent.
2325   if (Entry) {
2326     GV->takeName(Entry);
2327 
2328     if (!Entry->use_empty()) {
2329       llvm::Constant *NewPtrForOldDecl =
2330           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2331       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2332     }
2333 
2334     Entry->eraseFromParent();
2335   }
2336 
2337   // This is the first use or definition of a mangled name.  If there is a
2338   // deferred decl with this name, remember that we need to emit it at the end
2339   // of the file.
2340   auto DDI = DeferredDecls.find(MangledName);
2341   if (DDI != DeferredDecls.end()) {
2342     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2343     // list, and remove it from DeferredDecls (since we don't need it anymore).
2344     addDeferredDeclToEmit(DDI->second);
2345     DeferredDecls.erase(DDI);
2346   }
2347 
2348   // Handle things which are present even on external declarations.
2349   if (D) {
2350     // FIXME: This code is overly simple and should be merged with other global
2351     // handling.
2352     GV->setConstant(isTypeConstant(D->getType(), false));
2353 
2354     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2355 
2356     setLinkageAndVisibilityForGV(GV, D);
2357 
2358     if (D->getTLSKind()) {
2359       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2360         CXXThreadLocals.push_back(D);
2361       setTLSMode(GV, *D);
2362     }
2363 
2364     // If required by the ABI, treat declarations of static data members with
2365     // inline initializers as definitions.
2366     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2367       EmitGlobalVarDefinition(D);
2368     }
2369 
2370     // Handle XCore specific ABI requirements.
2371     if (getTriple().getArch() == llvm::Triple::xcore &&
2372         D->getLanguageLinkage() == CLanguageLinkage &&
2373         D->getType().isConstant(Context) &&
2374         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2375       GV->setSection(".cp.rodata");
2376   }
2377 
2378   if (AddrSpace != Ty->getAddressSpace())
2379     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2380 
2381   return GV;
2382 }
2383 
2384 llvm::Constant *
2385 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2386                                ForDefinition_t IsForDefinition) {
2387   const Decl *D = GD.getDecl();
2388   if (isa<CXXConstructorDecl>(D))
2389     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2390                                 getFromCtorType(GD.getCtorType()),
2391                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2392                                 /*DontDefer=*/false, IsForDefinition);
2393   else if (isa<CXXDestructorDecl>(D))
2394     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2395                                 getFromDtorType(GD.getDtorType()),
2396                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2397                                 /*DontDefer=*/false, IsForDefinition);
2398   else if (isa<CXXMethodDecl>(D)) {
2399     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2400         cast<CXXMethodDecl>(D));
2401     auto Ty = getTypes().GetFunctionType(*FInfo);
2402     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2403                              IsForDefinition);
2404   } else if (isa<FunctionDecl>(D)) {
2405     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2406     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2407     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2408                              IsForDefinition);
2409   } else
2410     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2411                               IsForDefinition);
2412 }
2413 
2414 llvm::GlobalVariable *
2415 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2416                                       llvm::Type *Ty,
2417                                       llvm::GlobalValue::LinkageTypes Linkage) {
2418   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2419   llvm::GlobalVariable *OldGV = nullptr;
2420 
2421   if (GV) {
2422     // Check if the variable has the right type.
2423     if (GV->getType()->getElementType() == Ty)
2424       return GV;
2425 
2426     // Because C++ name mangling, the only way we can end up with an already
2427     // existing global with the same name is if it has been declared extern "C".
2428     assert(GV->isDeclaration() && "Declaration has wrong type!");
2429     OldGV = GV;
2430   }
2431 
2432   // Create a new variable.
2433   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2434                                 Linkage, nullptr, Name);
2435 
2436   if (OldGV) {
2437     // Replace occurrences of the old variable if needed.
2438     GV->takeName(OldGV);
2439 
2440     if (!OldGV->use_empty()) {
2441       llvm::Constant *NewPtrForOldDecl =
2442       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2443       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2444     }
2445 
2446     OldGV->eraseFromParent();
2447   }
2448 
2449   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2450       !GV->hasAvailableExternallyLinkage())
2451     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2452 
2453   return GV;
2454 }
2455 
2456 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2457 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2458 /// then it will be created with the specified type instead of whatever the
2459 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2460 /// that an actual global with type Ty will be returned, not conversion of a
2461 /// variable with the same mangled name but some other type.
2462 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2463                                                   llvm::Type *Ty,
2464                                            ForDefinition_t IsForDefinition) {
2465   assert(D->hasGlobalStorage() && "Not a global variable");
2466   QualType ASTTy = D->getType();
2467   if (!Ty)
2468     Ty = getTypes().ConvertTypeForMem(ASTTy);
2469 
2470   llvm::PointerType *PTy =
2471     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2472 
2473   StringRef MangledName = getMangledName(D);
2474   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2475 }
2476 
2477 /// CreateRuntimeVariable - Create a new runtime global variable with the
2478 /// specified type and name.
2479 llvm::Constant *
2480 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2481                                      StringRef Name) {
2482   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2483 }
2484 
2485 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2486   assert(!D->getInit() && "Cannot emit definite definitions here!");
2487 
2488   StringRef MangledName = getMangledName(D);
2489   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2490 
2491   // We already have a definition, not declaration, with the same mangled name.
2492   // Emitting of declaration is not required (and actually overwrites emitted
2493   // definition).
2494   if (GV && !GV->isDeclaration())
2495     return;
2496 
2497   // If we have not seen a reference to this variable yet, place it into the
2498   // deferred declarations table to be emitted if needed later.
2499   if (!MustBeEmitted(D) && !GV) {
2500       DeferredDecls[MangledName] = D;
2501       return;
2502   }
2503 
2504   // The tentative definition is the only definition.
2505   EmitGlobalVarDefinition(D);
2506 }
2507 
2508 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2509   return Context.toCharUnitsFromBits(
2510       getDataLayout().getTypeStoreSizeInBits(Ty));
2511 }
2512 
2513 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2514                                                  unsigned AddrSpace) {
2515   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2516     if (D->hasAttr<CUDAConstantAttr>())
2517       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2518     else if (D->hasAttr<CUDASharedAttr>())
2519       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2520     else
2521       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2522   }
2523 
2524   return AddrSpace;
2525 }
2526 
2527 template<typename SomeDecl>
2528 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2529                                                llvm::GlobalValue *GV) {
2530   if (!getLangOpts().CPlusPlus)
2531     return;
2532 
2533   // Must have 'used' attribute, or else inline assembly can't rely on
2534   // the name existing.
2535   if (!D->template hasAttr<UsedAttr>())
2536     return;
2537 
2538   // Must have internal linkage and an ordinary name.
2539   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2540     return;
2541 
2542   // Must be in an extern "C" context. Entities declared directly within
2543   // a record are not extern "C" even if the record is in such a context.
2544   const SomeDecl *First = D->getFirstDecl();
2545   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2546     return;
2547 
2548   // OK, this is an internal linkage entity inside an extern "C" linkage
2549   // specification. Make a note of that so we can give it the "expected"
2550   // mangled name if nothing else is using that name.
2551   std::pair<StaticExternCMap::iterator, bool> R =
2552       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2553 
2554   // If we have multiple internal linkage entities with the same name
2555   // in extern "C" regions, none of them gets that name.
2556   if (!R.second)
2557     R.first->second = nullptr;
2558 }
2559 
2560 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2561   if (!CGM.supportsCOMDAT())
2562     return false;
2563 
2564   if (D.hasAttr<SelectAnyAttr>())
2565     return true;
2566 
2567   GVALinkage Linkage;
2568   if (auto *VD = dyn_cast<VarDecl>(&D))
2569     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2570   else
2571     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2572 
2573   switch (Linkage) {
2574   case GVA_Internal:
2575   case GVA_AvailableExternally:
2576   case GVA_StrongExternal:
2577     return false;
2578   case GVA_DiscardableODR:
2579   case GVA_StrongODR:
2580     return true;
2581   }
2582   llvm_unreachable("No such linkage");
2583 }
2584 
2585 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2586                                           llvm::GlobalObject &GO) {
2587   if (!shouldBeInCOMDAT(*this, D))
2588     return;
2589   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2590 }
2591 
2592 /// Pass IsTentative as true if you want to create a tentative definition.
2593 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2594                                             bool IsTentative) {
2595   // OpenCL global variables of sampler type are translated to function calls,
2596   // therefore no need to be translated.
2597   QualType ASTTy = D->getType();
2598   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2599     return;
2600 
2601   llvm::Constant *Init = nullptr;
2602   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2603   bool NeedsGlobalCtor = false;
2604   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2605 
2606   const VarDecl *InitDecl;
2607   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2608 
2609   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2610   // as part of their declaration."  Sema has already checked for
2611   // error cases, so we just need to set Init to UndefValue.
2612   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2613       D->hasAttr<CUDASharedAttr>())
2614     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2615   else if (!InitExpr) {
2616     // This is a tentative definition; tentative definitions are
2617     // implicitly initialized with { 0 }.
2618     //
2619     // Note that tentative definitions are only emitted at the end of
2620     // a translation unit, so they should never have incomplete
2621     // type. In addition, EmitTentativeDefinition makes sure that we
2622     // never attempt to emit a tentative definition if a real one
2623     // exists. A use may still exists, however, so we still may need
2624     // to do a RAUW.
2625     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2626     Init = EmitNullConstant(D->getType());
2627   } else {
2628     initializedGlobalDecl = GlobalDecl(D);
2629     Init = EmitConstantInit(*InitDecl);
2630 
2631     if (!Init) {
2632       QualType T = InitExpr->getType();
2633       if (D->getType()->isReferenceType())
2634         T = D->getType();
2635 
2636       if (getLangOpts().CPlusPlus) {
2637         Init = EmitNullConstant(T);
2638         NeedsGlobalCtor = true;
2639       } else {
2640         ErrorUnsupported(D, "static initializer");
2641         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2642       }
2643     } else {
2644       // We don't need an initializer, so remove the entry for the delayed
2645       // initializer position (just in case this entry was delayed) if we
2646       // also don't need to register a destructor.
2647       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2648         DelayedCXXInitPosition.erase(D);
2649     }
2650   }
2651 
2652   llvm::Type* InitType = Init->getType();
2653   llvm::Constant *Entry =
2654       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2655 
2656   // Strip off a bitcast if we got one back.
2657   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2658     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2659            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2660            // All zero index gep.
2661            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2662     Entry = CE->getOperand(0);
2663   }
2664 
2665   // Entry is now either a Function or GlobalVariable.
2666   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2667 
2668   // We have a definition after a declaration with the wrong type.
2669   // We must make a new GlobalVariable* and update everything that used OldGV
2670   // (a declaration or tentative definition) with the new GlobalVariable*
2671   // (which will be a definition).
2672   //
2673   // This happens if there is a prototype for a global (e.g.
2674   // "extern int x[];") and then a definition of a different type (e.g.
2675   // "int x[10];"). This also happens when an initializer has a different type
2676   // from the type of the global (this happens with unions).
2677   if (!GV ||
2678       GV->getType()->getElementType() != InitType ||
2679       GV->getType()->getAddressSpace() !=
2680        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2681 
2682     // Move the old entry aside so that we'll create a new one.
2683     Entry->setName(StringRef());
2684 
2685     // Make a new global with the correct type, this is now guaranteed to work.
2686     GV = cast<llvm::GlobalVariable>(
2687         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2688 
2689     // Replace all uses of the old global with the new global
2690     llvm::Constant *NewPtrForOldDecl =
2691         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2692     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2693 
2694     // Erase the old global, since it is no longer used.
2695     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2696   }
2697 
2698   MaybeHandleStaticInExternC(D, GV);
2699 
2700   if (D->hasAttr<AnnotateAttr>())
2701     AddGlobalAnnotations(D, GV);
2702 
2703   // Set the llvm linkage type as appropriate.
2704   llvm::GlobalValue::LinkageTypes Linkage =
2705       getLLVMLinkageVarDefinition(D, GV->isConstant());
2706 
2707   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2708   // the device. [...]"
2709   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2710   // __device__, declares a variable that: [...]
2711   // Is accessible from all the threads within the grid and from the host
2712   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2713   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2714   if (GV && LangOpts.CUDA) {
2715     if (LangOpts.CUDAIsDevice) {
2716       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2717         GV->setExternallyInitialized(true);
2718     } else {
2719       // Host-side shadows of external declarations of device-side
2720       // global variables become internal definitions. These have to
2721       // be internal in order to prevent name conflicts with global
2722       // host variables with the same name in a different TUs.
2723       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2724         Linkage = llvm::GlobalValue::InternalLinkage;
2725 
2726         // Shadow variables and their properties must be registered
2727         // with CUDA runtime.
2728         unsigned Flags = 0;
2729         if (!D->hasDefinition())
2730           Flags |= CGCUDARuntime::ExternDeviceVar;
2731         if (D->hasAttr<CUDAConstantAttr>())
2732           Flags |= CGCUDARuntime::ConstantDeviceVar;
2733         getCUDARuntime().registerDeviceVar(*GV, Flags);
2734       } else if (D->hasAttr<CUDASharedAttr>())
2735         // __shared__ variables are odd. Shadows do get created, but
2736         // they are not registered with the CUDA runtime, so they
2737         // can't really be used to access their device-side
2738         // counterparts. It's not clear yet whether it's nvcc's bug or
2739         // a feature, but we've got to do the same for compatibility.
2740         Linkage = llvm::GlobalValue::InternalLinkage;
2741     }
2742   }
2743   GV->setInitializer(Init);
2744 
2745   // If it is safe to mark the global 'constant', do so now.
2746   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2747                   isTypeConstant(D->getType(), true));
2748 
2749   // If it is in a read-only section, mark it 'constant'.
2750   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2751     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2752     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2753       GV->setConstant(true);
2754   }
2755 
2756   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2757 
2758 
2759   // On Darwin, if the normal linkage of a C++ thread_local variable is
2760   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2761   // copies within a linkage unit; otherwise, the backing variable has
2762   // internal linkage and all accesses should just be calls to the
2763   // Itanium-specified entry point, which has the normal linkage of the
2764   // variable. This is to preserve the ability to change the implementation
2765   // behind the scenes.
2766   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2767       Context.getTargetInfo().getTriple().isOSDarwin() &&
2768       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2769       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2770     Linkage = llvm::GlobalValue::InternalLinkage;
2771 
2772   GV->setLinkage(Linkage);
2773   if (D->hasAttr<DLLImportAttr>())
2774     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2775   else if (D->hasAttr<DLLExportAttr>())
2776     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2777   else
2778     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2779 
2780   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2781     // common vars aren't constant even if declared const.
2782     GV->setConstant(false);
2783     // Tentative definition of global variables may be initialized with
2784     // non-zero null pointers. In this case they should have weak linkage
2785     // since common linkage must have zero initializer and must not have
2786     // explicit section therefore cannot have non-zero initial value.
2787     if (!GV->getInitializer()->isNullValue())
2788       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2789   }
2790 
2791   setNonAliasAttributes(D, GV);
2792 
2793   if (D->getTLSKind() && !GV->isThreadLocal()) {
2794     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2795       CXXThreadLocals.push_back(D);
2796     setTLSMode(GV, *D);
2797   }
2798 
2799   maybeSetTrivialComdat(*D, *GV);
2800 
2801   // Emit the initializer function if necessary.
2802   if (NeedsGlobalCtor || NeedsGlobalDtor)
2803     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2804 
2805   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2806 
2807   // Emit global variable debug information.
2808   if (CGDebugInfo *DI = getModuleDebugInfo())
2809     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2810       DI->EmitGlobalVariable(GV, D);
2811 }
2812 
2813 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2814                                       CodeGenModule &CGM, const VarDecl *D,
2815                                       bool NoCommon) {
2816   // Don't give variables common linkage if -fno-common was specified unless it
2817   // was overridden by a NoCommon attribute.
2818   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2819     return true;
2820 
2821   // C11 6.9.2/2:
2822   //   A declaration of an identifier for an object that has file scope without
2823   //   an initializer, and without a storage-class specifier or with the
2824   //   storage-class specifier static, constitutes a tentative definition.
2825   if (D->getInit() || D->hasExternalStorage())
2826     return true;
2827 
2828   // A variable cannot be both common and exist in a section.
2829   if (D->hasAttr<SectionAttr>())
2830     return true;
2831 
2832   // Thread local vars aren't considered common linkage.
2833   if (D->getTLSKind())
2834     return true;
2835 
2836   // Tentative definitions marked with WeakImportAttr are true definitions.
2837   if (D->hasAttr<WeakImportAttr>())
2838     return true;
2839 
2840   // A variable cannot be both common and exist in a comdat.
2841   if (shouldBeInCOMDAT(CGM, *D))
2842     return true;
2843 
2844   // Declarations with a required alignment do not have common linkage in MSVC
2845   // mode.
2846   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2847     if (D->hasAttr<AlignedAttr>())
2848       return true;
2849     QualType VarType = D->getType();
2850     if (Context.isAlignmentRequired(VarType))
2851       return true;
2852 
2853     if (const auto *RT = VarType->getAs<RecordType>()) {
2854       const RecordDecl *RD = RT->getDecl();
2855       for (const FieldDecl *FD : RD->fields()) {
2856         if (FD->isBitField())
2857           continue;
2858         if (FD->hasAttr<AlignedAttr>())
2859           return true;
2860         if (Context.isAlignmentRequired(FD->getType()))
2861           return true;
2862       }
2863     }
2864   }
2865 
2866   return false;
2867 }
2868 
2869 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2870     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2871   if (Linkage == GVA_Internal)
2872     return llvm::Function::InternalLinkage;
2873 
2874   if (D->hasAttr<WeakAttr>()) {
2875     if (IsConstantVariable)
2876       return llvm::GlobalVariable::WeakODRLinkage;
2877     else
2878       return llvm::GlobalVariable::WeakAnyLinkage;
2879   }
2880 
2881   // We are guaranteed to have a strong definition somewhere else,
2882   // so we can use available_externally linkage.
2883   if (Linkage == GVA_AvailableExternally)
2884     return llvm::GlobalValue::AvailableExternallyLinkage;
2885 
2886   // Note that Apple's kernel linker doesn't support symbol
2887   // coalescing, so we need to avoid linkonce and weak linkages there.
2888   // Normally, this means we just map to internal, but for explicit
2889   // instantiations we'll map to external.
2890 
2891   // In C++, the compiler has to emit a definition in every translation unit
2892   // that references the function.  We should use linkonce_odr because
2893   // a) if all references in this translation unit are optimized away, we
2894   // don't need to codegen it.  b) if the function persists, it needs to be
2895   // merged with other definitions. c) C++ has the ODR, so we know the
2896   // definition is dependable.
2897   if (Linkage == GVA_DiscardableODR)
2898     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2899                                             : llvm::Function::InternalLinkage;
2900 
2901   // An explicit instantiation of a template has weak linkage, since
2902   // explicit instantiations can occur in multiple translation units
2903   // and must all be equivalent. However, we are not allowed to
2904   // throw away these explicit instantiations.
2905   //
2906   // We don't currently support CUDA device code spread out across multiple TUs,
2907   // so say that CUDA templates are either external (for kernels) or internal.
2908   // This lets llvm perform aggressive inter-procedural optimizations.
2909   if (Linkage == GVA_StrongODR) {
2910     if (Context.getLangOpts().AppleKext)
2911       return llvm::Function::ExternalLinkage;
2912     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2913       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2914                                           : llvm::Function::InternalLinkage;
2915     return llvm::Function::WeakODRLinkage;
2916   }
2917 
2918   // C++ doesn't have tentative definitions and thus cannot have common
2919   // linkage.
2920   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2921       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2922                                  CodeGenOpts.NoCommon))
2923     return llvm::GlobalVariable::CommonLinkage;
2924 
2925   // selectany symbols are externally visible, so use weak instead of
2926   // linkonce.  MSVC optimizes away references to const selectany globals, so
2927   // all definitions should be the same and ODR linkage should be used.
2928   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2929   if (D->hasAttr<SelectAnyAttr>())
2930     return llvm::GlobalVariable::WeakODRLinkage;
2931 
2932   // Otherwise, we have strong external linkage.
2933   assert(Linkage == GVA_StrongExternal);
2934   return llvm::GlobalVariable::ExternalLinkage;
2935 }
2936 
2937 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2938     const VarDecl *VD, bool IsConstant) {
2939   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2940   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2941 }
2942 
2943 /// Replace the uses of a function that was declared with a non-proto type.
2944 /// We want to silently drop extra arguments from call sites
2945 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2946                                           llvm::Function *newFn) {
2947   // Fast path.
2948   if (old->use_empty()) return;
2949 
2950   llvm::Type *newRetTy = newFn->getReturnType();
2951   SmallVector<llvm::Value*, 4> newArgs;
2952   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2953 
2954   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2955          ui != ue; ) {
2956     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2957     llvm::User *user = use->getUser();
2958 
2959     // Recognize and replace uses of bitcasts.  Most calls to
2960     // unprototyped functions will use bitcasts.
2961     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2962       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2963         replaceUsesOfNonProtoConstant(bitcast, newFn);
2964       continue;
2965     }
2966 
2967     // Recognize calls to the function.
2968     llvm::CallSite callSite(user);
2969     if (!callSite) continue;
2970     if (!callSite.isCallee(&*use)) continue;
2971 
2972     // If the return types don't match exactly, then we can't
2973     // transform this call unless it's dead.
2974     if (callSite->getType() != newRetTy && !callSite->use_empty())
2975       continue;
2976 
2977     // Get the call site's attribute list.
2978     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
2979     llvm::AttributeList oldAttrs = callSite.getAttributes();
2980 
2981     // If the function was passed too few arguments, don't transform.
2982     unsigned newNumArgs = newFn->arg_size();
2983     if (callSite.arg_size() < newNumArgs) continue;
2984 
2985     // If extra arguments were passed, we silently drop them.
2986     // If any of the types mismatch, we don't transform.
2987     unsigned argNo = 0;
2988     bool dontTransform = false;
2989     for (llvm::Argument &A : newFn->args()) {
2990       if (callSite.getArgument(argNo)->getType() != A.getType()) {
2991         dontTransform = true;
2992         break;
2993       }
2994 
2995       // Add any parameter attributes.
2996       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
2997       argNo++;
2998     }
2999     if (dontTransform)
3000       continue;
3001 
3002     // Okay, we can transform this.  Create the new call instruction and copy
3003     // over the required information.
3004     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3005 
3006     // Copy over any operand bundles.
3007     callSite.getOperandBundlesAsDefs(newBundles);
3008 
3009     llvm::CallSite newCall;
3010     if (callSite.isCall()) {
3011       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3012                                        callSite.getInstruction());
3013     } else {
3014       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3015       newCall = llvm::InvokeInst::Create(newFn,
3016                                          oldInvoke->getNormalDest(),
3017                                          oldInvoke->getUnwindDest(),
3018                                          newArgs, newBundles, "",
3019                                          callSite.getInstruction());
3020     }
3021     newArgs.clear(); // for the next iteration
3022 
3023     if (!newCall->getType()->isVoidTy())
3024       newCall->takeName(callSite.getInstruction());
3025     newCall.setAttributes(llvm::AttributeList::get(
3026         newFn->getContext(), oldAttrs.getFnAttributes(),
3027         oldAttrs.getRetAttributes(), newArgAttrs));
3028     newCall.setCallingConv(callSite.getCallingConv());
3029 
3030     // Finally, remove the old call, replacing any uses with the new one.
3031     if (!callSite->use_empty())
3032       callSite->replaceAllUsesWith(newCall.getInstruction());
3033 
3034     // Copy debug location attached to CI.
3035     if (callSite->getDebugLoc())
3036       newCall->setDebugLoc(callSite->getDebugLoc());
3037 
3038     callSite->eraseFromParent();
3039   }
3040 }
3041 
3042 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3043 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3044 /// existing call uses of the old function in the module, this adjusts them to
3045 /// call the new function directly.
3046 ///
3047 /// This is not just a cleanup: the always_inline pass requires direct calls to
3048 /// functions to be able to inline them.  If there is a bitcast in the way, it
3049 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3050 /// run at -O0.
3051 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3052                                                       llvm::Function *NewFn) {
3053   // If we're redefining a global as a function, don't transform it.
3054   if (!isa<llvm::Function>(Old)) return;
3055 
3056   replaceUsesOfNonProtoConstant(Old, NewFn);
3057 }
3058 
3059 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3060   auto DK = VD->isThisDeclarationADefinition();
3061   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3062     return;
3063 
3064   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3065   // If we have a definition, this might be a deferred decl. If the
3066   // instantiation is explicit, make sure we emit it at the end.
3067   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3068     GetAddrOfGlobalVar(VD);
3069 
3070   EmitTopLevelDecl(VD);
3071 }
3072 
3073 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3074                                                  llvm::GlobalValue *GV) {
3075   const auto *D = cast<FunctionDecl>(GD.getDecl());
3076 
3077   // Compute the function info and LLVM type.
3078   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3079   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3080 
3081   // Get or create the prototype for the function.
3082   if (!GV || (GV->getType()->getElementType() != Ty))
3083     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3084                                                    /*DontDefer=*/true,
3085                                                    ForDefinition));
3086 
3087   // Already emitted.
3088   if (!GV->isDeclaration())
3089     return;
3090 
3091   // We need to set linkage and visibility on the function before
3092   // generating code for it because various parts of IR generation
3093   // want to propagate this information down (e.g. to local static
3094   // declarations).
3095   auto *Fn = cast<llvm::Function>(GV);
3096   setFunctionLinkage(GD, Fn);
3097   setFunctionDLLStorageClass(GD, Fn);
3098 
3099   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3100   setGlobalVisibility(Fn, D);
3101 
3102   MaybeHandleStaticInExternC(D, Fn);
3103 
3104   maybeSetTrivialComdat(*D, *Fn);
3105 
3106   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3107 
3108   setFunctionDefinitionAttributes(D, Fn);
3109   SetLLVMFunctionAttributesForDefinition(D, Fn);
3110 
3111   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3112     AddGlobalCtor(Fn, CA->getPriority());
3113   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3114     AddGlobalDtor(Fn, DA->getPriority());
3115   if (D->hasAttr<AnnotateAttr>())
3116     AddGlobalAnnotations(D, Fn);
3117 }
3118 
3119 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3120   const auto *D = cast<ValueDecl>(GD.getDecl());
3121   const AliasAttr *AA = D->getAttr<AliasAttr>();
3122   assert(AA && "Not an alias?");
3123 
3124   StringRef MangledName = getMangledName(GD);
3125 
3126   if (AA->getAliasee() == MangledName) {
3127     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3128     return;
3129   }
3130 
3131   // If there is a definition in the module, then it wins over the alias.
3132   // This is dubious, but allow it to be safe.  Just ignore the alias.
3133   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3134   if (Entry && !Entry->isDeclaration())
3135     return;
3136 
3137   Aliases.push_back(GD);
3138 
3139   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3140 
3141   // Create a reference to the named value.  This ensures that it is emitted
3142   // if a deferred decl.
3143   llvm::Constant *Aliasee;
3144   if (isa<llvm::FunctionType>(DeclTy))
3145     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3146                                       /*ForVTable=*/false);
3147   else
3148     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3149                                     llvm::PointerType::getUnqual(DeclTy),
3150                                     /*D=*/nullptr);
3151 
3152   // Create the new alias itself, but don't set a name yet.
3153   auto *GA = llvm::GlobalAlias::create(
3154       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3155 
3156   if (Entry) {
3157     if (GA->getAliasee() == Entry) {
3158       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3159       return;
3160     }
3161 
3162     assert(Entry->isDeclaration());
3163 
3164     // If there is a declaration in the module, then we had an extern followed
3165     // by the alias, as in:
3166     //   extern int test6();
3167     //   ...
3168     //   int test6() __attribute__((alias("test7")));
3169     //
3170     // Remove it and replace uses of it with the alias.
3171     GA->takeName(Entry);
3172 
3173     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3174                                                           Entry->getType()));
3175     Entry->eraseFromParent();
3176   } else {
3177     GA->setName(MangledName);
3178   }
3179 
3180   // Set attributes which are particular to an alias; this is a
3181   // specialization of the attributes which may be set on a global
3182   // variable/function.
3183   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3184       D->isWeakImported()) {
3185     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3186   }
3187 
3188   if (const auto *VD = dyn_cast<VarDecl>(D))
3189     if (VD->getTLSKind())
3190       setTLSMode(GA, *VD);
3191 
3192   setAliasAttributes(D, GA);
3193 }
3194 
3195 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3196   const auto *D = cast<ValueDecl>(GD.getDecl());
3197   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3198   assert(IFA && "Not an ifunc?");
3199 
3200   StringRef MangledName = getMangledName(GD);
3201 
3202   if (IFA->getResolver() == MangledName) {
3203     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3204     return;
3205   }
3206 
3207   // Report an error if some definition overrides ifunc.
3208   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3209   if (Entry && !Entry->isDeclaration()) {
3210     GlobalDecl OtherGD;
3211     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3212         DiagnosedConflictingDefinitions.insert(GD).second) {
3213       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3214       Diags.Report(OtherGD.getDecl()->getLocation(),
3215                    diag::note_previous_definition);
3216     }
3217     return;
3218   }
3219 
3220   Aliases.push_back(GD);
3221 
3222   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3223   llvm::Constant *Resolver =
3224       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3225                               /*ForVTable=*/false);
3226   llvm::GlobalIFunc *GIF =
3227       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3228                                 "", Resolver, &getModule());
3229   if (Entry) {
3230     if (GIF->getResolver() == Entry) {
3231       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3232       return;
3233     }
3234     assert(Entry->isDeclaration());
3235 
3236     // If there is a declaration in the module, then we had an extern followed
3237     // by the ifunc, as in:
3238     //   extern int test();
3239     //   ...
3240     //   int test() __attribute__((ifunc("resolver")));
3241     //
3242     // Remove it and replace uses of it with the ifunc.
3243     GIF->takeName(Entry);
3244 
3245     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3246                                                           Entry->getType()));
3247     Entry->eraseFromParent();
3248   } else
3249     GIF->setName(MangledName);
3250 
3251   SetCommonAttributes(D, GIF);
3252 }
3253 
3254 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3255                                             ArrayRef<llvm::Type*> Tys) {
3256   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3257                                          Tys);
3258 }
3259 
3260 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3261 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3262                          const StringLiteral *Literal, bool TargetIsLSB,
3263                          bool &IsUTF16, unsigned &StringLength) {
3264   StringRef String = Literal->getString();
3265   unsigned NumBytes = String.size();
3266 
3267   // Check for simple case.
3268   if (!Literal->containsNonAsciiOrNull()) {
3269     StringLength = NumBytes;
3270     return *Map.insert(std::make_pair(String, nullptr)).first;
3271   }
3272 
3273   // Otherwise, convert the UTF8 literals into a string of shorts.
3274   IsUTF16 = true;
3275 
3276   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3277   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3278   llvm::UTF16 *ToPtr = &ToBuf[0];
3279 
3280   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3281                                  ToPtr + NumBytes, llvm::strictConversion);
3282 
3283   // ConvertUTF8toUTF16 returns the length in ToPtr.
3284   StringLength = ToPtr - &ToBuf[0];
3285 
3286   // Add an explicit null.
3287   *ToPtr = 0;
3288   return *Map.insert(std::make_pair(
3289                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3290                                    (StringLength + 1) * 2),
3291                          nullptr)).first;
3292 }
3293 
3294 ConstantAddress
3295 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3296   unsigned StringLength = 0;
3297   bool isUTF16 = false;
3298   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3299       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3300                                getDataLayout().isLittleEndian(), isUTF16,
3301                                StringLength);
3302 
3303   if (auto *C = Entry.second)
3304     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3305 
3306   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3307   llvm::Constant *Zeros[] = { Zero, Zero };
3308 
3309   // If we don't already have it, get __CFConstantStringClassReference.
3310   if (!CFConstantStringClassRef) {
3311     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3312     Ty = llvm::ArrayType::get(Ty, 0);
3313     llvm::Constant *GV =
3314         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3315 
3316     if (getTriple().isOSBinFormatCOFF()) {
3317       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3318       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3319       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3320       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3321 
3322       const VarDecl *VD = nullptr;
3323       for (const auto &Result : DC->lookup(&II))
3324         if ((VD = dyn_cast<VarDecl>(Result)))
3325           break;
3326 
3327       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3328         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3329         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3330       } else {
3331         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3332         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3333       }
3334     }
3335 
3336     // Decay array -> ptr
3337     CFConstantStringClassRef =
3338         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3339   }
3340 
3341   QualType CFTy = getContext().getCFConstantStringType();
3342 
3343   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3344 
3345   ConstantInitBuilder Builder(*this);
3346   auto Fields = Builder.beginStruct(STy);
3347 
3348   // Class pointer.
3349   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3350 
3351   // Flags.
3352   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3353 
3354   // String pointer.
3355   llvm::Constant *C = nullptr;
3356   if (isUTF16) {
3357     auto Arr = llvm::makeArrayRef(
3358         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3359         Entry.first().size() / 2);
3360     C = llvm::ConstantDataArray::get(VMContext, Arr);
3361   } else {
3362     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3363   }
3364 
3365   // Note: -fwritable-strings doesn't make the backing store strings of
3366   // CFStrings writable. (See <rdar://problem/10657500>)
3367   auto *GV =
3368       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3369                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3370   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3371   // Don't enforce the target's minimum global alignment, since the only use
3372   // of the string is via this class initializer.
3373   CharUnits Align = isUTF16
3374                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3375                         : getContext().getTypeAlignInChars(getContext().CharTy);
3376   GV->setAlignment(Align.getQuantity());
3377 
3378   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3379   // Without it LLVM can merge the string with a non unnamed_addr one during
3380   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3381   if (getTriple().isOSBinFormatMachO())
3382     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3383                            : "__TEXT,__cstring,cstring_literals");
3384 
3385   // String.
3386   llvm::Constant *Str =
3387       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3388 
3389   if (isUTF16)
3390     // Cast the UTF16 string to the correct type.
3391     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3392   Fields.add(Str);
3393 
3394   // String length.
3395   auto Ty = getTypes().ConvertType(getContext().LongTy);
3396   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3397 
3398   CharUnits Alignment = getPointerAlign();
3399 
3400   // The struct.
3401   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3402                                     /*isConstant=*/false,
3403                                     llvm::GlobalVariable::PrivateLinkage);
3404   switch (getTriple().getObjectFormat()) {
3405   case llvm::Triple::UnknownObjectFormat:
3406     llvm_unreachable("unknown file format");
3407   case llvm::Triple::COFF:
3408   case llvm::Triple::ELF:
3409   case llvm::Triple::Wasm:
3410     GV->setSection("cfstring");
3411     break;
3412   case llvm::Triple::MachO:
3413     GV->setSection("__DATA,__cfstring");
3414     break;
3415   }
3416   Entry.second = GV;
3417 
3418   return ConstantAddress(GV, Alignment);
3419 }
3420 
3421 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3422   if (ObjCFastEnumerationStateType.isNull()) {
3423     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3424     D->startDefinition();
3425 
3426     QualType FieldTypes[] = {
3427       Context.UnsignedLongTy,
3428       Context.getPointerType(Context.getObjCIdType()),
3429       Context.getPointerType(Context.UnsignedLongTy),
3430       Context.getConstantArrayType(Context.UnsignedLongTy,
3431                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3432     };
3433 
3434     for (size_t i = 0; i < 4; ++i) {
3435       FieldDecl *Field = FieldDecl::Create(Context,
3436                                            D,
3437                                            SourceLocation(),
3438                                            SourceLocation(), nullptr,
3439                                            FieldTypes[i], /*TInfo=*/nullptr,
3440                                            /*BitWidth=*/nullptr,
3441                                            /*Mutable=*/false,
3442                                            ICIS_NoInit);
3443       Field->setAccess(AS_public);
3444       D->addDecl(Field);
3445     }
3446 
3447     D->completeDefinition();
3448     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3449   }
3450 
3451   return ObjCFastEnumerationStateType;
3452 }
3453 
3454 llvm::Constant *
3455 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3456   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3457 
3458   // Don't emit it as the address of the string, emit the string data itself
3459   // as an inline array.
3460   if (E->getCharByteWidth() == 1) {
3461     SmallString<64> Str(E->getString());
3462 
3463     // Resize the string to the right size, which is indicated by its type.
3464     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3465     Str.resize(CAT->getSize().getZExtValue());
3466     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3467   }
3468 
3469   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3470   llvm::Type *ElemTy = AType->getElementType();
3471   unsigned NumElements = AType->getNumElements();
3472 
3473   // Wide strings have either 2-byte or 4-byte elements.
3474   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3475     SmallVector<uint16_t, 32> Elements;
3476     Elements.reserve(NumElements);
3477 
3478     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3479       Elements.push_back(E->getCodeUnit(i));
3480     Elements.resize(NumElements);
3481     return llvm::ConstantDataArray::get(VMContext, Elements);
3482   }
3483 
3484   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3485   SmallVector<uint32_t, 32> Elements;
3486   Elements.reserve(NumElements);
3487 
3488   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3489     Elements.push_back(E->getCodeUnit(i));
3490   Elements.resize(NumElements);
3491   return llvm::ConstantDataArray::get(VMContext, Elements);
3492 }
3493 
3494 static llvm::GlobalVariable *
3495 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3496                       CodeGenModule &CGM, StringRef GlobalName,
3497                       CharUnits Alignment) {
3498   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3499   unsigned AddrSpace = 0;
3500   if (CGM.getLangOpts().OpenCL)
3501     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3502 
3503   llvm::Module &M = CGM.getModule();
3504   // Create a global variable for this string
3505   auto *GV = new llvm::GlobalVariable(
3506       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3507       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3508   GV->setAlignment(Alignment.getQuantity());
3509   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3510   if (GV->isWeakForLinker()) {
3511     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3512     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3513   }
3514 
3515   return GV;
3516 }
3517 
3518 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3519 /// constant array for the given string literal.
3520 ConstantAddress
3521 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3522                                                   StringRef Name) {
3523   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3524 
3525   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3526   llvm::GlobalVariable **Entry = nullptr;
3527   if (!LangOpts.WritableStrings) {
3528     Entry = &ConstantStringMap[C];
3529     if (auto GV = *Entry) {
3530       if (Alignment.getQuantity() > GV->getAlignment())
3531         GV->setAlignment(Alignment.getQuantity());
3532       return ConstantAddress(GV, Alignment);
3533     }
3534   }
3535 
3536   SmallString<256> MangledNameBuffer;
3537   StringRef GlobalVariableName;
3538   llvm::GlobalValue::LinkageTypes LT;
3539 
3540   // Mangle the string literal if the ABI allows for it.  However, we cannot
3541   // do this if  we are compiling with ASan or -fwritable-strings because they
3542   // rely on strings having normal linkage.
3543   if (!LangOpts.WritableStrings &&
3544       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3545       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3546     llvm::raw_svector_ostream Out(MangledNameBuffer);
3547     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3548 
3549     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3550     GlobalVariableName = MangledNameBuffer;
3551   } else {
3552     LT = llvm::GlobalValue::PrivateLinkage;
3553     GlobalVariableName = Name;
3554   }
3555 
3556   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3557   if (Entry)
3558     *Entry = GV;
3559 
3560   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3561                                   QualType());
3562   return ConstantAddress(GV, Alignment);
3563 }
3564 
3565 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3566 /// array for the given ObjCEncodeExpr node.
3567 ConstantAddress
3568 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3569   std::string Str;
3570   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3571 
3572   return GetAddrOfConstantCString(Str);
3573 }
3574 
3575 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3576 /// the literal and a terminating '\0' character.
3577 /// The result has pointer to array type.
3578 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3579     const std::string &Str, const char *GlobalName) {
3580   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3581   CharUnits Alignment =
3582     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3583 
3584   llvm::Constant *C =
3585       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3586 
3587   // Don't share any string literals if strings aren't constant.
3588   llvm::GlobalVariable **Entry = nullptr;
3589   if (!LangOpts.WritableStrings) {
3590     Entry = &ConstantStringMap[C];
3591     if (auto GV = *Entry) {
3592       if (Alignment.getQuantity() > GV->getAlignment())
3593         GV->setAlignment(Alignment.getQuantity());
3594       return ConstantAddress(GV, Alignment);
3595     }
3596   }
3597 
3598   // Get the default prefix if a name wasn't specified.
3599   if (!GlobalName)
3600     GlobalName = ".str";
3601   // Create a global variable for this.
3602   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3603                                   GlobalName, Alignment);
3604   if (Entry)
3605     *Entry = GV;
3606   return ConstantAddress(GV, Alignment);
3607 }
3608 
3609 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3610     const MaterializeTemporaryExpr *E, const Expr *Init) {
3611   assert((E->getStorageDuration() == SD_Static ||
3612           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3613   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3614 
3615   // If we're not materializing a subobject of the temporary, keep the
3616   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3617   QualType MaterializedType = Init->getType();
3618   if (Init == E->GetTemporaryExpr())
3619     MaterializedType = E->getType();
3620 
3621   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3622 
3623   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3624     return ConstantAddress(Slot, Align);
3625 
3626   // FIXME: If an externally-visible declaration extends multiple temporaries,
3627   // we need to give each temporary the same name in every translation unit (and
3628   // we also need to make the temporaries externally-visible).
3629   SmallString<256> Name;
3630   llvm::raw_svector_ostream Out(Name);
3631   getCXXABI().getMangleContext().mangleReferenceTemporary(
3632       VD, E->getManglingNumber(), Out);
3633 
3634   APValue *Value = nullptr;
3635   if (E->getStorageDuration() == SD_Static) {
3636     // We might have a cached constant initializer for this temporary. Note
3637     // that this might have a different value from the value computed by
3638     // evaluating the initializer if the surrounding constant expression
3639     // modifies the temporary.
3640     Value = getContext().getMaterializedTemporaryValue(E, false);
3641     if (Value && Value->isUninit())
3642       Value = nullptr;
3643   }
3644 
3645   // Try evaluating it now, it might have a constant initializer.
3646   Expr::EvalResult EvalResult;
3647   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3648       !EvalResult.hasSideEffects())
3649     Value = &EvalResult.Val;
3650 
3651   llvm::Constant *InitialValue = nullptr;
3652   bool Constant = false;
3653   llvm::Type *Type;
3654   if (Value) {
3655     // The temporary has a constant initializer, use it.
3656     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3657     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3658     Type = InitialValue->getType();
3659   } else {
3660     // No initializer, the initialization will be provided when we
3661     // initialize the declaration which performed lifetime extension.
3662     Type = getTypes().ConvertTypeForMem(MaterializedType);
3663   }
3664 
3665   // Create a global variable for this lifetime-extended temporary.
3666   llvm::GlobalValue::LinkageTypes Linkage =
3667       getLLVMLinkageVarDefinition(VD, Constant);
3668   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3669     const VarDecl *InitVD;
3670     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3671         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3672       // Temporaries defined inside a class get linkonce_odr linkage because the
3673       // class can be defined in multipe translation units.
3674       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3675     } else {
3676       // There is no need for this temporary to have external linkage if the
3677       // VarDecl has external linkage.
3678       Linkage = llvm::GlobalVariable::InternalLinkage;
3679     }
3680   }
3681   unsigned AddrSpace = GetGlobalVarAddressSpace(
3682       VD, getContext().getTargetAddressSpace(MaterializedType));
3683   auto *GV = new llvm::GlobalVariable(
3684       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3685       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3686       AddrSpace);
3687   setGlobalVisibility(GV, VD);
3688   GV->setAlignment(Align.getQuantity());
3689   if (supportsCOMDAT() && GV->isWeakForLinker())
3690     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3691   if (VD->getTLSKind())
3692     setTLSMode(GV, *VD);
3693   MaterializedGlobalTemporaryMap[E] = GV;
3694   return ConstantAddress(GV, Align);
3695 }
3696 
3697 /// EmitObjCPropertyImplementations - Emit information for synthesized
3698 /// properties for an implementation.
3699 void CodeGenModule::EmitObjCPropertyImplementations(const
3700                                                     ObjCImplementationDecl *D) {
3701   for (const auto *PID : D->property_impls()) {
3702     // Dynamic is just for type-checking.
3703     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3704       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3705 
3706       // Determine which methods need to be implemented, some may have
3707       // been overridden. Note that ::isPropertyAccessor is not the method
3708       // we want, that just indicates if the decl came from a
3709       // property. What we want to know is if the method is defined in
3710       // this implementation.
3711       if (!D->getInstanceMethod(PD->getGetterName()))
3712         CodeGenFunction(*this).GenerateObjCGetter(
3713                                  const_cast<ObjCImplementationDecl *>(D), PID);
3714       if (!PD->isReadOnly() &&
3715           !D->getInstanceMethod(PD->getSetterName()))
3716         CodeGenFunction(*this).GenerateObjCSetter(
3717                                  const_cast<ObjCImplementationDecl *>(D), PID);
3718     }
3719   }
3720 }
3721 
3722 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3723   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3724   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3725        ivar; ivar = ivar->getNextIvar())
3726     if (ivar->getType().isDestructedType())
3727       return true;
3728 
3729   return false;
3730 }
3731 
3732 static bool AllTrivialInitializers(CodeGenModule &CGM,
3733                                    ObjCImplementationDecl *D) {
3734   CodeGenFunction CGF(CGM);
3735   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3736        E = D->init_end(); B != E; ++B) {
3737     CXXCtorInitializer *CtorInitExp = *B;
3738     Expr *Init = CtorInitExp->getInit();
3739     if (!CGF.isTrivialInitializer(Init))
3740       return false;
3741   }
3742   return true;
3743 }
3744 
3745 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3746 /// for an implementation.
3747 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3748   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3749   if (needsDestructMethod(D)) {
3750     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3751     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3752     ObjCMethodDecl *DTORMethod =
3753       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3754                              cxxSelector, getContext().VoidTy, nullptr, D,
3755                              /*isInstance=*/true, /*isVariadic=*/false,
3756                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3757                              /*isDefined=*/false, ObjCMethodDecl::Required);
3758     D->addInstanceMethod(DTORMethod);
3759     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3760     D->setHasDestructors(true);
3761   }
3762 
3763   // If the implementation doesn't have any ivar initializers, we don't need
3764   // a .cxx_construct.
3765   if (D->getNumIvarInitializers() == 0 ||
3766       AllTrivialInitializers(*this, D))
3767     return;
3768 
3769   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3770   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3771   // The constructor returns 'self'.
3772   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3773                                                 D->getLocation(),
3774                                                 D->getLocation(),
3775                                                 cxxSelector,
3776                                                 getContext().getObjCIdType(),
3777                                                 nullptr, D, /*isInstance=*/true,
3778                                                 /*isVariadic=*/false,
3779                                                 /*isPropertyAccessor=*/true,
3780                                                 /*isImplicitlyDeclared=*/true,
3781                                                 /*isDefined=*/false,
3782                                                 ObjCMethodDecl::Required);
3783   D->addInstanceMethod(CTORMethod);
3784   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3785   D->setHasNonZeroConstructors(true);
3786 }
3787 
3788 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3789 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3790   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3791       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3792     ErrorUnsupported(LSD, "linkage spec");
3793     return;
3794   }
3795 
3796   EmitDeclContext(LSD);
3797 }
3798 
3799 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3800   for (auto *I : DC->decls()) {
3801     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3802     // are themselves considered "top-level", so EmitTopLevelDecl on an
3803     // ObjCImplDecl does not recursively visit them. We need to do that in
3804     // case they're nested inside another construct (LinkageSpecDecl /
3805     // ExportDecl) that does stop them from being considered "top-level".
3806     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3807       for (auto *M : OID->methods())
3808         EmitTopLevelDecl(M);
3809     }
3810 
3811     EmitTopLevelDecl(I);
3812   }
3813 }
3814 
3815 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3816 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3817   // Ignore dependent declarations.
3818   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3819     return;
3820 
3821   switch (D->getKind()) {
3822   case Decl::CXXConversion:
3823   case Decl::CXXMethod:
3824   case Decl::Function:
3825     // Skip function templates
3826     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3827         cast<FunctionDecl>(D)->isLateTemplateParsed())
3828       return;
3829 
3830     EmitGlobal(cast<FunctionDecl>(D));
3831     // Always provide some coverage mapping
3832     // even for the functions that aren't emitted.
3833     AddDeferredUnusedCoverageMapping(D);
3834     break;
3835 
3836   case Decl::CXXDeductionGuide:
3837     // Function-like, but does not result in code emission.
3838     break;
3839 
3840   case Decl::Var:
3841   case Decl::Decomposition:
3842     // Skip variable templates
3843     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3844       return;
3845   case Decl::VarTemplateSpecialization:
3846     EmitGlobal(cast<VarDecl>(D));
3847     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3848       for (auto *B : DD->bindings())
3849         if (auto *HD = B->getHoldingVar())
3850           EmitGlobal(HD);
3851     break;
3852 
3853   // Indirect fields from global anonymous structs and unions can be
3854   // ignored; only the actual variable requires IR gen support.
3855   case Decl::IndirectField:
3856     break;
3857 
3858   // C++ Decls
3859   case Decl::Namespace:
3860     EmitDeclContext(cast<NamespaceDecl>(D));
3861     break;
3862   case Decl::CXXRecord:
3863     if (DebugInfo) {
3864       if (auto *ES = D->getASTContext().getExternalSource())
3865         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3866           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3867     }
3868     // Emit any static data members, they may be definitions.
3869     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3870       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3871         EmitTopLevelDecl(I);
3872     break;
3873     // No code generation needed.
3874   case Decl::UsingShadow:
3875   case Decl::ClassTemplate:
3876   case Decl::VarTemplate:
3877   case Decl::VarTemplatePartialSpecialization:
3878   case Decl::FunctionTemplate:
3879   case Decl::TypeAliasTemplate:
3880   case Decl::Block:
3881   case Decl::Empty:
3882     break;
3883   case Decl::Using:          // using X; [C++]
3884     if (CGDebugInfo *DI = getModuleDebugInfo())
3885         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3886     return;
3887   case Decl::NamespaceAlias:
3888     if (CGDebugInfo *DI = getModuleDebugInfo())
3889         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3890     return;
3891   case Decl::UsingDirective: // using namespace X; [C++]
3892     if (CGDebugInfo *DI = getModuleDebugInfo())
3893       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3894     return;
3895   case Decl::CXXConstructor:
3896     // Skip function templates
3897     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3898         cast<FunctionDecl>(D)->isLateTemplateParsed())
3899       return;
3900 
3901     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3902     break;
3903   case Decl::CXXDestructor:
3904     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3905       return;
3906     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3907     break;
3908 
3909   case Decl::StaticAssert:
3910     // Nothing to do.
3911     break;
3912 
3913   // Objective-C Decls
3914 
3915   // Forward declarations, no (immediate) code generation.
3916   case Decl::ObjCInterface:
3917   case Decl::ObjCCategory:
3918     break;
3919 
3920   case Decl::ObjCProtocol: {
3921     auto *Proto = cast<ObjCProtocolDecl>(D);
3922     if (Proto->isThisDeclarationADefinition())
3923       ObjCRuntime->GenerateProtocol(Proto);
3924     break;
3925   }
3926 
3927   case Decl::ObjCCategoryImpl:
3928     // Categories have properties but don't support synthesize so we
3929     // can ignore them here.
3930     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3931     break;
3932 
3933   case Decl::ObjCImplementation: {
3934     auto *OMD = cast<ObjCImplementationDecl>(D);
3935     EmitObjCPropertyImplementations(OMD);
3936     EmitObjCIvarInitializations(OMD);
3937     ObjCRuntime->GenerateClass(OMD);
3938     // Emit global variable debug information.
3939     if (CGDebugInfo *DI = getModuleDebugInfo())
3940       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3941         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3942             OMD->getClassInterface()), OMD->getLocation());
3943     break;
3944   }
3945   case Decl::ObjCMethod: {
3946     auto *OMD = cast<ObjCMethodDecl>(D);
3947     // If this is not a prototype, emit the body.
3948     if (OMD->getBody())
3949       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3950     break;
3951   }
3952   case Decl::ObjCCompatibleAlias:
3953     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3954     break;
3955 
3956   case Decl::PragmaComment: {
3957     const auto *PCD = cast<PragmaCommentDecl>(D);
3958     switch (PCD->getCommentKind()) {
3959     case PCK_Unknown:
3960       llvm_unreachable("unexpected pragma comment kind");
3961     case PCK_Linker:
3962       AppendLinkerOptions(PCD->getArg());
3963       break;
3964     case PCK_Lib:
3965       AddDependentLib(PCD->getArg());
3966       break;
3967     case PCK_Compiler:
3968     case PCK_ExeStr:
3969     case PCK_User:
3970       break; // We ignore all of these.
3971     }
3972     break;
3973   }
3974 
3975   case Decl::PragmaDetectMismatch: {
3976     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3977     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3978     break;
3979   }
3980 
3981   case Decl::LinkageSpec:
3982     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3983     break;
3984 
3985   case Decl::FileScopeAsm: {
3986     // File-scope asm is ignored during device-side CUDA compilation.
3987     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3988       break;
3989     // File-scope asm is ignored during device-side OpenMP compilation.
3990     if (LangOpts.OpenMPIsDevice)
3991       break;
3992     auto *AD = cast<FileScopeAsmDecl>(D);
3993     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3994     break;
3995   }
3996 
3997   case Decl::Import: {
3998     auto *Import = cast<ImportDecl>(D);
3999 
4000     // If we've already imported this module, we're done.
4001     if (!ImportedModules.insert(Import->getImportedModule()))
4002       break;
4003 
4004     // Emit debug information for direct imports.
4005     if (!Import->getImportedOwningModule()) {
4006       if (CGDebugInfo *DI = getModuleDebugInfo())
4007         DI->EmitImportDecl(*Import);
4008     }
4009 
4010     // Find all of the submodules and emit the module initializers.
4011     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4012     SmallVector<clang::Module *, 16> Stack;
4013     Visited.insert(Import->getImportedModule());
4014     Stack.push_back(Import->getImportedModule());
4015 
4016     while (!Stack.empty()) {
4017       clang::Module *Mod = Stack.pop_back_val();
4018       if (!EmittedModuleInitializers.insert(Mod).second)
4019         continue;
4020 
4021       for (auto *D : Context.getModuleInitializers(Mod))
4022         EmitTopLevelDecl(D);
4023 
4024       // Visit the submodules of this module.
4025       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4026                                              SubEnd = Mod->submodule_end();
4027            Sub != SubEnd; ++Sub) {
4028         // Skip explicit children; they need to be explicitly imported to emit
4029         // the initializers.
4030         if ((*Sub)->IsExplicit)
4031           continue;
4032 
4033         if (Visited.insert(*Sub).second)
4034           Stack.push_back(*Sub);
4035       }
4036     }
4037     break;
4038   }
4039 
4040   case Decl::Export:
4041     EmitDeclContext(cast<ExportDecl>(D));
4042     break;
4043 
4044   case Decl::OMPThreadPrivate:
4045     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4046     break;
4047 
4048   case Decl::ClassTemplateSpecialization: {
4049     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4050     if (DebugInfo &&
4051         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4052         Spec->hasDefinition())
4053       DebugInfo->completeTemplateDefinition(*Spec);
4054     break;
4055   }
4056 
4057   case Decl::OMPDeclareReduction:
4058     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4059     break;
4060 
4061   default:
4062     // Make sure we handled everything we should, every other kind is a
4063     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4064     // function. Need to recode Decl::Kind to do that easily.
4065     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4066     break;
4067   }
4068 }
4069 
4070 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4071   // Do we need to generate coverage mapping?
4072   if (!CodeGenOpts.CoverageMapping)
4073     return;
4074   switch (D->getKind()) {
4075   case Decl::CXXConversion:
4076   case Decl::CXXMethod:
4077   case Decl::Function:
4078   case Decl::ObjCMethod:
4079   case Decl::CXXConstructor:
4080   case Decl::CXXDestructor: {
4081     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4082       return;
4083     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4084     if (I == DeferredEmptyCoverageMappingDecls.end())
4085       DeferredEmptyCoverageMappingDecls[D] = true;
4086     break;
4087   }
4088   default:
4089     break;
4090   };
4091 }
4092 
4093 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4094   // Do we need to generate coverage mapping?
4095   if (!CodeGenOpts.CoverageMapping)
4096     return;
4097   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4098     if (Fn->isTemplateInstantiation())
4099       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4100   }
4101   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4102   if (I == DeferredEmptyCoverageMappingDecls.end())
4103     DeferredEmptyCoverageMappingDecls[D] = false;
4104   else
4105     I->second = false;
4106 }
4107 
4108 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4109   std::vector<const Decl *> DeferredDecls;
4110   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4111     if (!I.second)
4112       continue;
4113     DeferredDecls.push_back(I.first);
4114   }
4115   // Sort the declarations by their location to make sure that the tests get a
4116   // predictable order for the coverage mapping for the unused declarations.
4117   if (CodeGenOpts.DumpCoverageMapping)
4118     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4119               [] (const Decl *LHS, const Decl *RHS) {
4120       return LHS->getLocStart() < RHS->getLocStart();
4121     });
4122   for (const auto *D : DeferredDecls) {
4123     switch (D->getKind()) {
4124     case Decl::CXXConversion:
4125     case Decl::CXXMethod:
4126     case Decl::Function:
4127     case Decl::ObjCMethod: {
4128       CodeGenPGO PGO(*this);
4129       GlobalDecl GD(cast<FunctionDecl>(D));
4130       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4131                                   getFunctionLinkage(GD));
4132       break;
4133     }
4134     case Decl::CXXConstructor: {
4135       CodeGenPGO PGO(*this);
4136       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4137       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4138                                   getFunctionLinkage(GD));
4139       break;
4140     }
4141     case Decl::CXXDestructor: {
4142       CodeGenPGO PGO(*this);
4143       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4144       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4145                                   getFunctionLinkage(GD));
4146       break;
4147     }
4148     default:
4149       break;
4150     };
4151   }
4152 }
4153 
4154 /// Turns the given pointer into a constant.
4155 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4156                                           const void *Ptr) {
4157   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4158   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4159   return llvm::ConstantInt::get(i64, PtrInt);
4160 }
4161 
4162 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4163                                    llvm::NamedMDNode *&GlobalMetadata,
4164                                    GlobalDecl D,
4165                                    llvm::GlobalValue *Addr) {
4166   if (!GlobalMetadata)
4167     GlobalMetadata =
4168       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4169 
4170   // TODO: should we report variant information for ctors/dtors?
4171   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4172                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4173                                CGM.getLLVMContext(), D.getDecl()))};
4174   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4175 }
4176 
4177 /// For each function which is declared within an extern "C" region and marked
4178 /// as 'used', but has internal linkage, create an alias from the unmangled
4179 /// name to the mangled name if possible. People expect to be able to refer
4180 /// to such functions with an unmangled name from inline assembly within the
4181 /// same translation unit.
4182 void CodeGenModule::EmitStaticExternCAliases() {
4183   // Don't do anything if we're generating CUDA device code -- the NVPTX
4184   // assembly target doesn't support aliases.
4185   if (Context.getTargetInfo().getTriple().isNVPTX())
4186     return;
4187   for (auto &I : StaticExternCValues) {
4188     IdentifierInfo *Name = I.first;
4189     llvm::GlobalValue *Val = I.second;
4190     if (Val && !getModule().getNamedValue(Name->getName()))
4191       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4192   }
4193 }
4194 
4195 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4196                                              GlobalDecl &Result) const {
4197   auto Res = Manglings.find(MangledName);
4198   if (Res == Manglings.end())
4199     return false;
4200   Result = Res->getValue();
4201   return true;
4202 }
4203 
4204 /// Emits metadata nodes associating all the global values in the
4205 /// current module with the Decls they came from.  This is useful for
4206 /// projects using IR gen as a subroutine.
4207 ///
4208 /// Since there's currently no way to associate an MDNode directly
4209 /// with an llvm::GlobalValue, we create a global named metadata
4210 /// with the name 'clang.global.decl.ptrs'.
4211 void CodeGenModule::EmitDeclMetadata() {
4212   llvm::NamedMDNode *GlobalMetadata = nullptr;
4213 
4214   for (auto &I : MangledDeclNames) {
4215     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4216     // Some mangled names don't necessarily have an associated GlobalValue
4217     // in this module, e.g. if we mangled it for DebugInfo.
4218     if (Addr)
4219       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4220   }
4221 }
4222 
4223 /// Emits metadata nodes for all the local variables in the current
4224 /// function.
4225 void CodeGenFunction::EmitDeclMetadata() {
4226   if (LocalDeclMap.empty()) return;
4227 
4228   llvm::LLVMContext &Context = getLLVMContext();
4229 
4230   // Find the unique metadata ID for this name.
4231   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4232 
4233   llvm::NamedMDNode *GlobalMetadata = nullptr;
4234 
4235   for (auto &I : LocalDeclMap) {
4236     const Decl *D = I.first;
4237     llvm::Value *Addr = I.second.getPointer();
4238     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4239       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4240       Alloca->setMetadata(
4241           DeclPtrKind, llvm::MDNode::get(
4242                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4243     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4244       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4245       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4246     }
4247   }
4248 }
4249 
4250 void CodeGenModule::EmitVersionIdentMetadata() {
4251   llvm::NamedMDNode *IdentMetadata =
4252     TheModule.getOrInsertNamedMetadata("llvm.ident");
4253   std::string Version = getClangFullVersion();
4254   llvm::LLVMContext &Ctx = TheModule.getContext();
4255 
4256   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4257   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4258 }
4259 
4260 void CodeGenModule::EmitTargetMetadata() {
4261   // Warning, new MangledDeclNames may be appended within this loop.
4262   // We rely on MapVector insertions adding new elements to the end
4263   // of the container.
4264   // FIXME: Move this loop into the one target that needs it, and only
4265   // loop over those declarations for which we couldn't emit the target
4266   // metadata when we emitted the declaration.
4267   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4268     auto Val = *(MangledDeclNames.begin() + I);
4269     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4270     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4271     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4272   }
4273 }
4274 
4275 void CodeGenModule::EmitCoverageFile() {
4276   if (getCodeGenOpts().CoverageDataFile.empty() &&
4277       getCodeGenOpts().CoverageNotesFile.empty())
4278     return;
4279 
4280   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4281   if (!CUNode)
4282     return;
4283 
4284   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4285   llvm::LLVMContext &Ctx = TheModule.getContext();
4286   auto *CoverageDataFile =
4287       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4288   auto *CoverageNotesFile =
4289       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4290   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4291     llvm::MDNode *CU = CUNode->getOperand(i);
4292     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4293     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4294   }
4295 }
4296 
4297 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4298   // Sema has checked that all uuid strings are of the form
4299   // "12345678-1234-1234-1234-1234567890ab".
4300   assert(Uuid.size() == 36);
4301   for (unsigned i = 0; i < 36; ++i) {
4302     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4303     else                                         assert(isHexDigit(Uuid[i]));
4304   }
4305 
4306   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4307   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4308 
4309   llvm::Constant *Field3[8];
4310   for (unsigned Idx = 0; Idx < 8; ++Idx)
4311     Field3[Idx] = llvm::ConstantInt::get(
4312         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4313 
4314   llvm::Constant *Fields[4] = {
4315     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4316     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4317     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4318     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4319   };
4320 
4321   return llvm::ConstantStruct::getAnon(Fields);
4322 }
4323 
4324 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4325                                                        bool ForEH) {
4326   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4327   // FIXME: should we even be calling this method if RTTI is disabled
4328   // and it's not for EH?
4329   if (!ForEH && !getLangOpts().RTTI)
4330     return llvm::Constant::getNullValue(Int8PtrTy);
4331 
4332   if (ForEH && Ty->isObjCObjectPointerType() &&
4333       LangOpts.ObjCRuntime.isGNUFamily())
4334     return ObjCRuntime->GetEHType(Ty);
4335 
4336   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4337 }
4338 
4339 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4340   for (auto RefExpr : D->varlists()) {
4341     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4342     bool PerformInit =
4343         VD->getAnyInitializer() &&
4344         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4345                                                         /*ForRef=*/false);
4346 
4347     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4348     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4349             VD, Addr, RefExpr->getLocStart(), PerformInit))
4350       CXXGlobalInits.push_back(InitFunction);
4351   }
4352 }
4353 
4354 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4355   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4356   if (InternalId)
4357     return InternalId;
4358 
4359   if (isExternallyVisible(T->getLinkage())) {
4360     std::string OutName;
4361     llvm::raw_string_ostream Out(OutName);
4362     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4363 
4364     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4365   } else {
4366     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4367                                            llvm::ArrayRef<llvm::Metadata *>());
4368   }
4369 
4370   return InternalId;
4371 }
4372 
4373 /// Returns whether this module needs the "all-vtables" type identifier.
4374 bool CodeGenModule::NeedAllVtablesTypeId() const {
4375   // Returns true if at least one of vtable-based CFI checkers is enabled and
4376   // is not in the trapping mode.
4377   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4378            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4379           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4380            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4381           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4382            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4383           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4384            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4385 }
4386 
4387 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4388                                           CharUnits Offset,
4389                                           const CXXRecordDecl *RD) {
4390   llvm::Metadata *MD =
4391       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4392   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4393 
4394   if (CodeGenOpts.SanitizeCfiCrossDso)
4395     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4396       VTable->addTypeMetadata(Offset.getQuantity(),
4397                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4398 
4399   if (NeedAllVtablesTypeId()) {
4400     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4401     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4402   }
4403 }
4404 
4405 // Fills in the supplied string map with the set of target features for the
4406 // passed in function.
4407 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4408                                           const FunctionDecl *FD) {
4409   StringRef TargetCPU = Target.getTargetOpts().CPU;
4410   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4411     // If we have a TargetAttr build up the feature map based on that.
4412     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4413 
4414     // Make a copy of the features as passed on the command line into the
4415     // beginning of the additional features from the function to override.
4416     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4417                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4418                             Target.getTargetOpts().FeaturesAsWritten.end());
4419 
4420     if (ParsedAttr.second != "")
4421       TargetCPU = ParsedAttr.second;
4422 
4423     // Now populate the feature map, first with the TargetCPU which is either
4424     // the default or a new one from the target attribute string. Then we'll use
4425     // the passed in features (FeaturesAsWritten) along with the new ones from
4426     // the attribute.
4427     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4428   } else {
4429     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4430                           Target.getTargetOpts().Features);
4431   }
4432 }
4433 
4434 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4435   if (!SanStats)
4436     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4437 
4438   return *SanStats;
4439 }
4440 llvm::Value *
4441 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4442                                                   CodeGenFunction &CGF) {
4443   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4444   auto SamplerT = getOpenCLRuntime().getSamplerType();
4445   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4446   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4447                                 "__translate_sampler_initializer"),
4448                                 {C});
4449 }
4450