1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ProfileSummary.h" 57 #include "llvm/ProfileData/InstrProfReader.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/ConvertUTF.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MD5.h" 63 #include "llvm/Support/TimeProfiler.h" 64 65 using namespace clang; 66 using namespace CodeGen; 67 68 static llvm::cl::opt<bool> LimitedCoverage( 69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 71 llvm::cl::init(false)); 72 73 static const char AnnotationSection[] = "llvm.metadata"; 74 75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 76 switch (CGM.getTarget().getCXXABI().getKind()) { 77 case TargetCXXABI::Fuchsia: 78 case TargetCXXABI::GenericAArch64: 79 case TargetCXXABI::GenericARM: 80 case TargetCXXABI::iOS: 81 case TargetCXXABI::iOS64: 82 case TargetCXXABI::WatchOS: 83 case TargetCXXABI::GenericMIPS: 84 case TargetCXXABI::GenericItanium: 85 case TargetCXXABI::WebAssembly: 86 return CreateItaniumCXXABI(CGM); 87 case TargetCXXABI::Microsoft: 88 return CreateMicrosoftCXXABI(CGM); 89 } 90 91 llvm_unreachable("invalid C++ ABI kind"); 92 } 93 94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 95 const PreprocessorOptions &PPO, 96 const CodeGenOptions &CGO, llvm::Module &M, 97 DiagnosticsEngine &diags, 98 CoverageSourceInfo *CoverageInfo) 99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 102 VMContext(M.getContext()), Types(*this), VTables(*this), 103 SanitizerMD(new SanitizerMetadata(*this)) { 104 105 // Initialize the type cache. 106 llvm::LLVMContext &LLVMContext = M.getContext(); 107 VoidTy = llvm::Type::getVoidTy(LLVMContext); 108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 112 HalfTy = llvm::Type::getHalfTy(LLVMContext); 113 FloatTy = llvm::Type::getFloatTy(LLVMContext); 114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 116 PointerAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 118 SizeSizeInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 120 IntAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 123 IntPtrTy = llvm::IntegerType::get(LLVMContext, 124 C.getTargetInfo().getMaxPointerWidth()); 125 Int8PtrTy = Int8Ty->getPointerTo(0); 126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 127 AllocaInt8PtrTy = Int8Ty->getPointerTo( 128 M.getDataLayout().getAllocaAddrSpace()); 129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 130 131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 132 133 if (LangOpts.ObjC) 134 createObjCRuntime(); 135 if (LangOpts.OpenCL) 136 createOpenCLRuntime(); 137 if (LangOpts.OpenMP) 138 createOpenMPRuntime(); 139 if (LangOpts.CUDA) 140 createCUDARuntime(); 141 142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 146 getCXXABI().getMangleContext())); 147 148 // If debug info or coverage generation is enabled, create the CGDebugInfo 149 // object. 150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 152 DebugInfo.reset(new CGDebugInfo(*this)); 153 154 Block.GlobalUniqueCount = 0; 155 156 if (C.getLangOpts().ObjC) 157 ObjCData.reset(new ObjCEntrypoints()); 158 159 if (CodeGenOpts.hasProfileClangUse()) { 160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 162 if (auto E = ReaderOrErr.takeError()) { 163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 164 "Could not read profile %0: %1"); 165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 167 << EI.message(); 168 }); 169 } else 170 PGOReader = std::move(ReaderOrErr.get()); 171 } 172 173 // If coverage mapping generation is enabled, create the 174 // CoverageMappingModuleGen object. 175 if (CodeGenOpts.CoverageMapping) 176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 177 } 178 179 CodeGenModule::~CodeGenModule() {} 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTriple().getArch()) { 209 case llvm::Triple::nvptx: 210 case llvm::Triple::nvptx64: 211 assert(getLangOpts().OpenMPIsDevice && 212 "OpenMP NVPTX is only prepared to deal with device code."); 213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 214 break; 215 default: 216 if (LangOpts.OpenMPSimd) 217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 218 else 219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 220 break; 221 } 222 223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 224 // but we are not there yet so they both reside in CGModule for now and the 225 // OpenMP-IR-Builder is opt-in only. 226 if (LangOpts.OpenMPIRBuilder) { 227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 228 OMPBuilder->initialize(); 229 } 230 } 231 232 void CodeGenModule::createCUDARuntime() { 233 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 234 } 235 236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 237 Replacements[Name] = C; 238 } 239 240 void CodeGenModule::applyReplacements() { 241 for (auto &I : Replacements) { 242 StringRef MangledName = I.first(); 243 llvm::Constant *Replacement = I.second; 244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 245 if (!Entry) 246 continue; 247 auto *OldF = cast<llvm::Function>(Entry); 248 auto *NewF = dyn_cast<llvm::Function>(Replacement); 249 if (!NewF) { 250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 252 } else { 253 auto *CE = cast<llvm::ConstantExpr>(Replacement); 254 assert(CE->getOpcode() == llvm::Instruction::BitCast || 255 CE->getOpcode() == llvm::Instruction::GetElementPtr); 256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 257 } 258 } 259 260 // Replace old with new, but keep the old order. 261 OldF->replaceAllUsesWith(Replacement); 262 if (NewF) { 263 NewF->removeFromParent(); 264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 265 NewF); 266 } 267 OldF->eraseFromParent(); 268 } 269 } 270 271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 272 GlobalValReplacements.push_back(std::make_pair(GV, C)); 273 } 274 275 void CodeGenModule::applyGlobalValReplacements() { 276 for (auto &I : GlobalValReplacements) { 277 llvm::GlobalValue *GV = I.first; 278 llvm::Constant *C = I.second; 279 280 GV->replaceAllUsesWith(C); 281 GV->eraseFromParent(); 282 } 283 } 284 285 // This is only used in aliases that we created and we know they have a 286 // linear structure. 287 static const llvm::GlobalObject *getAliasedGlobal( 288 const llvm::GlobalIndirectSymbol &GIS) { 289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 290 const llvm::Constant *C = &GIS; 291 for (;;) { 292 C = C->stripPointerCasts(); 293 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 294 return GO; 295 // stripPointerCasts will not walk over weak aliases. 296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 297 if (!GIS2) 298 return nullptr; 299 if (!Visited.insert(GIS2).second) 300 return nullptr; 301 C = GIS2->getIndirectSymbol(); 302 } 303 } 304 305 void CodeGenModule::checkAliases() { 306 // Check if the constructed aliases are well formed. It is really unfortunate 307 // that we have to do this in CodeGen, but we only construct mangled names 308 // and aliases during codegen. 309 bool Error = false; 310 DiagnosticsEngine &Diags = getDiags(); 311 for (const GlobalDecl &GD : Aliases) { 312 const auto *D = cast<ValueDecl>(GD.getDecl()); 313 SourceLocation Location; 314 bool IsIFunc = D->hasAttr<IFuncAttr>(); 315 if (const Attr *A = D->getDefiningAttr()) 316 Location = A->getLocation(); 317 else 318 llvm_unreachable("Not an alias or ifunc?"); 319 StringRef MangledName = getMangledName(GD); 320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 323 if (!GV) { 324 Error = true; 325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 326 } else if (GV->isDeclaration()) { 327 Error = true; 328 Diags.Report(Location, diag::err_alias_to_undefined) 329 << IsIFunc << IsIFunc; 330 } else if (IsIFunc) { 331 // Check resolver function type. 332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 333 GV->getType()->getPointerElementType()); 334 assert(FTy); 335 if (!FTy->getReturnType()->isPointerTy()) 336 Diags.Report(Location, diag::err_ifunc_resolver_return); 337 } 338 339 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 340 llvm::GlobalValue *AliaseeGV; 341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 343 else 344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 345 346 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 347 StringRef AliasSection = SA->getName(); 348 if (AliasSection != AliaseeGV->getSection()) 349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 350 << AliasSection << IsIFunc << IsIFunc; 351 } 352 353 // We have to handle alias to weak aliases in here. LLVM itself disallows 354 // this since the object semantics would not match the IL one. For 355 // compatibility with gcc we implement it by just pointing the alias 356 // to its aliasee's aliasee. We also warn, since the user is probably 357 // expecting the link to be weak. 358 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 359 if (GA->isInterposable()) { 360 Diags.Report(Location, diag::warn_alias_to_weak_alias) 361 << GV->getName() << GA->getName() << IsIFunc; 362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 363 GA->getIndirectSymbol(), Alias->getType()); 364 Alias->setIndirectSymbol(Aliasee); 365 } 366 } 367 } 368 if (!Error) 369 return; 370 371 for (const GlobalDecl &GD : Aliases) { 372 StringRef MangledName = getMangledName(GD); 373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 376 Alias->eraseFromParent(); 377 } 378 } 379 380 void CodeGenModule::clear() { 381 DeferredDeclsToEmit.clear(); 382 if (OpenMPRuntime) 383 OpenMPRuntime->clear(); 384 } 385 386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 387 StringRef MainFile) { 388 if (!hasDiagnostics()) 389 return; 390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 391 if (MainFile.empty()) 392 MainFile = "<stdin>"; 393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 394 } else { 395 if (Mismatched > 0) 396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 397 398 if (Missing > 0) 399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 400 } 401 } 402 403 void CodeGenModule::Release() { 404 EmitDeferred(); 405 EmitVTablesOpportunistically(); 406 applyGlobalValReplacements(); 407 applyReplacements(); 408 checkAliases(); 409 emitMultiVersionFunctions(); 410 EmitCXXGlobalInitFunc(); 411 EmitCXXGlobalDtorFunc(); 412 registerGlobalDtorsWithAtExit(); 413 EmitCXXThreadLocalInitFunc(); 414 if (ObjCRuntime) 415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 416 AddGlobalCtor(ObjCInitFunction); 417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 418 CUDARuntime) { 419 if (llvm::Function *CudaCtorFunction = 420 CUDARuntime->makeModuleCtorFunction()) 421 AddGlobalCtor(CudaCtorFunction); 422 } 423 if (OpenMPRuntime) { 424 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 425 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 427 } 428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 429 OpenMPRuntime->clear(); 430 } 431 if (PGOReader) { 432 getModule().setProfileSummary( 433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 434 llvm::ProfileSummary::PSK_Instr); 435 if (PGOStats.hasDiagnostics()) 436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 437 } 438 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 439 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 440 EmitGlobalAnnotations(); 441 EmitStaticExternCAliases(); 442 EmitDeferredUnusedCoverageMappings(); 443 if (CoverageMapping) 444 CoverageMapping->emit(); 445 if (CodeGenOpts.SanitizeCfiCrossDso) { 446 CodeGenFunction(*this).EmitCfiCheckFail(); 447 CodeGenFunction(*this).EmitCfiCheckStub(); 448 } 449 emitAtAvailableLinkGuard(); 450 emitLLVMUsed(); 451 if (SanStats) 452 SanStats->finish(); 453 454 if (CodeGenOpts.Autolink && 455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 456 EmitModuleLinkOptions(); 457 } 458 459 // On ELF we pass the dependent library specifiers directly to the linker 460 // without manipulating them. This is in contrast to other platforms where 461 // they are mapped to a specific linker option by the compiler. This 462 // difference is a result of the greater variety of ELF linkers and the fact 463 // that ELF linkers tend to handle libraries in a more complicated fashion 464 // than on other platforms. This forces us to defer handling the dependent 465 // libs to the linker. 466 // 467 // CUDA/HIP device and host libraries are different. Currently there is no 468 // way to differentiate dependent libraries for host or device. Existing 469 // usage of #pragma comment(lib, *) is intended for host libraries on 470 // Windows. Therefore emit llvm.dependent-libraries only for host. 471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 473 for (auto *MD : ELFDependentLibraries) 474 NMD->addOperand(MD); 475 } 476 477 // Record mregparm value now so it is visible through rest of codegen. 478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 480 CodeGenOpts.NumRegisterParameters); 481 482 if (CodeGenOpts.DwarfVersion) { 483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 484 CodeGenOpts.DwarfVersion); 485 } 486 if (CodeGenOpts.EmitCodeView) { 487 // Indicate that we want CodeView in the metadata. 488 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 489 } 490 if (CodeGenOpts.CodeViewGHash) { 491 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 492 } 493 if (CodeGenOpts.ControlFlowGuard) { 494 // Function ID tables and checks for Control Flow Guard (cfguard=2). 495 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 496 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 497 // Function ID tables for Control Flow Guard (cfguard=1). 498 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 499 } 500 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 501 // We don't support LTO with 2 with different StrictVTablePointers 502 // FIXME: we could support it by stripping all the information introduced 503 // by StrictVTablePointers. 504 505 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 506 507 llvm::Metadata *Ops[2] = { 508 llvm::MDString::get(VMContext, "StrictVTablePointers"), 509 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 510 llvm::Type::getInt32Ty(VMContext), 1))}; 511 512 getModule().addModuleFlag(llvm::Module::Require, 513 "StrictVTablePointersRequirement", 514 llvm::MDNode::get(VMContext, Ops)); 515 } 516 if (DebugInfo) 517 // We support a single version in the linked module. The LLVM 518 // parser will drop debug info with a different version number 519 // (and warn about it, too). 520 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 521 llvm::DEBUG_METADATA_VERSION); 522 523 // We need to record the widths of enums and wchar_t, so that we can generate 524 // the correct build attributes in the ARM backend. wchar_size is also used by 525 // TargetLibraryInfo. 526 uint64_t WCharWidth = 527 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 528 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 529 530 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 531 if ( Arch == llvm::Triple::arm 532 || Arch == llvm::Triple::armeb 533 || Arch == llvm::Triple::thumb 534 || Arch == llvm::Triple::thumbeb) { 535 // The minimum width of an enum in bytes 536 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 537 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 538 } 539 540 if (CodeGenOpts.SanitizeCfiCrossDso) { 541 // Indicate that we want cross-DSO control flow integrity checks. 542 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 543 } 544 545 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 546 getModule().addModuleFlag(llvm::Module::Override, 547 "CFI Canonical Jump Tables", 548 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 549 } 550 551 if (CodeGenOpts.CFProtectionReturn && 552 Target.checkCFProtectionReturnSupported(getDiags())) { 553 // Indicate that we want to instrument return control flow protection. 554 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 555 1); 556 } 557 558 if (CodeGenOpts.CFProtectionBranch && 559 Target.checkCFProtectionBranchSupported(getDiags())) { 560 // Indicate that we want to instrument branch control flow protection. 561 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 562 1); 563 } 564 565 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 566 // Indicate whether __nvvm_reflect should be configured to flush denormal 567 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 568 // property.) 569 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 570 CodeGenOpts.FP32DenormalMode != 571 llvm::DenormalMode::IEEE); 572 } 573 574 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 575 if (LangOpts.OpenCL) { 576 EmitOpenCLMetadata(); 577 // Emit SPIR version. 578 if (getTriple().isSPIR()) { 579 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 580 // opencl.spir.version named metadata. 581 // C++ is backwards compatible with OpenCL v2.0. 582 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 583 llvm::Metadata *SPIRVerElts[] = { 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 Int32Ty, Version / 100)), 586 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 587 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 588 llvm::NamedMDNode *SPIRVerMD = 589 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 590 llvm::LLVMContext &Ctx = TheModule.getContext(); 591 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 592 } 593 } 594 595 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 596 assert(PLevel < 3 && "Invalid PIC Level"); 597 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 598 if (Context.getLangOpts().PIE) 599 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 600 } 601 602 if (getCodeGenOpts().CodeModel.size() > 0) { 603 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 604 .Case("tiny", llvm::CodeModel::Tiny) 605 .Case("small", llvm::CodeModel::Small) 606 .Case("kernel", llvm::CodeModel::Kernel) 607 .Case("medium", llvm::CodeModel::Medium) 608 .Case("large", llvm::CodeModel::Large) 609 .Default(~0u); 610 if (CM != ~0u) { 611 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 612 getModule().setCodeModel(codeModel); 613 } 614 } 615 616 if (CodeGenOpts.NoPLT) 617 getModule().setRtLibUseGOT(); 618 619 SimplifyPersonality(); 620 621 if (getCodeGenOpts().EmitDeclMetadata) 622 EmitDeclMetadata(); 623 624 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 625 EmitCoverageFile(); 626 627 if (DebugInfo) 628 DebugInfo->finalize(); 629 630 if (getCodeGenOpts().EmitVersionIdentMetadata) 631 EmitVersionIdentMetadata(); 632 633 if (!getCodeGenOpts().RecordCommandLine.empty()) 634 EmitCommandLineMetadata(); 635 636 EmitTargetMetadata(); 637 } 638 639 void CodeGenModule::EmitOpenCLMetadata() { 640 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 641 // opencl.ocl.version named metadata node. 642 // C++ is backwards compatible with OpenCL v2.0. 643 // FIXME: We might need to add CXX version at some point too? 644 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 645 llvm::Metadata *OCLVerElts[] = { 646 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 647 Int32Ty, Version / 100)), 648 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 649 Int32Ty, (Version % 100) / 10))}; 650 llvm::NamedMDNode *OCLVerMD = 651 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 652 llvm::LLVMContext &Ctx = TheModule.getContext(); 653 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 654 } 655 656 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 657 // Make sure that this type is translated. 658 Types.UpdateCompletedType(TD); 659 } 660 661 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 662 // Make sure that this type is translated. 663 Types.RefreshTypeCacheForClass(RD); 664 } 665 666 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 667 if (!TBAA) 668 return nullptr; 669 return TBAA->getTypeInfo(QTy); 670 } 671 672 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 673 if (!TBAA) 674 return TBAAAccessInfo(); 675 return TBAA->getAccessInfo(AccessType); 676 } 677 678 TBAAAccessInfo 679 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 680 if (!TBAA) 681 return TBAAAccessInfo(); 682 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 683 } 684 685 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 686 if (!TBAA) 687 return nullptr; 688 return TBAA->getTBAAStructInfo(QTy); 689 } 690 691 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 692 if (!TBAA) 693 return nullptr; 694 return TBAA->getBaseTypeInfo(QTy); 695 } 696 697 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 698 if (!TBAA) 699 return nullptr; 700 return TBAA->getAccessTagInfo(Info); 701 } 702 703 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 704 TBAAAccessInfo TargetInfo) { 705 if (!TBAA) 706 return TBAAAccessInfo(); 707 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 708 } 709 710 TBAAAccessInfo 711 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 712 TBAAAccessInfo InfoB) { 713 if (!TBAA) 714 return TBAAAccessInfo(); 715 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 716 } 717 718 TBAAAccessInfo 719 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 720 TBAAAccessInfo SrcInfo) { 721 if (!TBAA) 722 return TBAAAccessInfo(); 723 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 724 } 725 726 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 727 TBAAAccessInfo TBAAInfo) { 728 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 729 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 730 } 731 732 void CodeGenModule::DecorateInstructionWithInvariantGroup( 733 llvm::Instruction *I, const CXXRecordDecl *RD) { 734 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 735 llvm::MDNode::get(getLLVMContext(), {})); 736 } 737 738 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 739 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 740 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 741 } 742 743 /// ErrorUnsupported - Print out an error that codegen doesn't support the 744 /// specified stmt yet. 745 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 746 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 747 "cannot compile this %0 yet"); 748 std::string Msg = Type; 749 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 750 << Msg << S->getSourceRange(); 751 } 752 753 /// ErrorUnsupported - Print out an error that codegen doesn't support the 754 /// specified decl yet. 755 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 756 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 757 "cannot compile this %0 yet"); 758 std::string Msg = Type; 759 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 760 } 761 762 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 763 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 764 } 765 766 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 767 const NamedDecl *D) const { 768 if (GV->hasDLLImportStorageClass()) 769 return; 770 // Internal definitions always have default visibility. 771 if (GV->hasLocalLinkage()) { 772 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 773 return; 774 } 775 if (!D) 776 return; 777 // Set visibility for definitions, and for declarations if requested globally 778 // or set explicitly. 779 LinkageInfo LV = D->getLinkageAndVisibility(); 780 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 781 !GV->isDeclarationForLinker()) 782 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 783 } 784 785 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 786 llvm::GlobalValue *GV) { 787 if (GV->hasLocalLinkage()) 788 return true; 789 790 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 791 return true; 792 793 // DLLImport explicitly marks the GV as external. 794 if (GV->hasDLLImportStorageClass()) 795 return false; 796 797 const llvm::Triple &TT = CGM.getTriple(); 798 if (TT.isWindowsGNUEnvironment()) { 799 // In MinGW, variables without DLLImport can still be automatically 800 // imported from a DLL by the linker; don't mark variables that 801 // potentially could come from another DLL as DSO local. 802 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 803 !GV->isThreadLocal()) 804 return false; 805 } 806 807 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 808 // remain unresolved in the link, they can be resolved to zero, which is 809 // outside the current DSO. 810 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 811 return false; 812 813 // Every other GV is local on COFF. 814 // Make an exception for windows OS in the triple: Some firmware builds use 815 // *-win32-macho triples. This (accidentally?) produced windows relocations 816 // without GOT tables in older clang versions; Keep this behaviour. 817 // FIXME: even thread local variables? 818 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 819 return true; 820 821 // Only handle COFF and ELF for now. 822 if (!TT.isOSBinFormatELF()) 823 return false; 824 825 // If this is not an executable, don't assume anything is local. 826 const auto &CGOpts = CGM.getCodeGenOpts(); 827 llvm::Reloc::Model RM = CGOpts.RelocationModel; 828 const auto &LOpts = CGM.getLangOpts(); 829 if (RM != llvm::Reloc::Static && !LOpts.PIE) 830 return false; 831 832 // A definition cannot be preempted from an executable. 833 if (!GV->isDeclarationForLinker()) 834 return true; 835 836 // Most PIC code sequences that assume that a symbol is local cannot produce a 837 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 838 // depended, it seems worth it to handle it here. 839 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 840 return false; 841 842 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 843 llvm::Triple::ArchType Arch = TT.getArch(); 844 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 845 Arch == llvm::Triple::ppc64le) 846 return false; 847 848 // If we can use copy relocations we can assume it is local. 849 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 850 if (!Var->isThreadLocal() && 851 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 852 return true; 853 854 // If we can use a plt entry as the symbol address we can assume it 855 // is local. 856 // FIXME: This should work for PIE, but the gold linker doesn't support it. 857 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 858 return true; 859 860 // Otherwise don't assue it is local. 861 return false; 862 } 863 864 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 865 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 866 } 867 868 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 869 GlobalDecl GD) const { 870 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 871 // C++ destructors have a few C++ ABI specific special cases. 872 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 873 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 874 return; 875 } 876 setDLLImportDLLExport(GV, D); 877 } 878 879 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 880 const NamedDecl *D) const { 881 if (D && D->isExternallyVisible()) { 882 if (D->hasAttr<DLLImportAttr>()) 883 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 884 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 885 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 886 } 887 } 888 889 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 890 GlobalDecl GD) const { 891 setDLLImportDLLExport(GV, GD); 892 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 893 } 894 895 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 896 const NamedDecl *D) const { 897 setDLLImportDLLExport(GV, D); 898 setGVPropertiesAux(GV, D); 899 } 900 901 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 902 const NamedDecl *D) const { 903 setGlobalVisibility(GV, D); 904 setDSOLocal(GV); 905 GV->setPartition(CodeGenOpts.SymbolPartition); 906 } 907 908 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 909 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 910 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 911 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 912 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 913 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 914 } 915 916 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 917 CodeGenOptions::TLSModel M) { 918 switch (M) { 919 case CodeGenOptions::GeneralDynamicTLSModel: 920 return llvm::GlobalVariable::GeneralDynamicTLSModel; 921 case CodeGenOptions::LocalDynamicTLSModel: 922 return llvm::GlobalVariable::LocalDynamicTLSModel; 923 case CodeGenOptions::InitialExecTLSModel: 924 return llvm::GlobalVariable::InitialExecTLSModel; 925 case CodeGenOptions::LocalExecTLSModel: 926 return llvm::GlobalVariable::LocalExecTLSModel; 927 } 928 llvm_unreachable("Invalid TLS model!"); 929 } 930 931 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 932 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 933 934 llvm::GlobalValue::ThreadLocalMode TLM; 935 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 936 937 // Override the TLS model if it is explicitly specified. 938 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 939 TLM = GetLLVMTLSModel(Attr->getModel()); 940 } 941 942 GV->setThreadLocalMode(TLM); 943 } 944 945 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 946 StringRef Name) { 947 const TargetInfo &Target = CGM.getTarget(); 948 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 949 } 950 951 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 952 const CPUSpecificAttr *Attr, 953 unsigned CPUIndex, 954 raw_ostream &Out) { 955 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 956 // supported. 957 if (Attr) 958 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 959 else if (CGM.getTarget().supportsIFunc()) 960 Out << ".resolver"; 961 } 962 963 static void AppendTargetMangling(const CodeGenModule &CGM, 964 const TargetAttr *Attr, raw_ostream &Out) { 965 if (Attr->isDefaultVersion()) 966 return; 967 968 Out << '.'; 969 const TargetInfo &Target = CGM.getTarget(); 970 ParsedTargetAttr Info = 971 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 972 // Multiversioning doesn't allow "no-${feature}", so we can 973 // only have "+" prefixes here. 974 assert(LHS.startswith("+") && RHS.startswith("+") && 975 "Features should always have a prefix."); 976 return Target.multiVersionSortPriority(LHS.substr(1)) > 977 Target.multiVersionSortPriority(RHS.substr(1)); 978 }); 979 980 bool IsFirst = true; 981 982 if (!Info.Architecture.empty()) { 983 IsFirst = false; 984 Out << "arch_" << Info.Architecture; 985 } 986 987 for (StringRef Feat : Info.Features) { 988 if (!IsFirst) 989 Out << '_'; 990 IsFirst = false; 991 Out << Feat.substr(1); 992 } 993 } 994 995 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 996 const NamedDecl *ND, 997 bool OmitMultiVersionMangling = false) { 998 SmallString<256> Buffer; 999 llvm::raw_svector_ostream Out(Buffer); 1000 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1001 if (MC.shouldMangleDeclName(ND)) { 1002 llvm::raw_svector_ostream Out(Buffer); 1003 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 1004 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 1005 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 1006 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 1007 else 1008 MC.mangleName(ND, Out); 1009 } else { 1010 IdentifierInfo *II = ND->getIdentifier(); 1011 assert(II && "Attempt to mangle unnamed decl."); 1012 const auto *FD = dyn_cast<FunctionDecl>(ND); 1013 1014 if (FD && 1015 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1016 llvm::raw_svector_ostream Out(Buffer); 1017 Out << "__regcall3__" << II->getName(); 1018 } else { 1019 Out << II->getName(); 1020 } 1021 } 1022 1023 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1024 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1025 switch (FD->getMultiVersionKind()) { 1026 case MultiVersionKind::CPUDispatch: 1027 case MultiVersionKind::CPUSpecific: 1028 AppendCPUSpecificCPUDispatchMangling(CGM, 1029 FD->getAttr<CPUSpecificAttr>(), 1030 GD.getMultiVersionIndex(), Out); 1031 break; 1032 case MultiVersionKind::Target: 1033 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1034 break; 1035 case MultiVersionKind::None: 1036 llvm_unreachable("None multiversion type isn't valid here"); 1037 } 1038 } 1039 1040 return Out.str(); 1041 } 1042 1043 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1044 const FunctionDecl *FD) { 1045 if (!FD->isMultiVersion()) 1046 return; 1047 1048 // Get the name of what this would be without the 'target' attribute. This 1049 // allows us to lookup the version that was emitted when this wasn't a 1050 // multiversion function. 1051 std::string NonTargetName = 1052 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1053 GlobalDecl OtherGD; 1054 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1055 assert(OtherGD.getCanonicalDecl() 1056 .getDecl() 1057 ->getAsFunction() 1058 ->isMultiVersion() && 1059 "Other GD should now be a multiversioned function"); 1060 // OtherFD is the version of this function that was mangled BEFORE 1061 // becoming a MultiVersion function. It potentially needs to be updated. 1062 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1063 .getDecl() 1064 ->getAsFunction() 1065 ->getMostRecentDecl(); 1066 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1067 // This is so that if the initial version was already the 'default' 1068 // version, we don't try to update it. 1069 if (OtherName != NonTargetName) { 1070 // Remove instead of erase, since others may have stored the StringRef 1071 // to this. 1072 const auto ExistingRecord = Manglings.find(NonTargetName); 1073 if (ExistingRecord != std::end(Manglings)) 1074 Manglings.remove(&(*ExistingRecord)); 1075 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1076 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1077 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1078 Entry->setName(OtherName); 1079 } 1080 } 1081 } 1082 1083 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1084 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1085 1086 // Some ABIs don't have constructor variants. Make sure that base and 1087 // complete constructors get mangled the same. 1088 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1089 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1090 CXXCtorType OrigCtorType = GD.getCtorType(); 1091 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1092 if (OrigCtorType == Ctor_Base) 1093 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1094 } 1095 } 1096 1097 auto FoundName = MangledDeclNames.find(CanonicalGD); 1098 if (FoundName != MangledDeclNames.end()) 1099 return FoundName->second; 1100 1101 // Keep the first result in the case of a mangling collision. 1102 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1103 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1104 1105 // Adjust kernel stub mangling as we may need to be able to differentiate 1106 // them from the kernel itself (e.g., for HIP). 1107 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1108 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1109 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1110 1111 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1112 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1113 } 1114 1115 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1116 const BlockDecl *BD) { 1117 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1118 const Decl *D = GD.getDecl(); 1119 1120 SmallString<256> Buffer; 1121 llvm::raw_svector_ostream Out(Buffer); 1122 if (!D) 1123 MangleCtx.mangleGlobalBlock(BD, 1124 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1125 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1126 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1127 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1128 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1129 else 1130 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1131 1132 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1133 return Result.first->first(); 1134 } 1135 1136 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1137 return getModule().getNamedValue(Name); 1138 } 1139 1140 /// AddGlobalCtor - Add a function to the list that will be called before 1141 /// main() runs. 1142 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1143 llvm::Constant *AssociatedData) { 1144 // FIXME: Type coercion of void()* types. 1145 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1146 } 1147 1148 /// AddGlobalDtor - Add a function to the list that will be called 1149 /// when the module is unloaded. 1150 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1151 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1152 DtorsUsingAtExit[Priority].push_back(Dtor); 1153 return; 1154 } 1155 1156 // FIXME: Type coercion of void()* types. 1157 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1158 } 1159 1160 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1161 if (Fns.empty()) return; 1162 1163 // Ctor function type is void()*. 1164 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1165 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1166 TheModule.getDataLayout().getProgramAddressSpace()); 1167 1168 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1169 llvm::StructType *CtorStructTy = llvm::StructType::get( 1170 Int32Ty, CtorPFTy, VoidPtrTy); 1171 1172 // Construct the constructor and destructor arrays. 1173 ConstantInitBuilder builder(*this); 1174 auto ctors = builder.beginArray(CtorStructTy); 1175 for (const auto &I : Fns) { 1176 auto ctor = ctors.beginStruct(CtorStructTy); 1177 ctor.addInt(Int32Ty, I.Priority); 1178 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1179 if (I.AssociatedData) 1180 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1181 else 1182 ctor.addNullPointer(VoidPtrTy); 1183 ctor.finishAndAddTo(ctors); 1184 } 1185 1186 auto list = 1187 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1188 /*constant*/ false, 1189 llvm::GlobalValue::AppendingLinkage); 1190 1191 // The LTO linker doesn't seem to like it when we set an alignment 1192 // on appending variables. Take it off as a workaround. 1193 list->setAlignment(llvm::None); 1194 1195 Fns.clear(); 1196 } 1197 1198 llvm::GlobalValue::LinkageTypes 1199 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1200 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1201 1202 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1203 1204 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1205 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1206 1207 if (isa<CXXConstructorDecl>(D) && 1208 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1209 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1210 // Our approach to inheriting constructors is fundamentally different from 1211 // that used by the MS ABI, so keep our inheriting constructor thunks 1212 // internal rather than trying to pick an unambiguous mangling for them. 1213 return llvm::GlobalValue::InternalLinkage; 1214 } 1215 1216 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1217 } 1218 1219 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1220 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1221 if (!MDS) return nullptr; 1222 1223 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1224 } 1225 1226 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1227 const CGFunctionInfo &Info, 1228 llvm::Function *F) { 1229 unsigned CallingConv; 1230 llvm::AttributeList PAL; 1231 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1232 F->setAttributes(PAL); 1233 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1234 } 1235 1236 static void removeImageAccessQualifier(std::string& TyName) { 1237 std::string ReadOnlyQual("__read_only"); 1238 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1239 if (ReadOnlyPos != std::string::npos) 1240 // "+ 1" for the space after access qualifier. 1241 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1242 else { 1243 std::string WriteOnlyQual("__write_only"); 1244 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1245 if (WriteOnlyPos != std::string::npos) 1246 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1247 else { 1248 std::string ReadWriteQual("__read_write"); 1249 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1250 if (ReadWritePos != std::string::npos) 1251 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1252 } 1253 } 1254 } 1255 1256 // Returns the address space id that should be produced to the 1257 // kernel_arg_addr_space metadata. This is always fixed to the ids 1258 // as specified in the SPIR 2.0 specification in order to differentiate 1259 // for example in clGetKernelArgInfo() implementation between the address 1260 // spaces with targets without unique mapping to the OpenCL address spaces 1261 // (basically all single AS CPUs). 1262 static unsigned ArgInfoAddressSpace(LangAS AS) { 1263 switch (AS) { 1264 case LangAS::opencl_global: return 1; 1265 case LangAS::opencl_constant: return 2; 1266 case LangAS::opencl_local: return 3; 1267 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1268 default: 1269 return 0; // Assume private. 1270 } 1271 } 1272 1273 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1274 const FunctionDecl *FD, 1275 CodeGenFunction *CGF) { 1276 assert(((FD && CGF) || (!FD && !CGF)) && 1277 "Incorrect use - FD and CGF should either be both null or not!"); 1278 // Create MDNodes that represent the kernel arg metadata. 1279 // Each MDNode is a list in the form of "key", N number of values which is 1280 // the same number of values as their are kernel arguments. 1281 1282 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1283 1284 // MDNode for the kernel argument address space qualifiers. 1285 SmallVector<llvm::Metadata *, 8> addressQuals; 1286 1287 // MDNode for the kernel argument access qualifiers (images only). 1288 SmallVector<llvm::Metadata *, 8> accessQuals; 1289 1290 // MDNode for the kernel argument type names. 1291 SmallVector<llvm::Metadata *, 8> argTypeNames; 1292 1293 // MDNode for the kernel argument base type names. 1294 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1295 1296 // MDNode for the kernel argument type qualifiers. 1297 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1298 1299 // MDNode for the kernel argument names. 1300 SmallVector<llvm::Metadata *, 8> argNames; 1301 1302 if (FD && CGF) 1303 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1304 const ParmVarDecl *parm = FD->getParamDecl(i); 1305 QualType ty = parm->getType(); 1306 std::string typeQuals; 1307 1308 if (ty->isPointerType()) { 1309 QualType pointeeTy = ty->getPointeeType(); 1310 1311 // Get address qualifier. 1312 addressQuals.push_back( 1313 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1314 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1315 1316 // Get argument type name. 1317 std::string typeName = 1318 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1319 1320 // Turn "unsigned type" to "utype" 1321 std::string::size_type pos = typeName.find("unsigned"); 1322 if (pointeeTy.isCanonical() && pos != std::string::npos) 1323 typeName.erase(pos + 1, 8); 1324 1325 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1326 1327 std::string baseTypeName = 1328 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1329 Policy) + 1330 "*"; 1331 1332 // Turn "unsigned type" to "utype" 1333 pos = baseTypeName.find("unsigned"); 1334 if (pos != std::string::npos) 1335 baseTypeName.erase(pos + 1, 8); 1336 1337 argBaseTypeNames.push_back( 1338 llvm::MDString::get(VMContext, baseTypeName)); 1339 1340 // Get argument type qualifiers: 1341 if (ty.isRestrictQualified()) 1342 typeQuals = "restrict"; 1343 if (pointeeTy.isConstQualified() || 1344 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1345 typeQuals += typeQuals.empty() ? "const" : " const"; 1346 if (pointeeTy.isVolatileQualified()) 1347 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1348 } else { 1349 uint32_t AddrSpc = 0; 1350 bool isPipe = ty->isPipeType(); 1351 if (ty->isImageType() || isPipe) 1352 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1353 1354 addressQuals.push_back( 1355 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1356 1357 // Get argument type name. 1358 std::string typeName; 1359 if (isPipe) 1360 typeName = ty.getCanonicalType() 1361 ->castAs<PipeType>() 1362 ->getElementType() 1363 .getAsString(Policy); 1364 else 1365 typeName = ty.getUnqualifiedType().getAsString(Policy); 1366 1367 // Turn "unsigned type" to "utype" 1368 std::string::size_type pos = typeName.find("unsigned"); 1369 if (ty.isCanonical() && pos != std::string::npos) 1370 typeName.erase(pos + 1, 8); 1371 1372 std::string baseTypeName; 1373 if (isPipe) 1374 baseTypeName = ty.getCanonicalType() 1375 ->castAs<PipeType>() 1376 ->getElementType() 1377 .getCanonicalType() 1378 .getAsString(Policy); 1379 else 1380 baseTypeName = 1381 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1382 1383 // Remove access qualifiers on images 1384 // (as they are inseparable from type in clang implementation, 1385 // but OpenCL spec provides a special query to get access qualifier 1386 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1387 if (ty->isImageType()) { 1388 removeImageAccessQualifier(typeName); 1389 removeImageAccessQualifier(baseTypeName); 1390 } 1391 1392 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1393 1394 // Turn "unsigned type" to "utype" 1395 pos = baseTypeName.find("unsigned"); 1396 if (pos != std::string::npos) 1397 baseTypeName.erase(pos + 1, 8); 1398 1399 argBaseTypeNames.push_back( 1400 llvm::MDString::get(VMContext, baseTypeName)); 1401 1402 if (isPipe) 1403 typeQuals = "pipe"; 1404 } 1405 1406 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1407 1408 // Get image and pipe access qualifier: 1409 if (ty->isImageType() || ty->isPipeType()) { 1410 const Decl *PDecl = parm; 1411 if (auto *TD = dyn_cast<TypedefType>(ty)) 1412 PDecl = TD->getDecl(); 1413 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1414 if (A && A->isWriteOnly()) 1415 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1416 else if (A && A->isReadWrite()) 1417 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1418 else 1419 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1420 } else 1421 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1422 1423 // Get argument name. 1424 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1425 } 1426 1427 Fn->setMetadata("kernel_arg_addr_space", 1428 llvm::MDNode::get(VMContext, addressQuals)); 1429 Fn->setMetadata("kernel_arg_access_qual", 1430 llvm::MDNode::get(VMContext, accessQuals)); 1431 Fn->setMetadata("kernel_arg_type", 1432 llvm::MDNode::get(VMContext, argTypeNames)); 1433 Fn->setMetadata("kernel_arg_base_type", 1434 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1435 Fn->setMetadata("kernel_arg_type_qual", 1436 llvm::MDNode::get(VMContext, argTypeQuals)); 1437 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1438 Fn->setMetadata("kernel_arg_name", 1439 llvm::MDNode::get(VMContext, argNames)); 1440 } 1441 1442 /// Determines whether the language options require us to model 1443 /// unwind exceptions. We treat -fexceptions as mandating this 1444 /// except under the fragile ObjC ABI with only ObjC exceptions 1445 /// enabled. This means, for example, that C with -fexceptions 1446 /// enables this. 1447 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1448 // If exceptions are completely disabled, obviously this is false. 1449 if (!LangOpts.Exceptions) return false; 1450 1451 // If C++ exceptions are enabled, this is true. 1452 if (LangOpts.CXXExceptions) return true; 1453 1454 // If ObjC exceptions are enabled, this depends on the ABI. 1455 if (LangOpts.ObjCExceptions) { 1456 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1457 } 1458 1459 return true; 1460 } 1461 1462 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1463 const CXXMethodDecl *MD) { 1464 // Check that the type metadata can ever actually be used by a call. 1465 if (!CGM.getCodeGenOpts().LTOUnit || 1466 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1467 return false; 1468 1469 // Only functions whose address can be taken with a member function pointer 1470 // need this sort of type metadata. 1471 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1472 !isa<CXXDestructorDecl>(MD); 1473 } 1474 1475 std::vector<const CXXRecordDecl *> 1476 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1477 llvm::SetVector<const CXXRecordDecl *> MostBases; 1478 1479 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1480 CollectMostBases = [&](const CXXRecordDecl *RD) { 1481 if (RD->getNumBases() == 0) 1482 MostBases.insert(RD); 1483 for (const CXXBaseSpecifier &B : RD->bases()) 1484 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1485 }; 1486 CollectMostBases(RD); 1487 return MostBases.takeVector(); 1488 } 1489 1490 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1491 llvm::Function *F) { 1492 llvm::AttrBuilder B; 1493 1494 if (CodeGenOpts.UnwindTables) 1495 B.addAttribute(llvm::Attribute::UWTable); 1496 1497 if (!hasUnwindExceptions(LangOpts)) 1498 B.addAttribute(llvm::Attribute::NoUnwind); 1499 1500 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1501 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1502 B.addAttribute(llvm::Attribute::StackProtect); 1503 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1504 B.addAttribute(llvm::Attribute::StackProtectStrong); 1505 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1506 B.addAttribute(llvm::Attribute::StackProtectReq); 1507 } 1508 1509 if (!D) { 1510 // If we don't have a declaration to control inlining, the function isn't 1511 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1512 // disabled, mark the function as noinline. 1513 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1514 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1515 B.addAttribute(llvm::Attribute::NoInline); 1516 1517 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1518 return; 1519 } 1520 1521 // Track whether we need to add the optnone LLVM attribute, 1522 // starting with the default for this optimization level. 1523 bool ShouldAddOptNone = 1524 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1525 // We can't add optnone in the following cases, it won't pass the verifier. 1526 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1527 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1528 1529 // Add optnone, but do so only if the function isn't always_inline. 1530 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1531 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1532 B.addAttribute(llvm::Attribute::OptimizeNone); 1533 1534 // OptimizeNone implies noinline; we should not be inlining such functions. 1535 B.addAttribute(llvm::Attribute::NoInline); 1536 1537 // We still need to handle naked functions even though optnone subsumes 1538 // much of their semantics. 1539 if (D->hasAttr<NakedAttr>()) 1540 B.addAttribute(llvm::Attribute::Naked); 1541 1542 // OptimizeNone wins over OptimizeForSize and MinSize. 1543 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1544 F->removeFnAttr(llvm::Attribute::MinSize); 1545 } else if (D->hasAttr<NakedAttr>()) { 1546 // Naked implies noinline: we should not be inlining such functions. 1547 B.addAttribute(llvm::Attribute::Naked); 1548 B.addAttribute(llvm::Attribute::NoInline); 1549 } else if (D->hasAttr<NoDuplicateAttr>()) { 1550 B.addAttribute(llvm::Attribute::NoDuplicate); 1551 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1552 // Add noinline if the function isn't always_inline. 1553 B.addAttribute(llvm::Attribute::NoInline); 1554 } else if (D->hasAttr<AlwaysInlineAttr>() && 1555 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1556 // (noinline wins over always_inline, and we can't specify both in IR) 1557 B.addAttribute(llvm::Attribute::AlwaysInline); 1558 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1559 // If we're not inlining, then force everything that isn't always_inline to 1560 // carry an explicit noinline attribute. 1561 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1562 B.addAttribute(llvm::Attribute::NoInline); 1563 } else { 1564 // Otherwise, propagate the inline hint attribute and potentially use its 1565 // absence to mark things as noinline. 1566 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1567 // Search function and template pattern redeclarations for inline. 1568 auto CheckForInline = [](const FunctionDecl *FD) { 1569 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1570 return Redecl->isInlineSpecified(); 1571 }; 1572 if (any_of(FD->redecls(), CheckRedeclForInline)) 1573 return true; 1574 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1575 if (!Pattern) 1576 return false; 1577 return any_of(Pattern->redecls(), CheckRedeclForInline); 1578 }; 1579 if (CheckForInline(FD)) { 1580 B.addAttribute(llvm::Attribute::InlineHint); 1581 } else if (CodeGenOpts.getInlining() == 1582 CodeGenOptions::OnlyHintInlining && 1583 !FD->isInlined() && 1584 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1585 B.addAttribute(llvm::Attribute::NoInline); 1586 } 1587 } 1588 } 1589 1590 // Add other optimization related attributes if we are optimizing this 1591 // function. 1592 if (!D->hasAttr<OptimizeNoneAttr>()) { 1593 if (D->hasAttr<ColdAttr>()) { 1594 if (!ShouldAddOptNone) 1595 B.addAttribute(llvm::Attribute::OptimizeForSize); 1596 B.addAttribute(llvm::Attribute::Cold); 1597 } 1598 1599 if (D->hasAttr<MinSizeAttr>()) 1600 B.addAttribute(llvm::Attribute::MinSize); 1601 } 1602 1603 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1604 1605 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1606 if (alignment) 1607 F->setAlignment(llvm::Align(alignment)); 1608 1609 if (!D->hasAttr<AlignedAttr>()) 1610 if (LangOpts.FunctionAlignment) 1611 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1612 1613 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1614 // reserve a bit for differentiating between virtual and non-virtual member 1615 // functions. If the current target's C++ ABI requires this and this is a 1616 // member function, set its alignment accordingly. 1617 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1618 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1619 F->setAlignment(llvm::Align(2)); 1620 } 1621 1622 // In the cross-dso CFI mode with canonical jump tables, we want !type 1623 // attributes on definitions only. 1624 if (CodeGenOpts.SanitizeCfiCrossDso && 1625 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1626 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1627 // Skip available_externally functions. They won't be codegen'ed in the 1628 // current module anyway. 1629 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1630 CreateFunctionTypeMetadataForIcall(FD, F); 1631 } 1632 } 1633 1634 // Emit type metadata on member functions for member function pointer checks. 1635 // These are only ever necessary on definitions; we're guaranteed that the 1636 // definition will be present in the LTO unit as a result of LTO visibility. 1637 auto *MD = dyn_cast<CXXMethodDecl>(D); 1638 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1639 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1640 llvm::Metadata *Id = 1641 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1642 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1643 F->addTypeMetadata(0, Id); 1644 } 1645 } 1646 } 1647 1648 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1649 const Decl *D = GD.getDecl(); 1650 if (dyn_cast_or_null<NamedDecl>(D)) 1651 setGVProperties(GV, GD); 1652 else 1653 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1654 1655 if (D && D->hasAttr<UsedAttr>()) 1656 addUsedGlobal(GV); 1657 1658 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1659 const auto *VD = cast<VarDecl>(D); 1660 if (VD->getType().isConstQualified() && 1661 VD->getStorageDuration() == SD_Static) 1662 addUsedGlobal(GV); 1663 } 1664 } 1665 1666 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1667 llvm::AttrBuilder &Attrs) { 1668 // Add target-cpu and target-features attributes to functions. If 1669 // we have a decl for the function and it has a target attribute then 1670 // parse that and add it to the feature set. 1671 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1672 std::vector<std::string> Features; 1673 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1674 FD = FD ? FD->getMostRecentDecl() : FD; 1675 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1676 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1677 bool AddedAttr = false; 1678 if (TD || SD) { 1679 llvm::StringMap<bool> FeatureMap; 1680 getContext().getFunctionFeatureMap(FeatureMap, GD); 1681 1682 // Produce the canonical string for this set of features. 1683 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1684 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1685 1686 // Now add the target-cpu and target-features to the function. 1687 // While we populated the feature map above, we still need to 1688 // get and parse the target attribute so we can get the cpu for 1689 // the function. 1690 if (TD) { 1691 ParsedTargetAttr ParsedAttr = TD->parse(); 1692 if (ParsedAttr.Architecture != "" && 1693 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1694 TargetCPU = ParsedAttr.Architecture; 1695 } 1696 } else { 1697 // Otherwise just add the existing target cpu and target features to the 1698 // function. 1699 Features = getTarget().getTargetOpts().Features; 1700 } 1701 1702 if (TargetCPU != "") { 1703 Attrs.addAttribute("target-cpu", TargetCPU); 1704 AddedAttr = true; 1705 } 1706 if (!Features.empty()) { 1707 llvm::sort(Features); 1708 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1709 AddedAttr = true; 1710 } 1711 1712 return AddedAttr; 1713 } 1714 1715 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1716 llvm::GlobalObject *GO) { 1717 const Decl *D = GD.getDecl(); 1718 SetCommonAttributes(GD, GO); 1719 1720 if (D) { 1721 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1722 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1723 GV->addAttribute("bss-section", SA->getName()); 1724 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1725 GV->addAttribute("data-section", SA->getName()); 1726 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1727 GV->addAttribute("rodata-section", SA->getName()); 1728 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1729 GV->addAttribute("relro-section", SA->getName()); 1730 } 1731 1732 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1733 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1734 if (!D->getAttr<SectionAttr>()) 1735 F->addFnAttr("implicit-section-name", SA->getName()); 1736 1737 llvm::AttrBuilder Attrs; 1738 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1739 // We know that GetCPUAndFeaturesAttributes will always have the 1740 // newest set, since it has the newest possible FunctionDecl, so the 1741 // new ones should replace the old. 1742 F->removeFnAttr("target-cpu"); 1743 F->removeFnAttr("target-features"); 1744 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1745 } 1746 } 1747 1748 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1749 GO->setSection(CSA->getName()); 1750 else if (const auto *SA = D->getAttr<SectionAttr>()) 1751 GO->setSection(SA->getName()); 1752 } 1753 1754 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1755 } 1756 1757 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1758 llvm::Function *F, 1759 const CGFunctionInfo &FI) { 1760 const Decl *D = GD.getDecl(); 1761 SetLLVMFunctionAttributes(GD, FI, F); 1762 SetLLVMFunctionAttributesForDefinition(D, F); 1763 1764 F->setLinkage(llvm::Function::InternalLinkage); 1765 1766 setNonAliasAttributes(GD, F); 1767 } 1768 1769 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1770 // Set linkage and visibility in case we never see a definition. 1771 LinkageInfo LV = ND->getLinkageAndVisibility(); 1772 // Don't set internal linkage on declarations. 1773 // "extern_weak" is overloaded in LLVM; we probably should have 1774 // separate linkage types for this. 1775 if (isExternallyVisible(LV.getLinkage()) && 1776 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1777 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1778 } 1779 1780 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1781 llvm::Function *F) { 1782 // Only if we are checking indirect calls. 1783 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1784 return; 1785 1786 // Non-static class methods are handled via vtable or member function pointer 1787 // checks elsewhere. 1788 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1789 return; 1790 1791 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1792 F->addTypeMetadata(0, MD); 1793 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1794 1795 // Emit a hash-based bit set entry for cross-DSO calls. 1796 if (CodeGenOpts.SanitizeCfiCrossDso) 1797 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1798 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1799 } 1800 1801 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1802 bool IsIncompleteFunction, 1803 bool IsThunk) { 1804 1805 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1806 // If this is an intrinsic function, set the function's attributes 1807 // to the intrinsic's attributes. 1808 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1809 return; 1810 } 1811 1812 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1813 1814 if (!IsIncompleteFunction) 1815 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1816 1817 // Add the Returned attribute for "this", except for iOS 5 and earlier 1818 // where substantial code, including the libstdc++ dylib, was compiled with 1819 // GCC and does not actually return "this". 1820 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1821 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1822 assert(!F->arg_empty() && 1823 F->arg_begin()->getType() 1824 ->canLosslesslyBitCastTo(F->getReturnType()) && 1825 "unexpected this return"); 1826 F->addAttribute(1, llvm::Attribute::Returned); 1827 } 1828 1829 // Only a few attributes are set on declarations; these may later be 1830 // overridden by a definition. 1831 1832 setLinkageForGV(F, FD); 1833 setGVProperties(F, FD); 1834 1835 // Setup target-specific attributes. 1836 if (!IsIncompleteFunction && F->isDeclaration()) 1837 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1838 1839 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1840 F->setSection(CSA->getName()); 1841 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1842 F->setSection(SA->getName()); 1843 1844 if (FD->isInlineBuiltinDeclaration()) { 1845 F->addAttribute(llvm::AttributeList::FunctionIndex, 1846 llvm::Attribute::NoBuiltin); 1847 } 1848 1849 if (FD->isReplaceableGlobalAllocationFunction()) { 1850 // A replaceable global allocation function does not act like a builtin by 1851 // default, only if it is invoked by a new-expression or delete-expression. 1852 F->addAttribute(llvm::AttributeList::FunctionIndex, 1853 llvm::Attribute::NoBuiltin); 1854 1855 // A sane operator new returns a non-aliasing pointer. 1856 // FIXME: Also add NonNull attribute to the return value 1857 // for the non-nothrow forms? 1858 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1859 if (getCodeGenOpts().AssumeSaneOperatorNew && 1860 (Kind == OO_New || Kind == OO_Array_New)) 1861 F->addAttribute(llvm::AttributeList::ReturnIndex, 1862 llvm::Attribute::NoAlias); 1863 } 1864 1865 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1866 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1867 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1868 if (MD->isVirtual()) 1869 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1870 1871 // Don't emit entries for function declarations in the cross-DSO mode. This 1872 // is handled with better precision by the receiving DSO. But if jump tables 1873 // are non-canonical then we need type metadata in order to produce the local 1874 // jump table. 1875 if (!CodeGenOpts.SanitizeCfiCrossDso || 1876 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1877 CreateFunctionTypeMetadataForIcall(FD, F); 1878 1879 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1880 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1881 1882 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1883 // Annotate the callback behavior as metadata: 1884 // - The callback callee (as argument number). 1885 // - The callback payloads (as argument numbers). 1886 llvm::LLVMContext &Ctx = F->getContext(); 1887 llvm::MDBuilder MDB(Ctx); 1888 1889 // The payload indices are all but the first one in the encoding. The first 1890 // identifies the callback callee. 1891 int CalleeIdx = *CB->encoding_begin(); 1892 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1893 F->addMetadata(llvm::LLVMContext::MD_callback, 1894 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1895 CalleeIdx, PayloadIndices, 1896 /* VarArgsArePassed */ false)})); 1897 } 1898 } 1899 1900 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1901 assert(!GV->isDeclaration() && 1902 "Only globals with definition can force usage."); 1903 LLVMUsed.emplace_back(GV); 1904 } 1905 1906 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1907 assert(!GV->isDeclaration() && 1908 "Only globals with definition can force usage."); 1909 LLVMCompilerUsed.emplace_back(GV); 1910 } 1911 1912 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1913 std::vector<llvm::WeakTrackingVH> &List) { 1914 // Don't create llvm.used if there is no need. 1915 if (List.empty()) 1916 return; 1917 1918 // Convert List to what ConstantArray needs. 1919 SmallVector<llvm::Constant*, 8> UsedArray; 1920 UsedArray.resize(List.size()); 1921 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1922 UsedArray[i] = 1923 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1924 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1925 } 1926 1927 if (UsedArray.empty()) 1928 return; 1929 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1930 1931 auto *GV = new llvm::GlobalVariable( 1932 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1933 llvm::ConstantArray::get(ATy, UsedArray), Name); 1934 1935 GV->setSection("llvm.metadata"); 1936 } 1937 1938 void CodeGenModule::emitLLVMUsed() { 1939 emitUsed(*this, "llvm.used", LLVMUsed); 1940 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1941 } 1942 1943 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1944 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1945 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1946 } 1947 1948 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1949 llvm::SmallString<32> Opt; 1950 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1951 if (Opt.empty()) 1952 return; 1953 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1954 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1955 } 1956 1957 void CodeGenModule::AddDependentLib(StringRef Lib) { 1958 auto &C = getLLVMContext(); 1959 if (getTarget().getTriple().isOSBinFormatELF()) { 1960 ELFDependentLibraries.push_back( 1961 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1962 return; 1963 } 1964 1965 llvm::SmallString<24> Opt; 1966 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1967 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1968 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1969 } 1970 1971 /// Add link options implied by the given module, including modules 1972 /// it depends on, using a postorder walk. 1973 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1974 SmallVectorImpl<llvm::MDNode *> &Metadata, 1975 llvm::SmallPtrSet<Module *, 16> &Visited) { 1976 // Import this module's parent. 1977 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1978 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1979 } 1980 1981 // Import this module's dependencies. 1982 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1983 if (Visited.insert(Mod->Imports[I - 1]).second) 1984 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1985 } 1986 1987 // Add linker options to link against the libraries/frameworks 1988 // described by this module. 1989 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1990 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1991 1992 // For modules that use export_as for linking, use that module 1993 // name instead. 1994 if (Mod->UseExportAsModuleLinkName) 1995 return; 1996 1997 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1998 // Link against a framework. Frameworks are currently Darwin only, so we 1999 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2000 if (Mod->LinkLibraries[I-1].IsFramework) { 2001 llvm::Metadata *Args[2] = { 2002 llvm::MDString::get(Context, "-framework"), 2003 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2004 2005 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2006 continue; 2007 } 2008 2009 // Link against a library. 2010 if (IsELF) { 2011 llvm::Metadata *Args[2] = { 2012 llvm::MDString::get(Context, "lib"), 2013 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2014 }; 2015 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2016 } else { 2017 llvm::SmallString<24> Opt; 2018 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2019 Mod->LinkLibraries[I - 1].Library, Opt); 2020 auto *OptString = llvm::MDString::get(Context, Opt); 2021 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2022 } 2023 } 2024 } 2025 2026 void CodeGenModule::EmitModuleLinkOptions() { 2027 // Collect the set of all of the modules we want to visit to emit link 2028 // options, which is essentially the imported modules and all of their 2029 // non-explicit child modules. 2030 llvm::SetVector<clang::Module *> LinkModules; 2031 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2032 SmallVector<clang::Module *, 16> Stack; 2033 2034 // Seed the stack with imported modules. 2035 for (Module *M : ImportedModules) { 2036 // Do not add any link flags when an implementation TU of a module imports 2037 // a header of that same module. 2038 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2039 !getLangOpts().isCompilingModule()) 2040 continue; 2041 if (Visited.insert(M).second) 2042 Stack.push_back(M); 2043 } 2044 2045 // Find all of the modules to import, making a little effort to prune 2046 // non-leaf modules. 2047 while (!Stack.empty()) { 2048 clang::Module *Mod = Stack.pop_back_val(); 2049 2050 bool AnyChildren = false; 2051 2052 // Visit the submodules of this module. 2053 for (const auto &SM : Mod->submodules()) { 2054 // Skip explicit children; they need to be explicitly imported to be 2055 // linked against. 2056 if (SM->IsExplicit) 2057 continue; 2058 2059 if (Visited.insert(SM).second) { 2060 Stack.push_back(SM); 2061 AnyChildren = true; 2062 } 2063 } 2064 2065 // We didn't find any children, so add this module to the list of 2066 // modules to link against. 2067 if (!AnyChildren) { 2068 LinkModules.insert(Mod); 2069 } 2070 } 2071 2072 // Add link options for all of the imported modules in reverse topological 2073 // order. We don't do anything to try to order import link flags with respect 2074 // to linker options inserted by things like #pragma comment(). 2075 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2076 Visited.clear(); 2077 for (Module *M : LinkModules) 2078 if (Visited.insert(M).second) 2079 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2080 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2081 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2082 2083 // Add the linker options metadata flag. 2084 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2085 for (auto *MD : LinkerOptionsMetadata) 2086 NMD->addOperand(MD); 2087 } 2088 2089 void CodeGenModule::EmitDeferred() { 2090 // Emit deferred declare target declarations. 2091 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2092 getOpenMPRuntime().emitDeferredTargetDecls(); 2093 2094 // Emit code for any potentially referenced deferred decls. Since a 2095 // previously unused static decl may become used during the generation of code 2096 // for a static function, iterate until no changes are made. 2097 2098 if (!DeferredVTables.empty()) { 2099 EmitDeferredVTables(); 2100 2101 // Emitting a vtable doesn't directly cause more vtables to 2102 // become deferred, although it can cause functions to be 2103 // emitted that then need those vtables. 2104 assert(DeferredVTables.empty()); 2105 } 2106 2107 // Stop if we're out of both deferred vtables and deferred declarations. 2108 if (DeferredDeclsToEmit.empty()) 2109 return; 2110 2111 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2112 // work, it will not interfere with this. 2113 std::vector<GlobalDecl> CurDeclsToEmit; 2114 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2115 2116 for (GlobalDecl &D : CurDeclsToEmit) { 2117 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2118 // to get GlobalValue with exactly the type we need, not something that 2119 // might had been created for another decl with the same mangled name but 2120 // different type. 2121 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2122 GetAddrOfGlobal(D, ForDefinition)); 2123 2124 // In case of different address spaces, we may still get a cast, even with 2125 // IsForDefinition equal to true. Query mangled names table to get 2126 // GlobalValue. 2127 if (!GV) 2128 GV = GetGlobalValue(getMangledName(D)); 2129 2130 // Make sure GetGlobalValue returned non-null. 2131 assert(GV); 2132 2133 // Check to see if we've already emitted this. This is necessary 2134 // for a couple of reasons: first, decls can end up in the 2135 // deferred-decls queue multiple times, and second, decls can end 2136 // up with definitions in unusual ways (e.g. by an extern inline 2137 // function acquiring a strong function redefinition). Just 2138 // ignore these cases. 2139 if (!GV->isDeclaration()) 2140 continue; 2141 2142 // If this is OpenMP, check if it is legal to emit this global normally. 2143 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2144 continue; 2145 2146 // Otherwise, emit the definition and move on to the next one. 2147 EmitGlobalDefinition(D, GV); 2148 2149 // If we found out that we need to emit more decls, do that recursively. 2150 // This has the advantage that the decls are emitted in a DFS and related 2151 // ones are close together, which is convenient for testing. 2152 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2153 EmitDeferred(); 2154 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2155 } 2156 } 2157 } 2158 2159 void CodeGenModule::EmitVTablesOpportunistically() { 2160 // Try to emit external vtables as available_externally if they have emitted 2161 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2162 // is not allowed to create new references to things that need to be emitted 2163 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2164 2165 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2166 && "Only emit opportunistic vtables with optimizations"); 2167 2168 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2169 assert(getVTables().isVTableExternal(RD) && 2170 "This queue should only contain external vtables"); 2171 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2172 VTables.GenerateClassData(RD); 2173 } 2174 OpportunisticVTables.clear(); 2175 } 2176 2177 void CodeGenModule::EmitGlobalAnnotations() { 2178 if (Annotations.empty()) 2179 return; 2180 2181 // Create a new global variable for the ConstantStruct in the Module. 2182 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2183 Annotations[0]->getType(), Annotations.size()), Annotations); 2184 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2185 llvm::GlobalValue::AppendingLinkage, 2186 Array, "llvm.global.annotations"); 2187 gv->setSection(AnnotationSection); 2188 } 2189 2190 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2191 llvm::Constant *&AStr = AnnotationStrings[Str]; 2192 if (AStr) 2193 return AStr; 2194 2195 // Not found yet, create a new global. 2196 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2197 auto *gv = 2198 new llvm::GlobalVariable(getModule(), s->getType(), true, 2199 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2200 gv->setSection(AnnotationSection); 2201 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2202 AStr = gv; 2203 return gv; 2204 } 2205 2206 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2207 SourceManager &SM = getContext().getSourceManager(); 2208 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2209 if (PLoc.isValid()) 2210 return EmitAnnotationString(PLoc.getFilename()); 2211 return EmitAnnotationString(SM.getBufferName(Loc)); 2212 } 2213 2214 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2215 SourceManager &SM = getContext().getSourceManager(); 2216 PresumedLoc PLoc = SM.getPresumedLoc(L); 2217 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2218 SM.getExpansionLineNumber(L); 2219 return llvm::ConstantInt::get(Int32Ty, LineNo); 2220 } 2221 2222 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2223 const AnnotateAttr *AA, 2224 SourceLocation L) { 2225 // Get the globals for file name, annotation, and the line number. 2226 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2227 *UnitGV = EmitAnnotationUnit(L), 2228 *LineNoCst = EmitAnnotationLineNo(L); 2229 2230 llvm::Constant *ASZeroGV = GV; 2231 if (GV->getAddressSpace() != 0) { 2232 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2233 GV, GV->getValueType()->getPointerTo(0)); 2234 } 2235 2236 // Create the ConstantStruct for the global annotation. 2237 llvm::Constant *Fields[4] = { 2238 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2239 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2240 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2241 LineNoCst 2242 }; 2243 return llvm::ConstantStruct::getAnon(Fields); 2244 } 2245 2246 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2247 llvm::GlobalValue *GV) { 2248 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2249 // Get the struct elements for these annotations. 2250 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2251 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2252 } 2253 2254 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2255 llvm::Function *Fn, 2256 SourceLocation Loc) const { 2257 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2258 // Blacklist by function name. 2259 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2260 return true; 2261 // Blacklist by location. 2262 if (Loc.isValid()) 2263 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2264 // If location is unknown, this may be a compiler-generated function. Assume 2265 // it's located in the main file. 2266 auto &SM = Context.getSourceManager(); 2267 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2268 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2269 } 2270 return false; 2271 } 2272 2273 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2274 SourceLocation Loc, QualType Ty, 2275 StringRef Category) const { 2276 // For now globals can be blacklisted only in ASan and KASan. 2277 const SanitizerMask EnabledAsanMask = 2278 LangOpts.Sanitize.Mask & 2279 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2280 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2281 SanitizerKind::MemTag); 2282 if (!EnabledAsanMask) 2283 return false; 2284 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2285 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2286 return true; 2287 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2288 return true; 2289 // Check global type. 2290 if (!Ty.isNull()) { 2291 // Drill down the array types: if global variable of a fixed type is 2292 // blacklisted, we also don't instrument arrays of them. 2293 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2294 Ty = AT->getElementType(); 2295 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2296 // We allow to blacklist only record types (classes, structs etc.) 2297 if (Ty->isRecordType()) { 2298 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2299 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2300 return true; 2301 } 2302 } 2303 return false; 2304 } 2305 2306 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2307 StringRef Category) const { 2308 const auto &XRayFilter = getContext().getXRayFilter(); 2309 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2310 auto Attr = ImbueAttr::NONE; 2311 if (Loc.isValid()) 2312 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2313 if (Attr == ImbueAttr::NONE) 2314 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2315 switch (Attr) { 2316 case ImbueAttr::NONE: 2317 return false; 2318 case ImbueAttr::ALWAYS: 2319 Fn->addFnAttr("function-instrument", "xray-always"); 2320 break; 2321 case ImbueAttr::ALWAYS_ARG1: 2322 Fn->addFnAttr("function-instrument", "xray-always"); 2323 Fn->addFnAttr("xray-log-args", "1"); 2324 break; 2325 case ImbueAttr::NEVER: 2326 Fn->addFnAttr("function-instrument", "xray-never"); 2327 break; 2328 } 2329 return true; 2330 } 2331 2332 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2333 // Never defer when EmitAllDecls is specified. 2334 if (LangOpts.EmitAllDecls) 2335 return true; 2336 2337 if (CodeGenOpts.KeepStaticConsts) { 2338 const auto *VD = dyn_cast<VarDecl>(Global); 2339 if (VD && VD->getType().isConstQualified() && 2340 VD->getStorageDuration() == SD_Static) 2341 return true; 2342 } 2343 2344 return getContext().DeclMustBeEmitted(Global); 2345 } 2346 2347 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2348 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2349 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2350 // Implicit template instantiations may change linkage if they are later 2351 // explicitly instantiated, so they should not be emitted eagerly. 2352 return false; 2353 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2354 // not emit them eagerly unless we sure that the function must be emitted on 2355 // the host. 2356 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2357 !LangOpts.OpenMPIsDevice && 2358 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2359 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2360 return false; 2361 } 2362 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2363 if (Context.getInlineVariableDefinitionKind(VD) == 2364 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2365 // A definition of an inline constexpr static data member may change 2366 // linkage later if it's redeclared outside the class. 2367 return false; 2368 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2369 // codegen for global variables, because they may be marked as threadprivate. 2370 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2371 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2372 !isTypeConstant(Global->getType(), false) && 2373 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2374 return false; 2375 2376 return true; 2377 } 2378 2379 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2380 const CXXUuidofExpr* E) { 2381 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2382 // well-formed. 2383 StringRef Uuid = E->getUuidStr(); 2384 std::string Name = "_GUID_" + Uuid.lower(); 2385 std::replace(Name.begin(), Name.end(), '-', '_'); 2386 2387 // The UUID descriptor should be pointer aligned. 2388 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2389 2390 // Look for an existing global. 2391 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2392 return ConstantAddress(GV, Alignment); 2393 2394 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2395 assert(Init && "failed to initialize as constant"); 2396 2397 auto *GV = new llvm::GlobalVariable( 2398 getModule(), Init->getType(), 2399 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2400 if (supportsCOMDAT()) 2401 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2402 setDSOLocal(GV); 2403 return ConstantAddress(GV, Alignment); 2404 } 2405 2406 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2407 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2408 assert(AA && "No alias?"); 2409 2410 CharUnits Alignment = getContext().getDeclAlign(VD); 2411 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2412 2413 // See if there is already something with the target's name in the module. 2414 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2415 if (Entry) { 2416 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2417 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2418 return ConstantAddress(Ptr, Alignment); 2419 } 2420 2421 llvm::Constant *Aliasee; 2422 if (isa<llvm::FunctionType>(DeclTy)) 2423 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2424 GlobalDecl(cast<FunctionDecl>(VD)), 2425 /*ForVTable=*/false); 2426 else 2427 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2428 llvm::PointerType::getUnqual(DeclTy), 2429 nullptr); 2430 2431 auto *F = cast<llvm::GlobalValue>(Aliasee); 2432 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2433 WeakRefReferences.insert(F); 2434 2435 return ConstantAddress(Aliasee, Alignment); 2436 } 2437 2438 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2439 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2440 2441 // Weak references don't produce any output by themselves. 2442 if (Global->hasAttr<WeakRefAttr>()) 2443 return; 2444 2445 // If this is an alias definition (which otherwise looks like a declaration) 2446 // emit it now. 2447 if (Global->hasAttr<AliasAttr>()) 2448 return EmitAliasDefinition(GD); 2449 2450 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2451 if (Global->hasAttr<IFuncAttr>()) 2452 return emitIFuncDefinition(GD); 2453 2454 // If this is a cpu_dispatch multiversion function, emit the resolver. 2455 if (Global->hasAttr<CPUDispatchAttr>()) 2456 return emitCPUDispatchDefinition(GD); 2457 2458 // If this is CUDA, be selective about which declarations we emit. 2459 if (LangOpts.CUDA) { 2460 if (LangOpts.CUDAIsDevice) { 2461 if (!Global->hasAttr<CUDADeviceAttr>() && 2462 !Global->hasAttr<CUDAGlobalAttr>() && 2463 !Global->hasAttr<CUDAConstantAttr>() && 2464 !Global->hasAttr<CUDASharedAttr>() && 2465 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2466 return; 2467 } else { 2468 // We need to emit host-side 'shadows' for all global 2469 // device-side variables because the CUDA runtime needs their 2470 // size and host-side address in order to provide access to 2471 // their device-side incarnations. 2472 2473 // So device-only functions are the only things we skip. 2474 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2475 Global->hasAttr<CUDADeviceAttr>()) 2476 return; 2477 2478 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2479 "Expected Variable or Function"); 2480 } 2481 } 2482 2483 if (LangOpts.OpenMP) { 2484 // If this is OpenMP, check if it is legal to emit this global normally. 2485 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2486 return; 2487 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2488 if (MustBeEmitted(Global)) 2489 EmitOMPDeclareReduction(DRD); 2490 return; 2491 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2492 if (MustBeEmitted(Global)) 2493 EmitOMPDeclareMapper(DMD); 2494 return; 2495 } 2496 } 2497 2498 // Ignore declarations, they will be emitted on their first use. 2499 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2500 // Forward declarations are emitted lazily on first use. 2501 if (!FD->doesThisDeclarationHaveABody()) { 2502 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2503 return; 2504 2505 StringRef MangledName = getMangledName(GD); 2506 2507 // Compute the function info and LLVM type. 2508 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2509 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2510 2511 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2512 /*DontDefer=*/false); 2513 return; 2514 } 2515 } else { 2516 const auto *VD = cast<VarDecl>(Global); 2517 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2518 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2519 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2520 if (LangOpts.OpenMP) { 2521 // Emit declaration of the must-be-emitted declare target variable. 2522 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2523 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2524 bool UnifiedMemoryEnabled = 2525 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2526 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2527 !UnifiedMemoryEnabled) { 2528 (void)GetAddrOfGlobalVar(VD); 2529 } else { 2530 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2531 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2532 UnifiedMemoryEnabled)) && 2533 "Link clause or to clause with unified memory expected."); 2534 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2535 } 2536 2537 return; 2538 } 2539 } 2540 // If this declaration may have caused an inline variable definition to 2541 // change linkage, make sure that it's emitted. 2542 if (Context.getInlineVariableDefinitionKind(VD) == 2543 ASTContext::InlineVariableDefinitionKind::Strong) 2544 GetAddrOfGlobalVar(VD); 2545 return; 2546 } 2547 } 2548 2549 // Defer code generation to first use when possible, e.g. if this is an inline 2550 // function. If the global must always be emitted, do it eagerly if possible 2551 // to benefit from cache locality. 2552 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2553 // Emit the definition if it can't be deferred. 2554 EmitGlobalDefinition(GD); 2555 return; 2556 } 2557 2558 // Check if this must be emitted as declare variant. 2559 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2560 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2561 return; 2562 2563 // If we're deferring emission of a C++ variable with an 2564 // initializer, remember the order in which it appeared in the file. 2565 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2566 cast<VarDecl>(Global)->hasInit()) { 2567 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2568 CXXGlobalInits.push_back(nullptr); 2569 } 2570 2571 StringRef MangledName = getMangledName(GD); 2572 if (GetGlobalValue(MangledName) != nullptr) { 2573 // The value has already been used and should therefore be emitted. 2574 addDeferredDeclToEmit(GD); 2575 } else if (MustBeEmitted(Global)) { 2576 // The value must be emitted, but cannot be emitted eagerly. 2577 assert(!MayBeEmittedEagerly(Global)); 2578 addDeferredDeclToEmit(GD); 2579 } else { 2580 // Otherwise, remember that we saw a deferred decl with this name. The 2581 // first use of the mangled name will cause it to move into 2582 // DeferredDeclsToEmit. 2583 DeferredDecls[MangledName] = GD; 2584 } 2585 } 2586 2587 // Check if T is a class type with a destructor that's not dllimport. 2588 static bool HasNonDllImportDtor(QualType T) { 2589 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2590 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2591 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2592 return true; 2593 2594 return false; 2595 } 2596 2597 namespace { 2598 struct FunctionIsDirectlyRecursive 2599 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2600 const StringRef Name; 2601 const Builtin::Context &BI; 2602 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2603 : Name(N), BI(C) {} 2604 2605 bool VisitCallExpr(const CallExpr *E) { 2606 const FunctionDecl *FD = E->getDirectCallee(); 2607 if (!FD) 2608 return false; 2609 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2610 if (Attr && Name == Attr->getLabel()) 2611 return true; 2612 unsigned BuiltinID = FD->getBuiltinID(); 2613 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2614 return false; 2615 StringRef BuiltinName = BI.getName(BuiltinID); 2616 if (BuiltinName.startswith("__builtin_") && 2617 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 bool VisitStmt(const Stmt *S) { 2624 for (const Stmt *Child : S->children()) 2625 if (Child && this->Visit(Child)) 2626 return true; 2627 return false; 2628 } 2629 }; 2630 2631 // Make sure we're not referencing non-imported vars or functions. 2632 struct DLLImportFunctionVisitor 2633 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2634 bool SafeToInline = true; 2635 2636 bool shouldVisitImplicitCode() const { return true; } 2637 2638 bool VisitVarDecl(VarDecl *VD) { 2639 if (VD->getTLSKind()) { 2640 // A thread-local variable cannot be imported. 2641 SafeToInline = false; 2642 return SafeToInline; 2643 } 2644 2645 // A variable definition might imply a destructor call. 2646 if (VD->isThisDeclarationADefinition()) 2647 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2648 2649 return SafeToInline; 2650 } 2651 2652 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2653 if (const auto *D = E->getTemporary()->getDestructor()) 2654 SafeToInline = D->hasAttr<DLLImportAttr>(); 2655 return SafeToInline; 2656 } 2657 2658 bool VisitDeclRefExpr(DeclRefExpr *E) { 2659 ValueDecl *VD = E->getDecl(); 2660 if (isa<FunctionDecl>(VD)) 2661 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2662 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2663 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2664 return SafeToInline; 2665 } 2666 2667 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2668 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2669 return SafeToInline; 2670 } 2671 2672 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2673 CXXMethodDecl *M = E->getMethodDecl(); 2674 if (!M) { 2675 // Call through a pointer to member function. This is safe to inline. 2676 SafeToInline = true; 2677 } else { 2678 SafeToInline = M->hasAttr<DLLImportAttr>(); 2679 } 2680 return SafeToInline; 2681 } 2682 2683 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2684 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2685 return SafeToInline; 2686 } 2687 2688 bool VisitCXXNewExpr(CXXNewExpr *E) { 2689 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2690 return SafeToInline; 2691 } 2692 }; 2693 } 2694 2695 // isTriviallyRecursive - Check if this function calls another 2696 // decl that, because of the asm attribute or the other decl being a builtin, 2697 // ends up pointing to itself. 2698 bool 2699 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2700 StringRef Name; 2701 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2702 // asm labels are a special kind of mangling we have to support. 2703 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2704 if (!Attr) 2705 return false; 2706 Name = Attr->getLabel(); 2707 } else { 2708 Name = FD->getName(); 2709 } 2710 2711 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2712 const Stmt *Body = FD->getBody(); 2713 return Body ? Walker.Visit(Body) : false; 2714 } 2715 2716 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2717 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2718 return true; 2719 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2720 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2721 return false; 2722 2723 if (F->hasAttr<DLLImportAttr>()) { 2724 // Check whether it would be safe to inline this dllimport function. 2725 DLLImportFunctionVisitor Visitor; 2726 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2727 if (!Visitor.SafeToInline) 2728 return false; 2729 2730 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2731 // Implicit destructor invocations aren't captured in the AST, so the 2732 // check above can't see them. Check for them manually here. 2733 for (const Decl *Member : Dtor->getParent()->decls()) 2734 if (isa<FieldDecl>(Member)) 2735 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2736 return false; 2737 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2738 if (HasNonDllImportDtor(B.getType())) 2739 return false; 2740 } 2741 } 2742 2743 // PR9614. Avoid cases where the source code is lying to us. An available 2744 // externally function should have an equivalent function somewhere else, 2745 // but a function that calls itself is clearly not equivalent to the real 2746 // implementation. 2747 // This happens in glibc's btowc and in some configure checks. 2748 return !isTriviallyRecursive(F); 2749 } 2750 2751 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2752 return CodeGenOpts.OptimizationLevel > 0; 2753 } 2754 2755 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2756 llvm::GlobalValue *GV) { 2757 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2758 2759 if (FD->isCPUSpecificMultiVersion()) { 2760 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2761 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2762 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2763 // Requires multiple emits. 2764 } else 2765 EmitGlobalFunctionDefinition(GD, GV); 2766 } 2767 2768 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2769 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2770 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2771 OpenMPRuntime && "Expected OpenMP device mode."); 2772 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2773 2774 // Compute the function info and LLVM type. 2775 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2776 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2777 2778 // Get or create the prototype for the function. 2779 if (!GV || (GV->getType()->getElementType() != Ty)) { 2780 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2781 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2782 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2783 ForDefinition)); 2784 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2785 /*IsIncompleteFunction=*/false, 2786 /*IsThunk=*/false); 2787 } 2788 // We need to set linkage and visibility on the function before 2789 // generating code for it because various parts of IR generation 2790 // want to propagate this information down (e.g. to local static 2791 // declarations). 2792 auto *Fn = cast<llvm::Function>(GV); 2793 setFunctionLinkage(OldGD, Fn); 2794 2795 // FIXME: this is redundant with part of 2796 // setFunctionDefinitionAttributes 2797 setGVProperties(Fn, OldGD); 2798 2799 MaybeHandleStaticInExternC(D, Fn); 2800 2801 maybeSetTrivialComdat(*D, *Fn); 2802 2803 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2804 2805 setNonAliasAttributes(OldGD, Fn); 2806 SetLLVMFunctionAttributesForDefinition(D, Fn); 2807 2808 if (D->hasAttr<AnnotateAttr>()) 2809 AddGlobalAnnotations(D, Fn); 2810 } 2811 2812 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2813 const auto *D = cast<ValueDecl>(GD.getDecl()); 2814 2815 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2816 Context.getSourceManager(), 2817 "Generating code for declaration"); 2818 2819 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2820 // At -O0, don't generate IR for functions with available_externally 2821 // linkage. 2822 if (!shouldEmitFunction(GD)) 2823 return; 2824 2825 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2826 std::string Name; 2827 llvm::raw_string_ostream OS(Name); 2828 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2829 /*Qualified=*/true); 2830 return Name; 2831 }); 2832 2833 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2834 // Make sure to emit the definition(s) before we emit the thunks. 2835 // This is necessary for the generation of certain thunks. 2836 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2837 ABI->emitCXXStructor(GD); 2838 else if (FD->isMultiVersion()) 2839 EmitMultiVersionFunctionDefinition(GD, GV); 2840 else 2841 EmitGlobalFunctionDefinition(GD, GV); 2842 2843 if (Method->isVirtual()) 2844 getVTables().EmitThunks(GD); 2845 2846 return; 2847 } 2848 2849 if (FD->isMultiVersion()) 2850 return EmitMultiVersionFunctionDefinition(GD, GV); 2851 return EmitGlobalFunctionDefinition(GD, GV); 2852 } 2853 2854 if (const auto *VD = dyn_cast<VarDecl>(D)) 2855 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2856 2857 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2858 } 2859 2860 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2861 llvm::Function *NewFn); 2862 2863 static unsigned 2864 TargetMVPriority(const TargetInfo &TI, 2865 const CodeGenFunction::MultiVersionResolverOption &RO) { 2866 unsigned Priority = 0; 2867 for (StringRef Feat : RO.Conditions.Features) 2868 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2869 2870 if (!RO.Conditions.Architecture.empty()) 2871 Priority = std::max( 2872 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2873 return Priority; 2874 } 2875 2876 void CodeGenModule::emitMultiVersionFunctions() { 2877 for (GlobalDecl GD : MultiVersionFuncs) { 2878 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2879 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2880 getContext().forEachMultiversionedFunctionVersion( 2881 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2882 GlobalDecl CurGD{ 2883 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2884 StringRef MangledName = getMangledName(CurGD); 2885 llvm::Constant *Func = GetGlobalValue(MangledName); 2886 if (!Func) { 2887 if (CurFD->isDefined()) { 2888 EmitGlobalFunctionDefinition(CurGD, nullptr); 2889 Func = GetGlobalValue(MangledName); 2890 } else { 2891 const CGFunctionInfo &FI = 2892 getTypes().arrangeGlobalDeclaration(GD); 2893 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2894 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2895 /*DontDefer=*/false, ForDefinition); 2896 } 2897 assert(Func && "This should have just been created"); 2898 } 2899 2900 const auto *TA = CurFD->getAttr<TargetAttr>(); 2901 llvm::SmallVector<StringRef, 8> Feats; 2902 TA->getAddedFeatures(Feats); 2903 2904 Options.emplace_back(cast<llvm::Function>(Func), 2905 TA->getArchitecture(), Feats); 2906 }); 2907 2908 llvm::Function *ResolverFunc; 2909 const TargetInfo &TI = getTarget(); 2910 2911 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2912 ResolverFunc = cast<llvm::Function>( 2913 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2914 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2915 } else { 2916 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2917 } 2918 2919 if (supportsCOMDAT()) 2920 ResolverFunc->setComdat( 2921 getModule().getOrInsertComdat(ResolverFunc->getName())); 2922 2923 llvm::stable_sort( 2924 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2925 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2926 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2927 }); 2928 CodeGenFunction CGF(*this); 2929 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2930 } 2931 } 2932 2933 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2934 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2935 assert(FD && "Not a FunctionDecl?"); 2936 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2937 assert(DD && "Not a cpu_dispatch Function?"); 2938 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2939 2940 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2941 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2942 DeclTy = getTypes().GetFunctionType(FInfo); 2943 } 2944 2945 StringRef ResolverName = getMangledName(GD); 2946 2947 llvm::Type *ResolverType; 2948 GlobalDecl ResolverGD; 2949 if (getTarget().supportsIFunc()) 2950 ResolverType = llvm::FunctionType::get( 2951 llvm::PointerType::get(DeclTy, 2952 Context.getTargetAddressSpace(FD->getType())), 2953 false); 2954 else { 2955 ResolverType = DeclTy; 2956 ResolverGD = GD; 2957 } 2958 2959 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2960 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2961 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2962 if (supportsCOMDAT()) 2963 ResolverFunc->setComdat( 2964 getModule().getOrInsertComdat(ResolverFunc->getName())); 2965 2966 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2967 const TargetInfo &Target = getTarget(); 2968 unsigned Index = 0; 2969 for (const IdentifierInfo *II : DD->cpus()) { 2970 // Get the name of the target function so we can look it up/create it. 2971 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2972 getCPUSpecificMangling(*this, II->getName()); 2973 2974 llvm::Constant *Func = GetGlobalValue(MangledName); 2975 2976 if (!Func) { 2977 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2978 if (ExistingDecl.getDecl() && 2979 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2980 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2981 Func = GetGlobalValue(MangledName); 2982 } else { 2983 if (!ExistingDecl.getDecl()) 2984 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2985 2986 Func = GetOrCreateLLVMFunction( 2987 MangledName, DeclTy, ExistingDecl, 2988 /*ForVTable=*/false, /*DontDefer=*/true, 2989 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2990 } 2991 } 2992 2993 llvm::SmallVector<StringRef, 32> Features; 2994 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2995 llvm::transform(Features, Features.begin(), 2996 [](StringRef Str) { return Str.substr(1); }); 2997 Features.erase(std::remove_if( 2998 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2999 return !Target.validateCpuSupports(Feat); 3000 }), Features.end()); 3001 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3002 ++Index; 3003 } 3004 3005 llvm::sort( 3006 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3007 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3008 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3009 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3010 }); 3011 3012 // If the list contains multiple 'default' versions, such as when it contains 3013 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3014 // always run on at least a 'pentium'). We do this by deleting the 'least 3015 // advanced' (read, lowest mangling letter). 3016 while (Options.size() > 1 && 3017 CodeGenFunction::GetX86CpuSupportsMask( 3018 (Options.end() - 2)->Conditions.Features) == 0) { 3019 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3020 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3021 if (LHSName.compare(RHSName) < 0) 3022 Options.erase(Options.end() - 2); 3023 else 3024 Options.erase(Options.end() - 1); 3025 } 3026 3027 CodeGenFunction CGF(*this); 3028 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3029 3030 if (getTarget().supportsIFunc()) { 3031 std::string AliasName = getMangledNameImpl( 3032 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3033 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3034 if (!AliasFunc) { 3035 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3036 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3037 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3038 auto *GA = llvm::GlobalAlias::create( 3039 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3040 GA->setLinkage(llvm::Function::WeakODRLinkage); 3041 SetCommonAttributes(GD, GA); 3042 } 3043 } 3044 } 3045 3046 /// If a dispatcher for the specified mangled name is not in the module, create 3047 /// and return an llvm Function with the specified type. 3048 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3049 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3050 std::string MangledName = 3051 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3052 3053 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3054 // a separate resolver). 3055 std::string ResolverName = MangledName; 3056 if (getTarget().supportsIFunc()) 3057 ResolverName += ".ifunc"; 3058 else if (FD->isTargetMultiVersion()) 3059 ResolverName += ".resolver"; 3060 3061 // If this already exists, just return that one. 3062 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3063 return ResolverGV; 3064 3065 // Since this is the first time we've created this IFunc, make sure 3066 // that we put this multiversioned function into the list to be 3067 // replaced later if necessary (target multiversioning only). 3068 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3069 MultiVersionFuncs.push_back(GD); 3070 3071 if (getTarget().supportsIFunc()) { 3072 llvm::Type *ResolverType = llvm::FunctionType::get( 3073 llvm::PointerType::get( 3074 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3075 false); 3076 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3077 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3078 /*ForVTable=*/false); 3079 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3080 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3081 GIF->setName(ResolverName); 3082 SetCommonAttributes(FD, GIF); 3083 3084 return GIF; 3085 } 3086 3087 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3088 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3089 assert(isa<llvm::GlobalValue>(Resolver) && 3090 "Resolver should be created for the first time"); 3091 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3092 return Resolver; 3093 } 3094 3095 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3096 /// module, create and return an llvm Function with the specified type. If there 3097 /// is something in the module with the specified name, return it potentially 3098 /// bitcasted to the right type. 3099 /// 3100 /// If D is non-null, it specifies a decl that correspond to this. This is used 3101 /// to set the attributes on the function when it is first created. 3102 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3103 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3104 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3105 ForDefinition_t IsForDefinition) { 3106 const Decl *D = GD.getDecl(); 3107 3108 // Any attempts to use a MultiVersion function should result in retrieving 3109 // the iFunc instead. Name Mangling will handle the rest of the changes. 3110 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3111 // For the device mark the function as one that should be emitted. 3112 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3113 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3114 !DontDefer && !IsForDefinition) { 3115 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3116 GlobalDecl GDDef; 3117 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3118 GDDef = GlobalDecl(CD, GD.getCtorType()); 3119 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3120 GDDef = GlobalDecl(DD, GD.getDtorType()); 3121 else 3122 GDDef = GlobalDecl(FDDef); 3123 EmitGlobal(GDDef); 3124 } 3125 } 3126 // Check if this must be emitted as declare variant and emit reference to 3127 // the the declare variant function. 3128 if (LangOpts.OpenMP && OpenMPRuntime) 3129 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3130 3131 if (FD->isMultiVersion()) { 3132 const auto *TA = FD->getAttr<TargetAttr>(); 3133 if (TA && TA->isDefaultVersion()) 3134 UpdateMultiVersionNames(GD, FD); 3135 if (!IsForDefinition) 3136 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3137 } 3138 } 3139 3140 // Lookup the entry, lazily creating it if necessary. 3141 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3142 if (Entry) { 3143 if (WeakRefReferences.erase(Entry)) { 3144 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3145 if (FD && !FD->hasAttr<WeakAttr>()) 3146 Entry->setLinkage(llvm::Function::ExternalLinkage); 3147 } 3148 3149 // Handle dropped DLL attributes. 3150 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3151 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3152 setDSOLocal(Entry); 3153 } 3154 3155 // If there are two attempts to define the same mangled name, issue an 3156 // error. 3157 if (IsForDefinition && !Entry->isDeclaration()) { 3158 GlobalDecl OtherGD; 3159 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3160 // to make sure that we issue an error only once. 3161 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3162 (GD.getCanonicalDecl().getDecl() != 3163 OtherGD.getCanonicalDecl().getDecl()) && 3164 DiagnosedConflictingDefinitions.insert(GD).second) { 3165 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3166 << MangledName; 3167 getDiags().Report(OtherGD.getDecl()->getLocation(), 3168 diag::note_previous_definition); 3169 } 3170 } 3171 3172 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3173 (Entry->getType()->getElementType() == Ty)) { 3174 return Entry; 3175 } 3176 3177 // Make sure the result is of the correct type. 3178 // (If function is requested for a definition, we always need to create a new 3179 // function, not just return a bitcast.) 3180 if (!IsForDefinition) 3181 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3182 } 3183 3184 // This function doesn't have a complete type (for example, the return 3185 // type is an incomplete struct). Use a fake type instead, and make 3186 // sure not to try to set attributes. 3187 bool IsIncompleteFunction = false; 3188 3189 llvm::FunctionType *FTy; 3190 if (isa<llvm::FunctionType>(Ty)) { 3191 FTy = cast<llvm::FunctionType>(Ty); 3192 } else { 3193 FTy = llvm::FunctionType::get(VoidTy, false); 3194 IsIncompleteFunction = true; 3195 } 3196 3197 llvm::Function *F = 3198 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3199 Entry ? StringRef() : MangledName, &getModule()); 3200 3201 // If we already created a function with the same mangled name (but different 3202 // type) before, take its name and add it to the list of functions to be 3203 // replaced with F at the end of CodeGen. 3204 // 3205 // This happens if there is a prototype for a function (e.g. "int f()") and 3206 // then a definition of a different type (e.g. "int f(int x)"). 3207 if (Entry) { 3208 F->takeName(Entry); 3209 3210 // This might be an implementation of a function without a prototype, in 3211 // which case, try to do special replacement of calls which match the new 3212 // prototype. The really key thing here is that we also potentially drop 3213 // arguments from the call site so as to make a direct call, which makes the 3214 // inliner happier and suppresses a number of optimizer warnings (!) about 3215 // dropping arguments. 3216 if (!Entry->use_empty()) { 3217 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3218 Entry->removeDeadConstantUsers(); 3219 } 3220 3221 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3222 F, Entry->getType()->getElementType()->getPointerTo()); 3223 addGlobalValReplacement(Entry, BC); 3224 } 3225 3226 assert(F->getName() == MangledName && "name was uniqued!"); 3227 if (D) 3228 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3229 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3230 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3231 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3232 } 3233 3234 if (!DontDefer) { 3235 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3236 // each other bottoming out with the base dtor. Therefore we emit non-base 3237 // dtors on usage, even if there is no dtor definition in the TU. 3238 if (D && isa<CXXDestructorDecl>(D) && 3239 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3240 GD.getDtorType())) 3241 addDeferredDeclToEmit(GD); 3242 3243 // This is the first use or definition of a mangled name. If there is a 3244 // deferred decl with this name, remember that we need to emit it at the end 3245 // of the file. 3246 auto DDI = DeferredDecls.find(MangledName); 3247 if (DDI != DeferredDecls.end()) { 3248 // Move the potentially referenced deferred decl to the 3249 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3250 // don't need it anymore). 3251 addDeferredDeclToEmit(DDI->second); 3252 DeferredDecls.erase(DDI); 3253 3254 // Otherwise, there are cases we have to worry about where we're 3255 // using a declaration for which we must emit a definition but where 3256 // we might not find a top-level definition: 3257 // - member functions defined inline in their classes 3258 // - friend functions defined inline in some class 3259 // - special member functions with implicit definitions 3260 // If we ever change our AST traversal to walk into class methods, 3261 // this will be unnecessary. 3262 // 3263 // We also don't emit a definition for a function if it's going to be an 3264 // entry in a vtable, unless it's already marked as used. 3265 } else if (getLangOpts().CPlusPlus && D) { 3266 // Look for a declaration that's lexically in a record. 3267 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3268 FD = FD->getPreviousDecl()) { 3269 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3270 if (FD->doesThisDeclarationHaveABody()) { 3271 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3272 break; 3273 } 3274 } 3275 } 3276 } 3277 } 3278 3279 // Make sure the result is of the requested type. 3280 if (!IsIncompleteFunction) { 3281 assert(F->getType()->getElementType() == Ty); 3282 return F; 3283 } 3284 3285 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3286 return llvm::ConstantExpr::getBitCast(F, PTy); 3287 } 3288 3289 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3290 /// non-null, then this function will use the specified type if it has to 3291 /// create it (this occurs when we see a definition of the function). 3292 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3293 llvm::Type *Ty, 3294 bool ForVTable, 3295 bool DontDefer, 3296 ForDefinition_t IsForDefinition) { 3297 // If there was no specific requested type, just convert it now. 3298 if (!Ty) { 3299 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3300 Ty = getTypes().ConvertType(FD->getType()); 3301 } 3302 3303 // Devirtualized destructor calls may come through here instead of via 3304 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3305 // of the complete destructor when necessary. 3306 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3307 if (getTarget().getCXXABI().isMicrosoft() && 3308 GD.getDtorType() == Dtor_Complete && 3309 DD->getParent()->getNumVBases() == 0) 3310 GD = GlobalDecl(DD, Dtor_Base); 3311 } 3312 3313 StringRef MangledName = getMangledName(GD); 3314 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3315 /*IsThunk=*/false, llvm::AttributeList(), 3316 IsForDefinition); 3317 } 3318 3319 static const FunctionDecl * 3320 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3321 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3322 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3323 3324 IdentifierInfo &CII = C.Idents.get(Name); 3325 for (const auto &Result : DC->lookup(&CII)) 3326 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3327 return FD; 3328 3329 if (!C.getLangOpts().CPlusPlus) 3330 return nullptr; 3331 3332 // Demangle the premangled name from getTerminateFn() 3333 IdentifierInfo &CXXII = 3334 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3335 ? C.Idents.get("terminate") 3336 : C.Idents.get(Name); 3337 3338 for (const auto &N : {"__cxxabiv1", "std"}) { 3339 IdentifierInfo &NS = C.Idents.get(N); 3340 for (const auto &Result : DC->lookup(&NS)) { 3341 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3342 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3343 for (const auto &Result : LSD->lookup(&NS)) 3344 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3345 break; 3346 3347 if (ND) 3348 for (const auto &Result : ND->lookup(&CXXII)) 3349 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3350 return FD; 3351 } 3352 } 3353 3354 return nullptr; 3355 } 3356 3357 /// CreateRuntimeFunction - Create a new runtime function with the specified 3358 /// type and name. 3359 llvm::FunctionCallee 3360 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3361 llvm::AttributeList ExtraAttrs, bool Local, 3362 bool AssumeConvergent) { 3363 if (AssumeConvergent) { 3364 ExtraAttrs = 3365 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3366 llvm::Attribute::Convergent); 3367 } 3368 3369 llvm::Constant *C = 3370 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3371 /*DontDefer=*/false, /*IsThunk=*/false, 3372 ExtraAttrs); 3373 3374 if (auto *F = dyn_cast<llvm::Function>(C)) { 3375 if (F->empty()) { 3376 F->setCallingConv(getRuntimeCC()); 3377 3378 // In Windows Itanium environments, try to mark runtime functions 3379 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3380 // will link their standard library statically or dynamically. Marking 3381 // functions imported when they are not imported can cause linker errors 3382 // and warnings. 3383 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3384 !getCodeGenOpts().LTOVisibilityPublicStd) { 3385 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3386 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3387 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3388 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3389 } 3390 } 3391 setDSOLocal(F); 3392 } 3393 } 3394 3395 return {FTy, C}; 3396 } 3397 3398 /// isTypeConstant - Determine whether an object of this type can be emitted 3399 /// as a constant. 3400 /// 3401 /// If ExcludeCtor is true, the duration when the object's constructor runs 3402 /// will not be considered. The caller will need to verify that the object is 3403 /// not written to during its construction. 3404 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3405 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3406 return false; 3407 3408 if (Context.getLangOpts().CPlusPlus) { 3409 if (const CXXRecordDecl *Record 3410 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3411 return ExcludeCtor && !Record->hasMutableFields() && 3412 Record->hasTrivialDestructor(); 3413 } 3414 3415 return true; 3416 } 3417 3418 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3419 /// create and return an llvm GlobalVariable with the specified type. If there 3420 /// is something in the module with the specified name, return it potentially 3421 /// bitcasted to the right type. 3422 /// 3423 /// If D is non-null, it specifies a decl that correspond to this. This is used 3424 /// to set the attributes on the global when it is first created. 3425 /// 3426 /// If IsForDefinition is true, it is guaranteed that an actual global with 3427 /// type Ty will be returned, not conversion of a variable with the same 3428 /// mangled name but some other type. 3429 llvm::Constant * 3430 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3431 llvm::PointerType *Ty, 3432 const VarDecl *D, 3433 ForDefinition_t IsForDefinition) { 3434 // Lookup the entry, lazily creating it if necessary. 3435 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3436 if (Entry) { 3437 if (WeakRefReferences.erase(Entry)) { 3438 if (D && !D->hasAttr<WeakAttr>()) 3439 Entry->setLinkage(llvm::Function::ExternalLinkage); 3440 } 3441 3442 // Handle dropped DLL attributes. 3443 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3444 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3445 3446 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3447 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3448 3449 if (Entry->getType() == Ty) 3450 return Entry; 3451 3452 // If there are two attempts to define the same mangled name, issue an 3453 // error. 3454 if (IsForDefinition && !Entry->isDeclaration()) { 3455 GlobalDecl OtherGD; 3456 const VarDecl *OtherD; 3457 3458 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3459 // to make sure that we issue an error only once. 3460 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3461 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3462 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3463 OtherD->hasInit() && 3464 DiagnosedConflictingDefinitions.insert(D).second) { 3465 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3466 << MangledName; 3467 getDiags().Report(OtherGD.getDecl()->getLocation(), 3468 diag::note_previous_definition); 3469 } 3470 } 3471 3472 // Make sure the result is of the correct type. 3473 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3474 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3475 3476 // (If global is requested for a definition, we always need to create a new 3477 // global, not just return a bitcast.) 3478 if (!IsForDefinition) 3479 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3480 } 3481 3482 auto AddrSpace = GetGlobalVarAddressSpace(D); 3483 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3484 3485 auto *GV = new llvm::GlobalVariable( 3486 getModule(), Ty->getElementType(), false, 3487 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3488 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3489 3490 // If we already created a global with the same mangled name (but different 3491 // type) before, take its name and remove it from its parent. 3492 if (Entry) { 3493 GV->takeName(Entry); 3494 3495 if (!Entry->use_empty()) { 3496 llvm::Constant *NewPtrForOldDecl = 3497 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3498 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3499 } 3500 3501 Entry->eraseFromParent(); 3502 } 3503 3504 // This is the first use or definition of a mangled name. If there is a 3505 // deferred decl with this name, remember that we need to emit it at the end 3506 // of the file. 3507 auto DDI = DeferredDecls.find(MangledName); 3508 if (DDI != DeferredDecls.end()) { 3509 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3510 // list, and remove it from DeferredDecls (since we don't need it anymore). 3511 addDeferredDeclToEmit(DDI->second); 3512 DeferredDecls.erase(DDI); 3513 } 3514 3515 // Handle things which are present even on external declarations. 3516 if (D) { 3517 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3518 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3519 3520 // FIXME: This code is overly simple and should be merged with other global 3521 // handling. 3522 GV->setConstant(isTypeConstant(D->getType(), false)); 3523 3524 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3525 3526 setLinkageForGV(GV, D); 3527 3528 if (D->getTLSKind()) { 3529 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3530 CXXThreadLocals.push_back(D); 3531 setTLSMode(GV, *D); 3532 } 3533 3534 setGVProperties(GV, D); 3535 3536 // If required by the ABI, treat declarations of static data members with 3537 // inline initializers as definitions. 3538 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3539 EmitGlobalVarDefinition(D); 3540 } 3541 3542 // Emit section information for extern variables. 3543 if (D->hasExternalStorage()) { 3544 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3545 GV->setSection(SA->getName()); 3546 } 3547 3548 // Handle XCore specific ABI requirements. 3549 if (getTriple().getArch() == llvm::Triple::xcore && 3550 D->getLanguageLinkage() == CLanguageLinkage && 3551 D->getType().isConstant(Context) && 3552 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3553 GV->setSection(".cp.rodata"); 3554 3555 // Check if we a have a const declaration with an initializer, we may be 3556 // able to emit it as available_externally to expose it's value to the 3557 // optimizer. 3558 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3559 D->getType().isConstQualified() && !GV->hasInitializer() && 3560 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3561 const auto *Record = 3562 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3563 bool HasMutableFields = Record && Record->hasMutableFields(); 3564 if (!HasMutableFields) { 3565 const VarDecl *InitDecl; 3566 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3567 if (InitExpr) { 3568 ConstantEmitter emitter(*this); 3569 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3570 if (Init) { 3571 auto *InitType = Init->getType(); 3572 if (GV->getType()->getElementType() != InitType) { 3573 // The type of the initializer does not match the definition. 3574 // This happens when an initializer has a different type from 3575 // the type of the global (because of padding at the end of a 3576 // structure for instance). 3577 GV->setName(StringRef()); 3578 // Make a new global with the correct type, this is now guaranteed 3579 // to work. 3580 auto *NewGV = cast<llvm::GlobalVariable>( 3581 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3582 ->stripPointerCasts()); 3583 3584 // Erase the old global, since it is no longer used. 3585 GV->eraseFromParent(); 3586 GV = NewGV; 3587 } else { 3588 GV->setInitializer(Init); 3589 GV->setConstant(true); 3590 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3591 } 3592 emitter.finalize(GV); 3593 } 3594 } 3595 } 3596 } 3597 } 3598 3599 if (GV->isDeclaration()) 3600 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3601 3602 LangAS ExpectedAS = 3603 D ? D->getType().getAddressSpace() 3604 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3605 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3606 Ty->getPointerAddressSpace()); 3607 if (AddrSpace != ExpectedAS) 3608 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3609 ExpectedAS, Ty); 3610 3611 return GV; 3612 } 3613 3614 llvm::Constant * 3615 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3616 ForDefinition_t IsForDefinition) { 3617 const Decl *D = GD.getDecl(); 3618 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3619 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3620 /*DontDefer=*/false, IsForDefinition); 3621 else if (isa<CXXMethodDecl>(D)) { 3622 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3623 cast<CXXMethodDecl>(D)); 3624 auto Ty = getTypes().GetFunctionType(*FInfo); 3625 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3626 IsForDefinition); 3627 } else if (isa<FunctionDecl>(D)) { 3628 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3629 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3630 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3631 IsForDefinition); 3632 } else 3633 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3634 IsForDefinition); 3635 } 3636 3637 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3638 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3639 unsigned Alignment) { 3640 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3641 llvm::GlobalVariable *OldGV = nullptr; 3642 3643 if (GV) { 3644 // Check if the variable has the right type. 3645 if (GV->getType()->getElementType() == Ty) 3646 return GV; 3647 3648 // Because C++ name mangling, the only way we can end up with an already 3649 // existing global with the same name is if it has been declared extern "C". 3650 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3651 OldGV = GV; 3652 } 3653 3654 // Create a new variable. 3655 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3656 Linkage, nullptr, Name); 3657 3658 if (OldGV) { 3659 // Replace occurrences of the old variable if needed. 3660 GV->takeName(OldGV); 3661 3662 if (!OldGV->use_empty()) { 3663 llvm::Constant *NewPtrForOldDecl = 3664 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3665 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3666 } 3667 3668 OldGV->eraseFromParent(); 3669 } 3670 3671 if (supportsCOMDAT() && GV->isWeakForLinker() && 3672 !GV->hasAvailableExternallyLinkage()) 3673 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3674 3675 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3676 3677 return GV; 3678 } 3679 3680 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3681 /// given global variable. If Ty is non-null and if the global doesn't exist, 3682 /// then it will be created with the specified type instead of whatever the 3683 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3684 /// that an actual global with type Ty will be returned, not conversion of a 3685 /// variable with the same mangled name but some other type. 3686 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3687 llvm::Type *Ty, 3688 ForDefinition_t IsForDefinition) { 3689 assert(D->hasGlobalStorage() && "Not a global variable"); 3690 QualType ASTTy = D->getType(); 3691 if (!Ty) 3692 Ty = getTypes().ConvertTypeForMem(ASTTy); 3693 3694 llvm::PointerType *PTy = 3695 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3696 3697 StringRef MangledName = getMangledName(D); 3698 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3699 } 3700 3701 /// CreateRuntimeVariable - Create a new runtime global variable with the 3702 /// specified type and name. 3703 llvm::Constant * 3704 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3705 StringRef Name) { 3706 auto PtrTy = 3707 getContext().getLangOpts().OpenCL 3708 ? llvm::PointerType::get( 3709 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3710 : llvm::PointerType::getUnqual(Ty); 3711 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3712 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3713 return Ret; 3714 } 3715 3716 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3717 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3718 3719 StringRef MangledName = getMangledName(D); 3720 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3721 3722 // We already have a definition, not declaration, with the same mangled name. 3723 // Emitting of declaration is not required (and actually overwrites emitted 3724 // definition). 3725 if (GV && !GV->isDeclaration()) 3726 return; 3727 3728 // If we have not seen a reference to this variable yet, place it into the 3729 // deferred declarations table to be emitted if needed later. 3730 if (!MustBeEmitted(D) && !GV) { 3731 DeferredDecls[MangledName] = D; 3732 return; 3733 } 3734 3735 // The tentative definition is the only definition. 3736 EmitGlobalVarDefinition(D); 3737 } 3738 3739 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3740 EmitExternalVarDeclaration(D); 3741 } 3742 3743 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3744 return Context.toCharUnitsFromBits( 3745 getDataLayout().getTypeStoreSizeInBits(Ty)); 3746 } 3747 3748 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3749 LangAS AddrSpace = LangAS::Default; 3750 if (LangOpts.OpenCL) { 3751 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3752 assert(AddrSpace == LangAS::opencl_global || 3753 AddrSpace == LangAS::opencl_constant || 3754 AddrSpace == LangAS::opencl_local || 3755 AddrSpace >= LangAS::FirstTargetAddressSpace); 3756 return AddrSpace; 3757 } 3758 3759 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3760 if (D && D->hasAttr<CUDAConstantAttr>()) 3761 return LangAS::cuda_constant; 3762 else if (D && D->hasAttr<CUDASharedAttr>()) 3763 return LangAS::cuda_shared; 3764 else if (D && D->hasAttr<CUDADeviceAttr>()) 3765 return LangAS::cuda_device; 3766 else if (D && D->getType().isConstQualified()) 3767 return LangAS::cuda_constant; 3768 else 3769 return LangAS::cuda_device; 3770 } 3771 3772 if (LangOpts.OpenMP) { 3773 LangAS AS; 3774 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3775 return AS; 3776 } 3777 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3778 } 3779 3780 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3781 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3782 if (LangOpts.OpenCL) 3783 return LangAS::opencl_constant; 3784 if (auto AS = getTarget().getConstantAddressSpace()) 3785 return AS.getValue(); 3786 return LangAS::Default; 3787 } 3788 3789 // In address space agnostic languages, string literals are in default address 3790 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3791 // emitted in constant address space in LLVM IR. To be consistent with other 3792 // parts of AST, string literal global variables in constant address space 3793 // need to be casted to default address space before being put into address 3794 // map and referenced by other part of CodeGen. 3795 // In OpenCL, string literals are in constant address space in AST, therefore 3796 // they should not be casted to default address space. 3797 static llvm::Constant * 3798 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3799 llvm::GlobalVariable *GV) { 3800 llvm::Constant *Cast = GV; 3801 if (!CGM.getLangOpts().OpenCL) { 3802 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3803 if (AS != LangAS::Default) 3804 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3805 CGM, GV, AS.getValue(), LangAS::Default, 3806 GV->getValueType()->getPointerTo( 3807 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3808 } 3809 } 3810 return Cast; 3811 } 3812 3813 template<typename SomeDecl> 3814 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3815 llvm::GlobalValue *GV) { 3816 if (!getLangOpts().CPlusPlus) 3817 return; 3818 3819 // Must have 'used' attribute, or else inline assembly can't rely on 3820 // the name existing. 3821 if (!D->template hasAttr<UsedAttr>()) 3822 return; 3823 3824 // Must have internal linkage and an ordinary name. 3825 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3826 return; 3827 3828 // Must be in an extern "C" context. Entities declared directly within 3829 // a record are not extern "C" even if the record is in such a context. 3830 const SomeDecl *First = D->getFirstDecl(); 3831 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3832 return; 3833 3834 // OK, this is an internal linkage entity inside an extern "C" linkage 3835 // specification. Make a note of that so we can give it the "expected" 3836 // mangled name if nothing else is using that name. 3837 std::pair<StaticExternCMap::iterator, bool> R = 3838 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3839 3840 // If we have multiple internal linkage entities with the same name 3841 // in extern "C" regions, none of them gets that name. 3842 if (!R.second) 3843 R.first->second = nullptr; 3844 } 3845 3846 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3847 if (!CGM.supportsCOMDAT()) 3848 return false; 3849 3850 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3851 // them being "merged" by the COMDAT Folding linker optimization. 3852 if (D.hasAttr<CUDAGlobalAttr>()) 3853 return false; 3854 3855 if (D.hasAttr<SelectAnyAttr>()) 3856 return true; 3857 3858 GVALinkage Linkage; 3859 if (auto *VD = dyn_cast<VarDecl>(&D)) 3860 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3861 else 3862 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3863 3864 switch (Linkage) { 3865 case GVA_Internal: 3866 case GVA_AvailableExternally: 3867 case GVA_StrongExternal: 3868 return false; 3869 case GVA_DiscardableODR: 3870 case GVA_StrongODR: 3871 return true; 3872 } 3873 llvm_unreachable("No such linkage"); 3874 } 3875 3876 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3877 llvm::GlobalObject &GO) { 3878 if (!shouldBeInCOMDAT(*this, D)) 3879 return; 3880 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3881 } 3882 3883 /// Pass IsTentative as true if you want to create a tentative definition. 3884 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3885 bool IsTentative) { 3886 // OpenCL global variables of sampler type are translated to function calls, 3887 // therefore no need to be translated. 3888 QualType ASTTy = D->getType(); 3889 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3890 return; 3891 3892 // If this is OpenMP device, check if it is legal to emit this global 3893 // normally. 3894 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3895 OpenMPRuntime->emitTargetGlobalVariable(D)) 3896 return; 3897 3898 llvm::Constant *Init = nullptr; 3899 bool NeedsGlobalCtor = false; 3900 bool NeedsGlobalDtor = 3901 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3902 3903 const VarDecl *InitDecl; 3904 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3905 3906 Optional<ConstantEmitter> emitter; 3907 3908 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3909 // as part of their declaration." Sema has already checked for 3910 // error cases, so we just need to set Init to UndefValue. 3911 bool IsCUDASharedVar = 3912 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3913 // Shadows of initialized device-side global variables are also left 3914 // undefined. 3915 bool IsCUDAShadowVar = 3916 !getLangOpts().CUDAIsDevice && 3917 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3918 D->hasAttr<CUDASharedAttr>()); 3919 // HIP pinned shadow of initialized host-side global variables are also 3920 // left undefined. 3921 bool IsHIPPinnedShadowVar = 3922 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3923 if (getLangOpts().CUDA && 3924 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3925 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3926 else if (!InitExpr) { 3927 // This is a tentative definition; tentative definitions are 3928 // implicitly initialized with { 0 }. 3929 // 3930 // Note that tentative definitions are only emitted at the end of 3931 // a translation unit, so they should never have incomplete 3932 // type. In addition, EmitTentativeDefinition makes sure that we 3933 // never attempt to emit a tentative definition if a real one 3934 // exists. A use may still exists, however, so we still may need 3935 // to do a RAUW. 3936 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3937 Init = EmitNullConstant(D->getType()); 3938 } else { 3939 initializedGlobalDecl = GlobalDecl(D); 3940 emitter.emplace(*this); 3941 Init = emitter->tryEmitForInitializer(*InitDecl); 3942 3943 if (!Init) { 3944 QualType T = InitExpr->getType(); 3945 if (D->getType()->isReferenceType()) 3946 T = D->getType(); 3947 3948 if (getLangOpts().CPlusPlus) { 3949 Init = EmitNullConstant(T); 3950 NeedsGlobalCtor = true; 3951 } else { 3952 ErrorUnsupported(D, "static initializer"); 3953 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3954 } 3955 } else { 3956 // We don't need an initializer, so remove the entry for the delayed 3957 // initializer position (just in case this entry was delayed) if we 3958 // also don't need to register a destructor. 3959 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3960 DelayedCXXInitPosition.erase(D); 3961 } 3962 } 3963 3964 llvm::Type* InitType = Init->getType(); 3965 llvm::Constant *Entry = 3966 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3967 3968 // Strip off pointer casts if we got them. 3969 Entry = Entry->stripPointerCasts(); 3970 3971 // Entry is now either a Function or GlobalVariable. 3972 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3973 3974 // We have a definition after a declaration with the wrong type. 3975 // We must make a new GlobalVariable* and update everything that used OldGV 3976 // (a declaration or tentative definition) with the new GlobalVariable* 3977 // (which will be a definition). 3978 // 3979 // This happens if there is a prototype for a global (e.g. 3980 // "extern int x[];") and then a definition of a different type (e.g. 3981 // "int x[10];"). This also happens when an initializer has a different type 3982 // from the type of the global (this happens with unions). 3983 if (!GV || GV->getType()->getElementType() != InitType || 3984 GV->getType()->getAddressSpace() != 3985 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3986 3987 // Move the old entry aside so that we'll create a new one. 3988 Entry->setName(StringRef()); 3989 3990 // Make a new global with the correct type, this is now guaranteed to work. 3991 GV = cast<llvm::GlobalVariable>( 3992 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 3993 ->stripPointerCasts()); 3994 3995 // Replace all uses of the old global with the new global 3996 llvm::Constant *NewPtrForOldDecl = 3997 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3998 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3999 4000 // Erase the old global, since it is no longer used. 4001 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4002 } 4003 4004 MaybeHandleStaticInExternC(D, GV); 4005 4006 if (D->hasAttr<AnnotateAttr>()) 4007 AddGlobalAnnotations(D, GV); 4008 4009 // Set the llvm linkage type as appropriate. 4010 llvm::GlobalValue::LinkageTypes Linkage = 4011 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4012 4013 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4014 // the device. [...]" 4015 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4016 // __device__, declares a variable that: [...] 4017 // Is accessible from all the threads within the grid and from the host 4018 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4019 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4020 if (GV && LangOpts.CUDA) { 4021 if (LangOpts.CUDAIsDevice) { 4022 if (Linkage != llvm::GlobalValue::InternalLinkage && 4023 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4024 GV->setExternallyInitialized(true); 4025 } else { 4026 // Host-side shadows of external declarations of device-side 4027 // global variables become internal definitions. These have to 4028 // be internal in order to prevent name conflicts with global 4029 // host variables with the same name in a different TUs. 4030 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4031 D->hasAttr<HIPPinnedShadowAttr>()) { 4032 Linkage = llvm::GlobalValue::InternalLinkage; 4033 4034 // Shadow variables and their properties must be registered 4035 // with CUDA runtime. 4036 unsigned Flags = 0; 4037 if (!D->hasDefinition()) 4038 Flags |= CGCUDARuntime::ExternDeviceVar; 4039 if (D->hasAttr<CUDAConstantAttr>()) 4040 Flags |= CGCUDARuntime::ConstantDeviceVar; 4041 // Extern global variables will be registered in the TU where they are 4042 // defined. 4043 if (!D->hasExternalStorage()) 4044 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4045 } else if (D->hasAttr<CUDASharedAttr>()) 4046 // __shared__ variables are odd. Shadows do get created, but 4047 // they are not registered with the CUDA runtime, so they 4048 // can't really be used to access their device-side 4049 // counterparts. It's not clear yet whether it's nvcc's bug or 4050 // a feature, but we've got to do the same for compatibility. 4051 Linkage = llvm::GlobalValue::InternalLinkage; 4052 } 4053 } 4054 4055 if (!IsHIPPinnedShadowVar) 4056 GV->setInitializer(Init); 4057 if (emitter) emitter->finalize(GV); 4058 4059 // If it is safe to mark the global 'constant', do so now. 4060 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4061 isTypeConstant(D->getType(), true)); 4062 4063 // If it is in a read-only section, mark it 'constant'. 4064 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4065 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4066 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4067 GV->setConstant(true); 4068 } 4069 4070 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4071 4072 // On Darwin, if the normal linkage of a C++ thread_local variable is 4073 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4074 // copies within a linkage unit; otherwise, the backing variable has 4075 // internal linkage and all accesses should just be calls to the 4076 // Itanium-specified entry point, which has the normal linkage of the 4077 // variable. This is to preserve the ability to change the implementation 4078 // behind the scenes. 4079 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4080 Context.getTargetInfo().getTriple().isOSDarwin() && 4081 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4082 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4083 Linkage = llvm::GlobalValue::InternalLinkage; 4084 4085 GV->setLinkage(Linkage); 4086 if (D->hasAttr<DLLImportAttr>()) 4087 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4088 else if (D->hasAttr<DLLExportAttr>()) 4089 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4090 else 4091 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4092 4093 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4094 // common vars aren't constant even if declared const. 4095 GV->setConstant(false); 4096 // Tentative definition of global variables may be initialized with 4097 // non-zero null pointers. In this case they should have weak linkage 4098 // since common linkage must have zero initializer and must not have 4099 // explicit section therefore cannot have non-zero initial value. 4100 if (!GV->getInitializer()->isNullValue()) 4101 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4102 } 4103 4104 setNonAliasAttributes(D, GV); 4105 4106 if (D->getTLSKind() && !GV->isThreadLocal()) { 4107 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4108 CXXThreadLocals.push_back(D); 4109 setTLSMode(GV, *D); 4110 } 4111 4112 maybeSetTrivialComdat(*D, *GV); 4113 4114 // Emit the initializer function if necessary. 4115 if (NeedsGlobalCtor || NeedsGlobalDtor) 4116 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4117 4118 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4119 4120 // Emit global variable debug information. 4121 if (CGDebugInfo *DI = getModuleDebugInfo()) 4122 if (getCodeGenOpts().hasReducedDebugInfo()) 4123 DI->EmitGlobalVariable(GV, D); 4124 } 4125 4126 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4127 if (CGDebugInfo *DI = getModuleDebugInfo()) 4128 if (getCodeGenOpts().hasReducedDebugInfo()) { 4129 QualType ASTTy = D->getType(); 4130 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4131 llvm::PointerType *PTy = 4132 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4133 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4134 DI->EmitExternalVariable( 4135 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4136 } 4137 } 4138 4139 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4140 CodeGenModule &CGM, const VarDecl *D, 4141 bool NoCommon) { 4142 // Don't give variables common linkage if -fno-common was specified unless it 4143 // was overridden by a NoCommon attribute. 4144 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4145 return true; 4146 4147 // C11 6.9.2/2: 4148 // A declaration of an identifier for an object that has file scope without 4149 // an initializer, and without a storage-class specifier or with the 4150 // storage-class specifier static, constitutes a tentative definition. 4151 if (D->getInit() || D->hasExternalStorage()) 4152 return true; 4153 4154 // A variable cannot be both common and exist in a section. 4155 if (D->hasAttr<SectionAttr>()) 4156 return true; 4157 4158 // A variable cannot be both common and exist in a section. 4159 // We don't try to determine which is the right section in the front-end. 4160 // If no specialized section name is applicable, it will resort to default. 4161 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4162 D->hasAttr<PragmaClangDataSectionAttr>() || 4163 D->hasAttr<PragmaClangRelroSectionAttr>() || 4164 D->hasAttr<PragmaClangRodataSectionAttr>()) 4165 return true; 4166 4167 // Thread local vars aren't considered common linkage. 4168 if (D->getTLSKind()) 4169 return true; 4170 4171 // Tentative definitions marked with WeakImportAttr are true definitions. 4172 if (D->hasAttr<WeakImportAttr>()) 4173 return true; 4174 4175 // A variable cannot be both common and exist in a comdat. 4176 if (shouldBeInCOMDAT(CGM, *D)) 4177 return true; 4178 4179 // Declarations with a required alignment do not have common linkage in MSVC 4180 // mode. 4181 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4182 if (D->hasAttr<AlignedAttr>()) 4183 return true; 4184 QualType VarType = D->getType(); 4185 if (Context.isAlignmentRequired(VarType)) 4186 return true; 4187 4188 if (const auto *RT = VarType->getAs<RecordType>()) { 4189 const RecordDecl *RD = RT->getDecl(); 4190 for (const FieldDecl *FD : RD->fields()) { 4191 if (FD->isBitField()) 4192 continue; 4193 if (FD->hasAttr<AlignedAttr>()) 4194 return true; 4195 if (Context.isAlignmentRequired(FD->getType())) 4196 return true; 4197 } 4198 } 4199 } 4200 4201 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4202 // common symbols, so symbols with greater alignment requirements cannot be 4203 // common. 4204 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4205 // alignments for common symbols via the aligncomm directive, so this 4206 // restriction only applies to MSVC environments. 4207 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4208 Context.getTypeAlignIfKnown(D->getType()) > 4209 Context.toBits(CharUnits::fromQuantity(32))) 4210 return true; 4211 4212 return false; 4213 } 4214 4215 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4216 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4217 if (Linkage == GVA_Internal) 4218 return llvm::Function::InternalLinkage; 4219 4220 if (D->hasAttr<WeakAttr>()) { 4221 if (IsConstantVariable) 4222 return llvm::GlobalVariable::WeakODRLinkage; 4223 else 4224 return llvm::GlobalVariable::WeakAnyLinkage; 4225 } 4226 4227 if (const auto *FD = D->getAsFunction()) 4228 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4229 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4230 4231 // We are guaranteed to have a strong definition somewhere else, 4232 // so we can use available_externally linkage. 4233 if (Linkage == GVA_AvailableExternally) 4234 return llvm::GlobalValue::AvailableExternallyLinkage; 4235 4236 // Note that Apple's kernel linker doesn't support symbol 4237 // coalescing, so we need to avoid linkonce and weak linkages there. 4238 // Normally, this means we just map to internal, but for explicit 4239 // instantiations we'll map to external. 4240 4241 // In C++, the compiler has to emit a definition in every translation unit 4242 // that references the function. We should use linkonce_odr because 4243 // a) if all references in this translation unit are optimized away, we 4244 // don't need to codegen it. b) if the function persists, it needs to be 4245 // merged with other definitions. c) C++ has the ODR, so we know the 4246 // definition is dependable. 4247 if (Linkage == GVA_DiscardableODR) 4248 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4249 : llvm::Function::InternalLinkage; 4250 4251 // An explicit instantiation of a template has weak linkage, since 4252 // explicit instantiations can occur in multiple translation units 4253 // and must all be equivalent. However, we are not allowed to 4254 // throw away these explicit instantiations. 4255 // 4256 // We don't currently support CUDA device code spread out across multiple TUs, 4257 // so say that CUDA templates are either external (for kernels) or internal. 4258 // This lets llvm perform aggressive inter-procedural optimizations. 4259 if (Linkage == GVA_StrongODR) { 4260 if (Context.getLangOpts().AppleKext) 4261 return llvm::Function::ExternalLinkage; 4262 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4263 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4264 : llvm::Function::InternalLinkage; 4265 return llvm::Function::WeakODRLinkage; 4266 } 4267 4268 // C++ doesn't have tentative definitions and thus cannot have common 4269 // linkage. 4270 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4271 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4272 CodeGenOpts.NoCommon)) 4273 return llvm::GlobalVariable::CommonLinkage; 4274 4275 // selectany symbols are externally visible, so use weak instead of 4276 // linkonce. MSVC optimizes away references to const selectany globals, so 4277 // all definitions should be the same and ODR linkage should be used. 4278 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4279 if (D->hasAttr<SelectAnyAttr>()) 4280 return llvm::GlobalVariable::WeakODRLinkage; 4281 4282 // Otherwise, we have strong external linkage. 4283 assert(Linkage == GVA_StrongExternal); 4284 return llvm::GlobalVariable::ExternalLinkage; 4285 } 4286 4287 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4288 const VarDecl *VD, bool IsConstant) { 4289 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4290 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4291 } 4292 4293 /// Replace the uses of a function that was declared with a non-proto type. 4294 /// We want to silently drop extra arguments from call sites 4295 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4296 llvm::Function *newFn) { 4297 // Fast path. 4298 if (old->use_empty()) return; 4299 4300 llvm::Type *newRetTy = newFn->getReturnType(); 4301 SmallVector<llvm::Value*, 4> newArgs; 4302 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4303 4304 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4305 ui != ue; ) { 4306 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4307 llvm::User *user = use->getUser(); 4308 4309 // Recognize and replace uses of bitcasts. Most calls to 4310 // unprototyped functions will use bitcasts. 4311 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4312 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4313 replaceUsesOfNonProtoConstant(bitcast, newFn); 4314 continue; 4315 } 4316 4317 // Recognize calls to the function. 4318 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4319 if (!callSite) continue; 4320 if (!callSite->isCallee(&*use)) 4321 continue; 4322 4323 // If the return types don't match exactly, then we can't 4324 // transform this call unless it's dead. 4325 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4326 continue; 4327 4328 // Get the call site's attribute list. 4329 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4330 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4331 4332 // If the function was passed too few arguments, don't transform. 4333 unsigned newNumArgs = newFn->arg_size(); 4334 if (callSite->arg_size() < newNumArgs) 4335 continue; 4336 4337 // If extra arguments were passed, we silently drop them. 4338 // If any of the types mismatch, we don't transform. 4339 unsigned argNo = 0; 4340 bool dontTransform = false; 4341 for (llvm::Argument &A : newFn->args()) { 4342 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4343 dontTransform = true; 4344 break; 4345 } 4346 4347 // Add any parameter attributes. 4348 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4349 argNo++; 4350 } 4351 if (dontTransform) 4352 continue; 4353 4354 // Okay, we can transform this. Create the new call instruction and copy 4355 // over the required information. 4356 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4357 4358 // Copy over any operand bundles. 4359 callSite->getOperandBundlesAsDefs(newBundles); 4360 4361 llvm::CallBase *newCall; 4362 if (dyn_cast<llvm::CallInst>(callSite)) { 4363 newCall = 4364 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4365 } else { 4366 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4367 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4368 oldInvoke->getUnwindDest(), newArgs, 4369 newBundles, "", callSite); 4370 } 4371 newArgs.clear(); // for the next iteration 4372 4373 if (!newCall->getType()->isVoidTy()) 4374 newCall->takeName(callSite); 4375 newCall->setAttributes(llvm::AttributeList::get( 4376 newFn->getContext(), oldAttrs.getFnAttributes(), 4377 oldAttrs.getRetAttributes(), newArgAttrs)); 4378 newCall->setCallingConv(callSite->getCallingConv()); 4379 4380 // Finally, remove the old call, replacing any uses with the new one. 4381 if (!callSite->use_empty()) 4382 callSite->replaceAllUsesWith(newCall); 4383 4384 // Copy debug location attached to CI. 4385 if (callSite->getDebugLoc()) 4386 newCall->setDebugLoc(callSite->getDebugLoc()); 4387 4388 callSite->eraseFromParent(); 4389 } 4390 } 4391 4392 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4393 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4394 /// existing call uses of the old function in the module, this adjusts them to 4395 /// call the new function directly. 4396 /// 4397 /// This is not just a cleanup: the always_inline pass requires direct calls to 4398 /// functions to be able to inline them. If there is a bitcast in the way, it 4399 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4400 /// run at -O0. 4401 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4402 llvm::Function *NewFn) { 4403 // If we're redefining a global as a function, don't transform it. 4404 if (!isa<llvm::Function>(Old)) return; 4405 4406 replaceUsesOfNonProtoConstant(Old, NewFn); 4407 } 4408 4409 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4410 auto DK = VD->isThisDeclarationADefinition(); 4411 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4412 return; 4413 4414 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4415 // If we have a definition, this might be a deferred decl. If the 4416 // instantiation is explicit, make sure we emit it at the end. 4417 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4418 GetAddrOfGlobalVar(VD); 4419 4420 EmitTopLevelDecl(VD); 4421 } 4422 4423 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4424 llvm::GlobalValue *GV) { 4425 // Check if this must be emitted as declare variant. 4426 if (LangOpts.OpenMP && OpenMPRuntime && 4427 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4428 return; 4429 4430 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4431 4432 // Compute the function info and LLVM type. 4433 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4434 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4435 4436 // Get or create the prototype for the function. 4437 if (!GV || (GV->getType()->getElementType() != Ty)) 4438 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4439 /*DontDefer=*/true, 4440 ForDefinition)); 4441 4442 // Already emitted. 4443 if (!GV->isDeclaration()) 4444 return; 4445 4446 // We need to set linkage and visibility on the function before 4447 // generating code for it because various parts of IR generation 4448 // want to propagate this information down (e.g. to local static 4449 // declarations). 4450 auto *Fn = cast<llvm::Function>(GV); 4451 setFunctionLinkage(GD, Fn); 4452 4453 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4454 setGVProperties(Fn, GD); 4455 4456 MaybeHandleStaticInExternC(D, Fn); 4457 4458 4459 maybeSetTrivialComdat(*D, *Fn); 4460 4461 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4462 4463 setNonAliasAttributes(GD, Fn); 4464 SetLLVMFunctionAttributesForDefinition(D, Fn); 4465 4466 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4467 AddGlobalCtor(Fn, CA->getPriority()); 4468 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4469 AddGlobalDtor(Fn, DA->getPriority()); 4470 if (D->hasAttr<AnnotateAttr>()) 4471 AddGlobalAnnotations(D, Fn); 4472 } 4473 4474 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4475 const auto *D = cast<ValueDecl>(GD.getDecl()); 4476 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4477 assert(AA && "Not an alias?"); 4478 4479 StringRef MangledName = getMangledName(GD); 4480 4481 if (AA->getAliasee() == MangledName) { 4482 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4483 return; 4484 } 4485 4486 // If there is a definition in the module, then it wins over the alias. 4487 // This is dubious, but allow it to be safe. Just ignore the alias. 4488 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4489 if (Entry && !Entry->isDeclaration()) 4490 return; 4491 4492 Aliases.push_back(GD); 4493 4494 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4495 4496 // Create a reference to the named value. This ensures that it is emitted 4497 // if a deferred decl. 4498 llvm::Constant *Aliasee; 4499 llvm::GlobalValue::LinkageTypes LT; 4500 if (isa<llvm::FunctionType>(DeclTy)) { 4501 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4502 /*ForVTable=*/false); 4503 LT = getFunctionLinkage(GD); 4504 } else { 4505 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4506 llvm::PointerType::getUnqual(DeclTy), 4507 /*D=*/nullptr); 4508 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4509 D->getType().isConstQualified()); 4510 } 4511 4512 // Create the new alias itself, but don't set a name yet. 4513 auto *GA = 4514 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4515 4516 if (Entry) { 4517 if (GA->getAliasee() == Entry) { 4518 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4519 return; 4520 } 4521 4522 assert(Entry->isDeclaration()); 4523 4524 // If there is a declaration in the module, then we had an extern followed 4525 // by the alias, as in: 4526 // extern int test6(); 4527 // ... 4528 // int test6() __attribute__((alias("test7"))); 4529 // 4530 // Remove it and replace uses of it with the alias. 4531 GA->takeName(Entry); 4532 4533 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4534 Entry->getType())); 4535 Entry->eraseFromParent(); 4536 } else { 4537 GA->setName(MangledName); 4538 } 4539 4540 // Set attributes which are particular to an alias; this is a 4541 // specialization of the attributes which may be set on a global 4542 // variable/function. 4543 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4544 D->isWeakImported()) { 4545 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4546 } 4547 4548 if (const auto *VD = dyn_cast<VarDecl>(D)) 4549 if (VD->getTLSKind()) 4550 setTLSMode(GA, *VD); 4551 4552 SetCommonAttributes(GD, GA); 4553 } 4554 4555 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4556 const auto *D = cast<ValueDecl>(GD.getDecl()); 4557 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4558 assert(IFA && "Not an ifunc?"); 4559 4560 StringRef MangledName = getMangledName(GD); 4561 4562 if (IFA->getResolver() == MangledName) { 4563 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4564 return; 4565 } 4566 4567 // Report an error if some definition overrides ifunc. 4568 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4569 if (Entry && !Entry->isDeclaration()) { 4570 GlobalDecl OtherGD; 4571 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4572 DiagnosedConflictingDefinitions.insert(GD).second) { 4573 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4574 << MangledName; 4575 Diags.Report(OtherGD.getDecl()->getLocation(), 4576 diag::note_previous_definition); 4577 } 4578 return; 4579 } 4580 4581 Aliases.push_back(GD); 4582 4583 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4584 llvm::Constant *Resolver = 4585 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4586 /*ForVTable=*/false); 4587 llvm::GlobalIFunc *GIF = 4588 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4589 "", Resolver, &getModule()); 4590 if (Entry) { 4591 if (GIF->getResolver() == Entry) { 4592 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4593 return; 4594 } 4595 assert(Entry->isDeclaration()); 4596 4597 // If there is a declaration in the module, then we had an extern followed 4598 // by the ifunc, as in: 4599 // extern int test(); 4600 // ... 4601 // int test() __attribute__((ifunc("resolver"))); 4602 // 4603 // Remove it and replace uses of it with the ifunc. 4604 GIF->takeName(Entry); 4605 4606 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4607 Entry->getType())); 4608 Entry->eraseFromParent(); 4609 } else 4610 GIF->setName(MangledName); 4611 4612 SetCommonAttributes(GD, GIF); 4613 } 4614 4615 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4616 ArrayRef<llvm::Type*> Tys) { 4617 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4618 Tys); 4619 } 4620 4621 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4622 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4623 const StringLiteral *Literal, bool TargetIsLSB, 4624 bool &IsUTF16, unsigned &StringLength) { 4625 StringRef String = Literal->getString(); 4626 unsigned NumBytes = String.size(); 4627 4628 // Check for simple case. 4629 if (!Literal->containsNonAsciiOrNull()) { 4630 StringLength = NumBytes; 4631 return *Map.insert(std::make_pair(String, nullptr)).first; 4632 } 4633 4634 // Otherwise, convert the UTF8 literals into a string of shorts. 4635 IsUTF16 = true; 4636 4637 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4638 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4639 llvm::UTF16 *ToPtr = &ToBuf[0]; 4640 4641 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4642 ToPtr + NumBytes, llvm::strictConversion); 4643 4644 // ConvertUTF8toUTF16 returns the length in ToPtr. 4645 StringLength = ToPtr - &ToBuf[0]; 4646 4647 // Add an explicit null. 4648 *ToPtr = 0; 4649 return *Map.insert(std::make_pair( 4650 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4651 (StringLength + 1) * 2), 4652 nullptr)).first; 4653 } 4654 4655 ConstantAddress 4656 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4657 unsigned StringLength = 0; 4658 bool isUTF16 = false; 4659 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4660 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4661 getDataLayout().isLittleEndian(), isUTF16, 4662 StringLength); 4663 4664 if (auto *C = Entry.second) 4665 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4666 4667 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4668 llvm::Constant *Zeros[] = { Zero, Zero }; 4669 4670 const ASTContext &Context = getContext(); 4671 const llvm::Triple &Triple = getTriple(); 4672 4673 const auto CFRuntime = getLangOpts().CFRuntime; 4674 const bool IsSwiftABI = 4675 static_cast<unsigned>(CFRuntime) >= 4676 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4677 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4678 4679 // If we don't already have it, get __CFConstantStringClassReference. 4680 if (!CFConstantStringClassRef) { 4681 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4682 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4683 Ty = llvm::ArrayType::get(Ty, 0); 4684 4685 switch (CFRuntime) { 4686 default: break; 4687 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4688 case LangOptions::CoreFoundationABI::Swift5_0: 4689 CFConstantStringClassName = 4690 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4691 : "$s10Foundation19_NSCFConstantStringCN"; 4692 Ty = IntPtrTy; 4693 break; 4694 case LangOptions::CoreFoundationABI::Swift4_2: 4695 CFConstantStringClassName = 4696 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4697 : "$S10Foundation19_NSCFConstantStringCN"; 4698 Ty = IntPtrTy; 4699 break; 4700 case LangOptions::CoreFoundationABI::Swift4_1: 4701 CFConstantStringClassName = 4702 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4703 : "__T010Foundation19_NSCFConstantStringCN"; 4704 Ty = IntPtrTy; 4705 break; 4706 } 4707 4708 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4709 4710 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4711 llvm::GlobalValue *GV = nullptr; 4712 4713 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4714 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4715 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4716 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4717 4718 const VarDecl *VD = nullptr; 4719 for (const auto &Result : DC->lookup(&II)) 4720 if ((VD = dyn_cast<VarDecl>(Result))) 4721 break; 4722 4723 if (Triple.isOSBinFormatELF()) { 4724 if (!VD) 4725 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4726 } else { 4727 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4728 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4729 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4730 else 4731 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4732 } 4733 4734 setDSOLocal(GV); 4735 } 4736 } 4737 4738 // Decay array -> ptr 4739 CFConstantStringClassRef = 4740 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4741 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4742 } 4743 4744 QualType CFTy = Context.getCFConstantStringType(); 4745 4746 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4747 4748 ConstantInitBuilder Builder(*this); 4749 auto Fields = Builder.beginStruct(STy); 4750 4751 // Class pointer. 4752 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4753 4754 // Flags. 4755 if (IsSwiftABI) { 4756 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4757 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4758 } else { 4759 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4760 } 4761 4762 // String pointer. 4763 llvm::Constant *C = nullptr; 4764 if (isUTF16) { 4765 auto Arr = llvm::makeArrayRef( 4766 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4767 Entry.first().size() / 2); 4768 C = llvm::ConstantDataArray::get(VMContext, Arr); 4769 } else { 4770 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4771 } 4772 4773 // Note: -fwritable-strings doesn't make the backing store strings of 4774 // CFStrings writable. (See <rdar://problem/10657500>) 4775 auto *GV = 4776 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4777 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4778 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4779 // Don't enforce the target's minimum global alignment, since the only use 4780 // of the string is via this class initializer. 4781 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4782 : Context.getTypeAlignInChars(Context.CharTy); 4783 GV->setAlignment(Align.getAsAlign()); 4784 4785 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4786 // Without it LLVM can merge the string with a non unnamed_addr one during 4787 // LTO. Doing that changes the section it ends in, which surprises ld64. 4788 if (Triple.isOSBinFormatMachO()) 4789 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4790 : "__TEXT,__cstring,cstring_literals"); 4791 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4792 // the static linker to adjust permissions to read-only later on. 4793 else if (Triple.isOSBinFormatELF()) 4794 GV->setSection(".rodata"); 4795 4796 // String. 4797 llvm::Constant *Str = 4798 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4799 4800 if (isUTF16) 4801 // Cast the UTF16 string to the correct type. 4802 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4803 Fields.add(Str); 4804 4805 // String length. 4806 llvm::IntegerType *LengthTy = 4807 llvm::IntegerType::get(getModule().getContext(), 4808 Context.getTargetInfo().getLongWidth()); 4809 if (IsSwiftABI) { 4810 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4811 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4812 LengthTy = Int32Ty; 4813 else 4814 LengthTy = IntPtrTy; 4815 } 4816 Fields.addInt(LengthTy, StringLength); 4817 4818 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4819 // properly aligned on 32-bit platforms. 4820 CharUnits Alignment = 4821 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4822 4823 // The struct. 4824 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4825 /*isConstant=*/false, 4826 llvm::GlobalVariable::PrivateLinkage); 4827 GV->addAttribute("objc_arc_inert"); 4828 switch (Triple.getObjectFormat()) { 4829 case llvm::Triple::UnknownObjectFormat: 4830 llvm_unreachable("unknown file format"); 4831 case llvm::Triple::XCOFF: 4832 llvm_unreachable("XCOFF is not yet implemented"); 4833 case llvm::Triple::COFF: 4834 case llvm::Triple::ELF: 4835 case llvm::Triple::Wasm: 4836 GV->setSection("cfstring"); 4837 break; 4838 case llvm::Triple::MachO: 4839 GV->setSection("__DATA,__cfstring"); 4840 break; 4841 } 4842 Entry.second = GV; 4843 4844 return ConstantAddress(GV, Alignment); 4845 } 4846 4847 bool CodeGenModule::getExpressionLocationsEnabled() const { 4848 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4849 } 4850 4851 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4852 if (ObjCFastEnumerationStateType.isNull()) { 4853 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4854 D->startDefinition(); 4855 4856 QualType FieldTypes[] = { 4857 Context.UnsignedLongTy, 4858 Context.getPointerType(Context.getObjCIdType()), 4859 Context.getPointerType(Context.UnsignedLongTy), 4860 Context.getConstantArrayType(Context.UnsignedLongTy, 4861 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4862 }; 4863 4864 for (size_t i = 0; i < 4; ++i) { 4865 FieldDecl *Field = FieldDecl::Create(Context, 4866 D, 4867 SourceLocation(), 4868 SourceLocation(), nullptr, 4869 FieldTypes[i], /*TInfo=*/nullptr, 4870 /*BitWidth=*/nullptr, 4871 /*Mutable=*/false, 4872 ICIS_NoInit); 4873 Field->setAccess(AS_public); 4874 D->addDecl(Field); 4875 } 4876 4877 D->completeDefinition(); 4878 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4879 } 4880 4881 return ObjCFastEnumerationStateType; 4882 } 4883 4884 llvm::Constant * 4885 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4886 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4887 4888 // Don't emit it as the address of the string, emit the string data itself 4889 // as an inline array. 4890 if (E->getCharByteWidth() == 1) { 4891 SmallString<64> Str(E->getString()); 4892 4893 // Resize the string to the right size, which is indicated by its type. 4894 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4895 Str.resize(CAT->getSize().getZExtValue()); 4896 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4897 } 4898 4899 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4900 llvm::Type *ElemTy = AType->getElementType(); 4901 unsigned NumElements = AType->getNumElements(); 4902 4903 // Wide strings have either 2-byte or 4-byte elements. 4904 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4905 SmallVector<uint16_t, 32> Elements; 4906 Elements.reserve(NumElements); 4907 4908 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4909 Elements.push_back(E->getCodeUnit(i)); 4910 Elements.resize(NumElements); 4911 return llvm::ConstantDataArray::get(VMContext, Elements); 4912 } 4913 4914 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4915 SmallVector<uint32_t, 32> Elements; 4916 Elements.reserve(NumElements); 4917 4918 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4919 Elements.push_back(E->getCodeUnit(i)); 4920 Elements.resize(NumElements); 4921 return llvm::ConstantDataArray::get(VMContext, Elements); 4922 } 4923 4924 static llvm::GlobalVariable * 4925 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4926 CodeGenModule &CGM, StringRef GlobalName, 4927 CharUnits Alignment) { 4928 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4929 CGM.getStringLiteralAddressSpace()); 4930 4931 llvm::Module &M = CGM.getModule(); 4932 // Create a global variable for this string 4933 auto *GV = new llvm::GlobalVariable( 4934 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4935 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4936 GV->setAlignment(Alignment.getAsAlign()); 4937 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4938 if (GV->isWeakForLinker()) { 4939 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4940 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4941 } 4942 CGM.setDSOLocal(GV); 4943 4944 return GV; 4945 } 4946 4947 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4948 /// constant array for the given string literal. 4949 ConstantAddress 4950 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4951 StringRef Name) { 4952 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4953 4954 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4955 llvm::GlobalVariable **Entry = nullptr; 4956 if (!LangOpts.WritableStrings) { 4957 Entry = &ConstantStringMap[C]; 4958 if (auto GV = *Entry) { 4959 if (Alignment.getQuantity() > GV->getAlignment()) 4960 GV->setAlignment(Alignment.getAsAlign()); 4961 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4962 Alignment); 4963 } 4964 } 4965 4966 SmallString<256> MangledNameBuffer; 4967 StringRef GlobalVariableName; 4968 llvm::GlobalValue::LinkageTypes LT; 4969 4970 // Mangle the string literal if that's how the ABI merges duplicate strings. 4971 // Don't do it if they are writable, since we don't want writes in one TU to 4972 // affect strings in another. 4973 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4974 !LangOpts.WritableStrings) { 4975 llvm::raw_svector_ostream Out(MangledNameBuffer); 4976 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4977 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4978 GlobalVariableName = MangledNameBuffer; 4979 } else { 4980 LT = llvm::GlobalValue::PrivateLinkage; 4981 GlobalVariableName = Name; 4982 } 4983 4984 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4985 if (Entry) 4986 *Entry = GV; 4987 4988 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4989 QualType()); 4990 4991 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4992 Alignment); 4993 } 4994 4995 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4996 /// array for the given ObjCEncodeExpr node. 4997 ConstantAddress 4998 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4999 std::string Str; 5000 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5001 5002 return GetAddrOfConstantCString(Str); 5003 } 5004 5005 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5006 /// the literal and a terminating '\0' character. 5007 /// The result has pointer to array type. 5008 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5009 const std::string &Str, const char *GlobalName) { 5010 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5011 CharUnits Alignment = 5012 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5013 5014 llvm::Constant *C = 5015 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5016 5017 // Don't share any string literals if strings aren't constant. 5018 llvm::GlobalVariable **Entry = nullptr; 5019 if (!LangOpts.WritableStrings) { 5020 Entry = &ConstantStringMap[C]; 5021 if (auto GV = *Entry) { 5022 if (Alignment.getQuantity() > GV->getAlignment()) 5023 GV->setAlignment(Alignment.getAsAlign()); 5024 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5025 Alignment); 5026 } 5027 } 5028 5029 // Get the default prefix if a name wasn't specified. 5030 if (!GlobalName) 5031 GlobalName = ".str"; 5032 // Create a global variable for this. 5033 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5034 GlobalName, Alignment); 5035 if (Entry) 5036 *Entry = GV; 5037 5038 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5039 Alignment); 5040 } 5041 5042 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5043 const MaterializeTemporaryExpr *E, const Expr *Init) { 5044 assert((E->getStorageDuration() == SD_Static || 5045 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5046 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5047 5048 // If we're not materializing a subobject of the temporary, keep the 5049 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5050 QualType MaterializedType = Init->getType(); 5051 if (Init == E->getSubExpr()) 5052 MaterializedType = E->getType(); 5053 5054 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5055 5056 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5057 return ConstantAddress(Slot, Align); 5058 5059 // FIXME: If an externally-visible declaration extends multiple temporaries, 5060 // we need to give each temporary the same name in every translation unit (and 5061 // we also need to make the temporaries externally-visible). 5062 SmallString<256> Name; 5063 llvm::raw_svector_ostream Out(Name); 5064 getCXXABI().getMangleContext().mangleReferenceTemporary( 5065 VD, E->getManglingNumber(), Out); 5066 5067 APValue *Value = nullptr; 5068 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5069 // If the initializer of the extending declaration is a constant 5070 // initializer, we should have a cached constant initializer for this 5071 // temporary. Note that this might have a different value from the value 5072 // computed by evaluating the initializer if the surrounding constant 5073 // expression modifies the temporary. 5074 Value = E->getOrCreateValue(false); 5075 } 5076 5077 // Try evaluating it now, it might have a constant initializer. 5078 Expr::EvalResult EvalResult; 5079 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5080 !EvalResult.hasSideEffects()) 5081 Value = &EvalResult.Val; 5082 5083 LangAS AddrSpace = 5084 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5085 5086 Optional<ConstantEmitter> emitter; 5087 llvm::Constant *InitialValue = nullptr; 5088 bool Constant = false; 5089 llvm::Type *Type; 5090 if (Value) { 5091 // The temporary has a constant initializer, use it. 5092 emitter.emplace(*this); 5093 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5094 MaterializedType); 5095 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5096 Type = InitialValue->getType(); 5097 } else { 5098 // No initializer, the initialization will be provided when we 5099 // initialize the declaration which performed lifetime extension. 5100 Type = getTypes().ConvertTypeForMem(MaterializedType); 5101 } 5102 5103 // Create a global variable for this lifetime-extended temporary. 5104 llvm::GlobalValue::LinkageTypes Linkage = 5105 getLLVMLinkageVarDefinition(VD, Constant); 5106 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5107 const VarDecl *InitVD; 5108 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5109 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5110 // Temporaries defined inside a class get linkonce_odr linkage because the 5111 // class can be defined in multiple translation units. 5112 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5113 } else { 5114 // There is no need for this temporary to have external linkage if the 5115 // VarDecl has external linkage. 5116 Linkage = llvm::GlobalVariable::InternalLinkage; 5117 } 5118 } 5119 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5120 auto *GV = new llvm::GlobalVariable( 5121 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5122 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5123 if (emitter) emitter->finalize(GV); 5124 setGVProperties(GV, VD); 5125 GV->setAlignment(Align.getAsAlign()); 5126 if (supportsCOMDAT() && GV->isWeakForLinker()) 5127 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5128 if (VD->getTLSKind()) 5129 setTLSMode(GV, *VD); 5130 llvm::Constant *CV = GV; 5131 if (AddrSpace != LangAS::Default) 5132 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5133 *this, GV, AddrSpace, LangAS::Default, 5134 Type->getPointerTo( 5135 getContext().getTargetAddressSpace(LangAS::Default))); 5136 MaterializedGlobalTemporaryMap[E] = CV; 5137 return ConstantAddress(CV, Align); 5138 } 5139 5140 /// EmitObjCPropertyImplementations - Emit information for synthesized 5141 /// properties for an implementation. 5142 void CodeGenModule::EmitObjCPropertyImplementations(const 5143 ObjCImplementationDecl *D) { 5144 for (const auto *PID : D->property_impls()) { 5145 // Dynamic is just for type-checking. 5146 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5147 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5148 5149 // Determine which methods need to be implemented, some may have 5150 // been overridden. Note that ::isPropertyAccessor is not the method 5151 // we want, that just indicates if the decl came from a 5152 // property. What we want to know is if the method is defined in 5153 // this implementation. 5154 auto *Getter = PID->getGetterMethodDecl(); 5155 if (!Getter || Getter->isSynthesizedAccessorStub()) 5156 CodeGenFunction(*this).GenerateObjCGetter( 5157 const_cast<ObjCImplementationDecl *>(D), PID); 5158 auto *Setter = PID->getSetterMethodDecl(); 5159 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5160 CodeGenFunction(*this).GenerateObjCSetter( 5161 const_cast<ObjCImplementationDecl *>(D), PID); 5162 } 5163 } 5164 } 5165 5166 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5167 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5168 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5169 ivar; ivar = ivar->getNextIvar()) 5170 if (ivar->getType().isDestructedType()) 5171 return true; 5172 5173 return false; 5174 } 5175 5176 static bool AllTrivialInitializers(CodeGenModule &CGM, 5177 ObjCImplementationDecl *D) { 5178 CodeGenFunction CGF(CGM); 5179 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5180 E = D->init_end(); B != E; ++B) { 5181 CXXCtorInitializer *CtorInitExp = *B; 5182 Expr *Init = CtorInitExp->getInit(); 5183 if (!CGF.isTrivialInitializer(Init)) 5184 return false; 5185 } 5186 return true; 5187 } 5188 5189 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5190 /// for an implementation. 5191 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5192 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5193 if (needsDestructMethod(D)) { 5194 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5195 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5196 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5197 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5198 getContext().VoidTy, nullptr, D, 5199 /*isInstance=*/true, /*isVariadic=*/false, 5200 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5201 /*isImplicitlyDeclared=*/true, 5202 /*isDefined=*/false, ObjCMethodDecl::Required); 5203 D->addInstanceMethod(DTORMethod); 5204 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5205 D->setHasDestructors(true); 5206 } 5207 5208 // If the implementation doesn't have any ivar initializers, we don't need 5209 // a .cxx_construct. 5210 if (D->getNumIvarInitializers() == 0 || 5211 AllTrivialInitializers(*this, D)) 5212 return; 5213 5214 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5215 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5216 // The constructor returns 'self'. 5217 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5218 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5219 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5220 /*isVariadic=*/false, 5221 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5222 /*isImplicitlyDeclared=*/true, 5223 /*isDefined=*/false, ObjCMethodDecl::Required); 5224 D->addInstanceMethod(CTORMethod); 5225 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5226 D->setHasNonZeroConstructors(true); 5227 } 5228 5229 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5230 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5231 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5232 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5233 ErrorUnsupported(LSD, "linkage spec"); 5234 return; 5235 } 5236 5237 EmitDeclContext(LSD); 5238 } 5239 5240 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5241 for (auto *I : DC->decls()) { 5242 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5243 // are themselves considered "top-level", so EmitTopLevelDecl on an 5244 // ObjCImplDecl does not recursively visit them. We need to do that in 5245 // case they're nested inside another construct (LinkageSpecDecl / 5246 // ExportDecl) that does stop them from being considered "top-level". 5247 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5248 for (auto *M : OID->methods()) 5249 EmitTopLevelDecl(M); 5250 } 5251 5252 EmitTopLevelDecl(I); 5253 } 5254 } 5255 5256 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5257 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5258 // Ignore dependent declarations. 5259 if (D->isTemplated()) 5260 return; 5261 5262 switch (D->getKind()) { 5263 case Decl::CXXConversion: 5264 case Decl::CXXMethod: 5265 case Decl::Function: 5266 EmitGlobal(cast<FunctionDecl>(D)); 5267 // Always provide some coverage mapping 5268 // even for the functions that aren't emitted. 5269 AddDeferredUnusedCoverageMapping(D); 5270 break; 5271 5272 case Decl::CXXDeductionGuide: 5273 // Function-like, but does not result in code emission. 5274 break; 5275 5276 case Decl::Var: 5277 case Decl::Decomposition: 5278 case Decl::VarTemplateSpecialization: 5279 EmitGlobal(cast<VarDecl>(D)); 5280 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5281 for (auto *B : DD->bindings()) 5282 if (auto *HD = B->getHoldingVar()) 5283 EmitGlobal(HD); 5284 break; 5285 5286 // Indirect fields from global anonymous structs and unions can be 5287 // ignored; only the actual variable requires IR gen support. 5288 case Decl::IndirectField: 5289 break; 5290 5291 // C++ Decls 5292 case Decl::Namespace: 5293 EmitDeclContext(cast<NamespaceDecl>(D)); 5294 break; 5295 case Decl::ClassTemplateSpecialization: { 5296 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5297 if (DebugInfo && 5298 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5299 Spec->hasDefinition()) 5300 DebugInfo->completeTemplateDefinition(*Spec); 5301 } LLVM_FALLTHROUGH; 5302 case Decl::CXXRecord: 5303 if (DebugInfo) { 5304 if (auto *ES = D->getASTContext().getExternalSource()) 5305 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5306 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5307 } 5308 // Emit any static data members, they may be definitions. 5309 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5310 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5311 EmitTopLevelDecl(I); 5312 break; 5313 // No code generation needed. 5314 case Decl::UsingShadow: 5315 case Decl::ClassTemplate: 5316 case Decl::VarTemplate: 5317 case Decl::Concept: 5318 case Decl::VarTemplatePartialSpecialization: 5319 case Decl::FunctionTemplate: 5320 case Decl::TypeAliasTemplate: 5321 case Decl::Block: 5322 case Decl::Empty: 5323 case Decl::Binding: 5324 break; 5325 case Decl::Using: // using X; [C++] 5326 if (CGDebugInfo *DI = getModuleDebugInfo()) 5327 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5328 return; 5329 case Decl::NamespaceAlias: 5330 if (CGDebugInfo *DI = getModuleDebugInfo()) 5331 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5332 return; 5333 case Decl::UsingDirective: // using namespace X; [C++] 5334 if (CGDebugInfo *DI = getModuleDebugInfo()) 5335 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5336 return; 5337 case Decl::CXXConstructor: 5338 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5339 break; 5340 case Decl::CXXDestructor: 5341 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5342 break; 5343 5344 case Decl::StaticAssert: 5345 // Nothing to do. 5346 break; 5347 5348 // Objective-C Decls 5349 5350 // Forward declarations, no (immediate) code generation. 5351 case Decl::ObjCInterface: 5352 case Decl::ObjCCategory: 5353 break; 5354 5355 case Decl::ObjCProtocol: { 5356 auto *Proto = cast<ObjCProtocolDecl>(D); 5357 if (Proto->isThisDeclarationADefinition()) 5358 ObjCRuntime->GenerateProtocol(Proto); 5359 break; 5360 } 5361 5362 case Decl::ObjCCategoryImpl: 5363 // Categories have properties but don't support synthesize so we 5364 // can ignore them here. 5365 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5366 break; 5367 5368 case Decl::ObjCImplementation: { 5369 auto *OMD = cast<ObjCImplementationDecl>(D); 5370 EmitObjCPropertyImplementations(OMD); 5371 EmitObjCIvarInitializations(OMD); 5372 ObjCRuntime->GenerateClass(OMD); 5373 // Emit global variable debug information. 5374 if (CGDebugInfo *DI = getModuleDebugInfo()) 5375 if (getCodeGenOpts().hasReducedDebugInfo()) 5376 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5377 OMD->getClassInterface()), OMD->getLocation()); 5378 break; 5379 } 5380 case Decl::ObjCMethod: { 5381 auto *OMD = cast<ObjCMethodDecl>(D); 5382 // If this is not a prototype, emit the body. 5383 if (OMD->getBody()) 5384 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5385 break; 5386 } 5387 case Decl::ObjCCompatibleAlias: 5388 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5389 break; 5390 5391 case Decl::PragmaComment: { 5392 const auto *PCD = cast<PragmaCommentDecl>(D); 5393 switch (PCD->getCommentKind()) { 5394 case PCK_Unknown: 5395 llvm_unreachable("unexpected pragma comment kind"); 5396 case PCK_Linker: 5397 AppendLinkerOptions(PCD->getArg()); 5398 break; 5399 case PCK_Lib: 5400 AddDependentLib(PCD->getArg()); 5401 break; 5402 case PCK_Compiler: 5403 case PCK_ExeStr: 5404 case PCK_User: 5405 break; // We ignore all of these. 5406 } 5407 break; 5408 } 5409 5410 case Decl::PragmaDetectMismatch: { 5411 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5412 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5413 break; 5414 } 5415 5416 case Decl::LinkageSpec: 5417 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5418 break; 5419 5420 case Decl::FileScopeAsm: { 5421 // File-scope asm is ignored during device-side CUDA compilation. 5422 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5423 break; 5424 // File-scope asm is ignored during device-side OpenMP compilation. 5425 if (LangOpts.OpenMPIsDevice) 5426 break; 5427 auto *AD = cast<FileScopeAsmDecl>(D); 5428 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5429 break; 5430 } 5431 5432 case Decl::Import: { 5433 auto *Import = cast<ImportDecl>(D); 5434 5435 // If we've already imported this module, we're done. 5436 if (!ImportedModules.insert(Import->getImportedModule())) 5437 break; 5438 5439 // Emit debug information for direct imports. 5440 if (!Import->getImportedOwningModule()) { 5441 if (CGDebugInfo *DI = getModuleDebugInfo()) 5442 DI->EmitImportDecl(*Import); 5443 } 5444 5445 // Find all of the submodules and emit the module initializers. 5446 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5447 SmallVector<clang::Module *, 16> Stack; 5448 Visited.insert(Import->getImportedModule()); 5449 Stack.push_back(Import->getImportedModule()); 5450 5451 while (!Stack.empty()) { 5452 clang::Module *Mod = Stack.pop_back_val(); 5453 if (!EmittedModuleInitializers.insert(Mod).second) 5454 continue; 5455 5456 for (auto *D : Context.getModuleInitializers(Mod)) 5457 EmitTopLevelDecl(D); 5458 5459 // Visit the submodules of this module. 5460 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5461 SubEnd = Mod->submodule_end(); 5462 Sub != SubEnd; ++Sub) { 5463 // Skip explicit children; they need to be explicitly imported to emit 5464 // the initializers. 5465 if ((*Sub)->IsExplicit) 5466 continue; 5467 5468 if (Visited.insert(*Sub).second) 5469 Stack.push_back(*Sub); 5470 } 5471 } 5472 break; 5473 } 5474 5475 case Decl::Export: 5476 EmitDeclContext(cast<ExportDecl>(D)); 5477 break; 5478 5479 case Decl::OMPThreadPrivate: 5480 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5481 break; 5482 5483 case Decl::OMPAllocate: 5484 break; 5485 5486 case Decl::OMPDeclareReduction: 5487 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5488 break; 5489 5490 case Decl::OMPDeclareMapper: 5491 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5492 break; 5493 5494 case Decl::OMPRequires: 5495 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5496 break; 5497 5498 default: 5499 // Make sure we handled everything we should, every other kind is a 5500 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5501 // function. Need to recode Decl::Kind to do that easily. 5502 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5503 break; 5504 } 5505 } 5506 5507 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5508 // Do we need to generate coverage mapping? 5509 if (!CodeGenOpts.CoverageMapping) 5510 return; 5511 switch (D->getKind()) { 5512 case Decl::CXXConversion: 5513 case Decl::CXXMethod: 5514 case Decl::Function: 5515 case Decl::ObjCMethod: 5516 case Decl::CXXConstructor: 5517 case Decl::CXXDestructor: { 5518 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5519 return; 5520 SourceManager &SM = getContext().getSourceManager(); 5521 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5522 return; 5523 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5524 if (I == DeferredEmptyCoverageMappingDecls.end()) 5525 DeferredEmptyCoverageMappingDecls[D] = true; 5526 break; 5527 } 5528 default: 5529 break; 5530 }; 5531 } 5532 5533 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5534 // Do we need to generate coverage mapping? 5535 if (!CodeGenOpts.CoverageMapping) 5536 return; 5537 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5538 if (Fn->isTemplateInstantiation()) 5539 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5540 } 5541 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5542 if (I == DeferredEmptyCoverageMappingDecls.end()) 5543 DeferredEmptyCoverageMappingDecls[D] = false; 5544 else 5545 I->second = false; 5546 } 5547 5548 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5549 // We call takeVector() here to avoid use-after-free. 5550 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5551 // we deserialize function bodies to emit coverage info for them, and that 5552 // deserializes more declarations. How should we handle that case? 5553 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5554 if (!Entry.second) 5555 continue; 5556 const Decl *D = Entry.first; 5557 switch (D->getKind()) { 5558 case Decl::CXXConversion: 5559 case Decl::CXXMethod: 5560 case Decl::Function: 5561 case Decl::ObjCMethod: { 5562 CodeGenPGO PGO(*this); 5563 GlobalDecl GD(cast<FunctionDecl>(D)); 5564 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5565 getFunctionLinkage(GD)); 5566 break; 5567 } 5568 case Decl::CXXConstructor: { 5569 CodeGenPGO PGO(*this); 5570 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5571 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5572 getFunctionLinkage(GD)); 5573 break; 5574 } 5575 case Decl::CXXDestructor: { 5576 CodeGenPGO PGO(*this); 5577 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5578 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5579 getFunctionLinkage(GD)); 5580 break; 5581 } 5582 default: 5583 break; 5584 }; 5585 } 5586 } 5587 5588 /// Turns the given pointer into a constant. 5589 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5590 const void *Ptr) { 5591 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5592 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5593 return llvm::ConstantInt::get(i64, PtrInt); 5594 } 5595 5596 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5597 llvm::NamedMDNode *&GlobalMetadata, 5598 GlobalDecl D, 5599 llvm::GlobalValue *Addr) { 5600 if (!GlobalMetadata) 5601 GlobalMetadata = 5602 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5603 5604 // TODO: should we report variant information for ctors/dtors? 5605 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5606 llvm::ConstantAsMetadata::get(GetPointerConstant( 5607 CGM.getLLVMContext(), D.getDecl()))}; 5608 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5609 } 5610 5611 /// For each function which is declared within an extern "C" region and marked 5612 /// as 'used', but has internal linkage, create an alias from the unmangled 5613 /// name to the mangled name if possible. People expect to be able to refer 5614 /// to such functions with an unmangled name from inline assembly within the 5615 /// same translation unit. 5616 void CodeGenModule::EmitStaticExternCAliases() { 5617 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5618 return; 5619 for (auto &I : StaticExternCValues) { 5620 IdentifierInfo *Name = I.first; 5621 llvm::GlobalValue *Val = I.second; 5622 if (Val && !getModule().getNamedValue(Name->getName())) 5623 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5624 } 5625 } 5626 5627 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5628 GlobalDecl &Result) const { 5629 auto Res = Manglings.find(MangledName); 5630 if (Res == Manglings.end()) 5631 return false; 5632 Result = Res->getValue(); 5633 return true; 5634 } 5635 5636 /// Emits metadata nodes associating all the global values in the 5637 /// current module with the Decls they came from. This is useful for 5638 /// projects using IR gen as a subroutine. 5639 /// 5640 /// Since there's currently no way to associate an MDNode directly 5641 /// with an llvm::GlobalValue, we create a global named metadata 5642 /// with the name 'clang.global.decl.ptrs'. 5643 void CodeGenModule::EmitDeclMetadata() { 5644 llvm::NamedMDNode *GlobalMetadata = nullptr; 5645 5646 for (auto &I : MangledDeclNames) { 5647 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5648 // Some mangled names don't necessarily have an associated GlobalValue 5649 // in this module, e.g. if we mangled it for DebugInfo. 5650 if (Addr) 5651 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5652 } 5653 } 5654 5655 /// Emits metadata nodes for all the local variables in the current 5656 /// function. 5657 void CodeGenFunction::EmitDeclMetadata() { 5658 if (LocalDeclMap.empty()) return; 5659 5660 llvm::LLVMContext &Context = getLLVMContext(); 5661 5662 // Find the unique metadata ID for this name. 5663 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5664 5665 llvm::NamedMDNode *GlobalMetadata = nullptr; 5666 5667 for (auto &I : LocalDeclMap) { 5668 const Decl *D = I.first; 5669 llvm::Value *Addr = I.second.getPointer(); 5670 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5671 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5672 Alloca->setMetadata( 5673 DeclPtrKind, llvm::MDNode::get( 5674 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5675 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5676 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5677 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5678 } 5679 } 5680 } 5681 5682 void CodeGenModule::EmitVersionIdentMetadata() { 5683 llvm::NamedMDNode *IdentMetadata = 5684 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5685 std::string Version = getClangFullVersion(); 5686 llvm::LLVMContext &Ctx = TheModule.getContext(); 5687 5688 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5689 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5690 } 5691 5692 void CodeGenModule::EmitCommandLineMetadata() { 5693 llvm::NamedMDNode *CommandLineMetadata = 5694 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5695 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5696 llvm::LLVMContext &Ctx = TheModule.getContext(); 5697 5698 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5699 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5700 } 5701 5702 void CodeGenModule::EmitTargetMetadata() { 5703 // Warning, new MangledDeclNames may be appended within this loop. 5704 // We rely on MapVector insertions adding new elements to the end 5705 // of the container. 5706 // FIXME: Move this loop into the one target that needs it, and only 5707 // loop over those declarations for which we couldn't emit the target 5708 // metadata when we emitted the declaration. 5709 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5710 auto Val = *(MangledDeclNames.begin() + I); 5711 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5712 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5713 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5714 } 5715 } 5716 5717 void CodeGenModule::EmitCoverageFile() { 5718 if (getCodeGenOpts().CoverageDataFile.empty() && 5719 getCodeGenOpts().CoverageNotesFile.empty()) 5720 return; 5721 5722 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5723 if (!CUNode) 5724 return; 5725 5726 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5727 llvm::LLVMContext &Ctx = TheModule.getContext(); 5728 auto *CoverageDataFile = 5729 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5730 auto *CoverageNotesFile = 5731 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5732 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5733 llvm::MDNode *CU = CUNode->getOperand(i); 5734 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5735 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5736 } 5737 } 5738 5739 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5740 // Sema has checked that all uuid strings are of the form 5741 // "12345678-1234-1234-1234-1234567890ab". 5742 assert(Uuid.size() == 36); 5743 for (unsigned i = 0; i < 36; ++i) { 5744 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5745 else assert(isHexDigit(Uuid[i])); 5746 } 5747 5748 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5749 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5750 5751 llvm::Constant *Field3[8]; 5752 for (unsigned Idx = 0; Idx < 8; ++Idx) 5753 Field3[Idx] = llvm::ConstantInt::get( 5754 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5755 5756 llvm::Constant *Fields[4] = { 5757 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5758 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5759 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5760 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5761 }; 5762 5763 return llvm::ConstantStruct::getAnon(Fields); 5764 } 5765 5766 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5767 bool ForEH) { 5768 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5769 // FIXME: should we even be calling this method if RTTI is disabled 5770 // and it's not for EH? 5771 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5772 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5773 getTriple().isNVPTX())) 5774 return llvm::Constant::getNullValue(Int8PtrTy); 5775 5776 if (ForEH && Ty->isObjCObjectPointerType() && 5777 LangOpts.ObjCRuntime.isGNUFamily()) 5778 return ObjCRuntime->GetEHType(Ty); 5779 5780 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5781 } 5782 5783 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5784 // Do not emit threadprivates in simd-only mode. 5785 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5786 return; 5787 for (auto RefExpr : D->varlists()) { 5788 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5789 bool PerformInit = 5790 VD->getAnyInitializer() && 5791 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5792 /*ForRef=*/false); 5793 5794 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5795 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5796 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5797 CXXGlobalInits.push_back(InitFunction); 5798 } 5799 } 5800 5801 llvm::Metadata * 5802 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5803 StringRef Suffix) { 5804 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5805 if (InternalId) 5806 return InternalId; 5807 5808 if (isExternallyVisible(T->getLinkage())) { 5809 std::string OutName; 5810 llvm::raw_string_ostream Out(OutName); 5811 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5812 Out << Suffix; 5813 5814 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5815 } else { 5816 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5817 llvm::ArrayRef<llvm::Metadata *>()); 5818 } 5819 5820 return InternalId; 5821 } 5822 5823 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5824 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5825 } 5826 5827 llvm::Metadata * 5828 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5829 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5830 } 5831 5832 // Generalize pointer types to a void pointer with the qualifiers of the 5833 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5834 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5835 // 'void *'. 5836 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5837 if (!Ty->isPointerType()) 5838 return Ty; 5839 5840 return Ctx.getPointerType( 5841 QualType(Ctx.VoidTy).withCVRQualifiers( 5842 Ty->getPointeeType().getCVRQualifiers())); 5843 } 5844 5845 // Apply type generalization to a FunctionType's return and argument types 5846 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5847 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5848 SmallVector<QualType, 8> GeneralizedParams; 5849 for (auto &Param : FnType->param_types()) 5850 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5851 5852 return Ctx.getFunctionType( 5853 GeneralizeType(Ctx, FnType->getReturnType()), 5854 GeneralizedParams, FnType->getExtProtoInfo()); 5855 } 5856 5857 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5858 return Ctx.getFunctionNoProtoType( 5859 GeneralizeType(Ctx, FnType->getReturnType())); 5860 5861 llvm_unreachable("Encountered unknown FunctionType"); 5862 } 5863 5864 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5865 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5866 GeneralizedMetadataIdMap, ".generalized"); 5867 } 5868 5869 /// Returns whether this module needs the "all-vtables" type identifier. 5870 bool CodeGenModule::NeedAllVtablesTypeId() const { 5871 // Returns true if at least one of vtable-based CFI checkers is enabled and 5872 // is not in the trapping mode. 5873 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5874 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5875 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5876 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5877 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5878 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5879 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5880 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5881 } 5882 5883 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5884 CharUnits Offset, 5885 const CXXRecordDecl *RD) { 5886 llvm::Metadata *MD = 5887 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5888 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5889 5890 if (CodeGenOpts.SanitizeCfiCrossDso) 5891 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5892 VTable->addTypeMetadata(Offset.getQuantity(), 5893 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5894 5895 if (NeedAllVtablesTypeId()) { 5896 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5897 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5898 } 5899 } 5900 5901 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5902 if (!SanStats) 5903 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5904 5905 return *SanStats; 5906 } 5907 llvm::Value * 5908 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5909 CodeGenFunction &CGF) { 5910 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5911 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5912 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5913 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5914 "__translate_sampler_initializer"), 5915 {C}); 5916 } 5917