1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 364 const llvm::DataLayout &DL = M.getDataLayout(); 365 AllocaInt8PtrTy = 366 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = 368 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 369 ConstGlobalsPtrTy = llvm::PointerType::get( 370 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 371 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 372 373 // Build C++20 Module initializers. 374 // TODO: Add Microsoft here once we know the mangling required for the 375 // initializers. 376 CXX20ModuleInits = 377 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 378 ItaniumMangleContext::MK_Itanium; 379 380 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 381 382 if (LangOpts.ObjC) 383 createObjCRuntime(); 384 if (LangOpts.OpenCL) 385 createOpenCLRuntime(); 386 if (LangOpts.OpenMP) 387 createOpenMPRuntime(); 388 if (LangOpts.CUDA) 389 createCUDARuntime(); 390 if (LangOpts.HLSL) 391 createHLSLRuntime(); 392 393 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 394 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 395 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 396 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 397 getCXXABI().getMangleContext())); 398 399 // If debug info or coverage generation is enabled, create the CGDebugInfo 400 // object. 401 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 402 CodeGenOpts.CoverageNotesFile.size() || 403 CodeGenOpts.CoverageDataFile.size()) 404 DebugInfo.reset(new CGDebugInfo(*this)); 405 406 Block.GlobalUniqueCount = 0; 407 408 if (C.getLangOpts().ObjC) 409 ObjCData.reset(new ObjCEntrypoints()); 410 411 if (CodeGenOpts.hasProfileClangUse()) { 412 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 413 CodeGenOpts.ProfileInstrumentUsePath, *FS, 414 CodeGenOpts.ProfileRemappingFile); 415 // We're checking for profile read errors in CompilerInvocation, so if 416 // there was an error it should've already been caught. If it hasn't been 417 // somehow, trip an assertion. 418 assert(ReaderOrErr); 419 PGOReader = std::move(ReaderOrErr.get()); 420 } 421 422 // If coverage mapping generation is enabled, create the 423 // CoverageMappingModuleGen object. 424 if (CodeGenOpts.CoverageMapping) 425 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 426 427 // Generate the module name hash here if needed. 428 if (CodeGenOpts.UniqueInternalLinkageNames && 429 !getModule().getSourceFileName().empty()) { 430 std::string Path = getModule().getSourceFileName(); 431 // Check if a path substitution is needed from the MacroPrefixMap. 432 for (const auto &Entry : LangOpts.MacroPrefixMap) 433 if (Path.rfind(Entry.first, 0) != std::string::npos) { 434 Path = Entry.second + Path.substr(Entry.first.size()); 435 break; 436 } 437 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 438 } 439 } 440 441 CodeGenModule::~CodeGenModule() {} 442 443 void CodeGenModule::createObjCRuntime() { 444 // This is just isGNUFamily(), but we want to force implementors of 445 // new ABIs to decide how best to do this. 446 switch (LangOpts.ObjCRuntime.getKind()) { 447 case ObjCRuntime::GNUstep: 448 case ObjCRuntime::GCC: 449 case ObjCRuntime::ObjFW: 450 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 451 return; 452 453 case ObjCRuntime::FragileMacOSX: 454 case ObjCRuntime::MacOSX: 455 case ObjCRuntime::iOS: 456 case ObjCRuntime::WatchOS: 457 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 458 return; 459 } 460 llvm_unreachable("bad runtime kind"); 461 } 462 463 void CodeGenModule::createOpenCLRuntime() { 464 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 465 } 466 467 void CodeGenModule::createOpenMPRuntime() { 468 // Select a specialized code generation class based on the target, if any. 469 // If it does not exist use the default implementation. 470 switch (getTriple().getArch()) { 471 case llvm::Triple::nvptx: 472 case llvm::Triple::nvptx64: 473 case llvm::Triple::amdgcn: 474 assert(getLangOpts().OpenMPIsTargetDevice && 475 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 476 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 477 break; 478 default: 479 if (LangOpts.OpenMPSimd) 480 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 481 else 482 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 483 break; 484 } 485 } 486 487 void CodeGenModule::createCUDARuntime() { 488 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 489 } 490 491 void CodeGenModule::createHLSLRuntime() { 492 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 493 } 494 495 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 496 Replacements[Name] = C; 497 } 498 499 void CodeGenModule::applyReplacements() { 500 for (auto &I : Replacements) { 501 StringRef MangledName = I.first; 502 llvm::Constant *Replacement = I.second; 503 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 504 if (!Entry) 505 continue; 506 auto *OldF = cast<llvm::Function>(Entry); 507 auto *NewF = dyn_cast<llvm::Function>(Replacement); 508 if (!NewF) { 509 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 510 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 511 } else { 512 auto *CE = cast<llvm::ConstantExpr>(Replacement); 513 assert(CE->getOpcode() == llvm::Instruction::BitCast || 514 CE->getOpcode() == llvm::Instruction::GetElementPtr); 515 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 516 } 517 } 518 519 // Replace old with new, but keep the old order. 520 OldF->replaceAllUsesWith(Replacement); 521 if (NewF) { 522 NewF->removeFromParent(); 523 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 524 NewF); 525 } 526 OldF->eraseFromParent(); 527 } 528 } 529 530 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 531 GlobalValReplacements.push_back(std::make_pair(GV, C)); 532 } 533 534 void CodeGenModule::applyGlobalValReplacements() { 535 for (auto &I : GlobalValReplacements) { 536 llvm::GlobalValue *GV = I.first; 537 llvm::Constant *C = I.second; 538 539 GV->replaceAllUsesWith(C); 540 GV->eraseFromParent(); 541 } 542 } 543 544 // This is only used in aliases that we created and we know they have a 545 // linear structure. 546 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 547 const llvm::Constant *C; 548 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 549 C = GA->getAliasee(); 550 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 551 C = GI->getResolver(); 552 else 553 return GV; 554 555 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 556 if (!AliaseeGV) 557 return nullptr; 558 559 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 560 if (FinalGV == GV) 561 return nullptr; 562 563 return FinalGV; 564 } 565 566 static bool checkAliasedGlobal( 567 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 568 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 569 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 570 SourceRange AliasRange) { 571 GV = getAliasedGlobal(Alias); 572 if (!GV) { 573 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 574 return false; 575 } 576 577 if (GV->hasCommonLinkage()) { 578 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 579 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 580 Diags.Report(Location, diag::err_alias_to_common); 581 return false; 582 } 583 } 584 585 if (GV->isDeclaration()) { 586 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 587 Diags.Report(Location, diag::note_alias_requires_mangled_name) 588 << IsIFunc << IsIFunc; 589 // Provide a note if the given function is not found and exists as a 590 // mangled name. 591 for (const auto &[Decl, Name] : MangledDeclNames) { 592 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 593 if (ND->getName() == GV->getName()) { 594 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 595 << Name 596 << FixItHint::CreateReplacement( 597 AliasRange, 598 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 599 .str()); 600 } 601 } 602 } 603 return false; 604 } 605 606 if (IsIFunc) { 607 // Check resolver function type. 608 const auto *F = dyn_cast<llvm::Function>(GV); 609 if (!F) { 610 Diags.Report(Location, diag::err_alias_to_undefined) 611 << IsIFunc << IsIFunc; 612 return false; 613 } 614 615 llvm::FunctionType *FTy = F->getFunctionType(); 616 if (!FTy->getReturnType()->isPointerTy()) { 617 Diags.Report(Location, diag::err_ifunc_resolver_return); 618 return false; 619 } 620 } 621 622 return true; 623 } 624 625 void CodeGenModule::checkAliases() { 626 // Check if the constructed aliases are well formed. It is really unfortunate 627 // that we have to do this in CodeGen, but we only construct mangled names 628 // and aliases during codegen. 629 bool Error = false; 630 DiagnosticsEngine &Diags = getDiags(); 631 for (const GlobalDecl &GD : Aliases) { 632 const auto *D = cast<ValueDecl>(GD.getDecl()); 633 SourceLocation Location; 634 SourceRange Range; 635 bool IsIFunc = D->hasAttr<IFuncAttr>(); 636 if (const Attr *A = D->getDefiningAttr()) { 637 Location = A->getLocation(); 638 Range = A->getRange(); 639 } else 640 llvm_unreachable("Not an alias or ifunc?"); 641 642 StringRef MangledName = getMangledName(GD); 643 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 644 const llvm::GlobalValue *GV = nullptr; 645 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 646 MangledDeclNames, Range)) { 647 Error = true; 648 continue; 649 } 650 651 llvm::Constant *Aliasee = 652 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 653 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 654 655 llvm::GlobalValue *AliaseeGV; 656 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 657 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 658 else 659 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 660 661 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 662 StringRef AliasSection = SA->getName(); 663 if (AliasSection != AliaseeGV->getSection()) 664 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 665 << AliasSection << IsIFunc << IsIFunc; 666 } 667 668 // We have to handle alias to weak aliases in here. LLVM itself disallows 669 // this since the object semantics would not match the IL one. For 670 // compatibility with gcc we implement it by just pointing the alias 671 // to its aliasee's aliasee. We also warn, since the user is probably 672 // expecting the link to be weak. 673 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 674 if (GA->isInterposable()) { 675 Diags.Report(Location, diag::warn_alias_to_weak_alias) 676 << GV->getName() << GA->getName() << IsIFunc; 677 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 678 GA->getAliasee(), Alias->getType()); 679 680 if (IsIFunc) 681 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 682 else 683 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 684 } 685 } 686 } 687 if (!Error) 688 return; 689 690 for (const GlobalDecl &GD : Aliases) { 691 StringRef MangledName = getMangledName(GD); 692 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 693 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 694 Alias->eraseFromParent(); 695 } 696 } 697 698 void CodeGenModule::clear() { 699 DeferredDeclsToEmit.clear(); 700 EmittedDeferredDecls.clear(); 701 if (OpenMPRuntime) 702 OpenMPRuntime->clear(); 703 } 704 705 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 706 StringRef MainFile) { 707 if (!hasDiagnostics()) 708 return; 709 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 710 if (MainFile.empty()) 711 MainFile = "<stdin>"; 712 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 713 } else { 714 if (Mismatched > 0) 715 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 716 717 if (Missing > 0) 718 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 719 } 720 } 721 722 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 723 llvm::Module &M) { 724 if (!LO.VisibilityFromDLLStorageClass) 725 return; 726 727 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 728 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 729 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 730 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 731 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 732 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 733 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 734 CodeGenModule::GetLLVMVisibility( 735 LO.getExternDeclNoDLLStorageClassVisibility()); 736 737 for (llvm::GlobalValue &GV : M.global_values()) { 738 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 739 continue; 740 741 // Reset DSO locality before setting the visibility. This removes 742 // any effects that visibility options and annotations may have 743 // had on the DSO locality. Setting the visibility will implicitly set 744 // appropriate globals to DSO Local; however, this will be pessimistic 745 // w.r.t. to the normal compiler IRGen. 746 GV.setDSOLocal(false); 747 748 if (GV.isDeclarationForLinker()) { 749 GV.setVisibility(GV.getDLLStorageClass() == 750 llvm::GlobalValue::DLLImportStorageClass 751 ? ExternDeclDLLImportVisibility 752 : ExternDeclNoDLLStorageClassVisibility); 753 } else { 754 GV.setVisibility(GV.getDLLStorageClass() == 755 llvm::GlobalValue::DLLExportStorageClass 756 ? DLLExportVisibility 757 : NoDLLStorageClassVisibility); 758 } 759 760 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 761 } 762 } 763 764 void CodeGenModule::Release() { 765 Module *Primary = getContext().getCurrentNamedModule(); 766 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 767 EmitModuleInitializers(Primary); 768 EmitDeferred(); 769 DeferredDecls.insert(EmittedDeferredDecls.begin(), 770 EmittedDeferredDecls.end()); 771 EmittedDeferredDecls.clear(); 772 EmitVTablesOpportunistically(); 773 applyGlobalValReplacements(); 774 applyReplacements(); 775 emitMultiVersionFunctions(); 776 777 if (Context.getLangOpts().IncrementalExtensions && 778 GlobalTopLevelStmtBlockInFlight.first) { 779 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 780 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 781 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 782 } 783 784 // Module implementations are initialized the same way as a regular TU that 785 // imports one or more modules. 786 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 787 EmitCXXModuleInitFunc(Primary); 788 else 789 EmitCXXGlobalInitFunc(); 790 EmitCXXGlobalCleanUpFunc(); 791 registerGlobalDtorsWithAtExit(); 792 EmitCXXThreadLocalInitFunc(); 793 if (ObjCRuntime) 794 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 795 AddGlobalCtor(ObjCInitFunction); 796 if (Context.getLangOpts().CUDA && CUDARuntime) { 797 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 798 AddGlobalCtor(CudaCtorFunction); 799 } 800 if (OpenMPRuntime) { 801 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 802 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 803 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 804 } 805 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 806 OpenMPRuntime->clear(); 807 } 808 if (PGOReader) { 809 getModule().setProfileSummary( 810 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 811 llvm::ProfileSummary::PSK_Instr); 812 if (PGOStats.hasDiagnostics()) 813 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 814 } 815 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 816 return L.LexOrder < R.LexOrder; 817 }); 818 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 819 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 820 EmitGlobalAnnotations(); 821 EmitStaticExternCAliases(); 822 checkAliases(); 823 EmitDeferredUnusedCoverageMappings(); 824 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 825 if (CoverageMapping) 826 CoverageMapping->emit(); 827 if (CodeGenOpts.SanitizeCfiCrossDso) { 828 CodeGenFunction(*this).EmitCfiCheckFail(); 829 CodeGenFunction(*this).EmitCfiCheckStub(); 830 } 831 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 832 finalizeKCFITypes(); 833 emitAtAvailableLinkGuard(); 834 if (Context.getTargetInfo().getTriple().isWasm()) 835 EmitMainVoidAlias(); 836 837 if (getTriple().isAMDGPU()) { 838 // Emit amdgpu_code_object_version module flag, which is code object version 839 // times 100. 840 if (getTarget().getTargetOpts().CodeObjectVersion != 841 TargetOptions::COV_None) { 842 getModule().addModuleFlag(llvm::Module::Error, 843 "amdgpu_code_object_version", 844 getTarget().getTargetOpts().CodeObjectVersion); 845 } 846 847 // Currently, "-mprintf-kind" option is only supported for HIP 848 if (LangOpts.HIP) { 849 auto *MDStr = llvm::MDString::get( 850 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 851 TargetOptions::AMDGPUPrintfKind::Hostcall) 852 ? "hostcall" 853 : "buffered"); 854 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 855 MDStr); 856 } 857 } 858 859 // Emit a global array containing all external kernels or device variables 860 // used by host functions and mark it as used for CUDA/HIP. This is necessary 861 // to get kernels or device variables in archives linked in even if these 862 // kernels or device variables are only used in host functions. 863 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 864 SmallVector<llvm::Constant *, 8> UsedArray; 865 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 866 GlobalDecl GD; 867 if (auto *FD = dyn_cast<FunctionDecl>(D)) 868 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 869 else 870 GD = GlobalDecl(D); 871 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 872 GetAddrOfGlobal(GD), Int8PtrTy)); 873 } 874 875 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 876 877 auto *GV = new llvm::GlobalVariable( 878 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 879 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 880 addCompilerUsedGlobal(GV); 881 } 882 883 emitLLVMUsed(); 884 if (SanStats) 885 SanStats->finish(); 886 887 if (CodeGenOpts.Autolink && 888 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 889 EmitModuleLinkOptions(); 890 } 891 892 // On ELF we pass the dependent library specifiers directly to the linker 893 // without manipulating them. This is in contrast to other platforms where 894 // they are mapped to a specific linker option by the compiler. This 895 // difference is a result of the greater variety of ELF linkers and the fact 896 // that ELF linkers tend to handle libraries in a more complicated fashion 897 // than on other platforms. This forces us to defer handling the dependent 898 // libs to the linker. 899 // 900 // CUDA/HIP device and host libraries are different. Currently there is no 901 // way to differentiate dependent libraries for host or device. Existing 902 // usage of #pragma comment(lib, *) is intended for host libraries on 903 // Windows. Therefore emit llvm.dependent-libraries only for host. 904 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 905 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 906 for (auto *MD : ELFDependentLibraries) 907 NMD->addOperand(MD); 908 } 909 910 // Record mregparm value now so it is visible through rest of codegen. 911 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 912 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 913 CodeGenOpts.NumRegisterParameters); 914 915 if (CodeGenOpts.DwarfVersion) { 916 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 917 CodeGenOpts.DwarfVersion); 918 } 919 920 if (CodeGenOpts.Dwarf64) 921 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 922 923 if (Context.getLangOpts().SemanticInterposition) 924 // Require various optimization to respect semantic interposition. 925 getModule().setSemanticInterposition(true); 926 927 if (CodeGenOpts.EmitCodeView) { 928 // Indicate that we want CodeView in the metadata. 929 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 930 } 931 if (CodeGenOpts.CodeViewGHash) { 932 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 933 } 934 if (CodeGenOpts.ControlFlowGuard) { 935 // Function ID tables and checks for Control Flow Guard (cfguard=2). 936 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 937 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 938 // Function ID tables for Control Flow Guard (cfguard=1). 939 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 940 } 941 if (CodeGenOpts.EHContGuard) { 942 // Function ID tables for EH Continuation Guard. 943 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 944 } 945 if (Context.getLangOpts().Kernel) { 946 // Note if we are compiling with /kernel. 947 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 948 } 949 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 950 // We don't support LTO with 2 with different StrictVTablePointers 951 // FIXME: we could support it by stripping all the information introduced 952 // by StrictVTablePointers. 953 954 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 955 956 llvm::Metadata *Ops[2] = { 957 llvm::MDString::get(VMContext, "StrictVTablePointers"), 958 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 959 llvm::Type::getInt32Ty(VMContext), 1))}; 960 961 getModule().addModuleFlag(llvm::Module::Require, 962 "StrictVTablePointersRequirement", 963 llvm::MDNode::get(VMContext, Ops)); 964 } 965 if (getModuleDebugInfo()) 966 // We support a single version in the linked module. The LLVM 967 // parser will drop debug info with a different version number 968 // (and warn about it, too). 969 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 970 llvm::DEBUG_METADATA_VERSION); 971 972 // We need to record the widths of enums and wchar_t, so that we can generate 973 // the correct build attributes in the ARM backend. wchar_size is also used by 974 // TargetLibraryInfo. 975 uint64_t WCharWidth = 976 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 977 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 978 979 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 980 if ( Arch == llvm::Triple::arm 981 || Arch == llvm::Triple::armeb 982 || Arch == llvm::Triple::thumb 983 || Arch == llvm::Triple::thumbeb) { 984 // The minimum width of an enum in bytes 985 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 986 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 987 } 988 989 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 990 StringRef ABIStr = Target.getABI(); 991 llvm::LLVMContext &Ctx = TheModule.getContext(); 992 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 993 llvm::MDString::get(Ctx, ABIStr)); 994 } 995 996 if (CodeGenOpts.SanitizeCfiCrossDso) { 997 // Indicate that we want cross-DSO control flow integrity checks. 998 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 999 } 1000 1001 if (CodeGenOpts.WholeProgramVTables) { 1002 // Indicate whether VFE was enabled for this module, so that the 1003 // vcall_visibility metadata added under whole program vtables is handled 1004 // appropriately in the optimizer. 1005 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1006 CodeGenOpts.VirtualFunctionElimination); 1007 } 1008 1009 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1010 getModule().addModuleFlag(llvm::Module::Override, 1011 "CFI Canonical Jump Tables", 1012 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1013 } 1014 1015 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1016 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1017 // KCFI assumes patchable-function-prefix is the same for all indirectly 1018 // called functions. Store the expected offset for code generation. 1019 if (CodeGenOpts.PatchableFunctionEntryOffset) 1020 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1021 CodeGenOpts.PatchableFunctionEntryOffset); 1022 } 1023 1024 if (CodeGenOpts.CFProtectionReturn && 1025 Target.checkCFProtectionReturnSupported(getDiags())) { 1026 // Indicate that we want to instrument return control flow protection. 1027 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1028 1); 1029 } 1030 1031 if (CodeGenOpts.CFProtectionBranch && 1032 Target.checkCFProtectionBranchSupported(getDiags())) { 1033 // Indicate that we want to instrument branch control flow protection. 1034 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1035 1); 1036 } 1037 1038 if (CodeGenOpts.FunctionReturnThunks) 1039 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1040 1041 if (CodeGenOpts.IndirectBranchCSPrefix) 1042 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1043 1044 // Add module metadata for return address signing (ignoring 1045 // non-leaf/all) and stack tagging. These are actually turned on by function 1046 // attributes, but we use module metadata to emit build attributes. This is 1047 // needed for LTO, where the function attributes are inside bitcode 1048 // serialised into a global variable by the time build attributes are 1049 // emitted, so we can't access them. LTO objects could be compiled with 1050 // different flags therefore module flags are set to "Min" behavior to achieve 1051 // the same end result of the normal build where e.g BTI is off if any object 1052 // doesn't support it. 1053 if (Context.getTargetInfo().hasFeature("ptrauth") && 1054 LangOpts.getSignReturnAddressScope() != 1055 LangOptions::SignReturnAddressScopeKind::None) 1056 getModule().addModuleFlag(llvm::Module::Override, 1057 "sign-return-address-buildattr", 1); 1058 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1059 getModule().addModuleFlag(llvm::Module::Override, 1060 "tag-stack-memory-buildattr", 1); 1061 1062 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1063 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1064 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1065 Arch == llvm::Triple::aarch64_be) { 1066 if (LangOpts.BranchTargetEnforcement) 1067 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1068 1); 1069 if (LangOpts.hasSignReturnAddress()) 1070 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1071 if (LangOpts.isSignReturnAddressScopeAll()) 1072 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1073 1); 1074 if (!LangOpts.isSignReturnAddressWithAKey()) 1075 getModule().addModuleFlag(llvm::Module::Min, 1076 "sign-return-address-with-bkey", 1); 1077 } 1078 1079 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1080 llvm::LLVMContext &Ctx = TheModule.getContext(); 1081 getModule().addModuleFlag( 1082 llvm::Module::Error, "MemProfProfileFilename", 1083 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1084 } 1085 1086 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1087 // Indicate whether __nvvm_reflect should be configured to flush denormal 1088 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1089 // property.) 1090 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1091 CodeGenOpts.FP32DenormalMode.Output != 1092 llvm::DenormalMode::IEEE); 1093 } 1094 1095 if (LangOpts.EHAsynch) 1096 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1097 1098 // Indicate whether this Module was compiled with -fopenmp 1099 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1100 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1101 if (getLangOpts().OpenMPIsTargetDevice) 1102 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1103 LangOpts.OpenMP); 1104 1105 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1106 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1107 EmitOpenCLMetadata(); 1108 // Emit SPIR version. 1109 if (getTriple().isSPIR()) { 1110 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1111 // opencl.spir.version named metadata. 1112 // C++ for OpenCL has a distinct mapping for version compatibility with 1113 // OpenCL. 1114 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1115 llvm::Metadata *SPIRVerElts[] = { 1116 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1117 Int32Ty, Version / 100)), 1118 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1119 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1120 llvm::NamedMDNode *SPIRVerMD = 1121 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1122 llvm::LLVMContext &Ctx = TheModule.getContext(); 1123 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1124 } 1125 } 1126 1127 // HLSL related end of code gen work items. 1128 if (LangOpts.HLSL) 1129 getHLSLRuntime().finishCodeGen(); 1130 1131 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1132 assert(PLevel < 3 && "Invalid PIC Level"); 1133 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1134 if (Context.getLangOpts().PIE) 1135 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1136 } 1137 1138 if (getCodeGenOpts().CodeModel.size() > 0) { 1139 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1140 .Case("tiny", llvm::CodeModel::Tiny) 1141 .Case("small", llvm::CodeModel::Small) 1142 .Case("kernel", llvm::CodeModel::Kernel) 1143 .Case("medium", llvm::CodeModel::Medium) 1144 .Case("large", llvm::CodeModel::Large) 1145 .Default(~0u); 1146 if (CM != ~0u) { 1147 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1148 getModule().setCodeModel(codeModel); 1149 1150 if (CM == llvm::CodeModel::Medium && 1151 Context.getTargetInfo().getTriple().getArch() == 1152 llvm::Triple::x86_64) { 1153 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1154 } 1155 } 1156 } 1157 1158 if (CodeGenOpts.NoPLT) 1159 getModule().setRtLibUseGOT(); 1160 if (getTriple().isOSBinFormatELF() && 1161 CodeGenOpts.DirectAccessExternalData != 1162 getModule().getDirectAccessExternalData()) { 1163 getModule().setDirectAccessExternalData( 1164 CodeGenOpts.DirectAccessExternalData); 1165 } 1166 if (CodeGenOpts.UnwindTables) 1167 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1168 1169 switch (CodeGenOpts.getFramePointer()) { 1170 case CodeGenOptions::FramePointerKind::None: 1171 // 0 ("none") is the default. 1172 break; 1173 case CodeGenOptions::FramePointerKind::NonLeaf: 1174 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1175 break; 1176 case CodeGenOptions::FramePointerKind::All: 1177 getModule().setFramePointer(llvm::FramePointerKind::All); 1178 break; 1179 } 1180 1181 SimplifyPersonality(); 1182 1183 if (getCodeGenOpts().EmitDeclMetadata) 1184 EmitDeclMetadata(); 1185 1186 if (getCodeGenOpts().CoverageNotesFile.size() || 1187 getCodeGenOpts().CoverageDataFile.size()) 1188 EmitCoverageFile(); 1189 1190 if (CGDebugInfo *DI = getModuleDebugInfo()) 1191 DI->finalize(); 1192 1193 if (getCodeGenOpts().EmitVersionIdentMetadata) 1194 EmitVersionIdentMetadata(); 1195 1196 if (!getCodeGenOpts().RecordCommandLine.empty()) 1197 EmitCommandLineMetadata(); 1198 1199 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1200 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1201 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1202 getModule().setStackProtectorGuardReg( 1203 getCodeGenOpts().StackProtectorGuardReg); 1204 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1205 getModule().setStackProtectorGuardSymbol( 1206 getCodeGenOpts().StackProtectorGuardSymbol); 1207 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1208 getModule().setStackProtectorGuardOffset( 1209 getCodeGenOpts().StackProtectorGuardOffset); 1210 if (getCodeGenOpts().StackAlignment) 1211 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1212 if (getCodeGenOpts().SkipRaxSetup) 1213 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1214 if (getLangOpts().RegCall4) 1215 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1216 1217 if (getContext().getTargetInfo().getMaxTLSAlign()) 1218 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1219 getContext().getTargetInfo().getMaxTLSAlign()); 1220 1221 getTargetCodeGenInfo().emitTargetGlobals(*this); 1222 1223 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1224 1225 EmitBackendOptionsMetadata(getCodeGenOpts()); 1226 1227 // If there is device offloading code embed it in the host now. 1228 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1229 1230 // Set visibility from DLL storage class 1231 // We do this at the end of LLVM IR generation; after any operation 1232 // that might affect the DLL storage class or the visibility, and 1233 // before anything that might act on these. 1234 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1235 } 1236 1237 void CodeGenModule::EmitOpenCLMetadata() { 1238 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1239 // opencl.ocl.version named metadata node. 1240 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1241 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1242 llvm::Metadata *OCLVerElts[] = { 1243 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1244 Int32Ty, Version / 100)), 1245 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1246 Int32Ty, (Version % 100) / 10))}; 1247 llvm::NamedMDNode *OCLVerMD = 1248 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1249 llvm::LLVMContext &Ctx = TheModule.getContext(); 1250 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1251 } 1252 1253 void CodeGenModule::EmitBackendOptionsMetadata( 1254 const CodeGenOptions &CodeGenOpts) { 1255 if (getTriple().isRISCV()) { 1256 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1257 CodeGenOpts.SmallDataLimit); 1258 } 1259 } 1260 1261 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1262 // Make sure that this type is translated. 1263 Types.UpdateCompletedType(TD); 1264 } 1265 1266 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1267 // Make sure that this type is translated. 1268 Types.RefreshTypeCacheForClass(RD); 1269 } 1270 1271 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1272 if (!TBAA) 1273 return nullptr; 1274 return TBAA->getTypeInfo(QTy); 1275 } 1276 1277 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1278 if (!TBAA) 1279 return TBAAAccessInfo(); 1280 if (getLangOpts().CUDAIsDevice) { 1281 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1282 // access info. 1283 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1284 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1285 nullptr) 1286 return TBAAAccessInfo(); 1287 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1288 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1289 nullptr) 1290 return TBAAAccessInfo(); 1291 } 1292 } 1293 return TBAA->getAccessInfo(AccessType); 1294 } 1295 1296 TBAAAccessInfo 1297 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1298 if (!TBAA) 1299 return TBAAAccessInfo(); 1300 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1301 } 1302 1303 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1304 if (!TBAA) 1305 return nullptr; 1306 return TBAA->getTBAAStructInfo(QTy); 1307 } 1308 1309 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1310 if (!TBAA) 1311 return nullptr; 1312 return TBAA->getBaseTypeInfo(QTy); 1313 } 1314 1315 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1316 if (!TBAA) 1317 return nullptr; 1318 return TBAA->getAccessTagInfo(Info); 1319 } 1320 1321 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1322 TBAAAccessInfo TargetInfo) { 1323 if (!TBAA) 1324 return TBAAAccessInfo(); 1325 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1326 } 1327 1328 TBAAAccessInfo 1329 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1330 TBAAAccessInfo InfoB) { 1331 if (!TBAA) 1332 return TBAAAccessInfo(); 1333 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1334 } 1335 1336 TBAAAccessInfo 1337 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1338 TBAAAccessInfo SrcInfo) { 1339 if (!TBAA) 1340 return TBAAAccessInfo(); 1341 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1342 } 1343 1344 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1345 TBAAAccessInfo TBAAInfo) { 1346 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1347 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1348 } 1349 1350 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1351 llvm::Instruction *I, const CXXRecordDecl *RD) { 1352 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1353 llvm::MDNode::get(getLLVMContext(), {})); 1354 } 1355 1356 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1357 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1358 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1359 } 1360 1361 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1362 /// specified stmt yet. 1363 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1364 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1365 "cannot compile this %0 yet"); 1366 std::string Msg = Type; 1367 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1368 << Msg << S->getSourceRange(); 1369 } 1370 1371 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1372 /// specified decl yet. 1373 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1374 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1375 "cannot compile this %0 yet"); 1376 std::string Msg = Type; 1377 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1378 } 1379 1380 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1381 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1382 } 1383 1384 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1385 const NamedDecl *D) const { 1386 // Internal definitions always have default visibility. 1387 if (GV->hasLocalLinkage()) { 1388 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1389 return; 1390 } 1391 if (!D) 1392 return; 1393 // Set visibility for definitions, and for declarations if requested globally 1394 // or set explicitly. 1395 LinkageInfo LV = D->getLinkageAndVisibility(); 1396 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1397 // Reject incompatible dlllstorage and visibility annotations. 1398 if (!LV.isVisibilityExplicit()) 1399 return; 1400 if (GV->hasDLLExportStorageClass()) { 1401 if (LV.getVisibility() == HiddenVisibility) 1402 getDiags().Report(D->getLocation(), 1403 diag::err_hidden_visibility_dllexport); 1404 } else if (LV.getVisibility() != DefaultVisibility) { 1405 getDiags().Report(D->getLocation(), 1406 diag::err_non_default_visibility_dllimport); 1407 } 1408 return; 1409 } 1410 1411 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1412 !GV->isDeclarationForLinker()) 1413 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1414 } 1415 1416 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1417 llvm::GlobalValue *GV) { 1418 if (GV->hasLocalLinkage()) 1419 return true; 1420 1421 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1422 return true; 1423 1424 // DLLImport explicitly marks the GV as external. 1425 if (GV->hasDLLImportStorageClass()) 1426 return false; 1427 1428 const llvm::Triple &TT = CGM.getTriple(); 1429 const auto &CGOpts = CGM.getCodeGenOpts(); 1430 if (TT.isWindowsGNUEnvironment()) { 1431 // In MinGW, variables without DLLImport can still be automatically 1432 // imported from a DLL by the linker; don't mark variables that 1433 // potentially could come from another DLL as DSO local. 1434 1435 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1436 // (and this actually happens in the public interface of libstdc++), so 1437 // such variables can't be marked as DSO local. (Native TLS variables 1438 // can't be dllimported at all, though.) 1439 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1440 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1441 CGOpts.AutoImport) 1442 return false; 1443 } 1444 1445 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1446 // remain unresolved in the link, they can be resolved to zero, which is 1447 // outside the current DSO. 1448 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1449 return false; 1450 1451 // Every other GV is local on COFF. 1452 // Make an exception for windows OS in the triple: Some firmware builds use 1453 // *-win32-macho triples. This (accidentally?) produced windows relocations 1454 // without GOT tables in older clang versions; Keep this behaviour. 1455 // FIXME: even thread local variables? 1456 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1457 return true; 1458 1459 // Only handle COFF and ELF for now. 1460 if (!TT.isOSBinFormatELF()) 1461 return false; 1462 1463 // If this is not an executable, don't assume anything is local. 1464 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1465 const auto &LOpts = CGM.getLangOpts(); 1466 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1467 // On ELF, if -fno-semantic-interposition is specified and the target 1468 // supports local aliases, there will be neither CC1 1469 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1470 // dso_local on the function if using a local alias is preferable (can avoid 1471 // PLT indirection). 1472 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1473 return false; 1474 return !(CGM.getLangOpts().SemanticInterposition || 1475 CGM.getLangOpts().HalfNoSemanticInterposition); 1476 } 1477 1478 // A definition cannot be preempted from an executable. 1479 if (!GV->isDeclarationForLinker()) 1480 return true; 1481 1482 // Most PIC code sequences that assume that a symbol is local cannot produce a 1483 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1484 // depended, it seems worth it to handle it here. 1485 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1486 return false; 1487 1488 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1489 if (TT.isPPC64()) 1490 return false; 1491 1492 if (CGOpts.DirectAccessExternalData) { 1493 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1494 // for non-thread-local variables. If the symbol is not defined in the 1495 // executable, a copy relocation will be needed at link time. dso_local is 1496 // excluded for thread-local variables because they generally don't support 1497 // copy relocations. 1498 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1499 if (!Var->isThreadLocal()) 1500 return true; 1501 1502 // -fno-pic sets dso_local on a function declaration to allow direct 1503 // accesses when taking its address (similar to a data symbol). If the 1504 // function is not defined in the executable, a canonical PLT entry will be 1505 // needed at link time. -fno-direct-access-external-data can avoid the 1506 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1507 // it could just cause trouble without providing perceptible benefits. 1508 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1509 return true; 1510 } 1511 1512 // If we can use copy relocations we can assume it is local. 1513 1514 // Otherwise don't assume it is local. 1515 return false; 1516 } 1517 1518 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1519 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1520 } 1521 1522 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1523 GlobalDecl GD) const { 1524 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1525 // C++ destructors have a few C++ ABI specific special cases. 1526 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1527 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1528 return; 1529 } 1530 setDLLImportDLLExport(GV, D); 1531 } 1532 1533 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1534 const NamedDecl *D) const { 1535 if (D && D->isExternallyVisible()) { 1536 if (D->hasAttr<DLLImportAttr>()) 1537 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1538 else if ((D->hasAttr<DLLExportAttr>() || 1539 shouldMapVisibilityToDLLExport(D)) && 1540 !GV->isDeclarationForLinker()) 1541 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1542 } 1543 } 1544 1545 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1546 GlobalDecl GD) const { 1547 setDLLImportDLLExport(GV, GD); 1548 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1549 } 1550 1551 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1552 const NamedDecl *D) const { 1553 setDLLImportDLLExport(GV, D); 1554 setGVPropertiesAux(GV, D); 1555 } 1556 1557 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1558 const NamedDecl *D) const { 1559 setGlobalVisibility(GV, D); 1560 setDSOLocal(GV); 1561 GV->setPartition(CodeGenOpts.SymbolPartition); 1562 } 1563 1564 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1565 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1566 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1567 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1568 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1569 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1570 } 1571 1572 llvm::GlobalVariable::ThreadLocalMode 1573 CodeGenModule::GetDefaultLLVMTLSModel() const { 1574 switch (CodeGenOpts.getDefaultTLSModel()) { 1575 case CodeGenOptions::GeneralDynamicTLSModel: 1576 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1577 case CodeGenOptions::LocalDynamicTLSModel: 1578 return llvm::GlobalVariable::LocalDynamicTLSModel; 1579 case CodeGenOptions::InitialExecTLSModel: 1580 return llvm::GlobalVariable::InitialExecTLSModel; 1581 case CodeGenOptions::LocalExecTLSModel: 1582 return llvm::GlobalVariable::LocalExecTLSModel; 1583 } 1584 llvm_unreachable("Invalid TLS model!"); 1585 } 1586 1587 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1588 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1589 1590 llvm::GlobalValue::ThreadLocalMode TLM; 1591 TLM = GetDefaultLLVMTLSModel(); 1592 1593 // Override the TLS model if it is explicitly specified. 1594 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1595 TLM = GetLLVMTLSModel(Attr->getModel()); 1596 } 1597 1598 GV->setThreadLocalMode(TLM); 1599 } 1600 1601 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1602 StringRef Name) { 1603 const TargetInfo &Target = CGM.getTarget(); 1604 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1605 } 1606 1607 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1608 const CPUSpecificAttr *Attr, 1609 unsigned CPUIndex, 1610 raw_ostream &Out) { 1611 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1612 // supported. 1613 if (Attr) 1614 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1615 else if (CGM.getTarget().supportsIFunc()) 1616 Out << ".resolver"; 1617 } 1618 1619 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1620 const TargetVersionAttr *Attr, 1621 raw_ostream &Out) { 1622 if (Attr->isDefaultVersion()) 1623 return; 1624 Out << "._"; 1625 const TargetInfo &TI = CGM.getTarget(); 1626 llvm::SmallVector<StringRef, 8> Feats; 1627 Attr->getFeatures(Feats); 1628 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1629 return TI.multiVersionSortPriority(FeatL) < 1630 TI.multiVersionSortPriority(FeatR); 1631 }); 1632 for (const auto &Feat : Feats) { 1633 Out << 'M'; 1634 Out << Feat; 1635 } 1636 } 1637 1638 static void AppendTargetMangling(const CodeGenModule &CGM, 1639 const TargetAttr *Attr, raw_ostream &Out) { 1640 if (Attr->isDefaultVersion()) 1641 return; 1642 1643 Out << '.'; 1644 const TargetInfo &Target = CGM.getTarget(); 1645 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1646 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1647 // Multiversioning doesn't allow "no-${feature}", so we can 1648 // only have "+" prefixes here. 1649 assert(LHS.startswith("+") && RHS.startswith("+") && 1650 "Features should always have a prefix."); 1651 return Target.multiVersionSortPriority(LHS.substr(1)) > 1652 Target.multiVersionSortPriority(RHS.substr(1)); 1653 }); 1654 1655 bool IsFirst = true; 1656 1657 if (!Info.CPU.empty()) { 1658 IsFirst = false; 1659 Out << "arch_" << Info.CPU; 1660 } 1661 1662 for (StringRef Feat : Info.Features) { 1663 if (!IsFirst) 1664 Out << '_'; 1665 IsFirst = false; 1666 Out << Feat.substr(1); 1667 } 1668 } 1669 1670 // Returns true if GD is a function decl with internal linkage and 1671 // needs a unique suffix after the mangled name. 1672 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1673 CodeGenModule &CGM) { 1674 const Decl *D = GD.getDecl(); 1675 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1676 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1677 } 1678 1679 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1680 const TargetClonesAttr *Attr, 1681 unsigned VersionIndex, 1682 raw_ostream &Out) { 1683 const TargetInfo &TI = CGM.getTarget(); 1684 if (TI.getTriple().isAArch64()) { 1685 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1686 if (FeatureStr == "default") 1687 return; 1688 Out << "._"; 1689 SmallVector<StringRef, 8> Features; 1690 FeatureStr.split(Features, "+"); 1691 llvm::stable_sort(Features, 1692 [&TI](const StringRef FeatL, const StringRef FeatR) { 1693 return TI.multiVersionSortPriority(FeatL) < 1694 TI.multiVersionSortPriority(FeatR); 1695 }); 1696 for (auto &Feat : Features) { 1697 Out << 'M'; 1698 Out << Feat; 1699 } 1700 } else { 1701 Out << '.'; 1702 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1703 if (FeatureStr.startswith("arch=")) 1704 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1705 else 1706 Out << FeatureStr; 1707 1708 Out << '.' << Attr->getMangledIndex(VersionIndex); 1709 } 1710 } 1711 1712 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1713 const NamedDecl *ND, 1714 bool OmitMultiVersionMangling = false) { 1715 SmallString<256> Buffer; 1716 llvm::raw_svector_ostream Out(Buffer); 1717 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1718 if (!CGM.getModuleNameHash().empty()) 1719 MC.needsUniqueInternalLinkageNames(); 1720 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1721 if (ShouldMangle) 1722 MC.mangleName(GD.getWithDecl(ND), Out); 1723 else { 1724 IdentifierInfo *II = ND->getIdentifier(); 1725 assert(II && "Attempt to mangle unnamed decl."); 1726 const auto *FD = dyn_cast<FunctionDecl>(ND); 1727 1728 if (FD && 1729 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1730 if (CGM.getLangOpts().RegCall4) 1731 Out << "__regcall4__" << II->getName(); 1732 else 1733 Out << "__regcall3__" << II->getName(); 1734 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1735 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1736 Out << "__device_stub__" << II->getName(); 1737 } else { 1738 Out << II->getName(); 1739 } 1740 } 1741 1742 // Check if the module name hash should be appended for internal linkage 1743 // symbols. This should come before multi-version target suffixes are 1744 // appended. This is to keep the name and module hash suffix of the 1745 // internal linkage function together. The unique suffix should only be 1746 // added when name mangling is done to make sure that the final name can 1747 // be properly demangled. For example, for C functions without prototypes, 1748 // name mangling is not done and the unique suffix should not be appeneded 1749 // then. 1750 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1751 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1752 "Hash computed when not explicitly requested"); 1753 Out << CGM.getModuleNameHash(); 1754 } 1755 1756 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1757 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1758 switch (FD->getMultiVersionKind()) { 1759 case MultiVersionKind::CPUDispatch: 1760 case MultiVersionKind::CPUSpecific: 1761 AppendCPUSpecificCPUDispatchMangling(CGM, 1762 FD->getAttr<CPUSpecificAttr>(), 1763 GD.getMultiVersionIndex(), Out); 1764 break; 1765 case MultiVersionKind::Target: 1766 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1767 break; 1768 case MultiVersionKind::TargetVersion: 1769 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1770 break; 1771 case MultiVersionKind::TargetClones: 1772 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1773 GD.getMultiVersionIndex(), Out); 1774 break; 1775 case MultiVersionKind::None: 1776 llvm_unreachable("None multiversion type isn't valid here"); 1777 } 1778 } 1779 1780 // Make unique name for device side static file-scope variable for HIP. 1781 if (CGM.getContext().shouldExternalize(ND) && 1782 CGM.getLangOpts().GPURelocatableDeviceCode && 1783 CGM.getLangOpts().CUDAIsDevice) 1784 CGM.printPostfixForExternalizedDecl(Out, ND); 1785 1786 return std::string(Out.str()); 1787 } 1788 1789 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1790 const FunctionDecl *FD, 1791 StringRef &CurName) { 1792 if (!FD->isMultiVersion()) 1793 return; 1794 1795 // Get the name of what this would be without the 'target' attribute. This 1796 // allows us to lookup the version that was emitted when this wasn't a 1797 // multiversion function. 1798 std::string NonTargetName = 1799 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1800 GlobalDecl OtherGD; 1801 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1802 assert(OtherGD.getCanonicalDecl() 1803 .getDecl() 1804 ->getAsFunction() 1805 ->isMultiVersion() && 1806 "Other GD should now be a multiversioned function"); 1807 // OtherFD is the version of this function that was mangled BEFORE 1808 // becoming a MultiVersion function. It potentially needs to be updated. 1809 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1810 .getDecl() 1811 ->getAsFunction() 1812 ->getMostRecentDecl(); 1813 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1814 // This is so that if the initial version was already the 'default' 1815 // version, we don't try to update it. 1816 if (OtherName != NonTargetName) { 1817 // Remove instead of erase, since others may have stored the StringRef 1818 // to this. 1819 const auto ExistingRecord = Manglings.find(NonTargetName); 1820 if (ExistingRecord != std::end(Manglings)) 1821 Manglings.remove(&(*ExistingRecord)); 1822 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1823 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1824 Result.first->first(); 1825 // If this is the current decl is being created, make sure we update the name. 1826 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1827 CurName = OtherNameRef; 1828 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1829 Entry->setName(OtherName); 1830 } 1831 } 1832 } 1833 1834 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1835 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1836 1837 // Some ABIs don't have constructor variants. Make sure that base and 1838 // complete constructors get mangled the same. 1839 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1840 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1841 CXXCtorType OrigCtorType = GD.getCtorType(); 1842 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1843 if (OrigCtorType == Ctor_Base) 1844 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1845 } 1846 } 1847 1848 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1849 // static device variable depends on whether the variable is referenced by 1850 // a host or device host function. Therefore the mangled name cannot be 1851 // cached. 1852 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1853 auto FoundName = MangledDeclNames.find(CanonicalGD); 1854 if (FoundName != MangledDeclNames.end()) 1855 return FoundName->second; 1856 } 1857 1858 // Keep the first result in the case of a mangling collision. 1859 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1860 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1861 1862 // Ensure either we have different ABIs between host and device compilations, 1863 // says host compilation following MSVC ABI but device compilation follows 1864 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1865 // mangling should be the same after name stubbing. The later checking is 1866 // very important as the device kernel name being mangled in host-compilation 1867 // is used to resolve the device binaries to be executed. Inconsistent naming 1868 // result in undefined behavior. Even though we cannot check that naming 1869 // directly between host- and device-compilations, the host- and 1870 // device-mangling in host compilation could help catching certain ones. 1871 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1872 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1873 (getContext().getAuxTargetInfo() && 1874 (getContext().getAuxTargetInfo()->getCXXABI() != 1875 getContext().getTargetInfo().getCXXABI())) || 1876 getCUDARuntime().getDeviceSideName(ND) == 1877 getMangledNameImpl( 1878 *this, 1879 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1880 ND)); 1881 1882 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1883 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1884 } 1885 1886 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1887 const BlockDecl *BD) { 1888 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1889 const Decl *D = GD.getDecl(); 1890 1891 SmallString<256> Buffer; 1892 llvm::raw_svector_ostream Out(Buffer); 1893 if (!D) 1894 MangleCtx.mangleGlobalBlock(BD, 1895 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1896 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1897 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1898 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1899 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1900 else 1901 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1902 1903 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1904 return Result.first->first(); 1905 } 1906 1907 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1908 auto it = MangledDeclNames.begin(); 1909 while (it != MangledDeclNames.end()) { 1910 if (it->second == Name) 1911 return it->first; 1912 it++; 1913 } 1914 return GlobalDecl(); 1915 } 1916 1917 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1918 return getModule().getNamedValue(Name); 1919 } 1920 1921 /// AddGlobalCtor - Add a function to the list that will be called before 1922 /// main() runs. 1923 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1924 unsigned LexOrder, 1925 llvm::Constant *AssociatedData) { 1926 // FIXME: Type coercion of void()* types. 1927 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1928 } 1929 1930 /// AddGlobalDtor - Add a function to the list that will be called 1931 /// when the module is unloaded. 1932 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1933 bool IsDtorAttrFunc) { 1934 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1935 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1936 DtorsUsingAtExit[Priority].push_back(Dtor); 1937 return; 1938 } 1939 1940 // FIXME: Type coercion of void()* types. 1941 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1942 } 1943 1944 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1945 if (Fns.empty()) return; 1946 1947 // Ctor function type is void()*. 1948 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1949 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1950 TheModule.getDataLayout().getProgramAddressSpace()); 1951 1952 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1953 llvm::StructType *CtorStructTy = llvm::StructType::get( 1954 Int32Ty, CtorPFTy, VoidPtrTy); 1955 1956 // Construct the constructor and destructor arrays. 1957 ConstantInitBuilder builder(*this); 1958 auto ctors = builder.beginArray(CtorStructTy); 1959 for (const auto &I : Fns) { 1960 auto ctor = ctors.beginStruct(CtorStructTy); 1961 ctor.addInt(Int32Ty, I.Priority); 1962 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1963 if (I.AssociatedData) 1964 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1965 else 1966 ctor.addNullPointer(VoidPtrTy); 1967 ctor.finishAndAddTo(ctors); 1968 } 1969 1970 auto list = 1971 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1972 /*constant*/ false, 1973 llvm::GlobalValue::AppendingLinkage); 1974 1975 // The LTO linker doesn't seem to like it when we set an alignment 1976 // on appending variables. Take it off as a workaround. 1977 list->setAlignment(std::nullopt); 1978 1979 Fns.clear(); 1980 } 1981 1982 llvm::GlobalValue::LinkageTypes 1983 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1984 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1985 1986 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1987 1988 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1989 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1990 1991 return getLLVMLinkageForDeclarator(D, Linkage); 1992 } 1993 1994 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1995 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1996 if (!MDS) return nullptr; 1997 1998 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1999 } 2000 2001 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2002 if (auto *FnType = T->getAs<FunctionProtoType>()) 2003 T = getContext().getFunctionType( 2004 FnType->getReturnType(), FnType->getParamTypes(), 2005 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2006 2007 std::string OutName; 2008 llvm::raw_string_ostream Out(OutName); 2009 getCXXABI().getMangleContext().mangleTypeName( 2010 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2011 2012 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2013 Out << ".normalized"; 2014 2015 return llvm::ConstantInt::get(Int32Ty, 2016 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2017 } 2018 2019 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2020 const CGFunctionInfo &Info, 2021 llvm::Function *F, bool IsThunk) { 2022 unsigned CallingConv; 2023 llvm::AttributeList PAL; 2024 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2025 /*AttrOnCallSite=*/false, IsThunk); 2026 F->setAttributes(PAL); 2027 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2028 } 2029 2030 static void removeImageAccessQualifier(std::string& TyName) { 2031 std::string ReadOnlyQual("__read_only"); 2032 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2033 if (ReadOnlyPos != std::string::npos) 2034 // "+ 1" for the space after access qualifier. 2035 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2036 else { 2037 std::string WriteOnlyQual("__write_only"); 2038 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2039 if (WriteOnlyPos != std::string::npos) 2040 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2041 else { 2042 std::string ReadWriteQual("__read_write"); 2043 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2044 if (ReadWritePos != std::string::npos) 2045 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2046 } 2047 } 2048 } 2049 2050 // Returns the address space id that should be produced to the 2051 // kernel_arg_addr_space metadata. This is always fixed to the ids 2052 // as specified in the SPIR 2.0 specification in order to differentiate 2053 // for example in clGetKernelArgInfo() implementation between the address 2054 // spaces with targets without unique mapping to the OpenCL address spaces 2055 // (basically all single AS CPUs). 2056 static unsigned ArgInfoAddressSpace(LangAS AS) { 2057 switch (AS) { 2058 case LangAS::opencl_global: 2059 return 1; 2060 case LangAS::opencl_constant: 2061 return 2; 2062 case LangAS::opencl_local: 2063 return 3; 2064 case LangAS::opencl_generic: 2065 return 4; // Not in SPIR 2.0 specs. 2066 case LangAS::opencl_global_device: 2067 return 5; 2068 case LangAS::opencl_global_host: 2069 return 6; 2070 default: 2071 return 0; // Assume private. 2072 } 2073 } 2074 2075 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2076 const FunctionDecl *FD, 2077 CodeGenFunction *CGF) { 2078 assert(((FD && CGF) || (!FD && !CGF)) && 2079 "Incorrect use - FD and CGF should either be both null or not!"); 2080 // Create MDNodes that represent the kernel arg metadata. 2081 // Each MDNode is a list in the form of "key", N number of values which is 2082 // the same number of values as their are kernel arguments. 2083 2084 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2085 2086 // MDNode for the kernel argument address space qualifiers. 2087 SmallVector<llvm::Metadata *, 8> addressQuals; 2088 2089 // MDNode for the kernel argument access qualifiers (images only). 2090 SmallVector<llvm::Metadata *, 8> accessQuals; 2091 2092 // MDNode for the kernel argument type names. 2093 SmallVector<llvm::Metadata *, 8> argTypeNames; 2094 2095 // MDNode for the kernel argument base type names. 2096 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2097 2098 // MDNode for the kernel argument type qualifiers. 2099 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2100 2101 // MDNode for the kernel argument names. 2102 SmallVector<llvm::Metadata *, 8> argNames; 2103 2104 if (FD && CGF) 2105 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2106 const ParmVarDecl *parm = FD->getParamDecl(i); 2107 // Get argument name. 2108 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2109 2110 if (!getLangOpts().OpenCL) 2111 continue; 2112 QualType ty = parm->getType(); 2113 std::string typeQuals; 2114 2115 // Get image and pipe access qualifier: 2116 if (ty->isImageType() || ty->isPipeType()) { 2117 const Decl *PDecl = parm; 2118 if (const auto *TD = ty->getAs<TypedefType>()) 2119 PDecl = TD->getDecl(); 2120 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2121 if (A && A->isWriteOnly()) 2122 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2123 else if (A && A->isReadWrite()) 2124 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2125 else 2126 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2127 } else 2128 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2129 2130 auto getTypeSpelling = [&](QualType Ty) { 2131 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2132 2133 if (Ty.isCanonical()) { 2134 StringRef typeNameRef = typeName; 2135 // Turn "unsigned type" to "utype" 2136 if (typeNameRef.consume_front("unsigned ")) 2137 return std::string("u") + typeNameRef.str(); 2138 if (typeNameRef.consume_front("signed ")) 2139 return typeNameRef.str(); 2140 } 2141 2142 return typeName; 2143 }; 2144 2145 if (ty->isPointerType()) { 2146 QualType pointeeTy = ty->getPointeeType(); 2147 2148 // Get address qualifier. 2149 addressQuals.push_back( 2150 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2151 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2152 2153 // Get argument type name. 2154 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2155 std::string baseTypeName = 2156 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2157 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2158 argBaseTypeNames.push_back( 2159 llvm::MDString::get(VMContext, baseTypeName)); 2160 2161 // Get argument type qualifiers: 2162 if (ty.isRestrictQualified()) 2163 typeQuals = "restrict"; 2164 if (pointeeTy.isConstQualified() || 2165 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2166 typeQuals += typeQuals.empty() ? "const" : " const"; 2167 if (pointeeTy.isVolatileQualified()) 2168 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2169 } else { 2170 uint32_t AddrSpc = 0; 2171 bool isPipe = ty->isPipeType(); 2172 if (ty->isImageType() || isPipe) 2173 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2174 2175 addressQuals.push_back( 2176 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2177 2178 // Get argument type name. 2179 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2180 std::string typeName = getTypeSpelling(ty); 2181 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2182 2183 // Remove access qualifiers on images 2184 // (as they are inseparable from type in clang implementation, 2185 // but OpenCL spec provides a special query to get access qualifier 2186 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2187 if (ty->isImageType()) { 2188 removeImageAccessQualifier(typeName); 2189 removeImageAccessQualifier(baseTypeName); 2190 } 2191 2192 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2193 argBaseTypeNames.push_back( 2194 llvm::MDString::get(VMContext, baseTypeName)); 2195 2196 if (isPipe) 2197 typeQuals = "pipe"; 2198 } 2199 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2200 } 2201 2202 if (getLangOpts().OpenCL) { 2203 Fn->setMetadata("kernel_arg_addr_space", 2204 llvm::MDNode::get(VMContext, addressQuals)); 2205 Fn->setMetadata("kernel_arg_access_qual", 2206 llvm::MDNode::get(VMContext, accessQuals)); 2207 Fn->setMetadata("kernel_arg_type", 2208 llvm::MDNode::get(VMContext, argTypeNames)); 2209 Fn->setMetadata("kernel_arg_base_type", 2210 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2211 Fn->setMetadata("kernel_arg_type_qual", 2212 llvm::MDNode::get(VMContext, argTypeQuals)); 2213 } 2214 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2215 getCodeGenOpts().HIPSaveKernelArgName) 2216 Fn->setMetadata("kernel_arg_name", 2217 llvm::MDNode::get(VMContext, argNames)); 2218 } 2219 2220 /// Determines whether the language options require us to model 2221 /// unwind exceptions. We treat -fexceptions as mandating this 2222 /// except under the fragile ObjC ABI with only ObjC exceptions 2223 /// enabled. This means, for example, that C with -fexceptions 2224 /// enables this. 2225 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2226 // If exceptions are completely disabled, obviously this is false. 2227 if (!LangOpts.Exceptions) return false; 2228 2229 // If C++ exceptions are enabled, this is true. 2230 if (LangOpts.CXXExceptions) return true; 2231 2232 // If ObjC exceptions are enabled, this depends on the ABI. 2233 if (LangOpts.ObjCExceptions) { 2234 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2235 } 2236 2237 return true; 2238 } 2239 2240 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2241 const CXXMethodDecl *MD) { 2242 // Check that the type metadata can ever actually be used by a call. 2243 if (!CGM.getCodeGenOpts().LTOUnit || 2244 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2245 return false; 2246 2247 // Only functions whose address can be taken with a member function pointer 2248 // need this sort of type metadata. 2249 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2250 !isa<CXXDestructorDecl>(MD); 2251 } 2252 2253 SmallVector<const CXXRecordDecl *, 0> 2254 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2255 llvm::SetVector<const CXXRecordDecl *> MostBases; 2256 2257 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2258 CollectMostBases = [&](const CXXRecordDecl *RD) { 2259 if (RD->getNumBases() == 0) 2260 MostBases.insert(RD); 2261 for (const CXXBaseSpecifier &B : RD->bases()) 2262 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2263 }; 2264 CollectMostBases(RD); 2265 return MostBases.takeVector(); 2266 } 2267 2268 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2269 llvm::Function *F) { 2270 llvm::AttrBuilder B(F->getContext()); 2271 2272 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2273 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2274 2275 if (CodeGenOpts.StackClashProtector) 2276 B.addAttribute("probe-stack", "inline-asm"); 2277 2278 if (!hasUnwindExceptions(LangOpts)) 2279 B.addAttribute(llvm::Attribute::NoUnwind); 2280 2281 if (D && D->hasAttr<NoStackProtectorAttr>()) 2282 ; // Do nothing. 2283 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2284 LangOpts.getStackProtector() == LangOptions::SSPOn) 2285 B.addAttribute(llvm::Attribute::StackProtectStrong); 2286 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2287 B.addAttribute(llvm::Attribute::StackProtect); 2288 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2289 B.addAttribute(llvm::Attribute::StackProtectStrong); 2290 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2291 B.addAttribute(llvm::Attribute::StackProtectReq); 2292 2293 if (!D) { 2294 // If we don't have a declaration to control inlining, the function isn't 2295 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2296 // disabled, mark the function as noinline. 2297 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2298 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2299 B.addAttribute(llvm::Attribute::NoInline); 2300 2301 F->addFnAttrs(B); 2302 return; 2303 } 2304 2305 // Handle SME attributes that apply to function definitions, 2306 // rather than to function prototypes. 2307 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2308 B.addAttribute("aarch64_pstate_sm_body"); 2309 2310 if (D->hasAttr<ArmNewZAAttr>()) 2311 B.addAttribute("aarch64_pstate_za_new"); 2312 2313 // Track whether we need to add the optnone LLVM attribute, 2314 // starting with the default for this optimization level. 2315 bool ShouldAddOptNone = 2316 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2317 // We can't add optnone in the following cases, it won't pass the verifier. 2318 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2319 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2320 2321 // Add optnone, but do so only if the function isn't always_inline. 2322 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2323 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2324 B.addAttribute(llvm::Attribute::OptimizeNone); 2325 2326 // OptimizeNone implies noinline; we should not be inlining such functions. 2327 B.addAttribute(llvm::Attribute::NoInline); 2328 2329 // We still need to handle naked functions even though optnone subsumes 2330 // much of their semantics. 2331 if (D->hasAttr<NakedAttr>()) 2332 B.addAttribute(llvm::Attribute::Naked); 2333 2334 // OptimizeNone wins over OptimizeForSize and MinSize. 2335 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2336 F->removeFnAttr(llvm::Attribute::MinSize); 2337 } else if (D->hasAttr<NakedAttr>()) { 2338 // Naked implies noinline: we should not be inlining such functions. 2339 B.addAttribute(llvm::Attribute::Naked); 2340 B.addAttribute(llvm::Attribute::NoInline); 2341 } else if (D->hasAttr<NoDuplicateAttr>()) { 2342 B.addAttribute(llvm::Attribute::NoDuplicate); 2343 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2344 // Add noinline if the function isn't always_inline. 2345 B.addAttribute(llvm::Attribute::NoInline); 2346 } else if (D->hasAttr<AlwaysInlineAttr>() && 2347 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2348 // (noinline wins over always_inline, and we can't specify both in IR) 2349 B.addAttribute(llvm::Attribute::AlwaysInline); 2350 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2351 // If we're not inlining, then force everything that isn't always_inline to 2352 // carry an explicit noinline attribute. 2353 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2354 B.addAttribute(llvm::Attribute::NoInline); 2355 } else { 2356 // Otherwise, propagate the inline hint attribute and potentially use its 2357 // absence to mark things as noinline. 2358 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2359 // Search function and template pattern redeclarations for inline. 2360 auto CheckForInline = [](const FunctionDecl *FD) { 2361 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2362 return Redecl->isInlineSpecified(); 2363 }; 2364 if (any_of(FD->redecls(), CheckRedeclForInline)) 2365 return true; 2366 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2367 if (!Pattern) 2368 return false; 2369 return any_of(Pattern->redecls(), CheckRedeclForInline); 2370 }; 2371 if (CheckForInline(FD)) { 2372 B.addAttribute(llvm::Attribute::InlineHint); 2373 } else if (CodeGenOpts.getInlining() == 2374 CodeGenOptions::OnlyHintInlining && 2375 !FD->isInlined() && 2376 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2377 B.addAttribute(llvm::Attribute::NoInline); 2378 } 2379 } 2380 } 2381 2382 // Add other optimization related attributes if we are optimizing this 2383 // function. 2384 if (!D->hasAttr<OptimizeNoneAttr>()) { 2385 if (D->hasAttr<ColdAttr>()) { 2386 if (!ShouldAddOptNone) 2387 B.addAttribute(llvm::Attribute::OptimizeForSize); 2388 B.addAttribute(llvm::Attribute::Cold); 2389 } 2390 if (D->hasAttr<HotAttr>()) 2391 B.addAttribute(llvm::Attribute::Hot); 2392 if (D->hasAttr<MinSizeAttr>()) 2393 B.addAttribute(llvm::Attribute::MinSize); 2394 } 2395 2396 F->addFnAttrs(B); 2397 2398 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2399 if (alignment) 2400 F->setAlignment(llvm::Align(alignment)); 2401 2402 if (!D->hasAttr<AlignedAttr>()) 2403 if (LangOpts.FunctionAlignment) 2404 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2405 2406 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2407 // reserve a bit for differentiating between virtual and non-virtual member 2408 // functions. If the current target's C++ ABI requires this and this is a 2409 // member function, set its alignment accordingly. 2410 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2411 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2412 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2413 } 2414 2415 // In the cross-dso CFI mode with canonical jump tables, we want !type 2416 // attributes on definitions only. 2417 if (CodeGenOpts.SanitizeCfiCrossDso && 2418 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2419 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2420 // Skip available_externally functions. They won't be codegen'ed in the 2421 // current module anyway. 2422 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2423 CreateFunctionTypeMetadataForIcall(FD, F); 2424 } 2425 } 2426 2427 // Emit type metadata on member functions for member function pointer checks. 2428 // These are only ever necessary on definitions; we're guaranteed that the 2429 // definition will be present in the LTO unit as a result of LTO visibility. 2430 auto *MD = dyn_cast<CXXMethodDecl>(D); 2431 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2432 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2433 llvm::Metadata *Id = 2434 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2435 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2436 F->addTypeMetadata(0, Id); 2437 } 2438 } 2439 } 2440 2441 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2442 const Decl *D = GD.getDecl(); 2443 if (isa_and_nonnull<NamedDecl>(D)) 2444 setGVProperties(GV, GD); 2445 else 2446 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2447 2448 if (D && D->hasAttr<UsedAttr>()) 2449 addUsedOrCompilerUsedGlobal(GV); 2450 2451 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2452 VD && 2453 ((CodeGenOpts.KeepPersistentStorageVariables && 2454 (VD->getStorageDuration() == SD_Static || 2455 VD->getStorageDuration() == SD_Thread)) || 2456 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2457 VD->getType().isConstQualified()))) 2458 addUsedOrCompilerUsedGlobal(GV); 2459 } 2460 2461 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2462 llvm::AttrBuilder &Attrs, 2463 bool SetTargetFeatures) { 2464 // Add target-cpu and target-features attributes to functions. If 2465 // we have a decl for the function and it has a target attribute then 2466 // parse that and add it to the feature set. 2467 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2468 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2469 std::vector<std::string> Features; 2470 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2471 FD = FD ? FD->getMostRecentDecl() : FD; 2472 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2473 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2474 assert((!TD || !TV) && "both target_version and target specified"); 2475 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2476 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2477 bool AddedAttr = false; 2478 if (TD || TV || SD || TC) { 2479 llvm::StringMap<bool> FeatureMap; 2480 getContext().getFunctionFeatureMap(FeatureMap, GD); 2481 2482 // Produce the canonical string for this set of features. 2483 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2484 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2485 2486 // Now add the target-cpu and target-features to the function. 2487 // While we populated the feature map above, we still need to 2488 // get and parse the target attribute so we can get the cpu for 2489 // the function. 2490 if (TD) { 2491 ParsedTargetAttr ParsedAttr = 2492 Target.parseTargetAttr(TD->getFeaturesStr()); 2493 if (!ParsedAttr.CPU.empty() && 2494 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2495 TargetCPU = ParsedAttr.CPU; 2496 TuneCPU = ""; // Clear the tune CPU. 2497 } 2498 if (!ParsedAttr.Tune.empty() && 2499 getTarget().isValidCPUName(ParsedAttr.Tune)) 2500 TuneCPU = ParsedAttr.Tune; 2501 } 2502 2503 if (SD) { 2504 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2505 // favor this processor. 2506 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2507 } 2508 } else { 2509 // Otherwise just add the existing target cpu and target features to the 2510 // function. 2511 Features = getTarget().getTargetOpts().Features; 2512 } 2513 2514 if (!TargetCPU.empty()) { 2515 Attrs.addAttribute("target-cpu", TargetCPU); 2516 AddedAttr = true; 2517 } 2518 if (!TuneCPU.empty()) { 2519 Attrs.addAttribute("tune-cpu", TuneCPU); 2520 AddedAttr = true; 2521 } 2522 if (!Features.empty() && SetTargetFeatures) { 2523 llvm::erase_if(Features, [&](const std::string& F) { 2524 return getTarget().isReadOnlyFeature(F.substr(1)); 2525 }); 2526 llvm::sort(Features); 2527 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2528 AddedAttr = true; 2529 } 2530 2531 return AddedAttr; 2532 } 2533 2534 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2535 llvm::GlobalObject *GO) { 2536 const Decl *D = GD.getDecl(); 2537 SetCommonAttributes(GD, GO); 2538 2539 if (D) { 2540 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2541 if (D->hasAttr<RetainAttr>()) 2542 addUsedGlobal(GV); 2543 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2544 GV->addAttribute("bss-section", SA->getName()); 2545 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2546 GV->addAttribute("data-section", SA->getName()); 2547 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2548 GV->addAttribute("rodata-section", SA->getName()); 2549 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2550 GV->addAttribute("relro-section", SA->getName()); 2551 } 2552 2553 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2554 if (D->hasAttr<RetainAttr>()) 2555 addUsedGlobal(F); 2556 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2557 if (!D->getAttr<SectionAttr>()) 2558 F->addFnAttr("implicit-section-name", SA->getName()); 2559 2560 llvm::AttrBuilder Attrs(F->getContext()); 2561 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2562 // We know that GetCPUAndFeaturesAttributes will always have the 2563 // newest set, since it has the newest possible FunctionDecl, so the 2564 // new ones should replace the old. 2565 llvm::AttributeMask RemoveAttrs; 2566 RemoveAttrs.addAttribute("target-cpu"); 2567 RemoveAttrs.addAttribute("target-features"); 2568 RemoveAttrs.addAttribute("tune-cpu"); 2569 F->removeFnAttrs(RemoveAttrs); 2570 F->addFnAttrs(Attrs); 2571 } 2572 } 2573 2574 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2575 GO->setSection(CSA->getName()); 2576 else if (const auto *SA = D->getAttr<SectionAttr>()) 2577 GO->setSection(SA->getName()); 2578 } 2579 2580 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2581 } 2582 2583 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2584 llvm::Function *F, 2585 const CGFunctionInfo &FI) { 2586 const Decl *D = GD.getDecl(); 2587 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2588 SetLLVMFunctionAttributesForDefinition(D, F); 2589 2590 F->setLinkage(llvm::Function::InternalLinkage); 2591 2592 setNonAliasAttributes(GD, F); 2593 } 2594 2595 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2596 // Set linkage and visibility in case we never see a definition. 2597 LinkageInfo LV = ND->getLinkageAndVisibility(); 2598 // Don't set internal linkage on declarations. 2599 // "extern_weak" is overloaded in LLVM; we probably should have 2600 // separate linkage types for this. 2601 if (isExternallyVisible(LV.getLinkage()) && 2602 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2603 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2604 } 2605 2606 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2607 llvm::Function *F) { 2608 // Only if we are checking indirect calls. 2609 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2610 return; 2611 2612 // Non-static class methods are handled via vtable or member function pointer 2613 // checks elsewhere. 2614 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2615 return; 2616 2617 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2618 F->addTypeMetadata(0, MD); 2619 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2620 2621 // Emit a hash-based bit set entry for cross-DSO calls. 2622 if (CodeGenOpts.SanitizeCfiCrossDso) 2623 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2624 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2625 } 2626 2627 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2628 llvm::LLVMContext &Ctx = F->getContext(); 2629 llvm::MDBuilder MDB(Ctx); 2630 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2631 llvm::MDNode::get( 2632 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2633 } 2634 2635 static bool allowKCFIIdentifier(StringRef Name) { 2636 // KCFI type identifier constants are only necessary for external assembly 2637 // functions, which means it's safe to skip unusual names. Subset of 2638 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2639 return llvm::all_of(Name, [](const char &C) { 2640 return llvm::isAlnum(C) || C == '_' || C == '.'; 2641 }); 2642 } 2643 2644 void CodeGenModule::finalizeKCFITypes() { 2645 llvm::Module &M = getModule(); 2646 for (auto &F : M.functions()) { 2647 // Remove KCFI type metadata from non-address-taken local functions. 2648 bool AddressTaken = F.hasAddressTaken(); 2649 if (!AddressTaken && F.hasLocalLinkage()) 2650 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2651 2652 // Generate a constant with the expected KCFI type identifier for all 2653 // address-taken function declarations to support annotating indirectly 2654 // called assembly functions. 2655 if (!AddressTaken || !F.isDeclaration()) 2656 continue; 2657 2658 const llvm::ConstantInt *Type; 2659 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2660 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2661 else 2662 continue; 2663 2664 StringRef Name = F.getName(); 2665 if (!allowKCFIIdentifier(Name)) 2666 continue; 2667 2668 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2669 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2670 .str(); 2671 M.appendModuleInlineAsm(Asm); 2672 } 2673 } 2674 2675 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2676 bool IsIncompleteFunction, 2677 bool IsThunk) { 2678 2679 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2680 // If this is an intrinsic function, set the function's attributes 2681 // to the intrinsic's attributes. 2682 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2683 return; 2684 } 2685 2686 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2687 2688 if (!IsIncompleteFunction) 2689 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2690 IsThunk); 2691 2692 // Add the Returned attribute for "this", except for iOS 5 and earlier 2693 // where substantial code, including the libstdc++ dylib, was compiled with 2694 // GCC and does not actually return "this". 2695 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2696 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2697 assert(!F->arg_empty() && 2698 F->arg_begin()->getType() 2699 ->canLosslesslyBitCastTo(F->getReturnType()) && 2700 "unexpected this return"); 2701 F->addParamAttr(0, llvm::Attribute::Returned); 2702 } 2703 2704 // Only a few attributes are set on declarations; these may later be 2705 // overridden by a definition. 2706 2707 setLinkageForGV(F, FD); 2708 setGVProperties(F, FD); 2709 2710 // Setup target-specific attributes. 2711 if (!IsIncompleteFunction && F->isDeclaration()) 2712 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2713 2714 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2715 F->setSection(CSA->getName()); 2716 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2717 F->setSection(SA->getName()); 2718 2719 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2720 if (EA->isError()) 2721 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2722 else if (EA->isWarning()) 2723 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2724 } 2725 2726 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2727 if (FD->isInlineBuiltinDeclaration()) { 2728 const FunctionDecl *FDBody; 2729 bool HasBody = FD->hasBody(FDBody); 2730 (void)HasBody; 2731 assert(HasBody && "Inline builtin declarations should always have an " 2732 "available body!"); 2733 if (shouldEmitFunction(FDBody)) 2734 F->addFnAttr(llvm::Attribute::NoBuiltin); 2735 } 2736 2737 if (FD->isReplaceableGlobalAllocationFunction()) { 2738 // A replaceable global allocation function does not act like a builtin by 2739 // default, only if it is invoked by a new-expression or delete-expression. 2740 F->addFnAttr(llvm::Attribute::NoBuiltin); 2741 } 2742 2743 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2744 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2745 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2746 if (MD->isVirtual()) 2747 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2748 2749 // Don't emit entries for function declarations in the cross-DSO mode. This 2750 // is handled with better precision by the receiving DSO. But if jump tables 2751 // are non-canonical then we need type metadata in order to produce the local 2752 // jump table. 2753 if (!CodeGenOpts.SanitizeCfiCrossDso || 2754 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2755 CreateFunctionTypeMetadataForIcall(FD, F); 2756 2757 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2758 setKCFIType(FD, F); 2759 2760 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2761 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2762 2763 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2764 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2765 2766 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2767 // Annotate the callback behavior as metadata: 2768 // - The callback callee (as argument number). 2769 // - The callback payloads (as argument numbers). 2770 llvm::LLVMContext &Ctx = F->getContext(); 2771 llvm::MDBuilder MDB(Ctx); 2772 2773 // The payload indices are all but the first one in the encoding. The first 2774 // identifies the callback callee. 2775 int CalleeIdx = *CB->encoding_begin(); 2776 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2777 F->addMetadata(llvm::LLVMContext::MD_callback, 2778 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2779 CalleeIdx, PayloadIndices, 2780 /* VarArgsArePassed */ false)})); 2781 } 2782 } 2783 2784 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2785 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2786 "Only globals with definition can force usage."); 2787 LLVMUsed.emplace_back(GV); 2788 } 2789 2790 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2791 assert(!GV->isDeclaration() && 2792 "Only globals with definition can force usage."); 2793 LLVMCompilerUsed.emplace_back(GV); 2794 } 2795 2796 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2797 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2798 "Only globals with definition can force usage."); 2799 if (getTriple().isOSBinFormatELF()) 2800 LLVMCompilerUsed.emplace_back(GV); 2801 else 2802 LLVMUsed.emplace_back(GV); 2803 } 2804 2805 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2806 std::vector<llvm::WeakTrackingVH> &List) { 2807 // Don't create llvm.used if there is no need. 2808 if (List.empty()) 2809 return; 2810 2811 // Convert List to what ConstantArray needs. 2812 SmallVector<llvm::Constant*, 8> UsedArray; 2813 UsedArray.resize(List.size()); 2814 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2815 UsedArray[i] = 2816 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2817 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2818 } 2819 2820 if (UsedArray.empty()) 2821 return; 2822 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2823 2824 auto *GV = new llvm::GlobalVariable( 2825 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2826 llvm::ConstantArray::get(ATy, UsedArray), Name); 2827 2828 GV->setSection("llvm.metadata"); 2829 } 2830 2831 void CodeGenModule::emitLLVMUsed() { 2832 emitUsed(*this, "llvm.used", LLVMUsed); 2833 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2834 } 2835 2836 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2837 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2838 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2839 } 2840 2841 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2842 llvm::SmallString<32> Opt; 2843 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2844 if (Opt.empty()) 2845 return; 2846 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2847 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2848 } 2849 2850 void CodeGenModule::AddDependentLib(StringRef Lib) { 2851 auto &C = getLLVMContext(); 2852 if (getTarget().getTriple().isOSBinFormatELF()) { 2853 ELFDependentLibraries.push_back( 2854 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2855 return; 2856 } 2857 2858 llvm::SmallString<24> Opt; 2859 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2860 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2861 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2862 } 2863 2864 /// Add link options implied by the given module, including modules 2865 /// it depends on, using a postorder walk. 2866 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2867 SmallVectorImpl<llvm::MDNode *> &Metadata, 2868 llvm::SmallPtrSet<Module *, 16> &Visited) { 2869 // Import this module's parent. 2870 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2871 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2872 } 2873 2874 // Import this module's dependencies. 2875 for (Module *Import : llvm::reverse(Mod->Imports)) { 2876 if (Visited.insert(Import).second) 2877 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2878 } 2879 2880 // Add linker options to link against the libraries/frameworks 2881 // described by this module. 2882 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2883 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2884 2885 // For modules that use export_as for linking, use that module 2886 // name instead. 2887 if (Mod->UseExportAsModuleLinkName) 2888 return; 2889 2890 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2891 // Link against a framework. Frameworks are currently Darwin only, so we 2892 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2893 if (LL.IsFramework) { 2894 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2895 llvm::MDString::get(Context, LL.Library)}; 2896 2897 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2898 continue; 2899 } 2900 2901 // Link against a library. 2902 if (IsELF) { 2903 llvm::Metadata *Args[2] = { 2904 llvm::MDString::get(Context, "lib"), 2905 llvm::MDString::get(Context, LL.Library), 2906 }; 2907 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2908 } else { 2909 llvm::SmallString<24> Opt; 2910 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2911 auto *OptString = llvm::MDString::get(Context, Opt); 2912 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2913 } 2914 } 2915 } 2916 2917 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2918 // Emit the initializers in the order that sub-modules appear in the 2919 // source, first Global Module Fragments, if present. 2920 if (auto GMF = Primary->getGlobalModuleFragment()) { 2921 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2922 if (isa<ImportDecl>(D)) 2923 continue; 2924 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2925 EmitTopLevelDecl(D); 2926 } 2927 } 2928 // Second any associated with the module, itself. 2929 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2930 // Skip import decls, the inits for those are called explicitly. 2931 if (isa<ImportDecl>(D)) 2932 continue; 2933 EmitTopLevelDecl(D); 2934 } 2935 // Third any associated with the Privat eMOdule Fragment, if present. 2936 if (auto PMF = Primary->getPrivateModuleFragment()) { 2937 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2938 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2939 EmitTopLevelDecl(D); 2940 } 2941 } 2942 } 2943 2944 void CodeGenModule::EmitModuleLinkOptions() { 2945 // Collect the set of all of the modules we want to visit to emit link 2946 // options, which is essentially the imported modules and all of their 2947 // non-explicit child modules. 2948 llvm::SetVector<clang::Module *> LinkModules; 2949 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2950 SmallVector<clang::Module *, 16> Stack; 2951 2952 // Seed the stack with imported modules. 2953 for (Module *M : ImportedModules) { 2954 // Do not add any link flags when an implementation TU of a module imports 2955 // a header of that same module. 2956 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2957 !getLangOpts().isCompilingModule()) 2958 continue; 2959 if (Visited.insert(M).second) 2960 Stack.push_back(M); 2961 } 2962 2963 // Find all of the modules to import, making a little effort to prune 2964 // non-leaf modules. 2965 while (!Stack.empty()) { 2966 clang::Module *Mod = Stack.pop_back_val(); 2967 2968 bool AnyChildren = false; 2969 2970 // Visit the submodules of this module. 2971 for (const auto &SM : Mod->submodules()) { 2972 // Skip explicit children; they need to be explicitly imported to be 2973 // linked against. 2974 if (SM->IsExplicit) 2975 continue; 2976 2977 if (Visited.insert(SM).second) { 2978 Stack.push_back(SM); 2979 AnyChildren = true; 2980 } 2981 } 2982 2983 // We didn't find any children, so add this module to the list of 2984 // modules to link against. 2985 if (!AnyChildren) { 2986 LinkModules.insert(Mod); 2987 } 2988 } 2989 2990 // Add link options for all of the imported modules in reverse topological 2991 // order. We don't do anything to try to order import link flags with respect 2992 // to linker options inserted by things like #pragma comment(). 2993 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2994 Visited.clear(); 2995 for (Module *M : LinkModules) 2996 if (Visited.insert(M).second) 2997 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2998 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2999 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3000 3001 // Add the linker options metadata flag. 3002 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3003 for (auto *MD : LinkerOptionsMetadata) 3004 NMD->addOperand(MD); 3005 } 3006 3007 void CodeGenModule::EmitDeferred() { 3008 // Emit deferred declare target declarations. 3009 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3010 getOpenMPRuntime().emitDeferredTargetDecls(); 3011 3012 // Emit code for any potentially referenced deferred decls. Since a 3013 // previously unused static decl may become used during the generation of code 3014 // for a static function, iterate until no changes are made. 3015 3016 if (!DeferredVTables.empty()) { 3017 EmitDeferredVTables(); 3018 3019 // Emitting a vtable doesn't directly cause more vtables to 3020 // become deferred, although it can cause functions to be 3021 // emitted that then need those vtables. 3022 assert(DeferredVTables.empty()); 3023 } 3024 3025 // Emit CUDA/HIP static device variables referenced by host code only. 3026 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3027 // needed for further handling. 3028 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3029 llvm::append_range(DeferredDeclsToEmit, 3030 getContext().CUDADeviceVarODRUsedByHost); 3031 3032 // Stop if we're out of both deferred vtables and deferred declarations. 3033 if (DeferredDeclsToEmit.empty()) 3034 return; 3035 3036 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3037 // work, it will not interfere with this. 3038 std::vector<GlobalDecl> CurDeclsToEmit; 3039 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3040 3041 for (GlobalDecl &D : CurDeclsToEmit) { 3042 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3043 // to get GlobalValue with exactly the type we need, not something that 3044 // might had been created for another decl with the same mangled name but 3045 // different type. 3046 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3047 GetAddrOfGlobal(D, ForDefinition)); 3048 3049 // In case of different address spaces, we may still get a cast, even with 3050 // IsForDefinition equal to true. Query mangled names table to get 3051 // GlobalValue. 3052 if (!GV) 3053 GV = GetGlobalValue(getMangledName(D)); 3054 3055 // Make sure GetGlobalValue returned non-null. 3056 assert(GV); 3057 3058 // Check to see if we've already emitted this. This is necessary 3059 // for a couple of reasons: first, decls can end up in the 3060 // deferred-decls queue multiple times, and second, decls can end 3061 // up with definitions in unusual ways (e.g. by an extern inline 3062 // function acquiring a strong function redefinition). Just 3063 // ignore these cases. 3064 if (!GV->isDeclaration()) 3065 continue; 3066 3067 // If this is OpenMP, check if it is legal to emit this global normally. 3068 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3069 continue; 3070 3071 // Otherwise, emit the definition and move on to the next one. 3072 EmitGlobalDefinition(D, GV); 3073 3074 // If we found out that we need to emit more decls, do that recursively. 3075 // This has the advantage that the decls are emitted in a DFS and related 3076 // ones are close together, which is convenient for testing. 3077 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3078 EmitDeferred(); 3079 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3080 } 3081 } 3082 } 3083 3084 void CodeGenModule::EmitVTablesOpportunistically() { 3085 // Try to emit external vtables as available_externally if they have emitted 3086 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3087 // is not allowed to create new references to things that need to be emitted 3088 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3089 3090 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3091 && "Only emit opportunistic vtables with optimizations"); 3092 3093 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3094 assert(getVTables().isVTableExternal(RD) && 3095 "This queue should only contain external vtables"); 3096 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3097 VTables.GenerateClassData(RD); 3098 } 3099 OpportunisticVTables.clear(); 3100 } 3101 3102 void CodeGenModule::EmitGlobalAnnotations() { 3103 if (Annotations.empty()) 3104 return; 3105 3106 // Create a new global variable for the ConstantStruct in the Module. 3107 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3108 Annotations[0]->getType(), Annotations.size()), Annotations); 3109 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3110 llvm::GlobalValue::AppendingLinkage, 3111 Array, "llvm.global.annotations"); 3112 gv->setSection(AnnotationSection); 3113 } 3114 3115 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3116 llvm::Constant *&AStr = AnnotationStrings[Str]; 3117 if (AStr) 3118 return AStr; 3119 3120 // Not found yet, create a new global. 3121 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3122 auto *gv = new llvm::GlobalVariable( 3123 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3124 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3125 ConstGlobalsPtrTy->getAddressSpace()); 3126 gv->setSection(AnnotationSection); 3127 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3128 AStr = gv; 3129 return gv; 3130 } 3131 3132 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3133 SourceManager &SM = getContext().getSourceManager(); 3134 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3135 if (PLoc.isValid()) 3136 return EmitAnnotationString(PLoc.getFilename()); 3137 return EmitAnnotationString(SM.getBufferName(Loc)); 3138 } 3139 3140 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3141 SourceManager &SM = getContext().getSourceManager(); 3142 PresumedLoc PLoc = SM.getPresumedLoc(L); 3143 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3144 SM.getExpansionLineNumber(L); 3145 return llvm::ConstantInt::get(Int32Ty, LineNo); 3146 } 3147 3148 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3149 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3150 if (Exprs.empty()) 3151 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3152 3153 llvm::FoldingSetNodeID ID; 3154 for (Expr *E : Exprs) { 3155 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3156 } 3157 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3158 if (Lookup) 3159 return Lookup; 3160 3161 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3162 LLVMArgs.reserve(Exprs.size()); 3163 ConstantEmitter ConstEmiter(*this); 3164 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3165 const auto *CE = cast<clang::ConstantExpr>(E); 3166 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3167 CE->getType()); 3168 }); 3169 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3170 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3171 llvm::GlobalValue::PrivateLinkage, Struct, 3172 ".args"); 3173 GV->setSection(AnnotationSection); 3174 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3175 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3176 3177 Lookup = Bitcasted; 3178 return Bitcasted; 3179 } 3180 3181 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3182 const AnnotateAttr *AA, 3183 SourceLocation L) { 3184 // Get the globals for file name, annotation, and the line number. 3185 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3186 *UnitGV = EmitAnnotationUnit(L), 3187 *LineNoCst = EmitAnnotationLineNo(L), 3188 *Args = EmitAnnotationArgs(AA); 3189 3190 llvm::Constant *GVInGlobalsAS = GV; 3191 if (GV->getAddressSpace() != 3192 getDataLayout().getDefaultGlobalsAddressSpace()) { 3193 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3194 GV, GV->getValueType()->getPointerTo( 3195 getDataLayout().getDefaultGlobalsAddressSpace())); 3196 } 3197 3198 // Create the ConstantStruct for the global annotation. 3199 llvm::Constant *Fields[] = { 3200 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3201 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3202 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3203 LineNoCst, 3204 Args, 3205 }; 3206 return llvm::ConstantStruct::getAnon(Fields); 3207 } 3208 3209 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3210 llvm::GlobalValue *GV) { 3211 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3212 // Get the struct elements for these annotations. 3213 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3214 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3215 } 3216 3217 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3218 SourceLocation Loc) const { 3219 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3220 // NoSanitize by function name. 3221 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3222 return true; 3223 // NoSanitize by location. Check "mainfile" prefix. 3224 auto &SM = Context.getSourceManager(); 3225 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3226 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3227 return true; 3228 3229 // Check "src" prefix. 3230 if (Loc.isValid()) 3231 return NoSanitizeL.containsLocation(Kind, Loc); 3232 // If location is unknown, this may be a compiler-generated function. Assume 3233 // it's located in the main file. 3234 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3235 } 3236 3237 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3238 llvm::GlobalVariable *GV, 3239 SourceLocation Loc, QualType Ty, 3240 StringRef Category) const { 3241 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3242 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3243 return true; 3244 auto &SM = Context.getSourceManager(); 3245 if (NoSanitizeL.containsMainFile( 3246 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3247 Category)) 3248 return true; 3249 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3250 return true; 3251 3252 // Check global type. 3253 if (!Ty.isNull()) { 3254 // Drill down the array types: if global variable of a fixed type is 3255 // not sanitized, we also don't instrument arrays of them. 3256 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3257 Ty = AT->getElementType(); 3258 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3259 // Only record types (classes, structs etc.) are ignored. 3260 if (Ty->isRecordType()) { 3261 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3262 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3263 return true; 3264 } 3265 } 3266 return false; 3267 } 3268 3269 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3270 StringRef Category) const { 3271 const auto &XRayFilter = getContext().getXRayFilter(); 3272 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3273 auto Attr = ImbueAttr::NONE; 3274 if (Loc.isValid()) 3275 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3276 if (Attr == ImbueAttr::NONE) 3277 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3278 switch (Attr) { 3279 case ImbueAttr::NONE: 3280 return false; 3281 case ImbueAttr::ALWAYS: 3282 Fn->addFnAttr("function-instrument", "xray-always"); 3283 break; 3284 case ImbueAttr::ALWAYS_ARG1: 3285 Fn->addFnAttr("function-instrument", "xray-always"); 3286 Fn->addFnAttr("xray-log-args", "1"); 3287 break; 3288 case ImbueAttr::NEVER: 3289 Fn->addFnAttr("function-instrument", "xray-never"); 3290 break; 3291 } 3292 return true; 3293 } 3294 3295 ProfileList::ExclusionType 3296 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3297 SourceLocation Loc) const { 3298 const auto &ProfileList = getContext().getProfileList(); 3299 // If the profile list is empty, then instrument everything. 3300 if (ProfileList.isEmpty()) 3301 return ProfileList::Allow; 3302 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3303 // First, check the function name. 3304 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3305 return *V; 3306 // Next, check the source location. 3307 if (Loc.isValid()) 3308 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3309 return *V; 3310 // If location is unknown, this may be a compiler-generated function. Assume 3311 // it's located in the main file. 3312 auto &SM = Context.getSourceManager(); 3313 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3314 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3315 return *V; 3316 return ProfileList.getDefault(Kind); 3317 } 3318 3319 ProfileList::ExclusionType 3320 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3321 SourceLocation Loc) const { 3322 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3323 if (V != ProfileList::Allow) 3324 return V; 3325 3326 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3327 if (NumGroups > 1) { 3328 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3329 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3330 return ProfileList::Skip; 3331 } 3332 return ProfileList::Allow; 3333 } 3334 3335 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3336 // Never defer when EmitAllDecls is specified. 3337 if (LangOpts.EmitAllDecls) 3338 return true; 3339 3340 const auto *VD = dyn_cast<VarDecl>(Global); 3341 if (VD && 3342 ((CodeGenOpts.KeepPersistentStorageVariables && 3343 (VD->getStorageDuration() == SD_Static || 3344 VD->getStorageDuration() == SD_Thread)) || 3345 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3346 VD->getType().isConstQualified()))) 3347 return true; 3348 3349 return getContext().DeclMustBeEmitted(Global); 3350 } 3351 3352 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3353 // In OpenMP 5.0 variables and function may be marked as 3354 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3355 // that they must be emitted on the host/device. To be sure we need to have 3356 // seen a declare target with an explicit mentioning of the function, we know 3357 // we have if the level of the declare target attribute is -1. Note that we 3358 // check somewhere else if we should emit this at all. 3359 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3360 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3361 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3362 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3363 return false; 3364 } 3365 3366 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3367 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3368 // Implicit template instantiations may change linkage if they are later 3369 // explicitly instantiated, so they should not be emitted eagerly. 3370 return false; 3371 } 3372 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3373 if (Context.getInlineVariableDefinitionKind(VD) == 3374 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3375 // A definition of an inline constexpr static data member may change 3376 // linkage later if it's redeclared outside the class. 3377 return false; 3378 if (CXX20ModuleInits && VD->getOwningModule() && 3379 !VD->getOwningModule()->isModuleMapModule()) { 3380 // For CXX20, module-owned initializers need to be deferred, since it is 3381 // not known at this point if they will be run for the current module or 3382 // as part of the initializer for an imported one. 3383 return false; 3384 } 3385 } 3386 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3387 // codegen for global variables, because they may be marked as threadprivate. 3388 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3389 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3390 !Global->getType().isConstantStorage(getContext(), false, false) && 3391 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3392 return false; 3393 3394 return true; 3395 } 3396 3397 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3398 StringRef Name = getMangledName(GD); 3399 3400 // The UUID descriptor should be pointer aligned. 3401 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3402 3403 // Look for an existing global. 3404 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3405 return ConstantAddress(GV, GV->getValueType(), Alignment); 3406 3407 ConstantEmitter Emitter(*this); 3408 llvm::Constant *Init; 3409 3410 APValue &V = GD->getAsAPValue(); 3411 if (!V.isAbsent()) { 3412 // If possible, emit the APValue version of the initializer. In particular, 3413 // this gets the type of the constant right. 3414 Init = Emitter.emitForInitializer( 3415 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3416 } else { 3417 // As a fallback, directly construct the constant. 3418 // FIXME: This may get padding wrong under esoteric struct layout rules. 3419 // MSVC appears to create a complete type 'struct __s_GUID' that it 3420 // presumably uses to represent these constants. 3421 MSGuidDecl::Parts Parts = GD->getParts(); 3422 llvm::Constant *Fields[4] = { 3423 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3424 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3425 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3426 llvm::ConstantDataArray::getRaw( 3427 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3428 Int8Ty)}; 3429 Init = llvm::ConstantStruct::getAnon(Fields); 3430 } 3431 3432 auto *GV = new llvm::GlobalVariable( 3433 getModule(), Init->getType(), 3434 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3435 if (supportsCOMDAT()) 3436 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3437 setDSOLocal(GV); 3438 3439 if (!V.isAbsent()) { 3440 Emitter.finalize(GV); 3441 return ConstantAddress(GV, GV->getValueType(), Alignment); 3442 } 3443 3444 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3445 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3446 GV, Ty->getPointerTo(GV->getAddressSpace())); 3447 return ConstantAddress(Addr, Ty, Alignment); 3448 } 3449 3450 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3451 const UnnamedGlobalConstantDecl *GCD) { 3452 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3453 3454 llvm::GlobalVariable **Entry = nullptr; 3455 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3456 if (*Entry) 3457 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3458 3459 ConstantEmitter Emitter(*this); 3460 llvm::Constant *Init; 3461 3462 const APValue &V = GCD->getValue(); 3463 3464 assert(!V.isAbsent()); 3465 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3466 GCD->getType()); 3467 3468 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3469 /*isConstant=*/true, 3470 llvm::GlobalValue::PrivateLinkage, Init, 3471 ".constant"); 3472 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3473 GV->setAlignment(Alignment.getAsAlign()); 3474 3475 Emitter.finalize(GV); 3476 3477 *Entry = GV; 3478 return ConstantAddress(GV, GV->getValueType(), Alignment); 3479 } 3480 3481 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3482 const TemplateParamObjectDecl *TPO) { 3483 StringRef Name = getMangledName(TPO); 3484 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3485 3486 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3487 return ConstantAddress(GV, GV->getValueType(), Alignment); 3488 3489 ConstantEmitter Emitter(*this); 3490 llvm::Constant *Init = Emitter.emitForInitializer( 3491 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3492 3493 if (!Init) { 3494 ErrorUnsupported(TPO, "template parameter object"); 3495 return ConstantAddress::invalid(); 3496 } 3497 3498 llvm::GlobalValue::LinkageTypes Linkage = 3499 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3500 ? llvm::GlobalValue::LinkOnceODRLinkage 3501 : llvm::GlobalValue::InternalLinkage; 3502 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3503 /*isConstant=*/true, Linkage, Init, Name); 3504 setGVProperties(GV, TPO); 3505 if (supportsCOMDAT()) 3506 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3507 Emitter.finalize(GV); 3508 3509 return ConstantAddress(GV, GV->getValueType(), Alignment); 3510 } 3511 3512 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3513 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3514 assert(AA && "No alias?"); 3515 3516 CharUnits Alignment = getContext().getDeclAlign(VD); 3517 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3518 3519 // See if there is already something with the target's name in the module. 3520 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3521 if (Entry) { 3522 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3523 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3524 return ConstantAddress(Ptr, DeclTy, Alignment); 3525 } 3526 3527 llvm::Constant *Aliasee; 3528 if (isa<llvm::FunctionType>(DeclTy)) 3529 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3530 GlobalDecl(cast<FunctionDecl>(VD)), 3531 /*ForVTable=*/false); 3532 else 3533 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3534 nullptr); 3535 3536 auto *F = cast<llvm::GlobalValue>(Aliasee); 3537 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3538 WeakRefReferences.insert(F); 3539 3540 return ConstantAddress(Aliasee, DeclTy, Alignment); 3541 } 3542 3543 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3544 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3545 3546 // Weak references don't produce any output by themselves. 3547 if (Global->hasAttr<WeakRefAttr>()) 3548 return; 3549 3550 // If this is an alias definition (which otherwise looks like a declaration) 3551 // emit it now. 3552 if (Global->hasAttr<AliasAttr>()) 3553 return EmitAliasDefinition(GD); 3554 3555 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3556 if (Global->hasAttr<IFuncAttr>()) 3557 return emitIFuncDefinition(GD); 3558 3559 // If this is a cpu_dispatch multiversion function, emit the resolver. 3560 if (Global->hasAttr<CPUDispatchAttr>()) 3561 return emitCPUDispatchDefinition(GD); 3562 3563 // If this is CUDA, be selective about which declarations we emit. 3564 if (LangOpts.CUDA) { 3565 if (LangOpts.CUDAIsDevice) { 3566 if (!Global->hasAttr<CUDADeviceAttr>() && 3567 !Global->hasAttr<CUDAGlobalAttr>() && 3568 !Global->hasAttr<CUDAConstantAttr>() && 3569 !Global->hasAttr<CUDASharedAttr>() && 3570 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3571 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3572 return; 3573 } else { 3574 // We need to emit host-side 'shadows' for all global 3575 // device-side variables because the CUDA runtime needs their 3576 // size and host-side address in order to provide access to 3577 // their device-side incarnations. 3578 3579 // So device-only functions are the only things we skip. 3580 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3581 Global->hasAttr<CUDADeviceAttr>()) 3582 return; 3583 3584 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3585 "Expected Variable or Function"); 3586 } 3587 } 3588 3589 if (LangOpts.OpenMP) { 3590 // If this is OpenMP, check if it is legal to emit this global normally. 3591 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3592 return; 3593 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3594 if (MustBeEmitted(Global)) 3595 EmitOMPDeclareReduction(DRD); 3596 return; 3597 } 3598 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3599 if (MustBeEmitted(Global)) 3600 EmitOMPDeclareMapper(DMD); 3601 return; 3602 } 3603 } 3604 3605 // Ignore declarations, they will be emitted on their first use. 3606 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3607 // Forward declarations are emitted lazily on first use. 3608 if (!FD->doesThisDeclarationHaveABody()) { 3609 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3610 return; 3611 3612 StringRef MangledName = getMangledName(GD); 3613 3614 // Compute the function info and LLVM type. 3615 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3616 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3617 3618 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3619 /*DontDefer=*/false); 3620 return; 3621 } 3622 } else { 3623 const auto *VD = cast<VarDecl>(Global); 3624 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3625 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3626 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3627 if (LangOpts.OpenMP) { 3628 // Emit declaration of the must-be-emitted declare target variable. 3629 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3630 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3631 3632 // If this variable has external storage and doesn't require special 3633 // link handling we defer to its canonical definition. 3634 if (VD->hasExternalStorage() && 3635 Res != OMPDeclareTargetDeclAttr::MT_Link) 3636 return; 3637 3638 bool UnifiedMemoryEnabled = 3639 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3640 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3641 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3642 !UnifiedMemoryEnabled) { 3643 (void)GetAddrOfGlobalVar(VD); 3644 } else { 3645 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3646 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3647 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3648 UnifiedMemoryEnabled)) && 3649 "Link clause or to clause with unified memory expected."); 3650 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3651 } 3652 3653 return; 3654 } 3655 } 3656 // If this declaration may have caused an inline variable definition to 3657 // change linkage, make sure that it's emitted. 3658 if (Context.getInlineVariableDefinitionKind(VD) == 3659 ASTContext::InlineVariableDefinitionKind::Strong) 3660 GetAddrOfGlobalVar(VD); 3661 return; 3662 } 3663 } 3664 3665 // Defer code generation to first use when possible, e.g. if this is an inline 3666 // function. If the global must always be emitted, do it eagerly if possible 3667 // to benefit from cache locality. 3668 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3669 // Emit the definition if it can't be deferred. 3670 EmitGlobalDefinition(GD); 3671 addEmittedDeferredDecl(GD); 3672 return; 3673 } 3674 3675 // If we're deferring emission of a C++ variable with an 3676 // initializer, remember the order in which it appeared in the file. 3677 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3678 cast<VarDecl>(Global)->hasInit()) { 3679 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3680 CXXGlobalInits.push_back(nullptr); 3681 } 3682 3683 StringRef MangledName = getMangledName(GD); 3684 if (GetGlobalValue(MangledName) != nullptr) { 3685 // The value has already been used and should therefore be emitted. 3686 addDeferredDeclToEmit(GD); 3687 } else if (MustBeEmitted(Global)) { 3688 // The value must be emitted, but cannot be emitted eagerly. 3689 assert(!MayBeEmittedEagerly(Global)); 3690 addDeferredDeclToEmit(GD); 3691 } else { 3692 // Otherwise, remember that we saw a deferred decl with this name. The 3693 // first use of the mangled name will cause it to move into 3694 // DeferredDeclsToEmit. 3695 DeferredDecls[MangledName] = GD; 3696 } 3697 } 3698 3699 // Check if T is a class type with a destructor that's not dllimport. 3700 static bool HasNonDllImportDtor(QualType T) { 3701 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3702 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3703 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3704 return true; 3705 3706 return false; 3707 } 3708 3709 namespace { 3710 struct FunctionIsDirectlyRecursive 3711 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3712 const StringRef Name; 3713 const Builtin::Context &BI; 3714 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3715 : Name(N), BI(C) {} 3716 3717 bool VisitCallExpr(const CallExpr *E) { 3718 const FunctionDecl *FD = E->getDirectCallee(); 3719 if (!FD) 3720 return false; 3721 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3722 if (Attr && Name == Attr->getLabel()) 3723 return true; 3724 unsigned BuiltinID = FD->getBuiltinID(); 3725 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3726 return false; 3727 StringRef BuiltinName = BI.getName(BuiltinID); 3728 if (BuiltinName.startswith("__builtin_") && 3729 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3730 return true; 3731 } 3732 return false; 3733 } 3734 3735 bool VisitStmt(const Stmt *S) { 3736 for (const Stmt *Child : S->children()) 3737 if (Child && this->Visit(Child)) 3738 return true; 3739 return false; 3740 } 3741 }; 3742 3743 // Make sure we're not referencing non-imported vars or functions. 3744 struct DLLImportFunctionVisitor 3745 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3746 bool SafeToInline = true; 3747 3748 bool shouldVisitImplicitCode() const { return true; } 3749 3750 bool VisitVarDecl(VarDecl *VD) { 3751 if (VD->getTLSKind()) { 3752 // A thread-local variable cannot be imported. 3753 SafeToInline = false; 3754 return SafeToInline; 3755 } 3756 3757 // A variable definition might imply a destructor call. 3758 if (VD->isThisDeclarationADefinition()) 3759 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3760 3761 return SafeToInline; 3762 } 3763 3764 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3765 if (const auto *D = E->getTemporary()->getDestructor()) 3766 SafeToInline = D->hasAttr<DLLImportAttr>(); 3767 return SafeToInline; 3768 } 3769 3770 bool VisitDeclRefExpr(DeclRefExpr *E) { 3771 ValueDecl *VD = E->getDecl(); 3772 if (isa<FunctionDecl>(VD)) 3773 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3774 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3775 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3776 return SafeToInline; 3777 } 3778 3779 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3780 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3781 return SafeToInline; 3782 } 3783 3784 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3785 CXXMethodDecl *M = E->getMethodDecl(); 3786 if (!M) { 3787 // Call through a pointer to member function. This is safe to inline. 3788 SafeToInline = true; 3789 } else { 3790 SafeToInline = M->hasAttr<DLLImportAttr>(); 3791 } 3792 return SafeToInline; 3793 } 3794 3795 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3796 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3797 return SafeToInline; 3798 } 3799 3800 bool VisitCXXNewExpr(CXXNewExpr *E) { 3801 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3802 return SafeToInline; 3803 } 3804 }; 3805 } 3806 3807 // isTriviallyRecursive - Check if this function calls another 3808 // decl that, because of the asm attribute or the other decl being a builtin, 3809 // ends up pointing to itself. 3810 bool 3811 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3812 StringRef Name; 3813 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3814 // asm labels are a special kind of mangling we have to support. 3815 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3816 if (!Attr) 3817 return false; 3818 Name = Attr->getLabel(); 3819 } else { 3820 Name = FD->getName(); 3821 } 3822 3823 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3824 const Stmt *Body = FD->getBody(); 3825 return Body ? Walker.Visit(Body) : false; 3826 } 3827 3828 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3829 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3830 return true; 3831 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3832 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3833 return false; 3834 3835 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3836 // Check whether it would be safe to inline this dllimport function. 3837 DLLImportFunctionVisitor Visitor; 3838 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3839 if (!Visitor.SafeToInline) 3840 return false; 3841 3842 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3843 // Implicit destructor invocations aren't captured in the AST, so the 3844 // check above can't see them. Check for them manually here. 3845 for (const Decl *Member : Dtor->getParent()->decls()) 3846 if (isa<FieldDecl>(Member)) 3847 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3848 return false; 3849 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3850 if (HasNonDllImportDtor(B.getType())) 3851 return false; 3852 } 3853 } 3854 3855 // Inline builtins declaration must be emitted. They often are fortified 3856 // functions. 3857 if (F->isInlineBuiltinDeclaration()) 3858 return true; 3859 3860 // PR9614. Avoid cases where the source code is lying to us. An available 3861 // externally function should have an equivalent function somewhere else, 3862 // but a function that calls itself through asm label/`__builtin_` trickery is 3863 // clearly not equivalent to the real implementation. 3864 // This happens in glibc's btowc and in some configure checks. 3865 return !isTriviallyRecursive(F); 3866 } 3867 3868 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3869 return CodeGenOpts.OptimizationLevel > 0; 3870 } 3871 3872 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3873 llvm::GlobalValue *GV) { 3874 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3875 3876 if (FD->isCPUSpecificMultiVersion()) { 3877 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3878 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3879 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3880 } else if (FD->isTargetClonesMultiVersion()) { 3881 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3882 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3883 if (Clone->isFirstOfVersion(I)) 3884 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3885 // Ensure that the resolver function is also emitted. 3886 GetOrCreateMultiVersionResolver(GD); 3887 } else 3888 EmitGlobalFunctionDefinition(GD, GV); 3889 } 3890 3891 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3892 const auto *D = cast<ValueDecl>(GD.getDecl()); 3893 3894 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3895 Context.getSourceManager(), 3896 "Generating code for declaration"); 3897 3898 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3899 // At -O0, don't generate IR for functions with available_externally 3900 // linkage. 3901 if (!shouldEmitFunction(GD)) 3902 return; 3903 3904 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3905 std::string Name; 3906 llvm::raw_string_ostream OS(Name); 3907 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3908 /*Qualified=*/true); 3909 return Name; 3910 }); 3911 3912 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3913 // Make sure to emit the definition(s) before we emit the thunks. 3914 // This is necessary for the generation of certain thunks. 3915 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3916 ABI->emitCXXStructor(GD); 3917 else if (FD->isMultiVersion()) 3918 EmitMultiVersionFunctionDefinition(GD, GV); 3919 else 3920 EmitGlobalFunctionDefinition(GD, GV); 3921 3922 if (Method->isVirtual()) 3923 getVTables().EmitThunks(GD); 3924 3925 return; 3926 } 3927 3928 if (FD->isMultiVersion()) 3929 return EmitMultiVersionFunctionDefinition(GD, GV); 3930 return EmitGlobalFunctionDefinition(GD, GV); 3931 } 3932 3933 if (const auto *VD = dyn_cast<VarDecl>(D)) 3934 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3935 3936 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3937 } 3938 3939 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3940 llvm::Function *NewFn); 3941 3942 static unsigned 3943 TargetMVPriority(const TargetInfo &TI, 3944 const CodeGenFunction::MultiVersionResolverOption &RO) { 3945 unsigned Priority = 0; 3946 unsigned NumFeatures = 0; 3947 for (StringRef Feat : RO.Conditions.Features) { 3948 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3949 NumFeatures++; 3950 } 3951 3952 if (!RO.Conditions.Architecture.empty()) 3953 Priority = std::max( 3954 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3955 3956 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3957 3958 return Priority; 3959 } 3960 3961 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3962 // TU can forward declare the function without causing problems. Particularly 3963 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3964 // work with internal linkage functions, so that the same function name can be 3965 // used with internal linkage in multiple TUs. 3966 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3967 GlobalDecl GD) { 3968 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3969 if (FD->getFormalLinkage() == InternalLinkage) 3970 return llvm::GlobalValue::InternalLinkage; 3971 return llvm::GlobalValue::WeakODRLinkage; 3972 } 3973 3974 void CodeGenModule::emitMultiVersionFunctions() { 3975 std::vector<GlobalDecl> MVFuncsToEmit; 3976 MultiVersionFuncs.swap(MVFuncsToEmit); 3977 for (GlobalDecl GD : MVFuncsToEmit) { 3978 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3979 assert(FD && "Expected a FunctionDecl"); 3980 3981 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3982 if (FD->isTargetMultiVersion()) { 3983 getContext().forEachMultiversionedFunctionVersion( 3984 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3985 GlobalDecl CurGD{ 3986 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3987 StringRef MangledName = getMangledName(CurGD); 3988 llvm::Constant *Func = GetGlobalValue(MangledName); 3989 if (!Func) { 3990 if (CurFD->isDefined()) { 3991 EmitGlobalFunctionDefinition(CurGD, nullptr); 3992 Func = GetGlobalValue(MangledName); 3993 } else { 3994 const CGFunctionInfo &FI = 3995 getTypes().arrangeGlobalDeclaration(GD); 3996 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3997 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3998 /*DontDefer=*/false, ForDefinition); 3999 } 4000 assert(Func && "This should have just been created"); 4001 } 4002 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4003 const auto *TA = CurFD->getAttr<TargetAttr>(); 4004 llvm::SmallVector<StringRef, 8> Feats; 4005 TA->getAddedFeatures(Feats); 4006 Options.emplace_back(cast<llvm::Function>(Func), 4007 TA->getArchitecture(), Feats); 4008 } else { 4009 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4010 llvm::SmallVector<StringRef, 8> Feats; 4011 TVA->getFeatures(Feats); 4012 Options.emplace_back(cast<llvm::Function>(Func), 4013 /*Architecture*/ "", Feats); 4014 } 4015 }); 4016 } else if (FD->isTargetClonesMultiVersion()) { 4017 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4018 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4019 ++VersionIndex) { 4020 if (!TC->isFirstOfVersion(VersionIndex)) 4021 continue; 4022 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4023 VersionIndex}; 4024 StringRef Version = TC->getFeatureStr(VersionIndex); 4025 StringRef MangledName = getMangledName(CurGD); 4026 llvm::Constant *Func = GetGlobalValue(MangledName); 4027 if (!Func) { 4028 if (FD->isDefined()) { 4029 EmitGlobalFunctionDefinition(CurGD, nullptr); 4030 Func = GetGlobalValue(MangledName); 4031 } else { 4032 const CGFunctionInfo &FI = 4033 getTypes().arrangeGlobalDeclaration(CurGD); 4034 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4035 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4036 /*DontDefer=*/false, ForDefinition); 4037 } 4038 assert(Func && "This should have just been created"); 4039 } 4040 4041 StringRef Architecture; 4042 llvm::SmallVector<StringRef, 1> Feature; 4043 4044 if (getTarget().getTriple().isAArch64()) { 4045 if (Version != "default") { 4046 llvm::SmallVector<StringRef, 8> VerFeats; 4047 Version.split(VerFeats, "+"); 4048 for (auto &CurFeat : VerFeats) 4049 Feature.push_back(CurFeat.trim()); 4050 } 4051 } else { 4052 if (Version.startswith("arch=")) 4053 Architecture = Version.drop_front(sizeof("arch=") - 1); 4054 else if (Version != "default") 4055 Feature.push_back(Version); 4056 } 4057 4058 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4059 } 4060 } else { 4061 assert(0 && "Expected a target or target_clones multiversion function"); 4062 continue; 4063 } 4064 4065 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4066 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4067 ResolverConstant = IFunc->getResolver(); 4068 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4069 4070 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4071 4072 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4073 ResolverFunc->setComdat( 4074 getModule().getOrInsertComdat(ResolverFunc->getName())); 4075 4076 const TargetInfo &TI = getTarget(); 4077 llvm::stable_sort( 4078 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4079 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4080 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4081 }); 4082 CodeGenFunction CGF(*this); 4083 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4084 } 4085 4086 // Ensure that any additions to the deferred decls list caused by emitting a 4087 // variant are emitted. This can happen when the variant itself is inline and 4088 // calls a function without linkage. 4089 if (!MVFuncsToEmit.empty()) 4090 EmitDeferred(); 4091 4092 // Ensure that any additions to the multiversion funcs list from either the 4093 // deferred decls or the multiversion functions themselves are emitted. 4094 if (!MultiVersionFuncs.empty()) 4095 emitMultiVersionFunctions(); 4096 } 4097 4098 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4099 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4100 assert(FD && "Not a FunctionDecl?"); 4101 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4102 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4103 assert(DD && "Not a cpu_dispatch Function?"); 4104 4105 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4106 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4107 4108 StringRef ResolverName = getMangledName(GD); 4109 UpdateMultiVersionNames(GD, FD, ResolverName); 4110 4111 llvm::Type *ResolverType; 4112 GlobalDecl ResolverGD; 4113 if (getTarget().supportsIFunc()) { 4114 ResolverType = llvm::FunctionType::get( 4115 llvm::PointerType::get(DeclTy, 4116 getTypes().getTargetAddressSpace(FD->getType())), 4117 false); 4118 } 4119 else { 4120 ResolverType = DeclTy; 4121 ResolverGD = GD; 4122 } 4123 4124 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4125 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4126 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4127 if (supportsCOMDAT()) 4128 ResolverFunc->setComdat( 4129 getModule().getOrInsertComdat(ResolverFunc->getName())); 4130 4131 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4132 const TargetInfo &Target = getTarget(); 4133 unsigned Index = 0; 4134 for (const IdentifierInfo *II : DD->cpus()) { 4135 // Get the name of the target function so we can look it up/create it. 4136 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4137 getCPUSpecificMangling(*this, II->getName()); 4138 4139 llvm::Constant *Func = GetGlobalValue(MangledName); 4140 4141 if (!Func) { 4142 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4143 if (ExistingDecl.getDecl() && 4144 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4145 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4146 Func = GetGlobalValue(MangledName); 4147 } else { 4148 if (!ExistingDecl.getDecl()) 4149 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4150 4151 Func = GetOrCreateLLVMFunction( 4152 MangledName, DeclTy, ExistingDecl, 4153 /*ForVTable=*/false, /*DontDefer=*/true, 4154 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4155 } 4156 } 4157 4158 llvm::SmallVector<StringRef, 32> Features; 4159 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4160 llvm::transform(Features, Features.begin(), 4161 [](StringRef Str) { return Str.substr(1); }); 4162 llvm::erase_if(Features, [&Target](StringRef Feat) { 4163 return !Target.validateCpuSupports(Feat); 4164 }); 4165 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4166 ++Index; 4167 } 4168 4169 llvm::stable_sort( 4170 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4171 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4172 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4173 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4174 }); 4175 4176 // If the list contains multiple 'default' versions, such as when it contains 4177 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4178 // always run on at least a 'pentium'). We do this by deleting the 'least 4179 // advanced' (read, lowest mangling letter). 4180 while (Options.size() > 1 && 4181 llvm::all_of(llvm::X86::getCpuSupportsMask( 4182 (Options.end() - 2)->Conditions.Features), 4183 [](auto X) { return X == 0; })) { 4184 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4185 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4186 if (LHSName.compare(RHSName) < 0) 4187 Options.erase(Options.end() - 2); 4188 else 4189 Options.erase(Options.end() - 1); 4190 } 4191 4192 CodeGenFunction CGF(*this); 4193 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4194 4195 if (getTarget().supportsIFunc()) { 4196 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4197 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4198 4199 // Fix up function declarations that were created for cpu_specific before 4200 // cpu_dispatch was known 4201 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4202 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4203 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4204 &getModule()); 4205 GI->takeName(IFunc); 4206 IFunc->replaceAllUsesWith(GI); 4207 IFunc->eraseFromParent(); 4208 IFunc = GI; 4209 } 4210 4211 std::string AliasName = getMangledNameImpl( 4212 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4213 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4214 if (!AliasFunc) { 4215 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4216 &getModule()); 4217 SetCommonAttributes(GD, GA); 4218 } 4219 } 4220 } 4221 4222 /// If a dispatcher for the specified mangled name is not in the module, create 4223 /// and return an llvm Function with the specified type. 4224 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4225 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4226 assert(FD && "Not a FunctionDecl?"); 4227 4228 std::string MangledName = 4229 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4230 4231 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4232 // a separate resolver). 4233 std::string ResolverName = MangledName; 4234 if (getTarget().supportsIFunc()) 4235 ResolverName += ".ifunc"; 4236 else if (FD->isTargetMultiVersion()) 4237 ResolverName += ".resolver"; 4238 4239 // If the resolver has already been created, just return it. 4240 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4241 return ResolverGV; 4242 4243 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4244 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4245 4246 // The resolver needs to be created. For target and target_clones, defer 4247 // creation until the end of the TU. 4248 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4249 MultiVersionFuncs.push_back(GD); 4250 4251 // For cpu_specific, don't create an ifunc yet because we don't know if the 4252 // cpu_dispatch will be emitted in this translation unit. 4253 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4254 llvm::Type *ResolverType = llvm::FunctionType::get( 4255 llvm::PointerType::get(DeclTy, 4256 getTypes().getTargetAddressSpace(FD->getType())), 4257 false); 4258 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4259 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4260 /*ForVTable=*/false); 4261 llvm::GlobalIFunc *GIF = 4262 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4263 "", Resolver, &getModule()); 4264 GIF->setName(ResolverName); 4265 SetCommonAttributes(FD, GIF); 4266 4267 return GIF; 4268 } 4269 4270 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4271 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4272 assert(isa<llvm::GlobalValue>(Resolver) && 4273 "Resolver should be created for the first time"); 4274 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4275 return Resolver; 4276 } 4277 4278 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4279 /// module, create and return an llvm Function with the specified type. If there 4280 /// is something in the module with the specified name, return it potentially 4281 /// bitcasted to the right type. 4282 /// 4283 /// If D is non-null, it specifies a decl that correspond to this. This is used 4284 /// to set the attributes on the function when it is first created. 4285 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4286 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4287 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4288 ForDefinition_t IsForDefinition) { 4289 const Decl *D = GD.getDecl(); 4290 4291 // Any attempts to use a MultiVersion function should result in retrieving 4292 // the iFunc instead. Name Mangling will handle the rest of the changes. 4293 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4294 // For the device mark the function as one that should be emitted. 4295 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4296 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4297 !DontDefer && !IsForDefinition) { 4298 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4299 GlobalDecl GDDef; 4300 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4301 GDDef = GlobalDecl(CD, GD.getCtorType()); 4302 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4303 GDDef = GlobalDecl(DD, GD.getDtorType()); 4304 else 4305 GDDef = GlobalDecl(FDDef); 4306 EmitGlobal(GDDef); 4307 } 4308 } 4309 4310 if (FD->isMultiVersion()) { 4311 UpdateMultiVersionNames(GD, FD, MangledName); 4312 if (!IsForDefinition) 4313 return GetOrCreateMultiVersionResolver(GD); 4314 } 4315 } 4316 4317 // Lookup the entry, lazily creating it if necessary. 4318 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4319 if (Entry) { 4320 if (WeakRefReferences.erase(Entry)) { 4321 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4322 if (FD && !FD->hasAttr<WeakAttr>()) 4323 Entry->setLinkage(llvm::Function::ExternalLinkage); 4324 } 4325 4326 // Handle dropped DLL attributes. 4327 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4328 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4329 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4330 setDSOLocal(Entry); 4331 } 4332 4333 // If there are two attempts to define the same mangled name, issue an 4334 // error. 4335 if (IsForDefinition && !Entry->isDeclaration()) { 4336 GlobalDecl OtherGD; 4337 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4338 // to make sure that we issue an error only once. 4339 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4340 (GD.getCanonicalDecl().getDecl() != 4341 OtherGD.getCanonicalDecl().getDecl()) && 4342 DiagnosedConflictingDefinitions.insert(GD).second) { 4343 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4344 << MangledName; 4345 getDiags().Report(OtherGD.getDecl()->getLocation(), 4346 diag::note_previous_definition); 4347 } 4348 } 4349 4350 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4351 (Entry->getValueType() == Ty)) { 4352 return Entry; 4353 } 4354 4355 // Make sure the result is of the correct type. 4356 // (If function is requested for a definition, we always need to create a new 4357 // function, not just return a bitcast.) 4358 if (!IsForDefinition) 4359 return llvm::ConstantExpr::getBitCast( 4360 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4361 } 4362 4363 // This function doesn't have a complete type (for example, the return 4364 // type is an incomplete struct). Use a fake type instead, and make 4365 // sure not to try to set attributes. 4366 bool IsIncompleteFunction = false; 4367 4368 llvm::FunctionType *FTy; 4369 if (isa<llvm::FunctionType>(Ty)) { 4370 FTy = cast<llvm::FunctionType>(Ty); 4371 } else { 4372 FTy = llvm::FunctionType::get(VoidTy, false); 4373 IsIncompleteFunction = true; 4374 } 4375 4376 llvm::Function *F = 4377 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4378 Entry ? StringRef() : MangledName, &getModule()); 4379 4380 // If we already created a function with the same mangled name (but different 4381 // type) before, take its name and add it to the list of functions to be 4382 // replaced with F at the end of CodeGen. 4383 // 4384 // This happens if there is a prototype for a function (e.g. "int f()") and 4385 // then a definition of a different type (e.g. "int f(int x)"). 4386 if (Entry) { 4387 F->takeName(Entry); 4388 4389 // This might be an implementation of a function without a prototype, in 4390 // which case, try to do special replacement of calls which match the new 4391 // prototype. The really key thing here is that we also potentially drop 4392 // arguments from the call site so as to make a direct call, which makes the 4393 // inliner happier and suppresses a number of optimizer warnings (!) about 4394 // dropping arguments. 4395 if (!Entry->use_empty()) { 4396 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4397 Entry->removeDeadConstantUsers(); 4398 } 4399 4400 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4401 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4402 addGlobalValReplacement(Entry, BC); 4403 } 4404 4405 assert(F->getName() == MangledName && "name was uniqued!"); 4406 if (D) 4407 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4408 if (ExtraAttrs.hasFnAttrs()) { 4409 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4410 F->addFnAttrs(B); 4411 } 4412 4413 if (!DontDefer) { 4414 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4415 // each other bottoming out with the base dtor. Therefore we emit non-base 4416 // dtors on usage, even if there is no dtor definition in the TU. 4417 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4418 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4419 GD.getDtorType())) 4420 addDeferredDeclToEmit(GD); 4421 4422 // This is the first use or definition of a mangled name. If there is a 4423 // deferred decl with this name, remember that we need to emit it at the end 4424 // of the file. 4425 auto DDI = DeferredDecls.find(MangledName); 4426 if (DDI != DeferredDecls.end()) { 4427 // Move the potentially referenced deferred decl to the 4428 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4429 // don't need it anymore). 4430 addDeferredDeclToEmit(DDI->second); 4431 DeferredDecls.erase(DDI); 4432 4433 // Otherwise, there are cases we have to worry about where we're 4434 // using a declaration for which we must emit a definition but where 4435 // we might not find a top-level definition: 4436 // - member functions defined inline in their classes 4437 // - friend functions defined inline in some class 4438 // - special member functions with implicit definitions 4439 // If we ever change our AST traversal to walk into class methods, 4440 // this will be unnecessary. 4441 // 4442 // We also don't emit a definition for a function if it's going to be an 4443 // entry in a vtable, unless it's already marked as used. 4444 } else if (getLangOpts().CPlusPlus && D) { 4445 // Look for a declaration that's lexically in a record. 4446 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4447 FD = FD->getPreviousDecl()) { 4448 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4449 if (FD->doesThisDeclarationHaveABody()) { 4450 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4451 break; 4452 } 4453 } 4454 } 4455 } 4456 } 4457 4458 // Make sure the result is of the requested type. 4459 if (!IsIncompleteFunction) { 4460 assert(F->getFunctionType() == Ty); 4461 return F; 4462 } 4463 4464 return llvm::ConstantExpr::getBitCast(F, 4465 Ty->getPointerTo(F->getAddressSpace())); 4466 } 4467 4468 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4469 /// non-null, then this function will use the specified type if it has to 4470 /// create it (this occurs when we see a definition of the function). 4471 llvm::Constant * 4472 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4473 bool DontDefer, 4474 ForDefinition_t IsForDefinition) { 4475 // If there was no specific requested type, just convert it now. 4476 if (!Ty) { 4477 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4478 Ty = getTypes().ConvertType(FD->getType()); 4479 } 4480 4481 // Devirtualized destructor calls may come through here instead of via 4482 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4483 // of the complete destructor when necessary. 4484 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4485 if (getTarget().getCXXABI().isMicrosoft() && 4486 GD.getDtorType() == Dtor_Complete && 4487 DD->getParent()->getNumVBases() == 0) 4488 GD = GlobalDecl(DD, Dtor_Base); 4489 } 4490 4491 StringRef MangledName = getMangledName(GD); 4492 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4493 /*IsThunk=*/false, llvm::AttributeList(), 4494 IsForDefinition); 4495 // Returns kernel handle for HIP kernel stub function. 4496 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4497 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4498 auto *Handle = getCUDARuntime().getKernelHandle( 4499 cast<llvm::Function>(F->stripPointerCasts()), GD); 4500 if (IsForDefinition) 4501 return F; 4502 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4503 } 4504 return F; 4505 } 4506 4507 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4508 llvm::GlobalValue *F = 4509 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4510 4511 return llvm::ConstantExpr::getBitCast( 4512 llvm::NoCFIValue::get(F), 4513 llvm::PointerType::get(VMContext, F->getAddressSpace())); 4514 } 4515 4516 static const FunctionDecl * 4517 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4518 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4519 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4520 4521 IdentifierInfo &CII = C.Idents.get(Name); 4522 for (const auto *Result : DC->lookup(&CII)) 4523 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4524 return FD; 4525 4526 if (!C.getLangOpts().CPlusPlus) 4527 return nullptr; 4528 4529 // Demangle the premangled name from getTerminateFn() 4530 IdentifierInfo &CXXII = 4531 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4532 ? C.Idents.get("terminate") 4533 : C.Idents.get(Name); 4534 4535 for (const auto &N : {"__cxxabiv1", "std"}) { 4536 IdentifierInfo &NS = C.Idents.get(N); 4537 for (const auto *Result : DC->lookup(&NS)) { 4538 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4539 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4540 for (const auto *Result : LSD->lookup(&NS)) 4541 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4542 break; 4543 4544 if (ND) 4545 for (const auto *Result : ND->lookup(&CXXII)) 4546 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4547 return FD; 4548 } 4549 } 4550 4551 return nullptr; 4552 } 4553 4554 /// CreateRuntimeFunction - Create a new runtime function with the specified 4555 /// type and name. 4556 llvm::FunctionCallee 4557 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4558 llvm::AttributeList ExtraAttrs, bool Local, 4559 bool AssumeConvergent) { 4560 if (AssumeConvergent) { 4561 ExtraAttrs = 4562 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4563 } 4564 4565 llvm::Constant *C = 4566 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4567 /*DontDefer=*/false, /*IsThunk=*/false, 4568 ExtraAttrs); 4569 4570 if (auto *F = dyn_cast<llvm::Function>(C)) { 4571 if (F->empty()) { 4572 F->setCallingConv(getRuntimeCC()); 4573 4574 // In Windows Itanium environments, try to mark runtime functions 4575 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4576 // will link their standard library statically or dynamically. Marking 4577 // functions imported when they are not imported can cause linker errors 4578 // and warnings. 4579 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4580 !getCodeGenOpts().LTOVisibilityPublicStd) { 4581 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4582 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4583 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4584 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4585 } 4586 } 4587 setDSOLocal(F); 4588 } 4589 } 4590 4591 return {FTy, C}; 4592 } 4593 4594 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4595 /// create and return an llvm GlobalVariable with the specified type and address 4596 /// space. If there is something in the module with the specified name, return 4597 /// it potentially bitcasted to the right type. 4598 /// 4599 /// If D is non-null, it specifies a decl that correspond to this. This is used 4600 /// to set the attributes on the global when it is first created. 4601 /// 4602 /// If IsForDefinition is true, it is guaranteed that an actual global with 4603 /// type Ty will be returned, not conversion of a variable with the same 4604 /// mangled name but some other type. 4605 llvm::Constant * 4606 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4607 LangAS AddrSpace, const VarDecl *D, 4608 ForDefinition_t IsForDefinition) { 4609 // Lookup the entry, lazily creating it if necessary. 4610 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4611 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4612 if (Entry) { 4613 if (WeakRefReferences.erase(Entry)) { 4614 if (D && !D->hasAttr<WeakAttr>()) 4615 Entry->setLinkage(llvm::Function::ExternalLinkage); 4616 } 4617 4618 // Handle dropped DLL attributes. 4619 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4620 !shouldMapVisibilityToDLLExport(D)) 4621 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4622 4623 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4624 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4625 4626 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4627 return Entry; 4628 4629 // If there are two attempts to define the same mangled name, issue an 4630 // error. 4631 if (IsForDefinition && !Entry->isDeclaration()) { 4632 GlobalDecl OtherGD; 4633 const VarDecl *OtherD; 4634 4635 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4636 // to make sure that we issue an error only once. 4637 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4638 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4639 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4640 OtherD->hasInit() && 4641 DiagnosedConflictingDefinitions.insert(D).second) { 4642 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4643 << MangledName; 4644 getDiags().Report(OtherGD.getDecl()->getLocation(), 4645 diag::note_previous_definition); 4646 } 4647 } 4648 4649 // Make sure the result is of the correct type. 4650 if (Entry->getType()->getAddressSpace() != TargetAS) { 4651 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4652 Ty->getPointerTo(TargetAS)); 4653 } 4654 4655 // (If global is requested for a definition, we always need to create a new 4656 // global, not just return a bitcast.) 4657 if (!IsForDefinition) 4658 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4659 } 4660 4661 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4662 4663 auto *GV = new llvm::GlobalVariable( 4664 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4665 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4666 getContext().getTargetAddressSpace(DAddrSpace)); 4667 4668 // If we already created a global with the same mangled name (but different 4669 // type) before, take its name and remove it from its parent. 4670 if (Entry) { 4671 GV->takeName(Entry); 4672 4673 if (!Entry->use_empty()) { 4674 llvm::Constant *NewPtrForOldDecl = 4675 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4676 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4677 } 4678 4679 Entry->eraseFromParent(); 4680 } 4681 4682 // This is the first use or definition of a mangled name. If there is a 4683 // deferred decl with this name, remember that we need to emit it at the end 4684 // of the file. 4685 auto DDI = DeferredDecls.find(MangledName); 4686 if (DDI != DeferredDecls.end()) { 4687 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4688 // list, and remove it from DeferredDecls (since we don't need it anymore). 4689 addDeferredDeclToEmit(DDI->second); 4690 DeferredDecls.erase(DDI); 4691 } 4692 4693 // Handle things which are present even on external declarations. 4694 if (D) { 4695 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4696 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4697 4698 // FIXME: This code is overly simple and should be merged with other global 4699 // handling. 4700 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4701 4702 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4703 4704 setLinkageForGV(GV, D); 4705 4706 if (D->getTLSKind()) { 4707 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4708 CXXThreadLocals.push_back(D); 4709 setTLSMode(GV, *D); 4710 } 4711 4712 setGVProperties(GV, D); 4713 4714 // If required by the ABI, treat declarations of static data members with 4715 // inline initializers as definitions. 4716 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4717 EmitGlobalVarDefinition(D); 4718 } 4719 4720 // Emit section information for extern variables. 4721 if (D->hasExternalStorage()) { 4722 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4723 GV->setSection(SA->getName()); 4724 } 4725 4726 // Handle XCore specific ABI requirements. 4727 if (getTriple().getArch() == llvm::Triple::xcore && 4728 D->getLanguageLinkage() == CLanguageLinkage && 4729 D->getType().isConstant(Context) && 4730 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4731 GV->setSection(".cp.rodata"); 4732 4733 // Check if we a have a const declaration with an initializer, we may be 4734 // able to emit it as available_externally to expose it's value to the 4735 // optimizer. 4736 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4737 D->getType().isConstQualified() && !GV->hasInitializer() && 4738 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4739 const auto *Record = 4740 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4741 bool HasMutableFields = Record && Record->hasMutableFields(); 4742 if (!HasMutableFields) { 4743 const VarDecl *InitDecl; 4744 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4745 if (InitExpr) { 4746 ConstantEmitter emitter(*this); 4747 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4748 if (Init) { 4749 auto *InitType = Init->getType(); 4750 if (GV->getValueType() != InitType) { 4751 // The type of the initializer does not match the definition. 4752 // This happens when an initializer has a different type from 4753 // the type of the global (because of padding at the end of a 4754 // structure for instance). 4755 GV->setName(StringRef()); 4756 // Make a new global with the correct type, this is now guaranteed 4757 // to work. 4758 auto *NewGV = cast<llvm::GlobalVariable>( 4759 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4760 ->stripPointerCasts()); 4761 4762 // Erase the old global, since it is no longer used. 4763 GV->eraseFromParent(); 4764 GV = NewGV; 4765 } else { 4766 GV->setInitializer(Init); 4767 GV->setConstant(true); 4768 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4769 } 4770 emitter.finalize(GV); 4771 } 4772 } 4773 } 4774 } 4775 } 4776 4777 if (D && 4778 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4779 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4780 // External HIP managed variables needed to be recorded for transformation 4781 // in both device and host compilations. 4782 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4783 D->hasExternalStorage()) 4784 getCUDARuntime().handleVarRegistration(D, *GV); 4785 } 4786 4787 if (D) 4788 SanitizerMD->reportGlobal(GV, *D); 4789 4790 LangAS ExpectedAS = 4791 D ? D->getType().getAddressSpace() 4792 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4793 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4794 if (DAddrSpace != ExpectedAS) { 4795 return getTargetCodeGenInfo().performAddrSpaceCast( 4796 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4797 } 4798 4799 return GV; 4800 } 4801 4802 llvm::Constant * 4803 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4804 const Decl *D = GD.getDecl(); 4805 4806 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4807 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4808 /*DontDefer=*/false, IsForDefinition); 4809 4810 if (isa<CXXMethodDecl>(D)) { 4811 auto FInfo = 4812 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4813 auto Ty = getTypes().GetFunctionType(*FInfo); 4814 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4815 IsForDefinition); 4816 } 4817 4818 if (isa<FunctionDecl>(D)) { 4819 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4820 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4821 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4822 IsForDefinition); 4823 } 4824 4825 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4826 } 4827 4828 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4829 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4830 llvm::Align Alignment) { 4831 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4832 llvm::GlobalVariable *OldGV = nullptr; 4833 4834 if (GV) { 4835 // Check if the variable has the right type. 4836 if (GV->getValueType() == Ty) 4837 return GV; 4838 4839 // Because C++ name mangling, the only way we can end up with an already 4840 // existing global with the same name is if it has been declared extern "C". 4841 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4842 OldGV = GV; 4843 } 4844 4845 // Create a new variable. 4846 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4847 Linkage, nullptr, Name); 4848 4849 if (OldGV) { 4850 // Replace occurrences of the old variable if needed. 4851 GV->takeName(OldGV); 4852 4853 if (!OldGV->use_empty()) { 4854 llvm::Constant *NewPtrForOldDecl = 4855 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4856 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4857 } 4858 4859 OldGV->eraseFromParent(); 4860 } 4861 4862 if (supportsCOMDAT() && GV->isWeakForLinker() && 4863 !GV->hasAvailableExternallyLinkage()) 4864 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4865 4866 GV->setAlignment(Alignment); 4867 4868 return GV; 4869 } 4870 4871 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4872 /// given global variable. If Ty is non-null and if the global doesn't exist, 4873 /// then it will be created with the specified type instead of whatever the 4874 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4875 /// that an actual global with type Ty will be returned, not conversion of a 4876 /// variable with the same mangled name but some other type. 4877 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4878 llvm::Type *Ty, 4879 ForDefinition_t IsForDefinition) { 4880 assert(D->hasGlobalStorage() && "Not a global variable"); 4881 QualType ASTTy = D->getType(); 4882 if (!Ty) 4883 Ty = getTypes().ConvertTypeForMem(ASTTy); 4884 4885 StringRef MangledName = getMangledName(D); 4886 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4887 IsForDefinition); 4888 } 4889 4890 /// CreateRuntimeVariable - Create a new runtime global variable with the 4891 /// specified type and name. 4892 llvm::Constant * 4893 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4894 StringRef Name) { 4895 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4896 : LangAS::Default; 4897 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4898 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4899 return Ret; 4900 } 4901 4902 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4903 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4904 4905 StringRef MangledName = getMangledName(D); 4906 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4907 4908 // We already have a definition, not declaration, with the same mangled name. 4909 // Emitting of declaration is not required (and actually overwrites emitted 4910 // definition). 4911 if (GV && !GV->isDeclaration()) 4912 return; 4913 4914 // If we have not seen a reference to this variable yet, place it into the 4915 // deferred declarations table to be emitted if needed later. 4916 if (!MustBeEmitted(D) && !GV) { 4917 DeferredDecls[MangledName] = D; 4918 return; 4919 } 4920 4921 // The tentative definition is the only definition. 4922 EmitGlobalVarDefinition(D); 4923 } 4924 4925 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4926 EmitExternalVarDeclaration(D); 4927 } 4928 4929 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4930 return Context.toCharUnitsFromBits( 4931 getDataLayout().getTypeStoreSizeInBits(Ty)); 4932 } 4933 4934 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4935 if (LangOpts.OpenCL) { 4936 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4937 assert(AS == LangAS::opencl_global || 4938 AS == LangAS::opencl_global_device || 4939 AS == LangAS::opencl_global_host || 4940 AS == LangAS::opencl_constant || 4941 AS == LangAS::opencl_local || 4942 AS >= LangAS::FirstTargetAddressSpace); 4943 return AS; 4944 } 4945 4946 if (LangOpts.SYCLIsDevice && 4947 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4948 return LangAS::sycl_global; 4949 4950 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4951 if (D) { 4952 if (D->hasAttr<CUDAConstantAttr>()) 4953 return LangAS::cuda_constant; 4954 if (D->hasAttr<CUDASharedAttr>()) 4955 return LangAS::cuda_shared; 4956 if (D->hasAttr<CUDADeviceAttr>()) 4957 return LangAS::cuda_device; 4958 if (D->getType().isConstQualified()) 4959 return LangAS::cuda_constant; 4960 } 4961 return LangAS::cuda_device; 4962 } 4963 4964 if (LangOpts.OpenMP) { 4965 LangAS AS; 4966 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4967 return AS; 4968 } 4969 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4970 } 4971 4972 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4973 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4974 if (LangOpts.OpenCL) 4975 return LangAS::opencl_constant; 4976 if (LangOpts.SYCLIsDevice) 4977 return LangAS::sycl_global; 4978 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4979 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4980 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4981 // with OpVariable instructions with Generic storage class which is not 4982 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4983 // UniformConstant storage class is not viable as pointers to it may not be 4984 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4985 return LangAS::cuda_device; 4986 if (auto AS = getTarget().getConstantAddressSpace()) 4987 return *AS; 4988 return LangAS::Default; 4989 } 4990 4991 // In address space agnostic languages, string literals are in default address 4992 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4993 // emitted in constant address space in LLVM IR. To be consistent with other 4994 // parts of AST, string literal global variables in constant address space 4995 // need to be casted to default address space before being put into address 4996 // map and referenced by other part of CodeGen. 4997 // In OpenCL, string literals are in constant address space in AST, therefore 4998 // they should not be casted to default address space. 4999 static llvm::Constant * 5000 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5001 llvm::GlobalVariable *GV) { 5002 llvm::Constant *Cast = GV; 5003 if (!CGM.getLangOpts().OpenCL) { 5004 auto AS = CGM.GetGlobalConstantAddressSpace(); 5005 if (AS != LangAS::Default) 5006 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5007 CGM, GV, AS, LangAS::Default, 5008 GV->getValueType()->getPointerTo( 5009 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5010 } 5011 return Cast; 5012 } 5013 5014 template<typename SomeDecl> 5015 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5016 llvm::GlobalValue *GV) { 5017 if (!getLangOpts().CPlusPlus) 5018 return; 5019 5020 // Must have 'used' attribute, or else inline assembly can't rely on 5021 // the name existing. 5022 if (!D->template hasAttr<UsedAttr>()) 5023 return; 5024 5025 // Must have internal linkage and an ordinary name. 5026 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5027 return; 5028 5029 // Must be in an extern "C" context. Entities declared directly within 5030 // a record are not extern "C" even if the record is in such a context. 5031 const SomeDecl *First = D->getFirstDecl(); 5032 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5033 return; 5034 5035 // OK, this is an internal linkage entity inside an extern "C" linkage 5036 // specification. Make a note of that so we can give it the "expected" 5037 // mangled name if nothing else is using that name. 5038 std::pair<StaticExternCMap::iterator, bool> R = 5039 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5040 5041 // If we have multiple internal linkage entities with the same name 5042 // in extern "C" regions, none of them gets that name. 5043 if (!R.second) 5044 R.first->second = nullptr; 5045 } 5046 5047 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5048 if (!CGM.supportsCOMDAT()) 5049 return false; 5050 5051 if (D.hasAttr<SelectAnyAttr>()) 5052 return true; 5053 5054 GVALinkage Linkage; 5055 if (auto *VD = dyn_cast<VarDecl>(&D)) 5056 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5057 else 5058 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5059 5060 switch (Linkage) { 5061 case GVA_Internal: 5062 case GVA_AvailableExternally: 5063 case GVA_StrongExternal: 5064 return false; 5065 case GVA_DiscardableODR: 5066 case GVA_StrongODR: 5067 return true; 5068 } 5069 llvm_unreachable("No such linkage"); 5070 } 5071 5072 bool CodeGenModule::supportsCOMDAT() const { 5073 return getTriple().supportsCOMDAT(); 5074 } 5075 5076 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5077 llvm::GlobalObject &GO) { 5078 if (!shouldBeInCOMDAT(*this, D)) 5079 return; 5080 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5081 } 5082 5083 /// Pass IsTentative as true if you want to create a tentative definition. 5084 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5085 bool IsTentative) { 5086 // OpenCL global variables of sampler type are translated to function calls, 5087 // therefore no need to be translated. 5088 QualType ASTTy = D->getType(); 5089 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5090 return; 5091 5092 // If this is OpenMP device, check if it is legal to emit this global 5093 // normally. 5094 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5095 OpenMPRuntime->emitTargetGlobalVariable(D)) 5096 return; 5097 5098 llvm::TrackingVH<llvm::Constant> Init; 5099 bool NeedsGlobalCtor = false; 5100 // Whether the definition of the variable is available externally. 5101 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5102 // since this is the job for its original source. 5103 bool IsDefinitionAvailableExternally = 5104 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5105 bool NeedsGlobalDtor = 5106 !IsDefinitionAvailableExternally && 5107 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5108 5109 const VarDecl *InitDecl; 5110 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5111 5112 std::optional<ConstantEmitter> emitter; 5113 5114 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5115 // as part of their declaration." Sema has already checked for 5116 // error cases, so we just need to set Init to UndefValue. 5117 bool IsCUDASharedVar = 5118 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5119 // Shadows of initialized device-side global variables are also left 5120 // undefined. 5121 // Managed Variables should be initialized on both host side and device side. 5122 bool IsCUDAShadowVar = 5123 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5124 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5125 D->hasAttr<CUDASharedAttr>()); 5126 bool IsCUDADeviceShadowVar = 5127 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5128 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5129 D->getType()->isCUDADeviceBuiltinTextureType()); 5130 if (getLangOpts().CUDA && 5131 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5132 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5133 else if (D->hasAttr<LoaderUninitializedAttr>()) 5134 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5135 else if (!InitExpr) { 5136 // This is a tentative definition; tentative definitions are 5137 // implicitly initialized with { 0 }. 5138 // 5139 // Note that tentative definitions are only emitted at the end of 5140 // a translation unit, so they should never have incomplete 5141 // type. In addition, EmitTentativeDefinition makes sure that we 5142 // never attempt to emit a tentative definition if a real one 5143 // exists. A use may still exists, however, so we still may need 5144 // to do a RAUW. 5145 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5146 Init = EmitNullConstant(D->getType()); 5147 } else { 5148 initializedGlobalDecl = GlobalDecl(D); 5149 emitter.emplace(*this); 5150 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5151 if (!Initializer) { 5152 QualType T = InitExpr->getType(); 5153 if (D->getType()->isReferenceType()) 5154 T = D->getType(); 5155 5156 if (getLangOpts().CPlusPlus) { 5157 if (InitDecl->hasFlexibleArrayInit(getContext())) 5158 ErrorUnsupported(D, "flexible array initializer"); 5159 Init = EmitNullConstant(T); 5160 5161 if (!IsDefinitionAvailableExternally) 5162 NeedsGlobalCtor = true; 5163 } else { 5164 ErrorUnsupported(D, "static initializer"); 5165 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5166 } 5167 } else { 5168 Init = Initializer; 5169 // We don't need an initializer, so remove the entry for the delayed 5170 // initializer position (just in case this entry was delayed) if we 5171 // also don't need to register a destructor. 5172 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5173 DelayedCXXInitPosition.erase(D); 5174 5175 #ifndef NDEBUG 5176 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5177 InitDecl->getFlexibleArrayInitChars(getContext()); 5178 CharUnits CstSize = CharUnits::fromQuantity( 5179 getDataLayout().getTypeAllocSize(Init->getType())); 5180 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5181 #endif 5182 } 5183 } 5184 5185 llvm::Type* InitType = Init->getType(); 5186 llvm::Constant *Entry = 5187 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5188 5189 // Strip off pointer casts if we got them. 5190 Entry = Entry->stripPointerCasts(); 5191 5192 // Entry is now either a Function or GlobalVariable. 5193 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5194 5195 // We have a definition after a declaration with the wrong type. 5196 // We must make a new GlobalVariable* and update everything that used OldGV 5197 // (a declaration or tentative definition) with the new GlobalVariable* 5198 // (which will be a definition). 5199 // 5200 // This happens if there is a prototype for a global (e.g. 5201 // "extern int x[];") and then a definition of a different type (e.g. 5202 // "int x[10];"). This also happens when an initializer has a different type 5203 // from the type of the global (this happens with unions). 5204 if (!GV || GV->getValueType() != InitType || 5205 GV->getType()->getAddressSpace() != 5206 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5207 5208 // Move the old entry aside so that we'll create a new one. 5209 Entry->setName(StringRef()); 5210 5211 // Make a new global with the correct type, this is now guaranteed to work. 5212 GV = cast<llvm::GlobalVariable>( 5213 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5214 ->stripPointerCasts()); 5215 5216 // Replace all uses of the old global with the new global 5217 llvm::Constant *NewPtrForOldDecl = 5218 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5219 Entry->getType()); 5220 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5221 5222 // Erase the old global, since it is no longer used. 5223 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5224 } 5225 5226 MaybeHandleStaticInExternC(D, GV); 5227 5228 if (D->hasAttr<AnnotateAttr>()) 5229 AddGlobalAnnotations(D, GV); 5230 5231 // Set the llvm linkage type as appropriate. 5232 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5233 5234 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5235 // the device. [...]" 5236 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5237 // __device__, declares a variable that: [...] 5238 // Is accessible from all the threads within the grid and from the host 5239 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5240 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5241 if (LangOpts.CUDA) { 5242 if (LangOpts.CUDAIsDevice) { 5243 if (Linkage != llvm::GlobalValue::InternalLinkage && 5244 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5245 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5246 D->getType()->isCUDADeviceBuiltinTextureType())) 5247 GV->setExternallyInitialized(true); 5248 } else { 5249 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5250 } 5251 getCUDARuntime().handleVarRegistration(D, *GV); 5252 } 5253 5254 GV->setInitializer(Init); 5255 if (emitter) 5256 emitter->finalize(GV); 5257 5258 // If it is safe to mark the global 'constant', do so now. 5259 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5260 D->getType().isConstantStorage(getContext(), true, true)); 5261 5262 // If it is in a read-only section, mark it 'constant'. 5263 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5264 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5265 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5266 GV->setConstant(true); 5267 } 5268 5269 CharUnits AlignVal = getContext().getDeclAlign(D); 5270 // Check for alignment specifed in an 'omp allocate' directive. 5271 if (std::optional<CharUnits> AlignValFromAllocate = 5272 getOMPAllocateAlignment(D)) 5273 AlignVal = *AlignValFromAllocate; 5274 GV->setAlignment(AlignVal.getAsAlign()); 5275 5276 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5277 // function is only defined alongside the variable, not also alongside 5278 // callers. Normally, all accesses to a thread_local go through the 5279 // thread-wrapper in order to ensure initialization has occurred, underlying 5280 // variable will never be used other than the thread-wrapper, so it can be 5281 // converted to internal linkage. 5282 // 5283 // However, if the variable has the 'constinit' attribute, it _can_ be 5284 // referenced directly, without calling the thread-wrapper, so the linkage 5285 // must not be changed. 5286 // 5287 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5288 // weak or linkonce, the de-duplication semantics are important to preserve, 5289 // so we don't change the linkage. 5290 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5291 Linkage == llvm::GlobalValue::ExternalLinkage && 5292 Context.getTargetInfo().getTriple().isOSDarwin() && 5293 !D->hasAttr<ConstInitAttr>()) 5294 Linkage = llvm::GlobalValue::InternalLinkage; 5295 5296 GV->setLinkage(Linkage); 5297 if (D->hasAttr<DLLImportAttr>()) 5298 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5299 else if (D->hasAttr<DLLExportAttr>()) 5300 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5301 else 5302 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5303 5304 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5305 // common vars aren't constant even if declared const. 5306 GV->setConstant(false); 5307 // Tentative definition of global variables may be initialized with 5308 // non-zero null pointers. In this case they should have weak linkage 5309 // since common linkage must have zero initializer and must not have 5310 // explicit section therefore cannot have non-zero initial value. 5311 if (!GV->getInitializer()->isNullValue()) 5312 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5313 } 5314 5315 setNonAliasAttributes(D, GV); 5316 5317 if (D->getTLSKind() && !GV->isThreadLocal()) { 5318 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5319 CXXThreadLocals.push_back(D); 5320 setTLSMode(GV, *D); 5321 } 5322 5323 maybeSetTrivialComdat(*D, *GV); 5324 5325 // Emit the initializer function if necessary. 5326 if (NeedsGlobalCtor || NeedsGlobalDtor) 5327 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5328 5329 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5330 5331 // Emit global variable debug information. 5332 if (CGDebugInfo *DI = getModuleDebugInfo()) 5333 if (getCodeGenOpts().hasReducedDebugInfo()) 5334 DI->EmitGlobalVariable(GV, D); 5335 } 5336 5337 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5338 if (CGDebugInfo *DI = getModuleDebugInfo()) 5339 if (getCodeGenOpts().hasReducedDebugInfo()) { 5340 QualType ASTTy = D->getType(); 5341 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5342 llvm::Constant *GV = 5343 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5344 DI->EmitExternalVariable( 5345 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5346 } 5347 } 5348 5349 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5350 CodeGenModule &CGM, const VarDecl *D, 5351 bool NoCommon) { 5352 // Don't give variables common linkage if -fno-common was specified unless it 5353 // was overridden by a NoCommon attribute. 5354 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5355 return true; 5356 5357 // C11 6.9.2/2: 5358 // A declaration of an identifier for an object that has file scope without 5359 // an initializer, and without a storage-class specifier or with the 5360 // storage-class specifier static, constitutes a tentative definition. 5361 if (D->getInit() || D->hasExternalStorage()) 5362 return true; 5363 5364 // A variable cannot be both common and exist in a section. 5365 if (D->hasAttr<SectionAttr>()) 5366 return true; 5367 5368 // A variable cannot be both common and exist in a section. 5369 // We don't try to determine which is the right section in the front-end. 5370 // If no specialized section name is applicable, it will resort to default. 5371 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5372 D->hasAttr<PragmaClangDataSectionAttr>() || 5373 D->hasAttr<PragmaClangRelroSectionAttr>() || 5374 D->hasAttr<PragmaClangRodataSectionAttr>()) 5375 return true; 5376 5377 // Thread local vars aren't considered common linkage. 5378 if (D->getTLSKind()) 5379 return true; 5380 5381 // Tentative definitions marked with WeakImportAttr are true definitions. 5382 if (D->hasAttr<WeakImportAttr>()) 5383 return true; 5384 5385 // A variable cannot be both common and exist in a comdat. 5386 if (shouldBeInCOMDAT(CGM, *D)) 5387 return true; 5388 5389 // Declarations with a required alignment do not have common linkage in MSVC 5390 // mode. 5391 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5392 if (D->hasAttr<AlignedAttr>()) 5393 return true; 5394 QualType VarType = D->getType(); 5395 if (Context.isAlignmentRequired(VarType)) 5396 return true; 5397 5398 if (const auto *RT = VarType->getAs<RecordType>()) { 5399 const RecordDecl *RD = RT->getDecl(); 5400 for (const FieldDecl *FD : RD->fields()) { 5401 if (FD->isBitField()) 5402 continue; 5403 if (FD->hasAttr<AlignedAttr>()) 5404 return true; 5405 if (Context.isAlignmentRequired(FD->getType())) 5406 return true; 5407 } 5408 } 5409 } 5410 5411 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5412 // common symbols, so symbols with greater alignment requirements cannot be 5413 // common. 5414 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5415 // alignments for common symbols via the aligncomm directive, so this 5416 // restriction only applies to MSVC environments. 5417 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5418 Context.getTypeAlignIfKnown(D->getType()) > 5419 Context.toBits(CharUnits::fromQuantity(32))) 5420 return true; 5421 5422 return false; 5423 } 5424 5425 llvm::GlobalValue::LinkageTypes 5426 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5427 GVALinkage Linkage) { 5428 if (Linkage == GVA_Internal) 5429 return llvm::Function::InternalLinkage; 5430 5431 if (D->hasAttr<WeakAttr>()) 5432 return llvm::GlobalVariable::WeakAnyLinkage; 5433 5434 if (const auto *FD = D->getAsFunction()) 5435 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5436 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5437 5438 // We are guaranteed to have a strong definition somewhere else, 5439 // so we can use available_externally linkage. 5440 if (Linkage == GVA_AvailableExternally) 5441 return llvm::GlobalValue::AvailableExternallyLinkage; 5442 5443 // Note that Apple's kernel linker doesn't support symbol 5444 // coalescing, so we need to avoid linkonce and weak linkages there. 5445 // Normally, this means we just map to internal, but for explicit 5446 // instantiations we'll map to external. 5447 5448 // In C++, the compiler has to emit a definition in every translation unit 5449 // that references the function. We should use linkonce_odr because 5450 // a) if all references in this translation unit are optimized away, we 5451 // don't need to codegen it. b) if the function persists, it needs to be 5452 // merged with other definitions. c) C++ has the ODR, so we know the 5453 // definition is dependable. 5454 if (Linkage == GVA_DiscardableODR) 5455 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5456 : llvm::Function::InternalLinkage; 5457 5458 // An explicit instantiation of a template has weak linkage, since 5459 // explicit instantiations can occur in multiple translation units 5460 // and must all be equivalent. However, we are not allowed to 5461 // throw away these explicit instantiations. 5462 // 5463 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5464 // so say that CUDA templates are either external (for kernels) or internal. 5465 // This lets llvm perform aggressive inter-procedural optimizations. For 5466 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5467 // therefore we need to follow the normal linkage paradigm. 5468 if (Linkage == GVA_StrongODR) { 5469 if (getLangOpts().AppleKext) 5470 return llvm::Function::ExternalLinkage; 5471 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5472 !getLangOpts().GPURelocatableDeviceCode) 5473 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5474 : llvm::Function::InternalLinkage; 5475 return llvm::Function::WeakODRLinkage; 5476 } 5477 5478 // C++ doesn't have tentative definitions and thus cannot have common 5479 // linkage. 5480 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5481 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5482 CodeGenOpts.NoCommon)) 5483 return llvm::GlobalVariable::CommonLinkage; 5484 5485 // selectany symbols are externally visible, so use weak instead of 5486 // linkonce. MSVC optimizes away references to const selectany globals, so 5487 // all definitions should be the same and ODR linkage should be used. 5488 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5489 if (D->hasAttr<SelectAnyAttr>()) 5490 return llvm::GlobalVariable::WeakODRLinkage; 5491 5492 // Otherwise, we have strong external linkage. 5493 assert(Linkage == GVA_StrongExternal); 5494 return llvm::GlobalVariable::ExternalLinkage; 5495 } 5496 5497 llvm::GlobalValue::LinkageTypes 5498 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5499 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5500 return getLLVMLinkageForDeclarator(VD, Linkage); 5501 } 5502 5503 /// Replace the uses of a function that was declared with a non-proto type. 5504 /// We want to silently drop extra arguments from call sites 5505 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5506 llvm::Function *newFn) { 5507 // Fast path. 5508 if (old->use_empty()) return; 5509 5510 llvm::Type *newRetTy = newFn->getReturnType(); 5511 SmallVector<llvm::Value*, 4> newArgs; 5512 5513 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5514 ui != ue; ) { 5515 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5516 llvm::User *user = use->getUser(); 5517 5518 // Recognize and replace uses of bitcasts. Most calls to 5519 // unprototyped functions will use bitcasts. 5520 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5521 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5522 replaceUsesOfNonProtoConstant(bitcast, newFn); 5523 continue; 5524 } 5525 5526 // Recognize calls to the function. 5527 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5528 if (!callSite) continue; 5529 if (!callSite->isCallee(&*use)) 5530 continue; 5531 5532 // If the return types don't match exactly, then we can't 5533 // transform this call unless it's dead. 5534 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5535 continue; 5536 5537 // Get the call site's attribute list. 5538 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5539 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5540 5541 // If the function was passed too few arguments, don't transform. 5542 unsigned newNumArgs = newFn->arg_size(); 5543 if (callSite->arg_size() < newNumArgs) 5544 continue; 5545 5546 // If extra arguments were passed, we silently drop them. 5547 // If any of the types mismatch, we don't transform. 5548 unsigned argNo = 0; 5549 bool dontTransform = false; 5550 for (llvm::Argument &A : newFn->args()) { 5551 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5552 dontTransform = true; 5553 break; 5554 } 5555 5556 // Add any parameter attributes. 5557 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5558 argNo++; 5559 } 5560 if (dontTransform) 5561 continue; 5562 5563 // Okay, we can transform this. Create the new call instruction and copy 5564 // over the required information. 5565 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5566 5567 // Copy over any operand bundles. 5568 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5569 callSite->getOperandBundlesAsDefs(newBundles); 5570 5571 llvm::CallBase *newCall; 5572 if (isa<llvm::CallInst>(callSite)) { 5573 newCall = 5574 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5575 } else { 5576 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5577 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5578 oldInvoke->getUnwindDest(), newArgs, 5579 newBundles, "", callSite); 5580 } 5581 newArgs.clear(); // for the next iteration 5582 5583 if (!newCall->getType()->isVoidTy()) 5584 newCall->takeName(callSite); 5585 newCall->setAttributes( 5586 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5587 oldAttrs.getRetAttrs(), newArgAttrs)); 5588 newCall->setCallingConv(callSite->getCallingConv()); 5589 5590 // Finally, remove the old call, replacing any uses with the new one. 5591 if (!callSite->use_empty()) 5592 callSite->replaceAllUsesWith(newCall); 5593 5594 // Copy debug location attached to CI. 5595 if (callSite->getDebugLoc()) 5596 newCall->setDebugLoc(callSite->getDebugLoc()); 5597 5598 callSite->eraseFromParent(); 5599 } 5600 } 5601 5602 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5603 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5604 /// existing call uses of the old function in the module, this adjusts them to 5605 /// call the new function directly. 5606 /// 5607 /// This is not just a cleanup: the always_inline pass requires direct calls to 5608 /// functions to be able to inline them. If there is a bitcast in the way, it 5609 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5610 /// run at -O0. 5611 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5612 llvm::Function *NewFn) { 5613 // If we're redefining a global as a function, don't transform it. 5614 if (!isa<llvm::Function>(Old)) return; 5615 5616 replaceUsesOfNonProtoConstant(Old, NewFn); 5617 } 5618 5619 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5620 auto DK = VD->isThisDeclarationADefinition(); 5621 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5622 return; 5623 5624 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5625 // If we have a definition, this might be a deferred decl. If the 5626 // instantiation is explicit, make sure we emit it at the end. 5627 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5628 GetAddrOfGlobalVar(VD); 5629 5630 EmitTopLevelDecl(VD); 5631 } 5632 5633 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5634 llvm::GlobalValue *GV) { 5635 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5636 5637 // Compute the function info and LLVM type. 5638 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5639 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5640 5641 // Get or create the prototype for the function. 5642 if (!GV || (GV->getValueType() != Ty)) 5643 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5644 /*DontDefer=*/true, 5645 ForDefinition)); 5646 5647 // Already emitted. 5648 if (!GV->isDeclaration()) 5649 return; 5650 5651 // We need to set linkage and visibility on the function before 5652 // generating code for it because various parts of IR generation 5653 // want to propagate this information down (e.g. to local static 5654 // declarations). 5655 auto *Fn = cast<llvm::Function>(GV); 5656 setFunctionLinkage(GD, Fn); 5657 5658 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5659 setGVProperties(Fn, GD); 5660 5661 MaybeHandleStaticInExternC(D, Fn); 5662 5663 maybeSetTrivialComdat(*D, *Fn); 5664 5665 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5666 5667 setNonAliasAttributes(GD, Fn); 5668 SetLLVMFunctionAttributesForDefinition(D, Fn); 5669 5670 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5671 AddGlobalCtor(Fn, CA->getPriority()); 5672 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5673 AddGlobalDtor(Fn, DA->getPriority(), true); 5674 if (D->hasAttr<AnnotateAttr>()) 5675 AddGlobalAnnotations(D, Fn); 5676 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5677 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5678 } 5679 5680 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5681 const auto *D = cast<ValueDecl>(GD.getDecl()); 5682 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5683 assert(AA && "Not an alias?"); 5684 5685 StringRef MangledName = getMangledName(GD); 5686 5687 if (AA->getAliasee() == MangledName) { 5688 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5689 return; 5690 } 5691 5692 // If there is a definition in the module, then it wins over the alias. 5693 // This is dubious, but allow it to be safe. Just ignore the alias. 5694 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5695 if (Entry && !Entry->isDeclaration()) 5696 return; 5697 5698 Aliases.push_back(GD); 5699 5700 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5701 5702 // Create a reference to the named value. This ensures that it is emitted 5703 // if a deferred decl. 5704 llvm::Constant *Aliasee; 5705 llvm::GlobalValue::LinkageTypes LT; 5706 if (isa<llvm::FunctionType>(DeclTy)) { 5707 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5708 /*ForVTable=*/false); 5709 LT = getFunctionLinkage(GD); 5710 } else { 5711 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5712 /*D=*/nullptr); 5713 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5714 LT = getLLVMLinkageVarDefinition(VD); 5715 else 5716 LT = getFunctionLinkage(GD); 5717 } 5718 5719 // Create the new alias itself, but don't set a name yet. 5720 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5721 auto *GA = 5722 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5723 5724 if (Entry) { 5725 if (GA->getAliasee() == Entry) { 5726 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5727 return; 5728 } 5729 5730 assert(Entry->isDeclaration()); 5731 5732 // If there is a declaration in the module, then we had an extern followed 5733 // by the alias, as in: 5734 // extern int test6(); 5735 // ... 5736 // int test6() __attribute__((alias("test7"))); 5737 // 5738 // Remove it and replace uses of it with the alias. 5739 GA->takeName(Entry); 5740 5741 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5742 Entry->getType())); 5743 Entry->eraseFromParent(); 5744 } else { 5745 GA->setName(MangledName); 5746 } 5747 5748 // Set attributes which are particular to an alias; this is a 5749 // specialization of the attributes which may be set on a global 5750 // variable/function. 5751 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5752 D->isWeakImported()) { 5753 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5754 } 5755 5756 if (const auto *VD = dyn_cast<VarDecl>(D)) 5757 if (VD->getTLSKind()) 5758 setTLSMode(GA, *VD); 5759 5760 SetCommonAttributes(GD, GA); 5761 5762 // Emit global alias debug information. 5763 if (isa<VarDecl>(D)) 5764 if (CGDebugInfo *DI = getModuleDebugInfo()) 5765 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5766 } 5767 5768 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5769 const auto *D = cast<ValueDecl>(GD.getDecl()); 5770 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5771 assert(IFA && "Not an ifunc?"); 5772 5773 StringRef MangledName = getMangledName(GD); 5774 5775 if (IFA->getResolver() == MangledName) { 5776 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5777 return; 5778 } 5779 5780 // Report an error if some definition overrides ifunc. 5781 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5782 if (Entry && !Entry->isDeclaration()) { 5783 GlobalDecl OtherGD; 5784 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5785 DiagnosedConflictingDefinitions.insert(GD).second) { 5786 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5787 << MangledName; 5788 Diags.Report(OtherGD.getDecl()->getLocation(), 5789 diag::note_previous_definition); 5790 } 5791 return; 5792 } 5793 5794 Aliases.push_back(GD); 5795 5796 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5797 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5798 llvm::Constant *Resolver = 5799 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5800 /*ForVTable=*/false); 5801 llvm::GlobalIFunc *GIF = 5802 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5803 "", Resolver, &getModule()); 5804 if (Entry) { 5805 if (GIF->getResolver() == Entry) { 5806 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5807 return; 5808 } 5809 assert(Entry->isDeclaration()); 5810 5811 // If there is a declaration in the module, then we had an extern followed 5812 // by the ifunc, as in: 5813 // extern int test(); 5814 // ... 5815 // int test() __attribute__((ifunc("resolver"))); 5816 // 5817 // Remove it and replace uses of it with the ifunc. 5818 GIF->takeName(Entry); 5819 5820 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5821 Entry->getType())); 5822 Entry->eraseFromParent(); 5823 } else 5824 GIF->setName(MangledName); 5825 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5826 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5827 } 5828 SetCommonAttributes(GD, GIF); 5829 } 5830 5831 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5832 ArrayRef<llvm::Type*> Tys) { 5833 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5834 Tys); 5835 } 5836 5837 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5838 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5839 const StringLiteral *Literal, bool TargetIsLSB, 5840 bool &IsUTF16, unsigned &StringLength) { 5841 StringRef String = Literal->getString(); 5842 unsigned NumBytes = String.size(); 5843 5844 // Check for simple case. 5845 if (!Literal->containsNonAsciiOrNull()) { 5846 StringLength = NumBytes; 5847 return *Map.insert(std::make_pair(String, nullptr)).first; 5848 } 5849 5850 // Otherwise, convert the UTF8 literals into a string of shorts. 5851 IsUTF16 = true; 5852 5853 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5854 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5855 llvm::UTF16 *ToPtr = &ToBuf[0]; 5856 5857 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5858 ToPtr + NumBytes, llvm::strictConversion); 5859 5860 // ConvertUTF8toUTF16 returns the length in ToPtr. 5861 StringLength = ToPtr - &ToBuf[0]; 5862 5863 // Add an explicit null. 5864 *ToPtr = 0; 5865 return *Map.insert(std::make_pair( 5866 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5867 (StringLength + 1) * 2), 5868 nullptr)).first; 5869 } 5870 5871 ConstantAddress 5872 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5873 unsigned StringLength = 0; 5874 bool isUTF16 = false; 5875 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5876 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5877 getDataLayout().isLittleEndian(), isUTF16, 5878 StringLength); 5879 5880 if (auto *C = Entry.second) 5881 return ConstantAddress( 5882 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5883 5884 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5885 llvm::Constant *Zeros[] = { Zero, Zero }; 5886 5887 const ASTContext &Context = getContext(); 5888 const llvm::Triple &Triple = getTriple(); 5889 5890 const auto CFRuntime = getLangOpts().CFRuntime; 5891 const bool IsSwiftABI = 5892 static_cast<unsigned>(CFRuntime) >= 5893 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5894 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5895 5896 // If we don't already have it, get __CFConstantStringClassReference. 5897 if (!CFConstantStringClassRef) { 5898 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5899 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5900 Ty = llvm::ArrayType::get(Ty, 0); 5901 5902 switch (CFRuntime) { 5903 default: break; 5904 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5905 case LangOptions::CoreFoundationABI::Swift5_0: 5906 CFConstantStringClassName = 5907 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5908 : "$s10Foundation19_NSCFConstantStringCN"; 5909 Ty = IntPtrTy; 5910 break; 5911 case LangOptions::CoreFoundationABI::Swift4_2: 5912 CFConstantStringClassName = 5913 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5914 : "$S10Foundation19_NSCFConstantStringCN"; 5915 Ty = IntPtrTy; 5916 break; 5917 case LangOptions::CoreFoundationABI::Swift4_1: 5918 CFConstantStringClassName = 5919 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5920 : "__T010Foundation19_NSCFConstantStringCN"; 5921 Ty = IntPtrTy; 5922 break; 5923 } 5924 5925 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5926 5927 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5928 llvm::GlobalValue *GV = nullptr; 5929 5930 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5931 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5932 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5933 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5934 5935 const VarDecl *VD = nullptr; 5936 for (const auto *Result : DC->lookup(&II)) 5937 if ((VD = dyn_cast<VarDecl>(Result))) 5938 break; 5939 5940 if (Triple.isOSBinFormatELF()) { 5941 if (!VD) 5942 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5943 } else { 5944 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5945 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5946 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5947 else 5948 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5949 } 5950 5951 setDSOLocal(GV); 5952 } 5953 } 5954 5955 // Decay array -> ptr 5956 CFConstantStringClassRef = 5957 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5958 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5959 } 5960 5961 QualType CFTy = Context.getCFConstantStringType(); 5962 5963 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5964 5965 ConstantInitBuilder Builder(*this); 5966 auto Fields = Builder.beginStruct(STy); 5967 5968 // Class pointer. 5969 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5970 5971 // Flags. 5972 if (IsSwiftABI) { 5973 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5974 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5975 } else { 5976 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5977 } 5978 5979 // String pointer. 5980 llvm::Constant *C = nullptr; 5981 if (isUTF16) { 5982 auto Arr = llvm::ArrayRef( 5983 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5984 Entry.first().size() / 2); 5985 C = llvm::ConstantDataArray::get(VMContext, Arr); 5986 } else { 5987 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5988 } 5989 5990 // Note: -fwritable-strings doesn't make the backing store strings of 5991 // CFStrings writable. 5992 auto *GV = 5993 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5994 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5995 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5996 // Don't enforce the target's minimum global alignment, since the only use 5997 // of the string is via this class initializer. 5998 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5999 : Context.getTypeAlignInChars(Context.CharTy); 6000 GV->setAlignment(Align.getAsAlign()); 6001 6002 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6003 // Without it LLVM can merge the string with a non unnamed_addr one during 6004 // LTO. Doing that changes the section it ends in, which surprises ld64. 6005 if (Triple.isOSBinFormatMachO()) 6006 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6007 : "__TEXT,__cstring,cstring_literals"); 6008 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6009 // the static linker to adjust permissions to read-only later on. 6010 else if (Triple.isOSBinFormatELF()) 6011 GV->setSection(".rodata"); 6012 6013 // String. 6014 llvm::Constant *Str = 6015 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6016 6017 if (isUTF16) 6018 // Cast the UTF16 string to the correct type. 6019 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6020 Fields.add(Str); 6021 6022 // String length. 6023 llvm::IntegerType *LengthTy = 6024 llvm::IntegerType::get(getModule().getContext(), 6025 Context.getTargetInfo().getLongWidth()); 6026 if (IsSwiftABI) { 6027 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6028 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6029 LengthTy = Int32Ty; 6030 else 6031 LengthTy = IntPtrTy; 6032 } 6033 Fields.addInt(LengthTy, StringLength); 6034 6035 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6036 // properly aligned on 32-bit platforms. 6037 CharUnits Alignment = 6038 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6039 6040 // The struct. 6041 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6042 /*isConstant=*/false, 6043 llvm::GlobalVariable::PrivateLinkage); 6044 GV->addAttribute("objc_arc_inert"); 6045 switch (Triple.getObjectFormat()) { 6046 case llvm::Triple::UnknownObjectFormat: 6047 llvm_unreachable("unknown file format"); 6048 case llvm::Triple::DXContainer: 6049 case llvm::Triple::GOFF: 6050 case llvm::Triple::SPIRV: 6051 case llvm::Triple::XCOFF: 6052 llvm_unreachable("unimplemented"); 6053 case llvm::Triple::COFF: 6054 case llvm::Triple::ELF: 6055 case llvm::Triple::Wasm: 6056 GV->setSection("cfstring"); 6057 break; 6058 case llvm::Triple::MachO: 6059 GV->setSection("__DATA,__cfstring"); 6060 break; 6061 } 6062 Entry.second = GV; 6063 6064 return ConstantAddress(GV, GV->getValueType(), Alignment); 6065 } 6066 6067 bool CodeGenModule::getExpressionLocationsEnabled() const { 6068 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6069 } 6070 6071 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6072 if (ObjCFastEnumerationStateType.isNull()) { 6073 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6074 D->startDefinition(); 6075 6076 QualType FieldTypes[] = { 6077 Context.UnsignedLongTy, 6078 Context.getPointerType(Context.getObjCIdType()), 6079 Context.getPointerType(Context.UnsignedLongTy), 6080 Context.getConstantArrayType(Context.UnsignedLongTy, 6081 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6082 }; 6083 6084 for (size_t i = 0; i < 4; ++i) { 6085 FieldDecl *Field = FieldDecl::Create(Context, 6086 D, 6087 SourceLocation(), 6088 SourceLocation(), nullptr, 6089 FieldTypes[i], /*TInfo=*/nullptr, 6090 /*BitWidth=*/nullptr, 6091 /*Mutable=*/false, 6092 ICIS_NoInit); 6093 Field->setAccess(AS_public); 6094 D->addDecl(Field); 6095 } 6096 6097 D->completeDefinition(); 6098 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6099 } 6100 6101 return ObjCFastEnumerationStateType; 6102 } 6103 6104 llvm::Constant * 6105 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6106 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6107 6108 // Don't emit it as the address of the string, emit the string data itself 6109 // as an inline array. 6110 if (E->getCharByteWidth() == 1) { 6111 SmallString<64> Str(E->getString()); 6112 6113 // Resize the string to the right size, which is indicated by its type. 6114 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6115 assert(CAT && "String literal not of constant array type!"); 6116 Str.resize(CAT->getSize().getZExtValue()); 6117 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6118 } 6119 6120 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6121 llvm::Type *ElemTy = AType->getElementType(); 6122 unsigned NumElements = AType->getNumElements(); 6123 6124 // Wide strings have either 2-byte or 4-byte elements. 6125 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6126 SmallVector<uint16_t, 32> Elements; 6127 Elements.reserve(NumElements); 6128 6129 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6130 Elements.push_back(E->getCodeUnit(i)); 6131 Elements.resize(NumElements); 6132 return llvm::ConstantDataArray::get(VMContext, Elements); 6133 } 6134 6135 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6136 SmallVector<uint32_t, 32> Elements; 6137 Elements.reserve(NumElements); 6138 6139 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6140 Elements.push_back(E->getCodeUnit(i)); 6141 Elements.resize(NumElements); 6142 return llvm::ConstantDataArray::get(VMContext, Elements); 6143 } 6144 6145 static llvm::GlobalVariable * 6146 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6147 CodeGenModule &CGM, StringRef GlobalName, 6148 CharUnits Alignment) { 6149 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6150 CGM.GetGlobalConstantAddressSpace()); 6151 6152 llvm::Module &M = CGM.getModule(); 6153 // Create a global variable for this string 6154 auto *GV = new llvm::GlobalVariable( 6155 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6156 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6157 GV->setAlignment(Alignment.getAsAlign()); 6158 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6159 if (GV->isWeakForLinker()) { 6160 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6161 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6162 } 6163 CGM.setDSOLocal(GV); 6164 6165 return GV; 6166 } 6167 6168 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6169 /// constant array for the given string literal. 6170 ConstantAddress 6171 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6172 StringRef Name) { 6173 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6174 6175 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6176 llvm::GlobalVariable **Entry = nullptr; 6177 if (!LangOpts.WritableStrings) { 6178 Entry = &ConstantStringMap[C]; 6179 if (auto GV = *Entry) { 6180 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6181 GV->setAlignment(Alignment.getAsAlign()); 6182 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6183 GV->getValueType(), Alignment); 6184 } 6185 } 6186 6187 SmallString<256> MangledNameBuffer; 6188 StringRef GlobalVariableName; 6189 llvm::GlobalValue::LinkageTypes LT; 6190 6191 // Mangle the string literal if that's how the ABI merges duplicate strings. 6192 // Don't do it if they are writable, since we don't want writes in one TU to 6193 // affect strings in another. 6194 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6195 !LangOpts.WritableStrings) { 6196 llvm::raw_svector_ostream Out(MangledNameBuffer); 6197 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6198 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6199 GlobalVariableName = MangledNameBuffer; 6200 } else { 6201 LT = llvm::GlobalValue::PrivateLinkage; 6202 GlobalVariableName = Name; 6203 } 6204 6205 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6206 6207 CGDebugInfo *DI = getModuleDebugInfo(); 6208 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6209 DI->AddStringLiteralDebugInfo(GV, S); 6210 6211 if (Entry) 6212 *Entry = GV; 6213 6214 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6215 6216 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6217 GV->getValueType(), Alignment); 6218 } 6219 6220 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6221 /// array for the given ObjCEncodeExpr node. 6222 ConstantAddress 6223 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6224 std::string Str; 6225 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6226 6227 return GetAddrOfConstantCString(Str); 6228 } 6229 6230 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6231 /// the literal and a terminating '\0' character. 6232 /// The result has pointer to array type. 6233 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6234 const std::string &Str, const char *GlobalName) { 6235 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6236 CharUnits Alignment = 6237 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6238 6239 llvm::Constant *C = 6240 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6241 6242 // Don't share any string literals if strings aren't constant. 6243 llvm::GlobalVariable **Entry = nullptr; 6244 if (!LangOpts.WritableStrings) { 6245 Entry = &ConstantStringMap[C]; 6246 if (auto GV = *Entry) { 6247 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6248 GV->setAlignment(Alignment.getAsAlign()); 6249 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6250 GV->getValueType(), Alignment); 6251 } 6252 } 6253 6254 // Get the default prefix if a name wasn't specified. 6255 if (!GlobalName) 6256 GlobalName = ".str"; 6257 // Create a global variable for this. 6258 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6259 GlobalName, Alignment); 6260 if (Entry) 6261 *Entry = GV; 6262 6263 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6264 GV->getValueType(), Alignment); 6265 } 6266 6267 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6268 const MaterializeTemporaryExpr *E, const Expr *Init) { 6269 assert((E->getStorageDuration() == SD_Static || 6270 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6271 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6272 6273 // If we're not materializing a subobject of the temporary, keep the 6274 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6275 QualType MaterializedType = Init->getType(); 6276 if (Init == E->getSubExpr()) 6277 MaterializedType = E->getType(); 6278 6279 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6280 6281 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6282 if (!InsertResult.second) { 6283 // We've seen this before: either we already created it or we're in the 6284 // process of doing so. 6285 if (!InsertResult.first->second) { 6286 // We recursively re-entered this function, probably during emission of 6287 // the initializer. Create a placeholder. We'll clean this up in the 6288 // outer call, at the end of this function. 6289 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6290 InsertResult.first->second = new llvm::GlobalVariable( 6291 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6292 nullptr); 6293 } 6294 return ConstantAddress(InsertResult.first->second, 6295 llvm::cast<llvm::GlobalVariable>( 6296 InsertResult.first->second->stripPointerCasts()) 6297 ->getValueType(), 6298 Align); 6299 } 6300 6301 // FIXME: If an externally-visible declaration extends multiple temporaries, 6302 // we need to give each temporary the same name in every translation unit (and 6303 // we also need to make the temporaries externally-visible). 6304 SmallString<256> Name; 6305 llvm::raw_svector_ostream Out(Name); 6306 getCXXABI().getMangleContext().mangleReferenceTemporary( 6307 VD, E->getManglingNumber(), Out); 6308 6309 APValue *Value = nullptr; 6310 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6311 // If the initializer of the extending declaration is a constant 6312 // initializer, we should have a cached constant initializer for this 6313 // temporary. Note that this might have a different value from the value 6314 // computed by evaluating the initializer if the surrounding constant 6315 // expression modifies the temporary. 6316 Value = E->getOrCreateValue(false); 6317 } 6318 6319 // Try evaluating it now, it might have a constant initializer. 6320 Expr::EvalResult EvalResult; 6321 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6322 !EvalResult.hasSideEffects()) 6323 Value = &EvalResult.Val; 6324 6325 LangAS AddrSpace = 6326 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6327 6328 std::optional<ConstantEmitter> emitter; 6329 llvm::Constant *InitialValue = nullptr; 6330 bool Constant = false; 6331 llvm::Type *Type; 6332 if (Value) { 6333 // The temporary has a constant initializer, use it. 6334 emitter.emplace(*this); 6335 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6336 MaterializedType); 6337 Constant = 6338 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6339 /*ExcludeDtor*/ false); 6340 Type = InitialValue->getType(); 6341 } else { 6342 // No initializer, the initialization will be provided when we 6343 // initialize the declaration which performed lifetime extension. 6344 Type = getTypes().ConvertTypeForMem(MaterializedType); 6345 } 6346 6347 // Create a global variable for this lifetime-extended temporary. 6348 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6349 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6350 const VarDecl *InitVD; 6351 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6352 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6353 // Temporaries defined inside a class get linkonce_odr linkage because the 6354 // class can be defined in multiple translation units. 6355 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6356 } else { 6357 // There is no need for this temporary to have external linkage if the 6358 // VarDecl has external linkage. 6359 Linkage = llvm::GlobalVariable::InternalLinkage; 6360 } 6361 } 6362 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6363 auto *GV = new llvm::GlobalVariable( 6364 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6365 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6366 if (emitter) emitter->finalize(GV); 6367 // Don't assign dllimport or dllexport to local linkage globals. 6368 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6369 setGVProperties(GV, VD); 6370 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6371 // The reference temporary should never be dllexport. 6372 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6373 } 6374 GV->setAlignment(Align.getAsAlign()); 6375 if (supportsCOMDAT() && GV->isWeakForLinker()) 6376 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6377 if (VD->getTLSKind()) 6378 setTLSMode(GV, *VD); 6379 llvm::Constant *CV = GV; 6380 if (AddrSpace != LangAS::Default) 6381 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6382 *this, GV, AddrSpace, LangAS::Default, 6383 Type->getPointerTo( 6384 getContext().getTargetAddressSpace(LangAS::Default))); 6385 6386 // Update the map with the new temporary. If we created a placeholder above, 6387 // replace it with the new global now. 6388 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6389 if (Entry) { 6390 Entry->replaceAllUsesWith( 6391 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6392 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6393 } 6394 Entry = CV; 6395 6396 return ConstantAddress(CV, Type, Align); 6397 } 6398 6399 /// EmitObjCPropertyImplementations - Emit information for synthesized 6400 /// properties for an implementation. 6401 void CodeGenModule::EmitObjCPropertyImplementations(const 6402 ObjCImplementationDecl *D) { 6403 for (const auto *PID : D->property_impls()) { 6404 // Dynamic is just for type-checking. 6405 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6406 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6407 6408 // Determine which methods need to be implemented, some may have 6409 // been overridden. Note that ::isPropertyAccessor is not the method 6410 // we want, that just indicates if the decl came from a 6411 // property. What we want to know is if the method is defined in 6412 // this implementation. 6413 auto *Getter = PID->getGetterMethodDecl(); 6414 if (!Getter || Getter->isSynthesizedAccessorStub()) 6415 CodeGenFunction(*this).GenerateObjCGetter( 6416 const_cast<ObjCImplementationDecl *>(D), PID); 6417 auto *Setter = PID->getSetterMethodDecl(); 6418 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6419 CodeGenFunction(*this).GenerateObjCSetter( 6420 const_cast<ObjCImplementationDecl *>(D), PID); 6421 } 6422 } 6423 } 6424 6425 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6426 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6427 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6428 ivar; ivar = ivar->getNextIvar()) 6429 if (ivar->getType().isDestructedType()) 6430 return true; 6431 6432 return false; 6433 } 6434 6435 static bool AllTrivialInitializers(CodeGenModule &CGM, 6436 ObjCImplementationDecl *D) { 6437 CodeGenFunction CGF(CGM); 6438 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6439 E = D->init_end(); B != E; ++B) { 6440 CXXCtorInitializer *CtorInitExp = *B; 6441 Expr *Init = CtorInitExp->getInit(); 6442 if (!CGF.isTrivialInitializer(Init)) 6443 return false; 6444 } 6445 return true; 6446 } 6447 6448 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6449 /// for an implementation. 6450 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6451 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6452 if (needsDestructMethod(D)) { 6453 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6454 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6455 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6456 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6457 getContext().VoidTy, nullptr, D, 6458 /*isInstance=*/true, /*isVariadic=*/false, 6459 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6460 /*isImplicitlyDeclared=*/true, 6461 /*isDefined=*/false, ObjCMethodDecl::Required); 6462 D->addInstanceMethod(DTORMethod); 6463 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6464 D->setHasDestructors(true); 6465 } 6466 6467 // If the implementation doesn't have any ivar initializers, we don't need 6468 // a .cxx_construct. 6469 if (D->getNumIvarInitializers() == 0 || 6470 AllTrivialInitializers(*this, D)) 6471 return; 6472 6473 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6474 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6475 // The constructor returns 'self'. 6476 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6477 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6478 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6479 /*isVariadic=*/false, 6480 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6481 /*isImplicitlyDeclared=*/true, 6482 /*isDefined=*/false, ObjCMethodDecl::Required); 6483 D->addInstanceMethod(CTORMethod); 6484 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6485 D->setHasNonZeroConstructors(true); 6486 } 6487 6488 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6489 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6490 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6491 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6492 ErrorUnsupported(LSD, "linkage spec"); 6493 return; 6494 } 6495 6496 EmitDeclContext(LSD); 6497 } 6498 6499 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6500 // Device code should not be at top level. 6501 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6502 return; 6503 6504 std::unique_ptr<CodeGenFunction> &CurCGF = 6505 GlobalTopLevelStmtBlockInFlight.first; 6506 6507 // We emitted a top-level stmt but after it there is initialization. 6508 // Stop squashing the top-level stmts into a single function. 6509 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6510 CurCGF->FinishFunction(D->getEndLoc()); 6511 CurCGF = nullptr; 6512 } 6513 6514 if (!CurCGF) { 6515 // void __stmts__N(void) 6516 // FIXME: Ask the ABI name mangler to pick a name. 6517 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6518 FunctionArgList Args; 6519 QualType RetTy = getContext().VoidTy; 6520 const CGFunctionInfo &FnInfo = 6521 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6522 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6523 llvm::Function *Fn = llvm::Function::Create( 6524 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6525 6526 CurCGF.reset(new CodeGenFunction(*this)); 6527 GlobalTopLevelStmtBlockInFlight.second = D; 6528 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6529 D->getBeginLoc(), D->getBeginLoc()); 6530 CXXGlobalInits.push_back(Fn); 6531 } 6532 6533 CurCGF->EmitStmt(D->getStmt()); 6534 } 6535 6536 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6537 for (auto *I : DC->decls()) { 6538 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6539 // are themselves considered "top-level", so EmitTopLevelDecl on an 6540 // ObjCImplDecl does not recursively visit them. We need to do that in 6541 // case they're nested inside another construct (LinkageSpecDecl / 6542 // ExportDecl) that does stop them from being considered "top-level". 6543 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6544 for (auto *M : OID->methods()) 6545 EmitTopLevelDecl(M); 6546 } 6547 6548 EmitTopLevelDecl(I); 6549 } 6550 } 6551 6552 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6553 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6554 // Ignore dependent declarations. 6555 if (D->isTemplated()) 6556 return; 6557 6558 // Consteval function shouldn't be emitted. 6559 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6560 return; 6561 6562 switch (D->getKind()) { 6563 case Decl::CXXConversion: 6564 case Decl::CXXMethod: 6565 case Decl::Function: 6566 EmitGlobal(cast<FunctionDecl>(D)); 6567 // Always provide some coverage mapping 6568 // even for the functions that aren't emitted. 6569 AddDeferredUnusedCoverageMapping(D); 6570 break; 6571 6572 case Decl::CXXDeductionGuide: 6573 // Function-like, but does not result in code emission. 6574 break; 6575 6576 case Decl::Var: 6577 case Decl::Decomposition: 6578 case Decl::VarTemplateSpecialization: 6579 EmitGlobal(cast<VarDecl>(D)); 6580 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6581 for (auto *B : DD->bindings()) 6582 if (auto *HD = B->getHoldingVar()) 6583 EmitGlobal(HD); 6584 break; 6585 6586 // Indirect fields from global anonymous structs and unions can be 6587 // ignored; only the actual variable requires IR gen support. 6588 case Decl::IndirectField: 6589 break; 6590 6591 // C++ Decls 6592 case Decl::Namespace: 6593 EmitDeclContext(cast<NamespaceDecl>(D)); 6594 break; 6595 case Decl::ClassTemplateSpecialization: { 6596 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6597 if (CGDebugInfo *DI = getModuleDebugInfo()) 6598 if (Spec->getSpecializationKind() == 6599 TSK_ExplicitInstantiationDefinition && 6600 Spec->hasDefinition()) 6601 DI->completeTemplateDefinition(*Spec); 6602 } [[fallthrough]]; 6603 case Decl::CXXRecord: { 6604 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6605 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6606 if (CRD->hasDefinition()) 6607 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6608 if (auto *ES = D->getASTContext().getExternalSource()) 6609 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6610 DI->completeUnusedClass(*CRD); 6611 } 6612 // Emit any static data members, they may be definitions. 6613 for (auto *I : CRD->decls()) 6614 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6615 EmitTopLevelDecl(I); 6616 break; 6617 } 6618 // No code generation needed. 6619 case Decl::UsingShadow: 6620 case Decl::ClassTemplate: 6621 case Decl::VarTemplate: 6622 case Decl::Concept: 6623 case Decl::VarTemplatePartialSpecialization: 6624 case Decl::FunctionTemplate: 6625 case Decl::TypeAliasTemplate: 6626 case Decl::Block: 6627 case Decl::Empty: 6628 case Decl::Binding: 6629 break; 6630 case Decl::Using: // using X; [C++] 6631 if (CGDebugInfo *DI = getModuleDebugInfo()) 6632 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6633 break; 6634 case Decl::UsingEnum: // using enum X; [C++] 6635 if (CGDebugInfo *DI = getModuleDebugInfo()) 6636 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6637 break; 6638 case Decl::NamespaceAlias: 6639 if (CGDebugInfo *DI = getModuleDebugInfo()) 6640 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6641 break; 6642 case Decl::UsingDirective: // using namespace X; [C++] 6643 if (CGDebugInfo *DI = getModuleDebugInfo()) 6644 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6645 break; 6646 case Decl::CXXConstructor: 6647 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6648 break; 6649 case Decl::CXXDestructor: 6650 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6651 break; 6652 6653 case Decl::StaticAssert: 6654 // Nothing to do. 6655 break; 6656 6657 // Objective-C Decls 6658 6659 // Forward declarations, no (immediate) code generation. 6660 case Decl::ObjCInterface: 6661 case Decl::ObjCCategory: 6662 break; 6663 6664 case Decl::ObjCProtocol: { 6665 auto *Proto = cast<ObjCProtocolDecl>(D); 6666 if (Proto->isThisDeclarationADefinition()) 6667 ObjCRuntime->GenerateProtocol(Proto); 6668 break; 6669 } 6670 6671 case Decl::ObjCCategoryImpl: 6672 // Categories have properties but don't support synthesize so we 6673 // can ignore them here. 6674 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6675 break; 6676 6677 case Decl::ObjCImplementation: { 6678 auto *OMD = cast<ObjCImplementationDecl>(D); 6679 EmitObjCPropertyImplementations(OMD); 6680 EmitObjCIvarInitializations(OMD); 6681 ObjCRuntime->GenerateClass(OMD); 6682 // Emit global variable debug information. 6683 if (CGDebugInfo *DI = getModuleDebugInfo()) 6684 if (getCodeGenOpts().hasReducedDebugInfo()) 6685 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6686 OMD->getClassInterface()), OMD->getLocation()); 6687 break; 6688 } 6689 case Decl::ObjCMethod: { 6690 auto *OMD = cast<ObjCMethodDecl>(D); 6691 // If this is not a prototype, emit the body. 6692 if (OMD->getBody()) 6693 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6694 break; 6695 } 6696 case Decl::ObjCCompatibleAlias: 6697 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6698 break; 6699 6700 case Decl::PragmaComment: { 6701 const auto *PCD = cast<PragmaCommentDecl>(D); 6702 switch (PCD->getCommentKind()) { 6703 case PCK_Unknown: 6704 llvm_unreachable("unexpected pragma comment kind"); 6705 case PCK_Linker: 6706 AppendLinkerOptions(PCD->getArg()); 6707 break; 6708 case PCK_Lib: 6709 AddDependentLib(PCD->getArg()); 6710 break; 6711 case PCK_Compiler: 6712 case PCK_ExeStr: 6713 case PCK_User: 6714 break; // We ignore all of these. 6715 } 6716 break; 6717 } 6718 6719 case Decl::PragmaDetectMismatch: { 6720 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6721 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6722 break; 6723 } 6724 6725 case Decl::LinkageSpec: 6726 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6727 break; 6728 6729 case Decl::FileScopeAsm: { 6730 // File-scope asm is ignored during device-side CUDA compilation. 6731 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6732 break; 6733 // File-scope asm is ignored during device-side OpenMP compilation. 6734 if (LangOpts.OpenMPIsTargetDevice) 6735 break; 6736 // File-scope asm is ignored during device-side SYCL compilation. 6737 if (LangOpts.SYCLIsDevice) 6738 break; 6739 auto *AD = cast<FileScopeAsmDecl>(D); 6740 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6741 break; 6742 } 6743 6744 case Decl::TopLevelStmt: 6745 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6746 break; 6747 6748 case Decl::Import: { 6749 auto *Import = cast<ImportDecl>(D); 6750 6751 // If we've already imported this module, we're done. 6752 if (!ImportedModules.insert(Import->getImportedModule())) 6753 break; 6754 6755 // Emit debug information for direct imports. 6756 if (!Import->getImportedOwningModule()) { 6757 if (CGDebugInfo *DI = getModuleDebugInfo()) 6758 DI->EmitImportDecl(*Import); 6759 } 6760 6761 // For C++ standard modules we are done - we will call the module 6762 // initializer for imported modules, and that will likewise call those for 6763 // any imports it has. 6764 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6765 !Import->getImportedOwningModule()->isModuleMapModule()) 6766 break; 6767 6768 // For clang C++ module map modules the initializers for sub-modules are 6769 // emitted here. 6770 6771 // Find all of the submodules and emit the module initializers. 6772 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6773 SmallVector<clang::Module *, 16> Stack; 6774 Visited.insert(Import->getImportedModule()); 6775 Stack.push_back(Import->getImportedModule()); 6776 6777 while (!Stack.empty()) { 6778 clang::Module *Mod = Stack.pop_back_val(); 6779 if (!EmittedModuleInitializers.insert(Mod).second) 6780 continue; 6781 6782 for (auto *D : Context.getModuleInitializers(Mod)) 6783 EmitTopLevelDecl(D); 6784 6785 // Visit the submodules of this module. 6786 for (auto *Submodule : Mod->submodules()) { 6787 // Skip explicit children; they need to be explicitly imported to emit 6788 // the initializers. 6789 if (Submodule->IsExplicit) 6790 continue; 6791 6792 if (Visited.insert(Submodule).second) 6793 Stack.push_back(Submodule); 6794 } 6795 } 6796 break; 6797 } 6798 6799 case Decl::Export: 6800 EmitDeclContext(cast<ExportDecl>(D)); 6801 break; 6802 6803 case Decl::OMPThreadPrivate: 6804 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6805 break; 6806 6807 case Decl::OMPAllocate: 6808 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6809 break; 6810 6811 case Decl::OMPDeclareReduction: 6812 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6813 break; 6814 6815 case Decl::OMPDeclareMapper: 6816 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6817 break; 6818 6819 case Decl::OMPRequires: 6820 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6821 break; 6822 6823 case Decl::Typedef: 6824 case Decl::TypeAlias: // using foo = bar; [C++11] 6825 if (CGDebugInfo *DI = getModuleDebugInfo()) 6826 DI->EmitAndRetainType( 6827 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6828 break; 6829 6830 case Decl::Record: 6831 if (CGDebugInfo *DI = getModuleDebugInfo()) 6832 if (cast<RecordDecl>(D)->getDefinition()) 6833 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6834 break; 6835 6836 case Decl::Enum: 6837 if (CGDebugInfo *DI = getModuleDebugInfo()) 6838 if (cast<EnumDecl>(D)->getDefinition()) 6839 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6840 break; 6841 6842 case Decl::HLSLBuffer: 6843 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6844 break; 6845 6846 default: 6847 // Make sure we handled everything we should, every other kind is a 6848 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6849 // function. Need to recode Decl::Kind to do that easily. 6850 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6851 break; 6852 } 6853 } 6854 6855 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6856 // Do we need to generate coverage mapping? 6857 if (!CodeGenOpts.CoverageMapping) 6858 return; 6859 switch (D->getKind()) { 6860 case Decl::CXXConversion: 6861 case Decl::CXXMethod: 6862 case Decl::Function: 6863 case Decl::ObjCMethod: 6864 case Decl::CXXConstructor: 6865 case Decl::CXXDestructor: { 6866 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6867 break; 6868 SourceManager &SM = getContext().getSourceManager(); 6869 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6870 break; 6871 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6872 if (I == DeferredEmptyCoverageMappingDecls.end()) 6873 DeferredEmptyCoverageMappingDecls[D] = true; 6874 break; 6875 } 6876 default: 6877 break; 6878 }; 6879 } 6880 6881 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6882 // Do we need to generate coverage mapping? 6883 if (!CodeGenOpts.CoverageMapping) 6884 return; 6885 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6886 if (Fn->isTemplateInstantiation()) 6887 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6888 } 6889 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6890 if (I == DeferredEmptyCoverageMappingDecls.end()) 6891 DeferredEmptyCoverageMappingDecls[D] = false; 6892 else 6893 I->second = false; 6894 } 6895 6896 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6897 // We call takeVector() here to avoid use-after-free. 6898 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6899 // we deserialize function bodies to emit coverage info for them, and that 6900 // deserializes more declarations. How should we handle that case? 6901 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6902 if (!Entry.second) 6903 continue; 6904 const Decl *D = Entry.first; 6905 switch (D->getKind()) { 6906 case Decl::CXXConversion: 6907 case Decl::CXXMethod: 6908 case Decl::Function: 6909 case Decl::ObjCMethod: { 6910 CodeGenPGO PGO(*this); 6911 GlobalDecl GD(cast<FunctionDecl>(D)); 6912 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6913 getFunctionLinkage(GD)); 6914 break; 6915 } 6916 case Decl::CXXConstructor: { 6917 CodeGenPGO PGO(*this); 6918 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6919 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6920 getFunctionLinkage(GD)); 6921 break; 6922 } 6923 case Decl::CXXDestructor: { 6924 CodeGenPGO PGO(*this); 6925 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6926 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6927 getFunctionLinkage(GD)); 6928 break; 6929 } 6930 default: 6931 break; 6932 }; 6933 } 6934 } 6935 6936 void CodeGenModule::EmitMainVoidAlias() { 6937 // In order to transition away from "__original_main" gracefully, emit an 6938 // alias for "main" in the no-argument case so that libc can detect when 6939 // new-style no-argument main is in used. 6940 if (llvm::Function *F = getModule().getFunction("main")) { 6941 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6942 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6943 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6944 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6945 } 6946 } 6947 } 6948 6949 /// Turns the given pointer into a constant. 6950 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6951 const void *Ptr) { 6952 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6953 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6954 return llvm::ConstantInt::get(i64, PtrInt); 6955 } 6956 6957 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6958 llvm::NamedMDNode *&GlobalMetadata, 6959 GlobalDecl D, 6960 llvm::GlobalValue *Addr) { 6961 if (!GlobalMetadata) 6962 GlobalMetadata = 6963 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6964 6965 // TODO: should we report variant information for ctors/dtors? 6966 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6967 llvm::ConstantAsMetadata::get(GetPointerConstant( 6968 CGM.getLLVMContext(), D.getDecl()))}; 6969 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6970 } 6971 6972 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6973 llvm::GlobalValue *CppFunc) { 6974 // Store the list of ifuncs we need to replace uses in. 6975 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6976 // List of ConstantExprs that we should be able to delete when we're done 6977 // here. 6978 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6979 6980 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6981 if (Elem == CppFunc) 6982 return false; 6983 6984 // First make sure that all users of this are ifuncs (or ifuncs via a 6985 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6986 // later. 6987 for (llvm::User *User : Elem->users()) { 6988 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6989 // ifunc directly. In any other case, just give up, as we don't know what we 6990 // could break by changing those. 6991 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6992 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6993 return false; 6994 6995 for (llvm::User *CEUser : ConstExpr->users()) { 6996 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6997 IFuncs.push_back(IFunc); 6998 } else { 6999 return false; 7000 } 7001 } 7002 CEs.push_back(ConstExpr); 7003 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7004 IFuncs.push_back(IFunc); 7005 } else { 7006 // This user is one we don't know how to handle, so fail redirection. This 7007 // will result in an ifunc retaining a resolver name that will ultimately 7008 // fail to be resolved to a defined function. 7009 return false; 7010 } 7011 } 7012 7013 // Now we know this is a valid case where we can do this alias replacement, we 7014 // need to remove all of the references to Elem (and the bitcasts!) so we can 7015 // delete it. 7016 for (llvm::GlobalIFunc *IFunc : IFuncs) 7017 IFunc->setResolver(nullptr); 7018 for (llvm::ConstantExpr *ConstExpr : CEs) 7019 ConstExpr->destroyConstant(); 7020 7021 // We should now be out of uses for the 'old' version of this function, so we 7022 // can erase it as well. 7023 Elem->eraseFromParent(); 7024 7025 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7026 // The type of the resolver is always just a function-type that returns the 7027 // type of the IFunc, so create that here. If the type of the actual 7028 // resolver doesn't match, it just gets bitcast to the right thing. 7029 auto *ResolverTy = 7030 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7031 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7032 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7033 IFunc->setResolver(Resolver); 7034 } 7035 return true; 7036 } 7037 7038 /// For each function which is declared within an extern "C" region and marked 7039 /// as 'used', but has internal linkage, create an alias from the unmangled 7040 /// name to the mangled name if possible. People expect to be able to refer 7041 /// to such functions with an unmangled name from inline assembly within the 7042 /// same translation unit. 7043 void CodeGenModule::EmitStaticExternCAliases() { 7044 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7045 return; 7046 for (auto &I : StaticExternCValues) { 7047 IdentifierInfo *Name = I.first; 7048 llvm::GlobalValue *Val = I.second; 7049 7050 // If Val is null, that implies there were multiple declarations that each 7051 // had a claim to the unmangled name. In this case, generation of the alias 7052 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7053 if (!Val) 7054 break; 7055 7056 llvm::GlobalValue *ExistingElem = 7057 getModule().getNamedValue(Name->getName()); 7058 7059 // If there is either not something already by this name, or we were able to 7060 // replace all uses from IFuncs, create the alias. 7061 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7062 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7063 } 7064 } 7065 7066 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7067 GlobalDecl &Result) const { 7068 auto Res = Manglings.find(MangledName); 7069 if (Res == Manglings.end()) 7070 return false; 7071 Result = Res->getValue(); 7072 return true; 7073 } 7074 7075 /// Emits metadata nodes associating all the global values in the 7076 /// current module with the Decls they came from. This is useful for 7077 /// projects using IR gen as a subroutine. 7078 /// 7079 /// Since there's currently no way to associate an MDNode directly 7080 /// with an llvm::GlobalValue, we create a global named metadata 7081 /// with the name 'clang.global.decl.ptrs'. 7082 void CodeGenModule::EmitDeclMetadata() { 7083 llvm::NamedMDNode *GlobalMetadata = nullptr; 7084 7085 for (auto &I : MangledDeclNames) { 7086 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7087 // Some mangled names don't necessarily have an associated GlobalValue 7088 // in this module, e.g. if we mangled it for DebugInfo. 7089 if (Addr) 7090 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7091 } 7092 } 7093 7094 /// Emits metadata nodes for all the local variables in the current 7095 /// function. 7096 void CodeGenFunction::EmitDeclMetadata() { 7097 if (LocalDeclMap.empty()) return; 7098 7099 llvm::LLVMContext &Context = getLLVMContext(); 7100 7101 // Find the unique metadata ID for this name. 7102 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7103 7104 llvm::NamedMDNode *GlobalMetadata = nullptr; 7105 7106 for (auto &I : LocalDeclMap) { 7107 const Decl *D = I.first; 7108 llvm::Value *Addr = I.second.getPointer(); 7109 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7110 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7111 Alloca->setMetadata( 7112 DeclPtrKind, llvm::MDNode::get( 7113 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7114 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7115 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7116 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7117 } 7118 } 7119 } 7120 7121 void CodeGenModule::EmitVersionIdentMetadata() { 7122 llvm::NamedMDNode *IdentMetadata = 7123 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7124 std::string Version = getClangFullVersion(); 7125 llvm::LLVMContext &Ctx = TheModule.getContext(); 7126 7127 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7128 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7129 } 7130 7131 void CodeGenModule::EmitCommandLineMetadata() { 7132 llvm::NamedMDNode *CommandLineMetadata = 7133 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7134 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7135 llvm::LLVMContext &Ctx = TheModule.getContext(); 7136 7137 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7138 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7139 } 7140 7141 void CodeGenModule::EmitCoverageFile() { 7142 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7143 if (!CUNode) 7144 return; 7145 7146 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7147 llvm::LLVMContext &Ctx = TheModule.getContext(); 7148 auto *CoverageDataFile = 7149 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7150 auto *CoverageNotesFile = 7151 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7152 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7153 llvm::MDNode *CU = CUNode->getOperand(i); 7154 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7155 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7156 } 7157 } 7158 7159 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7160 bool ForEH) { 7161 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7162 // FIXME: should we even be calling this method if RTTI is disabled 7163 // and it's not for EH? 7164 if (!shouldEmitRTTI(ForEH)) 7165 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7166 7167 if (ForEH && Ty->isObjCObjectPointerType() && 7168 LangOpts.ObjCRuntime.isGNUFamily()) 7169 return ObjCRuntime->GetEHType(Ty); 7170 7171 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7172 } 7173 7174 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7175 // Do not emit threadprivates in simd-only mode. 7176 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7177 return; 7178 for (auto RefExpr : D->varlists()) { 7179 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7180 bool PerformInit = 7181 VD->getAnyInitializer() && 7182 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7183 /*ForRef=*/false); 7184 7185 Address Addr(GetAddrOfGlobalVar(VD), 7186 getTypes().ConvertTypeForMem(VD->getType()), 7187 getContext().getDeclAlign(VD)); 7188 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7189 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7190 CXXGlobalInits.push_back(InitFunction); 7191 } 7192 } 7193 7194 llvm::Metadata * 7195 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7196 StringRef Suffix) { 7197 if (auto *FnType = T->getAs<FunctionProtoType>()) 7198 T = getContext().getFunctionType( 7199 FnType->getReturnType(), FnType->getParamTypes(), 7200 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7201 7202 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7203 if (InternalId) 7204 return InternalId; 7205 7206 if (isExternallyVisible(T->getLinkage())) { 7207 std::string OutName; 7208 llvm::raw_string_ostream Out(OutName); 7209 getCXXABI().getMangleContext().mangleTypeName( 7210 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7211 7212 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7213 Out << ".normalized"; 7214 7215 Out << Suffix; 7216 7217 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7218 } else { 7219 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7220 llvm::ArrayRef<llvm::Metadata *>()); 7221 } 7222 7223 return InternalId; 7224 } 7225 7226 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7227 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7228 } 7229 7230 llvm::Metadata * 7231 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7232 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7233 } 7234 7235 // Generalize pointer types to a void pointer with the qualifiers of the 7236 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7237 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7238 // 'void *'. 7239 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7240 if (!Ty->isPointerType()) 7241 return Ty; 7242 7243 return Ctx.getPointerType( 7244 QualType(Ctx.VoidTy).withCVRQualifiers( 7245 Ty->getPointeeType().getCVRQualifiers())); 7246 } 7247 7248 // Apply type generalization to a FunctionType's return and argument types 7249 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7250 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7251 SmallVector<QualType, 8> GeneralizedParams; 7252 for (auto &Param : FnType->param_types()) 7253 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7254 7255 return Ctx.getFunctionType( 7256 GeneralizeType(Ctx, FnType->getReturnType()), 7257 GeneralizedParams, FnType->getExtProtoInfo()); 7258 } 7259 7260 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7261 return Ctx.getFunctionNoProtoType( 7262 GeneralizeType(Ctx, FnType->getReturnType())); 7263 7264 llvm_unreachable("Encountered unknown FunctionType"); 7265 } 7266 7267 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7268 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7269 GeneralizedMetadataIdMap, ".generalized"); 7270 } 7271 7272 /// Returns whether this module needs the "all-vtables" type identifier. 7273 bool CodeGenModule::NeedAllVtablesTypeId() const { 7274 // Returns true if at least one of vtable-based CFI checkers is enabled and 7275 // is not in the trapping mode. 7276 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7277 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7278 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7279 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7280 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7281 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7282 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7283 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7284 } 7285 7286 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7287 CharUnits Offset, 7288 const CXXRecordDecl *RD) { 7289 llvm::Metadata *MD = 7290 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7291 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7292 7293 if (CodeGenOpts.SanitizeCfiCrossDso) 7294 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7295 VTable->addTypeMetadata(Offset.getQuantity(), 7296 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7297 7298 if (NeedAllVtablesTypeId()) { 7299 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7300 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7301 } 7302 } 7303 7304 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7305 if (!SanStats) 7306 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7307 7308 return *SanStats; 7309 } 7310 7311 llvm::Value * 7312 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7313 CodeGenFunction &CGF) { 7314 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7315 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7316 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7317 auto *Call = CGF.EmitRuntimeCall( 7318 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7319 return Call; 7320 } 7321 7322 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7323 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7324 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7325 /* forPointeeType= */ true); 7326 } 7327 7328 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7329 LValueBaseInfo *BaseInfo, 7330 TBAAAccessInfo *TBAAInfo, 7331 bool forPointeeType) { 7332 if (TBAAInfo) 7333 *TBAAInfo = getTBAAAccessInfo(T); 7334 7335 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7336 // that doesn't return the information we need to compute BaseInfo. 7337 7338 // Honor alignment typedef attributes even on incomplete types. 7339 // We also honor them straight for C++ class types, even as pointees; 7340 // there's an expressivity gap here. 7341 if (auto TT = T->getAs<TypedefType>()) { 7342 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7343 if (BaseInfo) 7344 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7345 return getContext().toCharUnitsFromBits(Align); 7346 } 7347 } 7348 7349 bool AlignForArray = T->isArrayType(); 7350 7351 // Analyze the base element type, so we don't get confused by incomplete 7352 // array types. 7353 T = getContext().getBaseElementType(T); 7354 7355 if (T->isIncompleteType()) { 7356 // We could try to replicate the logic from 7357 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7358 // type is incomplete, so it's impossible to test. We could try to reuse 7359 // getTypeAlignIfKnown, but that doesn't return the information we need 7360 // to set BaseInfo. So just ignore the possibility that the alignment is 7361 // greater than one. 7362 if (BaseInfo) 7363 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7364 return CharUnits::One(); 7365 } 7366 7367 if (BaseInfo) 7368 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7369 7370 CharUnits Alignment; 7371 const CXXRecordDecl *RD; 7372 if (T.getQualifiers().hasUnaligned()) { 7373 Alignment = CharUnits::One(); 7374 } else if (forPointeeType && !AlignForArray && 7375 (RD = T->getAsCXXRecordDecl())) { 7376 // For C++ class pointees, we don't know whether we're pointing at a 7377 // base or a complete object, so we generally need to use the 7378 // non-virtual alignment. 7379 Alignment = getClassPointerAlignment(RD); 7380 } else { 7381 Alignment = getContext().getTypeAlignInChars(T); 7382 } 7383 7384 // Cap to the global maximum type alignment unless the alignment 7385 // was somehow explicit on the type. 7386 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7387 if (Alignment.getQuantity() > MaxAlign && 7388 !getContext().isAlignmentRequired(T)) 7389 Alignment = CharUnits::fromQuantity(MaxAlign); 7390 } 7391 return Alignment; 7392 } 7393 7394 bool CodeGenModule::stopAutoInit() { 7395 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7396 if (StopAfter) { 7397 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7398 // used 7399 if (NumAutoVarInit >= StopAfter) { 7400 return true; 7401 } 7402 if (!NumAutoVarInit) { 7403 unsigned DiagID = getDiags().getCustomDiagID( 7404 DiagnosticsEngine::Warning, 7405 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7406 "number of times ftrivial-auto-var-init=%1 gets applied."); 7407 getDiags().Report(DiagID) 7408 << StopAfter 7409 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7410 LangOptions::TrivialAutoVarInitKind::Zero 7411 ? "zero" 7412 : "pattern"); 7413 } 7414 ++NumAutoVarInit; 7415 } 7416 return false; 7417 } 7418 7419 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7420 const Decl *D) const { 7421 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7422 // postfix beginning with '.' since the symbol name can be demangled. 7423 if (LangOpts.HIP) 7424 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7425 else 7426 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7427 7428 // If the CUID is not specified we try to generate a unique postfix. 7429 if (getLangOpts().CUID.empty()) { 7430 SourceManager &SM = getContext().getSourceManager(); 7431 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7432 assert(PLoc.isValid() && "Source location is expected to be valid."); 7433 7434 // Get the hash of the user defined macros. 7435 llvm::MD5 Hash; 7436 llvm::MD5::MD5Result Result; 7437 for (const auto &Arg : PreprocessorOpts.Macros) 7438 Hash.update(Arg.first); 7439 Hash.final(Result); 7440 7441 // Get the UniqueID for the file containing the decl. 7442 llvm::sys::fs::UniqueID ID; 7443 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7444 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7445 assert(PLoc.isValid() && "Source location is expected to be valid."); 7446 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7447 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7448 << PLoc.getFilename() << EC.message(); 7449 } 7450 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7451 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7452 } else { 7453 OS << getContext().getCUIDHash(); 7454 } 7455 } 7456 7457 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7458 assert(DeferredDeclsToEmit.empty() && 7459 "Should have emitted all decls deferred to emit."); 7460 assert(NewBuilder->DeferredDecls.empty() && 7461 "Newly created module should not have deferred decls"); 7462 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7463 assert(EmittedDeferredDecls.empty() && 7464 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7465 7466 assert(NewBuilder->DeferredVTables.empty() && 7467 "Newly created module should not have deferred vtables"); 7468 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7469 7470 assert(NewBuilder->MangledDeclNames.empty() && 7471 "Newly created module should not have mangled decl names"); 7472 assert(NewBuilder->Manglings.empty() && 7473 "Newly created module should not have manglings"); 7474 NewBuilder->Manglings = std::move(Manglings); 7475 7476 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7477 7478 NewBuilder->TBAA = std::move(TBAA); 7479 7480 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7481 } 7482