1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 } 184 185 CodeGenModule::~CodeGenModule() {} 186 187 void CodeGenModule::createObjCRuntime() { 188 // This is just isGNUFamily(), but we want to force implementors of 189 // new ABIs to decide how best to do this. 190 switch (LangOpts.ObjCRuntime.getKind()) { 191 case ObjCRuntime::GNUstep: 192 case ObjCRuntime::GCC: 193 case ObjCRuntime::ObjFW: 194 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 195 return; 196 197 case ObjCRuntime::FragileMacOSX: 198 case ObjCRuntime::MacOSX: 199 case ObjCRuntime::iOS: 200 case ObjCRuntime::WatchOS: 201 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 202 return; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 void CodeGenModule::createOpenCLRuntime() { 208 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 209 } 210 211 void CodeGenModule::createOpenMPRuntime() { 212 // Select a specialized code generation class based on the target, if any. 213 // If it does not exist use the default implementation. 214 switch (getTriple().getArch()) { 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 assert(getLangOpts().OpenMPIsDevice && 218 "OpenMP NVPTX is only prepared to deal with device code."); 219 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 220 break; 221 case llvm::Triple::amdgcn: 222 assert(getLangOpts().OpenMPIsDevice && 223 "OpenMP AMDGCN is only prepared to deal with device code."); 224 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 225 break; 226 default: 227 if (LangOpts.OpenMPSimd) 228 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 229 else 230 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 231 break; 232 } 233 } 234 235 void CodeGenModule::createCUDARuntime() { 236 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 237 } 238 239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 240 Replacements[Name] = C; 241 } 242 243 void CodeGenModule::applyReplacements() { 244 for (auto &I : Replacements) { 245 StringRef MangledName = I.first(); 246 llvm::Constant *Replacement = I.second; 247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 248 if (!Entry) 249 continue; 250 auto *OldF = cast<llvm::Function>(Entry); 251 auto *NewF = dyn_cast<llvm::Function>(Replacement); 252 if (!NewF) { 253 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 254 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 255 } else { 256 auto *CE = cast<llvm::ConstantExpr>(Replacement); 257 assert(CE->getOpcode() == llvm::Instruction::BitCast || 258 CE->getOpcode() == llvm::Instruction::GetElementPtr); 259 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 260 } 261 } 262 263 // Replace old with new, but keep the old order. 264 OldF->replaceAllUsesWith(Replacement); 265 if (NewF) { 266 NewF->removeFromParent(); 267 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 268 NewF); 269 } 270 OldF->eraseFromParent(); 271 } 272 } 273 274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 275 GlobalValReplacements.push_back(std::make_pair(GV, C)); 276 } 277 278 void CodeGenModule::applyGlobalValReplacements() { 279 for (auto &I : GlobalValReplacements) { 280 llvm::GlobalValue *GV = I.first; 281 llvm::Constant *C = I.second; 282 283 GV->replaceAllUsesWith(C); 284 GV->eraseFromParent(); 285 } 286 } 287 288 // This is only used in aliases that we created and we know they have a 289 // linear structure. 290 static const llvm::GlobalObject *getAliasedGlobal( 291 const llvm::GlobalIndirectSymbol &GIS) { 292 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 293 const llvm::Constant *C = &GIS; 294 for (;;) { 295 C = C->stripPointerCasts(); 296 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 297 return GO; 298 // stripPointerCasts will not walk over weak aliases. 299 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 300 if (!GIS2) 301 return nullptr; 302 if (!Visited.insert(GIS2).second) 303 return nullptr; 304 C = GIS2->getIndirectSymbol(); 305 } 306 } 307 308 void CodeGenModule::checkAliases() { 309 // Check if the constructed aliases are well formed. It is really unfortunate 310 // that we have to do this in CodeGen, but we only construct mangled names 311 // and aliases during codegen. 312 bool Error = false; 313 DiagnosticsEngine &Diags = getDiags(); 314 for (const GlobalDecl &GD : Aliases) { 315 const auto *D = cast<ValueDecl>(GD.getDecl()); 316 SourceLocation Location; 317 bool IsIFunc = D->hasAttr<IFuncAttr>(); 318 if (const Attr *A = D->getDefiningAttr()) 319 Location = A->getLocation(); 320 else 321 llvm_unreachable("Not an alias or ifunc?"); 322 StringRef MangledName = getMangledName(GD); 323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 324 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 325 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 326 if (!GV) { 327 Error = true; 328 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 329 } else if (GV->isDeclaration()) { 330 Error = true; 331 Diags.Report(Location, diag::err_alias_to_undefined) 332 << IsIFunc << IsIFunc; 333 } else if (IsIFunc) { 334 // Check resolver function type. 335 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 336 GV->getType()->getPointerElementType()); 337 assert(FTy); 338 if (!FTy->getReturnType()->isPointerTy()) 339 Diags.Report(Location, diag::err_ifunc_resolver_return); 340 } 341 342 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 343 llvm::GlobalValue *AliaseeGV; 344 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 345 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 346 else 347 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 348 349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 350 StringRef AliasSection = SA->getName(); 351 if (AliasSection != AliaseeGV->getSection()) 352 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 353 << AliasSection << IsIFunc << IsIFunc; 354 } 355 356 // We have to handle alias to weak aliases in here. LLVM itself disallows 357 // this since the object semantics would not match the IL one. For 358 // compatibility with gcc we implement it by just pointing the alias 359 // to its aliasee's aliasee. We also warn, since the user is probably 360 // expecting the link to be weak. 361 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 362 if (GA->isInterposable()) { 363 Diags.Report(Location, diag::warn_alias_to_weak_alias) 364 << GV->getName() << GA->getName() << IsIFunc; 365 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 366 GA->getIndirectSymbol(), Alias->getType()); 367 Alias->setIndirectSymbol(Aliasee); 368 } 369 } 370 } 371 if (!Error) 372 return; 373 374 for (const GlobalDecl &GD : Aliases) { 375 StringRef MangledName = getMangledName(GD); 376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 377 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 378 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 379 Alias->eraseFromParent(); 380 } 381 } 382 383 void CodeGenModule::clear() { 384 DeferredDeclsToEmit.clear(); 385 if (OpenMPRuntime) 386 OpenMPRuntime->clear(); 387 } 388 389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 390 StringRef MainFile) { 391 if (!hasDiagnostics()) 392 return; 393 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 394 if (MainFile.empty()) 395 MainFile = "<stdin>"; 396 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 397 } else { 398 if (Mismatched > 0) 399 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 400 401 if (Missing > 0) 402 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 403 } 404 } 405 406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 407 llvm::Module &M) { 408 if (!LO.VisibilityFromDLLStorageClass) 409 return; 410 411 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 413 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 416 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 417 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 418 CodeGenModule::GetLLVMVisibility( 419 LO.getExternDeclNoDLLStorageClassVisibility()); 420 421 for (llvm::GlobalValue &GV : M.global_values()) { 422 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 423 continue; 424 425 // Reset DSO locality before setting the visibility. This removes 426 // any effects that visibility options and annotations may have 427 // had on the DSO locality. Setting the visibility will implicitly set 428 // appropriate globals to DSO Local; however, this will be pessimistic 429 // w.r.t. to the normal compiler IRGen. 430 GV.setDSOLocal(false); 431 432 if (GV.isDeclarationForLinker()) { 433 GV.setVisibility(GV.getDLLStorageClass() == 434 llvm::GlobalValue::DLLImportStorageClass 435 ? ExternDeclDLLImportVisibility 436 : ExternDeclNoDLLStorageClassVisibility); 437 } else { 438 GV.setVisibility(GV.getDLLStorageClass() == 439 llvm::GlobalValue::DLLExportStorageClass 440 ? DLLExportVisibility 441 : NoDLLStorageClassVisibility); 442 } 443 444 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 445 } 446 } 447 448 void CodeGenModule::Release() { 449 EmitDeferred(); 450 EmitVTablesOpportunistically(); 451 applyGlobalValReplacements(); 452 applyReplacements(); 453 checkAliases(); 454 emitMultiVersionFunctions(); 455 EmitCXXGlobalInitFunc(); 456 EmitCXXGlobalCleanUpFunc(); 457 registerGlobalDtorsWithAtExit(); 458 EmitCXXThreadLocalInitFunc(); 459 if (ObjCRuntime) 460 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 461 AddGlobalCtor(ObjCInitFunction); 462 if (Context.getLangOpts().CUDA && CUDARuntime) { 463 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (CodeGenOpts.Dwarf64) 535 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 536 537 if (Context.getLangOpts().SemanticInterposition) 538 // Require various optimization to respect semantic interposition. 539 getModule().setSemanticInterposition(1); 540 541 if (CodeGenOpts.EmitCodeView) { 542 // Indicate that we want CodeView in the metadata. 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 544 } 545 if (CodeGenOpts.CodeViewGHash) { 546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 547 } 548 if (CodeGenOpts.ControlFlowGuard) { 549 // Function ID tables and checks for Control Flow Guard (cfguard=2). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 552 // Function ID tables for Control Flow Guard (cfguard=1). 553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 554 } 555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 556 // We don't support LTO with 2 with different StrictVTablePointers 557 // FIXME: we could support it by stripping all the information introduced 558 // by StrictVTablePointers. 559 560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 561 562 llvm::Metadata *Ops[2] = { 563 llvm::MDString::get(VMContext, "StrictVTablePointers"), 564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 565 llvm::Type::getInt32Ty(VMContext), 1))}; 566 567 getModule().addModuleFlag(llvm::Module::Require, 568 "StrictVTablePointersRequirement", 569 llvm::MDNode::get(VMContext, Ops)); 570 } 571 if (getModuleDebugInfo()) 572 // We support a single version in the linked module. The LLVM 573 // parser will drop debug info with a different version number 574 // (and warn about it, too). 575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 576 llvm::DEBUG_METADATA_VERSION); 577 578 // We need to record the widths of enums and wchar_t, so that we can generate 579 // the correct build attributes in the ARM backend. wchar_size is also used by 580 // TargetLibraryInfo. 581 uint64_t WCharWidth = 582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 584 585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 586 if ( Arch == llvm::Triple::arm 587 || Arch == llvm::Triple::armeb 588 || Arch == llvm::Triple::thumb 589 || Arch == llvm::Triple::thumbeb) { 590 // The minimum width of an enum in bytes 591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 593 } 594 595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 596 StringRef ABIStr = Target.getABI(); 597 llvm::LLVMContext &Ctx = TheModule.getContext(); 598 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 599 llvm::MDString::get(Ctx, ABIStr)); 600 } 601 602 if (CodeGenOpts.SanitizeCfiCrossDso) { 603 // Indicate that we want cross-DSO control flow integrity checks. 604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 605 } 606 607 if (CodeGenOpts.WholeProgramVTables) { 608 // Indicate whether VFE was enabled for this module, so that the 609 // vcall_visibility metadata added under whole program vtables is handled 610 // appropriately in the optimizer. 611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 612 CodeGenOpts.VirtualFunctionElimination); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 616 getModule().addModuleFlag(llvm::Module::Override, 617 "CFI Canonical Jump Tables", 618 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 619 } 620 621 if (CodeGenOpts.CFProtectionReturn && 622 Target.checkCFProtectionReturnSupported(getDiags())) { 623 // Indicate that we want to instrument return control flow protection. 624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 625 1); 626 } 627 628 if (CodeGenOpts.CFProtectionBranch && 629 Target.checkCFProtectionBranchSupported(getDiags())) { 630 // Indicate that we want to instrument branch control flow protection. 631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 632 1); 633 } 634 635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 636 Arch == llvm::Triple::aarch64_be) { 637 getModule().addModuleFlag(llvm::Module::Error, 638 "branch-target-enforcement", 639 LangOpts.BranchTargetEnforcement); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 642 LangOpts.hasSignReturnAddress()); 643 644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 645 LangOpts.isSignReturnAddressScopeAll()); 646 647 getModule().addModuleFlag(llvm::Module::Error, 648 "sign-return-address-with-bkey", 649 !LangOpts.isSignReturnAddressWithAKey()); 650 } 651 652 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 653 llvm::LLVMContext &Ctx = TheModule.getContext(); 654 getModule().addModuleFlag( 655 llvm::Module::Error, "MemProfProfileFilename", 656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 657 } 658 659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 660 // Indicate whether __nvvm_reflect should be configured to flush denormal 661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 662 // property.) 663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 664 CodeGenOpts.FP32DenormalMode.Output != 665 llvm::DenormalMode::IEEE); 666 } 667 668 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 669 if (LangOpts.OpenCL) { 670 EmitOpenCLMetadata(); 671 // Emit SPIR version. 672 if (getTriple().isSPIR()) { 673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 674 // opencl.spir.version named metadata. 675 // C++ is backwards compatible with OpenCL v2.0. 676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 677 llvm::Metadata *SPIRVerElts[] = { 678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 679 Int32Ty, Version / 100)), 680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 681 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 682 llvm::NamedMDNode *SPIRVerMD = 683 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 684 llvm::LLVMContext &Ctx = TheModule.getContext(); 685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 686 } 687 } 688 689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 690 assert(PLevel < 3 && "Invalid PIC Level"); 691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 692 if (Context.getLangOpts().PIE) 693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 694 } 695 696 if (getCodeGenOpts().CodeModel.size() > 0) { 697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 698 .Case("tiny", llvm::CodeModel::Tiny) 699 .Case("small", llvm::CodeModel::Small) 700 .Case("kernel", llvm::CodeModel::Kernel) 701 .Case("medium", llvm::CodeModel::Medium) 702 .Case("large", llvm::CodeModel::Large) 703 .Default(~0u); 704 if (CM != ~0u) { 705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 706 getModule().setCodeModel(codeModel); 707 } 708 } 709 710 if (CodeGenOpts.NoPLT) 711 getModule().setRtLibUseGOT(); 712 713 SimplifyPersonality(); 714 715 if (getCodeGenOpts().EmitDeclMetadata) 716 EmitDeclMetadata(); 717 718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 719 EmitCoverageFile(); 720 721 if (CGDebugInfo *DI = getModuleDebugInfo()) 722 DI->finalize(); 723 724 if (getCodeGenOpts().EmitVersionIdentMetadata) 725 EmitVersionIdentMetadata(); 726 727 if (!getCodeGenOpts().RecordCommandLine.empty()) 728 EmitCommandLineMetadata(); 729 730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 731 732 EmitBackendOptionsMetadata(getCodeGenOpts()); 733 734 // Set visibility from DLL storage class 735 // We do this at the end of LLVM IR generation; after any operation 736 // that might affect the DLL storage class or the visibility, and 737 // before anything that might act on these. 738 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 739 } 740 741 void CodeGenModule::EmitOpenCLMetadata() { 742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 743 // opencl.ocl.version named metadata node. 744 // C++ is backwards compatible with OpenCL v2.0. 745 // FIXME: We might need to add CXX version at some point too? 746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 747 llvm::Metadata *OCLVerElts[] = { 748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 749 Int32Ty, Version / 100)), 750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 751 Int32Ty, (Version % 100) / 10))}; 752 llvm::NamedMDNode *OCLVerMD = 753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 754 llvm::LLVMContext &Ctx = TheModule.getContext(); 755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 756 } 757 758 void CodeGenModule::EmitBackendOptionsMetadata( 759 const CodeGenOptions CodeGenOpts) { 760 switch (getTriple().getArch()) { 761 default: 762 break; 763 case llvm::Triple::riscv32: 764 case llvm::Triple::riscv64: 765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 766 CodeGenOpts.SmallDataLimit); 767 break; 768 } 769 } 770 771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 772 // Make sure that this type is translated. 773 Types.UpdateCompletedType(TD); 774 } 775 776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 777 // Make sure that this type is translated. 778 Types.RefreshTypeCacheForClass(RD); 779 } 780 781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 782 if (!TBAA) 783 return nullptr; 784 return TBAA->getTypeInfo(QTy); 785 } 786 787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 788 if (!TBAA) 789 return TBAAAccessInfo(); 790 if (getLangOpts().CUDAIsDevice) { 791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 792 // access info. 793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 795 nullptr) 796 return TBAAAccessInfo(); 797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 799 nullptr) 800 return TBAAAccessInfo(); 801 } 802 } 803 return TBAA->getAccessInfo(AccessType); 804 } 805 806 TBAAAccessInfo 807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 808 if (!TBAA) 809 return TBAAAccessInfo(); 810 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 811 } 812 813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 814 if (!TBAA) 815 return nullptr; 816 return TBAA->getTBAAStructInfo(QTy); 817 } 818 819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 820 if (!TBAA) 821 return nullptr; 822 return TBAA->getBaseTypeInfo(QTy); 823 } 824 825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 826 if (!TBAA) 827 return nullptr; 828 return TBAA->getAccessTagInfo(Info); 829 } 830 831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 832 TBAAAccessInfo TargetInfo) { 833 if (!TBAA) 834 return TBAAAccessInfo(); 835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 836 } 837 838 TBAAAccessInfo 839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 840 TBAAAccessInfo InfoB) { 841 if (!TBAA) 842 return TBAAAccessInfo(); 843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 844 } 845 846 TBAAAccessInfo 847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 848 TBAAAccessInfo SrcInfo) { 849 if (!TBAA) 850 return TBAAAccessInfo(); 851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 852 } 853 854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 855 TBAAAccessInfo TBAAInfo) { 856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 858 } 859 860 void CodeGenModule::DecorateInstructionWithInvariantGroup( 861 llvm::Instruction *I, const CXXRecordDecl *RD) { 862 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 863 llvm::MDNode::get(getLLVMContext(), {})); 864 } 865 866 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 868 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 869 } 870 871 /// ErrorUnsupported - Print out an error that codegen doesn't support the 872 /// specified stmt yet. 873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 875 "cannot compile this %0 yet"); 876 std::string Msg = Type; 877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 878 << Msg << S->getSourceRange(); 879 } 880 881 /// ErrorUnsupported - Print out an error that codegen doesn't support the 882 /// specified decl yet. 883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 885 "cannot compile this %0 yet"); 886 std::string Msg = Type; 887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 888 } 889 890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 891 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 892 } 893 894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 895 const NamedDecl *D) const { 896 if (GV->hasDLLImportStorageClass()) 897 return; 898 // Internal definitions always have default visibility. 899 if (GV->hasLocalLinkage()) { 900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 901 return; 902 } 903 if (!D) 904 return; 905 // Set visibility for definitions, and for declarations if requested globally 906 // or set explicitly. 907 LinkageInfo LV = D->getLinkageAndVisibility(); 908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 909 !GV->isDeclarationForLinker()) 910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 911 } 912 913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 914 llvm::GlobalValue *GV) { 915 if (GV->hasLocalLinkage()) 916 return true; 917 918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 919 return true; 920 921 // DLLImport explicitly marks the GV as external. 922 if (GV->hasDLLImportStorageClass()) 923 return false; 924 925 const llvm::Triple &TT = CGM.getTriple(); 926 if (TT.isWindowsGNUEnvironment()) { 927 // In MinGW, variables without DLLImport can still be automatically 928 // imported from a DLL by the linker; don't mark variables that 929 // potentially could come from another DLL as DSO local. 930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 931 !GV->isThreadLocal()) 932 return false; 933 } 934 935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 936 // remain unresolved in the link, they can be resolved to zero, which is 937 // outside the current DSO. 938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 939 return false; 940 941 // Every other GV is local on COFF. 942 // Make an exception for windows OS in the triple: Some firmware builds use 943 // *-win32-macho triples. This (accidentally?) produced windows relocations 944 // without GOT tables in older clang versions; Keep this behaviour. 945 // FIXME: even thread local variables? 946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 947 return true; 948 949 const auto &CGOpts = CGM.getCodeGenOpts(); 950 llvm::Reloc::Model RM = CGOpts.RelocationModel; 951 const auto &LOpts = CGM.getLangOpts(); 952 953 if (TT.isOSBinFormatMachO()) { 954 if (RM == llvm::Reloc::Static) 955 return true; 956 return GV->isStrongDefinitionForLinker(); 957 } 958 959 // Only handle COFF and ELF for now. 960 if (!TT.isOSBinFormatELF()) 961 return false; 962 963 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 964 // On ELF, if -fno-semantic-interposition is specified and the target 965 // supports local aliases, there will be neither CC1 966 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 967 // dso_local if using a local alias is preferable (can avoid GOT 968 // indirection). 969 if (!GV->canBenefitFromLocalAlias()) 970 return false; 971 return !(CGM.getLangOpts().SemanticInterposition || 972 CGM.getLangOpts().HalfNoSemanticInterposition); 973 } 974 975 // A definition cannot be preempted from an executable. 976 if (!GV->isDeclarationForLinker()) 977 return true; 978 979 // Most PIC code sequences that assume that a symbol is local cannot produce a 980 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 981 // depended, it seems worth it to handle it here. 982 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 983 return false; 984 985 // PowerPC64 prefers TOC indirection to avoid copy relocations. 986 if (TT.isPPC64()) 987 return false; 988 989 if (CGOpts.DirectAccessExternalData) { 990 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 991 // for non-thread-local variables. If the symbol is not defined in the 992 // executable, a copy relocation will be needed at link time. dso_local is 993 // excluded for thread-local variables because they generally don't support 994 // copy relocations. 995 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 996 if (!Var->isThreadLocal()) 997 return true; 998 999 // -fno-pic sets dso_local on a function declaration to allow direct 1000 // accesses when taking its address (similar to a data symbol). If the 1001 // function is not defined in the executable, a canonical PLT entry will be 1002 // needed at link time. -fno-direct-access-external-data can avoid the 1003 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1004 // it could just cause trouble without providing perceptible benefits. 1005 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1006 return true; 1007 } 1008 1009 // If we can use copy relocations we can assume it is local. 1010 1011 // Otherwise don't assume it is local. 1012 return false; 1013 } 1014 1015 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1016 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1017 } 1018 1019 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1020 GlobalDecl GD) const { 1021 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1022 // C++ destructors have a few C++ ABI specific special cases. 1023 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1024 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1025 return; 1026 } 1027 setDLLImportDLLExport(GV, D); 1028 } 1029 1030 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1031 const NamedDecl *D) const { 1032 if (D && D->isExternallyVisible()) { 1033 if (D->hasAttr<DLLImportAttr>()) 1034 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1035 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1036 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1037 } 1038 } 1039 1040 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1041 GlobalDecl GD) const { 1042 setDLLImportDLLExport(GV, GD); 1043 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1044 } 1045 1046 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1047 const NamedDecl *D) const { 1048 setDLLImportDLLExport(GV, D); 1049 setGVPropertiesAux(GV, D); 1050 } 1051 1052 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1053 const NamedDecl *D) const { 1054 setGlobalVisibility(GV, D); 1055 setDSOLocal(GV); 1056 GV->setPartition(CodeGenOpts.SymbolPartition); 1057 } 1058 1059 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1060 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1061 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1062 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1063 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1064 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1065 } 1066 1067 llvm::GlobalVariable::ThreadLocalMode 1068 CodeGenModule::GetDefaultLLVMTLSModel() const { 1069 switch (CodeGenOpts.getDefaultTLSModel()) { 1070 case CodeGenOptions::GeneralDynamicTLSModel: 1071 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1072 case CodeGenOptions::LocalDynamicTLSModel: 1073 return llvm::GlobalVariable::LocalDynamicTLSModel; 1074 case CodeGenOptions::InitialExecTLSModel: 1075 return llvm::GlobalVariable::InitialExecTLSModel; 1076 case CodeGenOptions::LocalExecTLSModel: 1077 return llvm::GlobalVariable::LocalExecTLSModel; 1078 } 1079 llvm_unreachable("Invalid TLS model!"); 1080 } 1081 1082 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1083 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1084 1085 llvm::GlobalValue::ThreadLocalMode TLM; 1086 TLM = GetDefaultLLVMTLSModel(); 1087 1088 // Override the TLS model if it is explicitly specified. 1089 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1090 TLM = GetLLVMTLSModel(Attr->getModel()); 1091 } 1092 1093 GV->setThreadLocalMode(TLM); 1094 } 1095 1096 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1097 StringRef Name) { 1098 const TargetInfo &Target = CGM.getTarget(); 1099 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1100 } 1101 1102 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1103 const CPUSpecificAttr *Attr, 1104 unsigned CPUIndex, 1105 raw_ostream &Out) { 1106 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1107 // supported. 1108 if (Attr) 1109 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1110 else if (CGM.getTarget().supportsIFunc()) 1111 Out << ".resolver"; 1112 } 1113 1114 static void AppendTargetMangling(const CodeGenModule &CGM, 1115 const TargetAttr *Attr, raw_ostream &Out) { 1116 if (Attr->isDefaultVersion()) 1117 return; 1118 1119 Out << '.'; 1120 const TargetInfo &Target = CGM.getTarget(); 1121 ParsedTargetAttr Info = 1122 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1123 // Multiversioning doesn't allow "no-${feature}", so we can 1124 // only have "+" prefixes here. 1125 assert(LHS.startswith("+") && RHS.startswith("+") && 1126 "Features should always have a prefix."); 1127 return Target.multiVersionSortPriority(LHS.substr(1)) > 1128 Target.multiVersionSortPriority(RHS.substr(1)); 1129 }); 1130 1131 bool IsFirst = true; 1132 1133 if (!Info.Architecture.empty()) { 1134 IsFirst = false; 1135 Out << "arch_" << Info.Architecture; 1136 } 1137 1138 for (StringRef Feat : Info.Features) { 1139 if (!IsFirst) 1140 Out << '_'; 1141 IsFirst = false; 1142 Out << Feat.substr(1); 1143 } 1144 } 1145 1146 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1147 const NamedDecl *ND, 1148 bool OmitMultiVersionMangling = false) { 1149 SmallString<256> Buffer; 1150 llvm::raw_svector_ostream Out(Buffer); 1151 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1152 if (MC.shouldMangleDeclName(ND)) 1153 MC.mangleName(GD.getWithDecl(ND), Out); 1154 else { 1155 IdentifierInfo *II = ND->getIdentifier(); 1156 assert(II && "Attempt to mangle unnamed decl."); 1157 const auto *FD = dyn_cast<FunctionDecl>(ND); 1158 1159 if (FD && 1160 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1161 Out << "__regcall3__" << II->getName(); 1162 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1163 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1164 Out << "__device_stub__" << II->getName(); 1165 } else { 1166 Out << II->getName(); 1167 } 1168 } 1169 1170 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1171 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1172 switch (FD->getMultiVersionKind()) { 1173 case MultiVersionKind::CPUDispatch: 1174 case MultiVersionKind::CPUSpecific: 1175 AppendCPUSpecificCPUDispatchMangling(CGM, 1176 FD->getAttr<CPUSpecificAttr>(), 1177 GD.getMultiVersionIndex(), Out); 1178 break; 1179 case MultiVersionKind::Target: 1180 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1181 break; 1182 case MultiVersionKind::None: 1183 llvm_unreachable("None multiversion type isn't valid here"); 1184 } 1185 } 1186 1187 return std::string(Out.str()); 1188 } 1189 1190 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1191 const FunctionDecl *FD) { 1192 if (!FD->isMultiVersion()) 1193 return; 1194 1195 // Get the name of what this would be without the 'target' attribute. This 1196 // allows us to lookup the version that was emitted when this wasn't a 1197 // multiversion function. 1198 std::string NonTargetName = 1199 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1200 GlobalDecl OtherGD; 1201 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1202 assert(OtherGD.getCanonicalDecl() 1203 .getDecl() 1204 ->getAsFunction() 1205 ->isMultiVersion() && 1206 "Other GD should now be a multiversioned function"); 1207 // OtherFD is the version of this function that was mangled BEFORE 1208 // becoming a MultiVersion function. It potentially needs to be updated. 1209 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1210 .getDecl() 1211 ->getAsFunction() 1212 ->getMostRecentDecl(); 1213 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1214 // This is so that if the initial version was already the 'default' 1215 // version, we don't try to update it. 1216 if (OtherName != NonTargetName) { 1217 // Remove instead of erase, since others may have stored the StringRef 1218 // to this. 1219 const auto ExistingRecord = Manglings.find(NonTargetName); 1220 if (ExistingRecord != std::end(Manglings)) 1221 Manglings.remove(&(*ExistingRecord)); 1222 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1223 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1224 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1225 Entry->setName(OtherName); 1226 } 1227 } 1228 } 1229 1230 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1231 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1232 1233 // Some ABIs don't have constructor variants. Make sure that base and 1234 // complete constructors get mangled the same. 1235 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1236 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1237 CXXCtorType OrigCtorType = GD.getCtorType(); 1238 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1239 if (OrigCtorType == Ctor_Base) 1240 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1241 } 1242 } 1243 1244 auto FoundName = MangledDeclNames.find(CanonicalGD); 1245 if (FoundName != MangledDeclNames.end()) 1246 return FoundName->second; 1247 1248 // Keep the first result in the case of a mangling collision. 1249 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1250 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1251 1252 // Ensure either we have different ABIs between host and device compilations, 1253 // says host compilation following MSVC ABI but device compilation follows 1254 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1255 // mangling should be the same after name stubbing. The later checking is 1256 // very important as the device kernel name being mangled in host-compilation 1257 // is used to resolve the device binaries to be executed. Inconsistent naming 1258 // result in undefined behavior. Even though we cannot check that naming 1259 // directly between host- and device-compilations, the host- and 1260 // device-mangling in host compilation could help catching certain ones. 1261 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1262 getLangOpts().CUDAIsDevice || 1263 (getContext().getAuxTargetInfo() && 1264 (getContext().getAuxTargetInfo()->getCXXABI() != 1265 getContext().getTargetInfo().getCXXABI())) || 1266 getCUDARuntime().getDeviceSideName(ND) == 1267 getMangledNameImpl( 1268 *this, 1269 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1270 ND)); 1271 1272 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1273 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1274 } 1275 1276 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1277 const BlockDecl *BD) { 1278 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1279 const Decl *D = GD.getDecl(); 1280 1281 SmallString<256> Buffer; 1282 llvm::raw_svector_ostream Out(Buffer); 1283 if (!D) 1284 MangleCtx.mangleGlobalBlock(BD, 1285 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1286 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1287 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1288 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1289 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1290 else 1291 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1292 1293 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1294 return Result.first->first(); 1295 } 1296 1297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1298 return getModule().getNamedValue(Name); 1299 } 1300 1301 /// AddGlobalCtor - Add a function to the list that will be called before 1302 /// main() runs. 1303 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1304 llvm::Constant *AssociatedData) { 1305 // FIXME: Type coercion of void()* types. 1306 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1307 } 1308 1309 /// AddGlobalDtor - Add a function to the list that will be called 1310 /// when the module is unloaded. 1311 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1312 bool IsDtorAttrFunc) { 1313 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1314 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1315 DtorsUsingAtExit[Priority].push_back(Dtor); 1316 return; 1317 } 1318 1319 // FIXME: Type coercion of void()* types. 1320 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1321 } 1322 1323 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1324 if (Fns.empty()) return; 1325 1326 // Ctor function type is void()*. 1327 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1328 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1329 TheModule.getDataLayout().getProgramAddressSpace()); 1330 1331 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1332 llvm::StructType *CtorStructTy = llvm::StructType::get( 1333 Int32Ty, CtorPFTy, VoidPtrTy); 1334 1335 // Construct the constructor and destructor arrays. 1336 ConstantInitBuilder builder(*this); 1337 auto ctors = builder.beginArray(CtorStructTy); 1338 for (const auto &I : Fns) { 1339 auto ctor = ctors.beginStruct(CtorStructTy); 1340 ctor.addInt(Int32Ty, I.Priority); 1341 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1342 if (I.AssociatedData) 1343 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1344 else 1345 ctor.addNullPointer(VoidPtrTy); 1346 ctor.finishAndAddTo(ctors); 1347 } 1348 1349 auto list = 1350 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1351 /*constant*/ false, 1352 llvm::GlobalValue::AppendingLinkage); 1353 1354 // The LTO linker doesn't seem to like it when we set an alignment 1355 // on appending variables. Take it off as a workaround. 1356 list->setAlignment(llvm::None); 1357 1358 Fns.clear(); 1359 } 1360 1361 llvm::GlobalValue::LinkageTypes 1362 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1363 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1364 1365 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1366 1367 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1368 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1369 1370 if (isa<CXXConstructorDecl>(D) && 1371 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1372 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1373 // Our approach to inheriting constructors is fundamentally different from 1374 // that used by the MS ABI, so keep our inheriting constructor thunks 1375 // internal rather than trying to pick an unambiguous mangling for them. 1376 return llvm::GlobalValue::InternalLinkage; 1377 } 1378 1379 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1380 } 1381 1382 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1383 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1384 if (!MDS) return nullptr; 1385 1386 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1387 } 1388 1389 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1390 const CGFunctionInfo &Info, 1391 llvm::Function *F) { 1392 unsigned CallingConv; 1393 llvm::AttributeList PAL; 1394 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1395 F->setAttributes(PAL); 1396 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1397 } 1398 1399 static void removeImageAccessQualifier(std::string& TyName) { 1400 std::string ReadOnlyQual("__read_only"); 1401 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1402 if (ReadOnlyPos != std::string::npos) 1403 // "+ 1" for the space after access qualifier. 1404 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1405 else { 1406 std::string WriteOnlyQual("__write_only"); 1407 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1408 if (WriteOnlyPos != std::string::npos) 1409 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1410 else { 1411 std::string ReadWriteQual("__read_write"); 1412 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1413 if (ReadWritePos != std::string::npos) 1414 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1415 } 1416 } 1417 } 1418 1419 // Returns the address space id that should be produced to the 1420 // kernel_arg_addr_space metadata. This is always fixed to the ids 1421 // as specified in the SPIR 2.0 specification in order to differentiate 1422 // for example in clGetKernelArgInfo() implementation between the address 1423 // spaces with targets without unique mapping to the OpenCL address spaces 1424 // (basically all single AS CPUs). 1425 static unsigned ArgInfoAddressSpace(LangAS AS) { 1426 switch (AS) { 1427 case LangAS::opencl_global: 1428 return 1; 1429 case LangAS::opencl_constant: 1430 return 2; 1431 case LangAS::opencl_local: 1432 return 3; 1433 case LangAS::opencl_generic: 1434 return 4; // Not in SPIR 2.0 specs. 1435 case LangAS::opencl_global_device: 1436 return 5; 1437 case LangAS::opencl_global_host: 1438 return 6; 1439 default: 1440 return 0; // Assume private. 1441 } 1442 } 1443 1444 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1445 const FunctionDecl *FD, 1446 CodeGenFunction *CGF) { 1447 assert(((FD && CGF) || (!FD && !CGF)) && 1448 "Incorrect use - FD and CGF should either be both null or not!"); 1449 // Create MDNodes that represent the kernel arg metadata. 1450 // Each MDNode is a list in the form of "key", N number of values which is 1451 // the same number of values as their are kernel arguments. 1452 1453 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1454 1455 // MDNode for the kernel argument address space qualifiers. 1456 SmallVector<llvm::Metadata *, 8> addressQuals; 1457 1458 // MDNode for the kernel argument access qualifiers (images only). 1459 SmallVector<llvm::Metadata *, 8> accessQuals; 1460 1461 // MDNode for the kernel argument type names. 1462 SmallVector<llvm::Metadata *, 8> argTypeNames; 1463 1464 // MDNode for the kernel argument base type names. 1465 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1466 1467 // MDNode for the kernel argument type qualifiers. 1468 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1469 1470 // MDNode for the kernel argument names. 1471 SmallVector<llvm::Metadata *, 8> argNames; 1472 1473 if (FD && CGF) 1474 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1475 const ParmVarDecl *parm = FD->getParamDecl(i); 1476 QualType ty = parm->getType(); 1477 std::string typeQuals; 1478 1479 // Get image and pipe access qualifier: 1480 if (ty->isImageType() || ty->isPipeType()) { 1481 const Decl *PDecl = parm; 1482 if (auto *TD = dyn_cast<TypedefType>(ty)) 1483 PDecl = TD->getDecl(); 1484 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1485 if (A && A->isWriteOnly()) 1486 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1487 else if (A && A->isReadWrite()) 1488 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1489 else 1490 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1491 } else 1492 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1493 1494 // Get argument name. 1495 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1496 1497 auto getTypeSpelling = [&](QualType Ty) { 1498 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1499 1500 if (Ty.isCanonical()) { 1501 StringRef typeNameRef = typeName; 1502 // Turn "unsigned type" to "utype" 1503 if (typeNameRef.consume_front("unsigned ")) 1504 return std::string("u") + typeNameRef.str(); 1505 if (typeNameRef.consume_front("signed ")) 1506 return typeNameRef.str(); 1507 } 1508 1509 return typeName; 1510 }; 1511 1512 if (ty->isPointerType()) { 1513 QualType pointeeTy = ty->getPointeeType(); 1514 1515 // Get address qualifier. 1516 addressQuals.push_back( 1517 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1518 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1519 1520 // Get argument type name. 1521 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1522 std::string baseTypeName = 1523 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1524 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1525 argBaseTypeNames.push_back( 1526 llvm::MDString::get(VMContext, baseTypeName)); 1527 1528 // Get argument type qualifiers: 1529 if (ty.isRestrictQualified()) 1530 typeQuals = "restrict"; 1531 if (pointeeTy.isConstQualified() || 1532 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1533 typeQuals += typeQuals.empty() ? "const" : " const"; 1534 if (pointeeTy.isVolatileQualified()) 1535 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1536 } else { 1537 uint32_t AddrSpc = 0; 1538 bool isPipe = ty->isPipeType(); 1539 if (ty->isImageType() || isPipe) 1540 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1541 1542 addressQuals.push_back( 1543 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1544 1545 // Get argument type name. 1546 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1547 std::string typeName = getTypeSpelling(ty); 1548 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1549 1550 // Remove access qualifiers on images 1551 // (as they are inseparable from type in clang implementation, 1552 // but OpenCL spec provides a special query to get access qualifier 1553 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1554 if (ty->isImageType()) { 1555 removeImageAccessQualifier(typeName); 1556 removeImageAccessQualifier(baseTypeName); 1557 } 1558 1559 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1560 argBaseTypeNames.push_back( 1561 llvm::MDString::get(VMContext, baseTypeName)); 1562 1563 if (isPipe) 1564 typeQuals = "pipe"; 1565 } 1566 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1567 } 1568 1569 Fn->setMetadata("kernel_arg_addr_space", 1570 llvm::MDNode::get(VMContext, addressQuals)); 1571 Fn->setMetadata("kernel_arg_access_qual", 1572 llvm::MDNode::get(VMContext, accessQuals)); 1573 Fn->setMetadata("kernel_arg_type", 1574 llvm::MDNode::get(VMContext, argTypeNames)); 1575 Fn->setMetadata("kernel_arg_base_type", 1576 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1577 Fn->setMetadata("kernel_arg_type_qual", 1578 llvm::MDNode::get(VMContext, argTypeQuals)); 1579 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1580 Fn->setMetadata("kernel_arg_name", 1581 llvm::MDNode::get(VMContext, argNames)); 1582 } 1583 1584 /// Determines whether the language options require us to model 1585 /// unwind exceptions. We treat -fexceptions as mandating this 1586 /// except under the fragile ObjC ABI with only ObjC exceptions 1587 /// enabled. This means, for example, that C with -fexceptions 1588 /// enables this. 1589 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1590 // If exceptions are completely disabled, obviously this is false. 1591 if (!LangOpts.Exceptions) return false; 1592 1593 // If C++ exceptions are enabled, this is true. 1594 if (LangOpts.CXXExceptions) return true; 1595 1596 // If ObjC exceptions are enabled, this depends on the ABI. 1597 if (LangOpts.ObjCExceptions) { 1598 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1599 } 1600 1601 return true; 1602 } 1603 1604 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1605 const CXXMethodDecl *MD) { 1606 // Check that the type metadata can ever actually be used by a call. 1607 if (!CGM.getCodeGenOpts().LTOUnit || 1608 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1609 return false; 1610 1611 // Only functions whose address can be taken with a member function pointer 1612 // need this sort of type metadata. 1613 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1614 !isa<CXXDestructorDecl>(MD); 1615 } 1616 1617 std::vector<const CXXRecordDecl *> 1618 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1619 llvm::SetVector<const CXXRecordDecl *> MostBases; 1620 1621 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1622 CollectMostBases = [&](const CXXRecordDecl *RD) { 1623 if (RD->getNumBases() == 0) 1624 MostBases.insert(RD); 1625 for (const CXXBaseSpecifier &B : RD->bases()) 1626 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1627 }; 1628 CollectMostBases(RD); 1629 return MostBases.takeVector(); 1630 } 1631 1632 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1633 llvm::Function *F) { 1634 llvm::AttrBuilder B; 1635 1636 if (CodeGenOpts.UnwindTables) 1637 B.addAttribute(llvm::Attribute::UWTable); 1638 1639 if (CodeGenOpts.StackClashProtector) 1640 B.addAttribute("probe-stack", "inline-asm"); 1641 1642 if (!hasUnwindExceptions(LangOpts)) 1643 B.addAttribute(llvm::Attribute::NoUnwind); 1644 1645 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1646 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1647 B.addAttribute(llvm::Attribute::StackProtect); 1648 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1649 B.addAttribute(llvm::Attribute::StackProtectStrong); 1650 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1651 B.addAttribute(llvm::Attribute::StackProtectReq); 1652 } 1653 1654 if (!D) { 1655 // If we don't have a declaration to control inlining, the function isn't 1656 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1657 // disabled, mark the function as noinline. 1658 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1659 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1660 B.addAttribute(llvm::Attribute::NoInline); 1661 1662 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1663 return; 1664 } 1665 1666 // Track whether we need to add the optnone LLVM attribute, 1667 // starting with the default for this optimization level. 1668 bool ShouldAddOptNone = 1669 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1670 // We can't add optnone in the following cases, it won't pass the verifier. 1671 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1672 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1673 1674 // Add optnone, but do so only if the function isn't always_inline. 1675 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1676 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1677 B.addAttribute(llvm::Attribute::OptimizeNone); 1678 1679 // OptimizeNone implies noinline; we should not be inlining such functions. 1680 B.addAttribute(llvm::Attribute::NoInline); 1681 1682 // We still need to handle naked functions even though optnone subsumes 1683 // much of their semantics. 1684 if (D->hasAttr<NakedAttr>()) 1685 B.addAttribute(llvm::Attribute::Naked); 1686 1687 // OptimizeNone wins over OptimizeForSize and MinSize. 1688 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1689 F->removeFnAttr(llvm::Attribute::MinSize); 1690 } else if (D->hasAttr<NakedAttr>()) { 1691 // Naked implies noinline: we should not be inlining such functions. 1692 B.addAttribute(llvm::Attribute::Naked); 1693 B.addAttribute(llvm::Attribute::NoInline); 1694 } else if (D->hasAttr<NoDuplicateAttr>()) { 1695 B.addAttribute(llvm::Attribute::NoDuplicate); 1696 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1697 // Add noinline if the function isn't always_inline. 1698 B.addAttribute(llvm::Attribute::NoInline); 1699 } else if (D->hasAttr<AlwaysInlineAttr>() && 1700 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1701 // (noinline wins over always_inline, and we can't specify both in IR) 1702 B.addAttribute(llvm::Attribute::AlwaysInline); 1703 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1704 // If we're not inlining, then force everything that isn't always_inline to 1705 // carry an explicit noinline attribute. 1706 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1707 B.addAttribute(llvm::Attribute::NoInline); 1708 } else { 1709 // Otherwise, propagate the inline hint attribute and potentially use its 1710 // absence to mark things as noinline. 1711 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1712 // Search function and template pattern redeclarations for inline. 1713 auto CheckForInline = [](const FunctionDecl *FD) { 1714 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1715 return Redecl->isInlineSpecified(); 1716 }; 1717 if (any_of(FD->redecls(), CheckRedeclForInline)) 1718 return true; 1719 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1720 if (!Pattern) 1721 return false; 1722 return any_of(Pattern->redecls(), CheckRedeclForInline); 1723 }; 1724 if (CheckForInline(FD)) { 1725 B.addAttribute(llvm::Attribute::InlineHint); 1726 } else if (CodeGenOpts.getInlining() == 1727 CodeGenOptions::OnlyHintInlining && 1728 !FD->isInlined() && 1729 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1730 B.addAttribute(llvm::Attribute::NoInline); 1731 } 1732 } 1733 } 1734 1735 // Add other optimization related attributes if we are optimizing this 1736 // function. 1737 if (!D->hasAttr<OptimizeNoneAttr>()) { 1738 if (D->hasAttr<ColdAttr>()) { 1739 if (!ShouldAddOptNone) 1740 B.addAttribute(llvm::Attribute::OptimizeForSize); 1741 B.addAttribute(llvm::Attribute::Cold); 1742 } 1743 if (D->hasAttr<HotAttr>()) 1744 B.addAttribute(llvm::Attribute::Hot); 1745 if (D->hasAttr<MinSizeAttr>()) 1746 B.addAttribute(llvm::Attribute::MinSize); 1747 } 1748 1749 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1750 1751 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1752 if (alignment) 1753 F->setAlignment(llvm::Align(alignment)); 1754 1755 if (!D->hasAttr<AlignedAttr>()) 1756 if (LangOpts.FunctionAlignment) 1757 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1758 1759 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1760 // reserve a bit for differentiating between virtual and non-virtual member 1761 // functions. If the current target's C++ ABI requires this and this is a 1762 // member function, set its alignment accordingly. 1763 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1764 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1765 F->setAlignment(llvm::Align(2)); 1766 } 1767 1768 // In the cross-dso CFI mode with canonical jump tables, we want !type 1769 // attributes on definitions only. 1770 if (CodeGenOpts.SanitizeCfiCrossDso && 1771 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1772 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1773 // Skip available_externally functions. They won't be codegen'ed in the 1774 // current module anyway. 1775 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1776 CreateFunctionTypeMetadataForIcall(FD, F); 1777 } 1778 } 1779 1780 // Emit type metadata on member functions for member function pointer checks. 1781 // These are only ever necessary on definitions; we're guaranteed that the 1782 // definition will be present in the LTO unit as a result of LTO visibility. 1783 auto *MD = dyn_cast<CXXMethodDecl>(D); 1784 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1785 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1786 llvm::Metadata *Id = 1787 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1788 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1789 F->addTypeMetadata(0, Id); 1790 } 1791 } 1792 } 1793 1794 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1795 llvm::Function *F) { 1796 if (D->hasAttr<StrictFPAttr>()) { 1797 llvm::AttrBuilder FuncAttrs; 1798 FuncAttrs.addAttribute("strictfp"); 1799 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1800 } 1801 } 1802 1803 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1804 const Decl *D = GD.getDecl(); 1805 if (dyn_cast_or_null<NamedDecl>(D)) 1806 setGVProperties(GV, GD); 1807 else 1808 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1809 1810 if (D && D->hasAttr<UsedAttr>()) 1811 addUsedGlobal(GV); 1812 1813 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1814 const auto *VD = cast<VarDecl>(D); 1815 if (VD->getType().isConstQualified() && 1816 VD->getStorageDuration() == SD_Static) 1817 addUsedGlobal(GV); 1818 } 1819 } 1820 1821 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1822 llvm::AttrBuilder &Attrs) { 1823 // Add target-cpu and target-features attributes to functions. If 1824 // we have a decl for the function and it has a target attribute then 1825 // parse that and add it to the feature set. 1826 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1827 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1828 std::vector<std::string> Features; 1829 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1830 FD = FD ? FD->getMostRecentDecl() : FD; 1831 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1832 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1833 bool AddedAttr = false; 1834 if (TD || SD) { 1835 llvm::StringMap<bool> FeatureMap; 1836 getContext().getFunctionFeatureMap(FeatureMap, GD); 1837 1838 // Produce the canonical string for this set of features. 1839 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1840 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1841 1842 // Now add the target-cpu and target-features to the function. 1843 // While we populated the feature map above, we still need to 1844 // get and parse the target attribute so we can get the cpu for 1845 // the function. 1846 if (TD) { 1847 ParsedTargetAttr ParsedAttr = TD->parse(); 1848 if (!ParsedAttr.Architecture.empty() && 1849 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1850 TargetCPU = ParsedAttr.Architecture; 1851 TuneCPU = ""; // Clear the tune CPU. 1852 } 1853 if (!ParsedAttr.Tune.empty() && 1854 getTarget().isValidCPUName(ParsedAttr.Tune)) 1855 TuneCPU = ParsedAttr.Tune; 1856 } 1857 } else { 1858 // Otherwise just add the existing target cpu and target features to the 1859 // function. 1860 Features = getTarget().getTargetOpts().Features; 1861 } 1862 1863 if (!TargetCPU.empty()) { 1864 Attrs.addAttribute("target-cpu", TargetCPU); 1865 AddedAttr = true; 1866 } 1867 if (!TuneCPU.empty()) { 1868 Attrs.addAttribute("tune-cpu", TuneCPU); 1869 AddedAttr = true; 1870 } 1871 if (!Features.empty()) { 1872 llvm::sort(Features); 1873 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1874 AddedAttr = true; 1875 } 1876 1877 return AddedAttr; 1878 } 1879 1880 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1881 llvm::GlobalObject *GO) { 1882 const Decl *D = GD.getDecl(); 1883 SetCommonAttributes(GD, GO); 1884 1885 if (D) { 1886 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1887 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1888 GV->addAttribute("bss-section", SA->getName()); 1889 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1890 GV->addAttribute("data-section", SA->getName()); 1891 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1892 GV->addAttribute("rodata-section", SA->getName()); 1893 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1894 GV->addAttribute("relro-section", SA->getName()); 1895 } 1896 1897 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1898 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1899 if (!D->getAttr<SectionAttr>()) 1900 F->addFnAttr("implicit-section-name", SA->getName()); 1901 1902 llvm::AttrBuilder Attrs; 1903 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1904 // We know that GetCPUAndFeaturesAttributes will always have the 1905 // newest set, since it has the newest possible FunctionDecl, so the 1906 // new ones should replace the old. 1907 llvm::AttrBuilder RemoveAttrs; 1908 RemoveAttrs.addAttribute("target-cpu"); 1909 RemoveAttrs.addAttribute("target-features"); 1910 RemoveAttrs.addAttribute("tune-cpu"); 1911 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1912 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1913 } 1914 } 1915 1916 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1917 GO->setSection(CSA->getName()); 1918 else if (const auto *SA = D->getAttr<SectionAttr>()) 1919 GO->setSection(SA->getName()); 1920 } 1921 1922 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1923 } 1924 1925 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1926 llvm::Function *F, 1927 const CGFunctionInfo &FI) { 1928 const Decl *D = GD.getDecl(); 1929 SetLLVMFunctionAttributes(GD, FI, F); 1930 SetLLVMFunctionAttributesForDefinition(D, F); 1931 1932 F->setLinkage(llvm::Function::InternalLinkage); 1933 1934 setNonAliasAttributes(GD, F); 1935 } 1936 1937 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1938 // Set linkage and visibility in case we never see a definition. 1939 LinkageInfo LV = ND->getLinkageAndVisibility(); 1940 // Don't set internal linkage on declarations. 1941 // "extern_weak" is overloaded in LLVM; we probably should have 1942 // separate linkage types for this. 1943 if (isExternallyVisible(LV.getLinkage()) && 1944 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1945 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1946 } 1947 1948 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1949 llvm::Function *F) { 1950 // Only if we are checking indirect calls. 1951 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1952 return; 1953 1954 // Non-static class methods are handled via vtable or member function pointer 1955 // checks elsewhere. 1956 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1957 return; 1958 1959 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1960 F->addTypeMetadata(0, MD); 1961 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1962 1963 // Emit a hash-based bit set entry for cross-DSO calls. 1964 if (CodeGenOpts.SanitizeCfiCrossDso) 1965 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1966 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1967 } 1968 1969 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1970 bool IsIncompleteFunction, 1971 bool IsThunk) { 1972 1973 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1974 // If this is an intrinsic function, set the function's attributes 1975 // to the intrinsic's attributes. 1976 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1977 return; 1978 } 1979 1980 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1981 1982 if (!IsIncompleteFunction) 1983 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1984 1985 // Add the Returned attribute for "this", except for iOS 5 and earlier 1986 // where substantial code, including the libstdc++ dylib, was compiled with 1987 // GCC and does not actually return "this". 1988 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1989 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1990 assert(!F->arg_empty() && 1991 F->arg_begin()->getType() 1992 ->canLosslesslyBitCastTo(F->getReturnType()) && 1993 "unexpected this return"); 1994 F->addAttribute(1, llvm::Attribute::Returned); 1995 } 1996 1997 // Only a few attributes are set on declarations; these may later be 1998 // overridden by a definition. 1999 2000 setLinkageForGV(F, FD); 2001 setGVProperties(F, FD); 2002 2003 // Setup target-specific attributes. 2004 if (!IsIncompleteFunction && F->isDeclaration()) 2005 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2006 2007 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2008 F->setSection(CSA->getName()); 2009 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2010 F->setSection(SA->getName()); 2011 2012 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2013 if (FD->isInlineBuiltinDeclaration()) { 2014 const FunctionDecl *FDBody; 2015 bool HasBody = FD->hasBody(FDBody); 2016 (void)HasBody; 2017 assert(HasBody && "Inline builtin declarations should always have an " 2018 "available body!"); 2019 if (shouldEmitFunction(FDBody)) 2020 F->addAttribute(llvm::AttributeList::FunctionIndex, 2021 llvm::Attribute::NoBuiltin); 2022 } 2023 2024 if (FD->isReplaceableGlobalAllocationFunction()) { 2025 // A replaceable global allocation function does not act like a builtin by 2026 // default, only if it is invoked by a new-expression or delete-expression. 2027 F->addAttribute(llvm::AttributeList::FunctionIndex, 2028 llvm::Attribute::NoBuiltin); 2029 } 2030 2031 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2032 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2033 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2034 if (MD->isVirtual()) 2035 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2036 2037 // Don't emit entries for function declarations in the cross-DSO mode. This 2038 // is handled with better precision by the receiving DSO. But if jump tables 2039 // are non-canonical then we need type metadata in order to produce the local 2040 // jump table. 2041 if (!CodeGenOpts.SanitizeCfiCrossDso || 2042 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2043 CreateFunctionTypeMetadataForIcall(FD, F); 2044 2045 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2046 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2047 2048 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2049 // Annotate the callback behavior as metadata: 2050 // - The callback callee (as argument number). 2051 // - The callback payloads (as argument numbers). 2052 llvm::LLVMContext &Ctx = F->getContext(); 2053 llvm::MDBuilder MDB(Ctx); 2054 2055 // The payload indices are all but the first one in the encoding. The first 2056 // identifies the callback callee. 2057 int CalleeIdx = *CB->encoding_begin(); 2058 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2059 F->addMetadata(llvm::LLVMContext::MD_callback, 2060 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2061 CalleeIdx, PayloadIndices, 2062 /* VarArgsArePassed */ false)})); 2063 } 2064 } 2065 2066 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2067 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2068 "Only globals with definition can force usage."); 2069 LLVMUsed.emplace_back(GV); 2070 } 2071 2072 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2073 assert(!GV->isDeclaration() && 2074 "Only globals with definition can force usage."); 2075 LLVMCompilerUsed.emplace_back(GV); 2076 } 2077 2078 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2079 std::vector<llvm::WeakTrackingVH> &List) { 2080 // Don't create llvm.used if there is no need. 2081 if (List.empty()) 2082 return; 2083 2084 // Convert List to what ConstantArray needs. 2085 SmallVector<llvm::Constant*, 8> UsedArray; 2086 UsedArray.resize(List.size()); 2087 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2088 UsedArray[i] = 2089 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2090 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2091 } 2092 2093 if (UsedArray.empty()) 2094 return; 2095 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2096 2097 auto *GV = new llvm::GlobalVariable( 2098 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2099 llvm::ConstantArray::get(ATy, UsedArray), Name); 2100 2101 GV->setSection("llvm.metadata"); 2102 } 2103 2104 void CodeGenModule::emitLLVMUsed() { 2105 emitUsed(*this, "llvm.used", LLVMUsed); 2106 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2107 } 2108 2109 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2110 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2111 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2112 } 2113 2114 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2115 llvm::SmallString<32> Opt; 2116 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2117 if (Opt.empty()) 2118 return; 2119 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2120 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2121 } 2122 2123 void CodeGenModule::AddDependentLib(StringRef Lib) { 2124 auto &C = getLLVMContext(); 2125 if (getTarget().getTriple().isOSBinFormatELF()) { 2126 ELFDependentLibraries.push_back( 2127 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2128 return; 2129 } 2130 2131 llvm::SmallString<24> Opt; 2132 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2133 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2134 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2135 } 2136 2137 /// Add link options implied by the given module, including modules 2138 /// it depends on, using a postorder walk. 2139 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2140 SmallVectorImpl<llvm::MDNode *> &Metadata, 2141 llvm::SmallPtrSet<Module *, 16> &Visited) { 2142 // Import this module's parent. 2143 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2144 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2145 } 2146 2147 // Import this module's dependencies. 2148 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2149 if (Visited.insert(Mod->Imports[I - 1]).second) 2150 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2151 } 2152 2153 // Add linker options to link against the libraries/frameworks 2154 // described by this module. 2155 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2156 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2157 2158 // For modules that use export_as for linking, use that module 2159 // name instead. 2160 if (Mod->UseExportAsModuleLinkName) 2161 return; 2162 2163 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2164 // Link against a framework. Frameworks are currently Darwin only, so we 2165 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2166 if (Mod->LinkLibraries[I-1].IsFramework) { 2167 llvm::Metadata *Args[2] = { 2168 llvm::MDString::get(Context, "-framework"), 2169 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2170 2171 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2172 continue; 2173 } 2174 2175 // Link against a library. 2176 if (IsELF) { 2177 llvm::Metadata *Args[2] = { 2178 llvm::MDString::get(Context, "lib"), 2179 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2180 }; 2181 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2182 } else { 2183 llvm::SmallString<24> Opt; 2184 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2185 Mod->LinkLibraries[I - 1].Library, Opt); 2186 auto *OptString = llvm::MDString::get(Context, Opt); 2187 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2188 } 2189 } 2190 } 2191 2192 void CodeGenModule::EmitModuleLinkOptions() { 2193 // Collect the set of all of the modules we want to visit to emit link 2194 // options, which is essentially the imported modules and all of their 2195 // non-explicit child modules. 2196 llvm::SetVector<clang::Module *> LinkModules; 2197 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2198 SmallVector<clang::Module *, 16> Stack; 2199 2200 // Seed the stack with imported modules. 2201 for (Module *M : ImportedModules) { 2202 // Do not add any link flags when an implementation TU of a module imports 2203 // a header of that same module. 2204 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2205 !getLangOpts().isCompilingModule()) 2206 continue; 2207 if (Visited.insert(M).second) 2208 Stack.push_back(M); 2209 } 2210 2211 // Find all of the modules to import, making a little effort to prune 2212 // non-leaf modules. 2213 while (!Stack.empty()) { 2214 clang::Module *Mod = Stack.pop_back_val(); 2215 2216 bool AnyChildren = false; 2217 2218 // Visit the submodules of this module. 2219 for (const auto &SM : Mod->submodules()) { 2220 // Skip explicit children; they need to be explicitly imported to be 2221 // linked against. 2222 if (SM->IsExplicit) 2223 continue; 2224 2225 if (Visited.insert(SM).second) { 2226 Stack.push_back(SM); 2227 AnyChildren = true; 2228 } 2229 } 2230 2231 // We didn't find any children, so add this module to the list of 2232 // modules to link against. 2233 if (!AnyChildren) { 2234 LinkModules.insert(Mod); 2235 } 2236 } 2237 2238 // Add link options for all of the imported modules in reverse topological 2239 // order. We don't do anything to try to order import link flags with respect 2240 // to linker options inserted by things like #pragma comment(). 2241 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2242 Visited.clear(); 2243 for (Module *M : LinkModules) 2244 if (Visited.insert(M).second) 2245 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2246 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2247 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2248 2249 // Add the linker options metadata flag. 2250 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2251 for (auto *MD : LinkerOptionsMetadata) 2252 NMD->addOperand(MD); 2253 } 2254 2255 void CodeGenModule::EmitDeferred() { 2256 // Emit deferred declare target declarations. 2257 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2258 getOpenMPRuntime().emitDeferredTargetDecls(); 2259 2260 // Emit code for any potentially referenced deferred decls. Since a 2261 // previously unused static decl may become used during the generation of code 2262 // for a static function, iterate until no changes are made. 2263 2264 if (!DeferredVTables.empty()) { 2265 EmitDeferredVTables(); 2266 2267 // Emitting a vtable doesn't directly cause more vtables to 2268 // become deferred, although it can cause functions to be 2269 // emitted that then need those vtables. 2270 assert(DeferredVTables.empty()); 2271 } 2272 2273 // Emit CUDA/HIP static device variables referenced by host code only. 2274 if (getLangOpts().CUDA) 2275 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2276 DeferredDeclsToEmit.push_back(V); 2277 2278 // Stop if we're out of both deferred vtables and deferred declarations. 2279 if (DeferredDeclsToEmit.empty()) 2280 return; 2281 2282 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2283 // work, it will not interfere with this. 2284 std::vector<GlobalDecl> CurDeclsToEmit; 2285 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2286 2287 for (GlobalDecl &D : CurDeclsToEmit) { 2288 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2289 // to get GlobalValue with exactly the type we need, not something that 2290 // might had been created for another decl with the same mangled name but 2291 // different type. 2292 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2293 GetAddrOfGlobal(D, ForDefinition)); 2294 2295 // In case of different address spaces, we may still get a cast, even with 2296 // IsForDefinition equal to true. Query mangled names table to get 2297 // GlobalValue. 2298 if (!GV) 2299 GV = GetGlobalValue(getMangledName(D)); 2300 2301 // Make sure GetGlobalValue returned non-null. 2302 assert(GV); 2303 2304 // Check to see if we've already emitted this. This is necessary 2305 // for a couple of reasons: first, decls can end up in the 2306 // deferred-decls queue multiple times, and second, decls can end 2307 // up with definitions in unusual ways (e.g. by an extern inline 2308 // function acquiring a strong function redefinition). Just 2309 // ignore these cases. 2310 if (!GV->isDeclaration()) 2311 continue; 2312 2313 // If this is OpenMP, check if it is legal to emit this global normally. 2314 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2315 continue; 2316 2317 // Otherwise, emit the definition and move on to the next one. 2318 EmitGlobalDefinition(D, GV); 2319 2320 // If we found out that we need to emit more decls, do that recursively. 2321 // This has the advantage that the decls are emitted in a DFS and related 2322 // ones are close together, which is convenient for testing. 2323 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2324 EmitDeferred(); 2325 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2326 } 2327 } 2328 } 2329 2330 void CodeGenModule::EmitVTablesOpportunistically() { 2331 // Try to emit external vtables as available_externally if they have emitted 2332 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2333 // is not allowed to create new references to things that need to be emitted 2334 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2335 2336 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2337 && "Only emit opportunistic vtables with optimizations"); 2338 2339 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2340 assert(getVTables().isVTableExternal(RD) && 2341 "This queue should only contain external vtables"); 2342 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2343 VTables.GenerateClassData(RD); 2344 } 2345 OpportunisticVTables.clear(); 2346 } 2347 2348 void CodeGenModule::EmitGlobalAnnotations() { 2349 if (Annotations.empty()) 2350 return; 2351 2352 // Create a new global variable for the ConstantStruct in the Module. 2353 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2354 Annotations[0]->getType(), Annotations.size()), Annotations); 2355 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2356 llvm::GlobalValue::AppendingLinkage, 2357 Array, "llvm.global.annotations"); 2358 gv->setSection(AnnotationSection); 2359 } 2360 2361 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2362 llvm::Constant *&AStr = AnnotationStrings[Str]; 2363 if (AStr) 2364 return AStr; 2365 2366 // Not found yet, create a new global. 2367 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2368 auto *gv = 2369 new llvm::GlobalVariable(getModule(), s->getType(), true, 2370 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2371 gv->setSection(AnnotationSection); 2372 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2373 AStr = gv; 2374 return gv; 2375 } 2376 2377 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2378 SourceManager &SM = getContext().getSourceManager(); 2379 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2380 if (PLoc.isValid()) 2381 return EmitAnnotationString(PLoc.getFilename()); 2382 return EmitAnnotationString(SM.getBufferName(Loc)); 2383 } 2384 2385 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2386 SourceManager &SM = getContext().getSourceManager(); 2387 PresumedLoc PLoc = SM.getPresumedLoc(L); 2388 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2389 SM.getExpansionLineNumber(L); 2390 return llvm::ConstantInt::get(Int32Ty, LineNo); 2391 } 2392 2393 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2394 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2395 if (Exprs.empty()) 2396 return llvm::ConstantPointerNull::get(Int8PtrTy); 2397 2398 llvm::FoldingSetNodeID ID; 2399 for (Expr *E : Exprs) { 2400 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2401 } 2402 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2403 if (Lookup) 2404 return Lookup; 2405 2406 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2407 LLVMArgs.reserve(Exprs.size()); 2408 ConstantEmitter ConstEmiter(*this); 2409 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2410 const auto *CE = cast<clang::ConstantExpr>(E); 2411 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2412 CE->getType()); 2413 }); 2414 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2415 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2416 llvm::GlobalValue::PrivateLinkage, Struct, 2417 ".args"); 2418 GV->setSection(AnnotationSection); 2419 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2420 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2421 2422 Lookup = Bitcasted; 2423 return Bitcasted; 2424 } 2425 2426 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2427 const AnnotateAttr *AA, 2428 SourceLocation L) { 2429 // Get the globals for file name, annotation, and the line number. 2430 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2431 *UnitGV = EmitAnnotationUnit(L), 2432 *LineNoCst = EmitAnnotationLineNo(L), 2433 *Args = EmitAnnotationArgs(AA); 2434 2435 llvm::Constant *ASZeroGV = GV; 2436 if (GV->getAddressSpace() != 0) { 2437 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2438 GV, GV->getValueType()->getPointerTo(0)); 2439 } 2440 2441 // Create the ConstantStruct for the global annotation. 2442 llvm::Constant *Fields[] = { 2443 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2444 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2445 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2446 LineNoCst, 2447 Args, 2448 }; 2449 return llvm::ConstantStruct::getAnon(Fields); 2450 } 2451 2452 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2453 llvm::GlobalValue *GV) { 2454 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2455 // Get the struct elements for these annotations. 2456 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2457 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2458 } 2459 2460 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2461 SourceLocation Loc) const { 2462 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2463 // NoSanitize by function name. 2464 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2465 return true; 2466 // NoSanitize by location. 2467 if (Loc.isValid()) 2468 return NoSanitizeL.containsLocation(Kind, Loc); 2469 // If location is unknown, this may be a compiler-generated function. Assume 2470 // it's located in the main file. 2471 auto &SM = Context.getSourceManager(); 2472 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2473 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2474 } 2475 return false; 2476 } 2477 2478 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2479 SourceLocation Loc, QualType Ty, 2480 StringRef Category) const { 2481 // For now globals can be ignored only in ASan and KASan. 2482 const SanitizerMask EnabledAsanMask = 2483 LangOpts.Sanitize.Mask & 2484 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2485 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2486 SanitizerKind::MemTag); 2487 if (!EnabledAsanMask) 2488 return false; 2489 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2490 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2491 return true; 2492 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2493 return true; 2494 // Check global type. 2495 if (!Ty.isNull()) { 2496 // Drill down the array types: if global variable of a fixed type is 2497 // not sanitized, we also don't instrument arrays of them. 2498 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2499 Ty = AT->getElementType(); 2500 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2501 // Only record types (classes, structs etc.) are ignored. 2502 if (Ty->isRecordType()) { 2503 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2504 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2505 return true; 2506 } 2507 } 2508 return false; 2509 } 2510 2511 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2512 StringRef Category) const { 2513 const auto &XRayFilter = getContext().getXRayFilter(); 2514 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2515 auto Attr = ImbueAttr::NONE; 2516 if (Loc.isValid()) 2517 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2518 if (Attr == ImbueAttr::NONE) 2519 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2520 switch (Attr) { 2521 case ImbueAttr::NONE: 2522 return false; 2523 case ImbueAttr::ALWAYS: 2524 Fn->addFnAttr("function-instrument", "xray-always"); 2525 break; 2526 case ImbueAttr::ALWAYS_ARG1: 2527 Fn->addFnAttr("function-instrument", "xray-always"); 2528 Fn->addFnAttr("xray-log-args", "1"); 2529 break; 2530 case ImbueAttr::NEVER: 2531 Fn->addFnAttr("function-instrument", "xray-never"); 2532 break; 2533 } 2534 return true; 2535 } 2536 2537 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2538 SourceLocation Loc) const { 2539 const auto &ProfileList = getContext().getProfileList(); 2540 // If the profile list is empty, then instrument everything. 2541 if (ProfileList.isEmpty()) 2542 return false; 2543 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2544 // First, check the function name. 2545 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2546 if (V.hasValue()) 2547 return *V; 2548 // Next, check the source location. 2549 if (Loc.isValid()) { 2550 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2551 if (V.hasValue()) 2552 return *V; 2553 } 2554 // If location is unknown, this may be a compiler-generated function. Assume 2555 // it's located in the main file. 2556 auto &SM = Context.getSourceManager(); 2557 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2558 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2559 if (V.hasValue()) 2560 return *V; 2561 } 2562 return ProfileList.getDefault(); 2563 } 2564 2565 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2566 // Never defer when EmitAllDecls is specified. 2567 if (LangOpts.EmitAllDecls) 2568 return true; 2569 2570 if (CodeGenOpts.KeepStaticConsts) { 2571 const auto *VD = dyn_cast<VarDecl>(Global); 2572 if (VD && VD->getType().isConstQualified() && 2573 VD->getStorageDuration() == SD_Static) 2574 return true; 2575 } 2576 2577 return getContext().DeclMustBeEmitted(Global); 2578 } 2579 2580 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2581 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2582 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2583 // Implicit template instantiations may change linkage if they are later 2584 // explicitly instantiated, so they should not be emitted eagerly. 2585 return false; 2586 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2587 // not emit them eagerly unless we sure that the function must be emitted on 2588 // the host. 2589 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2590 !LangOpts.OpenMPIsDevice && 2591 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2592 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2593 return false; 2594 } 2595 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2596 if (Context.getInlineVariableDefinitionKind(VD) == 2597 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2598 // A definition of an inline constexpr static data member may change 2599 // linkage later if it's redeclared outside the class. 2600 return false; 2601 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2602 // codegen for global variables, because they may be marked as threadprivate. 2603 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2604 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2605 !isTypeConstant(Global->getType(), false) && 2606 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2607 return false; 2608 2609 return true; 2610 } 2611 2612 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2613 StringRef Name = getMangledName(GD); 2614 2615 // The UUID descriptor should be pointer aligned. 2616 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2617 2618 // Look for an existing global. 2619 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2620 return ConstantAddress(GV, Alignment); 2621 2622 ConstantEmitter Emitter(*this); 2623 llvm::Constant *Init; 2624 2625 APValue &V = GD->getAsAPValue(); 2626 if (!V.isAbsent()) { 2627 // If possible, emit the APValue version of the initializer. In particular, 2628 // this gets the type of the constant right. 2629 Init = Emitter.emitForInitializer( 2630 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2631 } else { 2632 // As a fallback, directly construct the constant. 2633 // FIXME: This may get padding wrong under esoteric struct layout rules. 2634 // MSVC appears to create a complete type 'struct __s_GUID' that it 2635 // presumably uses to represent these constants. 2636 MSGuidDecl::Parts Parts = GD->getParts(); 2637 llvm::Constant *Fields[4] = { 2638 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2639 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2640 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2641 llvm::ConstantDataArray::getRaw( 2642 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2643 Int8Ty)}; 2644 Init = llvm::ConstantStruct::getAnon(Fields); 2645 } 2646 2647 auto *GV = new llvm::GlobalVariable( 2648 getModule(), Init->getType(), 2649 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2650 if (supportsCOMDAT()) 2651 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2652 setDSOLocal(GV); 2653 2654 llvm::Constant *Addr = GV; 2655 if (!V.isAbsent()) { 2656 Emitter.finalize(GV); 2657 } else { 2658 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2659 Addr = llvm::ConstantExpr::getBitCast( 2660 GV, Ty->getPointerTo(GV->getAddressSpace())); 2661 } 2662 return ConstantAddress(Addr, Alignment); 2663 } 2664 2665 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2666 const TemplateParamObjectDecl *TPO) { 2667 StringRef Name = getMangledName(TPO); 2668 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2669 2670 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2671 return ConstantAddress(GV, Alignment); 2672 2673 ConstantEmitter Emitter(*this); 2674 llvm::Constant *Init = Emitter.emitForInitializer( 2675 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2676 2677 if (!Init) { 2678 ErrorUnsupported(TPO, "template parameter object"); 2679 return ConstantAddress::invalid(); 2680 } 2681 2682 auto *GV = new llvm::GlobalVariable( 2683 getModule(), Init->getType(), 2684 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2685 if (supportsCOMDAT()) 2686 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2687 Emitter.finalize(GV); 2688 2689 return ConstantAddress(GV, Alignment); 2690 } 2691 2692 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2693 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2694 assert(AA && "No alias?"); 2695 2696 CharUnits Alignment = getContext().getDeclAlign(VD); 2697 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2698 2699 // See if there is already something with the target's name in the module. 2700 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2701 if (Entry) { 2702 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2703 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2704 return ConstantAddress(Ptr, Alignment); 2705 } 2706 2707 llvm::Constant *Aliasee; 2708 if (isa<llvm::FunctionType>(DeclTy)) 2709 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2710 GlobalDecl(cast<FunctionDecl>(VD)), 2711 /*ForVTable=*/false); 2712 else 2713 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2714 llvm::PointerType::getUnqual(DeclTy), 2715 nullptr); 2716 2717 auto *F = cast<llvm::GlobalValue>(Aliasee); 2718 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2719 WeakRefReferences.insert(F); 2720 2721 return ConstantAddress(Aliasee, Alignment); 2722 } 2723 2724 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2725 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2726 2727 // Weak references don't produce any output by themselves. 2728 if (Global->hasAttr<WeakRefAttr>()) 2729 return; 2730 2731 // If this is an alias definition (which otherwise looks like a declaration) 2732 // emit it now. 2733 if (Global->hasAttr<AliasAttr>()) 2734 return EmitAliasDefinition(GD); 2735 2736 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2737 if (Global->hasAttr<IFuncAttr>()) 2738 return emitIFuncDefinition(GD); 2739 2740 // If this is a cpu_dispatch multiversion function, emit the resolver. 2741 if (Global->hasAttr<CPUDispatchAttr>()) 2742 return emitCPUDispatchDefinition(GD); 2743 2744 // If this is CUDA, be selective about which declarations we emit. 2745 if (LangOpts.CUDA) { 2746 if (LangOpts.CUDAIsDevice) { 2747 if (!Global->hasAttr<CUDADeviceAttr>() && 2748 !Global->hasAttr<CUDAGlobalAttr>() && 2749 !Global->hasAttr<CUDAConstantAttr>() && 2750 !Global->hasAttr<CUDASharedAttr>() && 2751 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2752 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2753 return; 2754 } else { 2755 // We need to emit host-side 'shadows' for all global 2756 // device-side variables because the CUDA runtime needs their 2757 // size and host-side address in order to provide access to 2758 // their device-side incarnations. 2759 2760 // So device-only functions are the only things we skip. 2761 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2762 Global->hasAttr<CUDADeviceAttr>()) 2763 return; 2764 2765 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2766 "Expected Variable or Function"); 2767 } 2768 } 2769 2770 if (LangOpts.OpenMP) { 2771 // If this is OpenMP, check if it is legal to emit this global normally. 2772 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2773 return; 2774 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2775 if (MustBeEmitted(Global)) 2776 EmitOMPDeclareReduction(DRD); 2777 return; 2778 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2779 if (MustBeEmitted(Global)) 2780 EmitOMPDeclareMapper(DMD); 2781 return; 2782 } 2783 } 2784 2785 // Ignore declarations, they will be emitted on their first use. 2786 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2787 // Forward declarations are emitted lazily on first use. 2788 if (!FD->doesThisDeclarationHaveABody()) { 2789 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2790 return; 2791 2792 StringRef MangledName = getMangledName(GD); 2793 2794 // Compute the function info and LLVM type. 2795 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2796 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2797 2798 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2799 /*DontDefer=*/false); 2800 return; 2801 } 2802 } else { 2803 const auto *VD = cast<VarDecl>(Global); 2804 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2805 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2806 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2807 if (LangOpts.OpenMP) { 2808 // Emit declaration of the must-be-emitted declare target variable. 2809 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2810 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2811 bool UnifiedMemoryEnabled = 2812 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2813 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2814 !UnifiedMemoryEnabled) { 2815 (void)GetAddrOfGlobalVar(VD); 2816 } else { 2817 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2818 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2819 UnifiedMemoryEnabled)) && 2820 "Link clause or to clause with unified memory expected."); 2821 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2822 } 2823 2824 return; 2825 } 2826 } 2827 // If this declaration may have caused an inline variable definition to 2828 // change linkage, make sure that it's emitted. 2829 if (Context.getInlineVariableDefinitionKind(VD) == 2830 ASTContext::InlineVariableDefinitionKind::Strong) 2831 GetAddrOfGlobalVar(VD); 2832 return; 2833 } 2834 } 2835 2836 // Defer code generation to first use when possible, e.g. if this is an inline 2837 // function. If the global must always be emitted, do it eagerly if possible 2838 // to benefit from cache locality. 2839 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2840 // Emit the definition if it can't be deferred. 2841 EmitGlobalDefinition(GD); 2842 return; 2843 } 2844 2845 // If we're deferring emission of a C++ variable with an 2846 // initializer, remember the order in which it appeared in the file. 2847 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2848 cast<VarDecl>(Global)->hasInit()) { 2849 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2850 CXXGlobalInits.push_back(nullptr); 2851 } 2852 2853 StringRef MangledName = getMangledName(GD); 2854 if (GetGlobalValue(MangledName) != nullptr) { 2855 // The value has already been used and should therefore be emitted. 2856 addDeferredDeclToEmit(GD); 2857 } else if (MustBeEmitted(Global)) { 2858 // The value must be emitted, but cannot be emitted eagerly. 2859 assert(!MayBeEmittedEagerly(Global)); 2860 addDeferredDeclToEmit(GD); 2861 } else { 2862 // Otherwise, remember that we saw a deferred decl with this name. The 2863 // first use of the mangled name will cause it to move into 2864 // DeferredDeclsToEmit. 2865 DeferredDecls[MangledName] = GD; 2866 } 2867 } 2868 2869 // Check if T is a class type with a destructor that's not dllimport. 2870 static bool HasNonDllImportDtor(QualType T) { 2871 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2872 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2873 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2874 return true; 2875 2876 return false; 2877 } 2878 2879 namespace { 2880 struct FunctionIsDirectlyRecursive 2881 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2882 const StringRef Name; 2883 const Builtin::Context &BI; 2884 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2885 : Name(N), BI(C) {} 2886 2887 bool VisitCallExpr(const CallExpr *E) { 2888 const FunctionDecl *FD = E->getDirectCallee(); 2889 if (!FD) 2890 return false; 2891 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2892 if (Attr && Name == Attr->getLabel()) 2893 return true; 2894 unsigned BuiltinID = FD->getBuiltinID(); 2895 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2896 return false; 2897 StringRef BuiltinName = BI.getName(BuiltinID); 2898 if (BuiltinName.startswith("__builtin_") && 2899 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 bool VisitStmt(const Stmt *S) { 2906 for (const Stmt *Child : S->children()) 2907 if (Child && this->Visit(Child)) 2908 return true; 2909 return false; 2910 } 2911 }; 2912 2913 // Make sure we're not referencing non-imported vars or functions. 2914 struct DLLImportFunctionVisitor 2915 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2916 bool SafeToInline = true; 2917 2918 bool shouldVisitImplicitCode() const { return true; } 2919 2920 bool VisitVarDecl(VarDecl *VD) { 2921 if (VD->getTLSKind()) { 2922 // A thread-local variable cannot be imported. 2923 SafeToInline = false; 2924 return SafeToInline; 2925 } 2926 2927 // A variable definition might imply a destructor call. 2928 if (VD->isThisDeclarationADefinition()) 2929 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2930 2931 return SafeToInline; 2932 } 2933 2934 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2935 if (const auto *D = E->getTemporary()->getDestructor()) 2936 SafeToInline = D->hasAttr<DLLImportAttr>(); 2937 return SafeToInline; 2938 } 2939 2940 bool VisitDeclRefExpr(DeclRefExpr *E) { 2941 ValueDecl *VD = E->getDecl(); 2942 if (isa<FunctionDecl>(VD)) 2943 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2944 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2945 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2946 return SafeToInline; 2947 } 2948 2949 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2950 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2951 return SafeToInline; 2952 } 2953 2954 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2955 CXXMethodDecl *M = E->getMethodDecl(); 2956 if (!M) { 2957 // Call through a pointer to member function. This is safe to inline. 2958 SafeToInline = true; 2959 } else { 2960 SafeToInline = M->hasAttr<DLLImportAttr>(); 2961 } 2962 return SafeToInline; 2963 } 2964 2965 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2966 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2967 return SafeToInline; 2968 } 2969 2970 bool VisitCXXNewExpr(CXXNewExpr *E) { 2971 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2972 return SafeToInline; 2973 } 2974 }; 2975 } 2976 2977 // isTriviallyRecursive - Check if this function calls another 2978 // decl that, because of the asm attribute or the other decl being a builtin, 2979 // ends up pointing to itself. 2980 bool 2981 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2982 StringRef Name; 2983 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2984 // asm labels are a special kind of mangling we have to support. 2985 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2986 if (!Attr) 2987 return false; 2988 Name = Attr->getLabel(); 2989 } else { 2990 Name = FD->getName(); 2991 } 2992 2993 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2994 const Stmt *Body = FD->getBody(); 2995 return Body ? Walker.Visit(Body) : false; 2996 } 2997 2998 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2999 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3000 return true; 3001 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3002 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3003 return false; 3004 3005 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3006 // Check whether it would be safe to inline this dllimport function. 3007 DLLImportFunctionVisitor Visitor; 3008 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3009 if (!Visitor.SafeToInline) 3010 return false; 3011 3012 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3013 // Implicit destructor invocations aren't captured in the AST, so the 3014 // check above can't see them. Check for them manually here. 3015 for (const Decl *Member : Dtor->getParent()->decls()) 3016 if (isa<FieldDecl>(Member)) 3017 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3018 return false; 3019 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3020 if (HasNonDllImportDtor(B.getType())) 3021 return false; 3022 } 3023 } 3024 3025 // PR9614. Avoid cases where the source code is lying to us. An available 3026 // externally function should have an equivalent function somewhere else, 3027 // but a function that calls itself through asm label/`__builtin_` trickery is 3028 // clearly not equivalent to the real implementation. 3029 // This happens in glibc's btowc and in some configure checks. 3030 return !isTriviallyRecursive(F); 3031 } 3032 3033 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3034 return CodeGenOpts.OptimizationLevel > 0; 3035 } 3036 3037 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3038 llvm::GlobalValue *GV) { 3039 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3040 3041 if (FD->isCPUSpecificMultiVersion()) { 3042 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3043 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3044 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3045 // Requires multiple emits. 3046 } else 3047 EmitGlobalFunctionDefinition(GD, GV); 3048 } 3049 3050 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3051 const auto *D = cast<ValueDecl>(GD.getDecl()); 3052 3053 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3054 Context.getSourceManager(), 3055 "Generating code for declaration"); 3056 3057 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3058 // At -O0, don't generate IR for functions with available_externally 3059 // linkage. 3060 if (!shouldEmitFunction(GD)) 3061 return; 3062 3063 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3064 std::string Name; 3065 llvm::raw_string_ostream OS(Name); 3066 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3067 /*Qualified=*/true); 3068 return Name; 3069 }); 3070 3071 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3072 // Make sure to emit the definition(s) before we emit the thunks. 3073 // This is necessary for the generation of certain thunks. 3074 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3075 ABI->emitCXXStructor(GD); 3076 else if (FD->isMultiVersion()) 3077 EmitMultiVersionFunctionDefinition(GD, GV); 3078 else 3079 EmitGlobalFunctionDefinition(GD, GV); 3080 3081 if (Method->isVirtual()) 3082 getVTables().EmitThunks(GD); 3083 3084 return; 3085 } 3086 3087 if (FD->isMultiVersion()) 3088 return EmitMultiVersionFunctionDefinition(GD, GV); 3089 return EmitGlobalFunctionDefinition(GD, GV); 3090 } 3091 3092 if (const auto *VD = dyn_cast<VarDecl>(D)) 3093 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3094 3095 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3096 } 3097 3098 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3099 llvm::Function *NewFn); 3100 3101 static unsigned 3102 TargetMVPriority(const TargetInfo &TI, 3103 const CodeGenFunction::MultiVersionResolverOption &RO) { 3104 unsigned Priority = 0; 3105 for (StringRef Feat : RO.Conditions.Features) 3106 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3107 3108 if (!RO.Conditions.Architecture.empty()) 3109 Priority = std::max( 3110 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3111 return Priority; 3112 } 3113 3114 void CodeGenModule::emitMultiVersionFunctions() { 3115 for (GlobalDecl GD : MultiVersionFuncs) { 3116 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3117 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3118 getContext().forEachMultiversionedFunctionVersion( 3119 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3120 GlobalDecl CurGD{ 3121 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3122 StringRef MangledName = getMangledName(CurGD); 3123 llvm::Constant *Func = GetGlobalValue(MangledName); 3124 if (!Func) { 3125 if (CurFD->isDefined()) { 3126 EmitGlobalFunctionDefinition(CurGD, nullptr); 3127 Func = GetGlobalValue(MangledName); 3128 } else { 3129 const CGFunctionInfo &FI = 3130 getTypes().arrangeGlobalDeclaration(GD); 3131 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3132 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3133 /*DontDefer=*/false, ForDefinition); 3134 } 3135 assert(Func && "This should have just been created"); 3136 } 3137 3138 const auto *TA = CurFD->getAttr<TargetAttr>(); 3139 llvm::SmallVector<StringRef, 8> Feats; 3140 TA->getAddedFeatures(Feats); 3141 3142 Options.emplace_back(cast<llvm::Function>(Func), 3143 TA->getArchitecture(), Feats); 3144 }); 3145 3146 llvm::Function *ResolverFunc; 3147 const TargetInfo &TI = getTarget(); 3148 3149 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3150 ResolverFunc = cast<llvm::Function>( 3151 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3152 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3153 } else { 3154 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3155 } 3156 3157 if (supportsCOMDAT()) 3158 ResolverFunc->setComdat( 3159 getModule().getOrInsertComdat(ResolverFunc->getName())); 3160 3161 llvm::stable_sort( 3162 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3163 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3164 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3165 }); 3166 CodeGenFunction CGF(*this); 3167 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3168 } 3169 } 3170 3171 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3172 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3173 assert(FD && "Not a FunctionDecl?"); 3174 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3175 assert(DD && "Not a cpu_dispatch Function?"); 3176 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3177 3178 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3179 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3180 DeclTy = getTypes().GetFunctionType(FInfo); 3181 } 3182 3183 StringRef ResolverName = getMangledName(GD); 3184 3185 llvm::Type *ResolverType; 3186 GlobalDecl ResolverGD; 3187 if (getTarget().supportsIFunc()) 3188 ResolverType = llvm::FunctionType::get( 3189 llvm::PointerType::get(DeclTy, 3190 Context.getTargetAddressSpace(FD->getType())), 3191 false); 3192 else { 3193 ResolverType = DeclTy; 3194 ResolverGD = GD; 3195 } 3196 3197 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3198 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3199 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3200 if (supportsCOMDAT()) 3201 ResolverFunc->setComdat( 3202 getModule().getOrInsertComdat(ResolverFunc->getName())); 3203 3204 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3205 const TargetInfo &Target = getTarget(); 3206 unsigned Index = 0; 3207 for (const IdentifierInfo *II : DD->cpus()) { 3208 // Get the name of the target function so we can look it up/create it. 3209 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3210 getCPUSpecificMangling(*this, II->getName()); 3211 3212 llvm::Constant *Func = GetGlobalValue(MangledName); 3213 3214 if (!Func) { 3215 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3216 if (ExistingDecl.getDecl() && 3217 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3218 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3219 Func = GetGlobalValue(MangledName); 3220 } else { 3221 if (!ExistingDecl.getDecl()) 3222 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3223 3224 Func = GetOrCreateLLVMFunction( 3225 MangledName, DeclTy, ExistingDecl, 3226 /*ForVTable=*/false, /*DontDefer=*/true, 3227 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3228 } 3229 } 3230 3231 llvm::SmallVector<StringRef, 32> Features; 3232 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3233 llvm::transform(Features, Features.begin(), 3234 [](StringRef Str) { return Str.substr(1); }); 3235 Features.erase(std::remove_if( 3236 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3237 return !Target.validateCpuSupports(Feat); 3238 }), Features.end()); 3239 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3240 ++Index; 3241 } 3242 3243 llvm::sort( 3244 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3245 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3246 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3247 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3248 }); 3249 3250 // If the list contains multiple 'default' versions, such as when it contains 3251 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3252 // always run on at least a 'pentium'). We do this by deleting the 'least 3253 // advanced' (read, lowest mangling letter). 3254 while (Options.size() > 1 && 3255 CodeGenFunction::GetX86CpuSupportsMask( 3256 (Options.end() - 2)->Conditions.Features) == 0) { 3257 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3258 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3259 if (LHSName.compare(RHSName) < 0) 3260 Options.erase(Options.end() - 2); 3261 else 3262 Options.erase(Options.end() - 1); 3263 } 3264 3265 CodeGenFunction CGF(*this); 3266 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3267 3268 if (getTarget().supportsIFunc()) { 3269 std::string AliasName = getMangledNameImpl( 3270 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3271 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3272 if (!AliasFunc) { 3273 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3274 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3275 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3276 auto *GA = llvm::GlobalAlias::create( 3277 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3278 GA->setLinkage(llvm::Function::WeakODRLinkage); 3279 SetCommonAttributes(GD, GA); 3280 } 3281 } 3282 } 3283 3284 /// If a dispatcher for the specified mangled name is not in the module, create 3285 /// and return an llvm Function with the specified type. 3286 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3287 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3288 std::string MangledName = 3289 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3290 3291 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3292 // a separate resolver). 3293 std::string ResolverName = MangledName; 3294 if (getTarget().supportsIFunc()) 3295 ResolverName += ".ifunc"; 3296 else if (FD->isTargetMultiVersion()) 3297 ResolverName += ".resolver"; 3298 3299 // If this already exists, just return that one. 3300 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3301 return ResolverGV; 3302 3303 // Since this is the first time we've created this IFunc, make sure 3304 // that we put this multiversioned function into the list to be 3305 // replaced later if necessary (target multiversioning only). 3306 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3307 MultiVersionFuncs.push_back(GD); 3308 3309 if (getTarget().supportsIFunc()) { 3310 llvm::Type *ResolverType = llvm::FunctionType::get( 3311 llvm::PointerType::get( 3312 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3313 false); 3314 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3315 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3316 /*ForVTable=*/false); 3317 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3318 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3319 GIF->setName(ResolverName); 3320 SetCommonAttributes(FD, GIF); 3321 3322 return GIF; 3323 } 3324 3325 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3326 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3327 assert(isa<llvm::GlobalValue>(Resolver) && 3328 "Resolver should be created for the first time"); 3329 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3330 return Resolver; 3331 } 3332 3333 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3334 /// module, create and return an llvm Function with the specified type. If there 3335 /// is something in the module with the specified name, return it potentially 3336 /// bitcasted to the right type. 3337 /// 3338 /// If D is non-null, it specifies a decl that correspond to this. This is used 3339 /// to set the attributes on the function when it is first created. 3340 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3341 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3342 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3343 ForDefinition_t IsForDefinition) { 3344 const Decl *D = GD.getDecl(); 3345 3346 // Any attempts to use a MultiVersion function should result in retrieving 3347 // the iFunc instead. Name Mangling will handle the rest of the changes. 3348 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3349 // For the device mark the function as one that should be emitted. 3350 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3351 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3352 !DontDefer && !IsForDefinition) { 3353 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3354 GlobalDecl GDDef; 3355 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3356 GDDef = GlobalDecl(CD, GD.getCtorType()); 3357 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3358 GDDef = GlobalDecl(DD, GD.getDtorType()); 3359 else 3360 GDDef = GlobalDecl(FDDef); 3361 EmitGlobal(GDDef); 3362 } 3363 } 3364 3365 if (FD->isMultiVersion()) { 3366 if (FD->hasAttr<TargetAttr>()) 3367 UpdateMultiVersionNames(GD, FD); 3368 if (!IsForDefinition) 3369 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3370 } 3371 } 3372 3373 // Lookup the entry, lazily creating it if necessary. 3374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3375 if (Entry) { 3376 if (WeakRefReferences.erase(Entry)) { 3377 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3378 if (FD && !FD->hasAttr<WeakAttr>()) 3379 Entry->setLinkage(llvm::Function::ExternalLinkage); 3380 } 3381 3382 // Handle dropped DLL attributes. 3383 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3384 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3385 setDSOLocal(Entry); 3386 } 3387 3388 // If there are two attempts to define the same mangled name, issue an 3389 // error. 3390 if (IsForDefinition && !Entry->isDeclaration()) { 3391 GlobalDecl OtherGD; 3392 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3393 // to make sure that we issue an error only once. 3394 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3395 (GD.getCanonicalDecl().getDecl() != 3396 OtherGD.getCanonicalDecl().getDecl()) && 3397 DiagnosedConflictingDefinitions.insert(GD).second) { 3398 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3399 << MangledName; 3400 getDiags().Report(OtherGD.getDecl()->getLocation(), 3401 diag::note_previous_definition); 3402 } 3403 } 3404 3405 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3406 (Entry->getValueType() == Ty)) { 3407 return Entry; 3408 } 3409 3410 // Make sure the result is of the correct type. 3411 // (If function is requested for a definition, we always need to create a new 3412 // function, not just return a bitcast.) 3413 if (!IsForDefinition) 3414 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3415 } 3416 3417 // This function doesn't have a complete type (for example, the return 3418 // type is an incomplete struct). Use a fake type instead, and make 3419 // sure not to try to set attributes. 3420 bool IsIncompleteFunction = false; 3421 3422 llvm::FunctionType *FTy; 3423 if (isa<llvm::FunctionType>(Ty)) { 3424 FTy = cast<llvm::FunctionType>(Ty); 3425 } else { 3426 FTy = llvm::FunctionType::get(VoidTy, false); 3427 IsIncompleteFunction = true; 3428 } 3429 3430 llvm::Function *F = 3431 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3432 Entry ? StringRef() : MangledName, &getModule()); 3433 3434 // If we already created a function with the same mangled name (but different 3435 // type) before, take its name and add it to the list of functions to be 3436 // replaced with F at the end of CodeGen. 3437 // 3438 // This happens if there is a prototype for a function (e.g. "int f()") and 3439 // then a definition of a different type (e.g. "int f(int x)"). 3440 if (Entry) { 3441 F->takeName(Entry); 3442 3443 // This might be an implementation of a function without a prototype, in 3444 // which case, try to do special replacement of calls which match the new 3445 // prototype. The really key thing here is that we also potentially drop 3446 // arguments from the call site so as to make a direct call, which makes the 3447 // inliner happier and suppresses a number of optimizer warnings (!) about 3448 // dropping arguments. 3449 if (!Entry->use_empty()) { 3450 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3451 Entry->removeDeadConstantUsers(); 3452 } 3453 3454 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3455 F, Entry->getValueType()->getPointerTo()); 3456 addGlobalValReplacement(Entry, BC); 3457 } 3458 3459 assert(F->getName() == MangledName && "name was uniqued!"); 3460 if (D) 3461 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3462 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3463 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3464 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3465 } 3466 3467 if (!DontDefer) { 3468 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3469 // each other bottoming out with the base dtor. Therefore we emit non-base 3470 // dtors on usage, even if there is no dtor definition in the TU. 3471 if (D && isa<CXXDestructorDecl>(D) && 3472 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3473 GD.getDtorType())) 3474 addDeferredDeclToEmit(GD); 3475 3476 // This is the first use or definition of a mangled name. If there is a 3477 // deferred decl with this name, remember that we need to emit it at the end 3478 // of the file. 3479 auto DDI = DeferredDecls.find(MangledName); 3480 if (DDI != DeferredDecls.end()) { 3481 // Move the potentially referenced deferred decl to the 3482 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3483 // don't need it anymore). 3484 addDeferredDeclToEmit(DDI->second); 3485 DeferredDecls.erase(DDI); 3486 3487 // Otherwise, there are cases we have to worry about where we're 3488 // using a declaration for which we must emit a definition but where 3489 // we might not find a top-level definition: 3490 // - member functions defined inline in their classes 3491 // - friend functions defined inline in some class 3492 // - special member functions with implicit definitions 3493 // If we ever change our AST traversal to walk into class methods, 3494 // this will be unnecessary. 3495 // 3496 // We also don't emit a definition for a function if it's going to be an 3497 // entry in a vtable, unless it's already marked as used. 3498 } else if (getLangOpts().CPlusPlus && D) { 3499 // Look for a declaration that's lexically in a record. 3500 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3501 FD = FD->getPreviousDecl()) { 3502 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3503 if (FD->doesThisDeclarationHaveABody()) { 3504 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3505 break; 3506 } 3507 } 3508 } 3509 } 3510 } 3511 3512 // Make sure the result is of the requested type. 3513 if (!IsIncompleteFunction) { 3514 assert(F->getFunctionType() == Ty); 3515 return F; 3516 } 3517 3518 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3519 return llvm::ConstantExpr::getBitCast(F, PTy); 3520 } 3521 3522 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3523 /// non-null, then this function will use the specified type if it has to 3524 /// create it (this occurs when we see a definition of the function). 3525 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3526 llvm::Type *Ty, 3527 bool ForVTable, 3528 bool DontDefer, 3529 ForDefinition_t IsForDefinition) { 3530 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3531 "consteval function should never be emitted"); 3532 // If there was no specific requested type, just convert it now. 3533 if (!Ty) { 3534 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3535 Ty = getTypes().ConvertType(FD->getType()); 3536 } 3537 3538 // Devirtualized destructor calls may come through here instead of via 3539 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3540 // of the complete destructor when necessary. 3541 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3542 if (getTarget().getCXXABI().isMicrosoft() && 3543 GD.getDtorType() == Dtor_Complete && 3544 DD->getParent()->getNumVBases() == 0) 3545 GD = GlobalDecl(DD, Dtor_Base); 3546 } 3547 3548 StringRef MangledName = getMangledName(GD); 3549 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3550 /*IsThunk=*/false, llvm::AttributeList(), 3551 IsForDefinition); 3552 } 3553 3554 static const FunctionDecl * 3555 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3556 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3557 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3558 3559 IdentifierInfo &CII = C.Idents.get(Name); 3560 for (const auto &Result : DC->lookup(&CII)) 3561 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3562 return FD; 3563 3564 if (!C.getLangOpts().CPlusPlus) 3565 return nullptr; 3566 3567 // Demangle the premangled name from getTerminateFn() 3568 IdentifierInfo &CXXII = 3569 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3570 ? C.Idents.get("terminate") 3571 : C.Idents.get(Name); 3572 3573 for (const auto &N : {"__cxxabiv1", "std"}) { 3574 IdentifierInfo &NS = C.Idents.get(N); 3575 for (const auto &Result : DC->lookup(&NS)) { 3576 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3577 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3578 for (const auto &Result : LSD->lookup(&NS)) 3579 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3580 break; 3581 3582 if (ND) 3583 for (const auto &Result : ND->lookup(&CXXII)) 3584 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3585 return FD; 3586 } 3587 } 3588 3589 return nullptr; 3590 } 3591 3592 /// CreateRuntimeFunction - Create a new runtime function with the specified 3593 /// type and name. 3594 llvm::FunctionCallee 3595 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3596 llvm::AttributeList ExtraAttrs, bool Local, 3597 bool AssumeConvergent) { 3598 if (AssumeConvergent) { 3599 ExtraAttrs = 3600 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3601 llvm::Attribute::Convergent); 3602 } 3603 3604 llvm::Constant *C = 3605 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3606 /*DontDefer=*/false, /*IsThunk=*/false, 3607 ExtraAttrs); 3608 3609 if (auto *F = dyn_cast<llvm::Function>(C)) { 3610 if (F->empty()) { 3611 F->setCallingConv(getRuntimeCC()); 3612 3613 // In Windows Itanium environments, try to mark runtime functions 3614 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3615 // will link their standard library statically or dynamically. Marking 3616 // functions imported when they are not imported can cause linker errors 3617 // and warnings. 3618 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3619 !getCodeGenOpts().LTOVisibilityPublicStd) { 3620 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3621 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3622 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3623 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3624 } 3625 } 3626 setDSOLocal(F); 3627 } 3628 } 3629 3630 return {FTy, C}; 3631 } 3632 3633 /// isTypeConstant - Determine whether an object of this type can be emitted 3634 /// as a constant. 3635 /// 3636 /// If ExcludeCtor is true, the duration when the object's constructor runs 3637 /// will not be considered. The caller will need to verify that the object is 3638 /// not written to during its construction. 3639 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3640 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3641 return false; 3642 3643 if (Context.getLangOpts().CPlusPlus) { 3644 if (const CXXRecordDecl *Record 3645 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3646 return ExcludeCtor && !Record->hasMutableFields() && 3647 Record->hasTrivialDestructor(); 3648 } 3649 3650 return true; 3651 } 3652 3653 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3654 /// create and return an llvm GlobalVariable with the specified type. If there 3655 /// is something in the module with the specified name, return it potentially 3656 /// bitcasted to the right type. 3657 /// 3658 /// If D is non-null, it specifies a decl that correspond to this. This is used 3659 /// to set the attributes on the global when it is first created. 3660 /// 3661 /// If IsForDefinition is true, it is guaranteed that an actual global with 3662 /// type Ty will be returned, not conversion of a variable with the same 3663 /// mangled name but some other type. 3664 llvm::Constant * 3665 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3666 llvm::PointerType *Ty, 3667 const VarDecl *D, 3668 ForDefinition_t IsForDefinition) { 3669 // Lookup the entry, lazily creating it if necessary. 3670 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3671 if (Entry) { 3672 if (WeakRefReferences.erase(Entry)) { 3673 if (D && !D->hasAttr<WeakAttr>()) 3674 Entry->setLinkage(llvm::Function::ExternalLinkage); 3675 } 3676 3677 // Handle dropped DLL attributes. 3678 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3679 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3680 3681 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3682 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3683 3684 if (Entry->getType() == Ty) 3685 return Entry; 3686 3687 // If there are two attempts to define the same mangled name, issue an 3688 // error. 3689 if (IsForDefinition && !Entry->isDeclaration()) { 3690 GlobalDecl OtherGD; 3691 const VarDecl *OtherD; 3692 3693 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3694 // to make sure that we issue an error only once. 3695 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3696 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3697 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3698 OtherD->hasInit() && 3699 DiagnosedConflictingDefinitions.insert(D).second) { 3700 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3701 << MangledName; 3702 getDiags().Report(OtherGD.getDecl()->getLocation(), 3703 diag::note_previous_definition); 3704 } 3705 } 3706 3707 // Make sure the result is of the correct type. 3708 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3709 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3710 3711 // (If global is requested for a definition, we always need to create a new 3712 // global, not just return a bitcast.) 3713 if (!IsForDefinition) 3714 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3715 } 3716 3717 auto AddrSpace = GetGlobalVarAddressSpace(D); 3718 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3719 3720 auto *GV = new llvm::GlobalVariable( 3721 getModule(), Ty->getElementType(), false, 3722 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3723 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3724 3725 // If we already created a global with the same mangled name (but different 3726 // type) before, take its name and remove it from its parent. 3727 if (Entry) { 3728 GV->takeName(Entry); 3729 3730 if (!Entry->use_empty()) { 3731 llvm::Constant *NewPtrForOldDecl = 3732 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3733 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3734 } 3735 3736 Entry->eraseFromParent(); 3737 } 3738 3739 // This is the first use or definition of a mangled name. If there is a 3740 // deferred decl with this name, remember that we need to emit it at the end 3741 // of the file. 3742 auto DDI = DeferredDecls.find(MangledName); 3743 if (DDI != DeferredDecls.end()) { 3744 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3745 // list, and remove it from DeferredDecls (since we don't need it anymore). 3746 addDeferredDeclToEmit(DDI->second); 3747 DeferredDecls.erase(DDI); 3748 } 3749 3750 // Handle things which are present even on external declarations. 3751 if (D) { 3752 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3753 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3754 3755 // FIXME: This code is overly simple and should be merged with other global 3756 // handling. 3757 GV->setConstant(isTypeConstant(D->getType(), false)); 3758 3759 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3760 3761 setLinkageForGV(GV, D); 3762 3763 if (D->getTLSKind()) { 3764 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3765 CXXThreadLocals.push_back(D); 3766 setTLSMode(GV, *D); 3767 } 3768 3769 setGVProperties(GV, D); 3770 3771 // If required by the ABI, treat declarations of static data members with 3772 // inline initializers as definitions. 3773 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3774 EmitGlobalVarDefinition(D); 3775 } 3776 3777 // Emit section information for extern variables. 3778 if (D->hasExternalStorage()) { 3779 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3780 GV->setSection(SA->getName()); 3781 } 3782 3783 // Handle XCore specific ABI requirements. 3784 if (getTriple().getArch() == llvm::Triple::xcore && 3785 D->getLanguageLinkage() == CLanguageLinkage && 3786 D->getType().isConstant(Context) && 3787 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3788 GV->setSection(".cp.rodata"); 3789 3790 // Check if we a have a const declaration with an initializer, we may be 3791 // able to emit it as available_externally to expose it's value to the 3792 // optimizer. 3793 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3794 D->getType().isConstQualified() && !GV->hasInitializer() && 3795 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3796 const auto *Record = 3797 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3798 bool HasMutableFields = Record && Record->hasMutableFields(); 3799 if (!HasMutableFields) { 3800 const VarDecl *InitDecl; 3801 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3802 if (InitExpr) { 3803 ConstantEmitter emitter(*this); 3804 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3805 if (Init) { 3806 auto *InitType = Init->getType(); 3807 if (GV->getValueType() != InitType) { 3808 // The type of the initializer does not match the definition. 3809 // This happens when an initializer has a different type from 3810 // the type of the global (because of padding at the end of a 3811 // structure for instance). 3812 GV->setName(StringRef()); 3813 // Make a new global with the correct type, this is now guaranteed 3814 // to work. 3815 auto *NewGV = cast<llvm::GlobalVariable>( 3816 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3817 ->stripPointerCasts()); 3818 3819 // Erase the old global, since it is no longer used. 3820 GV->eraseFromParent(); 3821 GV = NewGV; 3822 } else { 3823 GV->setInitializer(Init); 3824 GV->setConstant(true); 3825 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3826 } 3827 emitter.finalize(GV); 3828 } 3829 } 3830 } 3831 } 3832 } 3833 3834 if (GV->isDeclaration()) { 3835 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3836 // External HIP managed variables needed to be recorded for transformation 3837 // in both device and host compilations. 3838 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 3839 D->hasExternalStorage()) 3840 getCUDARuntime().handleVarRegistration(D, *GV); 3841 } 3842 3843 LangAS ExpectedAS = 3844 D ? D->getType().getAddressSpace() 3845 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3846 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3847 Ty->getPointerAddressSpace()); 3848 if (AddrSpace != ExpectedAS) 3849 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3850 ExpectedAS, Ty); 3851 3852 return GV; 3853 } 3854 3855 llvm::Constant * 3856 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3857 const Decl *D = GD.getDecl(); 3858 3859 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3860 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3861 /*DontDefer=*/false, IsForDefinition); 3862 3863 if (isa<CXXMethodDecl>(D)) { 3864 auto FInfo = 3865 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3866 auto Ty = getTypes().GetFunctionType(*FInfo); 3867 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3868 IsForDefinition); 3869 } 3870 3871 if (isa<FunctionDecl>(D)) { 3872 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3873 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3874 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3875 IsForDefinition); 3876 } 3877 3878 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3879 } 3880 3881 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3882 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3883 unsigned Alignment) { 3884 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3885 llvm::GlobalVariable *OldGV = nullptr; 3886 3887 if (GV) { 3888 // Check if the variable has the right type. 3889 if (GV->getValueType() == Ty) 3890 return GV; 3891 3892 // Because C++ name mangling, the only way we can end up with an already 3893 // existing global with the same name is if it has been declared extern "C". 3894 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3895 OldGV = GV; 3896 } 3897 3898 // Create a new variable. 3899 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3900 Linkage, nullptr, Name); 3901 3902 if (OldGV) { 3903 // Replace occurrences of the old variable if needed. 3904 GV->takeName(OldGV); 3905 3906 if (!OldGV->use_empty()) { 3907 llvm::Constant *NewPtrForOldDecl = 3908 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3909 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3910 } 3911 3912 OldGV->eraseFromParent(); 3913 } 3914 3915 if (supportsCOMDAT() && GV->isWeakForLinker() && 3916 !GV->hasAvailableExternallyLinkage()) 3917 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3918 3919 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3920 3921 return GV; 3922 } 3923 3924 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3925 /// given global variable. If Ty is non-null and if the global doesn't exist, 3926 /// then it will be created with the specified type instead of whatever the 3927 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3928 /// that an actual global with type Ty will be returned, not conversion of a 3929 /// variable with the same mangled name but some other type. 3930 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3931 llvm::Type *Ty, 3932 ForDefinition_t IsForDefinition) { 3933 assert(D->hasGlobalStorage() && "Not a global variable"); 3934 QualType ASTTy = D->getType(); 3935 if (!Ty) 3936 Ty = getTypes().ConvertTypeForMem(ASTTy); 3937 3938 llvm::PointerType *PTy = 3939 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3940 3941 StringRef MangledName = getMangledName(D); 3942 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3943 } 3944 3945 /// CreateRuntimeVariable - Create a new runtime global variable with the 3946 /// specified type and name. 3947 llvm::Constant * 3948 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3949 StringRef Name) { 3950 auto PtrTy = 3951 getContext().getLangOpts().OpenCL 3952 ? llvm::PointerType::get( 3953 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3954 : llvm::PointerType::getUnqual(Ty); 3955 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3956 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3957 return Ret; 3958 } 3959 3960 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3961 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3962 3963 StringRef MangledName = getMangledName(D); 3964 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3965 3966 // We already have a definition, not declaration, with the same mangled name. 3967 // Emitting of declaration is not required (and actually overwrites emitted 3968 // definition). 3969 if (GV && !GV->isDeclaration()) 3970 return; 3971 3972 // If we have not seen a reference to this variable yet, place it into the 3973 // deferred declarations table to be emitted if needed later. 3974 if (!MustBeEmitted(D) && !GV) { 3975 DeferredDecls[MangledName] = D; 3976 return; 3977 } 3978 3979 // The tentative definition is the only definition. 3980 EmitGlobalVarDefinition(D); 3981 } 3982 3983 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3984 EmitExternalVarDeclaration(D); 3985 } 3986 3987 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3988 return Context.toCharUnitsFromBits( 3989 getDataLayout().getTypeStoreSizeInBits(Ty)); 3990 } 3991 3992 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3993 LangAS AddrSpace = LangAS::Default; 3994 if (LangOpts.OpenCL) { 3995 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3996 assert(AddrSpace == LangAS::opencl_global || 3997 AddrSpace == LangAS::opencl_global_device || 3998 AddrSpace == LangAS::opencl_global_host || 3999 AddrSpace == LangAS::opencl_constant || 4000 AddrSpace == LangAS::opencl_local || 4001 AddrSpace >= LangAS::FirstTargetAddressSpace); 4002 return AddrSpace; 4003 } 4004 4005 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4006 if (D && D->hasAttr<CUDAConstantAttr>()) 4007 return LangAS::cuda_constant; 4008 else if (D && D->hasAttr<CUDASharedAttr>()) 4009 return LangAS::cuda_shared; 4010 else if (D && D->hasAttr<CUDADeviceAttr>()) 4011 return LangAS::cuda_device; 4012 else if (D && D->getType().isConstQualified()) 4013 return LangAS::cuda_constant; 4014 else 4015 return LangAS::cuda_device; 4016 } 4017 4018 if (LangOpts.OpenMP) { 4019 LangAS AS; 4020 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4021 return AS; 4022 } 4023 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4024 } 4025 4026 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4027 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4028 if (LangOpts.OpenCL) 4029 return LangAS::opencl_constant; 4030 if (auto AS = getTarget().getConstantAddressSpace()) 4031 return AS.getValue(); 4032 return LangAS::Default; 4033 } 4034 4035 // In address space agnostic languages, string literals are in default address 4036 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4037 // emitted in constant address space in LLVM IR. To be consistent with other 4038 // parts of AST, string literal global variables in constant address space 4039 // need to be casted to default address space before being put into address 4040 // map and referenced by other part of CodeGen. 4041 // In OpenCL, string literals are in constant address space in AST, therefore 4042 // they should not be casted to default address space. 4043 static llvm::Constant * 4044 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4045 llvm::GlobalVariable *GV) { 4046 llvm::Constant *Cast = GV; 4047 if (!CGM.getLangOpts().OpenCL) { 4048 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4049 if (AS != LangAS::Default) 4050 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4051 CGM, GV, AS.getValue(), LangAS::Default, 4052 GV->getValueType()->getPointerTo( 4053 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4054 } 4055 } 4056 return Cast; 4057 } 4058 4059 template<typename SomeDecl> 4060 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4061 llvm::GlobalValue *GV) { 4062 if (!getLangOpts().CPlusPlus) 4063 return; 4064 4065 // Must have 'used' attribute, or else inline assembly can't rely on 4066 // the name existing. 4067 if (!D->template hasAttr<UsedAttr>()) 4068 return; 4069 4070 // Must have internal linkage and an ordinary name. 4071 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4072 return; 4073 4074 // Must be in an extern "C" context. Entities declared directly within 4075 // a record are not extern "C" even if the record is in such a context. 4076 const SomeDecl *First = D->getFirstDecl(); 4077 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4078 return; 4079 4080 // OK, this is an internal linkage entity inside an extern "C" linkage 4081 // specification. Make a note of that so we can give it the "expected" 4082 // mangled name if nothing else is using that name. 4083 std::pair<StaticExternCMap::iterator, bool> R = 4084 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4085 4086 // If we have multiple internal linkage entities with the same name 4087 // in extern "C" regions, none of them gets that name. 4088 if (!R.second) 4089 R.first->second = nullptr; 4090 } 4091 4092 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4093 if (!CGM.supportsCOMDAT()) 4094 return false; 4095 4096 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4097 // them being "merged" by the COMDAT Folding linker optimization. 4098 if (D.hasAttr<CUDAGlobalAttr>()) 4099 return false; 4100 4101 if (D.hasAttr<SelectAnyAttr>()) 4102 return true; 4103 4104 GVALinkage Linkage; 4105 if (auto *VD = dyn_cast<VarDecl>(&D)) 4106 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4107 else 4108 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4109 4110 switch (Linkage) { 4111 case GVA_Internal: 4112 case GVA_AvailableExternally: 4113 case GVA_StrongExternal: 4114 return false; 4115 case GVA_DiscardableODR: 4116 case GVA_StrongODR: 4117 return true; 4118 } 4119 llvm_unreachable("No such linkage"); 4120 } 4121 4122 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4123 llvm::GlobalObject &GO) { 4124 if (!shouldBeInCOMDAT(*this, D)) 4125 return; 4126 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4127 } 4128 4129 /// Pass IsTentative as true if you want to create a tentative definition. 4130 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4131 bool IsTentative) { 4132 // OpenCL global variables of sampler type are translated to function calls, 4133 // therefore no need to be translated. 4134 QualType ASTTy = D->getType(); 4135 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4136 return; 4137 4138 // If this is OpenMP device, check if it is legal to emit this global 4139 // normally. 4140 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4141 OpenMPRuntime->emitTargetGlobalVariable(D)) 4142 return; 4143 4144 llvm::Constant *Init = nullptr; 4145 bool NeedsGlobalCtor = false; 4146 bool NeedsGlobalDtor = 4147 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4148 4149 const VarDecl *InitDecl; 4150 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4151 4152 Optional<ConstantEmitter> emitter; 4153 4154 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4155 // as part of their declaration." Sema has already checked for 4156 // error cases, so we just need to set Init to UndefValue. 4157 bool IsCUDASharedVar = 4158 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4159 // Shadows of initialized device-side global variables are also left 4160 // undefined. 4161 // Managed Variables should be initialized on both host side and device side. 4162 bool IsCUDAShadowVar = 4163 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4164 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4165 D->hasAttr<CUDASharedAttr>()); 4166 bool IsCUDADeviceShadowVar = 4167 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4168 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4169 D->getType()->isCUDADeviceBuiltinTextureType()); 4170 if (getLangOpts().CUDA && 4171 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4172 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4173 else if (D->hasAttr<LoaderUninitializedAttr>()) 4174 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4175 else if (!InitExpr) { 4176 // This is a tentative definition; tentative definitions are 4177 // implicitly initialized with { 0 }. 4178 // 4179 // Note that tentative definitions are only emitted at the end of 4180 // a translation unit, so they should never have incomplete 4181 // type. In addition, EmitTentativeDefinition makes sure that we 4182 // never attempt to emit a tentative definition if a real one 4183 // exists. A use may still exists, however, so we still may need 4184 // to do a RAUW. 4185 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4186 Init = EmitNullConstant(D->getType()); 4187 } else { 4188 initializedGlobalDecl = GlobalDecl(D); 4189 emitter.emplace(*this); 4190 Init = emitter->tryEmitForInitializer(*InitDecl); 4191 4192 if (!Init) { 4193 QualType T = InitExpr->getType(); 4194 if (D->getType()->isReferenceType()) 4195 T = D->getType(); 4196 4197 if (getLangOpts().CPlusPlus) { 4198 Init = EmitNullConstant(T); 4199 NeedsGlobalCtor = true; 4200 } else { 4201 ErrorUnsupported(D, "static initializer"); 4202 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4203 } 4204 } else { 4205 // We don't need an initializer, so remove the entry for the delayed 4206 // initializer position (just in case this entry was delayed) if we 4207 // also don't need to register a destructor. 4208 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4209 DelayedCXXInitPosition.erase(D); 4210 } 4211 } 4212 4213 llvm::Type* InitType = Init->getType(); 4214 llvm::Constant *Entry = 4215 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4216 4217 // Strip off pointer casts if we got them. 4218 Entry = Entry->stripPointerCasts(); 4219 4220 // Entry is now either a Function or GlobalVariable. 4221 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4222 4223 // We have a definition after a declaration with the wrong type. 4224 // We must make a new GlobalVariable* and update everything that used OldGV 4225 // (a declaration or tentative definition) with the new GlobalVariable* 4226 // (which will be a definition). 4227 // 4228 // This happens if there is a prototype for a global (e.g. 4229 // "extern int x[];") and then a definition of a different type (e.g. 4230 // "int x[10];"). This also happens when an initializer has a different type 4231 // from the type of the global (this happens with unions). 4232 if (!GV || GV->getValueType() != InitType || 4233 GV->getType()->getAddressSpace() != 4234 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4235 4236 // Move the old entry aside so that we'll create a new one. 4237 Entry->setName(StringRef()); 4238 4239 // Make a new global with the correct type, this is now guaranteed to work. 4240 GV = cast<llvm::GlobalVariable>( 4241 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4242 ->stripPointerCasts()); 4243 4244 // Replace all uses of the old global with the new global 4245 llvm::Constant *NewPtrForOldDecl = 4246 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4247 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4248 4249 // Erase the old global, since it is no longer used. 4250 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4251 } 4252 4253 MaybeHandleStaticInExternC(D, GV); 4254 4255 if (D->hasAttr<AnnotateAttr>()) 4256 AddGlobalAnnotations(D, GV); 4257 4258 // Set the llvm linkage type as appropriate. 4259 llvm::GlobalValue::LinkageTypes Linkage = 4260 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4261 4262 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4263 // the device. [...]" 4264 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4265 // __device__, declares a variable that: [...] 4266 // Is accessible from all the threads within the grid and from the host 4267 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4268 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4269 if (GV && LangOpts.CUDA) { 4270 if (LangOpts.CUDAIsDevice) { 4271 if (Linkage != llvm::GlobalValue::InternalLinkage && 4272 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4273 GV->setExternallyInitialized(true); 4274 } else { 4275 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4276 } 4277 getCUDARuntime().handleVarRegistration(D, *GV); 4278 } 4279 4280 GV->setInitializer(Init); 4281 if (emitter) 4282 emitter->finalize(GV); 4283 4284 // If it is safe to mark the global 'constant', do so now. 4285 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4286 isTypeConstant(D->getType(), true)); 4287 4288 // If it is in a read-only section, mark it 'constant'. 4289 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4290 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4291 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4292 GV->setConstant(true); 4293 } 4294 4295 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4296 4297 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4298 // function is only defined alongside the variable, not also alongside 4299 // callers. Normally, all accesses to a thread_local go through the 4300 // thread-wrapper in order to ensure initialization has occurred, underlying 4301 // variable will never be used other than the thread-wrapper, so it can be 4302 // converted to internal linkage. 4303 // 4304 // However, if the variable has the 'constinit' attribute, it _can_ be 4305 // referenced directly, without calling the thread-wrapper, so the linkage 4306 // must not be changed. 4307 // 4308 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4309 // weak or linkonce, the de-duplication semantics are important to preserve, 4310 // so we don't change the linkage. 4311 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4312 Linkage == llvm::GlobalValue::ExternalLinkage && 4313 Context.getTargetInfo().getTriple().isOSDarwin() && 4314 !D->hasAttr<ConstInitAttr>()) 4315 Linkage = llvm::GlobalValue::InternalLinkage; 4316 4317 GV->setLinkage(Linkage); 4318 if (D->hasAttr<DLLImportAttr>()) 4319 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4320 else if (D->hasAttr<DLLExportAttr>()) 4321 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4322 else 4323 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4324 4325 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4326 // common vars aren't constant even if declared const. 4327 GV->setConstant(false); 4328 // Tentative definition of global variables may be initialized with 4329 // non-zero null pointers. In this case they should have weak linkage 4330 // since common linkage must have zero initializer and must not have 4331 // explicit section therefore cannot have non-zero initial value. 4332 if (!GV->getInitializer()->isNullValue()) 4333 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4334 } 4335 4336 setNonAliasAttributes(D, GV); 4337 4338 if (D->getTLSKind() && !GV->isThreadLocal()) { 4339 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4340 CXXThreadLocals.push_back(D); 4341 setTLSMode(GV, *D); 4342 } 4343 4344 maybeSetTrivialComdat(*D, *GV); 4345 4346 // Emit the initializer function if necessary. 4347 if (NeedsGlobalCtor || NeedsGlobalDtor) 4348 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4349 4350 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4351 4352 // Emit global variable debug information. 4353 if (CGDebugInfo *DI = getModuleDebugInfo()) 4354 if (getCodeGenOpts().hasReducedDebugInfo()) 4355 DI->EmitGlobalVariable(GV, D); 4356 } 4357 4358 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4359 if (CGDebugInfo *DI = getModuleDebugInfo()) 4360 if (getCodeGenOpts().hasReducedDebugInfo()) { 4361 QualType ASTTy = D->getType(); 4362 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4363 llvm::PointerType *PTy = 4364 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4365 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4366 DI->EmitExternalVariable( 4367 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4368 } 4369 } 4370 4371 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4372 CodeGenModule &CGM, const VarDecl *D, 4373 bool NoCommon) { 4374 // Don't give variables common linkage if -fno-common was specified unless it 4375 // was overridden by a NoCommon attribute. 4376 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4377 return true; 4378 4379 // C11 6.9.2/2: 4380 // A declaration of an identifier for an object that has file scope without 4381 // an initializer, and without a storage-class specifier or with the 4382 // storage-class specifier static, constitutes a tentative definition. 4383 if (D->getInit() || D->hasExternalStorage()) 4384 return true; 4385 4386 // A variable cannot be both common and exist in a section. 4387 if (D->hasAttr<SectionAttr>()) 4388 return true; 4389 4390 // A variable cannot be both common and exist in a section. 4391 // We don't try to determine which is the right section in the front-end. 4392 // If no specialized section name is applicable, it will resort to default. 4393 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4394 D->hasAttr<PragmaClangDataSectionAttr>() || 4395 D->hasAttr<PragmaClangRelroSectionAttr>() || 4396 D->hasAttr<PragmaClangRodataSectionAttr>()) 4397 return true; 4398 4399 // Thread local vars aren't considered common linkage. 4400 if (D->getTLSKind()) 4401 return true; 4402 4403 // Tentative definitions marked with WeakImportAttr are true definitions. 4404 if (D->hasAttr<WeakImportAttr>()) 4405 return true; 4406 4407 // A variable cannot be both common and exist in a comdat. 4408 if (shouldBeInCOMDAT(CGM, *D)) 4409 return true; 4410 4411 // Declarations with a required alignment do not have common linkage in MSVC 4412 // mode. 4413 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4414 if (D->hasAttr<AlignedAttr>()) 4415 return true; 4416 QualType VarType = D->getType(); 4417 if (Context.isAlignmentRequired(VarType)) 4418 return true; 4419 4420 if (const auto *RT = VarType->getAs<RecordType>()) { 4421 const RecordDecl *RD = RT->getDecl(); 4422 for (const FieldDecl *FD : RD->fields()) { 4423 if (FD->isBitField()) 4424 continue; 4425 if (FD->hasAttr<AlignedAttr>()) 4426 return true; 4427 if (Context.isAlignmentRequired(FD->getType())) 4428 return true; 4429 } 4430 } 4431 } 4432 4433 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4434 // common symbols, so symbols with greater alignment requirements cannot be 4435 // common. 4436 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4437 // alignments for common symbols via the aligncomm directive, so this 4438 // restriction only applies to MSVC environments. 4439 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4440 Context.getTypeAlignIfKnown(D->getType()) > 4441 Context.toBits(CharUnits::fromQuantity(32))) 4442 return true; 4443 4444 return false; 4445 } 4446 4447 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4448 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4449 if (Linkage == GVA_Internal) 4450 return llvm::Function::InternalLinkage; 4451 4452 if (D->hasAttr<WeakAttr>()) { 4453 if (IsConstantVariable) 4454 return llvm::GlobalVariable::WeakODRLinkage; 4455 else 4456 return llvm::GlobalVariable::WeakAnyLinkage; 4457 } 4458 4459 if (const auto *FD = D->getAsFunction()) 4460 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4461 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4462 4463 // We are guaranteed to have a strong definition somewhere else, 4464 // so we can use available_externally linkage. 4465 if (Linkage == GVA_AvailableExternally) 4466 return llvm::GlobalValue::AvailableExternallyLinkage; 4467 4468 // Note that Apple's kernel linker doesn't support symbol 4469 // coalescing, so we need to avoid linkonce and weak linkages there. 4470 // Normally, this means we just map to internal, but for explicit 4471 // instantiations we'll map to external. 4472 4473 // In C++, the compiler has to emit a definition in every translation unit 4474 // that references the function. We should use linkonce_odr because 4475 // a) if all references in this translation unit are optimized away, we 4476 // don't need to codegen it. b) if the function persists, it needs to be 4477 // merged with other definitions. c) C++ has the ODR, so we know the 4478 // definition is dependable. 4479 if (Linkage == GVA_DiscardableODR) 4480 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4481 : llvm::Function::InternalLinkage; 4482 4483 // An explicit instantiation of a template has weak linkage, since 4484 // explicit instantiations can occur in multiple translation units 4485 // and must all be equivalent. However, we are not allowed to 4486 // throw away these explicit instantiations. 4487 // 4488 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4489 // so say that CUDA templates are either external (for kernels) or internal. 4490 // This lets llvm perform aggressive inter-procedural optimizations. For 4491 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4492 // therefore we need to follow the normal linkage paradigm. 4493 if (Linkage == GVA_StrongODR) { 4494 if (getLangOpts().AppleKext) 4495 return llvm::Function::ExternalLinkage; 4496 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4497 !getLangOpts().GPURelocatableDeviceCode) 4498 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4499 : llvm::Function::InternalLinkage; 4500 return llvm::Function::WeakODRLinkage; 4501 } 4502 4503 // C++ doesn't have tentative definitions and thus cannot have common 4504 // linkage. 4505 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4506 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4507 CodeGenOpts.NoCommon)) 4508 return llvm::GlobalVariable::CommonLinkage; 4509 4510 // selectany symbols are externally visible, so use weak instead of 4511 // linkonce. MSVC optimizes away references to const selectany globals, so 4512 // all definitions should be the same and ODR linkage should be used. 4513 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4514 if (D->hasAttr<SelectAnyAttr>()) 4515 return llvm::GlobalVariable::WeakODRLinkage; 4516 4517 // Otherwise, we have strong external linkage. 4518 assert(Linkage == GVA_StrongExternal); 4519 return llvm::GlobalVariable::ExternalLinkage; 4520 } 4521 4522 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4523 const VarDecl *VD, bool IsConstant) { 4524 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4525 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4526 } 4527 4528 /// Replace the uses of a function that was declared with a non-proto type. 4529 /// We want to silently drop extra arguments from call sites 4530 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4531 llvm::Function *newFn) { 4532 // Fast path. 4533 if (old->use_empty()) return; 4534 4535 llvm::Type *newRetTy = newFn->getReturnType(); 4536 SmallVector<llvm::Value*, 4> newArgs; 4537 4538 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4539 ui != ue; ) { 4540 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4541 llvm::User *user = use->getUser(); 4542 4543 // Recognize and replace uses of bitcasts. Most calls to 4544 // unprototyped functions will use bitcasts. 4545 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4546 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4547 replaceUsesOfNonProtoConstant(bitcast, newFn); 4548 continue; 4549 } 4550 4551 // Recognize calls to the function. 4552 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4553 if (!callSite) continue; 4554 if (!callSite->isCallee(&*use)) 4555 continue; 4556 4557 // If the return types don't match exactly, then we can't 4558 // transform this call unless it's dead. 4559 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4560 continue; 4561 4562 // Get the call site's attribute list. 4563 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4564 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4565 4566 // If the function was passed too few arguments, don't transform. 4567 unsigned newNumArgs = newFn->arg_size(); 4568 if (callSite->arg_size() < newNumArgs) 4569 continue; 4570 4571 // If extra arguments were passed, we silently drop them. 4572 // If any of the types mismatch, we don't transform. 4573 unsigned argNo = 0; 4574 bool dontTransform = false; 4575 for (llvm::Argument &A : newFn->args()) { 4576 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4577 dontTransform = true; 4578 break; 4579 } 4580 4581 // Add any parameter attributes. 4582 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4583 argNo++; 4584 } 4585 if (dontTransform) 4586 continue; 4587 4588 // Okay, we can transform this. Create the new call instruction and copy 4589 // over the required information. 4590 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4591 4592 // Copy over any operand bundles. 4593 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4594 callSite->getOperandBundlesAsDefs(newBundles); 4595 4596 llvm::CallBase *newCall; 4597 if (dyn_cast<llvm::CallInst>(callSite)) { 4598 newCall = 4599 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4600 } else { 4601 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4602 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4603 oldInvoke->getUnwindDest(), newArgs, 4604 newBundles, "", callSite); 4605 } 4606 newArgs.clear(); // for the next iteration 4607 4608 if (!newCall->getType()->isVoidTy()) 4609 newCall->takeName(callSite); 4610 newCall->setAttributes(llvm::AttributeList::get( 4611 newFn->getContext(), oldAttrs.getFnAttributes(), 4612 oldAttrs.getRetAttributes(), newArgAttrs)); 4613 newCall->setCallingConv(callSite->getCallingConv()); 4614 4615 // Finally, remove the old call, replacing any uses with the new one. 4616 if (!callSite->use_empty()) 4617 callSite->replaceAllUsesWith(newCall); 4618 4619 // Copy debug location attached to CI. 4620 if (callSite->getDebugLoc()) 4621 newCall->setDebugLoc(callSite->getDebugLoc()); 4622 4623 callSite->eraseFromParent(); 4624 } 4625 } 4626 4627 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4628 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4629 /// existing call uses of the old function in the module, this adjusts them to 4630 /// call the new function directly. 4631 /// 4632 /// This is not just a cleanup: the always_inline pass requires direct calls to 4633 /// functions to be able to inline them. If there is a bitcast in the way, it 4634 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4635 /// run at -O0. 4636 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4637 llvm::Function *NewFn) { 4638 // If we're redefining a global as a function, don't transform it. 4639 if (!isa<llvm::Function>(Old)) return; 4640 4641 replaceUsesOfNonProtoConstant(Old, NewFn); 4642 } 4643 4644 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4645 auto DK = VD->isThisDeclarationADefinition(); 4646 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4647 return; 4648 4649 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4650 // If we have a definition, this might be a deferred decl. If the 4651 // instantiation is explicit, make sure we emit it at the end. 4652 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4653 GetAddrOfGlobalVar(VD); 4654 4655 EmitTopLevelDecl(VD); 4656 } 4657 4658 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4659 llvm::GlobalValue *GV) { 4660 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4661 4662 // Compute the function info and LLVM type. 4663 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4664 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4665 4666 // Get or create the prototype for the function. 4667 if (!GV || (GV->getValueType() != Ty)) 4668 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4669 /*DontDefer=*/true, 4670 ForDefinition)); 4671 4672 // Already emitted. 4673 if (!GV->isDeclaration()) 4674 return; 4675 4676 // We need to set linkage and visibility on the function before 4677 // generating code for it because various parts of IR generation 4678 // want to propagate this information down (e.g. to local static 4679 // declarations). 4680 auto *Fn = cast<llvm::Function>(GV); 4681 setFunctionLinkage(GD, Fn); 4682 4683 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4684 setGVProperties(Fn, GD); 4685 4686 MaybeHandleStaticInExternC(D, Fn); 4687 4688 maybeSetTrivialComdat(*D, *Fn); 4689 4690 // Set CodeGen attributes that represent floating point environment. 4691 setLLVMFunctionFEnvAttributes(D, Fn); 4692 4693 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4694 4695 setNonAliasAttributes(GD, Fn); 4696 SetLLVMFunctionAttributesForDefinition(D, Fn); 4697 4698 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4699 AddGlobalCtor(Fn, CA->getPriority()); 4700 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4701 AddGlobalDtor(Fn, DA->getPriority(), true); 4702 if (D->hasAttr<AnnotateAttr>()) 4703 AddGlobalAnnotations(D, Fn); 4704 } 4705 4706 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4707 const auto *D = cast<ValueDecl>(GD.getDecl()); 4708 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4709 assert(AA && "Not an alias?"); 4710 4711 StringRef MangledName = getMangledName(GD); 4712 4713 if (AA->getAliasee() == MangledName) { 4714 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4715 return; 4716 } 4717 4718 // If there is a definition in the module, then it wins over the alias. 4719 // This is dubious, but allow it to be safe. Just ignore the alias. 4720 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4721 if (Entry && !Entry->isDeclaration()) 4722 return; 4723 4724 Aliases.push_back(GD); 4725 4726 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4727 4728 // Create a reference to the named value. This ensures that it is emitted 4729 // if a deferred decl. 4730 llvm::Constant *Aliasee; 4731 llvm::GlobalValue::LinkageTypes LT; 4732 if (isa<llvm::FunctionType>(DeclTy)) { 4733 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4734 /*ForVTable=*/false); 4735 LT = getFunctionLinkage(GD); 4736 } else { 4737 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4738 llvm::PointerType::getUnqual(DeclTy), 4739 /*D=*/nullptr); 4740 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4741 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4742 else 4743 LT = getFunctionLinkage(GD); 4744 } 4745 4746 // Create the new alias itself, but don't set a name yet. 4747 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4748 auto *GA = 4749 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4750 4751 if (Entry) { 4752 if (GA->getAliasee() == Entry) { 4753 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4754 return; 4755 } 4756 4757 assert(Entry->isDeclaration()); 4758 4759 // If there is a declaration in the module, then we had an extern followed 4760 // by the alias, as in: 4761 // extern int test6(); 4762 // ... 4763 // int test6() __attribute__((alias("test7"))); 4764 // 4765 // Remove it and replace uses of it with the alias. 4766 GA->takeName(Entry); 4767 4768 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4769 Entry->getType())); 4770 Entry->eraseFromParent(); 4771 } else { 4772 GA->setName(MangledName); 4773 } 4774 4775 // Set attributes which are particular to an alias; this is a 4776 // specialization of the attributes which may be set on a global 4777 // variable/function. 4778 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4779 D->isWeakImported()) { 4780 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4781 } 4782 4783 if (const auto *VD = dyn_cast<VarDecl>(D)) 4784 if (VD->getTLSKind()) 4785 setTLSMode(GA, *VD); 4786 4787 SetCommonAttributes(GD, GA); 4788 } 4789 4790 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4791 const auto *D = cast<ValueDecl>(GD.getDecl()); 4792 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4793 assert(IFA && "Not an ifunc?"); 4794 4795 StringRef MangledName = getMangledName(GD); 4796 4797 if (IFA->getResolver() == MangledName) { 4798 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4799 return; 4800 } 4801 4802 // Report an error if some definition overrides ifunc. 4803 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4804 if (Entry && !Entry->isDeclaration()) { 4805 GlobalDecl OtherGD; 4806 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4807 DiagnosedConflictingDefinitions.insert(GD).second) { 4808 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4809 << MangledName; 4810 Diags.Report(OtherGD.getDecl()->getLocation(), 4811 diag::note_previous_definition); 4812 } 4813 return; 4814 } 4815 4816 Aliases.push_back(GD); 4817 4818 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4819 llvm::Constant *Resolver = 4820 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4821 /*ForVTable=*/false); 4822 llvm::GlobalIFunc *GIF = 4823 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4824 "", Resolver, &getModule()); 4825 if (Entry) { 4826 if (GIF->getResolver() == Entry) { 4827 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4828 return; 4829 } 4830 assert(Entry->isDeclaration()); 4831 4832 // If there is a declaration in the module, then we had an extern followed 4833 // by the ifunc, as in: 4834 // extern int test(); 4835 // ... 4836 // int test() __attribute__((ifunc("resolver"))); 4837 // 4838 // Remove it and replace uses of it with the ifunc. 4839 GIF->takeName(Entry); 4840 4841 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4842 Entry->getType())); 4843 Entry->eraseFromParent(); 4844 } else 4845 GIF->setName(MangledName); 4846 4847 SetCommonAttributes(GD, GIF); 4848 } 4849 4850 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4851 ArrayRef<llvm::Type*> Tys) { 4852 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4853 Tys); 4854 } 4855 4856 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4857 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4858 const StringLiteral *Literal, bool TargetIsLSB, 4859 bool &IsUTF16, unsigned &StringLength) { 4860 StringRef String = Literal->getString(); 4861 unsigned NumBytes = String.size(); 4862 4863 // Check for simple case. 4864 if (!Literal->containsNonAsciiOrNull()) { 4865 StringLength = NumBytes; 4866 return *Map.insert(std::make_pair(String, nullptr)).first; 4867 } 4868 4869 // Otherwise, convert the UTF8 literals into a string of shorts. 4870 IsUTF16 = true; 4871 4872 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4873 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4874 llvm::UTF16 *ToPtr = &ToBuf[0]; 4875 4876 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4877 ToPtr + NumBytes, llvm::strictConversion); 4878 4879 // ConvertUTF8toUTF16 returns the length in ToPtr. 4880 StringLength = ToPtr - &ToBuf[0]; 4881 4882 // Add an explicit null. 4883 *ToPtr = 0; 4884 return *Map.insert(std::make_pair( 4885 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4886 (StringLength + 1) * 2), 4887 nullptr)).first; 4888 } 4889 4890 ConstantAddress 4891 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4892 unsigned StringLength = 0; 4893 bool isUTF16 = false; 4894 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4895 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4896 getDataLayout().isLittleEndian(), isUTF16, 4897 StringLength); 4898 4899 if (auto *C = Entry.second) 4900 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4901 4902 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4903 llvm::Constant *Zeros[] = { Zero, Zero }; 4904 4905 const ASTContext &Context = getContext(); 4906 const llvm::Triple &Triple = getTriple(); 4907 4908 const auto CFRuntime = getLangOpts().CFRuntime; 4909 const bool IsSwiftABI = 4910 static_cast<unsigned>(CFRuntime) >= 4911 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4912 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4913 4914 // If we don't already have it, get __CFConstantStringClassReference. 4915 if (!CFConstantStringClassRef) { 4916 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4917 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4918 Ty = llvm::ArrayType::get(Ty, 0); 4919 4920 switch (CFRuntime) { 4921 default: break; 4922 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4923 case LangOptions::CoreFoundationABI::Swift5_0: 4924 CFConstantStringClassName = 4925 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4926 : "$s10Foundation19_NSCFConstantStringCN"; 4927 Ty = IntPtrTy; 4928 break; 4929 case LangOptions::CoreFoundationABI::Swift4_2: 4930 CFConstantStringClassName = 4931 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4932 : "$S10Foundation19_NSCFConstantStringCN"; 4933 Ty = IntPtrTy; 4934 break; 4935 case LangOptions::CoreFoundationABI::Swift4_1: 4936 CFConstantStringClassName = 4937 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4938 : "__T010Foundation19_NSCFConstantStringCN"; 4939 Ty = IntPtrTy; 4940 break; 4941 } 4942 4943 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4944 4945 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4946 llvm::GlobalValue *GV = nullptr; 4947 4948 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4949 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4950 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4951 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4952 4953 const VarDecl *VD = nullptr; 4954 for (const auto &Result : DC->lookup(&II)) 4955 if ((VD = dyn_cast<VarDecl>(Result))) 4956 break; 4957 4958 if (Triple.isOSBinFormatELF()) { 4959 if (!VD) 4960 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4961 } else { 4962 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4963 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4964 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4965 else 4966 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4967 } 4968 4969 setDSOLocal(GV); 4970 } 4971 } 4972 4973 // Decay array -> ptr 4974 CFConstantStringClassRef = 4975 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4976 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4977 } 4978 4979 QualType CFTy = Context.getCFConstantStringType(); 4980 4981 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4982 4983 ConstantInitBuilder Builder(*this); 4984 auto Fields = Builder.beginStruct(STy); 4985 4986 // Class pointer. 4987 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4988 4989 // Flags. 4990 if (IsSwiftABI) { 4991 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4992 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4993 } else { 4994 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4995 } 4996 4997 // String pointer. 4998 llvm::Constant *C = nullptr; 4999 if (isUTF16) { 5000 auto Arr = llvm::makeArrayRef( 5001 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5002 Entry.first().size() / 2); 5003 C = llvm::ConstantDataArray::get(VMContext, Arr); 5004 } else { 5005 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5006 } 5007 5008 // Note: -fwritable-strings doesn't make the backing store strings of 5009 // CFStrings writable. (See <rdar://problem/10657500>) 5010 auto *GV = 5011 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5012 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5013 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5014 // Don't enforce the target's minimum global alignment, since the only use 5015 // of the string is via this class initializer. 5016 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5017 : Context.getTypeAlignInChars(Context.CharTy); 5018 GV->setAlignment(Align.getAsAlign()); 5019 5020 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5021 // Without it LLVM can merge the string with a non unnamed_addr one during 5022 // LTO. Doing that changes the section it ends in, which surprises ld64. 5023 if (Triple.isOSBinFormatMachO()) 5024 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5025 : "__TEXT,__cstring,cstring_literals"); 5026 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5027 // the static linker to adjust permissions to read-only later on. 5028 else if (Triple.isOSBinFormatELF()) 5029 GV->setSection(".rodata"); 5030 5031 // String. 5032 llvm::Constant *Str = 5033 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5034 5035 if (isUTF16) 5036 // Cast the UTF16 string to the correct type. 5037 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5038 Fields.add(Str); 5039 5040 // String length. 5041 llvm::IntegerType *LengthTy = 5042 llvm::IntegerType::get(getModule().getContext(), 5043 Context.getTargetInfo().getLongWidth()); 5044 if (IsSwiftABI) { 5045 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5046 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5047 LengthTy = Int32Ty; 5048 else 5049 LengthTy = IntPtrTy; 5050 } 5051 Fields.addInt(LengthTy, StringLength); 5052 5053 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5054 // properly aligned on 32-bit platforms. 5055 CharUnits Alignment = 5056 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5057 5058 // The struct. 5059 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5060 /*isConstant=*/false, 5061 llvm::GlobalVariable::PrivateLinkage); 5062 GV->addAttribute("objc_arc_inert"); 5063 switch (Triple.getObjectFormat()) { 5064 case llvm::Triple::UnknownObjectFormat: 5065 llvm_unreachable("unknown file format"); 5066 case llvm::Triple::GOFF: 5067 llvm_unreachable("GOFF is not yet implemented"); 5068 case llvm::Triple::XCOFF: 5069 llvm_unreachable("XCOFF is not yet implemented"); 5070 case llvm::Triple::COFF: 5071 case llvm::Triple::ELF: 5072 case llvm::Triple::Wasm: 5073 GV->setSection("cfstring"); 5074 break; 5075 case llvm::Triple::MachO: 5076 GV->setSection("__DATA,__cfstring"); 5077 break; 5078 } 5079 Entry.second = GV; 5080 5081 return ConstantAddress(GV, Alignment); 5082 } 5083 5084 bool CodeGenModule::getExpressionLocationsEnabled() const { 5085 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5086 } 5087 5088 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5089 if (ObjCFastEnumerationStateType.isNull()) { 5090 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5091 D->startDefinition(); 5092 5093 QualType FieldTypes[] = { 5094 Context.UnsignedLongTy, 5095 Context.getPointerType(Context.getObjCIdType()), 5096 Context.getPointerType(Context.UnsignedLongTy), 5097 Context.getConstantArrayType(Context.UnsignedLongTy, 5098 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5099 }; 5100 5101 for (size_t i = 0; i < 4; ++i) { 5102 FieldDecl *Field = FieldDecl::Create(Context, 5103 D, 5104 SourceLocation(), 5105 SourceLocation(), nullptr, 5106 FieldTypes[i], /*TInfo=*/nullptr, 5107 /*BitWidth=*/nullptr, 5108 /*Mutable=*/false, 5109 ICIS_NoInit); 5110 Field->setAccess(AS_public); 5111 D->addDecl(Field); 5112 } 5113 5114 D->completeDefinition(); 5115 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5116 } 5117 5118 return ObjCFastEnumerationStateType; 5119 } 5120 5121 llvm::Constant * 5122 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5123 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5124 5125 // Don't emit it as the address of the string, emit the string data itself 5126 // as an inline array. 5127 if (E->getCharByteWidth() == 1) { 5128 SmallString<64> Str(E->getString()); 5129 5130 // Resize the string to the right size, which is indicated by its type. 5131 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5132 Str.resize(CAT->getSize().getZExtValue()); 5133 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5134 } 5135 5136 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5137 llvm::Type *ElemTy = AType->getElementType(); 5138 unsigned NumElements = AType->getNumElements(); 5139 5140 // Wide strings have either 2-byte or 4-byte elements. 5141 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5142 SmallVector<uint16_t, 32> Elements; 5143 Elements.reserve(NumElements); 5144 5145 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5146 Elements.push_back(E->getCodeUnit(i)); 5147 Elements.resize(NumElements); 5148 return llvm::ConstantDataArray::get(VMContext, Elements); 5149 } 5150 5151 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5152 SmallVector<uint32_t, 32> Elements; 5153 Elements.reserve(NumElements); 5154 5155 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5156 Elements.push_back(E->getCodeUnit(i)); 5157 Elements.resize(NumElements); 5158 return llvm::ConstantDataArray::get(VMContext, Elements); 5159 } 5160 5161 static llvm::GlobalVariable * 5162 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5163 CodeGenModule &CGM, StringRef GlobalName, 5164 CharUnits Alignment) { 5165 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5166 CGM.getStringLiteralAddressSpace()); 5167 5168 llvm::Module &M = CGM.getModule(); 5169 // Create a global variable for this string 5170 auto *GV = new llvm::GlobalVariable( 5171 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5172 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5173 GV->setAlignment(Alignment.getAsAlign()); 5174 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5175 if (GV->isWeakForLinker()) { 5176 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5177 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5178 } 5179 CGM.setDSOLocal(GV); 5180 5181 return GV; 5182 } 5183 5184 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5185 /// constant array for the given string literal. 5186 ConstantAddress 5187 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5188 StringRef Name) { 5189 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5190 5191 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5192 llvm::GlobalVariable **Entry = nullptr; 5193 if (!LangOpts.WritableStrings) { 5194 Entry = &ConstantStringMap[C]; 5195 if (auto GV = *Entry) { 5196 if (Alignment.getQuantity() > GV->getAlignment()) 5197 GV->setAlignment(Alignment.getAsAlign()); 5198 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5199 Alignment); 5200 } 5201 } 5202 5203 SmallString<256> MangledNameBuffer; 5204 StringRef GlobalVariableName; 5205 llvm::GlobalValue::LinkageTypes LT; 5206 5207 // Mangle the string literal if that's how the ABI merges duplicate strings. 5208 // Don't do it if they are writable, since we don't want writes in one TU to 5209 // affect strings in another. 5210 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5211 !LangOpts.WritableStrings) { 5212 llvm::raw_svector_ostream Out(MangledNameBuffer); 5213 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5214 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5215 GlobalVariableName = MangledNameBuffer; 5216 } else { 5217 LT = llvm::GlobalValue::PrivateLinkage; 5218 GlobalVariableName = Name; 5219 } 5220 5221 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5222 if (Entry) 5223 *Entry = GV; 5224 5225 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5226 QualType()); 5227 5228 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5229 Alignment); 5230 } 5231 5232 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5233 /// array for the given ObjCEncodeExpr node. 5234 ConstantAddress 5235 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5236 std::string Str; 5237 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5238 5239 return GetAddrOfConstantCString(Str); 5240 } 5241 5242 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5243 /// the literal and a terminating '\0' character. 5244 /// The result has pointer to array type. 5245 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5246 const std::string &Str, const char *GlobalName) { 5247 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5248 CharUnits Alignment = 5249 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5250 5251 llvm::Constant *C = 5252 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5253 5254 // Don't share any string literals if strings aren't constant. 5255 llvm::GlobalVariable **Entry = nullptr; 5256 if (!LangOpts.WritableStrings) { 5257 Entry = &ConstantStringMap[C]; 5258 if (auto GV = *Entry) { 5259 if (Alignment.getQuantity() > GV->getAlignment()) 5260 GV->setAlignment(Alignment.getAsAlign()); 5261 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5262 Alignment); 5263 } 5264 } 5265 5266 // Get the default prefix if a name wasn't specified. 5267 if (!GlobalName) 5268 GlobalName = ".str"; 5269 // Create a global variable for this. 5270 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5271 GlobalName, Alignment); 5272 if (Entry) 5273 *Entry = GV; 5274 5275 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5276 Alignment); 5277 } 5278 5279 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5280 const MaterializeTemporaryExpr *E, const Expr *Init) { 5281 assert((E->getStorageDuration() == SD_Static || 5282 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5283 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5284 5285 // If we're not materializing a subobject of the temporary, keep the 5286 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5287 QualType MaterializedType = Init->getType(); 5288 if (Init == E->getSubExpr()) 5289 MaterializedType = E->getType(); 5290 5291 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5292 5293 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5294 return ConstantAddress(Slot, Align); 5295 5296 // FIXME: If an externally-visible declaration extends multiple temporaries, 5297 // we need to give each temporary the same name in every translation unit (and 5298 // we also need to make the temporaries externally-visible). 5299 SmallString<256> Name; 5300 llvm::raw_svector_ostream Out(Name); 5301 getCXXABI().getMangleContext().mangleReferenceTemporary( 5302 VD, E->getManglingNumber(), Out); 5303 5304 APValue *Value = nullptr; 5305 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5306 // If the initializer of the extending declaration is a constant 5307 // initializer, we should have a cached constant initializer for this 5308 // temporary. Note that this might have a different value from the value 5309 // computed by evaluating the initializer if the surrounding constant 5310 // expression modifies the temporary. 5311 Value = E->getOrCreateValue(false); 5312 } 5313 5314 // Try evaluating it now, it might have a constant initializer. 5315 Expr::EvalResult EvalResult; 5316 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5317 !EvalResult.hasSideEffects()) 5318 Value = &EvalResult.Val; 5319 5320 LangAS AddrSpace = 5321 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5322 5323 Optional<ConstantEmitter> emitter; 5324 llvm::Constant *InitialValue = nullptr; 5325 bool Constant = false; 5326 llvm::Type *Type; 5327 if (Value) { 5328 // The temporary has a constant initializer, use it. 5329 emitter.emplace(*this); 5330 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5331 MaterializedType); 5332 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5333 Type = InitialValue->getType(); 5334 } else { 5335 // No initializer, the initialization will be provided when we 5336 // initialize the declaration which performed lifetime extension. 5337 Type = getTypes().ConvertTypeForMem(MaterializedType); 5338 } 5339 5340 // Create a global variable for this lifetime-extended temporary. 5341 llvm::GlobalValue::LinkageTypes Linkage = 5342 getLLVMLinkageVarDefinition(VD, Constant); 5343 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5344 const VarDecl *InitVD; 5345 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5346 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5347 // Temporaries defined inside a class get linkonce_odr linkage because the 5348 // class can be defined in multiple translation units. 5349 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5350 } else { 5351 // There is no need for this temporary to have external linkage if the 5352 // VarDecl has external linkage. 5353 Linkage = llvm::GlobalVariable::InternalLinkage; 5354 } 5355 } 5356 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5357 auto *GV = new llvm::GlobalVariable( 5358 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5359 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5360 if (emitter) emitter->finalize(GV); 5361 setGVProperties(GV, VD); 5362 GV->setAlignment(Align.getAsAlign()); 5363 if (supportsCOMDAT() && GV->isWeakForLinker()) 5364 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5365 if (VD->getTLSKind()) 5366 setTLSMode(GV, *VD); 5367 llvm::Constant *CV = GV; 5368 if (AddrSpace != LangAS::Default) 5369 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5370 *this, GV, AddrSpace, LangAS::Default, 5371 Type->getPointerTo( 5372 getContext().getTargetAddressSpace(LangAS::Default))); 5373 MaterializedGlobalTemporaryMap[E] = CV; 5374 return ConstantAddress(CV, Align); 5375 } 5376 5377 /// EmitObjCPropertyImplementations - Emit information for synthesized 5378 /// properties for an implementation. 5379 void CodeGenModule::EmitObjCPropertyImplementations(const 5380 ObjCImplementationDecl *D) { 5381 for (const auto *PID : D->property_impls()) { 5382 // Dynamic is just for type-checking. 5383 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5384 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5385 5386 // Determine which methods need to be implemented, some may have 5387 // been overridden. Note that ::isPropertyAccessor is not the method 5388 // we want, that just indicates if the decl came from a 5389 // property. What we want to know is if the method is defined in 5390 // this implementation. 5391 auto *Getter = PID->getGetterMethodDecl(); 5392 if (!Getter || Getter->isSynthesizedAccessorStub()) 5393 CodeGenFunction(*this).GenerateObjCGetter( 5394 const_cast<ObjCImplementationDecl *>(D), PID); 5395 auto *Setter = PID->getSetterMethodDecl(); 5396 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5397 CodeGenFunction(*this).GenerateObjCSetter( 5398 const_cast<ObjCImplementationDecl *>(D), PID); 5399 } 5400 } 5401 } 5402 5403 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5404 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5405 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5406 ivar; ivar = ivar->getNextIvar()) 5407 if (ivar->getType().isDestructedType()) 5408 return true; 5409 5410 return false; 5411 } 5412 5413 static bool AllTrivialInitializers(CodeGenModule &CGM, 5414 ObjCImplementationDecl *D) { 5415 CodeGenFunction CGF(CGM); 5416 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5417 E = D->init_end(); B != E; ++B) { 5418 CXXCtorInitializer *CtorInitExp = *B; 5419 Expr *Init = CtorInitExp->getInit(); 5420 if (!CGF.isTrivialInitializer(Init)) 5421 return false; 5422 } 5423 return true; 5424 } 5425 5426 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5427 /// for an implementation. 5428 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5429 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5430 if (needsDestructMethod(D)) { 5431 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5432 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5433 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5434 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5435 getContext().VoidTy, nullptr, D, 5436 /*isInstance=*/true, /*isVariadic=*/false, 5437 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5438 /*isImplicitlyDeclared=*/true, 5439 /*isDefined=*/false, ObjCMethodDecl::Required); 5440 D->addInstanceMethod(DTORMethod); 5441 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5442 D->setHasDestructors(true); 5443 } 5444 5445 // If the implementation doesn't have any ivar initializers, we don't need 5446 // a .cxx_construct. 5447 if (D->getNumIvarInitializers() == 0 || 5448 AllTrivialInitializers(*this, D)) 5449 return; 5450 5451 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5452 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5453 // The constructor returns 'self'. 5454 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5455 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5456 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5457 /*isVariadic=*/false, 5458 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5459 /*isImplicitlyDeclared=*/true, 5460 /*isDefined=*/false, ObjCMethodDecl::Required); 5461 D->addInstanceMethod(CTORMethod); 5462 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5463 D->setHasNonZeroConstructors(true); 5464 } 5465 5466 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5467 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5468 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5469 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5470 ErrorUnsupported(LSD, "linkage spec"); 5471 return; 5472 } 5473 5474 EmitDeclContext(LSD); 5475 } 5476 5477 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5478 for (auto *I : DC->decls()) { 5479 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5480 // are themselves considered "top-level", so EmitTopLevelDecl on an 5481 // ObjCImplDecl does not recursively visit them. We need to do that in 5482 // case they're nested inside another construct (LinkageSpecDecl / 5483 // ExportDecl) that does stop them from being considered "top-level". 5484 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5485 for (auto *M : OID->methods()) 5486 EmitTopLevelDecl(M); 5487 } 5488 5489 EmitTopLevelDecl(I); 5490 } 5491 } 5492 5493 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5494 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5495 // Ignore dependent declarations. 5496 if (D->isTemplated()) 5497 return; 5498 5499 // Consteval function shouldn't be emitted. 5500 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5501 if (FD->isConsteval()) 5502 return; 5503 5504 switch (D->getKind()) { 5505 case Decl::CXXConversion: 5506 case Decl::CXXMethod: 5507 case Decl::Function: 5508 EmitGlobal(cast<FunctionDecl>(D)); 5509 // Always provide some coverage mapping 5510 // even for the functions that aren't emitted. 5511 AddDeferredUnusedCoverageMapping(D); 5512 break; 5513 5514 case Decl::CXXDeductionGuide: 5515 // Function-like, but does not result in code emission. 5516 break; 5517 5518 case Decl::Var: 5519 case Decl::Decomposition: 5520 case Decl::VarTemplateSpecialization: 5521 EmitGlobal(cast<VarDecl>(D)); 5522 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5523 for (auto *B : DD->bindings()) 5524 if (auto *HD = B->getHoldingVar()) 5525 EmitGlobal(HD); 5526 break; 5527 5528 // Indirect fields from global anonymous structs and unions can be 5529 // ignored; only the actual variable requires IR gen support. 5530 case Decl::IndirectField: 5531 break; 5532 5533 // C++ Decls 5534 case Decl::Namespace: 5535 EmitDeclContext(cast<NamespaceDecl>(D)); 5536 break; 5537 case Decl::ClassTemplateSpecialization: { 5538 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5539 if (CGDebugInfo *DI = getModuleDebugInfo()) 5540 if (Spec->getSpecializationKind() == 5541 TSK_ExplicitInstantiationDefinition && 5542 Spec->hasDefinition()) 5543 DI->completeTemplateDefinition(*Spec); 5544 } LLVM_FALLTHROUGH; 5545 case Decl::CXXRecord: { 5546 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5547 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5548 if (CRD->hasDefinition()) 5549 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5550 if (auto *ES = D->getASTContext().getExternalSource()) 5551 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5552 DI->completeUnusedClass(*CRD); 5553 } 5554 // Emit any static data members, they may be definitions. 5555 for (auto *I : CRD->decls()) 5556 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5557 EmitTopLevelDecl(I); 5558 break; 5559 } 5560 // No code generation needed. 5561 case Decl::UsingShadow: 5562 case Decl::ClassTemplate: 5563 case Decl::VarTemplate: 5564 case Decl::Concept: 5565 case Decl::VarTemplatePartialSpecialization: 5566 case Decl::FunctionTemplate: 5567 case Decl::TypeAliasTemplate: 5568 case Decl::Block: 5569 case Decl::Empty: 5570 case Decl::Binding: 5571 break; 5572 case Decl::Using: // using X; [C++] 5573 if (CGDebugInfo *DI = getModuleDebugInfo()) 5574 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5575 break; 5576 case Decl::NamespaceAlias: 5577 if (CGDebugInfo *DI = getModuleDebugInfo()) 5578 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5579 break; 5580 case Decl::UsingDirective: // using namespace X; [C++] 5581 if (CGDebugInfo *DI = getModuleDebugInfo()) 5582 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5583 break; 5584 case Decl::CXXConstructor: 5585 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5586 break; 5587 case Decl::CXXDestructor: 5588 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5589 break; 5590 5591 case Decl::StaticAssert: 5592 // Nothing to do. 5593 break; 5594 5595 // Objective-C Decls 5596 5597 // Forward declarations, no (immediate) code generation. 5598 case Decl::ObjCInterface: 5599 case Decl::ObjCCategory: 5600 break; 5601 5602 case Decl::ObjCProtocol: { 5603 auto *Proto = cast<ObjCProtocolDecl>(D); 5604 if (Proto->isThisDeclarationADefinition()) 5605 ObjCRuntime->GenerateProtocol(Proto); 5606 break; 5607 } 5608 5609 case Decl::ObjCCategoryImpl: 5610 // Categories have properties but don't support synthesize so we 5611 // can ignore them here. 5612 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5613 break; 5614 5615 case Decl::ObjCImplementation: { 5616 auto *OMD = cast<ObjCImplementationDecl>(D); 5617 EmitObjCPropertyImplementations(OMD); 5618 EmitObjCIvarInitializations(OMD); 5619 ObjCRuntime->GenerateClass(OMD); 5620 // Emit global variable debug information. 5621 if (CGDebugInfo *DI = getModuleDebugInfo()) 5622 if (getCodeGenOpts().hasReducedDebugInfo()) 5623 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5624 OMD->getClassInterface()), OMD->getLocation()); 5625 break; 5626 } 5627 case Decl::ObjCMethod: { 5628 auto *OMD = cast<ObjCMethodDecl>(D); 5629 // If this is not a prototype, emit the body. 5630 if (OMD->getBody()) 5631 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5632 break; 5633 } 5634 case Decl::ObjCCompatibleAlias: 5635 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5636 break; 5637 5638 case Decl::PragmaComment: { 5639 const auto *PCD = cast<PragmaCommentDecl>(D); 5640 switch (PCD->getCommentKind()) { 5641 case PCK_Unknown: 5642 llvm_unreachable("unexpected pragma comment kind"); 5643 case PCK_Linker: 5644 AppendLinkerOptions(PCD->getArg()); 5645 break; 5646 case PCK_Lib: 5647 AddDependentLib(PCD->getArg()); 5648 break; 5649 case PCK_Compiler: 5650 case PCK_ExeStr: 5651 case PCK_User: 5652 break; // We ignore all of these. 5653 } 5654 break; 5655 } 5656 5657 case Decl::PragmaDetectMismatch: { 5658 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5659 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5660 break; 5661 } 5662 5663 case Decl::LinkageSpec: 5664 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5665 break; 5666 5667 case Decl::FileScopeAsm: { 5668 // File-scope asm is ignored during device-side CUDA compilation. 5669 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5670 break; 5671 // File-scope asm is ignored during device-side OpenMP compilation. 5672 if (LangOpts.OpenMPIsDevice) 5673 break; 5674 // File-scope asm is ignored during device-side SYCL compilation. 5675 if (LangOpts.SYCLIsDevice) 5676 break; 5677 auto *AD = cast<FileScopeAsmDecl>(D); 5678 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5679 break; 5680 } 5681 5682 case Decl::Import: { 5683 auto *Import = cast<ImportDecl>(D); 5684 5685 // If we've already imported this module, we're done. 5686 if (!ImportedModules.insert(Import->getImportedModule())) 5687 break; 5688 5689 // Emit debug information for direct imports. 5690 if (!Import->getImportedOwningModule()) { 5691 if (CGDebugInfo *DI = getModuleDebugInfo()) 5692 DI->EmitImportDecl(*Import); 5693 } 5694 5695 // Find all of the submodules and emit the module initializers. 5696 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5697 SmallVector<clang::Module *, 16> Stack; 5698 Visited.insert(Import->getImportedModule()); 5699 Stack.push_back(Import->getImportedModule()); 5700 5701 while (!Stack.empty()) { 5702 clang::Module *Mod = Stack.pop_back_val(); 5703 if (!EmittedModuleInitializers.insert(Mod).second) 5704 continue; 5705 5706 for (auto *D : Context.getModuleInitializers(Mod)) 5707 EmitTopLevelDecl(D); 5708 5709 // Visit the submodules of this module. 5710 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5711 SubEnd = Mod->submodule_end(); 5712 Sub != SubEnd; ++Sub) { 5713 // Skip explicit children; they need to be explicitly imported to emit 5714 // the initializers. 5715 if ((*Sub)->IsExplicit) 5716 continue; 5717 5718 if (Visited.insert(*Sub).second) 5719 Stack.push_back(*Sub); 5720 } 5721 } 5722 break; 5723 } 5724 5725 case Decl::Export: 5726 EmitDeclContext(cast<ExportDecl>(D)); 5727 break; 5728 5729 case Decl::OMPThreadPrivate: 5730 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5731 break; 5732 5733 case Decl::OMPAllocate: 5734 break; 5735 5736 case Decl::OMPDeclareReduction: 5737 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5738 break; 5739 5740 case Decl::OMPDeclareMapper: 5741 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5742 break; 5743 5744 case Decl::OMPRequires: 5745 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5746 break; 5747 5748 case Decl::Typedef: 5749 case Decl::TypeAlias: // using foo = bar; [C++11] 5750 if (CGDebugInfo *DI = getModuleDebugInfo()) 5751 DI->EmitAndRetainType( 5752 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5753 break; 5754 5755 case Decl::Record: 5756 if (CGDebugInfo *DI = getModuleDebugInfo()) 5757 if (cast<RecordDecl>(D)->getDefinition()) 5758 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5759 break; 5760 5761 case Decl::Enum: 5762 if (CGDebugInfo *DI = getModuleDebugInfo()) 5763 if (cast<EnumDecl>(D)->getDefinition()) 5764 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5765 break; 5766 5767 default: 5768 // Make sure we handled everything we should, every other kind is a 5769 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5770 // function. Need to recode Decl::Kind to do that easily. 5771 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5772 break; 5773 } 5774 } 5775 5776 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5777 // Do we need to generate coverage mapping? 5778 if (!CodeGenOpts.CoverageMapping) 5779 return; 5780 switch (D->getKind()) { 5781 case Decl::CXXConversion: 5782 case Decl::CXXMethod: 5783 case Decl::Function: 5784 case Decl::ObjCMethod: 5785 case Decl::CXXConstructor: 5786 case Decl::CXXDestructor: { 5787 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5788 break; 5789 SourceManager &SM = getContext().getSourceManager(); 5790 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5791 break; 5792 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5793 if (I == DeferredEmptyCoverageMappingDecls.end()) 5794 DeferredEmptyCoverageMappingDecls[D] = true; 5795 break; 5796 } 5797 default: 5798 break; 5799 }; 5800 } 5801 5802 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5803 // Do we need to generate coverage mapping? 5804 if (!CodeGenOpts.CoverageMapping) 5805 return; 5806 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5807 if (Fn->isTemplateInstantiation()) 5808 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5809 } 5810 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5811 if (I == DeferredEmptyCoverageMappingDecls.end()) 5812 DeferredEmptyCoverageMappingDecls[D] = false; 5813 else 5814 I->second = false; 5815 } 5816 5817 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5818 // We call takeVector() here to avoid use-after-free. 5819 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5820 // we deserialize function bodies to emit coverage info for them, and that 5821 // deserializes more declarations. How should we handle that case? 5822 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5823 if (!Entry.second) 5824 continue; 5825 const Decl *D = Entry.first; 5826 switch (D->getKind()) { 5827 case Decl::CXXConversion: 5828 case Decl::CXXMethod: 5829 case Decl::Function: 5830 case Decl::ObjCMethod: { 5831 CodeGenPGO PGO(*this); 5832 GlobalDecl GD(cast<FunctionDecl>(D)); 5833 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5834 getFunctionLinkage(GD)); 5835 break; 5836 } 5837 case Decl::CXXConstructor: { 5838 CodeGenPGO PGO(*this); 5839 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5840 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5841 getFunctionLinkage(GD)); 5842 break; 5843 } 5844 case Decl::CXXDestructor: { 5845 CodeGenPGO PGO(*this); 5846 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5847 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5848 getFunctionLinkage(GD)); 5849 break; 5850 } 5851 default: 5852 break; 5853 }; 5854 } 5855 } 5856 5857 void CodeGenModule::EmitMainVoidAlias() { 5858 // In order to transition away from "__original_main" gracefully, emit an 5859 // alias for "main" in the no-argument case so that libc can detect when 5860 // new-style no-argument main is in used. 5861 if (llvm::Function *F = getModule().getFunction("main")) { 5862 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5863 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5864 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5865 } 5866 } 5867 5868 /// Turns the given pointer into a constant. 5869 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5870 const void *Ptr) { 5871 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5872 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5873 return llvm::ConstantInt::get(i64, PtrInt); 5874 } 5875 5876 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5877 llvm::NamedMDNode *&GlobalMetadata, 5878 GlobalDecl D, 5879 llvm::GlobalValue *Addr) { 5880 if (!GlobalMetadata) 5881 GlobalMetadata = 5882 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5883 5884 // TODO: should we report variant information for ctors/dtors? 5885 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5886 llvm::ConstantAsMetadata::get(GetPointerConstant( 5887 CGM.getLLVMContext(), D.getDecl()))}; 5888 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5889 } 5890 5891 /// For each function which is declared within an extern "C" region and marked 5892 /// as 'used', but has internal linkage, create an alias from the unmangled 5893 /// name to the mangled name if possible. People expect to be able to refer 5894 /// to such functions with an unmangled name from inline assembly within the 5895 /// same translation unit. 5896 void CodeGenModule::EmitStaticExternCAliases() { 5897 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5898 return; 5899 for (auto &I : StaticExternCValues) { 5900 IdentifierInfo *Name = I.first; 5901 llvm::GlobalValue *Val = I.second; 5902 if (Val && !getModule().getNamedValue(Name->getName())) 5903 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5904 } 5905 } 5906 5907 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5908 GlobalDecl &Result) const { 5909 auto Res = Manglings.find(MangledName); 5910 if (Res == Manglings.end()) 5911 return false; 5912 Result = Res->getValue(); 5913 return true; 5914 } 5915 5916 /// Emits metadata nodes associating all the global values in the 5917 /// current module with the Decls they came from. This is useful for 5918 /// projects using IR gen as a subroutine. 5919 /// 5920 /// Since there's currently no way to associate an MDNode directly 5921 /// with an llvm::GlobalValue, we create a global named metadata 5922 /// with the name 'clang.global.decl.ptrs'. 5923 void CodeGenModule::EmitDeclMetadata() { 5924 llvm::NamedMDNode *GlobalMetadata = nullptr; 5925 5926 for (auto &I : MangledDeclNames) { 5927 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5928 // Some mangled names don't necessarily have an associated GlobalValue 5929 // in this module, e.g. if we mangled it for DebugInfo. 5930 if (Addr) 5931 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5932 } 5933 } 5934 5935 /// Emits metadata nodes for all the local variables in the current 5936 /// function. 5937 void CodeGenFunction::EmitDeclMetadata() { 5938 if (LocalDeclMap.empty()) return; 5939 5940 llvm::LLVMContext &Context = getLLVMContext(); 5941 5942 // Find the unique metadata ID for this name. 5943 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5944 5945 llvm::NamedMDNode *GlobalMetadata = nullptr; 5946 5947 for (auto &I : LocalDeclMap) { 5948 const Decl *D = I.first; 5949 llvm::Value *Addr = I.second.getPointer(); 5950 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5951 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5952 Alloca->setMetadata( 5953 DeclPtrKind, llvm::MDNode::get( 5954 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5955 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5956 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5957 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5958 } 5959 } 5960 } 5961 5962 void CodeGenModule::EmitVersionIdentMetadata() { 5963 llvm::NamedMDNode *IdentMetadata = 5964 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5965 std::string Version = getClangFullVersion(); 5966 llvm::LLVMContext &Ctx = TheModule.getContext(); 5967 5968 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5969 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5970 } 5971 5972 void CodeGenModule::EmitCommandLineMetadata() { 5973 llvm::NamedMDNode *CommandLineMetadata = 5974 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5975 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5976 llvm::LLVMContext &Ctx = TheModule.getContext(); 5977 5978 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5979 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5980 } 5981 5982 void CodeGenModule::EmitCoverageFile() { 5983 if (getCodeGenOpts().CoverageDataFile.empty() && 5984 getCodeGenOpts().CoverageNotesFile.empty()) 5985 return; 5986 5987 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5988 if (!CUNode) 5989 return; 5990 5991 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5992 llvm::LLVMContext &Ctx = TheModule.getContext(); 5993 auto *CoverageDataFile = 5994 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5995 auto *CoverageNotesFile = 5996 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5997 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5998 llvm::MDNode *CU = CUNode->getOperand(i); 5999 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6000 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6001 } 6002 } 6003 6004 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6005 bool ForEH) { 6006 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6007 // FIXME: should we even be calling this method if RTTI is disabled 6008 // and it's not for EH? 6009 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6010 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6011 getTriple().isNVPTX())) 6012 return llvm::Constant::getNullValue(Int8PtrTy); 6013 6014 if (ForEH && Ty->isObjCObjectPointerType() && 6015 LangOpts.ObjCRuntime.isGNUFamily()) 6016 return ObjCRuntime->GetEHType(Ty); 6017 6018 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6019 } 6020 6021 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6022 // Do not emit threadprivates in simd-only mode. 6023 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6024 return; 6025 for (auto RefExpr : D->varlists()) { 6026 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6027 bool PerformInit = 6028 VD->getAnyInitializer() && 6029 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6030 /*ForRef=*/false); 6031 6032 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6033 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6034 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6035 CXXGlobalInits.push_back(InitFunction); 6036 } 6037 } 6038 6039 llvm::Metadata * 6040 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6041 StringRef Suffix) { 6042 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6043 if (InternalId) 6044 return InternalId; 6045 6046 if (isExternallyVisible(T->getLinkage())) { 6047 std::string OutName; 6048 llvm::raw_string_ostream Out(OutName); 6049 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6050 Out << Suffix; 6051 6052 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6053 } else { 6054 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6055 llvm::ArrayRef<llvm::Metadata *>()); 6056 } 6057 6058 return InternalId; 6059 } 6060 6061 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6062 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6063 } 6064 6065 llvm::Metadata * 6066 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6067 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6068 } 6069 6070 // Generalize pointer types to a void pointer with the qualifiers of the 6071 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6072 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6073 // 'void *'. 6074 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6075 if (!Ty->isPointerType()) 6076 return Ty; 6077 6078 return Ctx.getPointerType( 6079 QualType(Ctx.VoidTy).withCVRQualifiers( 6080 Ty->getPointeeType().getCVRQualifiers())); 6081 } 6082 6083 // Apply type generalization to a FunctionType's return and argument types 6084 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6085 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6086 SmallVector<QualType, 8> GeneralizedParams; 6087 for (auto &Param : FnType->param_types()) 6088 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6089 6090 return Ctx.getFunctionType( 6091 GeneralizeType(Ctx, FnType->getReturnType()), 6092 GeneralizedParams, FnType->getExtProtoInfo()); 6093 } 6094 6095 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6096 return Ctx.getFunctionNoProtoType( 6097 GeneralizeType(Ctx, FnType->getReturnType())); 6098 6099 llvm_unreachable("Encountered unknown FunctionType"); 6100 } 6101 6102 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6103 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6104 GeneralizedMetadataIdMap, ".generalized"); 6105 } 6106 6107 /// Returns whether this module needs the "all-vtables" type identifier. 6108 bool CodeGenModule::NeedAllVtablesTypeId() const { 6109 // Returns true if at least one of vtable-based CFI checkers is enabled and 6110 // is not in the trapping mode. 6111 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6112 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6113 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6114 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6115 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6116 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6117 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6118 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6119 } 6120 6121 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6122 CharUnits Offset, 6123 const CXXRecordDecl *RD) { 6124 llvm::Metadata *MD = 6125 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6126 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6127 6128 if (CodeGenOpts.SanitizeCfiCrossDso) 6129 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6130 VTable->addTypeMetadata(Offset.getQuantity(), 6131 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6132 6133 if (NeedAllVtablesTypeId()) { 6134 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6135 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6136 } 6137 } 6138 6139 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6140 if (!SanStats) 6141 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6142 6143 return *SanStats; 6144 } 6145 llvm::Value * 6146 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6147 CodeGenFunction &CGF) { 6148 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6149 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6150 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6151 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6152 "__translate_sampler_initializer"), 6153 {C}); 6154 } 6155 6156 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6157 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6158 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6159 /* forPointeeType= */ true); 6160 } 6161 6162 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6163 LValueBaseInfo *BaseInfo, 6164 TBAAAccessInfo *TBAAInfo, 6165 bool forPointeeType) { 6166 if (TBAAInfo) 6167 *TBAAInfo = getTBAAAccessInfo(T); 6168 6169 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6170 // that doesn't return the information we need to compute BaseInfo. 6171 6172 // Honor alignment typedef attributes even on incomplete types. 6173 // We also honor them straight for C++ class types, even as pointees; 6174 // there's an expressivity gap here. 6175 if (auto TT = T->getAs<TypedefType>()) { 6176 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6177 if (BaseInfo) 6178 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6179 return getContext().toCharUnitsFromBits(Align); 6180 } 6181 } 6182 6183 bool AlignForArray = T->isArrayType(); 6184 6185 // Analyze the base element type, so we don't get confused by incomplete 6186 // array types. 6187 T = getContext().getBaseElementType(T); 6188 6189 if (T->isIncompleteType()) { 6190 // We could try to replicate the logic from 6191 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6192 // type is incomplete, so it's impossible to test. We could try to reuse 6193 // getTypeAlignIfKnown, but that doesn't return the information we need 6194 // to set BaseInfo. So just ignore the possibility that the alignment is 6195 // greater than one. 6196 if (BaseInfo) 6197 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6198 return CharUnits::One(); 6199 } 6200 6201 if (BaseInfo) 6202 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6203 6204 CharUnits Alignment; 6205 const CXXRecordDecl *RD; 6206 if (T.getQualifiers().hasUnaligned()) { 6207 Alignment = CharUnits::One(); 6208 } else if (forPointeeType && !AlignForArray && 6209 (RD = T->getAsCXXRecordDecl())) { 6210 // For C++ class pointees, we don't know whether we're pointing at a 6211 // base or a complete object, so we generally need to use the 6212 // non-virtual alignment. 6213 Alignment = getClassPointerAlignment(RD); 6214 } else { 6215 Alignment = getContext().getTypeAlignInChars(T); 6216 } 6217 6218 // Cap to the global maximum type alignment unless the alignment 6219 // was somehow explicit on the type. 6220 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6221 if (Alignment.getQuantity() > MaxAlign && 6222 !getContext().isAlignmentRequired(T)) 6223 Alignment = CharUnits::fromQuantity(MaxAlign); 6224 } 6225 return Alignment; 6226 } 6227 6228 bool CodeGenModule::stopAutoInit() { 6229 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6230 if (StopAfter) { 6231 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6232 // used 6233 if (NumAutoVarInit >= StopAfter) { 6234 return true; 6235 } 6236 if (!NumAutoVarInit) { 6237 unsigned DiagID = getDiags().getCustomDiagID( 6238 DiagnosticsEngine::Warning, 6239 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6240 "number of times ftrivial-auto-var-init=%1 gets applied."); 6241 getDiags().Report(DiagID) 6242 << StopAfter 6243 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6244 LangOptions::TrivialAutoVarInitKind::Zero 6245 ? "zero" 6246 : "pattern"); 6247 } 6248 ++NumAutoVarInit; 6249 } 6250 return false; 6251 } 6252