xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a3b5f71eaa924f71321fb989d727a3a6365ba557)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   EmitCXXThreadLocalInitFunc();
401   if (ObjCRuntime)
402     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
403       AddGlobalCtor(ObjCInitFunction);
404   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
405       CUDARuntime) {
406     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
407       AddGlobalCtor(CudaCtorFunction);
408     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
409       AddGlobalDtor(CudaDtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (CodeGenOpts.NoPLT)
560     getModule().setRtLibUseGOT();
561 
562   SimplifyPersonality();
563 
564   if (getCodeGenOpts().EmitDeclMetadata)
565     EmitDeclMetadata();
566 
567   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568     EmitCoverageFile();
569 
570   if (DebugInfo)
571     DebugInfo->finalize();
572 
573   EmitVersionIdentMetadata();
574 
575   EmitTargetMetadata();
576 }
577 
578 void CodeGenModule::EmitOpenCLMetadata() {
579   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
580   // opencl.ocl.version named metadata node.
581   llvm::Metadata *OCLVerElts[] = {
582       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
583           Int32Ty, LangOpts.OpenCLVersion / 100)),
584       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
586   llvm::NamedMDNode *OCLVerMD =
587       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
588   llvm::LLVMContext &Ctx = TheModule.getContext();
589   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
590 }
591 
592 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
593   // Make sure that this type is translated.
594   Types.UpdateCompletedType(TD);
595 }
596 
597 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
598   // Make sure that this type is translated.
599   Types.RefreshTypeCacheForClass(RD);
600 }
601 
602 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
603   if (!TBAA)
604     return nullptr;
605   return TBAA->getTypeInfo(QTy);
606 }
607 
608 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
609   if (!TBAA)
610     return TBAAAccessInfo();
611   return TBAA->getAccessInfo(AccessType);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D) const {
704   if (GV->hasDLLImportStorageClass())
705     return;
706   // Internal definitions always have default visibility.
707   if (GV->hasLocalLinkage()) {
708     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709     return;
710   }
711   if (!D)
712     return;
713   // Set visibility for definitions.
714   LinkageInfo LV = D->getLinkageAndVisibility();
715   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
716     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
717 }
718 
719 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
720                                  llvm::GlobalValue *GV) {
721   if (GV->hasLocalLinkage())
722     return true;
723 
724   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
725     return true;
726 
727   // DLLImport explicitly marks the GV as external.
728   if (GV->hasDLLImportStorageClass())
729     return false;
730 
731   const llvm::Triple &TT = CGM.getTriple();
732   // Every other GV is local on COFF.
733   // Make an exception for windows OS in the triple: Some firmware builds use
734   // *-win32-macho triples. This (accidentally?) produced windows relocations
735   // without GOT tables in older clang versions; Keep this behaviour.
736   // FIXME: even thread local variables?
737   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
738     return true;
739 
740   // Only handle COFF and ELF for now.
741   if (!TT.isOSBinFormatELF())
742     return false;
743 
744   // If this is not an executable, don't assume anything is local.
745   const auto &CGOpts = CGM.getCodeGenOpts();
746   llvm::Reloc::Model RM = CGOpts.RelocationModel;
747   const auto &LOpts = CGM.getLangOpts();
748   if (RM != llvm::Reloc::Static && !LOpts.PIE)
749     return false;
750 
751   // A definition cannot be preempted from an executable.
752   if (!GV->isDeclarationForLinker())
753     return true;
754 
755   // Most PIC code sequences that assume that a symbol is local cannot produce a
756   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
757   // depended, it seems worth it to handle it here.
758   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
759     return false;
760 
761   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
762   llvm::Triple::ArchType Arch = TT.getArch();
763   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
764       Arch == llvm::Triple::ppc64le)
765     return false;
766 
767   // If we can use copy relocations we can assume it is local.
768   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
769     if (!Var->isThreadLocal() &&
770         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
771       return true;
772 
773   // If we can use a plt entry as the symbol address we can assume it
774   // is local.
775   // FIXME: This should work for PIE, but the gold linker doesn't support it.
776   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
777     return true;
778 
779   // Otherwise don't assue it is local.
780   return false;
781 }
782 
783 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
784   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
785 }
786 
787 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
788                                           GlobalDecl GD) const {
789   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
790   // C++ destructors have a few C++ ABI specific special cases.
791   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
792     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
793     return;
794   }
795   setDLLImportDLLExport(GV, D);
796 }
797 
798 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
799                                           const NamedDecl *D) const {
800   if (D && D->isExternallyVisible()) {
801     if (D->hasAttr<DLLImportAttr>())
802       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
803     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
804       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
805   }
806 }
807 
808 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
809                                     GlobalDecl GD) const {
810   setDLLImportDLLExport(GV, GD);
811   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
812 }
813 
814 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
815                                     const NamedDecl *D) const {
816   setDLLImportDLLExport(GV, D);
817   setGlobalVisibilityAndLocal(GV, D);
818 }
819 
820 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
821                                                 const NamedDecl *D) const {
822   setGlobalVisibility(GV, D);
823   setDSOLocal(GV);
824 }
825 
826 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
827   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
828       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
829       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
830       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
831       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
832 }
833 
834 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
835     CodeGenOptions::TLSModel M) {
836   switch (M) {
837   case CodeGenOptions::GeneralDynamicTLSModel:
838     return llvm::GlobalVariable::GeneralDynamicTLSModel;
839   case CodeGenOptions::LocalDynamicTLSModel:
840     return llvm::GlobalVariable::LocalDynamicTLSModel;
841   case CodeGenOptions::InitialExecTLSModel:
842     return llvm::GlobalVariable::InitialExecTLSModel;
843   case CodeGenOptions::LocalExecTLSModel:
844     return llvm::GlobalVariable::LocalExecTLSModel;
845   }
846   llvm_unreachable("Invalid TLS model!");
847 }
848 
849 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
850   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
851 
852   llvm::GlobalValue::ThreadLocalMode TLM;
853   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
854 
855   // Override the TLS model if it is explicitly specified.
856   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
857     TLM = GetLLVMTLSModel(Attr->getModel());
858   }
859 
860   GV->setThreadLocalMode(TLM);
861 }
862 
863 static void AppendTargetMangling(const CodeGenModule &CGM,
864                                  const TargetAttr *Attr, raw_ostream &Out) {
865   if (Attr->isDefaultVersion())
866     return;
867 
868   Out << '.';
869   const auto &Target = CGM.getTarget();
870   TargetAttr::ParsedTargetAttr Info =
871       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
872                     // Multiversioning doesn't allow "no-${feature}", so we can
873                     // only have "+" prefixes here.
874                     assert(LHS.startswith("+") && RHS.startswith("+") &&
875                            "Features should always have a prefix.");
876                     return Target.multiVersionSortPriority(LHS.substr(1)) >
877                            Target.multiVersionSortPriority(RHS.substr(1));
878                   });
879 
880   bool IsFirst = true;
881 
882   if (!Info.Architecture.empty()) {
883     IsFirst = false;
884     Out << "arch_" << Info.Architecture;
885   }
886 
887   for (StringRef Feat : Info.Features) {
888     if (!IsFirst)
889       Out << '_';
890     IsFirst = false;
891     Out << Feat.substr(1);
892   }
893 }
894 
895 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
896                                       const NamedDecl *ND,
897                                       bool OmitTargetMangling = false) {
898   SmallString<256> Buffer;
899   llvm::raw_svector_ostream Out(Buffer);
900   MangleContext &MC = CGM.getCXXABI().getMangleContext();
901   if (MC.shouldMangleDeclName(ND)) {
902     llvm::raw_svector_ostream Out(Buffer);
903     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
904       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
905     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
906       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
907     else
908       MC.mangleName(ND, Out);
909   } else {
910     IdentifierInfo *II = ND->getIdentifier();
911     assert(II && "Attempt to mangle unnamed decl.");
912     const auto *FD = dyn_cast<FunctionDecl>(ND);
913 
914     if (FD &&
915         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
916       llvm::raw_svector_ostream Out(Buffer);
917       Out << "__regcall3__" << II->getName();
918     } else {
919       Out << II->getName();
920     }
921   }
922 
923   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
924     if (FD->isMultiVersion() && !OmitTargetMangling)
925       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
926   return Out.str();
927 }
928 
929 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
930                                             const FunctionDecl *FD) {
931   if (!FD->isMultiVersion())
932     return;
933 
934   // Get the name of what this would be without the 'target' attribute.  This
935   // allows us to lookup the version that was emitted when this wasn't a
936   // multiversion function.
937   std::string NonTargetName =
938       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
939   GlobalDecl OtherGD;
940   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
941     assert(OtherGD.getCanonicalDecl()
942                .getDecl()
943                ->getAsFunction()
944                ->isMultiVersion() &&
945            "Other GD should now be a multiversioned function");
946     // OtherFD is the version of this function that was mangled BEFORE
947     // becoming a MultiVersion function.  It potentially needs to be updated.
948     const FunctionDecl *OtherFD =
949         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
950     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
951     // This is so that if the initial version was already the 'default'
952     // version, we don't try to update it.
953     if (OtherName != NonTargetName) {
954       // Remove instead of erase, since others may have stored the StringRef
955       // to this.
956       const auto ExistingRecord = Manglings.find(NonTargetName);
957       if (ExistingRecord != std::end(Manglings))
958         Manglings.remove(&(*ExistingRecord));
959       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
960       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
961       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
962         Entry->setName(OtherName);
963     }
964   }
965 }
966 
967 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
968   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
969 
970   // Some ABIs don't have constructor variants.  Make sure that base and
971   // complete constructors get mangled the same.
972   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
973     if (!getTarget().getCXXABI().hasConstructorVariants()) {
974       CXXCtorType OrigCtorType = GD.getCtorType();
975       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
976       if (OrigCtorType == Ctor_Base)
977         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
978     }
979   }
980 
981   auto FoundName = MangledDeclNames.find(CanonicalGD);
982   if (FoundName != MangledDeclNames.end())
983     return FoundName->second;
984 
985 
986   // Keep the first result in the case of a mangling collision.
987   const auto *ND = cast<NamedDecl>(GD.getDecl());
988   auto Result =
989       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
990   return MangledDeclNames[CanonicalGD] = Result.first->first();
991 }
992 
993 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
994                                              const BlockDecl *BD) {
995   MangleContext &MangleCtx = getCXXABI().getMangleContext();
996   const Decl *D = GD.getDecl();
997 
998   SmallString<256> Buffer;
999   llvm::raw_svector_ostream Out(Buffer);
1000   if (!D)
1001     MangleCtx.mangleGlobalBlock(BD,
1002       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1003   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1004     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1005   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1006     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1007   else
1008     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1009 
1010   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1011   return Result.first->first();
1012 }
1013 
1014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1015   return getModule().getNamedValue(Name);
1016 }
1017 
1018 /// AddGlobalCtor - Add a function to the list that will be called before
1019 /// main() runs.
1020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1021                                   llvm::Constant *AssociatedData) {
1022   // FIXME: Type coercion of void()* types.
1023   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1024 }
1025 
1026 /// AddGlobalDtor - Add a function to the list that will be called
1027 /// when the module is unloaded.
1028 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1029   // FIXME: Type coercion of void()* types.
1030   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1031 }
1032 
1033 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1034   if (Fns.empty()) return;
1035 
1036   // Ctor function type is void()*.
1037   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1038   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1039 
1040   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1041   llvm::StructType *CtorStructTy = llvm::StructType::get(
1042       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1043 
1044   // Construct the constructor and destructor arrays.
1045   ConstantInitBuilder builder(*this);
1046   auto ctors = builder.beginArray(CtorStructTy);
1047   for (const auto &I : Fns) {
1048     auto ctor = ctors.beginStruct(CtorStructTy);
1049     ctor.addInt(Int32Ty, I.Priority);
1050     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1051     if (I.AssociatedData)
1052       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1053     else
1054       ctor.addNullPointer(VoidPtrTy);
1055     ctor.finishAndAddTo(ctors);
1056   }
1057 
1058   auto list =
1059     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1060                                 /*constant*/ false,
1061                                 llvm::GlobalValue::AppendingLinkage);
1062 
1063   // The LTO linker doesn't seem to like it when we set an alignment
1064   // on appending variables.  Take it off as a workaround.
1065   list->setAlignment(0);
1066 
1067   Fns.clear();
1068 }
1069 
1070 llvm::GlobalValue::LinkageTypes
1071 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1072   const auto *D = cast<FunctionDecl>(GD.getDecl());
1073 
1074   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1075 
1076   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1077     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1078 
1079   if (isa<CXXConstructorDecl>(D) &&
1080       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1081       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1082     // Our approach to inheriting constructors is fundamentally different from
1083     // that used by the MS ABI, so keep our inheriting constructor thunks
1084     // internal rather than trying to pick an unambiguous mangling for them.
1085     return llvm::GlobalValue::InternalLinkage;
1086   }
1087 
1088   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1089 }
1090 
1091 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1092   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1093   if (!MDS) return nullptr;
1094 
1095   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1096 }
1097 
1098 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1099                                               const CGFunctionInfo &Info,
1100                                               llvm::Function *F) {
1101   unsigned CallingConv;
1102   llvm::AttributeList PAL;
1103   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1104   F->setAttributes(PAL);
1105   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1106 }
1107 
1108 /// Determines whether the language options require us to model
1109 /// unwind exceptions.  We treat -fexceptions as mandating this
1110 /// except under the fragile ObjC ABI with only ObjC exceptions
1111 /// enabled.  This means, for example, that C with -fexceptions
1112 /// enables this.
1113 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1114   // If exceptions are completely disabled, obviously this is false.
1115   if (!LangOpts.Exceptions) return false;
1116 
1117   // If C++ exceptions are enabled, this is true.
1118   if (LangOpts.CXXExceptions) return true;
1119 
1120   // If ObjC exceptions are enabled, this depends on the ABI.
1121   if (LangOpts.ObjCExceptions) {
1122     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1123   }
1124 
1125   return true;
1126 }
1127 
1128 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1129                                                            llvm::Function *F) {
1130   llvm::AttrBuilder B;
1131 
1132   if (CodeGenOpts.UnwindTables)
1133     B.addAttribute(llvm::Attribute::UWTable);
1134 
1135   if (!hasUnwindExceptions(LangOpts))
1136     B.addAttribute(llvm::Attribute::NoUnwind);
1137 
1138   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1139     B.addAttribute(llvm::Attribute::StackProtect);
1140   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1141     B.addAttribute(llvm::Attribute::StackProtectStrong);
1142   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1143     B.addAttribute(llvm::Attribute::StackProtectReq);
1144 
1145   if (!D) {
1146     // If we don't have a declaration to control inlining, the function isn't
1147     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1148     // disabled, mark the function as noinline.
1149     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1150         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1151       B.addAttribute(llvm::Attribute::NoInline);
1152 
1153     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1154     return;
1155   }
1156 
1157   // Track whether we need to add the optnone LLVM attribute,
1158   // starting with the default for this optimization level.
1159   bool ShouldAddOptNone =
1160       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1161   // We can't add optnone in the following cases, it won't pass the verifier.
1162   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1163   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1164   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1165 
1166   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1167     B.addAttribute(llvm::Attribute::OptimizeNone);
1168 
1169     // OptimizeNone implies noinline; we should not be inlining such functions.
1170     B.addAttribute(llvm::Attribute::NoInline);
1171     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1172            "OptimizeNone and AlwaysInline on same function!");
1173 
1174     // We still need to handle naked functions even though optnone subsumes
1175     // much of their semantics.
1176     if (D->hasAttr<NakedAttr>())
1177       B.addAttribute(llvm::Attribute::Naked);
1178 
1179     // OptimizeNone wins over OptimizeForSize and MinSize.
1180     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1181     F->removeFnAttr(llvm::Attribute::MinSize);
1182   } else if (D->hasAttr<NakedAttr>()) {
1183     // Naked implies noinline: we should not be inlining such functions.
1184     B.addAttribute(llvm::Attribute::Naked);
1185     B.addAttribute(llvm::Attribute::NoInline);
1186   } else if (D->hasAttr<NoDuplicateAttr>()) {
1187     B.addAttribute(llvm::Attribute::NoDuplicate);
1188   } else if (D->hasAttr<NoInlineAttr>()) {
1189     B.addAttribute(llvm::Attribute::NoInline);
1190   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1191              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1192     // (noinline wins over always_inline, and we can't specify both in IR)
1193     B.addAttribute(llvm::Attribute::AlwaysInline);
1194   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1195     // If we're not inlining, then force everything that isn't always_inline to
1196     // carry an explicit noinline attribute.
1197     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1198       B.addAttribute(llvm::Attribute::NoInline);
1199   } else {
1200     // Otherwise, propagate the inline hint attribute and potentially use its
1201     // absence to mark things as noinline.
1202     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1203       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1204             return Redecl->isInlineSpecified();
1205           })) {
1206         B.addAttribute(llvm::Attribute::InlineHint);
1207       } else if (CodeGenOpts.getInlining() ==
1208                      CodeGenOptions::OnlyHintInlining &&
1209                  !FD->isInlined() &&
1210                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1211         B.addAttribute(llvm::Attribute::NoInline);
1212       }
1213     }
1214   }
1215 
1216   // Add other optimization related attributes if we are optimizing this
1217   // function.
1218   if (!D->hasAttr<OptimizeNoneAttr>()) {
1219     if (D->hasAttr<ColdAttr>()) {
1220       if (!ShouldAddOptNone)
1221         B.addAttribute(llvm::Attribute::OptimizeForSize);
1222       B.addAttribute(llvm::Attribute::Cold);
1223     }
1224 
1225     if (D->hasAttr<MinSizeAttr>())
1226       B.addAttribute(llvm::Attribute::MinSize);
1227   }
1228 
1229   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1230 
1231   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1232   if (alignment)
1233     F->setAlignment(alignment);
1234 
1235   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1236   // reserve a bit for differentiating between virtual and non-virtual member
1237   // functions. If the current target's C++ ABI requires this and this is a
1238   // member function, set its alignment accordingly.
1239   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1240     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1241       F->setAlignment(2);
1242   }
1243 
1244   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1245   if (CodeGenOpts.SanitizeCfiCrossDso)
1246     if (auto *FD = dyn_cast<FunctionDecl>(D))
1247       CreateFunctionTypeMetadata(FD, F);
1248 }
1249 
1250 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1251   const Decl *D = GD.getDecl();
1252   if (dyn_cast_or_null<NamedDecl>(D))
1253     setGVProperties(GV, GD);
1254   else
1255     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1256 
1257   if (D && D->hasAttr<UsedAttr>())
1258     addUsedGlobal(GV);
1259 }
1260 
1261 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1262                                                 llvm::AttrBuilder &Attrs) {
1263   // Add target-cpu and target-features attributes to functions. If
1264   // we have a decl for the function and it has a target attribute then
1265   // parse that and add it to the feature set.
1266   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1267   std::vector<std::string> Features;
1268   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1269   FD = FD ? FD->getMostRecentDecl() : FD;
1270   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1271   bool AddedAttr = false;
1272   if (TD) {
1273     llvm::StringMap<bool> FeatureMap;
1274     getFunctionFeatureMap(FeatureMap, FD);
1275 
1276     // Produce the canonical string for this set of features.
1277     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1278       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1279 
1280     // Now add the target-cpu and target-features to the function.
1281     // While we populated the feature map above, we still need to
1282     // get and parse the target attribute so we can get the cpu for
1283     // the function.
1284     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1285     if (ParsedAttr.Architecture != "" &&
1286         getTarget().isValidCPUName(ParsedAttr.Architecture))
1287       TargetCPU = ParsedAttr.Architecture;
1288   } else {
1289     // Otherwise just add the existing target cpu and target features to the
1290     // function.
1291     Features = getTarget().getTargetOpts().Features;
1292   }
1293 
1294   if (TargetCPU != "") {
1295     Attrs.addAttribute("target-cpu", TargetCPU);
1296     AddedAttr = true;
1297   }
1298   if (!Features.empty()) {
1299     llvm::sort(Features.begin(), Features.end());
1300     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1301     AddedAttr = true;
1302   }
1303 
1304   return AddedAttr;
1305 }
1306 
1307 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1308                                           llvm::GlobalObject *GO) {
1309   const Decl *D = GD.getDecl();
1310   SetCommonAttributes(GD, GO);
1311 
1312   if (D) {
1313     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1314       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1315         GV->addAttribute("bss-section", SA->getName());
1316       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1317         GV->addAttribute("data-section", SA->getName());
1318       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1319         GV->addAttribute("rodata-section", SA->getName());
1320     }
1321 
1322     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1323       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1324         if (!D->getAttr<SectionAttr>())
1325           F->addFnAttr("implicit-section-name", SA->getName());
1326 
1327       llvm::AttrBuilder Attrs;
1328       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1329         // We know that GetCPUAndFeaturesAttributes will always have the
1330         // newest set, since it has the newest possible FunctionDecl, so the
1331         // new ones should replace the old.
1332         F->removeFnAttr("target-cpu");
1333         F->removeFnAttr("target-features");
1334         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1335       }
1336     }
1337 
1338     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1339       GO->setSection(SA->getName());
1340   }
1341 
1342   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1343 }
1344 
1345 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1346                                                   llvm::Function *F,
1347                                                   const CGFunctionInfo &FI) {
1348   const Decl *D = GD.getDecl();
1349   SetLLVMFunctionAttributes(D, FI, F);
1350   SetLLVMFunctionAttributesForDefinition(D, F);
1351 
1352   F->setLinkage(llvm::Function::InternalLinkage);
1353 
1354   setNonAliasAttributes(GD, F);
1355 }
1356 
1357 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1358   // Set linkage and visibility in case we never see a definition.
1359   LinkageInfo LV = ND->getLinkageAndVisibility();
1360   // Don't set internal linkage on declarations.
1361   // "extern_weak" is overloaded in LLVM; we probably should have
1362   // separate linkage types for this.
1363   if (isExternallyVisible(LV.getLinkage()) &&
1364       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1365     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1366 }
1367 
1368 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1369                                                llvm::Function *F) {
1370   // Only if we are checking indirect calls.
1371   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1372     return;
1373 
1374   // Non-static class methods are handled via vtable pointer checks elsewhere.
1375   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1376     return;
1377 
1378   // Additionally, if building with cross-DSO support...
1379   if (CodeGenOpts.SanitizeCfiCrossDso) {
1380     // Skip available_externally functions. They won't be codegen'ed in the
1381     // current module anyway.
1382     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1383       return;
1384   }
1385 
1386   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1387   F->addTypeMetadata(0, MD);
1388   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1389 
1390   // Emit a hash-based bit set entry for cross-DSO calls.
1391   if (CodeGenOpts.SanitizeCfiCrossDso)
1392     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1393       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1394 }
1395 
1396 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1397                                           bool IsIncompleteFunction,
1398                                           bool IsThunk) {
1399 
1400   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1401     // If this is an intrinsic function, set the function's attributes
1402     // to the intrinsic's attributes.
1403     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1404     return;
1405   }
1406 
1407   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1408 
1409   if (!IsIncompleteFunction) {
1410     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1411     // Setup target-specific attributes.
1412     if (F->isDeclaration())
1413       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1414   }
1415 
1416   // Add the Returned attribute for "this", except for iOS 5 and earlier
1417   // where substantial code, including the libstdc++ dylib, was compiled with
1418   // GCC and does not actually return "this".
1419   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1420       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1421     assert(!F->arg_empty() &&
1422            F->arg_begin()->getType()
1423              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1424            "unexpected this return");
1425     F->addAttribute(1, llvm::Attribute::Returned);
1426   }
1427 
1428   // Only a few attributes are set on declarations; these may later be
1429   // overridden by a definition.
1430 
1431   setLinkageForGV(F, FD);
1432   setGVProperties(F, FD);
1433 
1434   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1435     F->addFnAttr("implicit-section-name");
1436   }
1437 
1438   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1439     F->setSection(SA->getName());
1440 
1441   if (FD->isReplaceableGlobalAllocationFunction()) {
1442     // A replaceable global allocation function does not act like a builtin by
1443     // default, only if it is invoked by a new-expression or delete-expression.
1444     F->addAttribute(llvm::AttributeList::FunctionIndex,
1445                     llvm::Attribute::NoBuiltin);
1446 
1447     // A sane operator new returns a non-aliasing pointer.
1448     // FIXME: Also add NonNull attribute to the return value
1449     // for the non-nothrow forms?
1450     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1451     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1452         (Kind == OO_New || Kind == OO_Array_New))
1453       F->addAttribute(llvm::AttributeList::ReturnIndex,
1454                       llvm::Attribute::NoAlias);
1455   }
1456 
1457   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1458     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1459   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1460     if (MD->isVirtual())
1461       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1462 
1463   // Don't emit entries for function declarations in the cross-DSO mode. This
1464   // is handled with better precision by the receiving DSO.
1465   if (!CodeGenOpts.SanitizeCfiCrossDso)
1466     CreateFunctionTypeMetadata(FD, F);
1467 
1468   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1469     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1470 }
1471 
1472 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1473   assert(!GV->isDeclaration() &&
1474          "Only globals with definition can force usage.");
1475   LLVMUsed.emplace_back(GV);
1476 }
1477 
1478 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1479   assert(!GV->isDeclaration() &&
1480          "Only globals with definition can force usage.");
1481   LLVMCompilerUsed.emplace_back(GV);
1482 }
1483 
1484 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1485                      std::vector<llvm::WeakTrackingVH> &List) {
1486   // Don't create llvm.used if there is no need.
1487   if (List.empty())
1488     return;
1489 
1490   // Convert List to what ConstantArray needs.
1491   SmallVector<llvm::Constant*, 8> UsedArray;
1492   UsedArray.resize(List.size());
1493   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1494     UsedArray[i] =
1495         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1496             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1497   }
1498 
1499   if (UsedArray.empty())
1500     return;
1501   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1502 
1503   auto *GV = new llvm::GlobalVariable(
1504       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1505       llvm::ConstantArray::get(ATy, UsedArray), Name);
1506 
1507   GV->setSection("llvm.metadata");
1508 }
1509 
1510 void CodeGenModule::emitLLVMUsed() {
1511   emitUsed(*this, "llvm.used", LLVMUsed);
1512   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1513 }
1514 
1515 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1516   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1517   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1518 }
1519 
1520 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1521   llvm::SmallString<32> Opt;
1522   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1523   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1524   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1525 }
1526 
1527 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1528   auto &C = getLLVMContext();
1529   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1530       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1531 }
1532 
1533 void CodeGenModule::AddDependentLib(StringRef Lib) {
1534   llvm::SmallString<24> Opt;
1535   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1536   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1537   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1538 }
1539 
1540 /// \brief Add link options implied by the given module, including modules
1541 /// it depends on, using a postorder walk.
1542 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1543                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1544                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1545   // Import this module's parent.
1546   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1547     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1548   }
1549 
1550   // Import this module's dependencies.
1551   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1552     if (Visited.insert(Mod->Imports[I - 1]).second)
1553       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1554   }
1555 
1556   // Add linker options to link against the libraries/frameworks
1557   // described by this module.
1558   llvm::LLVMContext &Context = CGM.getLLVMContext();
1559 
1560   // For modules that use export_as for linking, use that module
1561   // name instead.
1562   if (Mod->UseExportAsModuleLinkName)
1563     return;
1564 
1565   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1566     // Link against a framework.  Frameworks are currently Darwin only, so we
1567     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1568     if (Mod->LinkLibraries[I-1].IsFramework) {
1569       llvm::Metadata *Args[2] = {
1570           llvm::MDString::get(Context, "-framework"),
1571           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1572 
1573       Metadata.push_back(llvm::MDNode::get(Context, Args));
1574       continue;
1575     }
1576 
1577     // Link against a library.
1578     llvm::SmallString<24> Opt;
1579     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1580       Mod->LinkLibraries[I-1].Library, Opt);
1581     auto *OptString = llvm::MDString::get(Context, Opt);
1582     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1583   }
1584 }
1585 
1586 void CodeGenModule::EmitModuleLinkOptions() {
1587   // Collect the set of all of the modules we want to visit to emit link
1588   // options, which is essentially the imported modules and all of their
1589   // non-explicit child modules.
1590   llvm::SetVector<clang::Module *> LinkModules;
1591   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1592   SmallVector<clang::Module *, 16> Stack;
1593 
1594   // Seed the stack with imported modules.
1595   for (Module *M : ImportedModules) {
1596     // Do not add any link flags when an implementation TU of a module imports
1597     // a header of that same module.
1598     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1599         !getLangOpts().isCompilingModule())
1600       continue;
1601     if (Visited.insert(M).second)
1602       Stack.push_back(M);
1603   }
1604 
1605   // Find all of the modules to import, making a little effort to prune
1606   // non-leaf modules.
1607   while (!Stack.empty()) {
1608     clang::Module *Mod = Stack.pop_back_val();
1609 
1610     bool AnyChildren = false;
1611 
1612     // Visit the submodules of this module.
1613     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1614                                         SubEnd = Mod->submodule_end();
1615          Sub != SubEnd; ++Sub) {
1616       // Skip explicit children; they need to be explicitly imported to be
1617       // linked against.
1618       if ((*Sub)->IsExplicit)
1619         continue;
1620 
1621       if (Visited.insert(*Sub).second) {
1622         Stack.push_back(*Sub);
1623         AnyChildren = true;
1624       }
1625     }
1626 
1627     // We didn't find any children, so add this module to the list of
1628     // modules to link against.
1629     if (!AnyChildren) {
1630       LinkModules.insert(Mod);
1631     }
1632   }
1633 
1634   // Add link options for all of the imported modules in reverse topological
1635   // order.  We don't do anything to try to order import link flags with respect
1636   // to linker options inserted by things like #pragma comment().
1637   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1638   Visited.clear();
1639   for (Module *M : LinkModules)
1640     if (Visited.insert(M).second)
1641       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1642   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1643   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1644 
1645   // Add the linker options metadata flag.
1646   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1647   for (auto *MD : LinkerOptionsMetadata)
1648     NMD->addOperand(MD);
1649 }
1650 
1651 void CodeGenModule::EmitDeferred() {
1652   // Emit code for any potentially referenced deferred decls.  Since a
1653   // previously unused static decl may become used during the generation of code
1654   // for a static function, iterate until no changes are made.
1655 
1656   if (!DeferredVTables.empty()) {
1657     EmitDeferredVTables();
1658 
1659     // Emitting a vtable doesn't directly cause more vtables to
1660     // become deferred, although it can cause functions to be
1661     // emitted that then need those vtables.
1662     assert(DeferredVTables.empty());
1663   }
1664 
1665   // Stop if we're out of both deferred vtables and deferred declarations.
1666   if (DeferredDeclsToEmit.empty())
1667     return;
1668 
1669   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1670   // work, it will not interfere with this.
1671   std::vector<GlobalDecl> CurDeclsToEmit;
1672   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1673 
1674   for (GlobalDecl &D : CurDeclsToEmit) {
1675     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1676     // to get GlobalValue with exactly the type we need, not something that
1677     // might had been created for another decl with the same mangled name but
1678     // different type.
1679     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1680         GetAddrOfGlobal(D, ForDefinition));
1681 
1682     // In case of different address spaces, we may still get a cast, even with
1683     // IsForDefinition equal to true. Query mangled names table to get
1684     // GlobalValue.
1685     if (!GV)
1686       GV = GetGlobalValue(getMangledName(D));
1687 
1688     // Make sure GetGlobalValue returned non-null.
1689     assert(GV);
1690 
1691     // Check to see if we've already emitted this.  This is necessary
1692     // for a couple of reasons: first, decls can end up in the
1693     // deferred-decls queue multiple times, and second, decls can end
1694     // up with definitions in unusual ways (e.g. by an extern inline
1695     // function acquiring a strong function redefinition).  Just
1696     // ignore these cases.
1697     if (!GV->isDeclaration())
1698       continue;
1699 
1700     // Otherwise, emit the definition and move on to the next one.
1701     EmitGlobalDefinition(D, GV);
1702 
1703     // If we found out that we need to emit more decls, do that recursively.
1704     // This has the advantage that the decls are emitted in a DFS and related
1705     // ones are close together, which is convenient for testing.
1706     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1707       EmitDeferred();
1708       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1709     }
1710   }
1711 }
1712 
1713 void CodeGenModule::EmitVTablesOpportunistically() {
1714   // Try to emit external vtables as available_externally if they have emitted
1715   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1716   // is not allowed to create new references to things that need to be emitted
1717   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1718 
1719   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1720          && "Only emit opportunistic vtables with optimizations");
1721 
1722   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1723     assert(getVTables().isVTableExternal(RD) &&
1724            "This queue should only contain external vtables");
1725     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1726       VTables.GenerateClassData(RD);
1727   }
1728   OpportunisticVTables.clear();
1729 }
1730 
1731 void CodeGenModule::EmitGlobalAnnotations() {
1732   if (Annotations.empty())
1733     return;
1734 
1735   // Create a new global variable for the ConstantStruct in the Module.
1736   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1737     Annotations[0]->getType(), Annotations.size()), Annotations);
1738   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1739                                       llvm::GlobalValue::AppendingLinkage,
1740                                       Array, "llvm.global.annotations");
1741   gv->setSection(AnnotationSection);
1742 }
1743 
1744 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1745   llvm::Constant *&AStr = AnnotationStrings[Str];
1746   if (AStr)
1747     return AStr;
1748 
1749   // Not found yet, create a new global.
1750   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1751   auto *gv =
1752       new llvm::GlobalVariable(getModule(), s->getType(), true,
1753                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1754   gv->setSection(AnnotationSection);
1755   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1756   AStr = gv;
1757   return gv;
1758 }
1759 
1760 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1761   SourceManager &SM = getContext().getSourceManager();
1762   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1763   if (PLoc.isValid())
1764     return EmitAnnotationString(PLoc.getFilename());
1765   return EmitAnnotationString(SM.getBufferName(Loc));
1766 }
1767 
1768 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1769   SourceManager &SM = getContext().getSourceManager();
1770   PresumedLoc PLoc = SM.getPresumedLoc(L);
1771   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1772     SM.getExpansionLineNumber(L);
1773   return llvm::ConstantInt::get(Int32Ty, LineNo);
1774 }
1775 
1776 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1777                                                 const AnnotateAttr *AA,
1778                                                 SourceLocation L) {
1779   // Get the globals for file name, annotation, and the line number.
1780   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1781                  *UnitGV = EmitAnnotationUnit(L),
1782                  *LineNoCst = EmitAnnotationLineNo(L);
1783 
1784   // Create the ConstantStruct for the global annotation.
1785   llvm::Constant *Fields[4] = {
1786     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1787     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1788     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1789     LineNoCst
1790   };
1791   return llvm::ConstantStruct::getAnon(Fields);
1792 }
1793 
1794 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1795                                          llvm::GlobalValue *GV) {
1796   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1797   // Get the struct elements for these annotations.
1798   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1799     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1800 }
1801 
1802 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1803                                            llvm::Function *Fn,
1804                                            SourceLocation Loc) const {
1805   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1806   // Blacklist by function name.
1807   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1808     return true;
1809   // Blacklist by location.
1810   if (Loc.isValid())
1811     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1812   // If location is unknown, this may be a compiler-generated function. Assume
1813   // it's located in the main file.
1814   auto &SM = Context.getSourceManager();
1815   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1816     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1817   }
1818   return false;
1819 }
1820 
1821 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1822                                            SourceLocation Loc, QualType Ty,
1823                                            StringRef Category) const {
1824   // For now globals can be blacklisted only in ASan and KASan.
1825   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1826       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1827        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1828   if (!EnabledAsanMask)
1829     return false;
1830   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1831   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1832     return true;
1833   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1834     return true;
1835   // Check global type.
1836   if (!Ty.isNull()) {
1837     // Drill down the array types: if global variable of a fixed type is
1838     // blacklisted, we also don't instrument arrays of them.
1839     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1840       Ty = AT->getElementType();
1841     Ty = Ty.getCanonicalType().getUnqualifiedType();
1842     // We allow to blacklist only record types (classes, structs etc.)
1843     if (Ty->isRecordType()) {
1844       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1845       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1846         return true;
1847     }
1848   }
1849   return false;
1850 }
1851 
1852 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1853                                    StringRef Category) const {
1854   if (!LangOpts.XRayInstrument)
1855     return false;
1856 
1857   const auto &XRayFilter = getContext().getXRayFilter();
1858   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1859   auto Attr = ImbueAttr::NONE;
1860   if (Loc.isValid())
1861     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1862   if (Attr == ImbueAttr::NONE)
1863     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1864   switch (Attr) {
1865   case ImbueAttr::NONE:
1866     return false;
1867   case ImbueAttr::ALWAYS:
1868     Fn->addFnAttr("function-instrument", "xray-always");
1869     break;
1870   case ImbueAttr::ALWAYS_ARG1:
1871     Fn->addFnAttr("function-instrument", "xray-always");
1872     Fn->addFnAttr("xray-log-args", "1");
1873     break;
1874   case ImbueAttr::NEVER:
1875     Fn->addFnAttr("function-instrument", "xray-never");
1876     break;
1877   }
1878   return true;
1879 }
1880 
1881 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1882   // Never defer when EmitAllDecls is specified.
1883   if (LangOpts.EmitAllDecls)
1884     return true;
1885 
1886   return getContext().DeclMustBeEmitted(Global);
1887 }
1888 
1889 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1890   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1891     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1892       // Implicit template instantiations may change linkage if they are later
1893       // explicitly instantiated, so they should not be emitted eagerly.
1894       return false;
1895   if (const auto *VD = dyn_cast<VarDecl>(Global))
1896     if (Context.getInlineVariableDefinitionKind(VD) ==
1897         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1898       // A definition of an inline constexpr static data member may change
1899       // linkage later if it's redeclared outside the class.
1900       return false;
1901   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1902   // codegen for global variables, because they may be marked as threadprivate.
1903   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1904       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1905     return false;
1906 
1907   return true;
1908 }
1909 
1910 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1911     const CXXUuidofExpr* E) {
1912   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1913   // well-formed.
1914   StringRef Uuid = E->getUuidStr();
1915   std::string Name = "_GUID_" + Uuid.lower();
1916   std::replace(Name.begin(), Name.end(), '-', '_');
1917 
1918   // The UUID descriptor should be pointer aligned.
1919   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1920 
1921   // Look for an existing global.
1922   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1923     return ConstantAddress(GV, Alignment);
1924 
1925   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1926   assert(Init && "failed to initialize as constant");
1927 
1928   auto *GV = new llvm::GlobalVariable(
1929       getModule(), Init->getType(),
1930       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1931   if (supportsCOMDAT())
1932     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1933   setDSOLocal(GV);
1934   return ConstantAddress(GV, Alignment);
1935 }
1936 
1937 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1938   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1939   assert(AA && "No alias?");
1940 
1941   CharUnits Alignment = getContext().getDeclAlign(VD);
1942   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1943 
1944   // See if there is already something with the target's name in the module.
1945   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1946   if (Entry) {
1947     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1948     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1949     return ConstantAddress(Ptr, Alignment);
1950   }
1951 
1952   llvm::Constant *Aliasee;
1953   if (isa<llvm::FunctionType>(DeclTy))
1954     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1955                                       GlobalDecl(cast<FunctionDecl>(VD)),
1956                                       /*ForVTable=*/false);
1957   else
1958     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1959                                     llvm::PointerType::getUnqual(DeclTy),
1960                                     nullptr);
1961 
1962   auto *F = cast<llvm::GlobalValue>(Aliasee);
1963   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1964   WeakRefReferences.insert(F);
1965 
1966   return ConstantAddress(Aliasee, Alignment);
1967 }
1968 
1969 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1970   const auto *Global = cast<ValueDecl>(GD.getDecl());
1971 
1972   // Weak references don't produce any output by themselves.
1973   if (Global->hasAttr<WeakRefAttr>())
1974     return;
1975 
1976   // If this is an alias definition (which otherwise looks like a declaration)
1977   // emit it now.
1978   if (Global->hasAttr<AliasAttr>())
1979     return EmitAliasDefinition(GD);
1980 
1981   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1982   if (Global->hasAttr<IFuncAttr>())
1983     return emitIFuncDefinition(GD);
1984 
1985   // If this is CUDA, be selective about which declarations we emit.
1986   if (LangOpts.CUDA) {
1987     if (LangOpts.CUDAIsDevice) {
1988       if (!Global->hasAttr<CUDADeviceAttr>() &&
1989           !Global->hasAttr<CUDAGlobalAttr>() &&
1990           !Global->hasAttr<CUDAConstantAttr>() &&
1991           !Global->hasAttr<CUDASharedAttr>())
1992         return;
1993     } else {
1994       // We need to emit host-side 'shadows' for all global
1995       // device-side variables because the CUDA runtime needs their
1996       // size and host-side address in order to provide access to
1997       // their device-side incarnations.
1998 
1999       // So device-only functions are the only things we skip.
2000       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2001           Global->hasAttr<CUDADeviceAttr>())
2002         return;
2003 
2004       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2005              "Expected Variable or Function");
2006     }
2007   }
2008 
2009   if (LangOpts.OpenMP) {
2010     // If this is OpenMP device, check if it is legal to emit this global
2011     // normally.
2012     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2013       return;
2014     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2015       if (MustBeEmitted(Global))
2016         EmitOMPDeclareReduction(DRD);
2017       return;
2018     }
2019   }
2020 
2021   // Ignore declarations, they will be emitted on their first use.
2022   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2023     // Forward declarations are emitted lazily on first use.
2024     if (!FD->doesThisDeclarationHaveABody()) {
2025       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2026         return;
2027 
2028       StringRef MangledName = getMangledName(GD);
2029 
2030       // Compute the function info and LLVM type.
2031       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2032       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2033 
2034       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2035                               /*DontDefer=*/false);
2036       return;
2037     }
2038   } else {
2039     const auto *VD = cast<VarDecl>(Global);
2040     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2041     // We need to emit device-side global CUDA variables even if a
2042     // variable does not have a definition -- we still need to define
2043     // host-side shadow for it.
2044     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2045                            !VD->hasDefinition() &&
2046                            (VD->hasAttr<CUDAConstantAttr>() ||
2047                             VD->hasAttr<CUDADeviceAttr>());
2048     if (!MustEmitForCuda &&
2049         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2050         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2051       // If this declaration may have caused an inline variable definition to
2052       // change linkage, make sure that it's emitted.
2053       if (Context.getInlineVariableDefinitionKind(VD) ==
2054           ASTContext::InlineVariableDefinitionKind::Strong)
2055         GetAddrOfGlobalVar(VD);
2056       return;
2057     }
2058   }
2059 
2060   // Defer code generation to first use when possible, e.g. if this is an inline
2061   // function. If the global must always be emitted, do it eagerly if possible
2062   // to benefit from cache locality.
2063   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2064     // Emit the definition if it can't be deferred.
2065     EmitGlobalDefinition(GD);
2066     return;
2067   }
2068 
2069   // If we're deferring emission of a C++ variable with an
2070   // initializer, remember the order in which it appeared in the file.
2071   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2072       cast<VarDecl>(Global)->hasInit()) {
2073     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2074     CXXGlobalInits.push_back(nullptr);
2075   }
2076 
2077   StringRef MangledName = getMangledName(GD);
2078   if (GetGlobalValue(MangledName) != nullptr) {
2079     // The value has already been used and should therefore be emitted.
2080     addDeferredDeclToEmit(GD);
2081   } else if (MustBeEmitted(Global)) {
2082     // The value must be emitted, but cannot be emitted eagerly.
2083     assert(!MayBeEmittedEagerly(Global));
2084     addDeferredDeclToEmit(GD);
2085   } else {
2086     // Otherwise, remember that we saw a deferred decl with this name.  The
2087     // first use of the mangled name will cause it to move into
2088     // DeferredDeclsToEmit.
2089     DeferredDecls[MangledName] = GD;
2090   }
2091 }
2092 
2093 // Check if T is a class type with a destructor that's not dllimport.
2094 static bool HasNonDllImportDtor(QualType T) {
2095   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2096     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2097       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2098         return true;
2099 
2100   return false;
2101 }
2102 
2103 namespace {
2104   struct FunctionIsDirectlyRecursive :
2105     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2106     const StringRef Name;
2107     const Builtin::Context &BI;
2108     bool Result;
2109     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2110       Name(N), BI(C), Result(false) {
2111     }
2112     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2113 
2114     bool TraverseCallExpr(CallExpr *E) {
2115       const FunctionDecl *FD = E->getDirectCallee();
2116       if (!FD)
2117         return true;
2118       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2119       if (Attr && Name == Attr->getLabel()) {
2120         Result = true;
2121         return false;
2122       }
2123       unsigned BuiltinID = FD->getBuiltinID();
2124       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2125         return true;
2126       StringRef BuiltinName = BI.getName(BuiltinID);
2127       if (BuiltinName.startswith("__builtin_") &&
2128           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2129         Result = true;
2130         return false;
2131       }
2132       return true;
2133     }
2134   };
2135 
2136   // Make sure we're not referencing non-imported vars or functions.
2137   struct DLLImportFunctionVisitor
2138       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2139     bool SafeToInline = true;
2140 
2141     bool shouldVisitImplicitCode() const { return true; }
2142 
2143     bool VisitVarDecl(VarDecl *VD) {
2144       if (VD->getTLSKind()) {
2145         // A thread-local variable cannot be imported.
2146         SafeToInline = false;
2147         return SafeToInline;
2148       }
2149 
2150       // A variable definition might imply a destructor call.
2151       if (VD->isThisDeclarationADefinition())
2152         SafeToInline = !HasNonDllImportDtor(VD->getType());
2153 
2154       return SafeToInline;
2155     }
2156 
2157     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2158       if (const auto *D = E->getTemporary()->getDestructor())
2159         SafeToInline = D->hasAttr<DLLImportAttr>();
2160       return SafeToInline;
2161     }
2162 
2163     bool VisitDeclRefExpr(DeclRefExpr *E) {
2164       ValueDecl *VD = E->getDecl();
2165       if (isa<FunctionDecl>(VD))
2166         SafeToInline = VD->hasAttr<DLLImportAttr>();
2167       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2168         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2169       return SafeToInline;
2170     }
2171 
2172     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2173       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2174       return SafeToInline;
2175     }
2176 
2177     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2178       CXXMethodDecl *M = E->getMethodDecl();
2179       if (!M) {
2180         // Call through a pointer to member function. This is safe to inline.
2181         SafeToInline = true;
2182       } else {
2183         SafeToInline = M->hasAttr<DLLImportAttr>();
2184       }
2185       return SafeToInline;
2186     }
2187 
2188     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2189       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2190       return SafeToInline;
2191     }
2192 
2193     bool VisitCXXNewExpr(CXXNewExpr *E) {
2194       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2195       return SafeToInline;
2196     }
2197   };
2198 }
2199 
2200 // isTriviallyRecursive - Check if this function calls another
2201 // decl that, because of the asm attribute or the other decl being a builtin,
2202 // ends up pointing to itself.
2203 bool
2204 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2205   StringRef Name;
2206   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2207     // asm labels are a special kind of mangling we have to support.
2208     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2209     if (!Attr)
2210       return false;
2211     Name = Attr->getLabel();
2212   } else {
2213     Name = FD->getName();
2214   }
2215 
2216   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2217   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2218   return Walker.Result;
2219 }
2220 
2221 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2222   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2223     return true;
2224   const auto *F = cast<FunctionDecl>(GD.getDecl());
2225   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2226     return false;
2227 
2228   if (F->hasAttr<DLLImportAttr>()) {
2229     // Check whether it would be safe to inline this dllimport function.
2230     DLLImportFunctionVisitor Visitor;
2231     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2232     if (!Visitor.SafeToInline)
2233       return false;
2234 
2235     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2236       // Implicit destructor invocations aren't captured in the AST, so the
2237       // check above can't see them. Check for them manually here.
2238       for (const Decl *Member : Dtor->getParent()->decls())
2239         if (isa<FieldDecl>(Member))
2240           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2241             return false;
2242       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2243         if (HasNonDllImportDtor(B.getType()))
2244           return false;
2245     }
2246   }
2247 
2248   // PR9614. Avoid cases where the source code is lying to us. An available
2249   // externally function should have an equivalent function somewhere else,
2250   // but a function that calls itself is clearly not equivalent to the real
2251   // implementation.
2252   // This happens in glibc's btowc and in some configure checks.
2253   return !isTriviallyRecursive(F);
2254 }
2255 
2256 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2257   return CodeGenOpts.OptimizationLevel > 0;
2258 }
2259 
2260 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2261   const auto *D = cast<ValueDecl>(GD.getDecl());
2262 
2263   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2264                                  Context.getSourceManager(),
2265                                  "Generating code for declaration");
2266 
2267   if (isa<FunctionDecl>(D)) {
2268     // At -O0, don't generate IR for functions with available_externally
2269     // linkage.
2270     if (!shouldEmitFunction(GD))
2271       return;
2272 
2273     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2274       // Make sure to emit the definition(s) before we emit the thunks.
2275       // This is necessary for the generation of certain thunks.
2276       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2277         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2278       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2279         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2280       else
2281         EmitGlobalFunctionDefinition(GD, GV);
2282 
2283       if (Method->isVirtual())
2284         getVTables().EmitThunks(GD);
2285 
2286       return;
2287     }
2288 
2289     return EmitGlobalFunctionDefinition(GD, GV);
2290   }
2291 
2292   if (const auto *VD = dyn_cast<VarDecl>(D))
2293     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2294 
2295   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2296 }
2297 
2298 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2299                                                       llvm::Function *NewFn);
2300 
2301 void CodeGenModule::emitMultiVersionFunctions() {
2302   for (GlobalDecl GD : MultiVersionFuncs) {
2303     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2304     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2305     getContext().forEachMultiversionedFunctionVersion(
2306         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2307           GlobalDecl CurGD{
2308               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2309           StringRef MangledName = getMangledName(CurGD);
2310           llvm::Constant *Func = GetGlobalValue(MangledName);
2311           if (!Func) {
2312             if (CurFD->isDefined()) {
2313               EmitGlobalFunctionDefinition(CurGD, nullptr);
2314               Func = GetGlobalValue(MangledName);
2315             } else {
2316               const CGFunctionInfo &FI =
2317                   getTypes().arrangeGlobalDeclaration(GD);
2318               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2319               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2320                                        /*DontDefer=*/false, ForDefinition);
2321             }
2322             assert(Func && "This should have just been created");
2323           }
2324           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2325                                CurFD->getAttr<TargetAttr>()->parse());
2326         });
2327 
2328     llvm::Function *ResolverFunc = cast<llvm::Function>(
2329         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2330     if (supportsCOMDAT())
2331       ResolverFunc->setComdat(
2332           getModule().getOrInsertComdat(ResolverFunc->getName()));
2333     std::stable_sort(
2334         Options.begin(), Options.end(),
2335         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2336     CodeGenFunction CGF(*this);
2337     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2338   }
2339 }
2340 
2341 /// If an ifunc for the specified mangled name is not in the module, create and
2342 /// return an llvm IFunc Function with the specified type.
2343 llvm::Constant *
2344 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2345                                             StringRef MangledName,
2346                                             const FunctionDecl *FD) {
2347   std::string IFuncName = (MangledName + ".ifunc").str();
2348   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2349     return IFuncGV;
2350 
2351   // Since this is the first time we've created this IFunc, make sure
2352   // that we put this multiversioned function into the list to be
2353   // replaced later.
2354   MultiVersionFuncs.push_back(GD);
2355 
2356   std::string ResolverName = (MangledName + ".resolver").str();
2357   llvm::Type *ResolverType = llvm::FunctionType::get(
2358       llvm::PointerType::get(DeclTy,
2359                              Context.getTargetAddressSpace(FD->getType())),
2360       false);
2361   llvm::Constant *Resolver =
2362       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2363                               /*ForVTable=*/false);
2364   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2365       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2366   GIF->setName(IFuncName);
2367   SetCommonAttributes(FD, GIF);
2368 
2369   return GIF;
2370 }
2371 
2372 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2373 /// module, create and return an llvm Function with the specified type. If there
2374 /// is something in the module with the specified name, return it potentially
2375 /// bitcasted to the right type.
2376 ///
2377 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2378 /// to set the attributes on the function when it is first created.
2379 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2380     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2381     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2382     ForDefinition_t IsForDefinition) {
2383   const Decl *D = GD.getDecl();
2384 
2385   // Any attempts to use a MultiVersion function should result in retrieving
2386   // the iFunc instead. Name Mangling will handle the rest of the changes.
2387   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2388     // For the device mark the function as one that should be emitted.
2389     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2390         !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() &&
2391         !DontDefer && !IsForDefinition)
2392       addDeferredDeclToEmit(GD);
2393 
2394     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2395       UpdateMultiVersionNames(GD, FD);
2396       if (!IsForDefinition)
2397         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2398     }
2399   }
2400 
2401   // Lookup the entry, lazily creating it if necessary.
2402   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2403   if (Entry) {
2404     if (WeakRefReferences.erase(Entry)) {
2405       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2406       if (FD && !FD->hasAttr<WeakAttr>())
2407         Entry->setLinkage(llvm::Function::ExternalLinkage);
2408     }
2409 
2410     // Handle dropped DLL attributes.
2411     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2412       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2413       setDSOLocal(Entry);
2414     }
2415 
2416     // If there are two attempts to define the same mangled name, issue an
2417     // error.
2418     if (IsForDefinition && !Entry->isDeclaration()) {
2419       GlobalDecl OtherGD;
2420       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2421       // to make sure that we issue an error only once.
2422       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2423           (GD.getCanonicalDecl().getDecl() !=
2424            OtherGD.getCanonicalDecl().getDecl()) &&
2425           DiagnosedConflictingDefinitions.insert(GD).second) {
2426         getDiags().Report(D->getLocation(),
2427                           diag::err_duplicate_mangled_name);
2428         getDiags().Report(OtherGD.getDecl()->getLocation(),
2429                           diag::note_previous_definition);
2430       }
2431     }
2432 
2433     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2434         (Entry->getType()->getElementType() == Ty)) {
2435       return Entry;
2436     }
2437 
2438     // Make sure the result is of the correct type.
2439     // (If function is requested for a definition, we always need to create a new
2440     // function, not just return a bitcast.)
2441     if (!IsForDefinition)
2442       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2443   }
2444 
2445   // This function doesn't have a complete type (for example, the return
2446   // type is an incomplete struct). Use a fake type instead, and make
2447   // sure not to try to set attributes.
2448   bool IsIncompleteFunction = false;
2449 
2450   llvm::FunctionType *FTy;
2451   if (isa<llvm::FunctionType>(Ty)) {
2452     FTy = cast<llvm::FunctionType>(Ty);
2453   } else {
2454     FTy = llvm::FunctionType::get(VoidTy, false);
2455     IsIncompleteFunction = true;
2456   }
2457 
2458   llvm::Function *F =
2459       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2460                              Entry ? StringRef() : MangledName, &getModule());
2461 
2462   // If we already created a function with the same mangled name (but different
2463   // type) before, take its name and add it to the list of functions to be
2464   // replaced with F at the end of CodeGen.
2465   //
2466   // This happens if there is a prototype for a function (e.g. "int f()") and
2467   // then a definition of a different type (e.g. "int f(int x)").
2468   if (Entry) {
2469     F->takeName(Entry);
2470 
2471     // This might be an implementation of a function without a prototype, in
2472     // which case, try to do special replacement of calls which match the new
2473     // prototype.  The really key thing here is that we also potentially drop
2474     // arguments from the call site so as to make a direct call, which makes the
2475     // inliner happier and suppresses a number of optimizer warnings (!) about
2476     // dropping arguments.
2477     if (!Entry->use_empty()) {
2478       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2479       Entry->removeDeadConstantUsers();
2480     }
2481 
2482     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2483         F, Entry->getType()->getElementType()->getPointerTo());
2484     addGlobalValReplacement(Entry, BC);
2485   }
2486 
2487   assert(F->getName() == MangledName && "name was uniqued!");
2488   if (D)
2489     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2490   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2491     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2492     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2493   }
2494 
2495   if (!DontDefer) {
2496     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2497     // each other bottoming out with the base dtor.  Therefore we emit non-base
2498     // dtors on usage, even if there is no dtor definition in the TU.
2499     if (D && isa<CXXDestructorDecl>(D) &&
2500         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2501                                            GD.getDtorType()))
2502       addDeferredDeclToEmit(GD);
2503 
2504     // This is the first use or definition of a mangled name.  If there is a
2505     // deferred decl with this name, remember that we need to emit it at the end
2506     // of the file.
2507     auto DDI = DeferredDecls.find(MangledName);
2508     if (DDI != DeferredDecls.end()) {
2509       // Move the potentially referenced deferred decl to the
2510       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2511       // don't need it anymore).
2512       addDeferredDeclToEmit(DDI->second);
2513       DeferredDecls.erase(DDI);
2514 
2515       // Otherwise, there are cases we have to worry about where we're
2516       // using a declaration for which we must emit a definition but where
2517       // we might not find a top-level definition:
2518       //   - member functions defined inline in their classes
2519       //   - friend functions defined inline in some class
2520       //   - special member functions with implicit definitions
2521       // If we ever change our AST traversal to walk into class methods,
2522       // this will be unnecessary.
2523       //
2524       // We also don't emit a definition for a function if it's going to be an
2525       // entry in a vtable, unless it's already marked as used.
2526     } else if (getLangOpts().CPlusPlus && D) {
2527       // Look for a declaration that's lexically in a record.
2528       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2529            FD = FD->getPreviousDecl()) {
2530         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2531           if (FD->doesThisDeclarationHaveABody()) {
2532             addDeferredDeclToEmit(GD.getWithDecl(FD));
2533             break;
2534           }
2535         }
2536       }
2537     }
2538   }
2539 
2540   // Make sure the result is of the requested type.
2541   if (!IsIncompleteFunction) {
2542     assert(F->getType()->getElementType() == Ty);
2543     return F;
2544   }
2545 
2546   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2547   return llvm::ConstantExpr::getBitCast(F, PTy);
2548 }
2549 
2550 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2551 /// non-null, then this function will use the specified type if it has to
2552 /// create it (this occurs when we see a definition of the function).
2553 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2554                                                  llvm::Type *Ty,
2555                                                  bool ForVTable,
2556                                                  bool DontDefer,
2557                                               ForDefinition_t IsForDefinition) {
2558   // If there was no specific requested type, just convert it now.
2559   if (!Ty) {
2560     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2561     auto CanonTy = Context.getCanonicalType(FD->getType());
2562     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2563   }
2564 
2565   // Devirtualized destructor calls may come through here instead of via
2566   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2567   // of the complete destructor when necessary.
2568   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2569     if (getTarget().getCXXABI().isMicrosoft() &&
2570         GD.getDtorType() == Dtor_Complete &&
2571         DD->getParent()->getNumVBases() == 0)
2572       GD = GlobalDecl(DD, Dtor_Base);
2573   }
2574 
2575   StringRef MangledName = getMangledName(GD);
2576   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2577                                  /*IsThunk=*/false, llvm::AttributeList(),
2578                                  IsForDefinition);
2579 }
2580 
2581 static const FunctionDecl *
2582 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2583   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2584   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2585 
2586   IdentifierInfo &CII = C.Idents.get(Name);
2587   for (const auto &Result : DC->lookup(&CII))
2588     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2589       return FD;
2590 
2591   if (!C.getLangOpts().CPlusPlus)
2592     return nullptr;
2593 
2594   // Demangle the premangled name from getTerminateFn()
2595   IdentifierInfo &CXXII =
2596       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2597           ? C.Idents.get("terminate")
2598           : C.Idents.get(Name);
2599 
2600   for (const auto &N : {"__cxxabiv1", "std"}) {
2601     IdentifierInfo &NS = C.Idents.get(N);
2602     for (const auto &Result : DC->lookup(&NS)) {
2603       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2604       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2605         for (const auto &Result : LSD->lookup(&NS))
2606           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2607             break;
2608 
2609       if (ND)
2610         for (const auto &Result : ND->lookup(&CXXII))
2611           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2612             return FD;
2613     }
2614   }
2615 
2616   return nullptr;
2617 }
2618 
2619 /// CreateRuntimeFunction - Create a new runtime function with the specified
2620 /// type and name.
2621 llvm::Constant *
2622 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2623                                      llvm::AttributeList ExtraAttrs,
2624                                      bool Local) {
2625   llvm::Constant *C =
2626       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2627                               /*DontDefer=*/false, /*IsThunk=*/false,
2628                               ExtraAttrs);
2629 
2630   if (auto *F = dyn_cast<llvm::Function>(C)) {
2631     if (F->empty()) {
2632       F->setCallingConv(getRuntimeCC());
2633 
2634       if (!Local && getTriple().isOSBinFormatCOFF() &&
2635           !getCodeGenOpts().LTOVisibilityPublicStd &&
2636           !getTriple().isWindowsGNUEnvironment()) {
2637         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2638         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2639           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2640           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2641         }
2642       }
2643       setDSOLocal(F);
2644     }
2645   }
2646 
2647   return C;
2648 }
2649 
2650 /// CreateBuiltinFunction - Create a new builtin function with the specified
2651 /// type and name.
2652 llvm::Constant *
2653 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2654                                      llvm::AttributeList ExtraAttrs) {
2655   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2656 }
2657 
2658 /// isTypeConstant - Determine whether an object of this type can be emitted
2659 /// as a constant.
2660 ///
2661 /// If ExcludeCtor is true, the duration when the object's constructor runs
2662 /// will not be considered. The caller will need to verify that the object is
2663 /// not written to during its construction.
2664 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2665   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2666     return false;
2667 
2668   if (Context.getLangOpts().CPlusPlus) {
2669     if (const CXXRecordDecl *Record
2670           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2671       return ExcludeCtor && !Record->hasMutableFields() &&
2672              Record->hasTrivialDestructor();
2673   }
2674 
2675   return true;
2676 }
2677 
2678 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2679 /// create and return an llvm GlobalVariable with the specified type.  If there
2680 /// is something in the module with the specified name, return it potentially
2681 /// bitcasted to the right type.
2682 ///
2683 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2684 /// to set the attributes on the global when it is first created.
2685 ///
2686 /// If IsForDefinition is true, it is guaranteed that an actual global with
2687 /// type Ty will be returned, not conversion of a variable with the same
2688 /// mangled name but some other type.
2689 llvm::Constant *
2690 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2691                                      llvm::PointerType *Ty,
2692                                      const VarDecl *D,
2693                                      ForDefinition_t IsForDefinition) {
2694   // Lookup the entry, lazily creating it if necessary.
2695   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2696   if (Entry) {
2697     if (WeakRefReferences.erase(Entry)) {
2698       if (D && !D->hasAttr<WeakAttr>())
2699         Entry->setLinkage(llvm::Function::ExternalLinkage);
2700     }
2701 
2702     // Handle dropped DLL attributes.
2703     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2704       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2705 
2706     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2707       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2708 
2709     if (Entry->getType() == Ty)
2710       return Entry;
2711 
2712     // If there are two attempts to define the same mangled name, issue an
2713     // error.
2714     if (IsForDefinition && !Entry->isDeclaration()) {
2715       GlobalDecl OtherGD;
2716       const VarDecl *OtherD;
2717 
2718       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2719       // to make sure that we issue an error only once.
2720       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2721           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2722           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2723           OtherD->hasInit() &&
2724           DiagnosedConflictingDefinitions.insert(D).second) {
2725         getDiags().Report(D->getLocation(),
2726                           diag::err_duplicate_mangled_name);
2727         getDiags().Report(OtherGD.getDecl()->getLocation(),
2728                           diag::note_previous_definition);
2729       }
2730     }
2731 
2732     // Make sure the result is of the correct type.
2733     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2734       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2735 
2736     // (If global is requested for a definition, we always need to create a new
2737     // global, not just return a bitcast.)
2738     if (!IsForDefinition)
2739       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2740   }
2741 
2742   auto AddrSpace = GetGlobalVarAddressSpace(D);
2743   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2744 
2745   auto *GV = new llvm::GlobalVariable(
2746       getModule(), Ty->getElementType(), false,
2747       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2748       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2749 
2750   // If we already created a global with the same mangled name (but different
2751   // type) before, take its name and remove it from its parent.
2752   if (Entry) {
2753     GV->takeName(Entry);
2754 
2755     if (!Entry->use_empty()) {
2756       llvm::Constant *NewPtrForOldDecl =
2757           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2758       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2759     }
2760 
2761     Entry->eraseFromParent();
2762   }
2763 
2764   // This is the first use or definition of a mangled name.  If there is a
2765   // deferred decl with this name, remember that we need to emit it at the end
2766   // of the file.
2767   auto DDI = DeferredDecls.find(MangledName);
2768   if (DDI != DeferredDecls.end()) {
2769     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2770     // list, and remove it from DeferredDecls (since we don't need it anymore).
2771     addDeferredDeclToEmit(DDI->second);
2772     DeferredDecls.erase(DDI);
2773   }
2774 
2775   // Handle things which are present even on external declarations.
2776   if (D) {
2777     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2778       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2779 
2780     // FIXME: This code is overly simple and should be merged with other global
2781     // handling.
2782     GV->setConstant(isTypeConstant(D->getType(), false));
2783 
2784     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2785 
2786     setLinkageForGV(GV, D);
2787 
2788     if (D->getTLSKind()) {
2789       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2790         CXXThreadLocals.push_back(D);
2791       setTLSMode(GV, *D);
2792     }
2793 
2794     setGVProperties(GV, D);
2795 
2796     // If required by the ABI, treat declarations of static data members with
2797     // inline initializers as definitions.
2798     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2799       EmitGlobalVarDefinition(D);
2800     }
2801 
2802     // Emit section information for extern variables.
2803     if (D->hasExternalStorage()) {
2804       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2805         GV->setSection(SA->getName());
2806     }
2807 
2808     // Handle XCore specific ABI requirements.
2809     if (getTriple().getArch() == llvm::Triple::xcore &&
2810         D->getLanguageLinkage() == CLanguageLinkage &&
2811         D->getType().isConstant(Context) &&
2812         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2813       GV->setSection(".cp.rodata");
2814 
2815     // Check if we a have a const declaration with an initializer, we may be
2816     // able to emit it as available_externally to expose it's value to the
2817     // optimizer.
2818     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2819         D->getType().isConstQualified() && !GV->hasInitializer() &&
2820         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2821       const auto *Record =
2822           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2823       bool HasMutableFields = Record && Record->hasMutableFields();
2824       if (!HasMutableFields) {
2825         const VarDecl *InitDecl;
2826         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2827         if (InitExpr) {
2828           ConstantEmitter emitter(*this);
2829           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2830           if (Init) {
2831             auto *InitType = Init->getType();
2832             if (GV->getType()->getElementType() != InitType) {
2833               // The type of the initializer does not match the definition.
2834               // This happens when an initializer has a different type from
2835               // the type of the global (because of padding at the end of a
2836               // structure for instance).
2837               GV->setName(StringRef());
2838               // Make a new global with the correct type, this is now guaranteed
2839               // to work.
2840               auto *NewGV = cast<llvm::GlobalVariable>(
2841                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2842 
2843               // Erase the old global, since it is no longer used.
2844               GV->eraseFromParent();
2845               GV = NewGV;
2846             } else {
2847               GV->setInitializer(Init);
2848               GV->setConstant(true);
2849               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2850             }
2851             emitter.finalize(GV);
2852           }
2853         }
2854       }
2855     }
2856   }
2857 
2858   LangAS ExpectedAS =
2859       D ? D->getType().getAddressSpace()
2860         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2861   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2862          Ty->getPointerAddressSpace());
2863   if (AddrSpace != ExpectedAS)
2864     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2865                                                        ExpectedAS, Ty);
2866 
2867   return GV;
2868 }
2869 
2870 llvm::Constant *
2871 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2872                                ForDefinition_t IsForDefinition) {
2873   const Decl *D = GD.getDecl();
2874   if (isa<CXXConstructorDecl>(D))
2875     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2876                                 getFromCtorType(GD.getCtorType()),
2877                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2878                                 /*DontDefer=*/false, IsForDefinition);
2879   else if (isa<CXXDestructorDecl>(D))
2880     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2881                                 getFromDtorType(GD.getDtorType()),
2882                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2883                                 /*DontDefer=*/false, IsForDefinition);
2884   else if (isa<CXXMethodDecl>(D)) {
2885     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2886         cast<CXXMethodDecl>(D));
2887     auto Ty = getTypes().GetFunctionType(*FInfo);
2888     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2889                              IsForDefinition);
2890   } else if (isa<FunctionDecl>(D)) {
2891     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2892     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2893     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2894                              IsForDefinition);
2895   } else
2896     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2897                               IsForDefinition);
2898 }
2899 
2900 llvm::GlobalVariable *
2901 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2902                                       llvm::Type *Ty,
2903                                       llvm::GlobalValue::LinkageTypes Linkage) {
2904   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2905   llvm::GlobalVariable *OldGV = nullptr;
2906 
2907   if (GV) {
2908     // Check if the variable has the right type.
2909     if (GV->getType()->getElementType() == Ty)
2910       return GV;
2911 
2912     // Because C++ name mangling, the only way we can end up with an already
2913     // existing global with the same name is if it has been declared extern "C".
2914     assert(GV->isDeclaration() && "Declaration has wrong type!");
2915     OldGV = GV;
2916   }
2917 
2918   // Create a new variable.
2919   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2920                                 Linkage, nullptr, Name);
2921 
2922   if (OldGV) {
2923     // Replace occurrences of the old variable if needed.
2924     GV->takeName(OldGV);
2925 
2926     if (!OldGV->use_empty()) {
2927       llvm::Constant *NewPtrForOldDecl =
2928       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2929       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2930     }
2931 
2932     OldGV->eraseFromParent();
2933   }
2934 
2935   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2936       !GV->hasAvailableExternallyLinkage())
2937     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2938 
2939   return GV;
2940 }
2941 
2942 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2943 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2944 /// then it will be created with the specified type instead of whatever the
2945 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
2946 /// that an actual global with type Ty will be returned, not conversion of a
2947 /// variable with the same mangled name but some other type.
2948 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2949                                                   llvm::Type *Ty,
2950                                            ForDefinition_t IsForDefinition) {
2951   assert(D->hasGlobalStorage() && "Not a global variable");
2952   QualType ASTTy = D->getType();
2953   if (!Ty)
2954     Ty = getTypes().ConvertTypeForMem(ASTTy);
2955 
2956   llvm::PointerType *PTy =
2957     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2958 
2959   StringRef MangledName = getMangledName(D);
2960   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2961 }
2962 
2963 /// CreateRuntimeVariable - Create a new runtime global variable with the
2964 /// specified type and name.
2965 llvm::Constant *
2966 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2967                                      StringRef Name) {
2968   auto *Ret =
2969       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2970   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
2971   return Ret;
2972 }
2973 
2974 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2975   assert(!D->getInit() && "Cannot emit definite definitions here!");
2976 
2977   StringRef MangledName = getMangledName(D);
2978   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2979 
2980   // We already have a definition, not declaration, with the same mangled name.
2981   // Emitting of declaration is not required (and actually overwrites emitted
2982   // definition).
2983   if (GV && !GV->isDeclaration())
2984     return;
2985 
2986   // If we have not seen a reference to this variable yet, place it into the
2987   // deferred declarations table to be emitted if needed later.
2988   if (!MustBeEmitted(D) && !GV) {
2989       DeferredDecls[MangledName] = D;
2990       return;
2991   }
2992 
2993   // The tentative definition is the only definition.
2994   EmitGlobalVarDefinition(D);
2995 }
2996 
2997 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2998   return Context.toCharUnitsFromBits(
2999       getDataLayout().getTypeStoreSizeInBits(Ty));
3000 }
3001 
3002 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3003   LangAS AddrSpace = LangAS::Default;
3004   if (LangOpts.OpenCL) {
3005     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3006     assert(AddrSpace == LangAS::opencl_global ||
3007            AddrSpace == LangAS::opencl_constant ||
3008            AddrSpace == LangAS::opencl_local ||
3009            AddrSpace >= LangAS::FirstTargetAddressSpace);
3010     return AddrSpace;
3011   }
3012 
3013   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3014     if (D && D->hasAttr<CUDAConstantAttr>())
3015       return LangAS::cuda_constant;
3016     else if (D && D->hasAttr<CUDASharedAttr>())
3017       return LangAS::cuda_shared;
3018     else
3019       return LangAS::cuda_device;
3020   }
3021 
3022   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3023 }
3024 
3025 template<typename SomeDecl>
3026 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3027                                                llvm::GlobalValue *GV) {
3028   if (!getLangOpts().CPlusPlus)
3029     return;
3030 
3031   // Must have 'used' attribute, or else inline assembly can't rely on
3032   // the name existing.
3033   if (!D->template hasAttr<UsedAttr>())
3034     return;
3035 
3036   // Must have internal linkage and an ordinary name.
3037   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3038     return;
3039 
3040   // Must be in an extern "C" context. Entities declared directly within
3041   // a record are not extern "C" even if the record is in such a context.
3042   const SomeDecl *First = D->getFirstDecl();
3043   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3044     return;
3045 
3046   // OK, this is an internal linkage entity inside an extern "C" linkage
3047   // specification. Make a note of that so we can give it the "expected"
3048   // mangled name if nothing else is using that name.
3049   std::pair<StaticExternCMap::iterator, bool> R =
3050       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3051 
3052   // If we have multiple internal linkage entities with the same name
3053   // in extern "C" regions, none of them gets that name.
3054   if (!R.second)
3055     R.first->second = nullptr;
3056 }
3057 
3058 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3059   if (!CGM.supportsCOMDAT())
3060     return false;
3061 
3062   if (D.hasAttr<SelectAnyAttr>())
3063     return true;
3064 
3065   GVALinkage Linkage;
3066   if (auto *VD = dyn_cast<VarDecl>(&D))
3067     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3068   else
3069     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3070 
3071   switch (Linkage) {
3072   case GVA_Internal:
3073   case GVA_AvailableExternally:
3074   case GVA_StrongExternal:
3075     return false;
3076   case GVA_DiscardableODR:
3077   case GVA_StrongODR:
3078     return true;
3079   }
3080   llvm_unreachable("No such linkage");
3081 }
3082 
3083 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3084                                           llvm::GlobalObject &GO) {
3085   if (!shouldBeInCOMDAT(*this, D))
3086     return;
3087   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3088 }
3089 
3090 /// Pass IsTentative as true if you want to create a tentative definition.
3091 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3092                                             bool IsTentative) {
3093   // OpenCL global variables of sampler type are translated to function calls,
3094   // therefore no need to be translated.
3095   QualType ASTTy = D->getType();
3096   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3097     return;
3098 
3099   // If this is OpenMP device, check if it is legal to emit this global
3100   // normally.
3101   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3102       OpenMPRuntime->emitTargetGlobalVariable(D))
3103     return;
3104 
3105   llvm::Constant *Init = nullptr;
3106   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3107   bool NeedsGlobalCtor = false;
3108   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3109 
3110   const VarDecl *InitDecl;
3111   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3112 
3113   Optional<ConstantEmitter> emitter;
3114 
3115   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3116   // as part of their declaration."  Sema has already checked for
3117   // error cases, so we just need to set Init to UndefValue.
3118   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3119       D->hasAttr<CUDASharedAttr>())
3120     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3121   else if (!InitExpr) {
3122     // This is a tentative definition; tentative definitions are
3123     // implicitly initialized with { 0 }.
3124     //
3125     // Note that tentative definitions are only emitted at the end of
3126     // a translation unit, so they should never have incomplete
3127     // type. In addition, EmitTentativeDefinition makes sure that we
3128     // never attempt to emit a tentative definition if a real one
3129     // exists. A use may still exists, however, so we still may need
3130     // to do a RAUW.
3131     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3132     Init = EmitNullConstant(D->getType());
3133   } else {
3134     initializedGlobalDecl = GlobalDecl(D);
3135     emitter.emplace(*this);
3136     Init = emitter->tryEmitForInitializer(*InitDecl);
3137 
3138     if (!Init) {
3139       QualType T = InitExpr->getType();
3140       if (D->getType()->isReferenceType())
3141         T = D->getType();
3142 
3143       if (getLangOpts().CPlusPlus) {
3144         Init = EmitNullConstant(T);
3145         NeedsGlobalCtor = true;
3146       } else {
3147         ErrorUnsupported(D, "static initializer");
3148         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3149       }
3150     } else {
3151       // We don't need an initializer, so remove the entry for the delayed
3152       // initializer position (just in case this entry was delayed) if we
3153       // also don't need to register a destructor.
3154       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3155         DelayedCXXInitPosition.erase(D);
3156     }
3157   }
3158 
3159   llvm::Type* InitType = Init->getType();
3160   llvm::Constant *Entry =
3161       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3162 
3163   // Strip off a bitcast if we got one back.
3164   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3165     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3166            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3167            // All zero index gep.
3168            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3169     Entry = CE->getOperand(0);
3170   }
3171 
3172   // Entry is now either a Function or GlobalVariable.
3173   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3174 
3175   // We have a definition after a declaration with the wrong type.
3176   // We must make a new GlobalVariable* and update everything that used OldGV
3177   // (a declaration or tentative definition) with the new GlobalVariable*
3178   // (which will be a definition).
3179   //
3180   // This happens if there is a prototype for a global (e.g.
3181   // "extern int x[];") and then a definition of a different type (e.g.
3182   // "int x[10];"). This also happens when an initializer has a different type
3183   // from the type of the global (this happens with unions).
3184   if (!GV || GV->getType()->getElementType() != InitType ||
3185       GV->getType()->getAddressSpace() !=
3186           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3187 
3188     // Move the old entry aside so that we'll create a new one.
3189     Entry->setName(StringRef());
3190 
3191     // Make a new global with the correct type, this is now guaranteed to work.
3192     GV = cast<llvm::GlobalVariable>(
3193         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3194 
3195     // Replace all uses of the old global with the new global
3196     llvm::Constant *NewPtrForOldDecl =
3197         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3198     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3199 
3200     // Erase the old global, since it is no longer used.
3201     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3202   }
3203 
3204   MaybeHandleStaticInExternC(D, GV);
3205 
3206   if (D->hasAttr<AnnotateAttr>())
3207     AddGlobalAnnotations(D, GV);
3208 
3209   // Set the llvm linkage type as appropriate.
3210   llvm::GlobalValue::LinkageTypes Linkage =
3211       getLLVMLinkageVarDefinition(D, GV->isConstant());
3212 
3213   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3214   // the device. [...]"
3215   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3216   // __device__, declares a variable that: [...]
3217   // Is accessible from all the threads within the grid and from the host
3218   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3219   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3220   if (GV && LangOpts.CUDA) {
3221     if (LangOpts.CUDAIsDevice) {
3222       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3223         GV->setExternallyInitialized(true);
3224     } else {
3225       // Host-side shadows of external declarations of device-side
3226       // global variables become internal definitions. These have to
3227       // be internal in order to prevent name conflicts with global
3228       // host variables with the same name in a different TUs.
3229       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3230         Linkage = llvm::GlobalValue::InternalLinkage;
3231 
3232         // Shadow variables and their properties must be registered
3233         // with CUDA runtime.
3234         unsigned Flags = 0;
3235         if (!D->hasDefinition())
3236           Flags |= CGCUDARuntime::ExternDeviceVar;
3237         if (D->hasAttr<CUDAConstantAttr>())
3238           Flags |= CGCUDARuntime::ConstantDeviceVar;
3239         getCUDARuntime().registerDeviceVar(*GV, Flags);
3240       } else if (D->hasAttr<CUDASharedAttr>())
3241         // __shared__ variables are odd. Shadows do get created, but
3242         // they are not registered with the CUDA runtime, so they
3243         // can't really be used to access their device-side
3244         // counterparts. It's not clear yet whether it's nvcc's bug or
3245         // a feature, but we've got to do the same for compatibility.
3246         Linkage = llvm::GlobalValue::InternalLinkage;
3247     }
3248   }
3249 
3250   GV->setInitializer(Init);
3251   if (emitter) emitter->finalize(GV);
3252 
3253   // If it is safe to mark the global 'constant', do so now.
3254   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3255                   isTypeConstant(D->getType(), true));
3256 
3257   // If it is in a read-only section, mark it 'constant'.
3258   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3259     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3260     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3261       GV->setConstant(true);
3262   }
3263 
3264   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3265 
3266 
3267   // On Darwin, if the normal linkage of a C++ thread_local variable is
3268   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3269   // copies within a linkage unit; otherwise, the backing variable has
3270   // internal linkage and all accesses should just be calls to the
3271   // Itanium-specified entry point, which has the normal linkage of the
3272   // variable. This is to preserve the ability to change the implementation
3273   // behind the scenes.
3274   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3275       Context.getTargetInfo().getTriple().isOSDarwin() &&
3276       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3277       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3278     Linkage = llvm::GlobalValue::InternalLinkage;
3279 
3280   GV->setLinkage(Linkage);
3281   if (D->hasAttr<DLLImportAttr>())
3282     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3283   else if (D->hasAttr<DLLExportAttr>())
3284     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3285   else
3286     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3287 
3288   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3289     // common vars aren't constant even if declared const.
3290     GV->setConstant(false);
3291     // Tentative definition of global variables may be initialized with
3292     // non-zero null pointers. In this case they should have weak linkage
3293     // since common linkage must have zero initializer and must not have
3294     // explicit section therefore cannot have non-zero initial value.
3295     if (!GV->getInitializer()->isNullValue())
3296       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3297   }
3298 
3299   setNonAliasAttributes(D, GV);
3300 
3301   if (D->getTLSKind() && !GV->isThreadLocal()) {
3302     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3303       CXXThreadLocals.push_back(D);
3304     setTLSMode(GV, *D);
3305   }
3306 
3307   maybeSetTrivialComdat(*D, *GV);
3308 
3309   // Emit the initializer function if necessary.
3310   if (NeedsGlobalCtor || NeedsGlobalDtor)
3311     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3312 
3313   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3314 
3315   // Emit global variable debug information.
3316   if (CGDebugInfo *DI = getModuleDebugInfo())
3317     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3318       DI->EmitGlobalVariable(GV, D);
3319 }
3320 
3321 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3322                                       CodeGenModule &CGM, const VarDecl *D,
3323                                       bool NoCommon) {
3324   // Don't give variables common linkage if -fno-common was specified unless it
3325   // was overridden by a NoCommon attribute.
3326   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3327     return true;
3328 
3329   // C11 6.9.2/2:
3330   //   A declaration of an identifier for an object that has file scope without
3331   //   an initializer, and without a storage-class specifier or with the
3332   //   storage-class specifier static, constitutes a tentative definition.
3333   if (D->getInit() || D->hasExternalStorage())
3334     return true;
3335 
3336   // A variable cannot be both common and exist in a section.
3337   if (D->hasAttr<SectionAttr>())
3338     return true;
3339 
3340   // A variable cannot be both common and exist in a section.
3341   // We don't try to determine which is the right section in the front-end.
3342   // If no specialized section name is applicable, it will resort to default.
3343   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3344       D->hasAttr<PragmaClangDataSectionAttr>() ||
3345       D->hasAttr<PragmaClangRodataSectionAttr>())
3346     return true;
3347 
3348   // Thread local vars aren't considered common linkage.
3349   if (D->getTLSKind())
3350     return true;
3351 
3352   // Tentative definitions marked with WeakImportAttr are true definitions.
3353   if (D->hasAttr<WeakImportAttr>())
3354     return true;
3355 
3356   // A variable cannot be both common and exist in a comdat.
3357   if (shouldBeInCOMDAT(CGM, *D))
3358     return true;
3359 
3360   // Declarations with a required alignment do not have common linkage in MSVC
3361   // mode.
3362   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3363     if (D->hasAttr<AlignedAttr>())
3364       return true;
3365     QualType VarType = D->getType();
3366     if (Context.isAlignmentRequired(VarType))
3367       return true;
3368 
3369     if (const auto *RT = VarType->getAs<RecordType>()) {
3370       const RecordDecl *RD = RT->getDecl();
3371       for (const FieldDecl *FD : RD->fields()) {
3372         if (FD->isBitField())
3373           continue;
3374         if (FD->hasAttr<AlignedAttr>())
3375           return true;
3376         if (Context.isAlignmentRequired(FD->getType()))
3377           return true;
3378       }
3379     }
3380   }
3381 
3382   return false;
3383 }
3384 
3385 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3386     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3387   if (Linkage == GVA_Internal)
3388     return llvm::Function::InternalLinkage;
3389 
3390   if (D->hasAttr<WeakAttr>()) {
3391     if (IsConstantVariable)
3392       return llvm::GlobalVariable::WeakODRLinkage;
3393     else
3394       return llvm::GlobalVariable::WeakAnyLinkage;
3395   }
3396 
3397   // We are guaranteed to have a strong definition somewhere else,
3398   // so we can use available_externally linkage.
3399   if (Linkage == GVA_AvailableExternally)
3400     return llvm::GlobalValue::AvailableExternallyLinkage;
3401 
3402   // Note that Apple's kernel linker doesn't support symbol
3403   // coalescing, so we need to avoid linkonce and weak linkages there.
3404   // Normally, this means we just map to internal, but for explicit
3405   // instantiations we'll map to external.
3406 
3407   // In C++, the compiler has to emit a definition in every translation unit
3408   // that references the function.  We should use linkonce_odr because
3409   // a) if all references in this translation unit are optimized away, we
3410   // don't need to codegen it.  b) if the function persists, it needs to be
3411   // merged with other definitions. c) C++ has the ODR, so we know the
3412   // definition is dependable.
3413   if (Linkage == GVA_DiscardableODR)
3414     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3415                                             : llvm::Function::InternalLinkage;
3416 
3417   // An explicit instantiation of a template has weak linkage, since
3418   // explicit instantiations can occur in multiple translation units
3419   // and must all be equivalent. However, we are not allowed to
3420   // throw away these explicit instantiations.
3421   //
3422   // We don't currently support CUDA device code spread out across multiple TUs,
3423   // so say that CUDA templates are either external (for kernels) or internal.
3424   // This lets llvm perform aggressive inter-procedural optimizations.
3425   if (Linkage == GVA_StrongODR) {
3426     if (Context.getLangOpts().AppleKext)
3427       return llvm::Function::ExternalLinkage;
3428     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3429       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3430                                           : llvm::Function::InternalLinkage;
3431     return llvm::Function::WeakODRLinkage;
3432   }
3433 
3434   // C++ doesn't have tentative definitions and thus cannot have common
3435   // linkage.
3436   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3437       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3438                                  CodeGenOpts.NoCommon))
3439     return llvm::GlobalVariable::CommonLinkage;
3440 
3441   // selectany symbols are externally visible, so use weak instead of
3442   // linkonce.  MSVC optimizes away references to const selectany globals, so
3443   // all definitions should be the same and ODR linkage should be used.
3444   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3445   if (D->hasAttr<SelectAnyAttr>())
3446     return llvm::GlobalVariable::WeakODRLinkage;
3447 
3448   // Otherwise, we have strong external linkage.
3449   assert(Linkage == GVA_StrongExternal);
3450   return llvm::GlobalVariable::ExternalLinkage;
3451 }
3452 
3453 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3454     const VarDecl *VD, bool IsConstant) {
3455   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3456   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3457 }
3458 
3459 /// Replace the uses of a function that was declared with a non-proto type.
3460 /// We want to silently drop extra arguments from call sites
3461 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3462                                           llvm::Function *newFn) {
3463   // Fast path.
3464   if (old->use_empty()) return;
3465 
3466   llvm::Type *newRetTy = newFn->getReturnType();
3467   SmallVector<llvm::Value*, 4> newArgs;
3468   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3469 
3470   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3471          ui != ue; ) {
3472     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3473     llvm::User *user = use->getUser();
3474 
3475     // Recognize and replace uses of bitcasts.  Most calls to
3476     // unprototyped functions will use bitcasts.
3477     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3478       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3479         replaceUsesOfNonProtoConstant(bitcast, newFn);
3480       continue;
3481     }
3482 
3483     // Recognize calls to the function.
3484     llvm::CallSite callSite(user);
3485     if (!callSite) continue;
3486     if (!callSite.isCallee(&*use)) continue;
3487 
3488     // If the return types don't match exactly, then we can't
3489     // transform this call unless it's dead.
3490     if (callSite->getType() != newRetTy && !callSite->use_empty())
3491       continue;
3492 
3493     // Get the call site's attribute list.
3494     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3495     llvm::AttributeList oldAttrs = callSite.getAttributes();
3496 
3497     // If the function was passed too few arguments, don't transform.
3498     unsigned newNumArgs = newFn->arg_size();
3499     if (callSite.arg_size() < newNumArgs) continue;
3500 
3501     // If extra arguments were passed, we silently drop them.
3502     // If any of the types mismatch, we don't transform.
3503     unsigned argNo = 0;
3504     bool dontTransform = false;
3505     for (llvm::Argument &A : newFn->args()) {
3506       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3507         dontTransform = true;
3508         break;
3509       }
3510 
3511       // Add any parameter attributes.
3512       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3513       argNo++;
3514     }
3515     if (dontTransform)
3516       continue;
3517 
3518     // Okay, we can transform this.  Create the new call instruction and copy
3519     // over the required information.
3520     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3521 
3522     // Copy over any operand bundles.
3523     callSite.getOperandBundlesAsDefs(newBundles);
3524 
3525     llvm::CallSite newCall;
3526     if (callSite.isCall()) {
3527       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3528                                        callSite.getInstruction());
3529     } else {
3530       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3531       newCall = llvm::InvokeInst::Create(newFn,
3532                                          oldInvoke->getNormalDest(),
3533                                          oldInvoke->getUnwindDest(),
3534                                          newArgs, newBundles, "",
3535                                          callSite.getInstruction());
3536     }
3537     newArgs.clear(); // for the next iteration
3538 
3539     if (!newCall->getType()->isVoidTy())
3540       newCall->takeName(callSite.getInstruction());
3541     newCall.setAttributes(llvm::AttributeList::get(
3542         newFn->getContext(), oldAttrs.getFnAttributes(),
3543         oldAttrs.getRetAttributes(), newArgAttrs));
3544     newCall.setCallingConv(callSite.getCallingConv());
3545 
3546     // Finally, remove the old call, replacing any uses with the new one.
3547     if (!callSite->use_empty())
3548       callSite->replaceAllUsesWith(newCall.getInstruction());
3549 
3550     // Copy debug location attached to CI.
3551     if (callSite->getDebugLoc())
3552       newCall->setDebugLoc(callSite->getDebugLoc());
3553 
3554     callSite->eraseFromParent();
3555   }
3556 }
3557 
3558 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3559 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3560 /// existing call uses of the old function in the module, this adjusts them to
3561 /// call the new function directly.
3562 ///
3563 /// This is not just a cleanup: the always_inline pass requires direct calls to
3564 /// functions to be able to inline them.  If there is a bitcast in the way, it
3565 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3566 /// run at -O0.
3567 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3568                                                       llvm::Function *NewFn) {
3569   // If we're redefining a global as a function, don't transform it.
3570   if (!isa<llvm::Function>(Old)) return;
3571 
3572   replaceUsesOfNonProtoConstant(Old, NewFn);
3573 }
3574 
3575 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3576   auto DK = VD->isThisDeclarationADefinition();
3577   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3578     return;
3579 
3580   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3581   // If we have a definition, this might be a deferred decl. If the
3582   // instantiation is explicit, make sure we emit it at the end.
3583   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3584     GetAddrOfGlobalVar(VD);
3585 
3586   EmitTopLevelDecl(VD);
3587 }
3588 
3589 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3590                                                  llvm::GlobalValue *GV) {
3591   const auto *D = cast<FunctionDecl>(GD.getDecl());
3592 
3593   // Compute the function info and LLVM type.
3594   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3595   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3596 
3597   // Get or create the prototype for the function.
3598   if (!GV || (GV->getType()->getElementType() != Ty))
3599     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3600                                                    /*DontDefer=*/true,
3601                                                    ForDefinition));
3602 
3603   // Already emitted.
3604   if (!GV->isDeclaration())
3605     return;
3606 
3607   // We need to set linkage and visibility on the function before
3608   // generating code for it because various parts of IR generation
3609   // want to propagate this information down (e.g. to local static
3610   // declarations).
3611   auto *Fn = cast<llvm::Function>(GV);
3612   setFunctionLinkage(GD, Fn);
3613 
3614   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3615   setGVProperties(Fn, GD);
3616 
3617   MaybeHandleStaticInExternC(D, Fn);
3618 
3619   maybeSetTrivialComdat(*D, *Fn);
3620 
3621   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3622 
3623   setNonAliasAttributes(GD, Fn);
3624   SetLLVMFunctionAttributesForDefinition(D, Fn);
3625 
3626   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3627     AddGlobalCtor(Fn, CA->getPriority());
3628   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3629     AddGlobalDtor(Fn, DA->getPriority());
3630   if (D->hasAttr<AnnotateAttr>())
3631     AddGlobalAnnotations(D, Fn);
3632 }
3633 
3634 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3635   const auto *D = cast<ValueDecl>(GD.getDecl());
3636   const AliasAttr *AA = D->getAttr<AliasAttr>();
3637   assert(AA && "Not an alias?");
3638 
3639   StringRef MangledName = getMangledName(GD);
3640 
3641   if (AA->getAliasee() == MangledName) {
3642     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3643     return;
3644   }
3645 
3646   // If there is a definition in the module, then it wins over the alias.
3647   // This is dubious, but allow it to be safe.  Just ignore the alias.
3648   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3649   if (Entry && !Entry->isDeclaration())
3650     return;
3651 
3652   Aliases.push_back(GD);
3653 
3654   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3655 
3656   // Create a reference to the named value.  This ensures that it is emitted
3657   // if a deferred decl.
3658   llvm::Constant *Aliasee;
3659   if (isa<llvm::FunctionType>(DeclTy))
3660     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3661                                       /*ForVTable=*/false);
3662   else
3663     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3664                                     llvm::PointerType::getUnqual(DeclTy),
3665                                     /*D=*/nullptr);
3666 
3667   // Create the new alias itself, but don't set a name yet.
3668   auto *GA = llvm::GlobalAlias::create(
3669       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3670 
3671   if (Entry) {
3672     if (GA->getAliasee() == Entry) {
3673       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3674       return;
3675     }
3676 
3677     assert(Entry->isDeclaration());
3678 
3679     // If there is a declaration in the module, then we had an extern followed
3680     // by the alias, as in:
3681     //   extern int test6();
3682     //   ...
3683     //   int test6() __attribute__((alias("test7")));
3684     //
3685     // Remove it and replace uses of it with the alias.
3686     GA->takeName(Entry);
3687 
3688     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3689                                                           Entry->getType()));
3690     Entry->eraseFromParent();
3691   } else {
3692     GA->setName(MangledName);
3693   }
3694 
3695   // Set attributes which are particular to an alias; this is a
3696   // specialization of the attributes which may be set on a global
3697   // variable/function.
3698   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3699       D->isWeakImported()) {
3700     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3701   }
3702 
3703   if (const auto *VD = dyn_cast<VarDecl>(D))
3704     if (VD->getTLSKind())
3705       setTLSMode(GA, *VD);
3706 
3707   SetCommonAttributes(GD, GA);
3708 }
3709 
3710 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3711   const auto *D = cast<ValueDecl>(GD.getDecl());
3712   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3713   assert(IFA && "Not an ifunc?");
3714 
3715   StringRef MangledName = getMangledName(GD);
3716 
3717   if (IFA->getResolver() == MangledName) {
3718     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3719     return;
3720   }
3721 
3722   // Report an error if some definition overrides ifunc.
3723   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3724   if (Entry && !Entry->isDeclaration()) {
3725     GlobalDecl OtherGD;
3726     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3727         DiagnosedConflictingDefinitions.insert(GD).second) {
3728       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3729       Diags.Report(OtherGD.getDecl()->getLocation(),
3730                    diag::note_previous_definition);
3731     }
3732     return;
3733   }
3734 
3735   Aliases.push_back(GD);
3736 
3737   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3738   llvm::Constant *Resolver =
3739       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3740                               /*ForVTable=*/false);
3741   llvm::GlobalIFunc *GIF =
3742       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3743                                 "", Resolver, &getModule());
3744   if (Entry) {
3745     if (GIF->getResolver() == Entry) {
3746       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3747       return;
3748     }
3749     assert(Entry->isDeclaration());
3750 
3751     // If there is a declaration in the module, then we had an extern followed
3752     // by the ifunc, as in:
3753     //   extern int test();
3754     //   ...
3755     //   int test() __attribute__((ifunc("resolver")));
3756     //
3757     // Remove it and replace uses of it with the ifunc.
3758     GIF->takeName(Entry);
3759 
3760     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3761                                                           Entry->getType()));
3762     Entry->eraseFromParent();
3763   } else
3764     GIF->setName(MangledName);
3765 
3766   SetCommonAttributes(GD, GIF);
3767 }
3768 
3769 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3770                                             ArrayRef<llvm::Type*> Tys) {
3771   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3772                                          Tys);
3773 }
3774 
3775 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3776 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3777                          const StringLiteral *Literal, bool TargetIsLSB,
3778                          bool &IsUTF16, unsigned &StringLength) {
3779   StringRef String = Literal->getString();
3780   unsigned NumBytes = String.size();
3781 
3782   // Check for simple case.
3783   if (!Literal->containsNonAsciiOrNull()) {
3784     StringLength = NumBytes;
3785     return *Map.insert(std::make_pair(String, nullptr)).first;
3786   }
3787 
3788   // Otherwise, convert the UTF8 literals into a string of shorts.
3789   IsUTF16 = true;
3790 
3791   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3792   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3793   llvm::UTF16 *ToPtr = &ToBuf[0];
3794 
3795   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3796                                  ToPtr + NumBytes, llvm::strictConversion);
3797 
3798   // ConvertUTF8toUTF16 returns the length in ToPtr.
3799   StringLength = ToPtr - &ToBuf[0];
3800 
3801   // Add an explicit null.
3802   *ToPtr = 0;
3803   return *Map.insert(std::make_pair(
3804                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3805                                    (StringLength + 1) * 2),
3806                          nullptr)).first;
3807 }
3808 
3809 ConstantAddress
3810 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3811   unsigned StringLength = 0;
3812   bool isUTF16 = false;
3813   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3814       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3815                                getDataLayout().isLittleEndian(), isUTF16,
3816                                StringLength);
3817 
3818   if (auto *C = Entry.second)
3819     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3820 
3821   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3822   llvm::Constant *Zeros[] = { Zero, Zero };
3823 
3824   // If we don't already have it, get __CFConstantStringClassReference.
3825   if (!CFConstantStringClassRef) {
3826     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3827     Ty = llvm::ArrayType::get(Ty, 0);
3828     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3829         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3830 
3831     if (getTriple().isOSBinFormatCOFF()) {
3832       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3833       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3834       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3835 
3836       const VarDecl *VD = nullptr;
3837       for (const auto &Result : DC->lookup(&II))
3838         if ((VD = dyn_cast<VarDecl>(Result)))
3839           break;
3840 
3841       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3842         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3843         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3844       } else {
3845         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3846         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3847       }
3848     }
3849     setDSOLocal(GV);
3850 
3851     // Decay array -> ptr
3852     CFConstantStringClassRef =
3853         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3854   }
3855 
3856   QualType CFTy = getContext().getCFConstantStringType();
3857 
3858   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3859 
3860   ConstantInitBuilder Builder(*this);
3861   auto Fields = Builder.beginStruct(STy);
3862 
3863   // Class pointer.
3864   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3865 
3866   // Flags.
3867   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3868 
3869   // String pointer.
3870   llvm::Constant *C = nullptr;
3871   if (isUTF16) {
3872     auto Arr = llvm::makeArrayRef(
3873         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3874         Entry.first().size() / 2);
3875     C = llvm::ConstantDataArray::get(VMContext, Arr);
3876   } else {
3877     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3878   }
3879 
3880   // Note: -fwritable-strings doesn't make the backing store strings of
3881   // CFStrings writable. (See <rdar://problem/10657500>)
3882   auto *GV =
3883       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3884                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3885   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3886   // Don't enforce the target's minimum global alignment, since the only use
3887   // of the string is via this class initializer.
3888   CharUnits Align = isUTF16
3889                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3890                         : getContext().getTypeAlignInChars(getContext().CharTy);
3891   GV->setAlignment(Align.getQuantity());
3892 
3893   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3894   // Without it LLVM can merge the string with a non unnamed_addr one during
3895   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3896   if (getTriple().isOSBinFormatMachO())
3897     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3898                            : "__TEXT,__cstring,cstring_literals");
3899 
3900   // String.
3901   llvm::Constant *Str =
3902       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3903 
3904   if (isUTF16)
3905     // Cast the UTF16 string to the correct type.
3906     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3907   Fields.add(Str);
3908 
3909   // String length.
3910   auto Ty = getTypes().ConvertType(getContext().LongTy);
3911   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3912 
3913   CharUnits Alignment = getPointerAlign();
3914 
3915   // The struct.
3916   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3917                                     /*isConstant=*/false,
3918                                     llvm::GlobalVariable::PrivateLinkage);
3919   switch (getTriple().getObjectFormat()) {
3920   case llvm::Triple::UnknownObjectFormat:
3921     llvm_unreachable("unknown file format");
3922   case llvm::Triple::COFF:
3923   case llvm::Triple::ELF:
3924   case llvm::Triple::Wasm:
3925     GV->setSection("cfstring");
3926     break;
3927   case llvm::Triple::MachO:
3928     GV->setSection("__DATA,__cfstring");
3929     break;
3930   }
3931   Entry.second = GV;
3932 
3933   return ConstantAddress(GV, Alignment);
3934 }
3935 
3936 bool CodeGenModule::getExpressionLocationsEnabled() const {
3937   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3938 }
3939 
3940 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3941   if (ObjCFastEnumerationStateType.isNull()) {
3942     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3943     D->startDefinition();
3944 
3945     QualType FieldTypes[] = {
3946       Context.UnsignedLongTy,
3947       Context.getPointerType(Context.getObjCIdType()),
3948       Context.getPointerType(Context.UnsignedLongTy),
3949       Context.getConstantArrayType(Context.UnsignedLongTy,
3950                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3951     };
3952 
3953     for (size_t i = 0; i < 4; ++i) {
3954       FieldDecl *Field = FieldDecl::Create(Context,
3955                                            D,
3956                                            SourceLocation(),
3957                                            SourceLocation(), nullptr,
3958                                            FieldTypes[i], /*TInfo=*/nullptr,
3959                                            /*BitWidth=*/nullptr,
3960                                            /*Mutable=*/false,
3961                                            ICIS_NoInit);
3962       Field->setAccess(AS_public);
3963       D->addDecl(Field);
3964     }
3965 
3966     D->completeDefinition();
3967     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3968   }
3969 
3970   return ObjCFastEnumerationStateType;
3971 }
3972 
3973 llvm::Constant *
3974 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3975   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3976 
3977   // Don't emit it as the address of the string, emit the string data itself
3978   // as an inline array.
3979   if (E->getCharByteWidth() == 1) {
3980     SmallString<64> Str(E->getString());
3981 
3982     // Resize the string to the right size, which is indicated by its type.
3983     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3984     Str.resize(CAT->getSize().getZExtValue());
3985     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3986   }
3987 
3988   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3989   llvm::Type *ElemTy = AType->getElementType();
3990   unsigned NumElements = AType->getNumElements();
3991 
3992   // Wide strings have either 2-byte or 4-byte elements.
3993   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3994     SmallVector<uint16_t, 32> Elements;
3995     Elements.reserve(NumElements);
3996 
3997     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3998       Elements.push_back(E->getCodeUnit(i));
3999     Elements.resize(NumElements);
4000     return llvm::ConstantDataArray::get(VMContext, Elements);
4001   }
4002 
4003   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4004   SmallVector<uint32_t, 32> Elements;
4005   Elements.reserve(NumElements);
4006 
4007   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4008     Elements.push_back(E->getCodeUnit(i));
4009   Elements.resize(NumElements);
4010   return llvm::ConstantDataArray::get(VMContext, Elements);
4011 }
4012 
4013 static llvm::GlobalVariable *
4014 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4015                       CodeGenModule &CGM, StringRef GlobalName,
4016                       CharUnits Alignment) {
4017   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4018   unsigned AddrSpace = 0;
4019   if (CGM.getLangOpts().OpenCL)
4020     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
4021 
4022   llvm::Module &M = CGM.getModule();
4023   // Create a global variable for this string
4024   auto *GV = new llvm::GlobalVariable(
4025       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4026       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4027   GV->setAlignment(Alignment.getQuantity());
4028   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4029   if (GV->isWeakForLinker()) {
4030     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4031     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4032   }
4033   CGM.setDSOLocal(GV);
4034 
4035   return GV;
4036 }
4037 
4038 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4039 /// constant array for the given string literal.
4040 ConstantAddress
4041 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4042                                                   StringRef Name) {
4043   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4044 
4045   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4046   llvm::GlobalVariable **Entry = nullptr;
4047   if (!LangOpts.WritableStrings) {
4048     Entry = &ConstantStringMap[C];
4049     if (auto GV = *Entry) {
4050       if (Alignment.getQuantity() > GV->getAlignment())
4051         GV->setAlignment(Alignment.getQuantity());
4052       return ConstantAddress(GV, Alignment);
4053     }
4054   }
4055 
4056   SmallString<256> MangledNameBuffer;
4057   StringRef GlobalVariableName;
4058   llvm::GlobalValue::LinkageTypes LT;
4059 
4060   // Mangle the string literal if the ABI allows for it.  However, we cannot
4061   // do this if  we are compiling with ASan or -fwritable-strings because they
4062   // rely on strings having normal linkage.
4063   if (!LangOpts.WritableStrings &&
4064       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4065       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4066     llvm::raw_svector_ostream Out(MangledNameBuffer);
4067     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4068 
4069     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4070     GlobalVariableName = MangledNameBuffer;
4071   } else {
4072     LT = llvm::GlobalValue::PrivateLinkage;
4073     GlobalVariableName = Name;
4074   }
4075 
4076   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4077   if (Entry)
4078     *Entry = GV;
4079 
4080   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4081                                   QualType());
4082   return ConstantAddress(GV, Alignment);
4083 }
4084 
4085 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4086 /// array for the given ObjCEncodeExpr node.
4087 ConstantAddress
4088 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4089   std::string Str;
4090   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4091 
4092   return GetAddrOfConstantCString(Str);
4093 }
4094 
4095 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4096 /// the literal and a terminating '\0' character.
4097 /// The result has pointer to array type.
4098 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4099     const std::string &Str, const char *GlobalName) {
4100   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4101   CharUnits Alignment =
4102     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4103 
4104   llvm::Constant *C =
4105       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4106 
4107   // Don't share any string literals if strings aren't constant.
4108   llvm::GlobalVariable **Entry = nullptr;
4109   if (!LangOpts.WritableStrings) {
4110     Entry = &ConstantStringMap[C];
4111     if (auto GV = *Entry) {
4112       if (Alignment.getQuantity() > GV->getAlignment())
4113         GV->setAlignment(Alignment.getQuantity());
4114       return ConstantAddress(GV, Alignment);
4115     }
4116   }
4117 
4118   // Get the default prefix if a name wasn't specified.
4119   if (!GlobalName)
4120     GlobalName = ".str";
4121   // Create a global variable for this.
4122   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4123                                   GlobalName, Alignment);
4124   if (Entry)
4125     *Entry = GV;
4126   return ConstantAddress(GV, Alignment);
4127 }
4128 
4129 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4130     const MaterializeTemporaryExpr *E, const Expr *Init) {
4131   assert((E->getStorageDuration() == SD_Static ||
4132           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4133   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4134 
4135   // If we're not materializing a subobject of the temporary, keep the
4136   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4137   QualType MaterializedType = Init->getType();
4138   if (Init == E->GetTemporaryExpr())
4139     MaterializedType = E->getType();
4140 
4141   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4142 
4143   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4144     return ConstantAddress(Slot, Align);
4145 
4146   // FIXME: If an externally-visible declaration extends multiple temporaries,
4147   // we need to give each temporary the same name in every translation unit (and
4148   // we also need to make the temporaries externally-visible).
4149   SmallString<256> Name;
4150   llvm::raw_svector_ostream Out(Name);
4151   getCXXABI().getMangleContext().mangleReferenceTemporary(
4152       VD, E->getManglingNumber(), Out);
4153 
4154   APValue *Value = nullptr;
4155   if (E->getStorageDuration() == SD_Static) {
4156     // We might have a cached constant initializer for this temporary. Note
4157     // that this might have a different value from the value computed by
4158     // evaluating the initializer if the surrounding constant expression
4159     // modifies the temporary.
4160     Value = getContext().getMaterializedTemporaryValue(E, false);
4161     if (Value && Value->isUninit())
4162       Value = nullptr;
4163   }
4164 
4165   // Try evaluating it now, it might have a constant initializer.
4166   Expr::EvalResult EvalResult;
4167   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4168       !EvalResult.hasSideEffects())
4169     Value = &EvalResult.Val;
4170 
4171   LangAS AddrSpace =
4172       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4173 
4174   Optional<ConstantEmitter> emitter;
4175   llvm::Constant *InitialValue = nullptr;
4176   bool Constant = false;
4177   llvm::Type *Type;
4178   if (Value) {
4179     // The temporary has a constant initializer, use it.
4180     emitter.emplace(*this);
4181     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4182                                                MaterializedType);
4183     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4184     Type = InitialValue->getType();
4185   } else {
4186     // No initializer, the initialization will be provided when we
4187     // initialize the declaration which performed lifetime extension.
4188     Type = getTypes().ConvertTypeForMem(MaterializedType);
4189   }
4190 
4191   // Create a global variable for this lifetime-extended temporary.
4192   llvm::GlobalValue::LinkageTypes Linkage =
4193       getLLVMLinkageVarDefinition(VD, Constant);
4194   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4195     const VarDecl *InitVD;
4196     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4197         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4198       // Temporaries defined inside a class get linkonce_odr linkage because the
4199       // class can be defined in multiple translation units.
4200       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4201     } else {
4202       // There is no need for this temporary to have external linkage if the
4203       // VarDecl has external linkage.
4204       Linkage = llvm::GlobalVariable::InternalLinkage;
4205     }
4206   }
4207   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4208   auto *GV = new llvm::GlobalVariable(
4209       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4210       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4211   if (emitter) emitter->finalize(GV);
4212   setGVProperties(GV, VD);
4213   GV->setAlignment(Align.getQuantity());
4214   if (supportsCOMDAT() && GV->isWeakForLinker())
4215     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4216   if (VD->getTLSKind())
4217     setTLSMode(GV, *VD);
4218   llvm::Constant *CV = GV;
4219   if (AddrSpace != LangAS::Default)
4220     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4221         *this, GV, AddrSpace, LangAS::Default,
4222         Type->getPointerTo(
4223             getContext().getTargetAddressSpace(LangAS::Default)));
4224   MaterializedGlobalTemporaryMap[E] = CV;
4225   return ConstantAddress(CV, Align);
4226 }
4227 
4228 /// EmitObjCPropertyImplementations - Emit information for synthesized
4229 /// properties for an implementation.
4230 void CodeGenModule::EmitObjCPropertyImplementations(const
4231                                                     ObjCImplementationDecl *D) {
4232   for (const auto *PID : D->property_impls()) {
4233     // Dynamic is just for type-checking.
4234     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4235       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4236 
4237       // Determine which methods need to be implemented, some may have
4238       // been overridden. Note that ::isPropertyAccessor is not the method
4239       // we want, that just indicates if the decl came from a
4240       // property. What we want to know is if the method is defined in
4241       // this implementation.
4242       if (!D->getInstanceMethod(PD->getGetterName()))
4243         CodeGenFunction(*this).GenerateObjCGetter(
4244                                  const_cast<ObjCImplementationDecl *>(D), PID);
4245       if (!PD->isReadOnly() &&
4246           !D->getInstanceMethod(PD->getSetterName()))
4247         CodeGenFunction(*this).GenerateObjCSetter(
4248                                  const_cast<ObjCImplementationDecl *>(D), PID);
4249     }
4250   }
4251 }
4252 
4253 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4254   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4255   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4256        ivar; ivar = ivar->getNextIvar())
4257     if (ivar->getType().isDestructedType())
4258       return true;
4259 
4260   return false;
4261 }
4262 
4263 static bool AllTrivialInitializers(CodeGenModule &CGM,
4264                                    ObjCImplementationDecl *D) {
4265   CodeGenFunction CGF(CGM);
4266   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4267        E = D->init_end(); B != E; ++B) {
4268     CXXCtorInitializer *CtorInitExp = *B;
4269     Expr *Init = CtorInitExp->getInit();
4270     if (!CGF.isTrivialInitializer(Init))
4271       return false;
4272   }
4273   return true;
4274 }
4275 
4276 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4277 /// for an implementation.
4278 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4279   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4280   if (needsDestructMethod(D)) {
4281     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4282     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4283     ObjCMethodDecl *DTORMethod =
4284       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4285                              cxxSelector, getContext().VoidTy, nullptr, D,
4286                              /*isInstance=*/true, /*isVariadic=*/false,
4287                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4288                              /*isDefined=*/false, ObjCMethodDecl::Required);
4289     D->addInstanceMethod(DTORMethod);
4290     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4291     D->setHasDestructors(true);
4292   }
4293 
4294   // If the implementation doesn't have any ivar initializers, we don't need
4295   // a .cxx_construct.
4296   if (D->getNumIvarInitializers() == 0 ||
4297       AllTrivialInitializers(*this, D))
4298     return;
4299 
4300   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4301   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4302   // The constructor returns 'self'.
4303   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4304                                                 D->getLocation(),
4305                                                 D->getLocation(),
4306                                                 cxxSelector,
4307                                                 getContext().getObjCIdType(),
4308                                                 nullptr, D, /*isInstance=*/true,
4309                                                 /*isVariadic=*/false,
4310                                                 /*isPropertyAccessor=*/true,
4311                                                 /*isImplicitlyDeclared=*/true,
4312                                                 /*isDefined=*/false,
4313                                                 ObjCMethodDecl::Required);
4314   D->addInstanceMethod(CTORMethod);
4315   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4316   D->setHasNonZeroConstructors(true);
4317 }
4318 
4319 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4320 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4321   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4322       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4323     ErrorUnsupported(LSD, "linkage spec");
4324     return;
4325   }
4326 
4327   EmitDeclContext(LSD);
4328 }
4329 
4330 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4331   for (auto *I : DC->decls()) {
4332     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4333     // are themselves considered "top-level", so EmitTopLevelDecl on an
4334     // ObjCImplDecl does not recursively visit them. We need to do that in
4335     // case they're nested inside another construct (LinkageSpecDecl /
4336     // ExportDecl) that does stop them from being considered "top-level".
4337     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4338       for (auto *M : OID->methods())
4339         EmitTopLevelDecl(M);
4340     }
4341 
4342     EmitTopLevelDecl(I);
4343   }
4344 }
4345 
4346 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4347 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4348   // Ignore dependent declarations.
4349   if (D->isTemplated())
4350     return;
4351 
4352   switch (D->getKind()) {
4353   case Decl::CXXConversion:
4354   case Decl::CXXMethod:
4355   case Decl::Function:
4356     EmitGlobal(cast<FunctionDecl>(D));
4357     // Always provide some coverage mapping
4358     // even for the functions that aren't emitted.
4359     AddDeferredUnusedCoverageMapping(D);
4360     break;
4361 
4362   case Decl::CXXDeductionGuide:
4363     // Function-like, but does not result in code emission.
4364     break;
4365 
4366   case Decl::Var:
4367   case Decl::Decomposition:
4368   case Decl::VarTemplateSpecialization:
4369     EmitGlobal(cast<VarDecl>(D));
4370     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4371       for (auto *B : DD->bindings())
4372         if (auto *HD = B->getHoldingVar())
4373           EmitGlobal(HD);
4374     break;
4375 
4376   // Indirect fields from global anonymous structs and unions can be
4377   // ignored; only the actual variable requires IR gen support.
4378   case Decl::IndirectField:
4379     break;
4380 
4381   // C++ Decls
4382   case Decl::Namespace:
4383     EmitDeclContext(cast<NamespaceDecl>(D));
4384     break;
4385   case Decl::ClassTemplateSpecialization: {
4386     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4387     if (DebugInfo &&
4388         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4389         Spec->hasDefinition())
4390       DebugInfo->completeTemplateDefinition(*Spec);
4391   } LLVM_FALLTHROUGH;
4392   case Decl::CXXRecord:
4393     if (DebugInfo) {
4394       if (auto *ES = D->getASTContext().getExternalSource())
4395         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4396           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4397     }
4398     // Emit any static data members, they may be definitions.
4399     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4400       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4401         EmitTopLevelDecl(I);
4402     break;
4403     // No code generation needed.
4404   case Decl::UsingShadow:
4405   case Decl::ClassTemplate:
4406   case Decl::VarTemplate:
4407   case Decl::VarTemplatePartialSpecialization:
4408   case Decl::FunctionTemplate:
4409   case Decl::TypeAliasTemplate:
4410   case Decl::Block:
4411   case Decl::Empty:
4412     break;
4413   case Decl::Using:          // using X; [C++]
4414     if (CGDebugInfo *DI = getModuleDebugInfo())
4415         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4416     return;
4417   case Decl::NamespaceAlias:
4418     if (CGDebugInfo *DI = getModuleDebugInfo())
4419         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4420     return;
4421   case Decl::UsingDirective: // using namespace X; [C++]
4422     if (CGDebugInfo *DI = getModuleDebugInfo())
4423       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4424     return;
4425   case Decl::CXXConstructor:
4426     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4427     break;
4428   case Decl::CXXDestructor:
4429     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4430     break;
4431 
4432   case Decl::StaticAssert:
4433     // Nothing to do.
4434     break;
4435 
4436   // Objective-C Decls
4437 
4438   // Forward declarations, no (immediate) code generation.
4439   case Decl::ObjCInterface:
4440   case Decl::ObjCCategory:
4441     break;
4442 
4443   case Decl::ObjCProtocol: {
4444     auto *Proto = cast<ObjCProtocolDecl>(D);
4445     if (Proto->isThisDeclarationADefinition())
4446       ObjCRuntime->GenerateProtocol(Proto);
4447     break;
4448   }
4449 
4450   case Decl::ObjCCategoryImpl:
4451     // Categories have properties but don't support synthesize so we
4452     // can ignore them here.
4453     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4454     break;
4455 
4456   case Decl::ObjCImplementation: {
4457     auto *OMD = cast<ObjCImplementationDecl>(D);
4458     EmitObjCPropertyImplementations(OMD);
4459     EmitObjCIvarInitializations(OMD);
4460     ObjCRuntime->GenerateClass(OMD);
4461     // Emit global variable debug information.
4462     if (CGDebugInfo *DI = getModuleDebugInfo())
4463       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4464         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4465             OMD->getClassInterface()), OMD->getLocation());
4466     break;
4467   }
4468   case Decl::ObjCMethod: {
4469     auto *OMD = cast<ObjCMethodDecl>(D);
4470     // If this is not a prototype, emit the body.
4471     if (OMD->getBody())
4472       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4473     break;
4474   }
4475   case Decl::ObjCCompatibleAlias:
4476     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4477     break;
4478 
4479   case Decl::PragmaComment: {
4480     const auto *PCD = cast<PragmaCommentDecl>(D);
4481     switch (PCD->getCommentKind()) {
4482     case PCK_Unknown:
4483       llvm_unreachable("unexpected pragma comment kind");
4484     case PCK_Linker:
4485       AppendLinkerOptions(PCD->getArg());
4486       break;
4487     case PCK_Lib:
4488       if (getTarget().getTriple().isOSBinFormatELF() &&
4489           !getTarget().getTriple().isPS4())
4490         AddELFLibDirective(PCD->getArg());
4491       else
4492         AddDependentLib(PCD->getArg());
4493       break;
4494     case PCK_Compiler:
4495     case PCK_ExeStr:
4496     case PCK_User:
4497       break; // We ignore all of these.
4498     }
4499     break;
4500   }
4501 
4502   case Decl::PragmaDetectMismatch: {
4503     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4504     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4505     break;
4506   }
4507 
4508   case Decl::LinkageSpec:
4509     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4510     break;
4511 
4512   case Decl::FileScopeAsm: {
4513     // File-scope asm is ignored during device-side CUDA compilation.
4514     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4515       break;
4516     // File-scope asm is ignored during device-side OpenMP compilation.
4517     if (LangOpts.OpenMPIsDevice)
4518       break;
4519     auto *AD = cast<FileScopeAsmDecl>(D);
4520     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4521     break;
4522   }
4523 
4524   case Decl::Import: {
4525     auto *Import = cast<ImportDecl>(D);
4526 
4527     // If we've already imported this module, we're done.
4528     if (!ImportedModules.insert(Import->getImportedModule()))
4529       break;
4530 
4531     // Emit debug information for direct imports.
4532     if (!Import->getImportedOwningModule()) {
4533       if (CGDebugInfo *DI = getModuleDebugInfo())
4534         DI->EmitImportDecl(*Import);
4535     }
4536 
4537     // Find all of the submodules and emit the module initializers.
4538     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4539     SmallVector<clang::Module *, 16> Stack;
4540     Visited.insert(Import->getImportedModule());
4541     Stack.push_back(Import->getImportedModule());
4542 
4543     while (!Stack.empty()) {
4544       clang::Module *Mod = Stack.pop_back_val();
4545       if (!EmittedModuleInitializers.insert(Mod).second)
4546         continue;
4547 
4548       for (auto *D : Context.getModuleInitializers(Mod))
4549         EmitTopLevelDecl(D);
4550 
4551       // Visit the submodules of this module.
4552       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4553                                              SubEnd = Mod->submodule_end();
4554            Sub != SubEnd; ++Sub) {
4555         // Skip explicit children; they need to be explicitly imported to emit
4556         // the initializers.
4557         if ((*Sub)->IsExplicit)
4558           continue;
4559 
4560         if (Visited.insert(*Sub).second)
4561           Stack.push_back(*Sub);
4562       }
4563     }
4564     break;
4565   }
4566 
4567   case Decl::Export:
4568     EmitDeclContext(cast<ExportDecl>(D));
4569     break;
4570 
4571   case Decl::OMPThreadPrivate:
4572     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4573     break;
4574 
4575   case Decl::OMPDeclareReduction:
4576     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4577     break;
4578 
4579   default:
4580     // Make sure we handled everything we should, every other kind is a
4581     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4582     // function. Need to recode Decl::Kind to do that easily.
4583     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4584     break;
4585   }
4586 }
4587 
4588 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4589   // Do we need to generate coverage mapping?
4590   if (!CodeGenOpts.CoverageMapping)
4591     return;
4592   switch (D->getKind()) {
4593   case Decl::CXXConversion:
4594   case Decl::CXXMethod:
4595   case Decl::Function:
4596   case Decl::ObjCMethod:
4597   case Decl::CXXConstructor:
4598   case Decl::CXXDestructor: {
4599     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4600       return;
4601     SourceManager &SM = getContext().getSourceManager();
4602     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4603       return;
4604     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4605     if (I == DeferredEmptyCoverageMappingDecls.end())
4606       DeferredEmptyCoverageMappingDecls[D] = true;
4607     break;
4608   }
4609   default:
4610     break;
4611   };
4612 }
4613 
4614 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4615   // Do we need to generate coverage mapping?
4616   if (!CodeGenOpts.CoverageMapping)
4617     return;
4618   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4619     if (Fn->isTemplateInstantiation())
4620       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4621   }
4622   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4623   if (I == DeferredEmptyCoverageMappingDecls.end())
4624     DeferredEmptyCoverageMappingDecls[D] = false;
4625   else
4626     I->second = false;
4627 }
4628 
4629 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4630   // We call takeVector() here to avoid use-after-free.
4631   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4632   // we deserialize function bodies to emit coverage info for them, and that
4633   // deserializes more declarations. How should we handle that case?
4634   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4635     if (!Entry.second)
4636       continue;
4637     const Decl *D = Entry.first;
4638     switch (D->getKind()) {
4639     case Decl::CXXConversion:
4640     case Decl::CXXMethod:
4641     case Decl::Function:
4642     case Decl::ObjCMethod: {
4643       CodeGenPGO PGO(*this);
4644       GlobalDecl GD(cast<FunctionDecl>(D));
4645       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4646                                   getFunctionLinkage(GD));
4647       break;
4648     }
4649     case Decl::CXXConstructor: {
4650       CodeGenPGO PGO(*this);
4651       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4652       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4653                                   getFunctionLinkage(GD));
4654       break;
4655     }
4656     case Decl::CXXDestructor: {
4657       CodeGenPGO PGO(*this);
4658       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4659       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4660                                   getFunctionLinkage(GD));
4661       break;
4662     }
4663     default:
4664       break;
4665     };
4666   }
4667 }
4668 
4669 /// Turns the given pointer into a constant.
4670 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4671                                           const void *Ptr) {
4672   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4673   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4674   return llvm::ConstantInt::get(i64, PtrInt);
4675 }
4676 
4677 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4678                                    llvm::NamedMDNode *&GlobalMetadata,
4679                                    GlobalDecl D,
4680                                    llvm::GlobalValue *Addr) {
4681   if (!GlobalMetadata)
4682     GlobalMetadata =
4683       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4684 
4685   // TODO: should we report variant information for ctors/dtors?
4686   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4687                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4688                                CGM.getLLVMContext(), D.getDecl()))};
4689   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4690 }
4691 
4692 /// For each function which is declared within an extern "C" region and marked
4693 /// as 'used', but has internal linkage, create an alias from the unmangled
4694 /// name to the mangled name if possible. People expect to be able to refer
4695 /// to such functions with an unmangled name from inline assembly within the
4696 /// same translation unit.
4697 void CodeGenModule::EmitStaticExternCAliases() {
4698   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4699     return;
4700   for (auto &I : StaticExternCValues) {
4701     IdentifierInfo *Name = I.first;
4702     llvm::GlobalValue *Val = I.second;
4703     if (Val && !getModule().getNamedValue(Name->getName()))
4704       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4705   }
4706 }
4707 
4708 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4709                                              GlobalDecl &Result) const {
4710   auto Res = Manglings.find(MangledName);
4711   if (Res == Manglings.end())
4712     return false;
4713   Result = Res->getValue();
4714   return true;
4715 }
4716 
4717 /// Emits metadata nodes associating all the global values in the
4718 /// current module with the Decls they came from.  This is useful for
4719 /// projects using IR gen as a subroutine.
4720 ///
4721 /// Since there's currently no way to associate an MDNode directly
4722 /// with an llvm::GlobalValue, we create a global named metadata
4723 /// with the name 'clang.global.decl.ptrs'.
4724 void CodeGenModule::EmitDeclMetadata() {
4725   llvm::NamedMDNode *GlobalMetadata = nullptr;
4726 
4727   for (auto &I : MangledDeclNames) {
4728     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4729     // Some mangled names don't necessarily have an associated GlobalValue
4730     // in this module, e.g. if we mangled it for DebugInfo.
4731     if (Addr)
4732       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4733   }
4734 }
4735 
4736 /// Emits metadata nodes for all the local variables in the current
4737 /// function.
4738 void CodeGenFunction::EmitDeclMetadata() {
4739   if (LocalDeclMap.empty()) return;
4740 
4741   llvm::LLVMContext &Context = getLLVMContext();
4742 
4743   // Find the unique metadata ID for this name.
4744   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4745 
4746   llvm::NamedMDNode *GlobalMetadata = nullptr;
4747 
4748   for (auto &I : LocalDeclMap) {
4749     const Decl *D = I.first;
4750     llvm::Value *Addr = I.second.getPointer();
4751     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4752       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4753       Alloca->setMetadata(
4754           DeclPtrKind, llvm::MDNode::get(
4755                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4756     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4757       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4758       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4759     }
4760   }
4761 }
4762 
4763 void CodeGenModule::EmitVersionIdentMetadata() {
4764   llvm::NamedMDNode *IdentMetadata =
4765     TheModule.getOrInsertNamedMetadata("llvm.ident");
4766   std::string Version = getClangFullVersion();
4767   llvm::LLVMContext &Ctx = TheModule.getContext();
4768 
4769   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4770   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4771 }
4772 
4773 void CodeGenModule::EmitTargetMetadata() {
4774   // Warning, new MangledDeclNames may be appended within this loop.
4775   // We rely on MapVector insertions adding new elements to the end
4776   // of the container.
4777   // FIXME: Move this loop into the one target that needs it, and only
4778   // loop over those declarations for which we couldn't emit the target
4779   // metadata when we emitted the declaration.
4780   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4781     auto Val = *(MangledDeclNames.begin() + I);
4782     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4783     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4784     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4785   }
4786 }
4787 
4788 void CodeGenModule::EmitCoverageFile() {
4789   if (getCodeGenOpts().CoverageDataFile.empty() &&
4790       getCodeGenOpts().CoverageNotesFile.empty())
4791     return;
4792 
4793   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4794   if (!CUNode)
4795     return;
4796 
4797   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4798   llvm::LLVMContext &Ctx = TheModule.getContext();
4799   auto *CoverageDataFile =
4800       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4801   auto *CoverageNotesFile =
4802       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4803   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4804     llvm::MDNode *CU = CUNode->getOperand(i);
4805     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4806     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4807   }
4808 }
4809 
4810 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4811   // Sema has checked that all uuid strings are of the form
4812   // "12345678-1234-1234-1234-1234567890ab".
4813   assert(Uuid.size() == 36);
4814   for (unsigned i = 0; i < 36; ++i) {
4815     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4816     else                                         assert(isHexDigit(Uuid[i]));
4817   }
4818 
4819   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4820   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4821 
4822   llvm::Constant *Field3[8];
4823   for (unsigned Idx = 0; Idx < 8; ++Idx)
4824     Field3[Idx] = llvm::ConstantInt::get(
4825         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4826 
4827   llvm::Constant *Fields[4] = {
4828     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4829     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4830     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4831     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4832   };
4833 
4834   return llvm::ConstantStruct::getAnon(Fields);
4835 }
4836 
4837 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4838                                                        bool ForEH) {
4839   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4840   // FIXME: should we even be calling this method if RTTI is disabled
4841   // and it's not for EH?
4842   if (!ForEH && !getLangOpts().RTTI)
4843     return llvm::Constant::getNullValue(Int8PtrTy);
4844 
4845   if (ForEH && Ty->isObjCObjectPointerType() &&
4846       LangOpts.ObjCRuntime.isGNUFamily())
4847     return ObjCRuntime->GetEHType(Ty);
4848 
4849   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4850 }
4851 
4852 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4853   // Do not emit threadprivates in simd-only mode.
4854   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4855     return;
4856   for (auto RefExpr : D->varlists()) {
4857     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4858     bool PerformInit =
4859         VD->getAnyInitializer() &&
4860         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4861                                                         /*ForRef=*/false);
4862 
4863     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4864     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4865             VD, Addr, RefExpr->getLocStart(), PerformInit))
4866       CXXGlobalInits.push_back(InitFunction);
4867   }
4868 }
4869 
4870 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4871   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4872   if (InternalId)
4873     return InternalId;
4874 
4875   if (isExternallyVisible(T->getLinkage())) {
4876     std::string OutName;
4877     llvm::raw_string_ostream Out(OutName);
4878     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4879 
4880     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4881   } else {
4882     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4883                                            llvm::ArrayRef<llvm::Metadata *>());
4884   }
4885 
4886   return InternalId;
4887 }
4888 
4889 // Generalize pointer types to a void pointer with the qualifiers of the
4890 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4891 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4892 // 'void *'.
4893 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4894   if (!Ty->isPointerType())
4895     return Ty;
4896 
4897   return Ctx.getPointerType(
4898       QualType(Ctx.VoidTy).withCVRQualifiers(
4899           Ty->getPointeeType().getCVRQualifiers()));
4900 }
4901 
4902 // Apply type generalization to a FunctionType's return and argument types
4903 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4904   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4905     SmallVector<QualType, 8> GeneralizedParams;
4906     for (auto &Param : FnType->param_types())
4907       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4908 
4909     return Ctx.getFunctionType(
4910         GeneralizeType(Ctx, FnType->getReturnType()),
4911         GeneralizedParams, FnType->getExtProtoInfo());
4912   }
4913 
4914   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4915     return Ctx.getFunctionNoProtoType(
4916         GeneralizeType(Ctx, FnType->getReturnType()));
4917 
4918   llvm_unreachable("Encountered unknown FunctionType");
4919 }
4920 
4921 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4922   T = GeneralizeFunctionType(getContext(), T);
4923 
4924   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4925   if (InternalId)
4926     return InternalId;
4927 
4928   if (isExternallyVisible(T->getLinkage())) {
4929     std::string OutName;
4930     llvm::raw_string_ostream Out(OutName);
4931     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4932     Out << ".generalized";
4933 
4934     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4935   } else {
4936     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4937                                            llvm::ArrayRef<llvm::Metadata *>());
4938   }
4939 
4940   return InternalId;
4941 }
4942 
4943 /// Returns whether this module needs the "all-vtables" type identifier.
4944 bool CodeGenModule::NeedAllVtablesTypeId() const {
4945   // Returns true if at least one of vtable-based CFI checkers is enabled and
4946   // is not in the trapping mode.
4947   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4948            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4949           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4950            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4951           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4952            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4953           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4954            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4955 }
4956 
4957 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4958                                           CharUnits Offset,
4959                                           const CXXRecordDecl *RD) {
4960   llvm::Metadata *MD =
4961       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4962   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4963 
4964   if (CodeGenOpts.SanitizeCfiCrossDso)
4965     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4966       VTable->addTypeMetadata(Offset.getQuantity(),
4967                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4968 
4969   if (NeedAllVtablesTypeId()) {
4970     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4971     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4972   }
4973 }
4974 
4975 // Fills in the supplied string map with the set of target features for the
4976 // passed in function.
4977 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4978                                           const FunctionDecl *FD) {
4979   StringRef TargetCPU = Target.getTargetOpts().CPU;
4980   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4981     // If we have a TargetAttr build up the feature map based on that.
4982     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4983 
4984     ParsedAttr.Features.erase(
4985         llvm::remove_if(ParsedAttr.Features,
4986                         [&](const std::string &Feat) {
4987                           return !Target.isValidFeatureName(
4988                               StringRef{Feat}.substr(1));
4989                         }),
4990         ParsedAttr.Features.end());
4991 
4992     // Make a copy of the features as passed on the command line into the
4993     // beginning of the additional features from the function to override.
4994     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4995                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4996                             Target.getTargetOpts().FeaturesAsWritten.end());
4997 
4998     if (ParsedAttr.Architecture != "" &&
4999         Target.isValidCPUName(ParsedAttr.Architecture))
5000       TargetCPU = ParsedAttr.Architecture;
5001 
5002     // Now populate the feature map, first with the TargetCPU which is either
5003     // the default or a new one from the target attribute string. Then we'll use
5004     // the passed in features (FeaturesAsWritten) along with the new ones from
5005     // the attribute.
5006     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5007                           ParsedAttr.Features);
5008   } else {
5009     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5010                           Target.getTargetOpts().Features);
5011   }
5012 }
5013 
5014 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5015   if (!SanStats)
5016     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5017 
5018   return *SanStats;
5019 }
5020 llvm::Value *
5021 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5022                                                   CodeGenFunction &CGF) {
5023   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5024   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5025   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5026   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5027                                 "__translate_sampler_initializer"),
5028                                 {C});
5029 }
5030