xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a39fc6dd2afab9cb14286e00f2f6ef2370002c40)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/CallingConv.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
81       CFConstantStringClassRef(0),
82       ConstantStringClassRef(0), NSConstantStringType(0),
83       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
84       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
85       LifetimeStartFn(0), LifetimeEndFn(0),
86       SanitizerBlacklist(
87           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
88       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
89                                           : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
109 
110   if (LangOpts.ObjC1)
111     createObjCRuntime();
112   if (LangOpts.OpenCL)
113     createOpenCLRuntime();
114   if (LangOpts.CUDA)
115     createCUDARuntime();
116 
117   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
118   if (SanOpts.Thread ||
119       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
120     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
121                            getCXXABI().getMangleContext());
122 
123   // If debug info or coverage generation is enabled, create the CGDebugInfo
124   // object.
125   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
126       CodeGenOpts.EmitGcovArcs ||
127       CodeGenOpts.EmitGcovNotes)
128     DebugInfo = new CGDebugInfo(*this);
129 
130   Block.GlobalUniqueCount = 0;
131 
132   if (C.getLangOpts().ObjCAutoRefCount)
133     ARCData = new ARCEntrypoints();
134   RRData = new RREntrypoints();
135 
136   if (!CodeGenOpts.InstrProfileInput.empty())
137     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete TBAA;
146   delete DebugInfo;
147   delete ARCData;
148   delete RRData;
149 }
150 
151 void CodeGenModule::createObjCRuntime() {
152   // This is just isGNUFamily(), but we want to force implementors of
153   // new ABIs to decide how best to do this.
154   switch (LangOpts.ObjCRuntime.getKind()) {
155   case ObjCRuntime::GNUstep:
156   case ObjCRuntime::GCC:
157   case ObjCRuntime::ObjFW:
158     ObjCRuntime = CreateGNUObjCRuntime(*this);
159     return;
160 
161   case ObjCRuntime::FragileMacOSX:
162   case ObjCRuntime::MacOSX:
163   case ObjCRuntime::iOS:
164     ObjCRuntime = CreateMacObjCRuntime(*this);
165     return;
166   }
167   llvm_unreachable("bad runtime kind");
168 }
169 
170 void CodeGenModule::createOpenCLRuntime() {
171   OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173 
174 void CodeGenModule::createCUDARuntime() {
175   CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177 
178 void CodeGenModule::applyReplacements() {
179   for (ReplacementsTy::iterator I = Replacements.begin(),
180                                 E = Replacements.end();
181        I != E; ++I) {
182     StringRef MangledName = I->first();
183     llvm::Constant *Replacement = I->second;
184     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
185     if (!Entry)
186       continue;
187     llvm::Function *OldF = cast<llvm::Function>(Entry);
188     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
189     if (!NewF) {
190       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
191         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
192       } else {
193         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
194         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
195                CE->getOpcode() == llvm::Instruction::GetElementPtr);
196         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
197       }
198     }
199 
200     // Replace old with new, but keep the old order.
201     OldF->replaceAllUsesWith(Replacement);
202     if (NewF) {
203       NewF->removeFromParent();
204       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
205     }
206     OldF->eraseFromParent();
207   }
208 }
209 
210 void CodeGenModule::checkAliases() {
211   // Check if the constructed aliases are well formed. It is really unfortunate
212   // that we have to do this in CodeGen, but we only construct mangled names
213   // and aliases during codegen.
214   bool Error = false;
215   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
216          E = Aliases.end(); I != E; ++I) {
217     const GlobalDecl &GD = *I;
218     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
219     const AliasAttr *AA = D->getAttr<AliasAttr>();
220     StringRef MangledName = getMangledName(GD);
221     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
222     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
223     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
224     if (!GV) {
225       Error = true;
226       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
227     } else if (GV->isDeclaration()) {
228       Error = true;
229       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
230     }
231 
232     // We have to handle alias to weak aliases in here. LLVM itself disallows
233     // this since the object semantics would not match the IL one. For
234     // compatibility with gcc we implement it by just pointing the alias
235     // to its aliasee's aliasee. We also warn, since the user is probably
236     // expecting the link to be weak.
237     llvm::Constant *Aliasee = Alias->getAliasee();
238     llvm::GlobalValue *AliaseeGV;
239     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) {
240       assert((CE->getOpcode() == llvm::Instruction::BitCast ||
241               CE->getOpcode() == llvm::Instruction::AddrSpaceCast) &&
242              "Unsupported aliasee");
243       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
244     } else {
245       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
246     }
247     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
248       if (GA->mayBeOverridden()) {
249         getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
250           << GA->getAliasedGlobal()->getName() << GA->getName();
251         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
252             GA->getAliasee(), Alias->getType());
253         Alias->setAliasee(Aliasee);
254       }
255     }
256   }
257   if (!Error)
258     return;
259 
260   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
261          E = Aliases.end(); I != E; ++I) {
262     const GlobalDecl &GD = *I;
263     StringRef MangledName = getMangledName(GD);
264     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
265     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
266     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
267     Alias->eraseFromParent();
268   }
269 }
270 
271 void CodeGenModule::clear() {
272   DeferredDeclsToEmit.clear();
273 }
274 
275 void CodeGenModule::Release() {
276   EmitDeferred();
277   applyReplacements();
278   checkAliases();
279   EmitCXXGlobalInitFunc();
280   EmitCXXGlobalDtorFunc();
281   EmitCXXThreadLocalInitFunc();
282   if (ObjCRuntime)
283     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
284       AddGlobalCtor(ObjCInitFunction);
285   EmitCtorList(GlobalCtors, "llvm.global_ctors");
286   EmitCtorList(GlobalDtors, "llvm.global_dtors");
287   EmitGlobalAnnotations();
288   EmitStaticExternCAliases();
289   emitLLVMUsed();
290 
291   if (CodeGenOpts.Autolink &&
292       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
293     EmitModuleLinkOptions();
294   }
295   if (CodeGenOpts.DwarfVersion)
296     // We actually want the latest version when there are conflicts.
297     // We can change from Warning to Latest if such mode is supported.
298     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
299                               CodeGenOpts.DwarfVersion);
300   if (DebugInfo)
301     // We support a single version in the linked module: error out when
302     // modules do not have the same version. We are going to implement dropping
303     // debug info when the version number is not up-to-date. Once that is
304     // done, the bitcode linker is not going to see modules with different
305     // version numbers.
306     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
307                               llvm::DEBUG_METADATA_VERSION);
308 
309   SimplifyPersonality();
310 
311   if (getCodeGenOpts().EmitDeclMetadata)
312     EmitDeclMetadata();
313 
314   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
315     EmitCoverageFile();
316 
317   if (DebugInfo)
318     DebugInfo->finalize();
319 
320   EmitVersionIdentMetadata();
321 }
322 
323 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
324   // Make sure that this type is translated.
325   Types.UpdateCompletedType(TD);
326 }
327 
328 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
329   if (!TBAA)
330     return 0;
331   return TBAA->getTBAAInfo(QTy);
332 }
333 
334 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
335   if (!TBAA)
336     return 0;
337   return TBAA->getTBAAInfoForVTablePtr();
338 }
339 
340 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
341   if (!TBAA)
342     return 0;
343   return TBAA->getTBAAStructInfo(QTy);
344 }
345 
346 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
347   if (!TBAA)
348     return 0;
349   return TBAA->getTBAAStructTypeInfo(QTy);
350 }
351 
352 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
353                                                   llvm::MDNode *AccessN,
354                                                   uint64_t O) {
355   if (!TBAA)
356     return 0;
357   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
358 }
359 
360 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
361 /// and struct-path aware TBAA, the tag has the same format:
362 /// base type, access type and offset.
363 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
364 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
365                                         llvm::MDNode *TBAAInfo,
366                                         bool ConvertTypeToTag) {
367   if (ConvertTypeToTag && TBAA)
368     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
369                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
370   else
371     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
372 }
373 
374 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
375   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
376   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
377 }
378 
379 /// ErrorUnsupported - Print out an error that codegen doesn't support the
380 /// specified stmt yet.
381 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
382   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
383                                                "cannot compile this %0 yet");
384   std::string Msg = Type;
385   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
386     << Msg << S->getSourceRange();
387 }
388 
389 /// ErrorUnsupported - Print out an error that codegen doesn't support the
390 /// specified decl yet.
391 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
392   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
393                                                "cannot compile this %0 yet");
394   std::string Msg = Type;
395   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
396 }
397 
398 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
399   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
400 }
401 
402 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
403                                         const NamedDecl *D) const {
404   // Internal definitions always have default visibility.
405   if (GV->hasLocalLinkage()) {
406     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
407     return;
408   }
409 
410   // Set visibility for definitions.
411   LinkageInfo LV = D->getLinkageAndVisibility();
412   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
413     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
414 }
415 
416 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
417   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
418       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
419       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
420       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
421       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
422 }
423 
424 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
425     CodeGenOptions::TLSModel M) {
426   switch (M) {
427   case CodeGenOptions::GeneralDynamicTLSModel:
428     return llvm::GlobalVariable::GeneralDynamicTLSModel;
429   case CodeGenOptions::LocalDynamicTLSModel:
430     return llvm::GlobalVariable::LocalDynamicTLSModel;
431   case CodeGenOptions::InitialExecTLSModel:
432     return llvm::GlobalVariable::InitialExecTLSModel;
433   case CodeGenOptions::LocalExecTLSModel:
434     return llvm::GlobalVariable::LocalExecTLSModel;
435   }
436   llvm_unreachable("Invalid TLS model!");
437 }
438 
439 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
440                                const VarDecl &D) const {
441   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
442 
443   llvm::GlobalVariable::ThreadLocalMode TLM;
444   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
445 
446   // Override the TLS model if it is explicitly specified.
447   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
448     TLM = GetLLVMTLSModel(Attr->getModel());
449   }
450 
451   GV->setThreadLocalMode(TLM);
452 }
453 
454 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
455   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
456 
457   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
458   if (!Str.empty())
459     return Str;
460 
461   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
462     IdentifierInfo *II = ND->getIdentifier();
463     assert(II && "Attempt to mangle unnamed decl.");
464 
465     Str = II->getName();
466     return Str;
467   }
468 
469   SmallString<256> Buffer;
470   llvm::raw_svector_ostream Out(Buffer);
471   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
472     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
473   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
474     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
475   else
476     getCXXABI().getMangleContext().mangleName(ND, Out);
477 
478   // Allocate space for the mangled name.
479   Out.flush();
480   size_t Length = Buffer.size();
481   char *Name = MangledNamesAllocator.Allocate<char>(Length);
482   std::copy(Buffer.begin(), Buffer.end(), Name);
483 
484   Str = StringRef(Name, Length);
485 
486   return Str;
487 }
488 
489 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
490                                         const BlockDecl *BD) {
491   MangleContext &MangleCtx = getCXXABI().getMangleContext();
492   const Decl *D = GD.getDecl();
493   llvm::raw_svector_ostream Out(Buffer.getBuffer());
494   if (D == 0)
495     MangleCtx.mangleGlobalBlock(BD,
496       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
497   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
498     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
499   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
500     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
501   else
502     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
503 }
504 
505 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
506   return getModule().getNamedValue(Name);
507 }
508 
509 /// AddGlobalCtor - Add a function to the list that will be called before
510 /// main() runs.
511 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
512   // FIXME: Type coercion of void()* types.
513   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
514 }
515 
516 /// AddGlobalDtor - Add a function to the list that will be called
517 /// when the module is unloaded.
518 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
519   // FIXME: Type coercion of void()* types.
520   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
521 }
522 
523 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
524   // Ctor function type is void()*.
525   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
526   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
527 
528   // Get the type of a ctor entry, { i32, void ()* }.
529   llvm::StructType *CtorStructTy =
530     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
531 
532   // Construct the constructor and destructor arrays.
533   SmallVector<llvm::Constant*, 8> Ctors;
534   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
535     llvm::Constant *S[] = {
536       llvm::ConstantInt::get(Int32Ty, I->second, false),
537       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
538     };
539     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
540   }
541 
542   if (!Ctors.empty()) {
543     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
544     new llvm::GlobalVariable(TheModule, AT, false,
545                              llvm::GlobalValue::AppendingLinkage,
546                              llvm::ConstantArray::get(AT, Ctors),
547                              GlobalName);
548   }
549 }
550 
551 llvm::GlobalValue::LinkageTypes
552 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
553   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
554 
555   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
556 
557   if (Linkage == GVA_Internal)
558     return llvm::Function::InternalLinkage;
559 
560   if (D->hasAttr<DLLExportAttr>())
561     return llvm::Function::ExternalLinkage;
562 
563   if (D->hasAttr<WeakAttr>())
564     return llvm::Function::WeakAnyLinkage;
565 
566   // In C99 mode, 'inline' functions are guaranteed to have a strong
567   // definition somewhere else, so we can use available_externally linkage.
568   if (Linkage == GVA_C99Inline)
569     return llvm::Function::AvailableExternallyLinkage;
570 
571   // Note that Apple's kernel linker doesn't support symbol
572   // coalescing, so we need to avoid linkonce and weak linkages there.
573   // Normally, this means we just map to internal, but for explicit
574   // instantiations we'll map to external.
575 
576   // In C++, the compiler has to emit a definition in every translation unit
577   // that references the function.  We should use linkonce_odr because
578   // a) if all references in this translation unit are optimized away, we
579   // don't need to codegen it.  b) if the function persists, it needs to be
580   // merged with other definitions. c) C++ has the ODR, so we know the
581   // definition is dependable.
582   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
583     return !Context.getLangOpts().AppleKext
584              ? llvm::Function::LinkOnceODRLinkage
585              : llvm::Function::InternalLinkage;
586 
587   // An explicit instantiation of a template has weak linkage, since
588   // explicit instantiations can occur in multiple translation units
589   // and must all be equivalent. However, we are not allowed to
590   // throw away these explicit instantiations.
591   if (Linkage == GVA_ExplicitTemplateInstantiation)
592     return !Context.getLangOpts().AppleKext
593              ? llvm::Function::WeakODRLinkage
594              : llvm::Function::ExternalLinkage;
595 
596   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
597   // emitted on an as-needed basis.
598   if (isa<CXXDestructorDecl>(D) &&
599       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
600                                          GD.getDtorType()))
601     return llvm::Function::LinkOnceODRLinkage;
602 
603   // Otherwise, we have strong external linkage.
604   assert(Linkage == GVA_StrongExternal);
605   return llvm::Function::ExternalLinkage;
606 }
607 
608 
609 /// SetFunctionDefinitionAttributes - Set attributes for a global.
610 ///
611 /// FIXME: This is currently only done for aliases and functions, but not for
612 /// variables (these details are set in EmitGlobalVarDefinition for variables).
613 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
614                                                     llvm::GlobalValue *GV) {
615   SetCommonAttributes(D, GV);
616 }
617 
618 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
619                                               const CGFunctionInfo &Info,
620                                               llvm::Function *F) {
621   unsigned CallingConv;
622   AttributeListType AttributeList;
623   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
624   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
625   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
626 }
627 
628 /// Determines whether the language options require us to model
629 /// unwind exceptions.  We treat -fexceptions as mandating this
630 /// except under the fragile ObjC ABI with only ObjC exceptions
631 /// enabled.  This means, for example, that C with -fexceptions
632 /// enables this.
633 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
634   // If exceptions are completely disabled, obviously this is false.
635   if (!LangOpts.Exceptions) return false;
636 
637   // If C++ exceptions are enabled, this is true.
638   if (LangOpts.CXXExceptions) return true;
639 
640   // If ObjC exceptions are enabled, this depends on the ABI.
641   if (LangOpts.ObjCExceptions) {
642     return LangOpts.ObjCRuntime.hasUnwindExceptions();
643   }
644 
645   return true;
646 }
647 
648 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
649                                                            llvm::Function *F) {
650   llvm::AttrBuilder B;
651 
652   if (CodeGenOpts.UnwindTables)
653     B.addAttribute(llvm::Attribute::UWTable);
654 
655   if (!hasUnwindExceptions(LangOpts))
656     B.addAttribute(llvm::Attribute::NoUnwind);
657 
658   if (D->hasAttr<NakedAttr>()) {
659     // Naked implies noinline: we should not be inlining such functions.
660     B.addAttribute(llvm::Attribute::Naked);
661     B.addAttribute(llvm::Attribute::NoInline);
662   } else if (D->hasAttr<NoDuplicateAttr>()) {
663     B.addAttribute(llvm::Attribute::NoDuplicate);
664   } else if (D->hasAttr<NoInlineAttr>()) {
665     B.addAttribute(llvm::Attribute::NoInline);
666   } else if (D->hasAttr<AlwaysInlineAttr>() &&
667              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
668                                               llvm::Attribute::NoInline)) {
669     // (noinline wins over always_inline, and we can't specify both in IR)
670     B.addAttribute(llvm::Attribute::AlwaysInline);
671   }
672 
673   if (D->hasAttr<ColdAttr>()) {
674     B.addAttribute(llvm::Attribute::OptimizeForSize);
675     B.addAttribute(llvm::Attribute::Cold);
676   }
677 
678   if (D->hasAttr<MinSizeAttr>())
679     B.addAttribute(llvm::Attribute::MinSize);
680 
681   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
682     B.addAttribute(llvm::Attribute::StackProtect);
683   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
684     B.addAttribute(llvm::Attribute::StackProtectStrong);
685   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
686     B.addAttribute(llvm::Attribute::StackProtectReq);
687 
688   // Add sanitizer attributes if function is not blacklisted.
689   if (!SanitizerBlacklist->isIn(*F)) {
690     // When AddressSanitizer is enabled, set SanitizeAddress attribute
691     // unless __attribute__((no_sanitize_address)) is used.
692     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
693       B.addAttribute(llvm::Attribute::SanitizeAddress);
694     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
695     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
696       B.addAttribute(llvm::Attribute::SanitizeThread);
697     }
698     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
699     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
700       B.addAttribute(llvm::Attribute::SanitizeMemory);
701   }
702 
703   F->addAttributes(llvm::AttributeSet::FunctionIndex,
704                    llvm::AttributeSet::get(
705                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
706 
707   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
708     F->setUnnamedAddr(true);
709   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
710     if (MD->isVirtual())
711       F->setUnnamedAddr(true);
712 
713   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
714   if (alignment)
715     F->setAlignment(alignment);
716 
717   // C++ ABI requires 2-byte alignment for member functions.
718   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
719     F->setAlignment(2);
720 }
721 
722 void CodeGenModule::SetCommonAttributes(const Decl *D,
723                                         llvm::GlobalValue *GV) {
724   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
725     setGlobalVisibility(GV, ND);
726   else
727     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
728 
729   if (D->hasAttr<UsedAttr>())
730     addUsedGlobal(GV);
731 
732   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
733     GV->setSection(SA->getName());
734 
735   // Alias cannot have attributes. Filter them here.
736   if (!isa<llvm::GlobalAlias>(GV))
737     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
738 }
739 
740 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
741                                                   llvm::Function *F,
742                                                   const CGFunctionInfo &FI) {
743   SetLLVMFunctionAttributes(D, FI, F);
744   SetLLVMFunctionAttributesForDefinition(D, F);
745 
746   F->setLinkage(llvm::Function::InternalLinkage);
747 
748   SetCommonAttributes(D, F);
749 }
750 
751 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
752                                           llvm::Function *F,
753                                           bool IsIncompleteFunction) {
754   if (unsigned IID = F->getIntrinsicID()) {
755     // If this is an intrinsic function, set the function's attributes
756     // to the intrinsic's attributes.
757     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
758                                                     (llvm::Intrinsic::ID)IID));
759     return;
760   }
761 
762   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
763 
764   if (!IsIncompleteFunction)
765     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
766 
767   if (getCXXABI().HasThisReturn(GD)) {
768     assert(!F->arg_empty() &&
769            F->arg_begin()->getType()
770              ->canLosslesslyBitCastTo(F->getReturnType()) &&
771            "unexpected this return");
772     F->addAttribute(1, llvm::Attribute::Returned);
773   }
774 
775   // Only a few attributes are set on declarations; these may later be
776   // overridden by a definition.
777 
778   if (FD->hasAttr<DLLImportAttr>()) {
779     F->setLinkage(llvm::Function::ExternalLinkage);
780     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
781   } else if (FD->hasAttr<WeakAttr>() ||
782              FD->isWeakImported()) {
783     // "extern_weak" is overloaded in LLVM; we probably should have
784     // separate linkage types for this.
785     F->setLinkage(llvm::Function::ExternalWeakLinkage);
786   } else {
787     F->setLinkage(llvm::Function::ExternalLinkage);
788     if (FD->hasAttr<DLLExportAttr>())
789       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
790 
791     LinkageInfo LV = FD->getLinkageAndVisibility();
792     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
793       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
794     }
795   }
796 
797   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
798     F->setSection(SA->getName());
799 
800   // A replaceable global allocation function does not act like a builtin by
801   // default, only if it is invoked by a new-expression or delete-expression.
802   if (FD->isReplaceableGlobalAllocationFunction())
803     F->addAttribute(llvm::AttributeSet::FunctionIndex,
804                     llvm::Attribute::NoBuiltin);
805 }
806 
807 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
808   assert(!GV->isDeclaration() &&
809          "Only globals with definition can force usage.");
810   LLVMUsed.push_back(GV);
811 }
812 
813 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
814   assert(!GV->isDeclaration() &&
815          "Only globals with definition can force usage.");
816   LLVMCompilerUsed.push_back(GV);
817 }
818 
819 static void emitUsed(CodeGenModule &CGM, StringRef Name,
820                      std::vector<llvm::WeakVH> &List) {
821   // Don't create llvm.used if there is no need.
822   if (List.empty())
823     return;
824 
825   // Convert List to what ConstantArray needs.
826   SmallVector<llvm::Constant*, 8> UsedArray;
827   UsedArray.resize(List.size());
828   for (unsigned i = 0, e = List.size(); i != e; ++i) {
829     UsedArray[i] =
830      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
831                                     CGM.Int8PtrTy);
832   }
833 
834   if (UsedArray.empty())
835     return;
836   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
837 
838   llvm::GlobalVariable *GV =
839     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
840                              llvm::GlobalValue::AppendingLinkage,
841                              llvm::ConstantArray::get(ATy, UsedArray),
842                              Name);
843 
844   GV->setSection("llvm.metadata");
845 }
846 
847 void CodeGenModule::emitLLVMUsed() {
848   emitUsed(*this, "llvm.used", LLVMUsed);
849   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
850 }
851 
852 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
853   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
854   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
855 }
856 
857 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
858   llvm::SmallString<32> Opt;
859   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
860   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
861   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
862 }
863 
864 void CodeGenModule::AddDependentLib(StringRef Lib) {
865   llvm::SmallString<24> Opt;
866   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
867   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
868   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
869 }
870 
871 /// \brief Add link options implied by the given module, including modules
872 /// it depends on, using a postorder walk.
873 static void addLinkOptionsPostorder(CodeGenModule &CGM,
874                                     Module *Mod,
875                                     SmallVectorImpl<llvm::Value *> &Metadata,
876                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
877   // Import this module's parent.
878   if (Mod->Parent && Visited.insert(Mod->Parent)) {
879     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
880   }
881 
882   // Import this module's dependencies.
883   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
884     if (Visited.insert(Mod->Imports[I-1]))
885       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
886   }
887 
888   // Add linker options to link against the libraries/frameworks
889   // described by this module.
890   llvm::LLVMContext &Context = CGM.getLLVMContext();
891   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
892     // Link against a framework.  Frameworks are currently Darwin only, so we
893     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
894     if (Mod->LinkLibraries[I-1].IsFramework) {
895       llvm::Value *Args[2] = {
896         llvm::MDString::get(Context, "-framework"),
897         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
898       };
899 
900       Metadata.push_back(llvm::MDNode::get(Context, Args));
901       continue;
902     }
903 
904     // Link against a library.
905     llvm::SmallString<24> Opt;
906     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
907       Mod->LinkLibraries[I-1].Library, Opt);
908     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
909     Metadata.push_back(llvm::MDNode::get(Context, OptString));
910   }
911 }
912 
913 void CodeGenModule::EmitModuleLinkOptions() {
914   // Collect the set of all of the modules we want to visit to emit link
915   // options, which is essentially the imported modules and all of their
916   // non-explicit child modules.
917   llvm::SetVector<clang::Module *> LinkModules;
918   llvm::SmallPtrSet<clang::Module *, 16> Visited;
919   SmallVector<clang::Module *, 16> Stack;
920 
921   // Seed the stack with imported modules.
922   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
923                                                MEnd = ImportedModules.end();
924        M != MEnd; ++M) {
925     if (Visited.insert(*M))
926       Stack.push_back(*M);
927   }
928 
929   // Find all of the modules to import, making a little effort to prune
930   // non-leaf modules.
931   while (!Stack.empty()) {
932     clang::Module *Mod = Stack.pop_back_val();
933 
934     bool AnyChildren = false;
935 
936     // Visit the submodules of this module.
937     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
938                                         SubEnd = Mod->submodule_end();
939          Sub != SubEnd; ++Sub) {
940       // Skip explicit children; they need to be explicitly imported to be
941       // linked against.
942       if ((*Sub)->IsExplicit)
943         continue;
944 
945       if (Visited.insert(*Sub)) {
946         Stack.push_back(*Sub);
947         AnyChildren = true;
948       }
949     }
950 
951     // We didn't find any children, so add this module to the list of
952     // modules to link against.
953     if (!AnyChildren) {
954       LinkModules.insert(Mod);
955     }
956   }
957 
958   // Add link options for all of the imported modules in reverse topological
959   // order.  We don't do anything to try to order import link flags with respect
960   // to linker options inserted by things like #pragma comment().
961   SmallVector<llvm::Value *, 16> MetadataArgs;
962   Visited.clear();
963   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
964                                                MEnd = LinkModules.end();
965        M != MEnd; ++M) {
966     if (Visited.insert(*M))
967       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
968   }
969   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
970   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
971 
972   // Add the linker options metadata flag.
973   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
974                             llvm::MDNode::get(getLLVMContext(),
975                                               LinkerOptionsMetadata));
976 }
977 
978 void CodeGenModule::EmitDeferred() {
979   // Emit code for any potentially referenced deferred decls.  Since a
980   // previously unused static decl may become used during the generation of code
981   // for a static function, iterate until no changes are made.
982 
983   while (true) {
984     if (!DeferredVTables.empty()) {
985       EmitDeferredVTables();
986 
987       // Emitting a v-table doesn't directly cause more v-tables to
988       // become deferred, although it can cause functions to be
989       // emitted that then need those v-tables.
990       assert(DeferredVTables.empty());
991     }
992 
993     // Stop if we're out of both deferred v-tables and deferred declarations.
994     if (DeferredDeclsToEmit.empty()) break;
995 
996     DeferredGlobal &G = DeferredDeclsToEmit.back();
997     GlobalDecl D = G.GD;
998     llvm::GlobalValue *GV = G.GV;
999     DeferredDeclsToEmit.pop_back();
1000 
1001     assert(GV == GetGlobalValue(getMangledName(D)));
1002     // Check to see if we've already emitted this.  This is necessary
1003     // for a couple of reasons: first, decls can end up in the
1004     // deferred-decls queue multiple times, and second, decls can end
1005     // up with definitions in unusual ways (e.g. by an extern inline
1006     // function acquiring a strong function redefinition).  Just
1007     // ignore these cases.
1008     if(!GV->isDeclaration())
1009       continue;
1010 
1011     // Otherwise, emit the definition and move on to the next one.
1012     EmitGlobalDefinition(D, GV);
1013   }
1014 }
1015 
1016 void CodeGenModule::EmitGlobalAnnotations() {
1017   if (Annotations.empty())
1018     return;
1019 
1020   // Create a new global variable for the ConstantStruct in the Module.
1021   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1022     Annotations[0]->getType(), Annotations.size()), Annotations);
1023   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1024     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1025     "llvm.global.annotations");
1026   gv->setSection(AnnotationSection);
1027 }
1028 
1029 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1030   llvm::Constant *&AStr = AnnotationStrings[Str];
1031   if (AStr)
1032     return AStr;
1033 
1034   // Not found yet, create a new global.
1035   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1036   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1037     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1038   gv->setSection(AnnotationSection);
1039   gv->setUnnamedAddr(true);
1040   AStr = gv;
1041   return gv;
1042 }
1043 
1044 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1045   SourceManager &SM = getContext().getSourceManager();
1046   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1047   if (PLoc.isValid())
1048     return EmitAnnotationString(PLoc.getFilename());
1049   return EmitAnnotationString(SM.getBufferName(Loc));
1050 }
1051 
1052 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1053   SourceManager &SM = getContext().getSourceManager();
1054   PresumedLoc PLoc = SM.getPresumedLoc(L);
1055   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1056     SM.getExpansionLineNumber(L);
1057   return llvm::ConstantInt::get(Int32Ty, LineNo);
1058 }
1059 
1060 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1061                                                 const AnnotateAttr *AA,
1062                                                 SourceLocation L) {
1063   // Get the globals for file name, annotation, and the line number.
1064   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1065                  *UnitGV = EmitAnnotationUnit(L),
1066                  *LineNoCst = EmitAnnotationLineNo(L);
1067 
1068   // Create the ConstantStruct for the global annotation.
1069   llvm::Constant *Fields[4] = {
1070     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1071     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1072     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1073     LineNoCst
1074   };
1075   return llvm::ConstantStruct::getAnon(Fields);
1076 }
1077 
1078 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1079                                          llvm::GlobalValue *GV) {
1080   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1081   // Get the struct elements for these annotations.
1082   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1083     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1084 }
1085 
1086 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1087   // Never defer when EmitAllDecls is specified.
1088   if (LangOpts.EmitAllDecls)
1089     return false;
1090 
1091   return !getContext().DeclMustBeEmitted(Global);
1092 }
1093 
1094 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1095     const CXXUuidofExpr* E) {
1096   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1097   // well-formed.
1098   StringRef Uuid = E->getUuidAsStringRef(Context);
1099   std::string Name = "_GUID_" + Uuid.lower();
1100   std::replace(Name.begin(), Name.end(), '-', '_');
1101 
1102   // Look for an existing global.
1103   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1104     return GV;
1105 
1106   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1107   assert(Init && "failed to initialize as constant");
1108 
1109   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1110       getModule(), Init->getType(),
1111       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1112   return GV;
1113 }
1114 
1115 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1116   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1117   assert(AA && "No alias?");
1118 
1119   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1120 
1121   // See if there is already something with the target's name in the module.
1122   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1123   if (Entry) {
1124     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1125     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1126   }
1127 
1128   llvm::Constant *Aliasee;
1129   if (isa<llvm::FunctionType>(DeclTy))
1130     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1131                                       GlobalDecl(cast<FunctionDecl>(VD)),
1132                                       /*ForVTable=*/false);
1133   else
1134     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1135                                     llvm::PointerType::getUnqual(DeclTy), 0);
1136 
1137   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1138   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1139   WeakRefReferences.insert(F);
1140 
1141   return Aliasee;
1142 }
1143 
1144 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1145   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1146 
1147   // Weak references don't produce any output by themselves.
1148   if (Global->hasAttr<WeakRefAttr>())
1149     return;
1150 
1151   // If this is an alias definition (which otherwise looks like a declaration)
1152   // emit it now.
1153   if (Global->hasAttr<AliasAttr>())
1154     return EmitAliasDefinition(GD);
1155 
1156   // If this is CUDA, be selective about which declarations we emit.
1157   if (LangOpts.CUDA) {
1158     if (CodeGenOpts.CUDAIsDevice) {
1159       if (!Global->hasAttr<CUDADeviceAttr>() &&
1160           !Global->hasAttr<CUDAGlobalAttr>() &&
1161           !Global->hasAttr<CUDAConstantAttr>() &&
1162           !Global->hasAttr<CUDASharedAttr>())
1163         return;
1164     } else {
1165       if (!Global->hasAttr<CUDAHostAttr>() && (
1166             Global->hasAttr<CUDADeviceAttr>() ||
1167             Global->hasAttr<CUDAConstantAttr>() ||
1168             Global->hasAttr<CUDASharedAttr>()))
1169         return;
1170     }
1171   }
1172 
1173   // Ignore declarations, they will be emitted on their first use.
1174   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1175     // Forward declarations are emitted lazily on first use.
1176     if (!FD->doesThisDeclarationHaveABody()) {
1177       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1178         return;
1179 
1180       const FunctionDecl *InlineDefinition = 0;
1181       FD->getBody(InlineDefinition);
1182 
1183       StringRef MangledName = getMangledName(GD);
1184       DeferredDecls.erase(MangledName);
1185       EmitGlobalDefinition(InlineDefinition);
1186       return;
1187     }
1188   } else {
1189     const VarDecl *VD = cast<VarDecl>(Global);
1190     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1191 
1192     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1193       return;
1194   }
1195 
1196   // Defer code generation when possible if this is a static definition, inline
1197   // function etc.  These we only want to emit if they are used.
1198   if (!MayDeferGeneration(Global)) {
1199     // Emit the definition if it can't be deferred.
1200     EmitGlobalDefinition(GD);
1201     return;
1202   }
1203 
1204   // If we're deferring emission of a C++ variable with an
1205   // initializer, remember the order in which it appeared in the file.
1206   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1207       cast<VarDecl>(Global)->hasInit()) {
1208     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1209     CXXGlobalInits.push_back(0);
1210   }
1211 
1212   // If the value has already been used, add it directly to the
1213   // DeferredDeclsToEmit list.
1214   StringRef MangledName = getMangledName(GD);
1215   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1216     addDeferredDeclToEmit(GV, GD);
1217   else {
1218     // Otherwise, remember that we saw a deferred decl with this name.  The
1219     // first use of the mangled name will cause it to move into
1220     // DeferredDeclsToEmit.
1221     DeferredDecls[MangledName] = GD;
1222   }
1223 }
1224 
1225 namespace {
1226   struct FunctionIsDirectlyRecursive :
1227     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1228     const StringRef Name;
1229     const Builtin::Context &BI;
1230     bool Result;
1231     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1232       Name(N), BI(C), Result(false) {
1233     }
1234     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1235 
1236     bool TraverseCallExpr(CallExpr *E) {
1237       const FunctionDecl *FD = E->getDirectCallee();
1238       if (!FD)
1239         return true;
1240       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1241       if (Attr && Name == Attr->getLabel()) {
1242         Result = true;
1243         return false;
1244       }
1245       unsigned BuiltinID = FD->getBuiltinID();
1246       if (!BuiltinID)
1247         return true;
1248       StringRef BuiltinName = BI.GetName(BuiltinID);
1249       if (BuiltinName.startswith("__builtin_") &&
1250           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1251         Result = true;
1252         return false;
1253       }
1254       return true;
1255     }
1256   };
1257 }
1258 
1259 // isTriviallyRecursive - Check if this function calls another
1260 // decl that, because of the asm attribute or the other decl being a builtin,
1261 // ends up pointing to itself.
1262 bool
1263 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1264   StringRef Name;
1265   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1266     // asm labels are a special kind of mangling we have to support.
1267     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1268     if (!Attr)
1269       return false;
1270     Name = Attr->getLabel();
1271   } else {
1272     Name = FD->getName();
1273   }
1274 
1275   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1276   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1277   return Walker.Result;
1278 }
1279 
1280 bool
1281 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1282   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1283     return true;
1284   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1285   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1286     return false;
1287   // PR9614. Avoid cases where the source code is lying to us. An available
1288   // externally function should have an equivalent function somewhere else,
1289   // but a function that calls itself is clearly not equivalent to the real
1290   // implementation.
1291   // This happens in glibc's btowc and in some configure checks.
1292   return !isTriviallyRecursive(F);
1293 }
1294 
1295 /// If the type for the method's class was generated by
1296 /// CGDebugInfo::createContextChain(), the cache contains only a
1297 /// limited DIType without any declarations. Since EmitFunctionStart()
1298 /// needs to find the canonical declaration for each method, we need
1299 /// to construct the complete type prior to emitting the method.
1300 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1301   if (!D->isInstance())
1302     return;
1303 
1304   if (CGDebugInfo *DI = getModuleDebugInfo())
1305     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1306       const PointerType *ThisPtr =
1307         cast<PointerType>(D->getThisType(getContext()));
1308       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1309     }
1310 }
1311 
1312 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1313   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1314 
1315   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1316                                  Context.getSourceManager(),
1317                                  "Generating code for declaration");
1318 
1319   if (isa<FunctionDecl>(D)) {
1320     // At -O0, don't generate IR for functions with available_externally
1321     // linkage.
1322     if (!shouldEmitFunction(GD))
1323       return;
1324 
1325     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1326       CompleteDIClassType(Method);
1327       // Make sure to emit the definition(s) before we emit the thunks.
1328       // This is necessary for the generation of certain thunks.
1329       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1330         EmitCXXConstructor(CD, GD.getCtorType());
1331       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1332         EmitCXXDestructor(DD, GD.getDtorType());
1333       else
1334         EmitGlobalFunctionDefinition(GD, GV);
1335 
1336       if (Method->isVirtual())
1337         getVTables().EmitThunks(GD);
1338 
1339       return;
1340     }
1341 
1342     return EmitGlobalFunctionDefinition(GD, GV);
1343   }
1344 
1345   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1346     return EmitGlobalVarDefinition(VD);
1347 
1348   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1349 }
1350 
1351 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1352 /// module, create and return an llvm Function with the specified type. If there
1353 /// is something in the module with the specified name, return it potentially
1354 /// bitcasted to the right type.
1355 ///
1356 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1357 /// to set the attributes on the function when it is first created.
1358 llvm::Constant *
1359 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1360                                        llvm::Type *Ty,
1361                                        GlobalDecl GD, bool ForVTable,
1362                                        bool DontDefer,
1363                                        llvm::AttributeSet ExtraAttrs) {
1364   const Decl *D = GD.getDecl();
1365 
1366   // Lookup the entry, lazily creating it if necessary.
1367   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1368   if (Entry) {
1369     if (WeakRefReferences.erase(Entry)) {
1370       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1371       if (FD && !FD->hasAttr<WeakAttr>())
1372         Entry->setLinkage(llvm::Function::ExternalLinkage);
1373     }
1374 
1375     if (Entry->getType()->getElementType() == Ty)
1376       return Entry;
1377 
1378     // Make sure the result is of the correct type.
1379     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1380   }
1381 
1382   // This function doesn't have a complete type (for example, the return
1383   // type is an incomplete struct). Use a fake type instead, and make
1384   // sure not to try to set attributes.
1385   bool IsIncompleteFunction = false;
1386 
1387   llvm::FunctionType *FTy;
1388   if (isa<llvm::FunctionType>(Ty)) {
1389     FTy = cast<llvm::FunctionType>(Ty);
1390   } else {
1391     FTy = llvm::FunctionType::get(VoidTy, false);
1392     IsIncompleteFunction = true;
1393   }
1394 
1395   llvm::Function *F = llvm::Function::Create(FTy,
1396                                              llvm::Function::ExternalLinkage,
1397                                              MangledName, &getModule());
1398   assert(F->getName() == MangledName && "name was uniqued!");
1399   if (D)
1400     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1401   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1402     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1403     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1404                      llvm::AttributeSet::get(VMContext,
1405                                              llvm::AttributeSet::FunctionIndex,
1406                                              B));
1407   }
1408 
1409   if (!DontDefer) {
1410     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1411     // each other bottoming out with the base dtor.  Therefore we emit non-base
1412     // dtors on usage, even if there is no dtor definition in the TU.
1413     if (D && isa<CXXDestructorDecl>(D) &&
1414         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1415                                            GD.getDtorType()))
1416       addDeferredDeclToEmit(F, GD);
1417 
1418     // This is the first use or definition of a mangled name.  If there is a
1419     // deferred decl with this name, remember that we need to emit it at the end
1420     // of the file.
1421     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1422     if (DDI != DeferredDecls.end()) {
1423       // Move the potentially referenced deferred decl to the
1424       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1425       // don't need it anymore).
1426       addDeferredDeclToEmit(F, DDI->second);
1427       DeferredDecls.erase(DDI);
1428 
1429       // Otherwise, if this is a sized deallocation function, emit a weak
1430       // definition
1431       // for it at the end of the translation unit.
1432     } else if (D && cast<FunctionDecl>(D)
1433                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1434       addDeferredDeclToEmit(F, GD);
1435 
1436       // Otherwise, there are cases we have to worry about where we're
1437       // using a declaration for which we must emit a definition but where
1438       // we might not find a top-level definition:
1439       //   - member functions defined inline in their classes
1440       //   - friend functions defined inline in some class
1441       //   - special member functions with implicit definitions
1442       // If we ever change our AST traversal to walk into class methods,
1443       // this will be unnecessary.
1444       //
1445       // We also don't emit a definition for a function if it's going to be an
1446       // entry
1447       // in a vtable, unless it's already marked as used.
1448     } else if (getLangOpts().CPlusPlus && D) {
1449       // Look for a declaration that's lexically in a record.
1450       const FunctionDecl *FD = cast<FunctionDecl>(D);
1451       FD = FD->getMostRecentDecl();
1452       do {
1453         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1454           if (FD->isImplicit() && !ForVTable) {
1455             assert(FD->isUsed() &&
1456                    "Sema didn't mark implicit function as used!");
1457             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1458             break;
1459           } else if (FD->doesThisDeclarationHaveABody()) {
1460             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1461             break;
1462           }
1463         }
1464         FD = FD->getPreviousDecl();
1465       } while (FD);
1466     }
1467   }
1468 
1469   // Make sure the result is of the requested type.
1470   if (!IsIncompleteFunction) {
1471     assert(F->getType()->getElementType() == Ty);
1472     return F;
1473   }
1474 
1475   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1476   return llvm::ConstantExpr::getBitCast(F, PTy);
1477 }
1478 
1479 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1480 /// non-null, then this function will use the specified type if it has to
1481 /// create it (this occurs when we see a definition of the function).
1482 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1483                                                  llvm::Type *Ty,
1484                                                  bool ForVTable,
1485                                                  bool DontDefer) {
1486   // If there was no specific requested type, just convert it now.
1487   if (!Ty)
1488     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1489 
1490   StringRef MangledName = getMangledName(GD);
1491   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1492 }
1493 
1494 /// CreateRuntimeFunction - Create a new runtime function with the specified
1495 /// type and name.
1496 llvm::Constant *
1497 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1498                                      StringRef Name,
1499                                      llvm::AttributeSet ExtraAttrs) {
1500   llvm::Constant *C =
1501       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1502                               /*DontDefer=*/false, ExtraAttrs);
1503   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1504     if (F->empty())
1505       F->setCallingConv(getRuntimeCC());
1506   return C;
1507 }
1508 
1509 /// isTypeConstant - Determine whether an object of this type can be emitted
1510 /// as a constant.
1511 ///
1512 /// If ExcludeCtor is true, the duration when the object's constructor runs
1513 /// will not be considered. The caller will need to verify that the object is
1514 /// not written to during its construction.
1515 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1516   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1517     return false;
1518 
1519   if (Context.getLangOpts().CPlusPlus) {
1520     if (const CXXRecordDecl *Record
1521           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1522       return ExcludeCtor && !Record->hasMutableFields() &&
1523              Record->hasTrivialDestructor();
1524   }
1525 
1526   return true;
1527 }
1528 
1529 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1530 /// create and return an llvm GlobalVariable with the specified type.  If there
1531 /// is something in the module with the specified name, return it potentially
1532 /// bitcasted to the right type.
1533 ///
1534 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1535 /// to set the attributes on the global when it is first created.
1536 llvm::Constant *
1537 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1538                                      llvm::PointerType *Ty,
1539                                      const VarDecl *D,
1540                                      bool UnnamedAddr) {
1541   // Lookup the entry, lazily creating it if necessary.
1542   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1543   if (Entry) {
1544     if (WeakRefReferences.erase(Entry)) {
1545       if (D && !D->hasAttr<WeakAttr>())
1546         Entry->setLinkage(llvm::Function::ExternalLinkage);
1547     }
1548 
1549     if (UnnamedAddr)
1550       Entry->setUnnamedAddr(true);
1551 
1552     if (Entry->getType() == Ty)
1553       return Entry;
1554 
1555     // Make sure the result is of the correct type.
1556     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1557       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1558 
1559     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1560   }
1561 
1562   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1563   llvm::GlobalVariable *GV =
1564     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1565                              llvm::GlobalValue::ExternalLinkage,
1566                              0, MangledName, 0,
1567                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1568 
1569   // This is the first use or definition of a mangled name.  If there is a
1570   // deferred decl with this name, remember that we need to emit it at the end
1571   // of the file.
1572   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1573   if (DDI != DeferredDecls.end()) {
1574     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1575     // list, and remove it from DeferredDecls (since we don't need it anymore).
1576     addDeferredDeclToEmit(GV, DDI->second);
1577     DeferredDecls.erase(DDI);
1578   }
1579 
1580   // Handle things which are present even on external declarations.
1581   if (D) {
1582     // FIXME: This code is overly simple and should be merged with other global
1583     // handling.
1584     GV->setConstant(isTypeConstant(D->getType(), false));
1585 
1586     // Set linkage and visibility in case we never see a definition.
1587     LinkageInfo LV = D->getLinkageAndVisibility();
1588     if (LV.getLinkage() != ExternalLinkage) {
1589       // Don't set internal linkage on declarations.
1590     } else {
1591       if (D->hasAttr<DLLImportAttr>()) {
1592         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1593         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1594       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1595         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1596 
1597       // Set visibility on a declaration only if it's explicit.
1598       if (LV.isVisibilityExplicit())
1599         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1600     }
1601 
1602     if (D->getTLSKind()) {
1603       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1604         CXXThreadLocals.push_back(std::make_pair(D, GV));
1605       setTLSMode(GV, *D);
1606     }
1607 
1608     // If required by the ABI, treat declarations of static data members with
1609     // inline initializers as definitions.
1610     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1611         D->isStaticDataMember() && D->hasInit() &&
1612         !D->isThisDeclarationADefinition())
1613       EmitGlobalVarDefinition(D);
1614   }
1615 
1616   if (AddrSpace != Ty->getAddressSpace())
1617     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1618 
1619   if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1620       D->getLanguageLinkage() == CLanguageLinkage &&
1621       D->getType().isConstant(Context) &&
1622       isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1623     GV->setSection(".cp.rodata");
1624 
1625   return GV;
1626 }
1627 
1628 
1629 llvm::GlobalVariable *
1630 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1631                                       llvm::Type *Ty,
1632                                       llvm::GlobalValue::LinkageTypes Linkage) {
1633   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1634   llvm::GlobalVariable *OldGV = 0;
1635 
1636 
1637   if (GV) {
1638     // Check if the variable has the right type.
1639     if (GV->getType()->getElementType() == Ty)
1640       return GV;
1641 
1642     // Because C++ name mangling, the only way we can end up with an already
1643     // existing global with the same name is if it has been declared extern "C".
1644     assert(GV->isDeclaration() && "Declaration has wrong type!");
1645     OldGV = GV;
1646   }
1647 
1648   // Create a new variable.
1649   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1650                                 Linkage, 0, Name);
1651 
1652   if (OldGV) {
1653     // Replace occurrences of the old variable if needed.
1654     GV->takeName(OldGV);
1655 
1656     if (!OldGV->use_empty()) {
1657       llvm::Constant *NewPtrForOldDecl =
1658       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1659       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1660     }
1661 
1662     OldGV->eraseFromParent();
1663   }
1664 
1665   return GV;
1666 }
1667 
1668 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1669 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1670 /// then it will be created with the specified type instead of whatever the
1671 /// normal requested type would be.
1672 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1673                                                   llvm::Type *Ty) {
1674   assert(D->hasGlobalStorage() && "Not a global variable");
1675   QualType ASTTy = D->getType();
1676   if (Ty == 0)
1677     Ty = getTypes().ConvertTypeForMem(ASTTy);
1678 
1679   llvm::PointerType *PTy =
1680     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1681 
1682   StringRef MangledName = getMangledName(D);
1683   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1684 }
1685 
1686 /// CreateRuntimeVariable - Create a new runtime global variable with the
1687 /// specified type and name.
1688 llvm::Constant *
1689 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1690                                      StringRef Name) {
1691   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1692                                true);
1693 }
1694 
1695 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1696   assert(!D->getInit() && "Cannot emit definite definitions here!");
1697 
1698   if (MayDeferGeneration(D)) {
1699     // If we have not seen a reference to this variable yet, place it
1700     // into the deferred declarations table to be emitted if needed
1701     // later.
1702     StringRef MangledName = getMangledName(D);
1703     if (!GetGlobalValue(MangledName)) {
1704       DeferredDecls[MangledName] = D;
1705       return;
1706     }
1707   }
1708 
1709   // The tentative definition is the only definition.
1710   EmitGlobalVarDefinition(D);
1711 }
1712 
1713 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1714     return Context.toCharUnitsFromBits(
1715       TheDataLayout.getTypeStoreSizeInBits(Ty));
1716 }
1717 
1718 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1719                                                  unsigned AddrSpace) {
1720   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1721     if (D->hasAttr<CUDAConstantAttr>())
1722       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1723     else if (D->hasAttr<CUDASharedAttr>())
1724       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1725     else
1726       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1727   }
1728 
1729   return AddrSpace;
1730 }
1731 
1732 template<typename SomeDecl>
1733 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1734                                                llvm::GlobalValue *GV) {
1735   if (!getLangOpts().CPlusPlus)
1736     return;
1737 
1738   // Must have 'used' attribute, or else inline assembly can't rely on
1739   // the name existing.
1740   if (!D->template hasAttr<UsedAttr>())
1741     return;
1742 
1743   // Must have internal linkage and an ordinary name.
1744   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1745     return;
1746 
1747   // Must be in an extern "C" context. Entities declared directly within
1748   // a record are not extern "C" even if the record is in such a context.
1749   const SomeDecl *First = D->getFirstDecl();
1750   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1751     return;
1752 
1753   // OK, this is an internal linkage entity inside an extern "C" linkage
1754   // specification. Make a note of that so we can give it the "expected"
1755   // mangled name if nothing else is using that name.
1756   std::pair<StaticExternCMap::iterator, bool> R =
1757       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1758 
1759   // If we have multiple internal linkage entities with the same name
1760   // in extern "C" regions, none of them gets that name.
1761   if (!R.second)
1762     R.first->second = 0;
1763 }
1764 
1765 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1766   llvm::Constant *Init = 0;
1767   QualType ASTTy = D->getType();
1768   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1769   bool NeedsGlobalCtor = false;
1770   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1771 
1772   const VarDecl *InitDecl;
1773   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1774 
1775   if (!InitExpr) {
1776     // This is a tentative definition; tentative definitions are
1777     // implicitly initialized with { 0 }.
1778     //
1779     // Note that tentative definitions are only emitted at the end of
1780     // a translation unit, so they should never have incomplete
1781     // type. In addition, EmitTentativeDefinition makes sure that we
1782     // never attempt to emit a tentative definition if a real one
1783     // exists. A use may still exists, however, so we still may need
1784     // to do a RAUW.
1785     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1786     Init = EmitNullConstant(D->getType());
1787   } else {
1788     initializedGlobalDecl = GlobalDecl(D);
1789     Init = EmitConstantInit(*InitDecl);
1790 
1791     if (!Init) {
1792       QualType T = InitExpr->getType();
1793       if (D->getType()->isReferenceType())
1794         T = D->getType();
1795 
1796       if (getLangOpts().CPlusPlus) {
1797         Init = EmitNullConstant(T);
1798         NeedsGlobalCtor = true;
1799       } else {
1800         ErrorUnsupported(D, "static initializer");
1801         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1802       }
1803     } else {
1804       // We don't need an initializer, so remove the entry for the delayed
1805       // initializer position (just in case this entry was delayed) if we
1806       // also don't need to register a destructor.
1807       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1808         DelayedCXXInitPosition.erase(D);
1809     }
1810   }
1811 
1812   llvm::Type* InitType = Init->getType();
1813   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1814 
1815   // Strip off a bitcast if we got one back.
1816   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1817     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1818            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1819            // All zero index gep.
1820            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1821     Entry = CE->getOperand(0);
1822   }
1823 
1824   // Entry is now either a Function or GlobalVariable.
1825   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1826 
1827   // We have a definition after a declaration with the wrong type.
1828   // We must make a new GlobalVariable* and update everything that used OldGV
1829   // (a declaration or tentative definition) with the new GlobalVariable*
1830   // (which will be a definition).
1831   //
1832   // This happens if there is a prototype for a global (e.g.
1833   // "extern int x[];") and then a definition of a different type (e.g.
1834   // "int x[10];"). This also happens when an initializer has a different type
1835   // from the type of the global (this happens with unions).
1836   if (GV == 0 ||
1837       GV->getType()->getElementType() != InitType ||
1838       GV->getType()->getAddressSpace() !=
1839        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1840 
1841     // Move the old entry aside so that we'll create a new one.
1842     Entry->setName(StringRef());
1843 
1844     // Make a new global with the correct type, this is now guaranteed to work.
1845     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1846 
1847     // Replace all uses of the old global with the new global
1848     llvm::Constant *NewPtrForOldDecl =
1849         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1850     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1851 
1852     // Erase the old global, since it is no longer used.
1853     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1854   }
1855 
1856   MaybeHandleStaticInExternC(D, GV);
1857 
1858   if (D->hasAttr<AnnotateAttr>())
1859     AddGlobalAnnotations(D, GV);
1860 
1861   GV->setInitializer(Init);
1862 
1863   // If it is safe to mark the global 'constant', do so now.
1864   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1865                   isTypeConstant(D->getType(), true));
1866 
1867   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1868 
1869   // Set the llvm linkage type as appropriate.
1870   llvm::GlobalValue::LinkageTypes Linkage =
1871     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1872   GV->setLinkage(Linkage);
1873   if (D->hasAttr<DLLImportAttr>())
1874     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1875   else if (D->hasAttr<DLLExportAttr>())
1876     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1877 
1878   // If required by the ABI, give definitions of static data members with inline
1879   // initializers linkonce_odr linkage.
1880   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1881       D->isStaticDataMember() && InitExpr &&
1882       !InitDecl->isThisDeclarationADefinition())
1883     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1884 
1885   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1886     // common vars aren't constant even if declared const.
1887     GV->setConstant(false);
1888 
1889   SetCommonAttributes(D, GV);
1890 
1891   // Emit the initializer function if necessary.
1892   if (NeedsGlobalCtor || NeedsGlobalDtor)
1893     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1894 
1895   // If we are compiling with ASan, add metadata indicating dynamically
1896   // initialized globals.
1897   if (SanOpts.Address && NeedsGlobalCtor) {
1898     llvm::Module &M = getModule();
1899 
1900     llvm::NamedMDNode *DynamicInitializers =
1901         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1902     llvm::Value *GlobalToAdd[] = { GV };
1903     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1904     DynamicInitializers->addOperand(ThisGlobal);
1905   }
1906 
1907   // Emit global variable debug information.
1908   if (CGDebugInfo *DI = getModuleDebugInfo())
1909     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1910       DI->EmitGlobalVariable(GV, D);
1911 }
1912 
1913 llvm::GlobalValue::LinkageTypes
1914 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1915   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1916   if (Linkage == GVA_Internal)
1917     return llvm::Function::InternalLinkage;
1918   else if (D->hasAttr<DLLImportAttr>())
1919     return llvm::Function::ExternalLinkage;
1920   else if (D->hasAttr<DLLExportAttr>())
1921     return llvm::Function::ExternalLinkage;
1922   else if (D->hasAttr<SelectAnyAttr>()) {
1923     // selectany symbols are externally visible, so use weak instead of
1924     // linkonce.  MSVC optimizes away references to const selectany globals, so
1925     // all definitions should be the same and ODR linkage should be used.
1926     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1927     return llvm::GlobalVariable::WeakODRLinkage;
1928   } else if (D->hasAttr<WeakAttr>()) {
1929     if (isConstant)
1930       return llvm::GlobalVariable::WeakODRLinkage;
1931     else
1932       return llvm::GlobalVariable::WeakAnyLinkage;
1933   } else if (Linkage == GVA_TemplateInstantiation ||
1934              Linkage == GVA_ExplicitTemplateInstantiation)
1935     return llvm::GlobalVariable::WeakODRLinkage;
1936   else if (!getLangOpts().CPlusPlus &&
1937            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1938              D->hasAttr<CommonAttr>()) &&
1939            !D->hasExternalStorage() && !D->getInit() &&
1940            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1941            !D->hasAttr<WeakImportAttr>()) {
1942     // Thread local vars aren't considered common linkage.
1943     return llvm::GlobalVariable::CommonLinkage;
1944   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1945              getTarget().getTriple().isMacOSX())
1946     // On Darwin, the backing variable for a C++11 thread_local variable always
1947     // has internal linkage; all accesses should just be calls to the
1948     // Itanium-specified entry point, which has the normal linkage of the
1949     // variable.
1950     return llvm::GlobalValue::InternalLinkage;
1951   return llvm::GlobalVariable::ExternalLinkage;
1952 }
1953 
1954 /// Replace the uses of a function that was declared with a non-proto type.
1955 /// We want to silently drop extra arguments from call sites
1956 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1957                                           llvm::Function *newFn) {
1958   // Fast path.
1959   if (old->use_empty()) return;
1960 
1961   llvm::Type *newRetTy = newFn->getReturnType();
1962   SmallVector<llvm::Value*, 4> newArgs;
1963 
1964   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1965          ui != ue; ) {
1966     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1967     llvm::User *user = use->getUser();
1968 
1969     // Recognize and replace uses of bitcasts.  Most calls to
1970     // unprototyped functions will use bitcasts.
1971     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1972       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1973         replaceUsesOfNonProtoConstant(bitcast, newFn);
1974       continue;
1975     }
1976 
1977     // Recognize calls to the function.
1978     llvm::CallSite callSite(user);
1979     if (!callSite) continue;
1980     if (!callSite.isCallee(&*use)) continue;
1981 
1982     // If the return types don't match exactly, then we can't
1983     // transform this call unless it's dead.
1984     if (callSite->getType() != newRetTy && !callSite->use_empty())
1985       continue;
1986 
1987     // Get the call site's attribute list.
1988     SmallVector<llvm::AttributeSet, 8> newAttrs;
1989     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1990 
1991     // Collect any return attributes from the call.
1992     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1993       newAttrs.push_back(
1994         llvm::AttributeSet::get(newFn->getContext(),
1995                                 oldAttrs.getRetAttributes()));
1996 
1997     // If the function was passed too few arguments, don't transform.
1998     unsigned newNumArgs = newFn->arg_size();
1999     if (callSite.arg_size() < newNumArgs) continue;
2000 
2001     // If extra arguments were passed, we silently drop them.
2002     // If any of the types mismatch, we don't transform.
2003     unsigned argNo = 0;
2004     bool dontTransform = false;
2005     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2006            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2007       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2008         dontTransform = true;
2009         break;
2010       }
2011 
2012       // Add any parameter attributes.
2013       if (oldAttrs.hasAttributes(argNo + 1))
2014         newAttrs.
2015           push_back(llvm::
2016                     AttributeSet::get(newFn->getContext(),
2017                                       oldAttrs.getParamAttributes(argNo + 1)));
2018     }
2019     if (dontTransform)
2020       continue;
2021 
2022     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2023       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2024                                                  oldAttrs.getFnAttributes()));
2025 
2026     // Okay, we can transform this.  Create the new call instruction and copy
2027     // over the required information.
2028     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2029 
2030     llvm::CallSite newCall;
2031     if (callSite.isCall()) {
2032       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2033                                        callSite.getInstruction());
2034     } else {
2035       llvm::InvokeInst *oldInvoke =
2036         cast<llvm::InvokeInst>(callSite.getInstruction());
2037       newCall = llvm::InvokeInst::Create(newFn,
2038                                          oldInvoke->getNormalDest(),
2039                                          oldInvoke->getUnwindDest(),
2040                                          newArgs, "",
2041                                          callSite.getInstruction());
2042     }
2043     newArgs.clear(); // for the next iteration
2044 
2045     if (!newCall->getType()->isVoidTy())
2046       newCall->takeName(callSite.getInstruction());
2047     newCall.setAttributes(
2048                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2049     newCall.setCallingConv(callSite.getCallingConv());
2050 
2051     // Finally, remove the old call, replacing any uses with the new one.
2052     if (!callSite->use_empty())
2053       callSite->replaceAllUsesWith(newCall.getInstruction());
2054 
2055     // Copy debug location attached to CI.
2056     if (!callSite->getDebugLoc().isUnknown())
2057       newCall->setDebugLoc(callSite->getDebugLoc());
2058     callSite->eraseFromParent();
2059   }
2060 }
2061 
2062 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2063 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2064 /// existing call uses of the old function in the module, this adjusts them to
2065 /// call the new function directly.
2066 ///
2067 /// This is not just a cleanup: the always_inline pass requires direct calls to
2068 /// functions to be able to inline them.  If there is a bitcast in the way, it
2069 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2070 /// run at -O0.
2071 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2072                                                       llvm::Function *NewFn) {
2073   // If we're redefining a global as a function, don't transform it.
2074   if (!isa<llvm::Function>(Old)) return;
2075 
2076   replaceUsesOfNonProtoConstant(Old, NewFn);
2077 }
2078 
2079 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2080   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2081   // If we have a definition, this might be a deferred decl. If the
2082   // instantiation is explicit, make sure we emit it at the end.
2083   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2084     GetAddrOfGlobalVar(VD);
2085 
2086   EmitTopLevelDecl(VD);
2087 }
2088 
2089 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2090                                                  llvm::GlobalValue *GV) {
2091   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2092 
2093   // Compute the function info and LLVM type.
2094   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2095   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2096 
2097   // Get or create the prototype for the function.
2098   llvm::Constant *Entry =
2099       GV ? GV
2100          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2101 
2102   // Strip off a bitcast if we got one back.
2103   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2104     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2105     Entry = CE->getOperand(0);
2106   }
2107 
2108   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2109     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2110     return;
2111   }
2112 
2113   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2114     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2115 
2116     // If the types mismatch then we have to rewrite the definition.
2117     assert(OldFn->isDeclaration() &&
2118            "Shouldn't replace non-declaration");
2119 
2120     // F is the Function* for the one with the wrong type, we must make a new
2121     // Function* and update everything that used F (a declaration) with the new
2122     // Function* (which will be a definition).
2123     //
2124     // This happens if there is a prototype for a function
2125     // (e.g. "int f()") and then a definition of a different type
2126     // (e.g. "int f(int x)").  Move the old function aside so that it
2127     // doesn't interfere with GetAddrOfFunction.
2128     OldFn->setName(StringRef());
2129     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2130 
2131     // This might be an implementation of a function without a
2132     // prototype, in which case, try to do special replacement of
2133     // calls which match the new prototype.  The really key thing here
2134     // is that we also potentially drop arguments from the call site
2135     // so as to make a direct call, which makes the inliner happier
2136     // and suppresses a number of optimizer warnings (!) about
2137     // dropping arguments.
2138     if (!OldFn->use_empty()) {
2139       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2140       OldFn->removeDeadConstantUsers();
2141     }
2142 
2143     // Replace uses of F with the Function we will endow with a body.
2144     if (!Entry->use_empty()) {
2145       llvm::Constant *NewPtrForOldDecl =
2146         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2147       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2148     }
2149 
2150     // Ok, delete the old function now, which is dead.
2151     OldFn->eraseFromParent();
2152 
2153     Entry = NewFn;
2154   }
2155 
2156   // We need to set linkage and visibility on the function before
2157   // generating code for it because various parts of IR generation
2158   // want to propagate this information down (e.g. to local static
2159   // declarations).
2160   llvm::Function *Fn = cast<llvm::Function>(Entry);
2161   setFunctionLinkage(GD, Fn);
2162 
2163   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2164   setGlobalVisibility(Fn, D);
2165 
2166   MaybeHandleStaticInExternC(D, Fn);
2167 
2168   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2169 
2170   SetFunctionDefinitionAttributes(D, Fn);
2171   SetLLVMFunctionAttributesForDefinition(D, Fn);
2172 
2173   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2174     AddGlobalCtor(Fn, CA->getPriority());
2175   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2176     AddGlobalDtor(Fn, DA->getPriority());
2177   if (D->hasAttr<AnnotateAttr>())
2178     AddGlobalAnnotations(D, Fn);
2179 
2180   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2181   if (PGOInit)
2182     AddGlobalCtor(PGOInit, 0);
2183 }
2184 
2185 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2186   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2187   const AliasAttr *AA = D->getAttr<AliasAttr>();
2188   assert(AA && "Not an alias?");
2189 
2190   StringRef MangledName = getMangledName(GD);
2191 
2192   // If there is a definition in the module, then it wins over the alias.
2193   // This is dubious, but allow it to be safe.  Just ignore the alias.
2194   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2195   if (Entry && !Entry->isDeclaration())
2196     return;
2197 
2198   Aliases.push_back(GD);
2199 
2200   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2201 
2202   // Create a reference to the named value.  This ensures that it is emitted
2203   // if a deferred decl.
2204   llvm::Constant *Aliasee;
2205   if (isa<llvm::FunctionType>(DeclTy))
2206     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2207                                       /*ForVTable=*/false);
2208   else
2209     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2210                                     llvm::PointerType::getUnqual(DeclTy), 0);
2211 
2212   // Create the new alias itself, but don't set a name yet.
2213   llvm::GlobalValue *GA =
2214     new llvm::GlobalAlias(Aliasee->getType(),
2215                           llvm::Function::ExternalLinkage,
2216                           "", Aliasee, &getModule());
2217 
2218   if (Entry) {
2219     assert(Entry->isDeclaration());
2220 
2221     // If there is a declaration in the module, then we had an extern followed
2222     // by the alias, as in:
2223     //   extern int test6();
2224     //   ...
2225     //   int test6() __attribute__((alias("test7")));
2226     //
2227     // Remove it and replace uses of it with the alias.
2228     GA->takeName(Entry);
2229 
2230     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2231                                                           Entry->getType()));
2232     Entry->eraseFromParent();
2233   } else {
2234     GA->setName(MangledName);
2235   }
2236 
2237   // Set attributes which are particular to an alias; this is a
2238   // specialization of the attributes which may be set on a global
2239   // variable/function.
2240   if (D->hasAttr<DLLExportAttr>()) {
2241     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2242       // The dllexport attribute is ignored for undefined symbols.
2243       if (FD->hasBody())
2244         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2245     } else {
2246       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2247     }
2248   } else if (D->hasAttr<WeakAttr>() ||
2249              D->hasAttr<WeakRefAttr>() ||
2250              D->isWeakImported()) {
2251     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2252   }
2253 
2254   SetCommonAttributes(D, GA);
2255 }
2256 
2257 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2258                                             ArrayRef<llvm::Type*> Tys) {
2259   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2260                                          Tys);
2261 }
2262 
2263 static llvm::StringMapEntry<llvm::Constant*> &
2264 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2265                          const StringLiteral *Literal,
2266                          bool TargetIsLSB,
2267                          bool &IsUTF16,
2268                          unsigned &StringLength) {
2269   StringRef String = Literal->getString();
2270   unsigned NumBytes = String.size();
2271 
2272   // Check for simple case.
2273   if (!Literal->containsNonAsciiOrNull()) {
2274     StringLength = NumBytes;
2275     return Map.GetOrCreateValue(String);
2276   }
2277 
2278   // Otherwise, convert the UTF8 literals into a string of shorts.
2279   IsUTF16 = true;
2280 
2281   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2282   const UTF8 *FromPtr = (const UTF8 *)String.data();
2283   UTF16 *ToPtr = &ToBuf[0];
2284 
2285   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2286                            &ToPtr, ToPtr + NumBytes,
2287                            strictConversion);
2288 
2289   // ConvertUTF8toUTF16 returns the length in ToPtr.
2290   StringLength = ToPtr - &ToBuf[0];
2291 
2292   // Add an explicit null.
2293   *ToPtr = 0;
2294   return Map.
2295     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2296                                (StringLength + 1) * 2));
2297 }
2298 
2299 static llvm::StringMapEntry<llvm::Constant*> &
2300 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2301                        const StringLiteral *Literal,
2302                        unsigned &StringLength) {
2303   StringRef String = Literal->getString();
2304   StringLength = String.size();
2305   return Map.GetOrCreateValue(String);
2306 }
2307 
2308 llvm::Constant *
2309 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2310   unsigned StringLength = 0;
2311   bool isUTF16 = false;
2312   llvm::StringMapEntry<llvm::Constant*> &Entry =
2313     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2314                              getDataLayout().isLittleEndian(),
2315                              isUTF16, StringLength);
2316 
2317   if (llvm::Constant *C = Entry.getValue())
2318     return C;
2319 
2320   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2321   llvm::Constant *Zeros[] = { Zero, Zero };
2322   llvm::Value *V;
2323 
2324   // If we don't already have it, get __CFConstantStringClassReference.
2325   if (!CFConstantStringClassRef) {
2326     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2327     Ty = llvm::ArrayType::get(Ty, 0);
2328     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2329                                            "__CFConstantStringClassReference");
2330     // Decay array -> ptr
2331     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2332     CFConstantStringClassRef = V;
2333   }
2334   else
2335     V = CFConstantStringClassRef;
2336 
2337   QualType CFTy = getContext().getCFConstantStringType();
2338 
2339   llvm::StructType *STy =
2340     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2341 
2342   llvm::Constant *Fields[4];
2343 
2344   // Class pointer.
2345   Fields[0] = cast<llvm::ConstantExpr>(V);
2346 
2347   // Flags.
2348   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2349   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2350     llvm::ConstantInt::get(Ty, 0x07C8);
2351 
2352   // String pointer.
2353   llvm::Constant *C = 0;
2354   if (isUTF16) {
2355     ArrayRef<uint16_t> Arr =
2356       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2357                                      const_cast<char *>(Entry.getKey().data())),
2358                                    Entry.getKey().size() / 2);
2359     C = llvm::ConstantDataArray::get(VMContext, Arr);
2360   } else {
2361     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2362   }
2363 
2364   // Note: -fwritable-strings doesn't make the backing store strings of
2365   // CFStrings writable. (See <rdar://problem/10657500>)
2366   llvm::GlobalVariable *GV =
2367       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2368                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2369   GV->setUnnamedAddr(true);
2370   // Don't enforce the target's minimum global alignment, since the only use
2371   // of the string is via this class initializer.
2372   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2373   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2374   // that changes the section it ends in, which surprises ld64.
2375   if (isUTF16) {
2376     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2377     GV->setAlignment(Align.getQuantity());
2378     GV->setSection("__TEXT,__ustring");
2379   } else {
2380     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2381     GV->setAlignment(Align.getQuantity());
2382     GV->setSection("__TEXT,__cstring,cstring_literals");
2383   }
2384 
2385   // String.
2386   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2387 
2388   if (isUTF16)
2389     // Cast the UTF16 string to the correct type.
2390     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2391 
2392   // String length.
2393   Ty = getTypes().ConvertType(getContext().LongTy);
2394   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2395 
2396   // The struct.
2397   C = llvm::ConstantStruct::get(STy, Fields);
2398   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2399                                 llvm::GlobalVariable::PrivateLinkage, C,
2400                                 "_unnamed_cfstring_");
2401   GV->setSection("__DATA,__cfstring");
2402   Entry.setValue(GV);
2403 
2404   return GV;
2405 }
2406 
2407 llvm::Constant *
2408 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2409   unsigned StringLength = 0;
2410   llvm::StringMapEntry<llvm::Constant*> &Entry =
2411     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2412 
2413   if (llvm::Constant *C = Entry.getValue())
2414     return C;
2415 
2416   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2417   llvm::Constant *Zeros[] = { Zero, Zero };
2418   llvm::Value *V;
2419   // If we don't already have it, get _NSConstantStringClassReference.
2420   if (!ConstantStringClassRef) {
2421     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2422     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2423     llvm::Constant *GV;
2424     if (LangOpts.ObjCRuntime.isNonFragile()) {
2425       std::string str =
2426         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2427                             : "OBJC_CLASS_$_" + StringClass;
2428       GV = getObjCRuntime().GetClassGlobal(str);
2429       // Make sure the result is of the correct type.
2430       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2431       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2432       ConstantStringClassRef = V;
2433     } else {
2434       std::string str =
2435         StringClass.empty() ? "_NSConstantStringClassReference"
2436                             : "_" + StringClass + "ClassReference";
2437       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2438       GV = CreateRuntimeVariable(PTy, str);
2439       // Decay array -> ptr
2440       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2441       ConstantStringClassRef = V;
2442     }
2443   }
2444   else
2445     V = ConstantStringClassRef;
2446 
2447   if (!NSConstantStringType) {
2448     // Construct the type for a constant NSString.
2449     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2450     D->startDefinition();
2451 
2452     QualType FieldTypes[3];
2453 
2454     // const int *isa;
2455     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2456     // const char *str;
2457     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2458     // unsigned int length;
2459     FieldTypes[2] = Context.UnsignedIntTy;
2460 
2461     // Create fields
2462     for (unsigned i = 0; i < 3; ++i) {
2463       FieldDecl *Field = FieldDecl::Create(Context, D,
2464                                            SourceLocation(),
2465                                            SourceLocation(), 0,
2466                                            FieldTypes[i], /*TInfo=*/0,
2467                                            /*BitWidth=*/0,
2468                                            /*Mutable=*/false,
2469                                            ICIS_NoInit);
2470       Field->setAccess(AS_public);
2471       D->addDecl(Field);
2472     }
2473 
2474     D->completeDefinition();
2475     QualType NSTy = Context.getTagDeclType(D);
2476     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2477   }
2478 
2479   llvm::Constant *Fields[3];
2480 
2481   // Class pointer.
2482   Fields[0] = cast<llvm::ConstantExpr>(V);
2483 
2484   // String pointer.
2485   llvm::Constant *C =
2486     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2487 
2488   llvm::GlobalValue::LinkageTypes Linkage;
2489   bool isConstant;
2490   Linkage = llvm::GlobalValue::PrivateLinkage;
2491   isConstant = !LangOpts.WritableStrings;
2492 
2493   llvm::GlobalVariable *GV =
2494   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2495                            ".str");
2496   GV->setUnnamedAddr(true);
2497   // Don't enforce the target's minimum global alignment, since the only use
2498   // of the string is via this class initializer.
2499   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2500   GV->setAlignment(Align.getQuantity());
2501   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2502 
2503   // String length.
2504   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2505   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2506 
2507   // The struct.
2508   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2509   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2510                                 llvm::GlobalVariable::PrivateLinkage, C,
2511                                 "_unnamed_nsstring_");
2512   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2513   const char *NSStringNonFragileABISection =
2514       "__DATA,__objc_stringobj,regular,no_dead_strip";
2515   // FIXME. Fix section.
2516   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2517                      ? NSStringNonFragileABISection
2518                      : NSStringSection);
2519   Entry.setValue(GV);
2520 
2521   return GV;
2522 }
2523 
2524 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2525   if (ObjCFastEnumerationStateType.isNull()) {
2526     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2527     D->startDefinition();
2528 
2529     QualType FieldTypes[] = {
2530       Context.UnsignedLongTy,
2531       Context.getPointerType(Context.getObjCIdType()),
2532       Context.getPointerType(Context.UnsignedLongTy),
2533       Context.getConstantArrayType(Context.UnsignedLongTy,
2534                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2535     };
2536 
2537     for (size_t i = 0; i < 4; ++i) {
2538       FieldDecl *Field = FieldDecl::Create(Context,
2539                                            D,
2540                                            SourceLocation(),
2541                                            SourceLocation(), 0,
2542                                            FieldTypes[i], /*TInfo=*/0,
2543                                            /*BitWidth=*/0,
2544                                            /*Mutable=*/false,
2545                                            ICIS_NoInit);
2546       Field->setAccess(AS_public);
2547       D->addDecl(Field);
2548     }
2549 
2550     D->completeDefinition();
2551     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2552   }
2553 
2554   return ObjCFastEnumerationStateType;
2555 }
2556 
2557 llvm::Constant *
2558 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2559   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2560 
2561   // Don't emit it as the address of the string, emit the string data itself
2562   // as an inline array.
2563   if (E->getCharByteWidth() == 1) {
2564     SmallString<64> Str(E->getString());
2565 
2566     // Resize the string to the right size, which is indicated by its type.
2567     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2568     Str.resize(CAT->getSize().getZExtValue());
2569     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2570   }
2571 
2572   llvm::ArrayType *AType =
2573     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2574   llvm::Type *ElemTy = AType->getElementType();
2575   unsigned NumElements = AType->getNumElements();
2576 
2577   // Wide strings have either 2-byte or 4-byte elements.
2578   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2579     SmallVector<uint16_t, 32> Elements;
2580     Elements.reserve(NumElements);
2581 
2582     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2583       Elements.push_back(E->getCodeUnit(i));
2584     Elements.resize(NumElements);
2585     return llvm::ConstantDataArray::get(VMContext, Elements);
2586   }
2587 
2588   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2589   SmallVector<uint32_t, 32> Elements;
2590   Elements.reserve(NumElements);
2591 
2592   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2593     Elements.push_back(E->getCodeUnit(i));
2594   Elements.resize(NumElements);
2595   return llvm::ConstantDataArray::get(VMContext, Elements);
2596 }
2597 
2598 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2599 /// constant array for the given string literal.
2600 llvm::Constant *
2601 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2602   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2603 
2604   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2605   llvm::GlobalVariable *GV = nullptr;
2606   if (!LangOpts.WritableStrings) {
2607     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2608     switch (S->getCharByteWidth()) {
2609     case 1:
2610       ConstantStringMap = &Constant1ByteStringMap;
2611       break;
2612     case 2:
2613       ConstantStringMap = &Constant2ByteStringMap;
2614       break;
2615     case 4:
2616       ConstantStringMap = &Constant4ByteStringMap;
2617       break;
2618     default:
2619       llvm_unreachable("unhandled byte width!");
2620     }
2621     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2622     GV = Entry->getValue();
2623   }
2624 
2625   if (!GV) {
2626     SmallString<256> MangledNameBuffer;
2627     StringRef GlobalVariableName;
2628     llvm::GlobalValue::LinkageTypes LT;
2629 
2630     // Mangle the string literal if the ABI allows for it.  However, we cannot
2631     // do this if  we are compiling with ASan or -fwritable-strings because they
2632     // rely on strings having normal linkage.
2633     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2634         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2635       llvm::raw_svector_ostream Out(MangledNameBuffer);
2636       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2637       Out.flush();
2638 
2639       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2640       GlobalVariableName = MangledNameBuffer;
2641     } else {
2642       LT = llvm::GlobalValue::PrivateLinkage;;
2643       GlobalVariableName = ".str";
2644     }
2645 
2646     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2647     unsigned AddrSpace = 0;
2648     if (getLangOpts().OpenCL)
2649       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2650 
2651     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2652     GV = new llvm::GlobalVariable(
2653         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2654         GlobalVariableName, /*InsertBefore=*/nullptr,
2655         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2656     GV->setUnnamedAddr(true);
2657     if (Entry)
2658       Entry->setValue(GV);
2659   }
2660 
2661   if (Align.getQuantity() > GV->getAlignment())
2662     GV->setAlignment(Align.getQuantity());
2663 
2664   return GV;
2665 }
2666 
2667 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2668 /// array for the given ObjCEncodeExpr node.
2669 llvm::Constant *
2670 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2671   std::string Str;
2672   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2673 
2674   return GetAddrOfConstantCString(Str);
2675 }
2676 
2677 
2678 /// GenerateWritableString -- Creates storage for a string literal.
2679 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2680                                              bool constant,
2681                                              CodeGenModule &CGM,
2682                                              const char *GlobalName,
2683                                              unsigned Alignment) {
2684   // Create Constant for this string literal. Don't add a '\0'.
2685   llvm::Constant *C =
2686       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2687 
2688   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2689   unsigned AddrSpace = 0;
2690   if (CGM.getLangOpts().OpenCL)
2691     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2692 
2693   // Create a global variable for this string
2694   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2695       CGM.getModule(), C->getType(), constant,
2696       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2697       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2698   GV->setAlignment(Alignment);
2699   GV->setUnnamedAddr(true);
2700   return GV;
2701 }
2702 
2703 /// GetAddrOfConstantString - Returns a pointer to a character array
2704 /// containing the literal. This contents are exactly that of the
2705 /// given string, i.e. it will not be null terminated automatically;
2706 /// see GetAddrOfConstantCString. Note that whether the result is
2707 /// actually a pointer to an LLVM constant depends on
2708 /// Feature.WriteableStrings.
2709 ///
2710 /// The result has pointer to array type.
2711 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2712                                                        const char *GlobalName,
2713                                                        unsigned Alignment) {
2714   // Get the default prefix if a name wasn't specified.
2715   if (!GlobalName)
2716     GlobalName = ".str";
2717 
2718   if (Alignment == 0)
2719     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2720       .getQuantity();
2721 
2722   // Don't share any string literals if strings aren't constant.
2723   if (LangOpts.WritableStrings)
2724     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2725 
2726   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2727     Constant1ByteStringMap.GetOrCreateValue(Str);
2728 
2729   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2730     if (Alignment > GV->getAlignment()) {
2731       GV->setAlignment(Alignment);
2732     }
2733     return GV;
2734   }
2735 
2736   // Create a global variable for this.
2737   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2738                                                    Alignment);
2739   Entry.setValue(GV);
2740   return GV;
2741 }
2742 
2743 /// GetAddrOfConstantCString - Returns a pointer to a character
2744 /// array containing the literal and a terminating '\0'
2745 /// character. The result has pointer to array type.
2746 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2747                                                         const char *GlobalName,
2748                                                         unsigned Alignment) {
2749   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2750   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2751 }
2752 
2753 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2754     const MaterializeTemporaryExpr *E, const Expr *Init) {
2755   assert((E->getStorageDuration() == SD_Static ||
2756           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2757   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2758 
2759   // If we're not materializing a subobject of the temporary, keep the
2760   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2761   QualType MaterializedType = Init->getType();
2762   if (Init == E->GetTemporaryExpr())
2763     MaterializedType = E->getType();
2764 
2765   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2766   if (Slot)
2767     return Slot;
2768 
2769   // FIXME: If an externally-visible declaration extends multiple temporaries,
2770   // we need to give each temporary the same name in every translation unit (and
2771   // we also need to make the temporaries externally-visible).
2772   SmallString<256> Name;
2773   llvm::raw_svector_ostream Out(Name);
2774   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2775   Out.flush();
2776 
2777   APValue *Value = 0;
2778   if (E->getStorageDuration() == SD_Static) {
2779     // We might have a cached constant initializer for this temporary. Note
2780     // that this might have a different value from the value computed by
2781     // evaluating the initializer if the surrounding constant expression
2782     // modifies the temporary.
2783     Value = getContext().getMaterializedTemporaryValue(E, false);
2784     if (Value && Value->isUninit())
2785       Value = 0;
2786   }
2787 
2788   // Try evaluating it now, it might have a constant initializer.
2789   Expr::EvalResult EvalResult;
2790   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2791       !EvalResult.hasSideEffects())
2792     Value = &EvalResult.Val;
2793 
2794   llvm::Constant *InitialValue = 0;
2795   bool Constant = false;
2796   llvm::Type *Type;
2797   if (Value) {
2798     // The temporary has a constant initializer, use it.
2799     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2800     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2801     Type = InitialValue->getType();
2802   } else {
2803     // No initializer, the initialization will be provided when we
2804     // initialize the declaration which performed lifetime extension.
2805     Type = getTypes().ConvertTypeForMem(MaterializedType);
2806   }
2807 
2808   // Create a global variable for this lifetime-extended temporary.
2809   llvm::GlobalVariable *GV =
2810     new llvm::GlobalVariable(getModule(), Type, Constant,
2811                              llvm::GlobalValue::PrivateLinkage,
2812                              InitialValue, Name.c_str());
2813   GV->setAlignment(
2814       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2815   if (VD->getTLSKind())
2816     setTLSMode(GV, *VD);
2817   Slot = GV;
2818   return GV;
2819 }
2820 
2821 /// EmitObjCPropertyImplementations - Emit information for synthesized
2822 /// properties for an implementation.
2823 void CodeGenModule::EmitObjCPropertyImplementations(const
2824                                                     ObjCImplementationDecl *D) {
2825   for (const auto *PID : D->property_impls()) {
2826     // Dynamic is just for type-checking.
2827     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2828       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2829 
2830       // Determine which methods need to be implemented, some may have
2831       // been overridden. Note that ::isPropertyAccessor is not the method
2832       // we want, that just indicates if the decl came from a
2833       // property. What we want to know is if the method is defined in
2834       // this implementation.
2835       if (!D->getInstanceMethod(PD->getGetterName()))
2836         CodeGenFunction(*this).GenerateObjCGetter(
2837                                  const_cast<ObjCImplementationDecl *>(D), PID);
2838       if (!PD->isReadOnly() &&
2839           !D->getInstanceMethod(PD->getSetterName()))
2840         CodeGenFunction(*this).GenerateObjCSetter(
2841                                  const_cast<ObjCImplementationDecl *>(D), PID);
2842     }
2843   }
2844 }
2845 
2846 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2847   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2848   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2849        ivar; ivar = ivar->getNextIvar())
2850     if (ivar->getType().isDestructedType())
2851       return true;
2852 
2853   return false;
2854 }
2855 
2856 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2857 /// for an implementation.
2858 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2859   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2860   if (needsDestructMethod(D)) {
2861     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2862     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2863     ObjCMethodDecl *DTORMethod =
2864       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2865                              cxxSelector, getContext().VoidTy, 0, D,
2866                              /*isInstance=*/true, /*isVariadic=*/false,
2867                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2868                              /*isDefined=*/false, ObjCMethodDecl::Required);
2869     D->addInstanceMethod(DTORMethod);
2870     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2871     D->setHasDestructors(true);
2872   }
2873 
2874   // If the implementation doesn't have any ivar initializers, we don't need
2875   // a .cxx_construct.
2876   if (D->getNumIvarInitializers() == 0)
2877     return;
2878 
2879   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2880   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2881   // The constructor returns 'self'.
2882   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2883                                                 D->getLocation(),
2884                                                 D->getLocation(),
2885                                                 cxxSelector,
2886                                                 getContext().getObjCIdType(), 0,
2887                                                 D, /*isInstance=*/true,
2888                                                 /*isVariadic=*/false,
2889                                                 /*isPropertyAccessor=*/true,
2890                                                 /*isImplicitlyDeclared=*/true,
2891                                                 /*isDefined=*/false,
2892                                                 ObjCMethodDecl::Required);
2893   D->addInstanceMethod(CTORMethod);
2894   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2895   D->setHasNonZeroConstructors(true);
2896 }
2897 
2898 /// EmitNamespace - Emit all declarations in a namespace.
2899 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2900   for (auto *I : ND->decls()) {
2901     if (const auto *VD = dyn_cast<VarDecl>(I))
2902       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2903           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2904         continue;
2905     EmitTopLevelDecl(I);
2906   }
2907 }
2908 
2909 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2910 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2911   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2912       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2913     ErrorUnsupported(LSD, "linkage spec");
2914     return;
2915   }
2916 
2917   for (auto *I : LSD->decls()) {
2918     // Meta-data for ObjC class includes references to implemented methods.
2919     // Generate class's method definitions first.
2920     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2921       for (auto *M : OID->methods())
2922         EmitTopLevelDecl(M);
2923     }
2924     EmitTopLevelDecl(I);
2925   }
2926 }
2927 
2928 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2929 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2930   // Ignore dependent declarations.
2931   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2932     return;
2933 
2934   switch (D->getKind()) {
2935   case Decl::CXXConversion:
2936   case Decl::CXXMethod:
2937   case Decl::Function:
2938     // Skip function templates
2939     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2940         cast<FunctionDecl>(D)->isLateTemplateParsed())
2941       return;
2942 
2943     EmitGlobal(cast<FunctionDecl>(D));
2944     break;
2945 
2946   case Decl::Var:
2947     // Skip variable templates
2948     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2949       return;
2950   case Decl::VarTemplateSpecialization:
2951     EmitGlobal(cast<VarDecl>(D));
2952     break;
2953 
2954   // Indirect fields from global anonymous structs and unions can be
2955   // ignored; only the actual variable requires IR gen support.
2956   case Decl::IndirectField:
2957     break;
2958 
2959   // C++ Decls
2960   case Decl::Namespace:
2961     EmitNamespace(cast<NamespaceDecl>(D));
2962     break;
2963     // No code generation needed.
2964   case Decl::UsingShadow:
2965   case Decl::ClassTemplate:
2966   case Decl::VarTemplate:
2967   case Decl::VarTemplatePartialSpecialization:
2968   case Decl::FunctionTemplate:
2969   case Decl::TypeAliasTemplate:
2970   case Decl::Block:
2971   case Decl::Empty:
2972     break;
2973   case Decl::Using:          // using X; [C++]
2974     if (CGDebugInfo *DI = getModuleDebugInfo())
2975         DI->EmitUsingDecl(cast<UsingDecl>(*D));
2976     return;
2977   case Decl::NamespaceAlias:
2978     if (CGDebugInfo *DI = getModuleDebugInfo())
2979         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2980     return;
2981   case Decl::UsingDirective: // using namespace X; [C++]
2982     if (CGDebugInfo *DI = getModuleDebugInfo())
2983       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2984     return;
2985   case Decl::CXXConstructor:
2986     // Skip function templates
2987     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2988         cast<FunctionDecl>(D)->isLateTemplateParsed())
2989       return;
2990 
2991     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2992     break;
2993   case Decl::CXXDestructor:
2994     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2995       return;
2996     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2997     break;
2998 
2999   case Decl::StaticAssert:
3000     // Nothing to do.
3001     break;
3002 
3003   // Objective-C Decls
3004 
3005   // Forward declarations, no (immediate) code generation.
3006   case Decl::ObjCInterface:
3007   case Decl::ObjCCategory:
3008     break;
3009 
3010   case Decl::ObjCProtocol: {
3011     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
3012     if (Proto->isThisDeclarationADefinition())
3013       ObjCRuntime->GenerateProtocol(Proto);
3014     break;
3015   }
3016 
3017   case Decl::ObjCCategoryImpl:
3018     // Categories have properties but don't support synthesize so we
3019     // can ignore them here.
3020     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3021     break;
3022 
3023   case Decl::ObjCImplementation: {
3024     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3025     EmitObjCPropertyImplementations(OMD);
3026     EmitObjCIvarInitializations(OMD);
3027     ObjCRuntime->GenerateClass(OMD);
3028     // Emit global variable debug information.
3029     if (CGDebugInfo *DI = getModuleDebugInfo())
3030       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3031         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3032             OMD->getClassInterface()), OMD->getLocation());
3033     break;
3034   }
3035   case Decl::ObjCMethod: {
3036     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3037     // If this is not a prototype, emit the body.
3038     if (OMD->getBody())
3039       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3040     break;
3041   }
3042   case Decl::ObjCCompatibleAlias:
3043     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3044     break;
3045 
3046   case Decl::LinkageSpec:
3047     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3048     break;
3049 
3050   case Decl::FileScopeAsm: {
3051     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3052     StringRef AsmString = AD->getAsmString()->getString();
3053 
3054     const std::string &S = getModule().getModuleInlineAsm();
3055     if (S.empty())
3056       getModule().setModuleInlineAsm(AsmString);
3057     else if (S.end()[-1] == '\n')
3058       getModule().setModuleInlineAsm(S + AsmString.str());
3059     else
3060       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3061     break;
3062   }
3063 
3064   case Decl::Import: {
3065     ImportDecl *Import = cast<ImportDecl>(D);
3066 
3067     // Ignore import declarations that come from imported modules.
3068     if (clang::Module *Owner = Import->getOwningModule()) {
3069       if (getLangOpts().CurrentModule.empty() ||
3070           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3071         break;
3072     }
3073 
3074     ImportedModules.insert(Import->getImportedModule());
3075     break;
3076   }
3077 
3078   case Decl::ClassTemplateSpecialization: {
3079     const ClassTemplateSpecializationDecl *Spec =
3080         cast<ClassTemplateSpecializationDecl>(D);
3081     if (DebugInfo &&
3082         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3083       DebugInfo->completeTemplateDefinition(*Spec);
3084   }
3085 
3086   default:
3087     // Make sure we handled everything we should, every other kind is a
3088     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3089     // function. Need to recode Decl::Kind to do that easily.
3090     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3091   }
3092 }
3093 
3094 /// Turns the given pointer into a constant.
3095 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3096                                           const void *Ptr) {
3097   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3098   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3099   return llvm::ConstantInt::get(i64, PtrInt);
3100 }
3101 
3102 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3103                                    llvm::NamedMDNode *&GlobalMetadata,
3104                                    GlobalDecl D,
3105                                    llvm::GlobalValue *Addr) {
3106   if (!GlobalMetadata)
3107     GlobalMetadata =
3108       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3109 
3110   // TODO: should we report variant information for ctors/dtors?
3111   llvm::Value *Ops[] = {
3112     Addr,
3113     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3114   };
3115   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3116 }
3117 
3118 /// For each function which is declared within an extern "C" region and marked
3119 /// as 'used', but has internal linkage, create an alias from the unmangled
3120 /// name to the mangled name if possible. People expect to be able to refer
3121 /// to such functions with an unmangled name from inline assembly within the
3122 /// same translation unit.
3123 void CodeGenModule::EmitStaticExternCAliases() {
3124   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3125                                   E = StaticExternCValues.end();
3126        I != E; ++I) {
3127     IdentifierInfo *Name = I->first;
3128     llvm::GlobalValue *Val = I->second;
3129     if (Val && !getModule().getNamedValue(Name->getName()))
3130       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3131                                           Name->getName(), Val, &getModule()));
3132   }
3133 }
3134 
3135 /// Emits metadata nodes associating all the global values in the
3136 /// current module with the Decls they came from.  This is useful for
3137 /// projects using IR gen as a subroutine.
3138 ///
3139 /// Since there's currently no way to associate an MDNode directly
3140 /// with an llvm::GlobalValue, we create a global named metadata
3141 /// with the name 'clang.global.decl.ptrs'.
3142 void CodeGenModule::EmitDeclMetadata() {
3143   llvm::NamedMDNode *GlobalMetadata = 0;
3144 
3145   // StaticLocalDeclMap
3146   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3147          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3148        I != E; ++I) {
3149     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3150     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3151   }
3152 }
3153 
3154 /// Emits metadata nodes for all the local variables in the current
3155 /// function.
3156 void CodeGenFunction::EmitDeclMetadata() {
3157   if (LocalDeclMap.empty()) return;
3158 
3159   llvm::LLVMContext &Context = getLLVMContext();
3160 
3161   // Find the unique metadata ID for this name.
3162   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3163 
3164   llvm::NamedMDNode *GlobalMetadata = 0;
3165 
3166   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3167          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3168     const Decl *D = I->first;
3169     llvm::Value *Addr = I->second;
3170 
3171     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3172       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3173       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3174     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3175       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3176       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3177     }
3178   }
3179 }
3180 
3181 void CodeGenModule::EmitVersionIdentMetadata() {
3182   llvm::NamedMDNode *IdentMetadata =
3183     TheModule.getOrInsertNamedMetadata("llvm.ident");
3184   std::string Version = getClangFullVersion();
3185   llvm::LLVMContext &Ctx = TheModule.getContext();
3186 
3187   llvm::Value *IdentNode[] = {
3188     llvm::MDString::get(Ctx, Version)
3189   };
3190   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3191 }
3192 
3193 void CodeGenModule::EmitCoverageFile() {
3194   if (!getCodeGenOpts().CoverageFile.empty()) {
3195     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3196       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3197       llvm::LLVMContext &Ctx = TheModule.getContext();
3198       llvm::MDString *CoverageFile =
3199           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3200       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3201         llvm::MDNode *CU = CUNode->getOperand(i);
3202         llvm::Value *node[] = { CoverageFile, CU };
3203         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3204         GCov->addOperand(N);
3205       }
3206     }
3207   }
3208 }
3209 
3210 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3211                                                      QualType GuidType) {
3212   // Sema has checked that all uuid strings are of the form
3213   // "12345678-1234-1234-1234-1234567890ab".
3214   assert(Uuid.size() == 36);
3215   for (unsigned i = 0; i < 36; ++i) {
3216     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3217     else                                         assert(isHexDigit(Uuid[i]));
3218   }
3219 
3220   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3221 
3222   llvm::Constant *Field3[8];
3223   for (unsigned Idx = 0; Idx < 8; ++Idx)
3224     Field3[Idx] = llvm::ConstantInt::get(
3225         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3226 
3227   llvm::Constant *Fields[4] = {
3228     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3229     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3230     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3231     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3232   };
3233 
3234   return llvm::ConstantStruct::getAnon(Fields);
3235 }
3236