1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::iOS64: 64 case TargetCXXABI::GenericItanium: 65 return CreateItaniumCXXABI(CGM); 66 case TargetCXXABI::Microsoft: 67 return CreateMicrosoftCXXABI(CGM); 68 } 69 70 llvm_unreachable("invalid C++ ABI kind"); 71 } 72 73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 74 llvm::Module &M, const llvm::DataLayout &TD, 75 DiagnosticsEngine &diags) 76 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 77 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 78 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 79 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 80 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 81 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 82 CFConstantStringClassRef(0), 83 ConstantStringClassRef(0), NSConstantStringType(0), 84 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 85 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 86 LifetimeStartFn(0), LifetimeEndFn(0), 87 SanitizerBlacklist( 88 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 89 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 90 : LangOpts.Sanitize) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 106 Int8PtrTy = Int8Ty->getPointerTo(0); 107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 108 109 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 110 111 if (LangOpts.ObjC1) 112 createObjCRuntime(); 113 if (LangOpts.OpenCL) 114 createOpenCLRuntime(); 115 if (LangOpts.CUDA) 116 createCUDARuntime(); 117 118 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 119 if (SanOpts.Thread || 120 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 121 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 122 getCXXABI().getMangleContext()); 123 124 // If debug info or coverage generation is enabled, create the CGDebugInfo 125 // object. 126 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 127 CodeGenOpts.EmitGcovArcs || 128 CodeGenOpts.EmitGcovNotes) 129 DebugInfo = new CGDebugInfo(*this); 130 131 Block.GlobalUniqueCount = 0; 132 133 if (C.getLangOpts().ObjCAutoRefCount) 134 ARCData = new ARCEntrypoints(); 135 RRData = new RREntrypoints(); 136 137 if (!CodeGenOpts.InstrProfileInput.empty()) 138 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 139 } 140 141 CodeGenModule::~CodeGenModule() { 142 delete ObjCRuntime; 143 delete OpenCLRuntime; 144 delete CUDARuntime; 145 delete TheTargetCodeGenInfo; 146 delete TBAA; 147 delete DebugInfo; 148 delete ARCData; 149 delete RRData; 150 } 151 152 void CodeGenModule::createObjCRuntime() { 153 // This is just isGNUFamily(), but we want to force implementors of 154 // new ABIs to decide how best to do this. 155 switch (LangOpts.ObjCRuntime.getKind()) { 156 case ObjCRuntime::GNUstep: 157 case ObjCRuntime::GCC: 158 case ObjCRuntime::ObjFW: 159 ObjCRuntime = CreateGNUObjCRuntime(*this); 160 return; 161 162 case ObjCRuntime::FragileMacOSX: 163 case ObjCRuntime::MacOSX: 164 case ObjCRuntime::iOS: 165 ObjCRuntime = CreateMacObjCRuntime(*this); 166 return; 167 } 168 llvm_unreachable("bad runtime kind"); 169 } 170 171 void CodeGenModule::createOpenCLRuntime() { 172 OpenCLRuntime = new CGOpenCLRuntime(*this); 173 } 174 175 void CodeGenModule::createCUDARuntime() { 176 CUDARuntime = CreateNVCUDARuntime(*this); 177 } 178 179 void CodeGenModule::applyReplacements() { 180 for (ReplacementsTy::iterator I = Replacements.begin(), 181 E = Replacements.end(); 182 I != E; ++I) { 183 StringRef MangledName = I->first(); 184 llvm::Constant *Replacement = I->second; 185 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 186 if (!Entry) 187 continue; 188 llvm::Function *OldF = cast<llvm::Function>(Entry); 189 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 190 if (!NewF) { 191 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 192 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 193 } else { 194 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 195 assert(CE->getOpcode() == llvm::Instruction::BitCast || 196 CE->getOpcode() == llvm::Instruction::GetElementPtr); 197 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 198 } 199 } 200 201 // Replace old with new, but keep the old order. 202 OldF->replaceAllUsesWith(Replacement); 203 if (NewF) { 204 NewF->removeFromParent(); 205 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 206 } 207 OldF->eraseFromParent(); 208 } 209 } 210 211 void CodeGenModule::checkAliases() { 212 // Check if the constructed aliases are well formed. It is really unfortunate 213 // that we have to do this in CodeGen, but we only construct mangled names 214 // and aliases during codegen. 215 bool Error = false; 216 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 217 E = Aliases.end(); I != E; ++I) { 218 const GlobalDecl &GD = *I; 219 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 220 const AliasAttr *AA = D->getAttr<AliasAttr>(); 221 StringRef MangledName = getMangledName(GD); 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 224 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 225 if (!GV) { 226 Error = true; 227 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 228 } else if (GV->isDeclaration()) { 229 Error = true; 230 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 231 } 232 233 // We have to handle alias to weak aliases in here. LLVM itself disallows 234 // this since the object semantics would not match the IL one. For 235 // compatibility with gcc we implement it by just pointing the alias 236 // to its aliasee's aliasee. We also warn, since the user is probably 237 // expecting the link to be weak. 238 llvm::Constant *Aliasee = Alias->getAliasee(); 239 llvm::GlobalValue *AliaseeGV; 240 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 241 assert((CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 243 "Unsupported aliasee"); 244 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 245 } else { 246 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 247 } 248 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 249 if (GA->mayBeOverridden()) { 250 getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 251 << GA->getAliasedGlobal()->getName() << GA->getName(); 252 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 253 GA->getAliasee(), Alias->getType()); 254 Alias->setAliasee(Aliasee); 255 } 256 } 257 } 258 if (!Error) 259 return; 260 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 StringRef MangledName = getMangledName(GD); 265 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 266 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 267 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 268 Alias->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::clear() { 273 DeferredDeclsToEmit.clear(); 274 } 275 276 void CodeGenModule::Release() { 277 EmitDeferred(); 278 applyReplacements(); 279 checkAliases(); 280 EmitCXXGlobalInitFunc(); 281 EmitCXXGlobalDtorFunc(); 282 EmitCXXThreadLocalInitFunc(); 283 if (ObjCRuntime) 284 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 285 AddGlobalCtor(ObjCInitFunction); 286 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 287 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 288 EmitGlobalAnnotations(); 289 EmitStaticExternCAliases(); 290 emitLLVMUsed(); 291 292 if (CodeGenOpts.Autolink && 293 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 294 EmitModuleLinkOptions(); 295 } 296 if (CodeGenOpts.DwarfVersion) 297 // We actually want the latest version when there are conflicts. 298 // We can change from Warning to Latest if such mode is supported. 299 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 300 CodeGenOpts.DwarfVersion); 301 if (DebugInfo) 302 // We support a single version in the linked module: error out when 303 // modules do not have the same version. We are going to implement dropping 304 // debug info when the version number is not up-to-date. Once that is 305 // done, the bitcode linker is not going to see modules with different 306 // version numbers. 307 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 308 llvm::DEBUG_METADATA_VERSION); 309 310 SimplifyPersonality(); 311 312 if (getCodeGenOpts().EmitDeclMetadata) 313 EmitDeclMetadata(); 314 315 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 316 EmitCoverageFile(); 317 318 if (DebugInfo) 319 DebugInfo->finalize(); 320 321 EmitVersionIdentMetadata(); 322 } 323 324 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 325 // Make sure that this type is translated. 326 Types.UpdateCompletedType(TD); 327 } 328 329 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 330 if (!TBAA) 331 return 0; 332 return TBAA->getTBAAInfo(QTy); 333 } 334 335 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 336 if (!TBAA) 337 return 0; 338 return TBAA->getTBAAInfoForVTablePtr(); 339 } 340 341 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 342 if (!TBAA) 343 return 0; 344 return TBAA->getTBAAStructInfo(QTy); 345 } 346 347 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 348 if (!TBAA) 349 return 0; 350 return TBAA->getTBAAStructTypeInfo(QTy); 351 } 352 353 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 354 llvm::MDNode *AccessN, 355 uint64_t O) { 356 if (!TBAA) 357 return 0; 358 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 359 } 360 361 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 362 /// and struct-path aware TBAA, the tag has the same format: 363 /// base type, access type and offset. 364 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 365 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 366 llvm::MDNode *TBAAInfo, 367 bool ConvertTypeToTag) { 368 if (ConvertTypeToTag && TBAA) 369 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 370 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 371 else 372 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 373 } 374 375 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 376 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 377 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 378 } 379 380 /// ErrorUnsupported - Print out an error that codegen doesn't support the 381 /// specified stmt yet. 382 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 383 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 384 "cannot compile this %0 yet"); 385 std::string Msg = Type; 386 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 387 << Msg << S->getSourceRange(); 388 } 389 390 /// ErrorUnsupported - Print out an error that codegen doesn't support the 391 /// specified decl yet. 392 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 393 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 394 "cannot compile this %0 yet"); 395 std::string Msg = Type; 396 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 397 } 398 399 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 400 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 401 } 402 403 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 404 const NamedDecl *D) const { 405 // Internal definitions always have default visibility. 406 if (GV->hasLocalLinkage()) { 407 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 408 return; 409 } 410 411 // Set visibility for definitions. 412 LinkageInfo LV = D->getLinkageAndVisibility(); 413 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 414 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 415 } 416 417 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 418 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 419 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 420 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 421 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 422 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 423 } 424 425 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 426 CodeGenOptions::TLSModel M) { 427 switch (M) { 428 case CodeGenOptions::GeneralDynamicTLSModel: 429 return llvm::GlobalVariable::GeneralDynamicTLSModel; 430 case CodeGenOptions::LocalDynamicTLSModel: 431 return llvm::GlobalVariable::LocalDynamicTLSModel; 432 case CodeGenOptions::InitialExecTLSModel: 433 return llvm::GlobalVariable::InitialExecTLSModel; 434 case CodeGenOptions::LocalExecTLSModel: 435 return llvm::GlobalVariable::LocalExecTLSModel; 436 } 437 llvm_unreachable("Invalid TLS model!"); 438 } 439 440 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 441 const VarDecl &D) const { 442 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 443 444 llvm::GlobalVariable::ThreadLocalMode TLM; 445 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 446 447 // Override the TLS model if it is explicitly specified. 448 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 449 TLM = GetLLVMTLSModel(Attr->getModel()); 450 } 451 452 GV->setThreadLocalMode(TLM); 453 } 454 455 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 456 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 457 458 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 459 if (!Str.empty()) 460 return Str; 461 462 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 463 IdentifierInfo *II = ND->getIdentifier(); 464 assert(II && "Attempt to mangle unnamed decl."); 465 466 Str = II->getName(); 467 return Str; 468 } 469 470 SmallString<256> Buffer; 471 llvm::raw_svector_ostream Out(Buffer); 472 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 473 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 474 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 475 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 476 else 477 getCXXABI().getMangleContext().mangleName(ND, Out); 478 479 // Allocate space for the mangled name. 480 Out.flush(); 481 size_t Length = Buffer.size(); 482 char *Name = MangledNamesAllocator.Allocate<char>(Length); 483 std::copy(Buffer.begin(), Buffer.end(), Name); 484 485 Str = StringRef(Name, Length); 486 487 return Str; 488 } 489 490 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 491 const BlockDecl *BD) { 492 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 493 const Decl *D = GD.getDecl(); 494 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 495 if (D == 0) 496 MangleCtx.mangleGlobalBlock(BD, 497 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 498 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 499 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 500 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 501 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 502 else 503 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 504 } 505 506 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 507 return getModule().getNamedValue(Name); 508 } 509 510 /// AddGlobalCtor - Add a function to the list that will be called before 511 /// main() runs. 512 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 513 // FIXME: Type coercion of void()* types. 514 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 515 } 516 517 /// AddGlobalDtor - Add a function to the list that will be called 518 /// when the module is unloaded. 519 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 520 // FIXME: Type coercion of void()* types. 521 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 522 } 523 524 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 525 // Ctor function type is void()*. 526 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 527 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 528 529 // Get the type of a ctor entry, { i32, void ()* }. 530 llvm::StructType *CtorStructTy = 531 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 532 533 // Construct the constructor and destructor arrays. 534 SmallVector<llvm::Constant*, 8> Ctors; 535 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 536 llvm::Constant *S[] = { 537 llvm::ConstantInt::get(Int32Ty, I->second, false), 538 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 539 }; 540 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 541 } 542 543 if (!Ctors.empty()) { 544 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 545 new llvm::GlobalVariable(TheModule, AT, false, 546 llvm::GlobalValue::AppendingLinkage, 547 llvm::ConstantArray::get(AT, Ctors), 548 GlobalName); 549 } 550 } 551 552 llvm::GlobalValue::LinkageTypes 553 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 554 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 555 556 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 557 558 if (Linkage == GVA_Internal) 559 return llvm::Function::InternalLinkage; 560 561 if (D->hasAttr<DLLExportAttr>()) 562 return llvm::Function::ExternalLinkage; 563 564 if (D->hasAttr<WeakAttr>()) 565 return llvm::Function::WeakAnyLinkage; 566 567 // In C99 mode, 'inline' functions are guaranteed to have a strong 568 // definition somewhere else, so we can use available_externally linkage. 569 if (Linkage == GVA_C99Inline) 570 return llvm::Function::AvailableExternallyLinkage; 571 572 // Note that Apple's kernel linker doesn't support symbol 573 // coalescing, so we need to avoid linkonce and weak linkages there. 574 // Normally, this means we just map to internal, but for explicit 575 // instantiations we'll map to external. 576 577 // In C++, the compiler has to emit a definition in every translation unit 578 // that references the function. We should use linkonce_odr because 579 // a) if all references in this translation unit are optimized away, we 580 // don't need to codegen it. b) if the function persists, it needs to be 581 // merged with other definitions. c) C++ has the ODR, so we know the 582 // definition is dependable. 583 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 584 return !Context.getLangOpts().AppleKext 585 ? llvm::Function::LinkOnceODRLinkage 586 : llvm::Function::InternalLinkage; 587 588 // An explicit instantiation of a template has weak linkage, since 589 // explicit instantiations can occur in multiple translation units 590 // and must all be equivalent. However, we are not allowed to 591 // throw away these explicit instantiations. 592 if (Linkage == GVA_ExplicitTemplateInstantiation) 593 return !Context.getLangOpts().AppleKext 594 ? llvm::Function::WeakODRLinkage 595 : llvm::Function::ExternalLinkage; 596 597 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 598 // emitted on an as-needed basis. 599 if (isa<CXXDestructorDecl>(D) && 600 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 601 GD.getDtorType())) 602 return llvm::Function::LinkOnceODRLinkage; 603 604 // Otherwise, we have strong external linkage. 605 assert(Linkage == GVA_StrongExternal); 606 return llvm::Function::ExternalLinkage; 607 } 608 609 610 /// SetFunctionDefinitionAttributes - Set attributes for a global. 611 /// 612 /// FIXME: This is currently only done for aliases and functions, but not for 613 /// variables (these details are set in EmitGlobalVarDefinition for variables). 614 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 615 llvm::GlobalValue *GV) { 616 SetCommonAttributes(D, GV); 617 } 618 619 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 620 const CGFunctionInfo &Info, 621 llvm::Function *F) { 622 unsigned CallingConv; 623 AttributeListType AttributeList; 624 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 625 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 626 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 627 } 628 629 /// Determines whether the language options require us to model 630 /// unwind exceptions. We treat -fexceptions as mandating this 631 /// except under the fragile ObjC ABI with only ObjC exceptions 632 /// enabled. This means, for example, that C with -fexceptions 633 /// enables this. 634 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 635 // If exceptions are completely disabled, obviously this is false. 636 if (!LangOpts.Exceptions) return false; 637 638 // If C++ exceptions are enabled, this is true. 639 if (LangOpts.CXXExceptions) return true; 640 641 // If ObjC exceptions are enabled, this depends on the ABI. 642 if (LangOpts.ObjCExceptions) { 643 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 644 } 645 646 return true; 647 } 648 649 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 650 llvm::Function *F) { 651 llvm::AttrBuilder B; 652 653 if (CodeGenOpts.UnwindTables) 654 B.addAttribute(llvm::Attribute::UWTable); 655 656 if (!hasUnwindExceptions(LangOpts)) 657 B.addAttribute(llvm::Attribute::NoUnwind); 658 659 if (D->hasAttr<NakedAttr>()) { 660 // Naked implies noinline: we should not be inlining such functions. 661 B.addAttribute(llvm::Attribute::Naked); 662 B.addAttribute(llvm::Attribute::NoInline); 663 } else if (D->hasAttr<NoDuplicateAttr>()) { 664 B.addAttribute(llvm::Attribute::NoDuplicate); 665 } else if (D->hasAttr<NoInlineAttr>()) { 666 B.addAttribute(llvm::Attribute::NoInline); 667 } else if (D->hasAttr<AlwaysInlineAttr>() && 668 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 669 llvm::Attribute::NoInline)) { 670 // (noinline wins over always_inline, and we can't specify both in IR) 671 B.addAttribute(llvm::Attribute::AlwaysInline); 672 } 673 674 if (D->hasAttr<ColdAttr>()) { 675 B.addAttribute(llvm::Attribute::OptimizeForSize); 676 B.addAttribute(llvm::Attribute::Cold); 677 } 678 679 if (D->hasAttr<MinSizeAttr>()) 680 B.addAttribute(llvm::Attribute::MinSize); 681 682 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 683 B.addAttribute(llvm::Attribute::StackProtect); 684 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 685 B.addAttribute(llvm::Attribute::StackProtectStrong); 686 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 687 B.addAttribute(llvm::Attribute::StackProtectReq); 688 689 // Add sanitizer attributes if function is not blacklisted. 690 if (!SanitizerBlacklist->isIn(*F)) { 691 // When AddressSanitizer is enabled, set SanitizeAddress attribute 692 // unless __attribute__((no_sanitize_address)) is used. 693 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 694 B.addAttribute(llvm::Attribute::SanitizeAddress); 695 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 696 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 697 B.addAttribute(llvm::Attribute::SanitizeThread); 698 } 699 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 700 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 701 B.addAttribute(llvm::Attribute::SanitizeMemory); 702 } 703 704 F->addAttributes(llvm::AttributeSet::FunctionIndex, 705 llvm::AttributeSet::get( 706 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 707 708 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 709 F->setUnnamedAddr(true); 710 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 711 if (MD->isVirtual()) 712 F->setUnnamedAddr(true); 713 714 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 715 if (alignment) 716 F->setAlignment(alignment); 717 718 // C++ ABI requires 2-byte alignment for member functions. 719 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 720 F->setAlignment(2); 721 } 722 723 void CodeGenModule::SetCommonAttributes(const Decl *D, 724 llvm::GlobalValue *GV) { 725 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 726 setGlobalVisibility(GV, ND); 727 else 728 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 729 730 if (D->hasAttr<UsedAttr>()) 731 addUsedGlobal(GV); 732 733 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 734 GV->setSection(SA->getName()); 735 736 // Alias cannot have attributes. Filter them here. 737 if (!isa<llvm::GlobalAlias>(GV)) 738 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 739 } 740 741 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 742 llvm::Function *F, 743 const CGFunctionInfo &FI) { 744 SetLLVMFunctionAttributes(D, FI, F); 745 SetLLVMFunctionAttributesForDefinition(D, F); 746 747 F->setLinkage(llvm::Function::InternalLinkage); 748 749 SetCommonAttributes(D, F); 750 } 751 752 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 753 llvm::Function *F, 754 bool IsIncompleteFunction) { 755 if (unsigned IID = F->getIntrinsicID()) { 756 // If this is an intrinsic function, set the function's attributes 757 // to the intrinsic's attributes. 758 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 759 (llvm::Intrinsic::ID)IID)); 760 return; 761 } 762 763 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 764 765 if (!IsIncompleteFunction) 766 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 767 768 if (getCXXABI().HasThisReturn(GD)) { 769 assert(!F->arg_empty() && 770 F->arg_begin()->getType() 771 ->canLosslesslyBitCastTo(F->getReturnType()) && 772 "unexpected this return"); 773 F->addAttribute(1, llvm::Attribute::Returned); 774 } 775 776 // Only a few attributes are set on declarations; these may later be 777 // overridden by a definition. 778 779 if (FD->hasAttr<DLLImportAttr>()) { 780 F->setLinkage(llvm::Function::ExternalLinkage); 781 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 782 } else if (FD->hasAttr<WeakAttr>() || 783 FD->isWeakImported()) { 784 // "extern_weak" is overloaded in LLVM; we probably should have 785 // separate linkage types for this. 786 F->setLinkage(llvm::Function::ExternalWeakLinkage); 787 } else { 788 F->setLinkage(llvm::Function::ExternalLinkage); 789 if (FD->hasAttr<DLLExportAttr>()) 790 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 791 792 LinkageInfo LV = FD->getLinkageAndVisibility(); 793 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 794 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 795 } 796 } 797 798 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 799 F->setSection(SA->getName()); 800 801 // A replaceable global allocation function does not act like a builtin by 802 // default, only if it is invoked by a new-expression or delete-expression. 803 if (FD->isReplaceableGlobalAllocationFunction()) 804 F->addAttribute(llvm::AttributeSet::FunctionIndex, 805 llvm::Attribute::NoBuiltin); 806 } 807 808 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 809 assert(!GV->isDeclaration() && 810 "Only globals with definition can force usage."); 811 LLVMUsed.push_back(GV); 812 } 813 814 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 815 assert(!GV->isDeclaration() && 816 "Only globals with definition can force usage."); 817 LLVMCompilerUsed.push_back(GV); 818 } 819 820 static void emitUsed(CodeGenModule &CGM, StringRef Name, 821 std::vector<llvm::WeakVH> &List) { 822 // Don't create llvm.used if there is no need. 823 if (List.empty()) 824 return; 825 826 // Convert List to what ConstantArray needs. 827 SmallVector<llvm::Constant*, 8> UsedArray; 828 UsedArray.resize(List.size()); 829 for (unsigned i = 0, e = List.size(); i != e; ++i) { 830 UsedArray[i] = 831 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 832 CGM.Int8PtrTy); 833 } 834 835 if (UsedArray.empty()) 836 return; 837 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 838 839 llvm::GlobalVariable *GV = 840 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 841 llvm::GlobalValue::AppendingLinkage, 842 llvm::ConstantArray::get(ATy, UsedArray), 843 Name); 844 845 GV->setSection("llvm.metadata"); 846 } 847 848 void CodeGenModule::emitLLVMUsed() { 849 emitUsed(*this, "llvm.used", LLVMUsed); 850 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 851 } 852 853 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 854 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 855 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 856 } 857 858 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 859 llvm::SmallString<32> Opt; 860 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 861 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 862 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 863 } 864 865 void CodeGenModule::AddDependentLib(StringRef Lib) { 866 llvm::SmallString<24> Opt; 867 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 868 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 869 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 870 } 871 872 /// \brief Add link options implied by the given module, including modules 873 /// it depends on, using a postorder walk. 874 static void addLinkOptionsPostorder(CodeGenModule &CGM, 875 Module *Mod, 876 SmallVectorImpl<llvm::Value *> &Metadata, 877 llvm::SmallPtrSet<Module *, 16> &Visited) { 878 // Import this module's parent. 879 if (Mod->Parent && Visited.insert(Mod->Parent)) { 880 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 881 } 882 883 // Import this module's dependencies. 884 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 885 if (Visited.insert(Mod->Imports[I-1])) 886 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 887 } 888 889 // Add linker options to link against the libraries/frameworks 890 // described by this module. 891 llvm::LLVMContext &Context = CGM.getLLVMContext(); 892 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 893 // Link against a framework. Frameworks are currently Darwin only, so we 894 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 895 if (Mod->LinkLibraries[I-1].IsFramework) { 896 llvm::Value *Args[2] = { 897 llvm::MDString::get(Context, "-framework"), 898 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 899 }; 900 901 Metadata.push_back(llvm::MDNode::get(Context, Args)); 902 continue; 903 } 904 905 // Link against a library. 906 llvm::SmallString<24> Opt; 907 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 908 Mod->LinkLibraries[I-1].Library, Opt); 909 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 910 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 911 } 912 } 913 914 void CodeGenModule::EmitModuleLinkOptions() { 915 // Collect the set of all of the modules we want to visit to emit link 916 // options, which is essentially the imported modules and all of their 917 // non-explicit child modules. 918 llvm::SetVector<clang::Module *> LinkModules; 919 llvm::SmallPtrSet<clang::Module *, 16> Visited; 920 SmallVector<clang::Module *, 16> Stack; 921 922 // Seed the stack with imported modules. 923 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 924 MEnd = ImportedModules.end(); 925 M != MEnd; ++M) { 926 if (Visited.insert(*M)) 927 Stack.push_back(*M); 928 } 929 930 // Find all of the modules to import, making a little effort to prune 931 // non-leaf modules. 932 while (!Stack.empty()) { 933 clang::Module *Mod = Stack.pop_back_val(); 934 935 bool AnyChildren = false; 936 937 // Visit the submodules of this module. 938 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 939 SubEnd = Mod->submodule_end(); 940 Sub != SubEnd; ++Sub) { 941 // Skip explicit children; they need to be explicitly imported to be 942 // linked against. 943 if ((*Sub)->IsExplicit) 944 continue; 945 946 if (Visited.insert(*Sub)) { 947 Stack.push_back(*Sub); 948 AnyChildren = true; 949 } 950 } 951 952 // We didn't find any children, so add this module to the list of 953 // modules to link against. 954 if (!AnyChildren) { 955 LinkModules.insert(Mod); 956 } 957 } 958 959 // Add link options for all of the imported modules in reverse topological 960 // order. We don't do anything to try to order import link flags with respect 961 // to linker options inserted by things like #pragma comment(). 962 SmallVector<llvm::Value *, 16> MetadataArgs; 963 Visited.clear(); 964 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 965 MEnd = LinkModules.end(); 966 M != MEnd; ++M) { 967 if (Visited.insert(*M)) 968 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 969 } 970 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 971 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 972 973 // Add the linker options metadata flag. 974 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 975 llvm::MDNode::get(getLLVMContext(), 976 LinkerOptionsMetadata)); 977 } 978 979 void CodeGenModule::EmitDeferred() { 980 // Emit code for any potentially referenced deferred decls. Since a 981 // previously unused static decl may become used during the generation of code 982 // for a static function, iterate until no changes are made. 983 984 while (true) { 985 if (!DeferredVTables.empty()) { 986 EmitDeferredVTables(); 987 988 // Emitting a v-table doesn't directly cause more v-tables to 989 // become deferred, although it can cause functions to be 990 // emitted that then need those v-tables. 991 assert(DeferredVTables.empty()); 992 } 993 994 // Stop if we're out of both deferred v-tables and deferred declarations. 995 if (DeferredDeclsToEmit.empty()) break; 996 997 DeferredGlobal &G = DeferredDeclsToEmit.back(); 998 GlobalDecl D = G.GD; 999 llvm::GlobalValue *GV = G.GV; 1000 DeferredDeclsToEmit.pop_back(); 1001 1002 assert(GV == GetGlobalValue(getMangledName(D))); 1003 // Check to see if we've already emitted this. This is necessary 1004 // for a couple of reasons: first, decls can end up in the 1005 // deferred-decls queue multiple times, and second, decls can end 1006 // up with definitions in unusual ways (e.g. by an extern inline 1007 // function acquiring a strong function redefinition). Just 1008 // ignore these cases. 1009 if(!GV->isDeclaration()) 1010 continue; 1011 1012 // Otherwise, emit the definition and move on to the next one. 1013 EmitGlobalDefinition(D, GV); 1014 } 1015 } 1016 1017 void CodeGenModule::EmitGlobalAnnotations() { 1018 if (Annotations.empty()) 1019 return; 1020 1021 // Create a new global variable for the ConstantStruct in the Module. 1022 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1023 Annotations[0]->getType(), Annotations.size()), Annotations); 1024 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1025 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1026 "llvm.global.annotations"); 1027 gv->setSection(AnnotationSection); 1028 } 1029 1030 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1031 llvm::Constant *&AStr = AnnotationStrings[Str]; 1032 if (AStr) 1033 return AStr; 1034 1035 // Not found yet, create a new global. 1036 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1037 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1038 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1039 gv->setSection(AnnotationSection); 1040 gv->setUnnamedAddr(true); 1041 AStr = gv; 1042 return gv; 1043 } 1044 1045 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1046 SourceManager &SM = getContext().getSourceManager(); 1047 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1048 if (PLoc.isValid()) 1049 return EmitAnnotationString(PLoc.getFilename()); 1050 return EmitAnnotationString(SM.getBufferName(Loc)); 1051 } 1052 1053 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1054 SourceManager &SM = getContext().getSourceManager(); 1055 PresumedLoc PLoc = SM.getPresumedLoc(L); 1056 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1057 SM.getExpansionLineNumber(L); 1058 return llvm::ConstantInt::get(Int32Ty, LineNo); 1059 } 1060 1061 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1062 const AnnotateAttr *AA, 1063 SourceLocation L) { 1064 // Get the globals for file name, annotation, and the line number. 1065 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1066 *UnitGV = EmitAnnotationUnit(L), 1067 *LineNoCst = EmitAnnotationLineNo(L); 1068 1069 // Create the ConstantStruct for the global annotation. 1070 llvm::Constant *Fields[4] = { 1071 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1072 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1073 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1074 LineNoCst 1075 }; 1076 return llvm::ConstantStruct::getAnon(Fields); 1077 } 1078 1079 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1080 llvm::GlobalValue *GV) { 1081 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1082 // Get the struct elements for these annotations. 1083 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1084 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1085 } 1086 1087 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1088 // Never defer when EmitAllDecls is specified. 1089 if (LangOpts.EmitAllDecls) 1090 return false; 1091 1092 return !getContext().DeclMustBeEmitted(Global); 1093 } 1094 1095 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1096 const CXXUuidofExpr* E) { 1097 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1098 // well-formed. 1099 StringRef Uuid = E->getUuidAsStringRef(Context); 1100 std::string Name = "_GUID_" + Uuid.lower(); 1101 std::replace(Name.begin(), Name.end(), '-', '_'); 1102 1103 // Look for an existing global. 1104 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1105 return GV; 1106 1107 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1108 assert(Init && "failed to initialize as constant"); 1109 1110 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1111 getModule(), Init->getType(), 1112 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1113 return GV; 1114 } 1115 1116 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1117 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1118 assert(AA && "No alias?"); 1119 1120 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1121 1122 // See if there is already something with the target's name in the module. 1123 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1124 if (Entry) { 1125 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1126 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1127 } 1128 1129 llvm::Constant *Aliasee; 1130 if (isa<llvm::FunctionType>(DeclTy)) 1131 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1132 GlobalDecl(cast<FunctionDecl>(VD)), 1133 /*ForVTable=*/false); 1134 else 1135 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1136 llvm::PointerType::getUnqual(DeclTy), 0); 1137 1138 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1139 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1140 WeakRefReferences.insert(F); 1141 1142 return Aliasee; 1143 } 1144 1145 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1146 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1147 1148 // Weak references don't produce any output by themselves. 1149 if (Global->hasAttr<WeakRefAttr>()) 1150 return; 1151 1152 // If this is an alias definition (which otherwise looks like a declaration) 1153 // emit it now. 1154 if (Global->hasAttr<AliasAttr>()) 1155 return EmitAliasDefinition(GD); 1156 1157 // If this is CUDA, be selective about which declarations we emit. 1158 if (LangOpts.CUDA) { 1159 if (CodeGenOpts.CUDAIsDevice) { 1160 if (!Global->hasAttr<CUDADeviceAttr>() && 1161 !Global->hasAttr<CUDAGlobalAttr>() && 1162 !Global->hasAttr<CUDAConstantAttr>() && 1163 !Global->hasAttr<CUDASharedAttr>()) 1164 return; 1165 } else { 1166 if (!Global->hasAttr<CUDAHostAttr>() && ( 1167 Global->hasAttr<CUDADeviceAttr>() || 1168 Global->hasAttr<CUDAConstantAttr>() || 1169 Global->hasAttr<CUDASharedAttr>())) 1170 return; 1171 } 1172 } 1173 1174 // Ignore declarations, they will be emitted on their first use. 1175 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1176 // Forward declarations are emitted lazily on first use. 1177 if (!FD->doesThisDeclarationHaveABody()) { 1178 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1179 return; 1180 1181 StringRef MangledName = getMangledName(GD); 1182 1183 // Compute the function info and LLVM type. 1184 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1185 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1186 1187 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1188 /*DontDefer=*/false); 1189 return; 1190 } 1191 } else { 1192 const VarDecl *VD = cast<VarDecl>(Global); 1193 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1194 1195 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1196 return; 1197 } 1198 1199 // Defer code generation when possible if this is a static definition, inline 1200 // function etc. These we only want to emit if they are used. 1201 if (!MayDeferGeneration(Global)) { 1202 // Emit the definition if it can't be deferred. 1203 EmitGlobalDefinition(GD); 1204 return; 1205 } 1206 1207 // If we're deferring emission of a C++ variable with an 1208 // initializer, remember the order in which it appeared in the file. 1209 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1210 cast<VarDecl>(Global)->hasInit()) { 1211 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1212 CXXGlobalInits.push_back(0); 1213 } 1214 1215 // If the value has already been used, add it directly to the 1216 // DeferredDeclsToEmit list. 1217 StringRef MangledName = getMangledName(GD); 1218 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1219 addDeferredDeclToEmit(GV, GD); 1220 else { 1221 // Otherwise, remember that we saw a deferred decl with this name. The 1222 // first use of the mangled name will cause it to move into 1223 // DeferredDeclsToEmit. 1224 DeferredDecls[MangledName] = GD; 1225 } 1226 } 1227 1228 namespace { 1229 struct FunctionIsDirectlyRecursive : 1230 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1231 const StringRef Name; 1232 const Builtin::Context &BI; 1233 bool Result; 1234 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1235 Name(N), BI(C), Result(false) { 1236 } 1237 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1238 1239 bool TraverseCallExpr(CallExpr *E) { 1240 const FunctionDecl *FD = E->getDirectCallee(); 1241 if (!FD) 1242 return true; 1243 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1244 if (Attr && Name == Attr->getLabel()) { 1245 Result = true; 1246 return false; 1247 } 1248 unsigned BuiltinID = FD->getBuiltinID(); 1249 if (!BuiltinID) 1250 return true; 1251 StringRef BuiltinName = BI.GetName(BuiltinID); 1252 if (BuiltinName.startswith("__builtin_") && 1253 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1254 Result = true; 1255 return false; 1256 } 1257 return true; 1258 } 1259 }; 1260 } 1261 1262 // isTriviallyRecursive - Check if this function calls another 1263 // decl that, because of the asm attribute or the other decl being a builtin, 1264 // ends up pointing to itself. 1265 bool 1266 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1267 StringRef Name; 1268 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1269 // asm labels are a special kind of mangling we have to support. 1270 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1271 if (!Attr) 1272 return false; 1273 Name = Attr->getLabel(); 1274 } else { 1275 Name = FD->getName(); 1276 } 1277 1278 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1279 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1280 return Walker.Result; 1281 } 1282 1283 bool 1284 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1285 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1286 return true; 1287 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1288 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1289 return false; 1290 // PR9614. Avoid cases where the source code is lying to us. An available 1291 // externally function should have an equivalent function somewhere else, 1292 // but a function that calls itself is clearly not equivalent to the real 1293 // implementation. 1294 // This happens in glibc's btowc and in some configure checks. 1295 return !isTriviallyRecursive(F); 1296 } 1297 1298 /// If the type for the method's class was generated by 1299 /// CGDebugInfo::createContextChain(), the cache contains only a 1300 /// limited DIType without any declarations. Since EmitFunctionStart() 1301 /// needs to find the canonical declaration for each method, we need 1302 /// to construct the complete type prior to emitting the method. 1303 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1304 if (!D->isInstance()) 1305 return; 1306 1307 if (CGDebugInfo *DI = getModuleDebugInfo()) 1308 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1309 const PointerType *ThisPtr = 1310 cast<PointerType>(D->getThisType(getContext())); 1311 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1312 } 1313 } 1314 1315 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1316 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1317 1318 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1319 Context.getSourceManager(), 1320 "Generating code for declaration"); 1321 1322 if (isa<FunctionDecl>(D)) { 1323 // At -O0, don't generate IR for functions with available_externally 1324 // linkage. 1325 if (!shouldEmitFunction(GD)) 1326 return; 1327 1328 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1329 CompleteDIClassType(Method); 1330 // Make sure to emit the definition(s) before we emit the thunks. 1331 // This is necessary for the generation of certain thunks. 1332 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1333 EmitCXXConstructor(CD, GD.getCtorType()); 1334 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1335 EmitCXXDestructor(DD, GD.getDtorType()); 1336 else 1337 EmitGlobalFunctionDefinition(GD, GV); 1338 1339 if (Method->isVirtual()) 1340 getVTables().EmitThunks(GD); 1341 1342 return; 1343 } 1344 1345 return EmitGlobalFunctionDefinition(GD, GV); 1346 } 1347 1348 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1349 return EmitGlobalVarDefinition(VD); 1350 1351 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1352 } 1353 1354 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1355 /// module, create and return an llvm Function with the specified type. If there 1356 /// is something in the module with the specified name, return it potentially 1357 /// bitcasted to the right type. 1358 /// 1359 /// If D is non-null, it specifies a decl that correspond to this. This is used 1360 /// to set the attributes on the function when it is first created. 1361 llvm::Constant * 1362 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1363 llvm::Type *Ty, 1364 GlobalDecl GD, bool ForVTable, 1365 bool DontDefer, 1366 llvm::AttributeSet ExtraAttrs) { 1367 const Decl *D = GD.getDecl(); 1368 1369 // Lookup the entry, lazily creating it if necessary. 1370 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1371 if (Entry) { 1372 if (WeakRefReferences.erase(Entry)) { 1373 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1374 if (FD && !FD->hasAttr<WeakAttr>()) 1375 Entry->setLinkage(llvm::Function::ExternalLinkage); 1376 } 1377 1378 if (Entry->getType()->getElementType() == Ty) 1379 return Entry; 1380 1381 // Make sure the result is of the correct type. 1382 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1383 } 1384 1385 // This function doesn't have a complete type (for example, the return 1386 // type is an incomplete struct). Use a fake type instead, and make 1387 // sure not to try to set attributes. 1388 bool IsIncompleteFunction = false; 1389 1390 llvm::FunctionType *FTy; 1391 if (isa<llvm::FunctionType>(Ty)) { 1392 FTy = cast<llvm::FunctionType>(Ty); 1393 } else { 1394 FTy = llvm::FunctionType::get(VoidTy, false); 1395 IsIncompleteFunction = true; 1396 } 1397 1398 llvm::Function *F = llvm::Function::Create(FTy, 1399 llvm::Function::ExternalLinkage, 1400 MangledName, &getModule()); 1401 assert(F->getName() == MangledName && "name was uniqued!"); 1402 if (D) 1403 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1404 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1405 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1406 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1407 llvm::AttributeSet::get(VMContext, 1408 llvm::AttributeSet::FunctionIndex, 1409 B)); 1410 } 1411 1412 if (!DontDefer) { 1413 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1414 // each other bottoming out with the base dtor. Therefore we emit non-base 1415 // dtors on usage, even if there is no dtor definition in the TU. 1416 if (D && isa<CXXDestructorDecl>(D) && 1417 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1418 GD.getDtorType())) 1419 addDeferredDeclToEmit(F, GD); 1420 1421 // This is the first use or definition of a mangled name. If there is a 1422 // deferred decl with this name, remember that we need to emit it at the end 1423 // of the file. 1424 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1425 if (DDI != DeferredDecls.end()) { 1426 // Move the potentially referenced deferred decl to the 1427 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1428 // don't need it anymore). 1429 addDeferredDeclToEmit(F, DDI->second); 1430 DeferredDecls.erase(DDI); 1431 1432 // Otherwise, if this is a sized deallocation function, emit a weak 1433 // definition 1434 // for it at the end of the translation unit. 1435 } else if (D && cast<FunctionDecl>(D) 1436 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1437 addDeferredDeclToEmit(F, GD); 1438 1439 // Otherwise, there are cases we have to worry about where we're 1440 // using a declaration for which we must emit a definition but where 1441 // we might not find a top-level definition: 1442 // - member functions defined inline in their classes 1443 // - friend functions defined inline in some class 1444 // - special member functions with implicit definitions 1445 // If we ever change our AST traversal to walk into class methods, 1446 // this will be unnecessary. 1447 // 1448 // We also don't emit a definition for a function if it's going to be an 1449 // entry 1450 // in a vtable, unless it's already marked as used. 1451 } else if (getLangOpts().CPlusPlus && D) { 1452 // Look for a declaration that's lexically in a record. 1453 const FunctionDecl *FD = cast<FunctionDecl>(D); 1454 FD = FD->getMostRecentDecl(); 1455 do { 1456 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1457 if (FD->isImplicit() && !ForVTable) { 1458 assert(FD->isUsed() && 1459 "Sema didn't mark implicit function as used!"); 1460 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1461 break; 1462 } else if (FD->doesThisDeclarationHaveABody()) { 1463 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1464 break; 1465 } 1466 } 1467 FD = FD->getPreviousDecl(); 1468 } while (FD); 1469 } 1470 } 1471 1472 // Make sure the result is of the requested type. 1473 if (!IsIncompleteFunction) { 1474 assert(F->getType()->getElementType() == Ty); 1475 return F; 1476 } 1477 1478 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1479 return llvm::ConstantExpr::getBitCast(F, PTy); 1480 } 1481 1482 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1483 /// non-null, then this function will use the specified type if it has to 1484 /// create it (this occurs when we see a definition of the function). 1485 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1486 llvm::Type *Ty, 1487 bool ForVTable, 1488 bool DontDefer) { 1489 // If there was no specific requested type, just convert it now. 1490 if (!Ty) 1491 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1492 1493 StringRef MangledName = getMangledName(GD); 1494 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1495 } 1496 1497 /// CreateRuntimeFunction - Create a new runtime function with the specified 1498 /// type and name. 1499 llvm::Constant * 1500 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1501 StringRef Name, 1502 llvm::AttributeSet ExtraAttrs) { 1503 llvm::Constant *C = 1504 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1505 /*DontDefer=*/false, ExtraAttrs); 1506 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1507 if (F->empty()) 1508 F->setCallingConv(getRuntimeCC()); 1509 return C; 1510 } 1511 1512 /// isTypeConstant - Determine whether an object of this type can be emitted 1513 /// as a constant. 1514 /// 1515 /// If ExcludeCtor is true, the duration when the object's constructor runs 1516 /// will not be considered. The caller will need to verify that the object is 1517 /// not written to during its construction. 1518 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1519 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1520 return false; 1521 1522 if (Context.getLangOpts().CPlusPlus) { 1523 if (const CXXRecordDecl *Record 1524 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1525 return ExcludeCtor && !Record->hasMutableFields() && 1526 Record->hasTrivialDestructor(); 1527 } 1528 1529 return true; 1530 } 1531 1532 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1533 /// create and return an llvm GlobalVariable with the specified type. If there 1534 /// is something in the module with the specified name, return it potentially 1535 /// bitcasted to the right type. 1536 /// 1537 /// If D is non-null, it specifies a decl that correspond to this. This is used 1538 /// to set the attributes on the global when it is first created. 1539 llvm::Constant * 1540 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1541 llvm::PointerType *Ty, 1542 const VarDecl *D, 1543 bool UnnamedAddr) { 1544 // Lookup the entry, lazily creating it if necessary. 1545 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1546 if (Entry) { 1547 if (WeakRefReferences.erase(Entry)) { 1548 if (D && !D->hasAttr<WeakAttr>()) 1549 Entry->setLinkage(llvm::Function::ExternalLinkage); 1550 } 1551 1552 if (UnnamedAddr) 1553 Entry->setUnnamedAddr(true); 1554 1555 if (Entry->getType() == Ty) 1556 return Entry; 1557 1558 // Make sure the result is of the correct type. 1559 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1560 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1561 1562 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1563 } 1564 1565 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1566 llvm::GlobalVariable *GV = 1567 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1568 llvm::GlobalValue::ExternalLinkage, 1569 0, MangledName, 0, 1570 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1571 1572 // This is the first use or definition of a mangled name. If there is a 1573 // deferred decl with this name, remember that we need to emit it at the end 1574 // of the file. 1575 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1576 if (DDI != DeferredDecls.end()) { 1577 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1578 // list, and remove it from DeferredDecls (since we don't need it anymore). 1579 addDeferredDeclToEmit(GV, DDI->second); 1580 DeferredDecls.erase(DDI); 1581 } 1582 1583 // Handle things which are present even on external declarations. 1584 if (D) { 1585 // FIXME: This code is overly simple and should be merged with other global 1586 // handling. 1587 GV->setConstant(isTypeConstant(D->getType(), false)); 1588 1589 // Set linkage and visibility in case we never see a definition. 1590 LinkageInfo LV = D->getLinkageAndVisibility(); 1591 if (LV.getLinkage() != ExternalLinkage) { 1592 // Don't set internal linkage on declarations. 1593 } else { 1594 if (D->hasAttr<DLLImportAttr>()) { 1595 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1596 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1597 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1598 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1599 1600 // Set visibility on a declaration only if it's explicit. 1601 if (LV.isVisibilityExplicit()) 1602 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1603 } 1604 1605 if (D->getTLSKind()) { 1606 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1607 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1608 setTLSMode(GV, *D); 1609 } 1610 1611 // If required by the ABI, treat declarations of static data members with 1612 // inline initializers as definitions. 1613 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1614 D->isStaticDataMember() && D->hasInit() && 1615 !D->isThisDeclarationADefinition()) 1616 EmitGlobalVarDefinition(D); 1617 } 1618 1619 if (AddrSpace != Ty->getAddressSpace()) 1620 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1621 1622 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1623 D->getLanguageLinkage() == CLanguageLinkage && 1624 D->getType().isConstant(Context) && 1625 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1626 GV->setSection(".cp.rodata"); 1627 1628 return GV; 1629 } 1630 1631 1632 llvm::GlobalVariable * 1633 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1634 llvm::Type *Ty, 1635 llvm::GlobalValue::LinkageTypes Linkage) { 1636 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1637 llvm::GlobalVariable *OldGV = 0; 1638 1639 1640 if (GV) { 1641 // Check if the variable has the right type. 1642 if (GV->getType()->getElementType() == Ty) 1643 return GV; 1644 1645 // Because C++ name mangling, the only way we can end up with an already 1646 // existing global with the same name is if it has been declared extern "C". 1647 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1648 OldGV = GV; 1649 } 1650 1651 // Create a new variable. 1652 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1653 Linkage, 0, Name); 1654 1655 if (OldGV) { 1656 // Replace occurrences of the old variable if needed. 1657 GV->takeName(OldGV); 1658 1659 if (!OldGV->use_empty()) { 1660 llvm::Constant *NewPtrForOldDecl = 1661 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1662 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1663 } 1664 1665 OldGV->eraseFromParent(); 1666 } 1667 1668 return GV; 1669 } 1670 1671 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1672 /// given global variable. If Ty is non-null and if the global doesn't exist, 1673 /// then it will be created with the specified type instead of whatever the 1674 /// normal requested type would be. 1675 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1676 llvm::Type *Ty) { 1677 assert(D->hasGlobalStorage() && "Not a global variable"); 1678 QualType ASTTy = D->getType(); 1679 if (Ty == 0) 1680 Ty = getTypes().ConvertTypeForMem(ASTTy); 1681 1682 llvm::PointerType *PTy = 1683 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1684 1685 StringRef MangledName = getMangledName(D); 1686 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1687 } 1688 1689 /// CreateRuntimeVariable - Create a new runtime global variable with the 1690 /// specified type and name. 1691 llvm::Constant * 1692 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1693 StringRef Name) { 1694 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1695 true); 1696 } 1697 1698 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1699 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1700 1701 if (MayDeferGeneration(D)) { 1702 // If we have not seen a reference to this variable yet, place it 1703 // into the deferred declarations table to be emitted if needed 1704 // later. 1705 StringRef MangledName = getMangledName(D); 1706 if (!GetGlobalValue(MangledName)) { 1707 DeferredDecls[MangledName] = D; 1708 return; 1709 } 1710 } 1711 1712 // The tentative definition is the only definition. 1713 EmitGlobalVarDefinition(D); 1714 } 1715 1716 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1717 return Context.toCharUnitsFromBits( 1718 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1719 } 1720 1721 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1722 unsigned AddrSpace) { 1723 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1724 if (D->hasAttr<CUDAConstantAttr>()) 1725 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1726 else if (D->hasAttr<CUDASharedAttr>()) 1727 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1728 else 1729 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1730 } 1731 1732 return AddrSpace; 1733 } 1734 1735 template<typename SomeDecl> 1736 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1737 llvm::GlobalValue *GV) { 1738 if (!getLangOpts().CPlusPlus) 1739 return; 1740 1741 // Must have 'used' attribute, or else inline assembly can't rely on 1742 // the name existing. 1743 if (!D->template hasAttr<UsedAttr>()) 1744 return; 1745 1746 // Must have internal linkage and an ordinary name. 1747 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1748 return; 1749 1750 // Must be in an extern "C" context. Entities declared directly within 1751 // a record are not extern "C" even if the record is in such a context. 1752 const SomeDecl *First = D->getFirstDecl(); 1753 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1754 return; 1755 1756 // OK, this is an internal linkage entity inside an extern "C" linkage 1757 // specification. Make a note of that so we can give it the "expected" 1758 // mangled name if nothing else is using that name. 1759 std::pair<StaticExternCMap::iterator, bool> R = 1760 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1761 1762 // If we have multiple internal linkage entities with the same name 1763 // in extern "C" regions, none of them gets that name. 1764 if (!R.second) 1765 R.first->second = 0; 1766 } 1767 1768 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1769 llvm::Constant *Init = 0; 1770 QualType ASTTy = D->getType(); 1771 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1772 bool NeedsGlobalCtor = false; 1773 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1774 1775 const VarDecl *InitDecl; 1776 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1777 1778 if (!InitExpr) { 1779 // This is a tentative definition; tentative definitions are 1780 // implicitly initialized with { 0 }. 1781 // 1782 // Note that tentative definitions are only emitted at the end of 1783 // a translation unit, so they should never have incomplete 1784 // type. In addition, EmitTentativeDefinition makes sure that we 1785 // never attempt to emit a tentative definition if a real one 1786 // exists. A use may still exists, however, so we still may need 1787 // to do a RAUW. 1788 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1789 Init = EmitNullConstant(D->getType()); 1790 } else { 1791 initializedGlobalDecl = GlobalDecl(D); 1792 Init = EmitConstantInit(*InitDecl); 1793 1794 if (!Init) { 1795 QualType T = InitExpr->getType(); 1796 if (D->getType()->isReferenceType()) 1797 T = D->getType(); 1798 1799 if (getLangOpts().CPlusPlus) { 1800 Init = EmitNullConstant(T); 1801 NeedsGlobalCtor = true; 1802 } else { 1803 ErrorUnsupported(D, "static initializer"); 1804 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1805 } 1806 } else { 1807 // We don't need an initializer, so remove the entry for the delayed 1808 // initializer position (just in case this entry was delayed) if we 1809 // also don't need to register a destructor. 1810 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1811 DelayedCXXInitPosition.erase(D); 1812 } 1813 } 1814 1815 llvm::Type* InitType = Init->getType(); 1816 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1817 1818 // Strip off a bitcast if we got one back. 1819 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1820 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1821 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1822 // All zero index gep. 1823 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1824 Entry = CE->getOperand(0); 1825 } 1826 1827 // Entry is now either a Function or GlobalVariable. 1828 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1829 1830 // We have a definition after a declaration with the wrong type. 1831 // We must make a new GlobalVariable* and update everything that used OldGV 1832 // (a declaration or tentative definition) with the new GlobalVariable* 1833 // (which will be a definition). 1834 // 1835 // This happens if there is a prototype for a global (e.g. 1836 // "extern int x[];") and then a definition of a different type (e.g. 1837 // "int x[10];"). This also happens when an initializer has a different type 1838 // from the type of the global (this happens with unions). 1839 if (GV == 0 || 1840 GV->getType()->getElementType() != InitType || 1841 GV->getType()->getAddressSpace() != 1842 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1843 1844 // Move the old entry aside so that we'll create a new one. 1845 Entry->setName(StringRef()); 1846 1847 // Make a new global with the correct type, this is now guaranteed to work. 1848 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1849 1850 // Replace all uses of the old global with the new global 1851 llvm::Constant *NewPtrForOldDecl = 1852 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1853 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1854 1855 // Erase the old global, since it is no longer used. 1856 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1857 } 1858 1859 MaybeHandleStaticInExternC(D, GV); 1860 1861 if (D->hasAttr<AnnotateAttr>()) 1862 AddGlobalAnnotations(D, GV); 1863 1864 GV->setInitializer(Init); 1865 1866 // If it is safe to mark the global 'constant', do so now. 1867 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1868 isTypeConstant(D->getType(), true)); 1869 1870 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1871 1872 // Set the llvm linkage type as appropriate. 1873 llvm::GlobalValue::LinkageTypes Linkage = 1874 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1875 GV->setLinkage(Linkage); 1876 if (D->hasAttr<DLLImportAttr>()) 1877 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1878 else if (D->hasAttr<DLLExportAttr>()) 1879 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1880 1881 // If required by the ABI, give definitions of static data members with inline 1882 // initializers linkonce_odr linkage. 1883 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1884 D->isStaticDataMember() && InitExpr && 1885 !InitDecl->isThisDeclarationADefinition()) 1886 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1887 1888 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1889 // common vars aren't constant even if declared const. 1890 GV->setConstant(false); 1891 1892 SetCommonAttributes(D, GV); 1893 1894 // Emit the initializer function if necessary. 1895 if (NeedsGlobalCtor || NeedsGlobalDtor) 1896 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1897 1898 // If we are compiling with ASan, add metadata indicating dynamically 1899 // initialized globals. 1900 if (SanOpts.Address && NeedsGlobalCtor) { 1901 llvm::Module &M = getModule(); 1902 1903 llvm::NamedMDNode *DynamicInitializers = 1904 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1905 llvm::Value *GlobalToAdd[] = { GV }; 1906 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1907 DynamicInitializers->addOperand(ThisGlobal); 1908 } 1909 1910 // Emit global variable debug information. 1911 if (CGDebugInfo *DI = getModuleDebugInfo()) 1912 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1913 DI->EmitGlobalVariable(GV, D); 1914 } 1915 1916 llvm::GlobalValue::LinkageTypes 1917 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1918 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1919 if (Linkage == GVA_Internal) 1920 return llvm::Function::InternalLinkage; 1921 else if (D->hasAttr<DLLImportAttr>()) 1922 return llvm::Function::ExternalLinkage; 1923 else if (D->hasAttr<DLLExportAttr>()) 1924 return llvm::Function::ExternalLinkage; 1925 else if (D->hasAttr<SelectAnyAttr>()) { 1926 // selectany symbols are externally visible, so use weak instead of 1927 // linkonce. MSVC optimizes away references to const selectany globals, so 1928 // all definitions should be the same and ODR linkage should be used. 1929 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1930 return llvm::GlobalVariable::WeakODRLinkage; 1931 } else if (D->hasAttr<WeakAttr>()) { 1932 if (isConstant) 1933 return llvm::GlobalVariable::WeakODRLinkage; 1934 else 1935 return llvm::GlobalVariable::WeakAnyLinkage; 1936 } else if (Linkage == GVA_TemplateInstantiation || 1937 Linkage == GVA_ExplicitTemplateInstantiation) 1938 return llvm::GlobalVariable::WeakODRLinkage; 1939 else if (!getLangOpts().CPlusPlus && 1940 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1941 D->hasAttr<CommonAttr>()) && 1942 !D->hasExternalStorage() && !D->getInit() && 1943 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1944 !D->hasAttr<WeakImportAttr>()) { 1945 // Thread local vars aren't considered common linkage. 1946 return llvm::GlobalVariable::CommonLinkage; 1947 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1948 getTarget().getTriple().isMacOSX()) 1949 // On Darwin, the backing variable for a C++11 thread_local variable always 1950 // has internal linkage; all accesses should just be calls to the 1951 // Itanium-specified entry point, which has the normal linkage of the 1952 // variable. 1953 return llvm::GlobalValue::InternalLinkage; 1954 return llvm::GlobalVariable::ExternalLinkage; 1955 } 1956 1957 /// Replace the uses of a function that was declared with a non-proto type. 1958 /// We want to silently drop extra arguments from call sites 1959 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1960 llvm::Function *newFn) { 1961 // Fast path. 1962 if (old->use_empty()) return; 1963 1964 llvm::Type *newRetTy = newFn->getReturnType(); 1965 SmallVector<llvm::Value*, 4> newArgs; 1966 1967 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1968 ui != ue; ) { 1969 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1970 llvm::User *user = use->getUser(); 1971 1972 // Recognize and replace uses of bitcasts. Most calls to 1973 // unprototyped functions will use bitcasts. 1974 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1975 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1976 replaceUsesOfNonProtoConstant(bitcast, newFn); 1977 continue; 1978 } 1979 1980 // Recognize calls to the function. 1981 llvm::CallSite callSite(user); 1982 if (!callSite) continue; 1983 if (!callSite.isCallee(&*use)) continue; 1984 1985 // If the return types don't match exactly, then we can't 1986 // transform this call unless it's dead. 1987 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1988 continue; 1989 1990 // Get the call site's attribute list. 1991 SmallVector<llvm::AttributeSet, 8> newAttrs; 1992 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1993 1994 // Collect any return attributes from the call. 1995 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1996 newAttrs.push_back( 1997 llvm::AttributeSet::get(newFn->getContext(), 1998 oldAttrs.getRetAttributes())); 1999 2000 // If the function was passed too few arguments, don't transform. 2001 unsigned newNumArgs = newFn->arg_size(); 2002 if (callSite.arg_size() < newNumArgs) continue; 2003 2004 // If extra arguments were passed, we silently drop them. 2005 // If any of the types mismatch, we don't transform. 2006 unsigned argNo = 0; 2007 bool dontTransform = false; 2008 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2009 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2010 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2011 dontTransform = true; 2012 break; 2013 } 2014 2015 // Add any parameter attributes. 2016 if (oldAttrs.hasAttributes(argNo + 1)) 2017 newAttrs. 2018 push_back(llvm:: 2019 AttributeSet::get(newFn->getContext(), 2020 oldAttrs.getParamAttributes(argNo + 1))); 2021 } 2022 if (dontTransform) 2023 continue; 2024 2025 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2026 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2027 oldAttrs.getFnAttributes())); 2028 2029 // Okay, we can transform this. Create the new call instruction and copy 2030 // over the required information. 2031 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2032 2033 llvm::CallSite newCall; 2034 if (callSite.isCall()) { 2035 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2036 callSite.getInstruction()); 2037 } else { 2038 llvm::InvokeInst *oldInvoke = 2039 cast<llvm::InvokeInst>(callSite.getInstruction()); 2040 newCall = llvm::InvokeInst::Create(newFn, 2041 oldInvoke->getNormalDest(), 2042 oldInvoke->getUnwindDest(), 2043 newArgs, "", 2044 callSite.getInstruction()); 2045 } 2046 newArgs.clear(); // for the next iteration 2047 2048 if (!newCall->getType()->isVoidTy()) 2049 newCall->takeName(callSite.getInstruction()); 2050 newCall.setAttributes( 2051 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2052 newCall.setCallingConv(callSite.getCallingConv()); 2053 2054 // Finally, remove the old call, replacing any uses with the new one. 2055 if (!callSite->use_empty()) 2056 callSite->replaceAllUsesWith(newCall.getInstruction()); 2057 2058 // Copy debug location attached to CI. 2059 if (!callSite->getDebugLoc().isUnknown()) 2060 newCall->setDebugLoc(callSite->getDebugLoc()); 2061 callSite->eraseFromParent(); 2062 } 2063 } 2064 2065 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2066 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2067 /// existing call uses of the old function in the module, this adjusts them to 2068 /// call the new function directly. 2069 /// 2070 /// This is not just a cleanup: the always_inline pass requires direct calls to 2071 /// functions to be able to inline them. If there is a bitcast in the way, it 2072 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2073 /// run at -O0. 2074 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2075 llvm::Function *NewFn) { 2076 // If we're redefining a global as a function, don't transform it. 2077 if (!isa<llvm::Function>(Old)) return; 2078 2079 replaceUsesOfNonProtoConstant(Old, NewFn); 2080 } 2081 2082 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2083 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2084 // If we have a definition, this might be a deferred decl. If the 2085 // instantiation is explicit, make sure we emit it at the end. 2086 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2087 GetAddrOfGlobalVar(VD); 2088 2089 EmitTopLevelDecl(VD); 2090 } 2091 2092 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2093 llvm::GlobalValue *GV) { 2094 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2095 2096 // Compute the function info and LLVM type. 2097 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2098 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2099 2100 // Get or create the prototype for the function. 2101 llvm::Constant *Entry = 2102 GV ? GV 2103 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2104 2105 // Strip off a bitcast if we got one back. 2106 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2107 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2108 Entry = CE->getOperand(0); 2109 } 2110 2111 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2112 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2113 return; 2114 } 2115 2116 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2117 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2118 2119 // If the types mismatch then we have to rewrite the definition. 2120 assert(OldFn->isDeclaration() && 2121 "Shouldn't replace non-declaration"); 2122 2123 // F is the Function* for the one with the wrong type, we must make a new 2124 // Function* and update everything that used F (a declaration) with the new 2125 // Function* (which will be a definition). 2126 // 2127 // This happens if there is a prototype for a function 2128 // (e.g. "int f()") and then a definition of a different type 2129 // (e.g. "int f(int x)"). Move the old function aside so that it 2130 // doesn't interfere with GetAddrOfFunction. 2131 OldFn->setName(StringRef()); 2132 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2133 2134 // This might be an implementation of a function without a 2135 // prototype, in which case, try to do special replacement of 2136 // calls which match the new prototype. The really key thing here 2137 // is that we also potentially drop arguments from the call site 2138 // so as to make a direct call, which makes the inliner happier 2139 // and suppresses a number of optimizer warnings (!) about 2140 // dropping arguments. 2141 if (!OldFn->use_empty()) { 2142 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2143 OldFn->removeDeadConstantUsers(); 2144 } 2145 2146 // Replace uses of F with the Function we will endow with a body. 2147 if (!Entry->use_empty()) { 2148 llvm::Constant *NewPtrForOldDecl = 2149 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2150 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2151 } 2152 2153 // Ok, delete the old function now, which is dead. 2154 OldFn->eraseFromParent(); 2155 2156 Entry = NewFn; 2157 } 2158 2159 // We need to set linkage and visibility on the function before 2160 // generating code for it because various parts of IR generation 2161 // want to propagate this information down (e.g. to local static 2162 // declarations). 2163 llvm::Function *Fn = cast<llvm::Function>(Entry); 2164 setFunctionLinkage(GD, Fn); 2165 2166 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2167 setGlobalVisibility(Fn, D); 2168 2169 MaybeHandleStaticInExternC(D, Fn); 2170 2171 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2172 2173 SetFunctionDefinitionAttributes(D, Fn); 2174 SetLLVMFunctionAttributesForDefinition(D, Fn); 2175 2176 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2177 AddGlobalCtor(Fn, CA->getPriority()); 2178 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2179 AddGlobalDtor(Fn, DA->getPriority()); 2180 if (D->hasAttr<AnnotateAttr>()) 2181 AddGlobalAnnotations(D, Fn); 2182 2183 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2184 if (PGOInit) 2185 AddGlobalCtor(PGOInit, 0); 2186 } 2187 2188 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2189 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2190 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2191 assert(AA && "Not an alias?"); 2192 2193 StringRef MangledName = getMangledName(GD); 2194 2195 // If there is a definition in the module, then it wins over the alias. 2196 // This is dubious, but allow it to be safe. Just ignore the alias. 2197 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2198 if (Entry && !Entry->isDeclaration()) 2199 return; 2200 2201 Aliases.push_back(GD); 2202 2203 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2204 2205 // Create a reference to the named value. This ensures that it is emitted 2206 // if a deferred decl. 2207 llvm::Constant *Aliasee; 2208 if (isa<llvm::FunctionType>(DeclTy)) 2209 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2210 /*ForVTable=*/false); 2211 else 2212 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2213 llvm::PointerType::getUnqual(DeclTy), 0); 2214 2215 // Create the new alias itself, but don't set a name yet. 2216 llvm::GlobalValue *GA = 2217 new llvm::GlobalAlias(Aliasee->getType(), 2218 llvm::Function::ExternalLinkage, 2219 "", Aliasee, &getModule()); 2220 2221 if (Entry) { 2222 assert(Entry->isDeclaration()); 2223 2224 // If there is a declaration in the module, then we had an extern followed 2225 // by the alias, as in: 2226 // extern int test6(); 2227 // ... 2228 // int test6() __attribute__((alias("test7"))); 2229 // 2230 // Remove it and replace uses of it with the alias. 2231 GA->takeName(Entry); 2232 2233 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2234 Entry->getType())); 2235 Entry->eraseFromParent(); 2236 } else { 2237 GA->setName(MangledName); 2238 } 2239 2240 // Set attributes which are particular to an alias; this is a 2241 // specialization of the attributes which may be set on a global 2242 // variable/function. 2243 if (D->hasAttr<DLLExportAttr>()) { 2244 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2245 // The dllexport attribute is ignored for undefined symbols. 2246 if (FD->hasBody()) 2247 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2248 } else { 2249 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2250 } 2251 } else if (D->hasAttr<WeakAttr>() || 2252 D->hasAttr<WeakRefAttr>() || 2253 D->isWeakImported()) { 2254 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2255 } 2256 2257 SetCommonAttributes(D, GA); 2258 } 2259 2260 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2261 ArrayRef<llvm::Type*> Tys) { 2262 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2263 Tys); 2264 } 2265 2266 static llvm::StringMapEntry<llvm::Constant*> & 2267 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2268 const StringLiteral *Literal, 2269 bool TargetIsLSB, 2270 bool &IsUTF16, 2271 unsigned &StringLength) { 2272 StringRef String = Literal->getString(); 2273 unsigned NumBytes = String.size(); 2274 2275 // Check for simple case. 2276 if (!Literal->containsNonAsciiOrNull()) { 2277 StringLength = NumBytes; 2278 return Map.GetOrCreateValue(String); 2279 } 2280 2281 // Otherwise, convert the UTF8 literals into a string of shorts. 2282 IsUTF16 = true; 2283 2284 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2285 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2286 UTF16 *ToPtr = &ToBuf[0]; 2287 2288 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2289 &ToPtr, ToPtr + NumBytes, 2290 strictConversion); 2291 2292 // ConvertUTF8toUTF16 returns the length in ToPtr. 2293 StringLength = ToPtr - &ToBuf[0]; 2294 2295 // Add an explicit null. 2296 *ToPtr = 0; 2297 return Map. 2298 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2299 (StringLength + 1) * 2)); 2300 } 2301 2302 static llvm::StringMapEntry<llvm::Constant*> & 2303 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2304 const StringLiteral *Literal, 2305 unsigned &StringLength) { 2306 StringRef String = Literal->getString(); 2307 StringLength = String.size(); 2308 return Map.GetOrCreateValue(String); 2309 } 2310 2311 llvm::Constant * 2312 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2313 unsigned StringLength = 0; 2314 bool isUTF16 = false; 2315 llvm::StringMapEntry<llvm::Constant*> &Entry = 2316 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2317 getDataLayout().isLittleEndian(), 2318 isUTF16, StringLength); 2319 2320 if (llvm::Constant *C = Entry.getValue()) 2321 return C; 2322 2323 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2324 llvm::Constant *Zeros[] = { Zero, Zero }; 2325 llvm::Value *V; 2326 2327 // If we don't already have it, get __CFConstantStringClassReference. 2328 if (!CFConstantStringClassRef) { 2329 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2330 Ty = llvm::ArrayType::get(Ty, 0); 2331 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2332 "__CFConstantStringClassReference"); 2333 // Decay array -> ptr 2334 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2335 CFConstantStringClassRef = V; 2336 } 2337 else 2338 V = CFConstantStringClassRef; 2339 2340 QualType CFTy = getContext().getCFConstantStringType(); 2341 2342 llvm::StructType *STy = 2343 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2344 2345 llvm::Constant *Fields[4]; 2346 2347 // Class pointer. 2348 Fields[0] = cast<llvm::ConstantExpr>(V); 2349 2350 // Flags. 2351 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2352 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2353 llvm::ConstantInt::get(Ty, 0x07C8); 2354 2355 // String pointer. 2356 llvm::Constant *C = 0; 2357 if (isUTF16) { 2358 ArrayRef<uint16_t> Arr = 2359 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2360 const_cast<char *>(Entry.getKey().data())), 2361 Entry.getKey().size() / 2); 2362 C = llvm::ConstantDataArray::get(VMContext, Arr); 2363 } else { 2364 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2365 } 2366 2367 // Note: -fwritable-strings doesn't make the backing store strings of 2368 // CFStrings writable. (See <rdar://problem/10657500>) 2369 llvm::GlobalVariable *GV = 2370 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2371 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2372 GV->setUnnamedAddr(true); 2373 // Don't enforce the target's minimum global alignment, since the only use 2374 // of the string is via this class initializer. 2375 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2376 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2377 // that changes the section it ends in, which surprises ld64. 2378 if (isUTF16) { 2379 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2380 GV->setAlignment(Align.getQuantity()); 2381 GV->setSection("__TEXT,__ustring"); 2382 } else { 2383 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2384 GV->setAlignment(Align.getQuantity()); 2385 GV->setSection("__TEXT,__cstring,cstring_literals"); 2386 } 2387 2388 // String. 2389 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2390 2391 if (isUTF16) 2392 // Cast the UTF16 string to the correct type. 2393 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2394 2395 // String length. 2396 Ty = getTypes().ConvertType(getContext().LongTy); 2397 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2398 2399 // The struct. 2400 C = llvm::ConstantStruct::get(STy, Fields); 2401 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2402 llvm::GlobalVariable::PrivateLinkage, C, 2403 "_unnamed_cfstring_"); 2404 GV->setSection("__DATA,__cfstring"); 2405 Entry.setValue(GV); 2406 2407 return GV; 2408 } 2409 2410 llvm::Constant * 2411 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2412 unsigned StringLength = 0; 2413 llvm::StringMapEntry<llvm::Constant*> &Entry = 2414 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2415 2416 if (llvm::Constant *C = Entry.getValue()) 2417 return C; 2418 2419 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2420 llvm::Constant *Zeros[] = { Zero, Zero }; 2421 llvm::Value *V; 2422 // If we don't already have it, get _NSConstantStringClassReference. 2423 if (!ConstantStringClassRef) { 2424 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2425 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2426 llvm::Constant *GV; 2427 if (LangOpts.ObjCRuntime.isNonFragile()) { 2428 std::string str = 2429 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2430 : "OBJC_CLASS_$_" + StringClass; 2431 GV = getObjCRuntime().GetClassGlobal(str); 2432 // Make sure the result is of the correct type. 2433 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2434 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2435 ConstantStringClassRef = V; 2436 } else { 2437 std::string str = 2438 StringClass.empty() ? "_NSConstantStringClassReference" 2439 : "_" + StringClass + "ClassReference"; 2440 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2441 GV = CreateRuntimeVariable(PTy, str); 2442 // Decay array -> ptr 2443 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2444 ConstantStringClassRef = V; 2445 } 2446 } 2447 else 2448 V = ConstantStringClassRef; 2449 2450 if (!NSConstantStringType) { 2451 // Construct the type for a constant NSString. 2452 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2453 D->startDefinition(); 2454 2455 QualType FieldTypes[3]; 2456 2457 // const int *isa; 2458 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2459 // const char *str; 2460 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2461 // unsigned int length; 2462 FieldTypes[2] = Context.UnsignedIntTy; 2463 2464 // Create fields 2465 for (unsigned i = 0; i < 3; ++i) { 2466 FieldDecl *Field = FieldDecl::Create(Context, D, 2467 SourceLocation(), 2468 SourceLocation(), 0, 2469 FieldTypes[i], /*TInfo=*/0, 2470 /*BitWidth=*/0, 2471 /*Mutable=*/false, 2472 ICIS_NoInit); 2473 Field->setAccess(AS_public); 2474 D->addDecl(Field); 2475 } 2476 2477 D->completeDefinition(); 2478 QualType NSTy = Context.getTagDeclType(D); 2479 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2480 } 2481 2482 llvm::Constant *Fields[3]; 2483 2484 // Class pointer. 2485 Fields[0] = cast<llvm::ConstantExpr>(V); 2486 2487 // String pointer. 2488 llvm::Constant *C = 2489 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2490 2491 llvm::GlobalValue::LinkageTypes Linkage; 2492 bool isConstant; 2493 Linkage = llvm::GlobalValue::PrivateLinkage; 2494 isConstant = !LangOpts.WritableStrings; 2495 2496 llvm::GlobalVariable *GV = 2497 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2498 ".str"); 2499 GV->setUnnamedAddr(true); 2500 // Don't enforce the target's minimum global alignment, since the only use 2501 // of the string is via this class initializer. 2502 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2503 GV->setAlignment(Align.getQuantity()); 2504 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2505 2506 // String length. 2507 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2508 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2509 2510 // The struct. 2511 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2512 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2513 llvm::GlobalVariable::PrivateLinkage, C, 2514 "_unnamed_nsstring_"); 2515 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2516 const char *NSStringNonFragileABISection = 2517 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2518 // FIXME. Fix section. 2519 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2520 ? NSStringNonFragileABISection 2521 : NSStringSection); 2522 Entry.setValue(GV); 2523 2524 return GV; 2525 } 2526 2527 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2528 if (ObjCFastEnumerationStateType.isNull()) { 2529 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2530 D->startDefinition(); 2531 2532 QualType FieldTypes[] = { 2533 Context.UnsignedLongTy, 2534 Context.getPointerType(Context.getObjCIdType()), 2535 Context.getPointerType(Context.UnsignedLongTy), 2536 Context.getConstantArrayType(Context.UnsignedLongTy, 2537 llvm::APInt(32, 5), ArrayType::Normal, 0) 2538 }; 2539 2540 for (size_t i = 0; i < 4; ++i) { 2541 FieldDecl *Field = FieldDecl::Create(Context, 2542 D, 2543 SourceLocation(), 2544 SourceLocation(), 0, 2545 FieldTypes[i], /*TInfo=*/0, 2546 /*BitWidth=*/0, 2547 /*Mutable=*/false, 2548 ICIS_NoInit); 2549 Field->setAccess(AS_public); 2550 D->addDecl(Field); 2551 } 2552 2553 D->completeDefinition(); 2554 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2555 } 2556 2557 return ObjCFastEnumerationStateType; 2558 } 2559 2560 llvm::Constant * 2561 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2562 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2563 2564 // Don't emit it as the address of the string, emit the string data itself 2565 // as an inline array. 2566 if (E->getCharByteWidth() == 1) { 2567 SmallString<64> Str(E->getString()); 2568 2569 // Resize the string to the right size, which is indicated by its type. 2570 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2571 Str.resize(CAT->getSize().getZExtValue()); 2572 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2573 } 2574 2575 llvm::ArrayType *AType = 2576 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2577 llvm::Type *ElemTy = AType->getElementType(); 2578 unsigned NumElements = AType->getNumElements(); 2579 2580 // Wide strings have either 2-byte or 4-byte elements. 2581 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2582 SmallVector<uint16_t, 32> Elements; 2583 Elements.reserve(NumElements); 2584 2585 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2586 Elements.push_back(E->getCodeUnit(i)); 2587 Elements.resize(NumElements); 2588 return llvm::ConstantDataArray::get(VMContext, Elements); 2589 } 2590 2591 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2592 SmallVector<uint32_t, 32> Elements; 2593 Elements.reserve(NumElements); 2594 2595 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2596 Elements.push_back(E->getCodeUnit(i)); 2597 Elements.resize(NumElements); 2598 return llvm::ConstantDataArray::get(VMContext, Elements); 2599 } 2600 2601 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2602 /// constant array for the given string literal. 2603 llvm::Constant * 2604 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2605 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2606 2607 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2608 llvm::GlobalVariable *GV = nullptr; 2609 if (!LangOpts.WritableStrings) { 2610 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2611 switch (S->getCharByteWidth()) { 2612 case 1: 2613 ConstantStringMap = &Constant1ByteStringMap; 2614 break; 2615 case 2: 2616 ConstantStringMap = &Constant2ByteStringMap; 2617 break; 2618 case 4: 2619 ConstantStringMap = &Constant4ByteStringMap; 2620 break; 2621 default: 2622 llvm_unreachable("unhandled byte width!"); 2623 } 2624 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2625 GV = Entry->getValue(); 2626 } 2627 2628 if (!GV) { 2629 SmallString<256> MangledNameBuffer; 2630 StringRef GlobalVariableName; 2631 llvm::GlobalValue::LinkageTypes LT; 2632 2633 // Mangle the string literal if the ABI allows for it. However, we cannot 2634 // do this if we are compiling with ASan or -fwritable-strings because they 2635 // rely on strings having normal linkage. 2636 if (!LangOpts.WritableStrings && !SanOpts.Address && 2637 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2638 llvm::raw_svector_ostream Out(MangledNameBuffer); 2639 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2640 Out.flush(); 2641 2642 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2643 GlobalVariableName = MangledNameBuffer; 2644 } else { 2645 LT = llvm::GlobalValue::PrivateLinkage;; 2646 GlobalVariableName = ".str"; 2647 } 2648 2649 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2650 unsigned AddrSpace = 0; 2651 if (getLangOpts().OpenCL) 2652 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2653 2654 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2655 GV = new llvm::GlobalVariable( 2656 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2657 GlobalVariableName, /*InsertBefore=*/nullptr, 2658 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2659 GV->setUnnamedAddr(true); 2660 if (Entry) 2661 Entry->setValue(GV); 2662 } 2663 2664 if (Align.getQuantity() > GV->getAlignment()) 2665 GV->setAlignment(Align.getQuantity()); 2666 2667 return GV; 2668 } 2669 2670 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2671 /// array for the given ObjCEncodeExpr node. 2672 llvm::Constant * 2673 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2674 std::string Str; 2675 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2676 2677 return GetAddrOfConstantCString(Str); 2678 } 2679 2680 2681 /// GenerateWritableString -- Creates storage for a string literal. 2682 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2683 bool constant, 2684 CodeGenModule &CGM, 2685 const char *GlobalName, 2686 unsigned Alignment) { 2687 // Create Constant for this string literal. Don't add a '\0'. 2688 llvm::Constant *C = 2689 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2690 2691 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2692 unsigned AddrSpace = 0; 2693 if (CGM.getLangOpts().OpenCL) 2694 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2695 2696 // Create a global variable for this string 2697 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2698 CGM.getModule(), C->getType(), constant, 2699 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2700 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2701 GV->setAlignment(Alignment); 2702 GV->setUnnamedAddr(true); 2703 return GV; 2704 } 2705 2706 /// GetAddrOfConstantString - Returns a pointer to a character array 2707 /// containing the literal. This contents are exactly that of the 2708 /// given string, i.e. it will not be null terminated automatically; 2709 /// see GetAddrOfConstantCString. Note that whether the result is 2710 /// actually a pointer to an LLVM constant depends on 2711 /// Feature.WriteableStrings. 2712 /// 2713 /// The result has pointer to array type. 2714 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2715 const char *GlobalName, 2716 unsigned Alignment) { 2717 // Get the default prefix if a name wasn't specified. 2718 if (!GlobalName) 2719 GlobalName = ".str"; 2720 2721 if (Alignment == 0) 2722 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2723 .getQuantity(); 2724 2725 // Don't share any string literals if strings aren't constant. 2726 if (LangOpts.WritableStrings) 2727 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2728 2729 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2730 Constant1ByteStringMap.GetOrCreateValue(Str); 2731 2732 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2733 if (Alignment > GV->getAlignment()) { 2734 GV->setAlignment(Alignment); 2735 } 2736 return GV; 2737 } 2738 2739 // Create a global variable for this. 2740 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2741 Alignment); 2742 Entry.setValue(GV); 2743 return GV; 2744 } 2745 2746 /// GetAddrOfConstantCString - Returns a pointer to a character 2747 /// array containing the literal and a terminating '\0' 2748 /// character. The result has pointer to array type. 2749 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2750 const char *GlobalName, 2751 unsigned Alignment) { 2752 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2753 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2754 } 2755 2756 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2757 const MaterializeTemporaryExpr *E, const Expr *Init) { 2758 assert((E->getStorageDuration() == SD_Static || 2759 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2760 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2761 2762 // If we're not materializing a subobject of the temporary, keep the 2763 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2764 QualType MaterializedType = Init->getType(); 2765 if (Init == E->GetTemporaryExpr()) 2766 MaterializedType = E->getType(); 2767 2768 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2769 if (Slot) 2770 return Slot; 2771 2772 // FIXME: If an externally-visible declaration extends multiple temporaries, 2773 // we need to give each temporary the same name in every translation unit (and 2774 // we also need to make the temporaries externally-visible). 2775 SmallString<256> Name; 2776 llvm::raw_svector_ostream Out(Name); 2777 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2778 Out.flush(); 2779 2780 APValue *Value = 0; 2781 if (E->getStorageDuration() == SD_Static) { 2782 // We might have a cached constant initializer for this temporary. Note 2783 // that this might have a different value from the value computed by 2784 // evaluating the initializer if the surrounding constant expression 2785 // modifies the temporary. 2786 Value = getContext().getMaterializedTemporaryValue(E, false); 2787 if (Value && Value->isUninit()) 2788 Value = 0; 2789 } 2790 2791 // Try evaluating it now, it might have a constant initializer. 2792 Expr::EvalResult EvalResult; 2793 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2794 !EvalResult.hasSideEffects()) 2795 Value = &EvalResult.Val; 2796 2797 llvm::Constant *InitialValue = 0; 2798 bool Constant = false; 2799 llvm::Type *Type; 2800 if (Value) { 2801 // The temporary has a constant initializer, use it. 2802 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2803 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2804 Type = InitialValue->getType(); 2805 } else { 2806 // No initializer, the initialization will be provided when we 2807 // initialize the declaration which performed lifetime extension. 2808 Type = getTypes().ConvertTypeForMem(MaterializedType); 2809 } 2810 2811 // Create a global variable for this lifetime-extended temporary. 2812 llvm::GlobalVariable *GV = 2813 new llvm::GlobalVariable(getModule(), Type, Constant, 2814 llvm::GlobalValue::PrivateLinkage, 2815 InitialValue, Name.c_str()); 2816 GV->setAlignment( 2817 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2818 if (VD->getTLSKind()) 2819 setTLSMode(GV, *VD); 2820 Slot = GV; 2821 return GV; 2822 } 2823 2824 /// EmitObjCPropertyImplementations - Emit information for synthesized 2825 /// properties for an implementation. 2826 void CodeGenModule::EmitObjCPropertyImplementations(const 2827 ObjCImplementationDecl *D) { 2828 for (const auto *PID : D->property_impls()) { 2829 // Dynamic is just for type-checking. 2830 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2831 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2832 2833 // Determine which methods need to be implemented, some may have 2834 // been overridden. Note that ::isPropertyAccessor is not the method 2835 // we want, that just indicates if the decl came from a 2836 // property. What we want to know is if the method is defined in 2837 // this implementation. 2838 if (!D->getInstanceMethod(PD->getGetterName())) 2839 CodeGenFunction(*this).GenerateObjCGetter( 2840 const_cast<ObjCImplementationDecl *>(D), PID); 2841 if (!PD->isReadOnly() && 2842 !D->getInstanceMethod(PD->getSetterName())) 2843 CodeGenFunction(*this).GenerateObjCSetter( 2844 const_cast<ObjCImplementationDecl *>(D), PID); 2845 } 2846 } 2847 } 2848 2849 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2850 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2851 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2852 ivar; ivar = ivar->getNextIvar()) 2853 if (ivar->getType().isDestructedType()) 2854 return true; 2855 2856 return false; 2857 } 2858 2859 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2860 /// for an implementation. 2861 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2862 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2863 if (needsDestructMethod(D)) { 2864 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2865 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2866 ObjCMethodDecl *DTORMethod = 2867 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2868 cxxSelector, getContext().VoidTy, 0, D, 2869 /*isInstance=*/true, /*isVariadic=*/false, 2870 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2871 /*isDefined=*/false, ObjCMethodDecl::Required); 2872 D->addInstanceMethod(DTORMethod); 2873 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2874 D->setHasDestructors(true); 2875 } 2876 2877 // If the implementation doesn't have any ivar initializers, we don't need 2878 // a .cxx_construct. 2879 if (D->getNumIvarInitializers() == 0) 2880 return; 2881 2882 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2883 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2884 // The constructor returns 'self'. 2885 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2886 D->getLocation(), 2887 D->getLocation(), 2888 cxxSelector, 2889 getContext().getObjCIdType(), 0, 2890 D, /*isInstance=*/true, 2891 /*isVariadic=*/false, 2892 /*isPropertyAccessor=*/true, 2893 /*isImplicitlyDeclared=*/true, 2894 /*isDefined=*/false, 2895 ObjCMethodDecl::Required); 2896 D->addInstanceMethod(CTORMethod); 2897 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2898 D->setHasNonZeroConstructors(true); 2899 } 2900 2901 /// EmitNamespace - Emit all declarations in a namespace. 2902 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2903 for (auto *I : ND->decls()) { 2904 if (const auto *VD = dyn_cast<VarDecl>(I)) 2905 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2906 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2907 continue; 2908 EmitTopLevelDecl(I); 2909 } 2910 } 2911 2912 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2913 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2914 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2915 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2916 ErrorUnsupported(LSD, "linkage spec"); 2917 return; 2918 } 2919 2920 for (auto *I : LSD->decls()) { 2921 // Meta-data for ObjC class includes references to implemented methods. 2922 // Generate class's method definitions first. 2923 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2924 for (auto *M : OID->methods()) 2925 EmitTopLevelDecl(M); 2926 } 2927 EmitTopLevelDecl(I); 2928 } 2929 } 2930 2931 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2932 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2933 // Ignore dependent declarations. 2934 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2935 return; 2936 2937 switch (D->getKind()) { 2938 case Decl::CXXConversion: 2939 case Decl::CXXMethod: 2940 case Decl::Function: 2941 // Skip function templates 2942 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2943 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2944 return; 2945 2946 EmitGlobal(cast<FunctionDecl>(D)); 2947 break; 2948 2949 case Decl::Var: 2950 // Skip variable templates 2951 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2952 return; 2953 case Decl::VarTemplateSpecialization: 2954 EmitGlobal(cast<VarDecl>(D)); 2955 break; 2956 2957 // Indirect fields from global anonymous structs and unions can be 2958 // ignored; only the actual variable requires IR gen support. 2959 case Decl::IndirectField: 2960 break; 2961 2962 // C++ Decls 2963 case Decl::Namespace: 2964 EmitNamespace(cast<NamespaceDecl>(D)); 2965 break; 2966 // No code generation needed. 2967 case Decl::UsingShadow: 2968 case Decl::ClassTemplate: 2969 case Decl::VarTemplate: 2970 case Decl::VarTemplatePartialSpecialization: 2971 case Decl::FunctionTemplate: 2972 case Decl::TypeAliasTemplate: 2973 case Decl::Block: 2974 case Decl::Empty: 2975 break; 2976 case Decl::Using: // using X; [C++] 2977 if (CGDebugInfo *DI = getModuleDebugInfo()) 2978 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 2979 return; 2980 case Decl::NamespaceAlias: 2981 if (CGDebugInfo *DI = getModuleDebugInfo()) 2982 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2983 return; 2984 case Decl::UsingDirective: // using namespace X; [C++] 2985 if (CGDebugInfo *DI = getModuleDebugInfo()) 2986 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2987 return; 2988 case Decl::CXXConstructor: 2989 // Skip function templates 2990 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2991 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2992 return; 2993 2994 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2995 break; 2996 case Decl::CXXDestructor: 2997 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2998 return; 2999 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3000 break; 3001 3002 case Decl::StaticAssert: 3003 // Nothing to do. 3004 break; 3005 3006 // Objective-C Decls 3007 3008 // Forward declarations, no (immediate) code generation. 3009 case Decl::ObjCInterface: 3010 case Decl::ObjCCategory: 3011 break; 3012 3013 case Decl::ObjCProtocol: { 3014 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 3015 if (Proto->isThisDeclarationADefinition()) 3016 ObjCRuntime->GenerateProtocol(Proto); 3017 break; 3018 } 3019 3020 case Decl::ObjCCategoryImpl: 3021 // Categories have properties but don't support synthesize so we 3022 // can ignore them here. 3023 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3024 break; 3025 3026 case Decl::ObjCImplementation: { 3027 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3028 EmitObjCPropertyImplementations(OMD); 3029 EmitObjCIvarInitializations(OMD); 3030 ObjCRuntime->GenerateClass(OMD); 3031 // Emit global variable debug information. 3032 if (CGDebugInfo *DI = getModuleDebugInfo()) 3033 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3034 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3035 OMD->getClassInterface()), OMD->getLocation()); 3036 break; 3037 } 3038 case Decl::ObjCMethod: { 3039 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3040 // If this is not a prototype, emit the body. 3041 if (OMD->getBody()) 3042 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3043 break; 3044 } 3045 case Decl::ObjCCompatibleAlias: 3046 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3047 break; 3048 3049 case Decl::LinkageSpec: 3050 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3051 break; 3052 3053 case Decl::FileScopeAsm: { 3054 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3055 StringRef AsmString = AD->getAsmString()->getString(); 3056 3057 const std::string &S = getModule().getModuleInlineAsm(); 3058 if (S.empty()) 3059 getModule().setModuleInlineAsm(AsmString); 3060 else if (S.end()[-1] == '\n') 3061 getModule().setModuleInlineAsm(S + AsmString.str()); 3062 else 3063 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3064 break; 3065 } 3066 3067 case Decl::Import: { 3068 ImportDecl *Import = cast<ImportDecl>(D); 3069 3070 // Ignore import declarations that come from imported modules. 3071 if (clang::Module *Owner = Import->getOwningModule()) { 3072 if (getLangOpts().CurrentModule.empty() || 3073 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3074 break; 3075 } 3076 3077 ImportedModules.insert(Import->getImportedModule()); 3078 break; 3079 } 3080 3081 case Decl::ClassTemplateSpecialization: { 3082 const ClassTemplateSpecializationDecl *Spec = 3083 cast<ClassTemplateSpecializationDecl>(D); 3084 if (DebugInfo && 3085 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3086 DebugInfo->completeTemplateDefinition(*Spec); 3087 } 3088 3089 default: 3090 // Make sure we handled everything we should, every other kind is a 3091 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3092 // function. Need to recode Decl::Kind to do that easily. 3093 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3094 } 3095 } 3096 3097 /// Turns the given pointer into a constant. 3098 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3099 const void *Ptr) { 3100 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3101 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3102 return llvm::ConstantInt::get(i64, PtrInt); 3103 } 3104 3105 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3106 llvm::NamedMDNode *&GlobalMetadata, 3107 GlobalDecl D, 3108 llvm::GlobalValue *Addr) { 3109 if (!GlobalMetadata) 3110 GlobalMetadata = 3111 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3112 3113 // TODO: should we report variant information for ctors/dtors? 3114 llvm::Value *Ops[] = { 3115 Addr, 3116 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3117 }; 3118 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3119 } 3120 3121 /// For each function which is declared within an extern "C" region and marked 3122 /// as 'used', but has internal linkage, create an alias from the unmangled 3123 /// name to the mangled name if possible. People expect to be able to refer 3124 /// to such functions with an unmangled name from inline assembly within the 3125 /// same translation unit. 3126 void CodeGenModule::EmitStaticExternCAliases() { 3127 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3128 E = StaticExternCValues.end(); 3129 I != E; ++I) { 3130 IdentifierInfo *Name = I->first; 3131 llvm::GlobalValue *Val = I->second; 3132 if (Val && !getModule().getNamedValue(Name->getName())) 3133 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3134 Name->getName(), Val, &getModule())); 3135 } 3136 } 3137 3138 /// Emits metadata nodes associating all the global values in the 3139 /// current module with the Decls they came from. This is useful for 3140 /// projects using IR gen as a subroutine. 3141 /// 3142 /// Since there's currently no way to associate an MDNode directly 3143 /// with an llvm::GlobalValue, we create a global named metadata 3144 /// with the name 'clang.global.decl.ptrs'. 3145 void CodeGenModule::EmitDeclMetadata() { 3146 llvm::NamedMDNode *GlobalMetadata = 0; 3147 3148 // StaticLocalDeclMap 3149 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3150 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3151 I != E; ++I) { 3152 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3153 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3154 } 3155 } 3156 3157 /// Emits metadata nodes for all the local variables in the current 3158 /// function. 3159 void CodeGenFunction::EmitDeclMetadata() { 3160 if (LocalDeclMap.empty()) return; 3161 3162 llvm::LLVMContext &Context = getLLVMContext(); 3163 3164 // Find the unique metadata ID for this name. 3165 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3166 3167 llvm::NamedMDNode *GlobalMetadata = 0; 3168 3169 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3170 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3171 const Decl *D = I->first; 3172 llvm::Value *Addr = I->second; 3173 3174 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3175 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3176 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3177 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3178 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3179 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3180 } 3181 } 3182 } 3183 3184 void CodeGenModule::EmitVersionIdentMetadata() { 3185 llvm::NamedMDNode *IdentMetadata = 3186 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3187 std::string Version = getClangFullVersion(); 3188 llvm::LLVMContext &Ctx = TheModule.getContext(); 3189 3190 llvm::Value *IdentNode[] = { 3191 llvm::MDString::get(Ctx, Version) 3192 }; 3193 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3194 } 3195 3196 void CodeGenModule::EmitCoverageFile() { 3197 if (!getCodeGenOpts().CoverageFile.empty()) { 3198 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3199 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3200 llvm::LLVMContext &Ctx = TheModule.getContext(); 3201 llvm::MDString *CoverageFile = 3202 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3203 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3204 llvm::MDNode *CU = CUNode->getOperand(i); 3205 llvm::Value *node[] = { CoverageFile, CU }; 3206 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3207 GCov->addOperand(N); 3208 } 3209 } 3210 } 3211 } 3212 3213 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3214 QualType GuidType) { 3215 // Sema has checked that all uuid strings are of the form 3216 // "12345678-1234-1234-1234-1234567890ab". 3217 assert(Uuid.size() == 36); 3218 for (unsigned i = 0; i < 36; ++i) { 3219 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3220 else assert(isHexDigit(Uuid[i])); 3221 } 3222 3223 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3224 3225 llvm::Constant *Field3[8]; 3226 for (unsigned Idx = 0; Idx < 8; ++Idx) 3227 Field3[Idx] = llvm::ConstantInt::get( 3228 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3229 3230 llvm::Constant *Fields[4] = { 3231 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3232 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3233 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3234 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3235 }; 3236 3237 return llvm::ConstantStruct::getAnon(Fields); 3238 } 3239