xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a2d609e2f144e70892a04edceab28223d4bd838b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/CallingConv.h"
28 #include "llvm/Module.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Target/TargetData.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 
35 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
36                              llvm::Module &M, const llvm::TargetData &TD,
37                              Diagnostic &diags)
38   : BlockModule(C, M, TD, Types, *this), Context(C),
39     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
40     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
41     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
42 
43   if (!Features.ObjC1)
44     Runtime = 0;
45   else if (!Features.NeXTRuntime)
46     Runtime = CreateGNUObjCRuntime(*this);
47   else if (Features.ObjCNonFragileABI)
48     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
49   else
50     Runtime = CreateMacObjCRuntime(*this);
51 
52   // If debug info generation is enabled, create the CGDebugInfo object.
53   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
54 }
55 
56 CodeGenModule::~CodeGenModule() {
57   delete Runtime;
58   delete DebugInfo;
59 }
60 
61 void CodeGenModule::Release() {
62   EmitDeferred();
63   if (Runtime)
64     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
65       AddGlobalCtor(ObjCInitFunction);
66   EmitCtorList(GlobalCtors, "llvm.global_ctors");
67   EmitCtorList(GlobalDtors, "llvm.global_dtors");
68   EmitAnnotations();
69   EmitLLVMUsed();
70 }
71 
72 /// ErrorUnsupported - Print out an error that codegen doesn't support the
73 /// specified stmt yet.
74 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
75                                      bool OmitOnError) {
76   if (OmitOnError && getDiags().hasErrorOccurred())
77     return;
78   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
79                                                "cannot compile this %0 yet");
80   std::string Msg = Type;
81   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
82     << Msg << S->getSourceRange();
83 }
84 
85 /// ErrorUnsupported - Print out an error that codegen doesn't support the
86 /// specified decl yet.
87 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
88                                      bool OmitOnError) {
89   if (OmitOnError && getDiags().hasErrorOccurred())
90     return;
91   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
92                                                "cannot compile this %0 yet");
93   std::string Msg = Type;
94   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
95 }
96 
97 /// setGlobalVisibility - Set the visibility for the given LLVM
98 /// GlobalValue according to the given clang AST visibility value.
99 static void setGlobalVisibility(llvm::GlobalValue *GV,
100                                 VisibilityAttr::VisibilityTypes Vis) {
101   switch (Vis) {
102   default: assert(0 && "Unknown visibility!");
103   case VisibilityAttr::DefaultVisibility:
104     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
105     break;
106   case VisibilityAttr::HiddenVisibility:
107     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
108     break;
109   case VisibilityAttr::ProtectedVisibility:
110     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
111     break;
112   }
113 }
114 
115 /// \brief Retrieves the mangled name for the given declaration.
116 ///
117 /// If the given declaration requires a mangled name, returns an
118 /// const char* containing the mangled name.  Otherwise, returns
119 /// the unmangled name.
120 ///
121 /// FIXME: Returning an IdentifierInfo* here is a total hack. We
122 /// really need some kind of string abstraction that either stores a
123 /// mangled name or stores an IdentifierInfo*. This will require
124 /// changes to the GlobalDeclMap, too. (I disagree, I think what we
125 /// actually need is for Sema to provide some notion of which Decls
126 /// refer to the same semantic decl. We shouldn't need to mangle the
127 /// names and see what comes out the same to figure this out. - DWD)
128 ///
129 /// FIXME: Performance here is going to be terribly until we start
130 /// caching mangled names. However, we should fix the problem above
131 /// first.
132 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
133   // In C, functions with no attributes never need to be mangled. Fastpath them.
134   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
135     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
136     return ND->getNameAsCString();
137   }
138 
139   llvm::SmallString<256> Name;
140   llvm::raw_svector_ostream Out(Name);
141   if (!mangleName(ND, Context, Out)) {
142     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
143     return ND->getNameAsCString();
144   }
145 
146   Name += '\0';
147   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
148 }
149 
150 /// AddGlobalCtor - Add a function to the list that will be called before
151 /// main() runs.
152 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
153   // FIXME: Type coercion of void()* types.
154   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
155 }
156 
157 /// AddGlobalDtor - Add a function to the list that will be called
158 /// when the module is unloaded.
159 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
160   // FIXME: Type coercion of void()* types.
161   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
162 }
163 
164 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
165   // Ctor function type is void()*.
166   llvm::FunctionType* CtorFTy =
167     llvm::FunctionType::get(llvm::Type::VoidTy,
168                             std::vector<const llvm::Type*>(),
169                             false);
170   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
171 
172   // Get the type of a ctor entry, { i32, void ()* }.
173   llvm::StructType* CtorStructTy =
174     llvm::StructType::get(llvm::Type::Int32Ty,
175                           llvm::PointerType::getUnqual(CtorFTy), NULL);
176 
177   // Construct the constructor and destructor arrays.
178   std::vector<llvm::Constant*> Ctors;
179   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
180     std::vector<llvm::Constant*> S;
181     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
182     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
183     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
184   }
185 
186   if (!Ctors.empty()) {
187     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
188     new llvm::GlobalVariable(AT, false,
189                              llvm::GlobalValue::AppendingLinkage,
190                              llvm::ConstantArray::get(AT, Ctors),
191                              GlobalName,
192                              &TheModule);
193   }
194 }
195 
196 void CodeGenModule::EmitAnnotations() {
197   if (Annotations.empty())
198     return;
199 
200   // Create a new global variable for the ConstantStruct in the Module.
201   llvm::Constant *Array =
202   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
203                                                 Annotations.size()),
204                            Annotations);
205   llvm::GlobalValue *gv =
206   new llvm::GlobalVariable(Array->getType(), false,
207                            llvm::GlobalValue::AppendingLinkage, Array,
208                            "llvm.global.annotations", &TheModule);
209   gv->setSection("llvm.metadata");
210 }
211 
212 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
213                                              bool IsInternal,
214                                              bool IsInline,
215                                              llvm::GlobalValue *GV,
216                                              bool ForDefinition) {
217   // FIXME: Set up linkage and many other things.  Note, this is a simple
218   // approximation of what we really want.
219   if (!ForDefinition) {
220     // Only a few attributes are set on declarations.
221     if (D->getAttr<DLLImportAttr>()) {
222       // The dllimport attribute is overridden by a subsequent declaration as
223       // dllexport.
224       if (!D->getAttr<DLLExportAttr>()) {
225         // dllimport attribute can be applied only to function decls, not to
226         // definitions.
227         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228           if (!FD->getBody())
229             GV->setLinkage(llvm::Function::DLLImportLinkage);
230         } else
231           GV->setLinkage(llvm::Function::DLLImportLinkage);
232       }
233     } else if (D->getAttr<WeakAttr>() ||
234                D->getAttr<WeakImportAttr>()) {
235       // "extern_weak" is overloaded in LLVM; we probably should have
236       // separate linkage types for this.
237       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
238    }
239   } else {
240     if (IsInternal) {
241       GV->setLinkage(llvm::Function::InternalLinkage);
242     } else {
243       if (D->getAttr<DLLExportAttr>()) {
244         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
245           // The dllexport attribute is ignored for undefined symbols.
246           if (FD->getBody())
247             GV->setLinkage(llvm::Function::DLLExportLinkage);
248         } else
249           GV->setLinkage(llvm::Function::DLLExportLinkage);
250       } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() ||
251                  IsInline)
252         GV->setLinkage(llvm::Function::WeakAnyLinkage);
253     }
254   }
255 
256   // FIXME: Figure out the relative priority of the attribute,
257   // -fvisibility, and private_extern.
258   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
259     setGlobalVisibility(GV, attr->getVisibility());
260   // FIXME: else handle -fvisibility
261 
262   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
263     GV->setSection(SA->getName());
264 
265   // Only add to llvm.used when we see a definition, otherwise we
266   // might add multiple times or risk the value being replaced by a
267   // subsequent RAUW.
268   if (ForDefinition) {
269     if (D->getAttr<UsedAttr>())
270       AddUsedGlobal(GV);
271   }
272 }
273 
274 void CodeGenModule::SetFunctionAttributes(const Decl *D,
275                                           const CGFunctionInfo &Info,
276                                           llvm::Function *F) {
277   AttributeListType AttributeList;
278   ConstructAttributeList(Info, D, AttributeList);
279 
280   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
281                                         AttributeList.size()));
282 
283   // Set the appropriate calling convention for the Function.
284   if (D->getAttr<FastCallAttr>())
285     F->setCallingConv(llvm::CallingConv::X86_FastCall);
286 
287   if (D->getAttr<StdCallAttr>())
288     F->setCallingConv(llvm::CallingConv::X86_StdCall);
289 
290   if (D->getAttr<RegparmAttr>())
291     ErrorUnsupported(D, "regparm attribute");
292 }
293 
294 /// SetFunctionAttributesForDefinition - Set function attributes
295 /// specific to a function definition.
296 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
297                                                        llvm::Function *F) {
298   if (isa<ObjCMethodDecl>(D)) {
299     SetGlobalValueAttributes(D, true, false, F, true);
300   } else {
301     const FunctionDecl *FD = cast<FunctionDecl>(D);
302     SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
303                              FD->isInline(), F, true);
304   }
305 
306   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
307     F->addFnAttr(llvm::Attribute::NoUnwind);
308 
309   if (D->getAttr<AlwaysInlineAttr>())
310     F->addFnAttr(llvm::Attribute::AlwaysInline);
311 
312   if (D->getAttr<NoinlineAttr>())
313     F->addFnAttr(llvm::Attribute::NoInline);
314 
315   if (D->getAttr<RegparmAttr>())
316     ErrorUnsupported(D, "regparm attribute");
317 }
318 
319 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
320                                         llvm::Function *F) {
321   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
322 
323   SetFunctionAttributesForDefinition(MD, F);
324 }
325 
326 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
327                                           llvm::Function *F) {
328   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
329 
330   SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
331                            FD->isInline(), F, false);
332 }
333 
334 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
335   assert(!GV->isDeclaration() &&
336          "Only globals with definition can force usage.");
337   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
338   LLVMUsed.push_back(llvm::ConstantExpr::getBitCast(GV, i8PTy));
339 }
340 
341 void CodeGenModule::EmitLLVMUsed() {
342   // Don't create llvm.used if there is no need.
343   if (LLVMUsed.empty())
344     return;
345 
346   llvm::ArrayType *ATy = llvm::ArrayType::get(LLVMUsed[0]->getType(),
347                                               LLVMUsed.size());
348   llvm::GlobalVariable *GV =
349     new llvm::GlobalVariable(ATy, false,
350                              llvm::GlobalValue::AppendingLinkage,
351                              llvm::ConstantArray::get(ATy, LLVMUsed),
352                              "llvm.used", &getModule());
353 
354   GV->setSection("llvm.metadata");
355 }
356 
357 void CodeGenModule::EmitDeferred() {
358   // Emit code for any potentially referenced deferred decls.  Since a
359   // previously unused static decl may become used during the generation of code
360   // for a static function, iterate until no  changes are made.
361   while (!DeferredDeclsToEmit.empty()) {
362     const ValueDecl *D = DeferredDeclsToEmit.back();
363     DeferredDeclsToEmit.pop_back();
364 
365     // The mangled name for the decl must have been emitted in GlobalDeclMap.
366     // Look it up to see if it was defined with a stronger definition (e.g. an
367     // extern inline function with a strong function redefinition).  If so,
368     // just ignore the deferred decl.
369     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
370     assert(CGRef && "Deferred decl wasn't referenced?");
371 
372     if (!CGRef->isDeclaration())
373       continue;
374 
375     // Otherwise, emit the definition and move on to the next one.
376     EmitGlobalDefinition(D);
377   }
378 }
379 
380 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
381 /// annotation information for a given GlobalValue.  The annotation struct is
382 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
383 /// GlobalValue being annotated.  The second field is the constant string
384 /// created from the AnnotateAttr's annotation.  The third field is a constant
385 /// string containing the name of the translation unit.  The fourth field is
386 /// the line number in the file of the annotated value declaration.
387 ///
388 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
389 ///        appears to.
390 ///
391 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
392                                                 const AnnotateAttr *AA,
393                                                 unsigned LineNo) {
394   llvm::Module *M = &getModule();
395 
396   // get [N x i8] constants for the annotation string, and the filename string
397   // which are the 2nd and 3rd elements of the global annotation structure.
398   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
399   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
400   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
401                                                   true);
402 
403   // Get the two global values corresponding to the ConstantArrays we just
404   // created to hold the bytes of the strings.
405   llvm::GlobalValue *annoGV =
406   new llvm::GlobalVariable(anno->getType(), false,
407                            llvm::GlobalValue::InternalLinkage, anno,
408                            GV->getName() + ".str", M);
409   // translation unit name string, emitted into the llvm.metadata section.
410   llvm::GlobalValue *unitGV =
411   new llvm::GlobalVariable(unit->getType(), false,
412                            llvm::GlobalValue::InternalLinkage, unit, ".str", M);
413 
414   // Create the ConstantStruct that is the global annotion.
415   llvm::Constant *Fields[4] = {
416     llvm::ConstantExpr::getBitCast(GV, SBP),
417     llvm::ConstantExpr::getBitCast(annoGV, SBP),
418     llvm::ConstantExpr::getBitCast(unitGV, SBP),
419     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
420   };
421   return llvm::ConstantStruct::get(Fields, 4, false);
422 }
423 
424 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
425   // Never defer when EmitAllDecls is specified or the decl has
426   // attribute used.
427   if (Features.EmitAllDecls || Global->getAttr<UsedAttr>())
428     return false;
429 
430   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
431     // Constructors and destructors should never be deferred.
432     if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>())
433       return false;
434 
435     // FIXME: What about inline, and/or extern inline?
436     if (FD->getStorageClass() != FunctionDecl::Static)
437       return false;
438   } else {
439     const VarDecl *VD = cast<VarDecl>(Global);
440     assert(VD->isFileVarDecl() && "Invalid decl");
441 
442     if (VD->getStorageClass() != VarDecl::Static)
443       return false;
444   }
445 
446   return true;
447 }
448 
449 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
450   // If this is an alias definition (which otherwise looks like a declaration)
451   // emit it now.
452   if (Global->getAttr<AliasAttr>())
453     return EmitAliasDefinition(Global);
454 
455   // Ignore declarations, they will be emitted on their first use.
456   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
457     // Forward declarations are emitted lazily on first use.
458     if (!FD->isThisDeclarationADefinition())
459       return;
460   } else {
461     const VarDecl *VD = cast<VarDecl>(Global);
462     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
463 
464     // Forward declarations are emitted lazily on first use.
465     if (!VD->getInit() && VD->hasExternalStorage())
466       return;
467   }
468 
469   // Defer code generation when possible if this is a static definition, inline
470   // function etc.  These we only want to emit if they are used.
471   if (MayDeferGeneration(Global)) {
472     // If the value has already been used, add it directly to the
473     // DeferredDeclsToEmit list.
474     const char *MangledName = getMangledName(Global);
475     if (GlobalDeclMap.count(MangledName))
476       DeferredDeclsToEmit.push_back(Global);
477     else {
478       // Otherwise, remember that we saw a deferred decl with this name.  The
479       // first use of the mangled name will cause it to move into
480       // DeferredDeclsToEmit.
481       DeferredDecls[MangledName] = Global;
482     }
483     return;
484   }
485 
486   // Otherwise emit the definition.
487   EmitGlobalDefinition(Global);
488 }
489 
490 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
491   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
492     EmitGlobalFunctionDefinition(FD);
493   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
494     EmitGlobalVarDefinition(VD);
495   } else {
496     assert(0 && "Invalid argument to EmitGlobalDefinition()");
497   }
498 }
499 
500 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
501 /// module, create and return an llvm Function with the specified type. If there
502 /// is something in the module with the specified name, return it potentially
503 /// bitcasted to the right type.
504 ///
505 /// If D is non-null, it specifies a decl that correspond to this.  This is used
506 /// to set the attributes on the function when it is first created.
507 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
508                                                        const llvm::Type *Ty,
509                                                        const FunctionDecl *D) {
510   // Lookup the entry, lazily creating it if necessary.
511   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
512   if (Entry) {
513     if (Entry->getType()->getElementType() == Ty)
514       return Entry;
515 
516     // Make sure the result is of the correct type.
517     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
518     return llvm::ConstantExpr::getBitCast(Entry, PTy);
519   }
520 
521   // This is the first use or definition of a mangled name.  If there is a
522   // deferred decl with this name, remember that we need to emit it at the end
523   // of the file.
524   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
525   DeferredDecls.find(MangledName);
526   if (DDI != DeferredDecls.end()) {
527     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
528     // list, and remove it from DeferredDecls (since we don't need it anymore).
529     DeferredDeclsToEmit.push_back(DDI->second);
530     DeferredDecls.erase(DDI);
531   }
532 
533   // This function doesn't have a complete type (for example, the return
534   // type is an incomplete struct). Use a fake type instead, and make
535   // sure not to try to set attributes.
536   bool ShouldSetAttributes = true;
537   if (!isa<llvm::FunctionType>(Ty)) {
538     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
539                                  std::vector<const llvm::Type*>(), false);
540     ShouldSetAttributes = false;
541   }
542   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
543                                              llvm::Function::ExternalLinkage,
544                                              "", &getModule());
545   F->setName(MangledName);
546   if (D && ShouldSetAttributes)
547     SetFunctionAttributes(D, F);
548   Entry = F;
549   return F;
550 }
551 
552 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
553 /// non-null, then this function will use the specified type if it has to
554 /// create it (this occurs when we see a definition of the function).
555 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
556                                                  const llvm::Type *Ty) {
557   // If there was no specific requested type, just convert it now.
558   if (!Ty)
559     Ty = getTypes().ConvertType(D->getType());
560   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
561 }
562 
563 /// CreateRuntimeFunction - Create a new runtime function with the specified
564 /// type and name.
565 llvm::Constant *
566 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
567                                      const char *Name) {
568   // Convert Name to be a uniqued string from the IdentifierInfo table.
569   Name = getContext().Idents.get(Name).getName();
570   return GetOrCreateLLVMFunction(Name, FTy, 0);
571 }
572 
573 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
574 /// create and return an llvm GlobalVariable with the specified type.  If there
575 /// is something in the module with the specified name, return it potentially
576 /// bitcasted to the right type.
577 ///
578 /// If D is non-null, it specifies a decl that correspond to this.  This is used
579 /// to set the attributes on the global when it is first created.
580 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
581                                                      const llvm::PointerType*Ty,
582                                                      const VarDecl *D) {
583   // Lookup the entry, lazily creating it if necessary.
584   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
585   if (Entry) {
586     if (Entry->getType() == Ty)
587       return Entry;
588 
589     // Make sure the result is of the correct type.
590     return llvm::ConstantExpr::getBitCast(Entry, Ty);
591   }
592 
593   // This is the first use or definition of a mangled name.  If there is a
594   // deferred decl with this name, remember that we need to emit it at the end
595   // of the file.
596   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
597     DeferredDecls.find(MangledName);
598   if (DDI != DeferredDecls.end()) {
599     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
600     // list, and remove it from DeferredDecls (since we don't need it anymore).
601     DeferredDeclsToEmit.push_back(DDI->second);
602     DeferredDecls.erase(DDI);
603   }
604 
605   llvm::GlobalVariable *GV =
606     new llvm::GlobalVariable(Ty->getElementType(), false,
607                              llvm::GlobalValue::ExternalLinkage,
608                              0, "", &getModule(),
609                              0, Ty->getAddressSpace());
610   GV->setName(MangledName);
611 
612   // Handle things which are present even on external declarations.
613   if (D) {
614     // FIXME: This code is overly simple and should be merged with
615     // other global handling.
616     GV->setConstant(D->getType().isConstant(Context));
617 
618     // FIXME: Merge with other attribute handling code.
619     if (D->getStorageClass() == VarDecl::PrivateExtern)
620       setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility);
621 
622     if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>())
623       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
624   }
625 
626   return Entry = GV;
627 }
628 
629 
630 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
631 /// given global variable.  If Ty is non-null and if the global doesn't exist,
632 /// then it will be greated with the specified type instead of whatever the
633 /// normal requested type would be.
634 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
635                                                   const llvm::Type *Ty) {
636   assert(D->hasGlobalStorage() && "Not a global variable");
637   QualType ASTTy = D->getType();
638   if (Ty == 0)
639     Ty = getTypes().ConvertTypeForMem(ASTTy);
640 
641   const llvm::PointerType *PTy =
642     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
643   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
644 }
645 
646 /// CreateRuntimeVariable - Create a new runtime global variable with the
647 /// specified type and name.
648 llvm::Constant *
649 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
650                                      const char *Name) {
651   // Convert Name to be a uniqued string from the IdentifierInfo table.
652   Name = getContext().Idents.get(Name).getName();
653   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
654 }
655 
656 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
657   llvm::Constant *Init = 0;
658   QualType ASTTy = D->getType();
659 
660   if (D->getInit() == 0) {
661     // This is a tentative definition; tentative definitions are
662     // implicitly initialized with { 0 }
663     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
664     if (ASTTy->isIncompleteArrayType()) {
665       // An incomplete array is normally [ TYPE x 0 ], but we need
666       // to fix it to [ TYPE x 1 ].
667       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
668       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
669     }
670     Init = llvm::Constant::getNullValue(InitTy);
671   } else {
672     Init = EmitConstantExpr(D->getInit());
673     if (!Init) {
674       ErrorUnsupported(D, "static initializer");
675       QualType T = D->getInit()->getType();
676       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
677     }
678   }
679 
680   const llvm::Type* InitType = Init->getType();
681   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
682 
683   // Strip off a bitcast if we got one back.
684   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
685     assert(CE->getOpcode() == llvm::Instruction::BitCast);
686     Entry = CE->getOperand(0);
687   }
688 
689   // Entry is now either a Function or GlobalVariable.
690   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
691 
692   // If we already have this global and it has an initializer, then
693   // we are in the rare situation where we emitted the defining
694   // declaration of the global and are now being asked to emit a
695   // definition which would be common. This occurs, for example, in
696   // the following situation because statics can be emitted out of
697   // order:
698   //
699   //  static int x;
700   //  static int *y = &x;
701   //  static int x = 10;
702   //  int **z = &y;
703   //
704   // Bail here so we don't blow away the definition. Note that if we
705   // can't distinguish here if we emitted a definition with a null
706   // initializer, but this case is safe.
707   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
708     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
709     return;
710   }
711 
712   // We have a definition after a declaration with the wrong type.
713   // We must make a new GlobalVariable* and update everything that used OldGV
714   // (a declaration or tentative definition) with the new GlobalVariable*
715   // (which will be a definition).
716   //
717   // This happens if there is a prototype for a global (e.g.
718   // "extern int x[];") and then a definition of a different type (e.g.
719   // "int x[10];"). This also happens when an initializer has a different type
720   // from the type of the global (this happens with unions).
721   //
722   // FIXME: This also ends up happening if there's a definition followed by
723   // a tentative definition!  (Although Sema rejects that construct
724   // at the moment.)
725   if (GV == 0 ||
726       GV->getType()->getElementType() != InitType ||
727       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
728 
729     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
730     GlobalDeclMap.erase(getMangledName(D));
731 
732     // Make a new global with the correct type, this is now guaranteed to work.
733     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
734     GV->takeName(cast<llvm::GlobalValue>(Entry));
735 
736     // Replace all uses of the old global with the new global
737     llvm::Constant *NewPtrForOldDecl =
738         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
739     Entry->replaceAllUsesWith(NewPtrForOldDecl);
740 
741     // Erase the old global, since it is no longer used.
742     // FIXME: What if it was attribute used?  Dangling pointer from LLVMUsed.
743     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
744   }
745 
746   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
747     SourceManager &SM = Context.getSourceManager();
748     AddAnnotation(EmitAnnotateAttr(GV, AA,
749                               SM.getInstantiationLineNumber(D->getLocation())));
750   }
751 
752   GV->setInitializer(Init);
753   GV->setConstant(D->getType().isConstant(Context));
754   GV->setAlignment(getContext().getDeclAlignInBytes(D));
755 
756   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
757     setGlobalVisibility(GV, attr->getVisibility());
758   // FIXME: else handle -fvisibility
759 
760   // Set the llvm linkage type as appropriate.
761   if (D->getStorageClass() == VarDecl::Static)
762     GV->setLinkage(llvm::Function::InternalLinkage);
763   else if (D->getAttr<DLLImportAttr>())
764     GV->setLinkage(llvm::Function::DLLImportLinkage);
765   else if (D->getAttr<DLLExportAttr>())
766     GV->setLinkage(llvm::Function::DLLExportLinkage);
767   else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>())
768     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
769   else {
770     // FIXME: This isn't right.  This should handle common linkage and other
771     // stuff.
772     switch (D->getStorageClass()) {
773     case VarDecl::Static: assert(0 && "This case handled above");
774     case VarDecl::Auto:
775     case VarDecl::Register:
776       assert(0 && "Can't have auto or register globals");
777     case VarDecl::None:
778       if (!D->getInit() && !CompileOpts.NoCommon)
779         GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
780       else
781         GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
782       break;
783     case VarDecl::Extern:
784       // FIXME: common
785       break;
786 
787     case VarDecl::PrivateExtern:
788       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
789       // FIXME: common
790       break;
791     }
792   }
793 
794   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
795     GV->setSection(SA->getName());
796 
797   if (D->getAttr<UsedAttr>())
798     AddUsedGlobal(GV);
799 
800   // Emit global variable debug information.
801   if (CGDebugInfo *DI = getDebugInfo()) {
802     DI->setLocation(D->getLocation());
803     DI->EmitGlobalVariable(GV, D);
804   }
805 }
806 
807 
808 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
809   const llvm::FunctionType *Ty =
810     cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
811 
812   // As a special case, make sure that definitions of K&R function
813   // "type foo()" aren't declared as varargs (which forces the backend
814   // to do unnecessary work).
815   if (D->getType()->isFunctionNoProtoType()) {
816     assert(Ty->isVarArg() && "Didn't lower type as expected");
817     // Due to stret, the lowered function could have arguments.  Just create the
818     // same type as was lowered by ConvertType but strip off the varargs bit.
819     std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
820     Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
821   }
822 
823   // Get or create the prototype for teh function.
824   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
825 
826   // Strip off a bitcast if we got one back.
827   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
828     assert(CE->getOpcode() == llvm::Instruction::BitCast);
829     Entry = CE->getOperand(0);
830   }
831 
832 
833   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
834     // If the types mismatch then we have to rewrite the definition.
835     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
836            "Shouldn't replace non-declaration");
837 
838     // F is the Function* for the one with the wrong type, we must make a new
839     // Function* and update everything that used F (a declaration) with the new
840     // Function* (which will be a definition).
841     //
842     // This happens if there is a prototype for a function
843     // (e.g. "int f()") and then a definition of a different type
844     // (e.g. "int f(int x)").  Start by making a new function of the
845     // correct type, RAUW, then steal the name.
846     GlobalDeclMap.erase(getMangledName(D));
847     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
848     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
849 
850     // Replace uses of F with the Function we will endow with a body.
851     llvm::Constant *NewPtrForOldDecl =
852       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
853     Entry->replaceAllUsesWith(NewPtrForOldDecl);
854 
855     // Ok, delete the old function now, which is dead.
856     // FIXME: If it was attribute(used) the pointer will dangle from the
857     // LLVMUsed array!
858     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
859 
860     Entry = NewFn;
861   }
862 
863   llvm::Function *Fn = cast<llvm::Function>(Entry);
864 
865   CodeGenFunction(*this).GenerateCode(D, Fn);
866 
867   SetFunctionAttributesForDefinition(D, Fn);
868 
869   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
870     AddGlobalCtor(Fn, CA->getPriority());
871   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
872     AddGlobalDtor(Fn, DA->getPriority());
873 }
874 
875 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
876   const AliasAttr *AA = D->getAttr<AliasAttr>();
877   assert(AA && "Not an alias?");
878 
879   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
880 
881   // Unique the name through the identifier table.
882   const char *AliaseeName = AA->getAliasee().c_str();
883   AliaseeName = getContext().Idents.get(AliaseeName).getName();
884 
885   // Create a reference to the named value.  This ensures that it is emitted
886   // if a deferred decl.
887   llvm::Constant *Aliasee;
888   if (isa<llvm::FunctionType>(DeclTy))
889     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
890   else
891     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
892                                     llvm::PointerType::getUnqual(DeclTy), 0);
893 
894   // Create the new alias itself, but don't set a name yet.
895   llvm::GlobalValue *GA =
896     new llvm::GlobalAlias(Aliasee->getType(),
897                           llvm::Function::ExternalLinkage,
898                           "", Aliasee, &getModule());
899 
900   // See if there is already something with the alias' name in the module.
901   const char *MangledName = getMangledName(D);
902   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
903 
904   if (Entry && !Entry->isDeclaration()) {
905     // If there is a definition in the module, then it wins over the alias.
906     // This is dubious, but allow it to be safe.  Just ignore the alias.
907     GA->eraseFromParent();
908     return;
909   }
910 
911   if (Entry) {
912     // If there is a declaration in the module, then we had an extern followed
913     // by the alias, as in:
914     //   extern int test6();
915     //   ...
916     //   int test6() __attribute__((alias("test7")));
917     //
918     // Remove it and replace uses of it with the alias.
919 
920     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
921                                                           Entry->getType()));
922     // FIXME: What if it was attribute used?  Dangling pointer from LLVMUsed.
923     Entry->eraseFromParent();
924   }
925 
926   // Now we know that there is no conflict, set the name.
927   Entry = GA;
928   GA->setName(MangledName);
929 
930   // Alias should never be internal or inline.
931   SetGlobalValueAttributes(D, false, false, GA, true);
932 }
933 
934 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
935   // Make sure that this type is translated.
936   Types.UpdateCompletedType(TD);
937 }
938 
939 
940 /// getBuiltinLibFunction - Given a builtin id for a function like
941 /// "__builtin_fabsf", return a Function* for "fabsf".
942 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
943   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
944           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
945          "isn't a lib fn");
946 
947   // Get the name, skip over the __builtin_ prefix (if necessary).
948   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
949   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
950     Name += 10;
951 
952   // Get the type for the builtin.
953   Builtin::Context::GetBuiltinTypeError Error;
954   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
955   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
956 
957   const llvm::FunctionType *Ty =
958     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
959 
960   // Unique the name through the identifier table.
961   Name = getContext().Idents.get(Name).getName();
962   // FIXME: param attributes for sext/zext etc.
963   return GetOrCreateLLVMFunction(Name, Ty, 0);
964 }
965 
966 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
967                                             unsigned NumTys) {
968   return llvm::Intrinsic::getDeclaration(&getModule(),
969                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
970 }
971 
972 llvm::Function *CodeGenModule::getMemCpyFn() {
973   if (MemCpyFn) return MemCpyFn;
974   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
975   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
976 }
977 
978 llvm::Function *CodeGenModule::getMemMoveFn() {
979   if (MemMoveFn) return MemMoveFn;
980   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
981   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
982 }
983 
984 llvm::Function *CodeGenModule::getMemSetFn() {
985   if (MemSetFn) return MemSetFn;
986   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
987   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
988 }
989 
990 static void appendFieldAndPadding(CodeGenModule &CGM,
991                                   std::vector<llvm::Constant*>& Fields,
992                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
993                                   llvm::Constant* Field,
994                                   RecordDecl* RD, const llvm::StructType *STy) {
995   // Append the field.
996   Fields.push_back(Field);
997 
998   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
999 
1000   int NextStructFieldNo;
1001   if (!NextFieldD) {
1002     NextStructFieldNo = STy->getNumElements();
1003   } else {
1004     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1005   }
1006 
1007   // Append padding
1008   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1009     llvm::Constant *C =
1010       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1011 
1012     Fields.push_back(C);
1013   }
1014 }
1015 
1016 // We still need to work out the details of handling UTF-16.
1017 // See: <rdr://2996215>
1018 llvm::Constant *CodeGenModule::
1019 GetAddrOfConstantCFString(const std::string &str) {
1020   llvm::StringMapEntry<llvm::Constant *> &Entry =
1021     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1022 
1023   if (Entry.getValue())
1024     return Entry.getValue();
1025 
1026   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1027   llvm::Constant *Zeros[] = { Zero, Zero };
1028 
1029   if (!CFConstantStringClassRef) {
1030     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1031     Ty = llvm::ArrayType::get(Ty, 0);
1032 
1033     // FIXME: This is fairly broken if
1034     // __CFConstantStringClassReference is already defined, in that it
1035     // will get renamed and the user will most likely see an opaque
1036     // error message. This is a general issue with relying on
1037     // particular names.
1038     llvm::GlobalVariable *GV =
1039       new llvm::GlobalVariable(Ty, false,
1040                                llvm::GlobalVariable::ExternalLinkage, 0,
1041                                "__CFConstantStringClassReference",
1042                                &getModule());
1043 
1044     // Decay array -> ptr
1045     CFConstantStringClassRef =
1046       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1047   }
1048 
1049   QualType CFTy = getContext().getCFConstantStringType();
1050   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1051 
1052   const llvm::StructType *STy =
1053     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1054 
1055   std::vector<llvm::Constant*> Fields;
1056   RecordDecl::field_iterator Field = CFRD->field_begin();
1057 
1058   // Class pointer.
1059   FieldDecl *CurField = *Field++;
1060   FieldDecl *NextField = *Field++;
1061   appendFieldAndPadding(*this, Fields, CurField, NextField,
1062                         CFConstantStringClassRef, CFRD, STy);
1063 
1064   // Flags.
1065   CurField = NextField;
1066   NextField = *Field++;
1067   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1068   appendFieldAndPadding(*this, Fields, CurField, NextField,
1069                         llvm::ConstantInt::get(Ty, 0x07C8), CFRD, STy);
1070 
1071   // String pointer.
1072   CurField = NextField;
1073   NextField = *Field++;
1074   llvm::Constant *C = llvm::ConstantArray::get(str);
1075   C = new llvm::GlobalVariable(C->getType(), true,
1076                                llvm::GlobalValue::InternalLinkage,
1077                                C, ".str", &getModule());
1078   appendFieldAndPadding(*this, Fields, CurField, NextField,
1079                         llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2),
1080                         CFRD, STy);
1081 
1082   // String length.
1083   CurField = NextField;
1084   NextField = 0;
1085   Ty = getTypes().ConvertType(getContext().LongTy);
1086   appendFieldAndPadding(*this, Fields, CurField, NextField,
1087                         llvm::ConstantInt::get(Ty, str.length()), CFRD, STy);
1088 
1089   // The struct.
1090   C = llvm::ConstantStruct::get(STy, Fields);
1091   llvm::GlobalVariable *GV =
1092     new llvm::GlobalVariable(C->getType(), true,
1093                              llvm::GlobalVariable::InternalLinkage,
1094                              C, "", &getModule());
1095 
1096   GV->setSection("__DATA,__cfstring");
1097   Entry.setValue(GV);
1098 
1099   return GV;
1100 }
1101 
1102 /// GetStringForStringLiteral - Return the appropriate bytes for a
1103 /// string literal, properly padded to match the literal type.
1104 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1105   const char *StrData = E->getStrData();
1106   unsigned Len = E->getByteLength();
1107 
1108   const ConstantArrayType *CAT =
1109     getContext().getAsConstantArrayType(E->getType());
1110   assert(CAT && "String isn't pointer or array!");
1111 
1112   // Resize the string to the right size.
1113   std::string Str(StrData, StrData+Len);
1114   uint64_t RealLen = CAT->getSize().getZExtValue();
1115 
1116   if (E->isWide())
1117     RealLen *= getContext().Target.getWCharWidth()/8;
1118 
1119   Str.resize(RealLen, '\0');
1120 
1121   return Str;
1122 }
1123 
1124 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1125 /// constant array for the given string literal.
1126 llvm::Constant *
1127 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1128   // FIXME: This can be more efficient.
1129   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1130 }
1131 
1132 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1133 /// array for the given ObjCEncodeExpr node.
1134 llvm::Constant *
1135 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1136   std::string Str;
1137   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1138 
1139   return GetAddrOfConstantCString(Str);
1140 }
1141 
1142 
1143 /// GenerateWritableString -- Creates storage for a string literal.
1144 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1145                                              bool constant,
1146                                              CodeGenModule &CGM,
1147                                              const char *GlobalName) {
1148   // Create Constant for this string literal. Don't add a '\0'.
1149   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1150 
1151   // Create a global variable for this string
1152   return new llvm::GlobalVariable(C->getType(), constant,
1153                                   llvm::GlobalValue::InternalLinkage,
1154                                   C, GlobalName ? GlobalName : ".str",
1155                                   &CGM.getModule());
1156 }
1157 
1158 /// GetAddrOfConstantString - Returns a pointer to a character array
1159 /// containing the literal. This contents are exactly that of the
1160 /// given string, i.e. it will not be null terminated automatically;
1161 /// see GetAddrOfConstantCString. Note that whether the result is
1162 /// actually a pointer to an LLVM constant depends on
1163 /// Feature.WriteableStrings.
1164 ///
1165 /// The result has pointer to array type.
1166 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1167                                                        const char *GlobalName) {
1168   // Don't share any string literals if writable-strings is turned on.
1169   if (Features.WritableStrings)
1170     return GenerateStringLiteral(str, false, *this, GlobalName);
1171 
1172   llvm::StringMapEntry<llvm::Constant *> &Entry =
1173   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1174 
1175   if (Entry.getValue())
1176     return Entry.getValue();
1177 
1178   // Create a global variable for this.
1179   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1180   Entry.setValue(C);
1181   return C;
1182 }
1183 
1184 /// GetAddrOfConstantCString - Returns a pointer to a character
1185 /// array containing the literal and a terminating '\-'
1186 /// character. The result has pointer to array type.
1187 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1188                                                         const char *GlobalName){
1189   return GetAddrOfConstantString(str + '\0', GlobalName);
1190 }
1191 
1192 /// EmitObjCPropertyImplementations - Emit information for synthesized
1193 /// properties for an implementation.
1194 void CodeGenModule::EmitObjCPropertyImplementations(const
1195                                                     ObjCImplementationDecl *D) {
1196   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1197          e = D->propimpl_end(); i != e; ++i) {
1198     ObjCPropertyImplDecl *PID = *i;
1199 
1200     // Dynamic is just for type-checking.
1201     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1202       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1203 
1204       // Determine which methods need to be implemented, some may have
1205       // been overridden. Note that ::isSynthesized is not the method
1206       // we want, that just indicates if the decl came from a
1207       // property. What we want to know is if the method is defined in
1208       // this implementation.
1209       if (!D->getInstanceMethod(PD->getGetterName()))
1210         CodeGenFunction(*this).GenerateObjCGetter(
1211                                  const_cast<ObjCImplementationDecl *>(D), PID);
1212       if (!PD->isReadOnly() &&
1213           !D->getInstanceMethod(PD->getSetterName()))
1214         CodeGenFunction(*this).GenerateObjCSetter(
1215                                  const_cast<ObjCImplementationDecl *>(D), PID);
1216     }
1217   }
1218 }
1219 
1220 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1221 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1222   // If an error has occurred, stop code generation, but continue
1223   // parsing and semantic analysis (to ensure all warnings and errors
1224   // are emitted).
1225   if (Diags.hasErrorOccurred())
1226     return;
1227 
1228   switch (D->getKind()) {
1229   case Decl::Function:
1230   case Decl::Var:
1231     EmitGlobal(cast<ValueDecl>(D));
1232     break;
1233 
1234   case Decl::Namespace:
1235     ErrorUnsupported(D, "namespace");
1236     break;
1237 
1238     // Objective-C Decls
1239 
1240   // Forward declarations, no (immediate) code generation.
1241   case Decl::ObjCClass:
1242   case Decl::ObjCForwardProtocol:
1243   case Decl::ObjCCategory:
1244   case Decl::ObjCInterface:
1245     break;
1246 
1247   case Decl::ObjCProtocol:
1248     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1249     break;
1250 
1251   case Decl::ObjCCategoryImpl:
1252     // Categories have properties but don't support synthesize so we
1253     // can ignore them here.
1254 
1255     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1256     break;
1257 
1258   case Decl::ObjCImplementation: {
1259     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1260     EmitObjCPropertyImplementations(OMD);
1261     Runtime->GenerateClass(OMD);
1262     break;
1263   }
1264   case Decl::ObjCMethod: {
1265     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1266     // If this is not a prototype, emit the body.
1267     if (OMD->getBody())
1268       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1269     break;
1270   }
1271   case Decl::ObjCCompatibleAlias:
1272     // compatibility-alias is a directive and has no code gen.
1273     break;
1274 
1275   case Decl::LinkageSpec: {
1276     LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D);
1277     if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx)
1278       ErrorUnsupported(LSD, "linkage spec");
1279     // FIXME: implement C++ linkage, C linkage works mostly by C
1280     // language reuse already.
1281     break;
1282   }
1283 
1284   case Decl::FileScopeAsm: {
1285     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1286     std::string AsmString(AD->getAsmString()->getStrData(),
1287                           AD->getAsmString()->getByteLength());
1288 
1289     const std::string &S = getModule().getModuleInlineAsm();
1290     if (S.empty())
1291       getModule().setModuleInlineAsm(AsmString);
1292     else
1293       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1294     break;
1295   }
1296 
1297   default:
1298     // Make sure we handled everything we should, every other kind is
1299     // a non-top-level decl.  FIXME: Would be nice to have an
1300     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1301     // that easily.
1302     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1303   }
1304 }
1305