xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a27070db0c9fb2048b818a1aba8f425c1436b1d3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   if (C.getLangOptions().ObjCAutoRefCount)
92     ARCData = new ARCEntrypoints();
93   RRData = new RREntrypoints();
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   PointerWidthInBits = C.Target.getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 }
109 
110 CodeGenModule::~CodeGenModule() {
111   delete Runtime;
112   delete &ABI;
113   delete TBAA;
114   delete DebugInfo;
115   delete ARCData;
116   delete RRData;
117 }
118 
119 void CodeGenModule::createObjCRuntime() {
120   if (!Features.NeXTRuntime)
121     Runtime = CreateGNUObjCRuntime(*this);
122   else
123     Runtime = CreateMacObjCRuntime(*this);
124 }
125 
126 void CodeGenModule::Release() {
127   EmitDeferred();
128   EmitCXXGlobalInitFunc();
129   EmitCXXGlobalDtorFunc();
130   if (Runtime)
131     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132       AddGlobalCtor(ObjCInitFunction);
133   EmitCtorList(GlobalCtors, "llvm.global_ctors");
134   EmitCtorList(GlobalDtors, "llvm.global_dtors");
135   EmitAnnotations();
136   EmitLLVMUsed();
137 
138   SimplifyPersonality();
139 
140   if (getCodeGenOpts().EmitDeclMetadata)
141     EmitDeclMetadata();
142 
143   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144     EmitCoverageFile();
145 }
146 
147 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148   // Make sure that this type is translated.
149   Types.UpdateCompletedType(TD);
150   if (DebugInfo)
151     DebugInfo->UpdateCompletedType(TD);
152 }
153 
154 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155   if (!TBAA)
156     return 0;
157   return TBAA->getTBAAInfo(QTy);
158 }
159 
160 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161                                         llvm::MDNode *TBAAInfo) {
162   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163 }
164 
165 bool CodeGenModule::isTargetDarwin() const {
166   return getContext().Target.getTriple().isOSDarwin();
167 }
168 
169 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171   getDiags().Report(Context.getFullLoc(loc), diagID);
172 }
173 
174 /// ErrorUnsupported - Print out an error that codegen doesn't support the
175 /// specified stmt yet.
176 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177                                      bool OmitOnError) {
178   if (OmitOnError && getDiags().hasErrorOccurred())
179     return;
180   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                                "cannot compile this %0 yet");
182   std::string Msg = Type;
183   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184     << Msg << S->getSourceRange();
185 }
186 
187 /// ErrorUnsupported - Print out an error that codegen doesn't support the
188 /// specified decl yet.
189 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190                                      bool OmitOnError) {
191   if (OmitOnError && getDiags().hasErrorOccurred())
192     return;
193   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194                                                "cannot compile this %0 yet");
195   std::string Msg = Type;
196   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197 }
198 
199 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
200                                         const NamedDecl *D) const {
201   // Internal definitions always have default visibility.
202   if (GV->hasLocalLinkage()) {
203     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
204     return;
205   }
206 
207   // Set visibility for definitions.
208   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
209   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) {
210     Visibility Vis = LV.visibility();
211     if (Vis == DefaultVisibility)
212       if (const VarDecl *VD = dyn_cast<VarDecl>(D))
213         if (const VarDecl *Old = VD->getPreviousDeclaration()) {
214           Visibility OldVis = Old->getLinkageAndVisibility().visibility();
215           if (OldVis == HiddenVisibility)
216             Vis = HiddenVisibility;
217         }
218     GV->setVisibility(GetLLVMVisibility(Vis));
219   }
220 }
221 
222 /// Set the symbol visibility of type information (vtable and RTTI)
223 /// associated with the given type.
224 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
225                                       const CXXRecordDecl *RD,
226                                       TypeVisibilityKind TVK) const {
227   setGlobalVisibility(GV, RD);
228 
229   if (!CodeGenOpts.HiddenWeakVTables)
230     return;
231 
232   // We never want to drop the visibility for RTTI names.
233   if (TVK == TVK_ForRTTIName)
234     return;
235 
236   // We want to drop the visibility to hidden for weak type symbols.
237   // This isn't possible if there might be unresolved references
238   // elsewhere that rely on this symbol being visible.
239 
240   // This should be kept roughly in sync with setThunkVisibility
241   // in CGVTables.cpp.
242 
243   // Preconditions.
244   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
245       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
246     return;
247 
248   // Don't override an explicit visibility attribute.
249   if (RD->getExplicitVisibility())
250     return;
251 
252   switch (RD->getTemplateSpecializationKind()) {
253   // We have to disable the optimization if this is an EI definition
254   // because there might be EI declarations in other shared objects.
255   case TSK_ExplicitInstantiationDefinition:
256   case TSK_ExplicitInstantiationDeclaration:
257     return;
258 
259   // Every use of a non-template class's type information has to emit it.
260   case TSK_Undeclared:
261     break;
262 
263   // In theory, implicit instantiations can ignore the possibility of
264   // an explicit instantiation declaration because there necessarily
265   // must be an EI definition somewhere with default visibility.  In
266   // practice, it's possible to have an explicit instantiation for
267   // an arbitrary template class, and linkers aren't necessarily able
268   // to deal with mixed-visibility symbols.
269   case TSK_ExplicitSpecialization:
270   case TSK_ImplicitInstantiation:
271     if (!CodeGenOpts.HiddenWeakTemplateVTables)
272       return;
273     break;
274   }
275 
276   // If there's a key function, there may be translation units
277   // that don't have the key function's definition.  But ignore
278   // this if we're emitting RTTI under -fno-rtti.
279   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
280     if (Context.getKeyFunction(RD))
281       return;
282   }
283 
284   // Otherwise, drop the visibility to hidden.
285   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
286   GV->setUnnamedAddr(true);
287 }
288 
289 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
290   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
291 
292   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
293   if (!Str.empty())
294     return Str;
295 
296   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
297     IdentifierInfo *II = ND->getIdentifier();
298     assert(II && "Attempt to mangle unnamed decl.");
299 
300     Str = II->getName();
301     return Str;
302   }
303 
304   llvm::SmallString<256> Buffer;
305   llvm::raw_svector_ostream Out(Buffer);
306   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
307     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
308   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
309     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
310   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
311     getCXXABI().getMangleContext().mangleBlock(BD, Out);
312   else
313     getCXXABI().getMangleContext().mangleName(ND, Out);
314 
315   // Allocate space for the mangled name.
316   Out.flush();
317   size_t Length = Buffer.size();
318   char *Name = MangledNamesAllocator.Allocate<char>(Length);
319   std::copy(Buffer.begin(), Buffer.end(), Name);
320 
321   Str = llvm::StringRef(Name, Length);
322 
323   return Str;
324 }
325 
326 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
327                                         const BlockDecl *BD) {
328   MangleContext &MangleCtx = getCXXABI().getMangleContext();
329   const Decl *D = GD.getDecl();
330   llvm::raw_svector_ostream Out(Buffer.getBuffer());
331   if (D == 0)
332     MangleCtx.mangleGlobalBlock(BD, Out);
333   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
334     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
335   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
336     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
337   else
338     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
339 }
340 
341 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
342   return getModule().getNamedValue(Name);
343 }
344 
345 /// AddGlobalCtor - Add a function to the list that will be called before
346 /// main() runs.
347 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
348   // FIXME: Type coercion of void()* types.
349   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
350 }
351 
352 /// AddGlobalDtor - Add a function to the list that will be called
353 /// when the module is unloaded.
354 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
355   // FIXME: Type coercion of void()* types.
356   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
357 }
358 
359 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
360   // Ctor function type is void()*.
361   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
362   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
363 
364   // Get the type of a ctor entry, { i32, void ()* }.
365   llvm::StructType* CtorStructTy =
366     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
367                           llvm::PointerType::getUnqual(CtorFTy), NULL);
368 
369   // Construct the constructor and destructor arrays.
370   std::vector<llvm::Constant*> Ctors;
371   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
372     std::vector<llvm::Constant*> S;
373     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
374                 I->second, false));
375     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
376     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
377   }
378 
379   if (!Ctors.empty()) {
380     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
381     new llvm::GlobalVariable(TheModule, AT, false,
382                              llvm::GlobalValue::AppendingLinkage,
383                              llvm::ConstantArray::get(AT, Ctors),
384                              GlobalName);
385   }
386 }
387 
388 void CodeGenModule::EmitAnnotations() {
389   if (Annotations.empty())
390     return;
391 
392   // Create a new global variable for the ConstantStruct in the Module.
393   llvm::Constant *Array =
394   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
395                                                 Annotations.size()),
396                            Annotations);
397   llvm::GlobalValue *gv =
398   new llvm::GlobalVariable(TheModule, Array->getType(), false,
399                            llvm::GlobalValue::AppendingLinkage, Array,
400                            "llvm.global.annotations");
401   gv->setSection("llvm.metadata");
402 }
403 
404 llvm::GlobalValue::LinkageTypes
405 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
406   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
407 
408   if (Linkage == GVA_Internal)
409     return llvm::Function::InternalLinkage;
410 
411   if (D->hasAttr<DLLExportAttr>())
412     return llvm::Function::DLLExportLinkage;
413 
414   if (D->hasAttr<WeakAttr>())
415     return llvm::Function::WeakAnyLinkage;
416 
417   // In C99 mode, 'inline' functions are guaranteed to have a strong
418   // definition somewhere else, so we can use available_externally linkage.
419   if (Linkage == GVA_C99Inline)
420     return llvm::Function::AvailableExternallyLinkage;
421 
422   // In C++, the compiler has to emit a definition in every translation unit
423   // that references the function.  We should use linkonce_odr because
424   // a) if all references in this translation unit are optimized away, we
425   // don't need to codegen it.  b) if the function persists, it needs to be
426   // merged with other definitions. c) C++ has the ODR, so we know the
427   // definition is dependable.
428   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
429     return !Context.getLangOptions().AppleKext
430              ? llvm::Function::LinkOnceODRLinkage
431              : llvm::Function::InternalLinkage;
432 
433   // An explicit instantiation of a template has weak linkage, since
434   // explicit instantiations can occur in multiple translation units
435   // and must all be equivalent. However, we are not allowed to
436   // throw away these explicit instantiations.
437   if (Linkage == GVA_ExplicitTemplateInstantiation)
438     return !Context.getLangOptions().AppleKext
439              ? llvm::Function::WeakODRLinkage
440              : llvm::Function::InternalLinkage;
441 
442   // Otherwise, we have strong external linkage.
443   assert(Linkage == GVA_StrongExternal);
444   return llvm::Function::ExternalLinkage;
445 }
446 
447 
448 /// SetFunctionDefinitionAttributes - Set attributes for a global.
449 ///
450 /// FIXME: This is currently only done for aliases and functions, but not for
451 /// variables (these details are set in EmitGlobalVarDefinition for variables).
452 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
453                                                     llvm::GlobalValue *GV) {
454   SetCommonAttributes(D, GV);
455 }
456 
457 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
458                                               const CGFunctionInfo &Info,
459                                               llvm::Function *F) {
460   unsigned CallingConv;
461   AttributeListType AttributeList;
462   ConstructAttributeList(Info, D, AttributeList, CallingConv);
463   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
464                                           AttributeList.size()));
465   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
466 }
467 
468 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
469                                                            llvm::Function *F) {
470   if (CodeGenOpts.UnwindTables)
471     F->setHasUWTable();
472 
473   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
474     F->addFnAttr(llvm::Attribute::NoUnwind);
475 
476   if (D->hasAttr<AlwaysInlineAttr>())
477     F->addFnAttr(llvm::Attribute::AlwaysInline);
478 
479   if (D->hasAttr<NakedAttr>())
480     F->addFnAttr(llvm::Attribute::Naked);
481 
482   if (D->hasAttr<NoInlineAttr>())
483     F->addFnAttr(llvm::Attribute::NoInline);
484 
485   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
486     F->setUnnamedAddr(true);
487 
488   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
489     F->addFnAttr(llvm::Attribute::StackProtect);
490   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
491     F->addFnAttr(llvm::Attribute::StackProtectReq);
492 
493   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
494   if (alignment)
495     F->setAlignment(alignment);
496 
497   // C++ ABI requires 2-byte alignment for member functions.
498   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
499     F->setAlignment(2);
500 }
501 
502 void CodeGenModule::SetCommonAttributes(const Decl *D,
503                                         llvm::GlobalValue *GV) {
504   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
505     setGlobalVisibility(GV, ND);
506   else
507     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
508 
509   if (D->hasAttr<UsedAttr>())
510     AddUsedGlobal(GV);
511 
512   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
513     GV->setSection(SA->getName());
514 
515   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
516 }
517 
518 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
519                                                   llvm::Function *F,
520                                                   const CGFunctionInfo &FI) {
521   SetLLVMFunctionAttributes(D, FI, F);
522   SetLLVMFunctionAttributesForDefinition(D, F);
523 
524   F->setLinkage(llvm::Function::InternalLinkage);
525 
526   SetCommonAttributes(D, F);
527 }
528 
529 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
530                                           llvm::Function *F,
531                                           bool IsIncompleteFunction) {
532   if (unsigned IID = F->getIntrinsicID()) {
533     // If this is an intrinsic function, set the function's attributes
534     // to the intrinsic's attributes.
535     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
536     return;
537   }
538 
539   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
540 
541   if (!IsIncompleteFunction)
542     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
543 
544   // Only a few attributes are set on declarations; these may later be
545   // overridden by a definition.
546 
547   if (FD->hasAttr<DLLImportAttr>()) {
548     F->setLinkage(llvm::Function::DLLImportLinkage);
549   } else if (FD->hasAttr<WeakAttr>() ||
550              FD->isWeakImported()) {
551     // "extern_weak" is overloaded in LLVM; we probably should have
552     // separate linkage types for this.
553     F->setLinkage(llvm::Function::ExternalWeakLinkage);
554   } else {
555     F->setLinkage(llvm::Function::ExternalLinkage);
556 
557     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
558     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
559       F->setVisibility(GetLLVMVisibility(LV.visibility()));
560     }
561   }
562 
563   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
564     F->setSection(SA->getName());
565 }
566 
567 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
568   assert(!GV->isDeclaration() &&
569          "Only globals with definition can force usage.");
570   LLVMUsed.push_back(GV);
571 }
572 
573 void CodeGenModule::EmitLLVMUsed() {
574   // Don't create llvm.used if there is no need.
575   if (LLVMUsed.empty())
576     return;
577 
578   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
579 
580   // Convert LLVMUsed to what ConstantArray needs.
581   std::vector<llvm::Constant*> UsedArray;
582   UsedArray.resize(LLVMUsed.size());
583   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
584     UsedArray[i] =
585      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
586                                       i8PTy);
587   }
588 
589   if (UsedArray.empty())
590     return;
591   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
592 
593   llvm::GlobalVariable *GV =
594     new llvm::GlobalVariable(getModule(), ATy, false,
595                              llvm::GlobalValue::AppendingLinkage,
596                              llvm::ConstantArray::get(ATy, UsedArray),
597                              "llvm.used");
598 
599   GV->setSection("llvm.metadata");
600 }
601 
602 void CodeGenModule::EmitDeferred() {
603   // Emit code for any potentially referenced deferred decls.  Since a
604   // previously unused static decl may become used during the generation of code
605   // for a static function, iterate until no  changes are made.
606 
607   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
608     if (!DeferredVTables.empty()) {
609       const CXXRecordDecl *RD = DeferredVTables.back();
610       DeferredVTables.pop_back();
611       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
612       continue;
613     }
614 
615     GlobalDecl D = DeferredDeclsToEmit.back();
616     DeferredDeclsToEmit.pop_back();
617 
618     // Check to see if we've already emitted this.  This is necessary
619     // for a couple of reasons: first, decls can end up in the
620     // deferred-decls queue multiple times, and second, decls can end
621     // up with definitions in unusual ways (e.g. by an extern inline
622     // function acquiring a strong function redefinition).  Just
623     // ignore these cases.
624     //
625     // TODO: That said, looking this up multiple times is very wasteful.
626     llvm::StringRef Name = getMangledName(D);
627     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
628     assert(CGRef && "Deferred decl wasn't referenced?");
629 
630     if (!CGRef->isDeclaration())
631       continue;
632 
633     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
634     // purposes an alias counts as a definition.
635     if (isa<llvm::GlobalAlias>(CGRef))
636       continue;
637 
638     // Otherwise, emit the definition and move on to the next one.
639     EmitGlobalDefinition(D);
640   }
641 }
642 
643 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
644 /// annotation information for a given GlobalValue.  The annotation struct is
645 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
646 /// GlobalValue being annotated.  The second field is the constant string
647 /// created from the AnnotateAttr's annotation.  The third field is a constant
648 /// string containing the name of the translation unit.  The fourth field is
649 /// the line number in the file of the annotated value declaration.
650 ///
651 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
652 ///        appears to.
653 ///
654 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
655                                                 const AnnotateAttr *AA,
656                                                 unsigned LineNo) {
657   llvm::Module *M = &getModule();
658 
659   // get [N x i8] constants for the annotation string, and the filename string
660   // which are the 2nd and 3rd elements of the global annotation structure.
661   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
662   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
663                                                   AA->getAnnotation(), true);
664   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
665                                                   M->getModuleIdentifier(),
666                                                   true);
667 
668   // Get the two global values corresponding to the ConstantArrays we just
669   // created to hold the bytes of the strings.
670   llvm::GlobalValue *annoGV =
671     new llvm::GlobalVariable(*M, anno->getType(), false,
672                              llvm::GlobalValue::PrivateLinkage, anno,
673                              GV->getName());
674   // translation unit name string, emitted into the llvm.metadata section.
675   llvm::GlobalValue *unitGV =
676     new llvm::GlobalVariable(*M, unit->getType(), false,
677                              llvm::GlobalValue::PrivateLinkage, unit,
678                              ".str");
679   unitGV->setUnnamedAddr(true);
680 
681   // Create the ConstantStruct for the global annotation.
682   llvm::Constant *Fields[4] = {
683     llvm::ConstantExpr::getBitCast(GV, SBP),
684     llvm::ConstantExpr::getBitCast(annoGV, SBP),
685     llvm::ConstantExpr::getBitCast(unitGV, SBP),
686     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
687   };
688   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
689 }
690 
691 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
692   // Never defer when EmitAllDecls is specified.
693   if (Features.EmitAllDecls)
694     return false;
695 
696   return !getContext().DeclMustBeEmitted(Global);
697 }
698 
699 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
700   const AliasAttr *AA = VD->getAttr<AliasAttr>();
701   assert(AA && "No alias?");
702 
703   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
704 
705   // See if there is already something with the target's name in the module.
706   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
707 
708   llvm::Constant *Aliasee;
709   if (isa<llvm::FunctionType>(DeclTy))
710     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
711                                       /*ForVTable=*/false);
712   else
713     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
714                                     llvm::PointerType::getUnqual(DeclTy), 0);
715   if (!Entry) {
716     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
717     F->setLinkage(llvm::Function::ExternalWeakLinkage);
718     WeakRefReferences.insert(F);
719   }
720 
721   return Aliasee;
722 }
723 
724 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
725   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
726 
727   // Weak references don't produce any output by themselves.
728   if (Global->hasAttr<WeakRefAttr>())
729     return;
730 
731   // If this is an alias definition (which otherwise looks like a declaration)
732   // emit it now.
733   if (Global->hasAttr<AliasAttr>())
734     return EmitAliasDefinition(GD);
735 
736   // Ignore declarations, they will be emitted on their first use.
737   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
738     if (FD->getIdentifier()) {
739       llvm::StringRef Name = FD->getName();
740       if (Name == "_Block_object_assign") {
741         BlockObjectAssignDecl = FD;
742       } else if (Name == "_Block_object_dispose") {
743         BlockObjectDisposeDecl = FD;
744       }
745     }
746 
747     // Forward declarations are emitted lazily on first use.
748     if (!FD->doesThisDeclarationHaveABody())
749       return;
750   } else {
751     const VarDecl *VD = cast<VarDecl>(Global);
752     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
753 
754     if (VD->getIdentifier()) {
755       llvm::StringRef Name = VD->getName();
756       if (Name == "_NSConcreteGlobalBlock") {
757         NSConcreteGlobalBlockDecl = VD;
758       } else if (Name == "_NSConcreteStackBlock") {
759         NSConcreteStackBlockDecl = VD;
760       }
761     }
762 
763 
764     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
765       return;
766   }
767 
768   // Defer code generation when possible if this is a static definition, inline
769   // function etc.  These we only want to emit if they are used.
770   if (!MayDeferGeneration(Global)) {
771     // Emit the definition if it can't be deferred.
772     EmitGlobalDefinition(GD);
773     return;
774   }
775 
776   // If we're deferring emission of a C++ variable with an
777   // initializer, remember the order in which it appeared in the file.
778   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
779       cast<VarDecl>(Global)->hasInit()) {
780     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
781     CXXGlobalInits.push_back(0);
782   }
783 
784   // If the value has already been used, add it directly to the
785   // DeferredDeclsToEmit list.
786   llvm::StringRef MangledName = getMangledName(GD);
787   if (GetGlobalValue(MangledName))
788     DeferredDeclsToEmit.push_back(GD);
789   else {
790     // Otherwise, remember that we saw a deferred decl with this name.  The
791     // first use of the mangled name will cause it to move into
792     // DeferredDeclsToEmit.
793     DeferredDecls[MangledName] = GD;
794   }
795 }
796 
797 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
798   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
799 
800   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
801                                  Context.getSourceManager(),
802                                  "Generating code for declaration");
803 
804   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
805     // At -O0, don't generate IR for functions with available_externally
806     // linkage.
807     if (CodeGenOpts.OptimizationLevel == 0 &&
808         !Function->hasAttr<AlwaysInlineAttr>() &&
809         getFunctionLinkage(Function)
810                                   == llvm::Function::AvailableExternallyLinkage)
811       return;
812 
813     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
814       // Make sure to emit the definition(s) before we emit the thunks.
815       // This is necessary for the generation of certain thunks.
816       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
817         EmitCXXConstructor(CD, GD.getCtorType());
818       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
819         EmitCXXDestructor(DD, GD.getDtorType());
820       else
821         EmitGlobalFunctionDefinition(GD);
822 
823       if (Method->isVirtual())
824         getVTables().EmitThunks(GD);
825 
826       return;
827     }
828 
829     return EmitGlobalFunctionDefinition(GD);
830   }
831 
832   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
833     return EmitGlobalVarDefinition(VD);
834 
835   assert(0 && "Invalid argument to EmitGlobalDefinition()");
836 }
837 
838 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
839 /// module, create and return an llvm Function with the specified type. If there
840 /// is something in the module with the specified name, return it potentially
841 /// bitcasted to the right type.
842 ///
843 /// If D is non-null, it specifies a decl that correspond to this.  This is used
844 /// to set the attributes on the function when it is first created.
845 llvm::Constant *
846 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
847                                        const llvm::Type *Ty,
848                                        GlobalDecl D, bool ForVTable,
849                                        llvm::Attributes ExtraAttrs) {
850   // Lookup the entry, lazily creating it if necessary.
851   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
852   if (Entry) {
853     if (WeakRefReferences.count(Entry)) {
854       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
855       if (FD && !FD->hasAttr<WeakAttr>())
856         Entry->setLinkage(llvm::Function::ExternalLinkage);
857 
858       WeakRefReferences.erase(Entry);
859     }
860 
861     if (Entry->getType()->getElementType() == Ty)
862       return Entry;
863 
864     // Make sure the result is of the correct type.
865     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
866     return llvm::ConstantExpr::getBitCast(Entry, PTy);
867   }
868 
869   // This function doesn't have a complete type (for example, the return
870   // type is an incomplete struct). Use a fake type instead, and make
871   // sure not to try to set attributes.
872   bool IsIncompleteFunction = false;
873 
874   const llvm::FunctionType *FTy;
875   if (isa<llvm::FunctionType>(Ty)) {
876     FTy = cast<llvm::FunctionType>(Ty);
877   } else {
878     FTy = llvm::FunctionType::get(VoidTy, false);
879     IsIncompleteFunction = true;
880   }
881 
882   llvm::Function *F = llvm::Function::Create(FTy,
883                                              llvm::Function::ExternalLinkage,
884                                              MangledName, &getModule());
885   assert(F->getName() == MangledName && "name was uniqued!");
886   if (D.getDecl())
887     SetFunctionAttributes(D, F, IsIncompleteFunction);
888   if (ExtraAttrs != llvm::Attribute::None)
889     F->addFnAttr(ExtraAttrs);
890 
891   // This is the first use or definition of a mangled name.  If there is a
892   // deferred decl with this name, remember that we need to emit it at the end
893   // of the file.
894   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
895   if (DDI != DeferredDecls.end()) {
896     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
897     // list, and remove it from DeferredDecls (since we don't need it anymore).
898     DeferredDeclsToEmit.push_back(DDI->second);
899     DeferredDecls.erase(DDI);
900 
901   // Otherwise, there are cases we have to worry about where we're
902   // using a declaration for which we must emit a definition but where
903   // we might not find a top-level definition:
904   //   - member functions defined inline in their classes
905   //   - friend functions defined inline in some class
906   //   - special member functions with implicit definitions
907   // If we ever change our AST traversal to walk into class methods,
908   // this will be unnecessary.
909   //
910   // We also don't emit a definition for a function if it's going to be an entry
911   // in a vtable, unless it's already marked as used.
912   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
913     // Look for a declaration that's lexically in a record.
914     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
915     do {
916       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
917         if (FD->isImplicit() && !ForVTable) {
918           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
919           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
920           break;
921         } else if (FD->doesThisDeclarationHaveABody()) {
922           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
923           break;
924         }
925       }
926       FD = FD->getPreviousDeclaration();
927     } while (FD);
928   }
929 
930   // Make sure the result is of the requested type.
931   if (!IsIncompleteFunction) {
932     assert(F->getType()->getElementType() == Ty);
933     return F;
934   }
935 
936   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
937   return llvm::ConstantExpr::getBitCast(F, PTy);
938 }
939 
940 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
941 /// non-null, then this function will use the specified type if it has to
942 /// create it (this occurs when we see a definition of the function).
943 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
944                                                  const llvm::Type *Ty,
945                                                  bool ForVTable) {
946   // If there was no specific requested type, just convert it now.
947   if (!Ty)
948     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
949 
950   llvm::StringRef MangledName = getMangledName(GD);
951   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
952 }
953 
954 /// CreateRuntimeFunction - Create a new runtime function with the specified
955 /// type and name.
956 llvm::Constant *
957 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
958                                      llvm::StringRef Name,
959                                      llvm::Attributes ExtraAttrs) {
960   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
961                                  ExtraAttrs);
962 }
963 
964 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
965                                  bool ConstantInit) {
966   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
967     return false;
968 
969   if (Context.getLangOptions().CPlusPlus) {
970     if (const RecordType *Record
971           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
972       return ConstantInit &&
973              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
974              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
975   }
976 
977   return true;
978 }
979 
980 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
981 /// create and return an llvm GlobalVariable with the specified type.  If there
982 /// is something in the module with the specified name, return it potentially
983 /// bitcasted to the right type.
984 ///
985 /// If D is non-null, it specifies a decl that correspond to this.  This is used
986 /// to set the attributes on the global when it is first created.
987 llvm::Constant *
988 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
989                                      const llvm::PointerType *Ty,
990                                      const VarDecl *D,
991                                      bool UnnamedAddr) {
992   // Lookup the entry, lazily creating it if necessary.
993   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
994   if (Entry) {
995     if (WeakRefReferences.count(Entry)) {
996       if (D && !D->hasAttr<WeakAttr>())
997         Entry->setLinkage(llvm::Function::ExternalLinkage);
998 
999       WeakRefReferences.erase(Entry);
1000     }
1001 
1002     if (UnnamedAddr)
1003       Entry->setUnnamedAddr(true);
1004 
1005     if (Entry->getType() == Ty)
1006       return Entry;
1007 
1008     // Make sure the result is of the correct type.
1009     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1010   }
1011 
1012   // This is the first use or definition of a mangled name.  If there is a
1013   // deferred decl with this name, remember that we need to emit it at the end
1014   // of the file.
1015   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1016   if (DDI != DeferredDecls.end()) {
1017     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1018     // list, and remove it from DeferredDecls (since we don't need it anymore).
1019     DeferredDeclsToEmit.push_back(DDI->second);
1020     DeferredDecls.erase(DDI);
1021   }
1022 
1023   llvm::GlobalVariable *GV =
1024     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1025                              llvm::GlobalValue::ExternalLinkage,
1026                              0, MangledName, 0,
1027                              false, Ty->getAddressSpace());
1028 
1029   // Handle things which are present even on external declarations.
1030   if (D) {
1031     // FIXME: This code is overly simple and should be merged with other global
1032     // handling.
1033     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1034 
1035     // Set linkage and visibility in case we never see a definition.
1036     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1037     if (LV.linkage() != ExternalLinkage) {
1038       // Don't set internal linkage on declarations.
1039     } else {
1040       if (D->hasAttr<DLLImportAttr>())
1041         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1042       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1043         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1044 
1045       // Set visibility on a declaration only if it's explicit.
1046       if (LV.visibilityExplicit())
1047         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1048     }
1049 
1050     GV->setThreadLocal(D->isThreadSpecified());
1051   }
1052 
1053   return GV;
1054 }
1055 
1056 
1057 llvm::GlobalVariable *
1058 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1059                                       const llvm::Type *Ty,
1060                                       llvm::GlobalValue::LinkageTypes Linkage) {
1061   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1062   llvm::GlobalVariable *OldGV = 0;
1063 
1064 
1065   if (GV) {
1066     // Check if the variable has the right type.
1067     if (GV->getType()->getElementType() == Ty)
1068       return GV;
1069 
1070     // Because C++ name mangling, the only way we can end up with an already
1071     // existing global with the same name is if it has been declared extern "C".
1072       assert(GV->isDeclaration() && "Declaration has wrong type!");
1073     OldGV = GV;
1074   }
1075 
1076   // Create a new variable.
1077   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1078                                 Linkage, 0, Name);
1079 
1080   if (OldGV) {
1081     // Replace occurrences of the old variable if needed.
1082     GV->takeName(OldGV);
1083 
1084     if (!OldGV->use_empty()) {
1085       llvm::Constant *NewPtrForOldDecl =
1086       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1087       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1088     }
1089 
1090     OldGV->eraseFromParent();
1091   }
1092 
1093   return GV;
1094 }
1095 
1096 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1097 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1098 /// then it will be greated with the specified type instead of whatever the
1099 /// normal requested type would be.
1100 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1101                                                   const llvm::Type *Ty) {
1102   assert(D->hasGlobalStorage() && "Not a global variable");
1103   QualType ASTTy = D->getType();
1104   if (Ty == 0)
1105     Ty = getTypes().ConvertTypeForMem(ASTTy);
1106 
1107   const llvm::PointerType *PTy =
1108     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1109 
1110   llvm::StringRef MangledName = getMangledName(D);
1111   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1112 }
1113 
1114 /// CreateRuntimeVariable - Create a new runtime global variable with the
1115 /// specified type and name.
1116 llvm::Constant *
1117 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1118                                      llvm::StringRef Name) {
1119   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1120                                true);
1121 }
1122 
1123 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1124   assert(!D->getInit() && "Cannot emit definite definitions here!");
1125 
1126   if (MayDeferGeneration(D)) {
1127     // If we have not seen a reference to this variable yet, place it
1128     // into the deferred declarations table to be emitted if needed
1129     // later.
1130     llvm::StringRef MangledName = getMangledName(D);
1131     if (!GetGlobalValue(MangledName)) {
1132       DeferredDecls[MangledName] = D;
1133       return;
1134     }
1135   }
1136 
1137   // The tentative definition is the only definition.
1138   EmitGlobalVarDefinition(D);
1139 }
1140 
1141 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1142   if (DefinitionRequired)
1143     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1144 }
1145 
1146 llvm::GlobalVariable::LinkageTypes
1147 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1148   if (RD->getLinkage() != ExternalLinkage)
1149     return llvm::GlobalVariable::InternalLinkage;
1150 
1151   if (const CXXMethodDecl *KeyFunction
1152                                     = RD->getASTContext().getKeyFunction(RD)) {
1153     // If this class has a key function, use that to determine the linkage of
1154     // the vtable.
1155     const FunctionDecl *Def = 0;
1156     if (KeyFunction->hasBody(Def))
1157       KeyFunction = cast<CXXMethodDecl>(Def);
1158 
1159     switch (KeyFunction->getTemplateSpecializationKind()) {
1160       case TSK_Undeclared:
1161       case TSK_ExplicitSpecialization:
1162         // When compiling with optimizations turned on, we emit all vtables,
1163         // even if the key function is not defined in the current translation
1164         // unit. If this is the case, use available_externally linkage.
1165         if (!Def && CodeGenOpts.OptimizationLevel)
1166           return llvm::GlobalVariable::AvailableExternallyLinkage;
1167 
1168         if (KeyFunction->isInlined())
1169           return !Context.getLangOptions().AppleKext ?
1170                    llvm::GlobalVariable::LinkOnceODRLinkage :
1171                    llvm::Function::InternalLinkage;
1172 
1173         return llvm::GlobalVariable::ExternalLinkage;
1174 
1175       case TSK_ImplicitInstantiation:
1176         return !Context.getLangOptions().AppleKext ?
1177                  llvm::GlobalVariable::LinkOnceODRLinkage :
1178                  llvm::Function::InternalLinkage;
1179 
1180       case TSK_ExplicitInstantiationDefinition:
1181         return !Context.getLangOptions().AppleKext ?
1182                  llvm::GlobalVariable::WeakODRLinkage :
1183                  llvm::Function::InternalLinkage;
1184 
1185       case TSK_ExplicitInstantiationDeclaration:
1186         // FIXME: Use available_externally linkage. However, this currently
1187         // breaks LLVM's build due to undefined symbols.
1188         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1189         return !Context.getLangOptions().AppleKext ?
1190                  llvm::GlobalVariable::LinkOnceODRLinkage :
1191                  llvm::Function::InternalLinkage;
1192     }
1193   }
1194 
1195   if (Context.getLangOptions().AppleKext)
1196     return llvm::Function::InternalLinkage;
1197 
1198   switch (RD->getTemplateSpecializationKind()) {
1199   case TSK_Undeclared:
1200   case TSK_ExplicitSpecialization:
1201   case TSK_ImplicitInstantiation:
1202     // FIXME: Use available_externally linkage. However, this currently
1203     // breaks LLVM's build due to undefined symbols.
1204     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1205   case TSK_ExplicitInstantiationDeclaration:
1206     return llvm::GlobalVariable::LinkOnceODRLinkage;
1207 
1208   case TSK_ExplicitInstantiationDefinition:
1209       return llvm::GlobalVariable::WeakODRLinkage;
1210   }
1211 
1212   // Silence GCC warning.
1213   return llvm::GlobalVariable::LinkOnceODRLinkage;
1214 }
1215 
1216 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1217     return Context.toCharUnitsFromBits(
1218       TheTargetData.getTypeStoreSizeInBits(Ty));
1219 }
1220 
1221 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1222   llvm::Constant *Init = 0;
1223   QualType ASTTy = D->getType();
1224   bool NonConstInit = false;
1225 
1226   const Expr *InitExpr = D->getAnyInitializer();
1227 
1228   if (!InitExpr) {
1229     // This is a tentative definition; tentative definitions are
1230     // implicitly initialized with { 0 }.
1231     //
1232     // Note that tentative definitions are only emitted at the end of
1233     // a translation unit, so they should never have incomplete
1234     // type. In addition, EmitTentativeDefinition makes sure that we
1235     // never attempt to emit a tentative definition if a real one
1236     // exists. A use may still exists, however, so we still may need
1237     // to do a RAUW.
1238     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1239     Init = EmitNullConstant(D->getType());
1240   } else {
1241     Init = EmitConstantExpr(InitExpr, D->getType());
1242     if (!Init) {
1243       QualType T = InitExpr->getType();
1244       if (D->getType()->isReferenceType())
1245         T = D->getType();
1246 
1247       if (getLangOptions().CPlusPlus) {
1248         Init = EmitNullConstant(T);
1249         NonConstInit = true;
1250       } else {
1251         ErrorUnsupported(D, "static initializer");
1252         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1253       }
1254     } else {
1255       // We don't need an initializer, so remove the entry for the delayed
1256       // initializer position (just in case this entry was delayed).
1257       if (getLangOptions().CPlusPlus)
1258         DelayedCXXInitPosition.erase(D);
1259     }
1260   }
1261 
1262   const llvm::Type* InitType = Init->getType();
1263   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1264 
1265   // Strip off a bitcast if we got one back.
1266   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1267     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1268            // all zero index gep.
1269            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1270     Entry = CE->getOperand(0);
1271   }
1272 
1273   // Entry is now either a Function or GlobalVariable.
1274   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1275 
1276   // We have a definition after a declaration with the wrong type.
1277   // We must make a new GlobalVariable* and update everything that used OldGV
1278   // (a declaration or tentative definition) with the new GlobalVariable*
1279   // (which will be a definition).
1280   //
1281   // This happens if there is a prototype for a global (e.g.
1282   // "extern int x[];") and then a definition of a different type (e.g.
1283   // "int x[10];"). This also happens when an initializer has a different type
1284   // from the type of the global (this happens with unions).
1285   if (GV == 0 ||
1286       GV->getType()->getElementType() != InitType ||
1287       GV->getType()->getAddressSpace() !=
1288         getContext().getTargetAddressSpace(ASTTy)) {
1289 
1290     // Move the old entry aside so that we'll create a new one.
1291     Entry->setName(llvm::StringRef());
1292 
1293     // Make a new global with the correct type, this is now guaranteed to work.
1294     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1295 
1296     // Replace all uses of the old global with the new global
1297     llvm::Constant *NewPtrForOldDecl =
1298         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1299     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1300 
1301     // Erase the old global, since it is no longer used.
1302     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1303   }
1304 
1305   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1306     SourceManager &SM = Context.getSourceManager();
1307     AddAnnotation(EmitAnnotateAttr(GV, AA,
1308                               SM.getInstantiationLineNumber(D->getLocation())));
1309   }
1310 
1311   GV->setInitializer(Init);
1312 
1313   // If it is safe to mark the global 'constant', do so now.
1314   GV->setConstant(false);
1315   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1316     GV->setConstant(true);
1317 
1318   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1319 
1320   // Set the llvm linkage type as appropriate.
1321   llvm::GlobalValue::LinkageTypes Linkage =
1322     GetLLVMLinkageVarDefinition(D, GV);
1323   GV->setLinkage(Linkage);
1324   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1325     // common vars aren't constant even if declared const.
1326     GV->setConstant(false);
1327 
1328   SetCommonAttributes(D, GV);
1329 
1330   // Emit the initializer function if necessary.
1331   if (NonConstInit)
1332     EmitCXXGlobalVarDeclInitFunc(D, GV);
1333 
1334   // Emit global variable debug information.
1335   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1336     DI->setLocation(D->getLocation());
1337     DI->EmitGlobalVariable(GV, D);
1338   }
1339 }
1340 
1341 llvm::GlobalValue::LinkageTypes
1342 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1343                                            llvm::GlobalVariable *GV) {
1344   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1345   if (Linkage == GVA_Internal)
1346     return llvm::Function::InternalLinkage;
1347   else if (D->hasAttr<DLLImportAttr>())
1348     return llvm::Function::DLLImportLinkage;
1349   else if (D->hasAttr<DLLExportAttr>())
1350     return llvm::Function::DLLExportLinkage;
1351   else if (D->hasAttr<WeakAttr>()) {
1352     if (GV->isConstant())
1353       return llvm::GlobalVariable::WeakODRLinkage;
1354     else
1355       return llvm::GlobalVariable::WeakAnyLinkage;
1356   } else if (Linkage == GVA_TemplateInstantiation ||
1357              Linkage == GVA_ExplicitTemplateInstantiation)
1358     return llvm::GlobalVariable::WeakODRLinkage;
1359   else if (!getLangOptions().CPlusPlus &&
1360            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1361              D->getAttr<CommonAttr>()) &&
1362            !D->hasExternalStorage() && !D->getInit() &&
1363            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1364     // Thread local vars aren't considered common linkage.
1365     return llvm::GlobalVariable::CommonLinkage;
1366   }
1367   return llvm::GlobalVariable::ExternalLinkage;
1368 }
1369 
1370 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1371 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1372 /// existing call uses of the old function in the module, this adjusts them to
1373 /// call the new function directly.
1374 ///
1375 /// This is not just a cleanup: the always_inline pass requires direct calls to
1376 /// functions to be able to inline them.  If there is a bitcast in the way, it
1377 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1378 /// run at -O0.
1379 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1380                                                       llvm::Function *NewFn) {
1381   // If we're redefining a global as a function, don't transform it.
1382   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1383   if (OldFn == 0) return;
1384 
1385   const llvm::Type *NewRetTy = NewFn->getReturnType();
1386   llvm::SmallVector<llvm::Value*, 4> ArgList;
1387 
1388   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1389        UI != E; ) {
1390     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1391     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1392     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1393     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1394     llvm::CallSite CS(CI);
1395     if (!CI || !CS.isCallee(I)) continue;
1396 
1397     // If the return types don't match exactly, and if the call isn't dead, then
1398     // we can't transform this call.
1399     if (CI->getType() != NewRetTy && !CI->use_empty())
1400       continue;
1401 
1402     // If the function was passed too few arguments, don't transform.  If extra
1403     // arguments were passed, we silently drop them.  If any of the types
1404     // mismatch, we don't transform.
1405     unsigned ArgNo = 0;
1406     bool DontTransform = false;
1407     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1408          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1409       if (CS.arg_size() == ArgNo ||
1410           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1411         DontTransform = true;
1412         break;
1413       }
1414     }
1415     if (DontTransform)
1416       continue;
1417 
1418     // Okay, we can transform this.  Create the new call instruction and copy
1419     // over the required information.
1420     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1421     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1422                                                      ArgList.end(), "", CI);
1423     ArgList.clear();
1424     if (!NewCall->getType()->isVoidTy())
1425       NewCall->takeName(CI);
1426     NewCall->setAttributes(CI->getAttributes());
1427     NewCall->setCallingConv(CI->getCallingConv());
1428 
1429     // Finally, remove the old call, replacing any uses with the new one.
1430     if (!CI->use_empty())
1431       CI->replaceAllUsesWith(NewCall);
1432 
1433     // Copy debug location attached to CI.
1434     if (!CI->getDebugLoc().isUnknown())
1435       NewCall->setDebugLoc(CI->getDebugLoc());
1436     CI->eraseFromParent();
1437   }
1438 }
1439 
1440 
1441 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1442   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1443 
1444   // Compute the function info and LLVM type.
1445   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1446   bool variadic = false;
1447   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1448     variadic = fpt->isVariadic();
1449   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1450 
1451   // Get or create the prototype for the function.
1452   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1453 
1454   // Strip off a bitcast if we got one back.
1455   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1456     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1457     Entry = CE->getOperand(0);
1458   }
1459 
1460 
1461   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1462     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1463 
1464     // If the types mismatch then we have to rewrite the definition.
1465     assert(OldFn->isDeclaration() &&
1466            "Shouldn't replace non-declaration");
1467 
1468     // F is the Function* for the one with the wrong type, we must make a new
1469     // Function* and update everything that used F (a declaration) with the new
1470     // Function* (which will be a definition).
1471     //
1472     // This happens if there is a prototype for a function
1473     // (e.g. "int f()") and then a definition of a different type
1474     // (e.g. "int f(int x)").  Move the old function aside so that it
1475     // doesn't interfere with GetAddrOfFunction.
1476     OldFn->setName(llvm::StringRef());
1477     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1478 
1479     // If this is an implementation of a function without a prototype, try to
1480     // replace any existing uses of the function (which may be calls) with uses
1481     // of the new function
1482     if (D->getType()->isFunctionNoProtoType()) {
1483       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1484       OldFn->removeDeadConstantUsers();
1485     }
1486 
1487     // Replace uses of F with the Function we will endow with a body.
1488     if (!Entry->use_empty()) {
1489       llvm::Constant *NewPtrForOldDecl =
1490         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1491       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1492     }
1493 
1494     // Ok, delete the old function now, which is dead.
1495     OldFn->eraseFromParent();
1496 
1497     Entry = NewFn;
1498   }
1499 
1500   // We need to set linkage and visibility on the function before
1501   // generating code for it because various parts of IR generation
1502   // want to propagate this information down (e.g. to local static
1503   // declarations).
1504   llvm::Function *Fn = cast<llvm::Function>(Entry);
1505   setFunctionLinkage(D, Fn);
1506 
1507   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1508   setGlobalVisibility(Fn, D);
1509 
1510   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1511 
1512   SetFunctionDefinitionAttributes(D, Fn);
1513   SetLLVMFunctionAttributesForDefinition(D, Fn);
1514 
1515   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1516     AddGlobalCtor(Fn, CA->getPriority());
1517   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1518     AddGlobalDtor(Fn, DA->getPriority());
1519 }
1520 
1521 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1522   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1523   const AliasAttr *AA = D->getAttr<AliasAttr>();
1524   assert(AA && "Not an alias?");
1525 
1526   llvm::StringRef MangledName = getMangledName(GD);
1527 
1528   // If there is a definition in the module, then it wins over the alias.
1529   // This is dubious, but allow it to be safe.  Just ignore the alias.
1530   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1531   if (Entry && !Entry->isDeclaration())
1532     return;
1533 
1534   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1535 
1536   // Create a reference to the named value.  This ensures that it is emitted
1537   // if a deferred decl.
1538   llvm::Constant *Aliasee;
1539   if (isa<llvm::FunctionType>(DeclTy))
1540     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1541                                       /*ForVTable=*/false);
1542   else
1543     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1544                                     llvm::PointerType::getUnqual(DeclTy), 0);
1545 
1546   // Create the new alias itself, but don't set a name yet.
1547   llvm::GlobalValue *GA =
1548     new llvm::GlobalAlias(Aliasee->getType(),
1549                           llvm::Function::ExternalLinkage,
1550                           "", Aliasee, &getModule());
1551 
1552   if (Entry) {
1553     assert(Entry->isDeclaration());
1554 
1555     // If there is a declaration in the module, then we had an extern followed
1556     // by the alias, as in:
1557     //   extern int test6();
1558     //   ...
1559     //   int test6() __attribute__((alias("test7")));
1560     //
1561     // Remove it and replace uses of it with the alias.
1562     GA->takeName(Entry);
1563 
1564     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1565                                                           Entry->getType()));
1566     Entry->eraseFromParent();
1567   } else {
1568     GA->setName(MangledName);
1569   }
1570 
1571   // Set attributes which are particular to an alias; this is a
1572   // specialization of the attributes which may be set on a global
1573   // variable/function.
1574   if (D->hasAttr<DLLExportAttr>()) {
1575     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1576       // The dllexport attribute is ignored for undefined symbols.
1577       if (FD->hasBody())
1578         GA->setLinkage(llvm::Function::DLLExportLinkage);
1579     } else {
1580       GA->setLinkage(llvm::Function::DLLExportLinkage);
1581     }
1582   } else if (D->hasAttr<WeakAttr>() ||
1583              D->hasAttr<WeakRefAttr>() ||
1584              D->isWeakImported()) {
1585     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1586   }
1587 
1588   SetCommonAttributes(D, GA);
1589 }
1590 
1591 /// getBuiltinLibFunction - Given a builtin id for a function like
1592 /// "__builtin_fabsf", return a Function* for "fabsf".
1593 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1594                                                   unsigned BuiltinID) {
1595   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1596           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1597          "isn't a lib fn");
1598 
1599   // Get the name, skip over the __builtin_ prefix (if necessary).
1600   llvm::StringRef Name;
1601   GlobalDecl D(FD);
1602 
1603   // If the builtin has been declared explicitly with an assembler label,
1604   // use the mangled name. This differs from the plain label on platforms
1605   // that prefix labels.
1606   if (FD->hasAttr<AsmLabelAttr>())
1607     Name = getMangledName(D);
1608   else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1609     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1610   else
1611     Name = Context.BuiltinInfo.GetName(BuiltinID);
1612 
1613 
1614   const llvm::FunctionType *Ty =
1615     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1616 
1617   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1618 }
1619 
1620 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1621                                             unsigned NumTys) {
1622   return llvm::Intrinsic::getDeclaration(&getModule(),
1623                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1624 }
1625 
1626 static llvm::StringMapEntry<llvm::Constant*> &
1627 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1628                          const StringLiteral *Literal,
1629                          bool TargetIsLSB,
1630                          bool &IsUTF16,
1631                          unsigned &StringLength) {
1632   llvm::StringRef String = Literal->getString();
1633   unsigned NumBytes = String.size();
1634 
1635   // Check for simple case.
1636   if (!Literal->containsNonAsciiOrNull()) {
1637     StringLength = NumBytes;
1638     return Map.GetOrCreateValue(String);
1639   }
1640 
1641   // Otherwise, convert the UTF8 literals into a byte string.
1642   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1643   const UTF8 *FromPtr = (UTF8 *)String.data();
1644   UTF16 *ToPtr = &ToBuf[0];
1645 
1646   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1647                            &ToPtr, ToPtr + NumBytes,
1648                            strictConversion);
1649 
1650   // ConvertUTF8toUTF16 returns the length in ToPtr.
1651   StringLength = ToPtr - &ToBuf[0];
1652 
1653   // Render the UTF-16 string into a byte array and convert to the target byte
1654   // order.
1655   //
1656   // FIXME: This isn't something we should need to do here.
1657   llvm::SmallString<128> AsBytes;
1658   AsBytes.reserve(StringLength * 2);
1659   for (unsigned i = 0; i != StringLength; ++i) {
1660     unsigned short Val = ToBuf[i];
1661     if (TargetIsLSB) {
1662       AsBytes.push_back(Val & 0xFF);
1663       AsBytes.push_back(Val >> 8);
1664     } else {
1665       AsBytes.push_back(Val >> 8);
1666       AsBytes.push_back(Val & 0xFF);
1667     }
1668   }
1669   // Append one extra null character, the second is automatically added by our
1670   // caller.
1671   AsBytes.push_back(0);
1672 
1673   IsUTF16 = true;
1674   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1675 }
1676 
1677 static llvm::StringMapEntry<llvm::Constant*> &
1678 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1679 		       const StringLiteral *Literal,
1680 		       unsigned &StringLength)
1681 {
1682 	llvm::StringRef String = Literal->getString();
1683 	StringLength = String.size();
1684 	return Map.GetOrCreateValue(String);
1685 }
1686 
1687 llvm::Constant *
1688 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1689   unsigned StringLength = 0;
1690   bool isUTF16 = false;
1691   llvm::StringMapEntry<llvm::Constant*> &Entry =
1692     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1693                              getTargetData().isLittleEndian(),
1694                              isUTF16, StringLength);
1695 
1696   if (llvm::Constant *C = Entry.getValue())
1697     return C;
1698 
1699   llvm::Constant *Zero =
1700       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1701   llvm::Constant *Zeros[] = { Zero, Zero };
1702 
1703   // If we don't already have it, get __CFConstantStringClassReference.
1704   if (!CFConstantStringClassRef) {
1705     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1706     Ty = llvm::ArrayType::get(Ty, 0);
1707     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1708                                            "__CFConstantStringClassReference");
1709     // Decay array -> ptr
1710     CFConstantStringClassRef =
1711       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1712   }
1713 
1714   QualType CFTy = getContext().getCFConstantStringType();
1715 
1716   const llvm::StructType *STy =
1717     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1718 
1719   std::vector<llvm::Constant*> Fields(4);
1720 
1721   // Class pointer.
1722   Fields[0] = CFConstantStringClassRef;
1723 
1724   // Flags.
1725   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1726   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1727     llvm::ConstantInt::get(Ty, 0x07C8);
1728 
1729   // String pointer.
1730   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1731 
1732   llvm::GlobalValue::LinkageTypes Linkage;
1733   bool isConstant;
1734   if (isUTF16) {
1735     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1736     Linkage = llvm::GlobalValue::InternalLinkage;
1737     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1738     // does make plain ascii ones writable.
1739     isConstant = true;
1740   } else {
1741     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1742     // when using private linkage. It is not clear if this is a bug in ld
1743     // or a reasonable new restriction.
1744     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1745     isConstant = !Features.WritableStrings;
1746   }
1747 
1748   llvm::GlobalVariable *GV =
1749     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1750                              ".str");
1751   GV->setUnnamedAddr(true);
1752   if (isUTF16) {
1753     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1754     GV->setAlignment(Align.getQuantity());
1755   } else {
1756     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1757     GV->setAlignment(Align.getQuantity());
1758   }
1759   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1760 
1761   // String length.
1762   Ty = getTypes().ConvertType(getContext().LongTy);
1763   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1764 
1765   // The struct.
1766   C = llvm::ConstantStruct::get(STy, Fields);
1767   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1768                                 llvm::GlobalVariable::PrivateLinkage, C,
1769                                 "_unnamed_cfstring_");
1770   if (const char *Sect = getContext().Target.getCFStringSection())
1771     GV->setSection(Sect);
1772   Entry.setValue(GV);
1773 
1774   return GV;
1775 }
1776 
1777 llvm::Constant *
1778 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1779   unsigned StringLength = 0;
1780   llvm::StringMapEntry<llvm::Constant*> &Entry =
1781     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1782 
1783   if (llvm::Constant *C = Entry.getValue())
1784     return C;
1785 
1786   llvm::Constant *Zero =
1787   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1788   llvm::Constant *Zeros[] = { Zero, Zero };
1789 
1790   // If we don't already have it, get _NSConstantStringClassReference.
1791   if (!ConstantStringClassRef) {
1792     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1793     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1794     llvm::Constant *GV;
1795     if (Features.ObjCNonFragileABI) {
1796       std::string str =
1797         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1798                             : "OBJC_CLASS_$_" + StringClass;
1799       GV = getObjCRuntime().GetClassGlobal(str);
1800       // Make sure the result is of the correct type.
1801       const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1802       ConstantStringClassRef =
1803         llvm::ConstantExpr::getBitCast(GV, PTy);
1804     } else {
1805       std::string str =
1806         StringClass.empty() ? "_NSConstantStringClassReference"
1807                             : "_" + StringClass + "ClassReference";
1808       const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1809       GV = CreateRuntimeVariable(PTy, str);
1810       // Decay array -> ptr
1811       ConstantStringClassRef =
1812         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1813     }
1814   }
1815 
1816   QualType NSTy = getContext().getNSConstantStringType();
1817 
1818   const llvm::StructType *STy =
1819   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1820 
1821   std::vector<llvm::Constant*> Fields(3);
1822 
1823   // Class pointer.
1824   Fields[0] = ConstantStringClassRef;
1825 
1826   // String pointer.
1827   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1828 
1829   llvm::GlobalValue::LinkageTypes Linkage;
1830   bool isConstant;
1831   Linkage = llvm::GlobalValue::PrivateLinkage;
1832   isConstant = !Features.WritableStrings;
1833 
1834   llvm::GlobalVariable *GV =
1835   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1836                            ".str");
1837   GV->setUnnamedAddr(true);
1838   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1839   GV->setAlignment(Align.getQuantity());
1840   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1841 
1842   // String length.
1843   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1844   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1845 
1846   // The struct.
1847   C = llvm::ConstantStruct::get(STy, Fields);
1848   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1849                                 llvm::GlobalVariable::PrivateLinkage, C,
1850                                 "_unnamed_nsstring_");
1851   // FIXME. Fix section.
1852   if (const char *Sect =
1853         Features.ObjCNonFragileABI
1854           ? getContext().Target.getNSStringNonFragileABISection()
1855           : getContext().Target.getNSStringSection())
1856     GV->setSection(Sect);
1857   Entry.setValue(GV);
1858 
1859   return GV;
1860 }
1861 
1862 /// GetStringForStringLiteral - Return the appropriate bytes for a
1863 /// string literal, properly padded to match the literal type.
1864 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1865   const ASTContext &Context = getContext();
1866   const ConstantArrayType *CAT =
1867     Context.getAsConstantArrayType(E->getType());
1868   assert(CAT && "String isn't pointer or array!");
1869 
1870   // Resize the string to the right size.
1871   uint64_t RealLen = CAT->getSize().getZExtValue();
1872 
1873   if (E->isWide())
1874     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1875 
1876   std::string Str = E->getString().str();
1877   Str.resize(RealLen, '\0');
1878 
1879   return Str;
1880 }
1881 
1882 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1883 /// constant array for the given string literal.
1884 llvm::Constant *
1885 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1886   // FIXME: This can be more efficient.
1887   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1888   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1889   if (S->isWide()) {
1890     llvm::Type *DestTy =
1891         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1892     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1893   }
1894   return C;
1895 }
1896 
1897 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1898 /// array for the given ObjCEncodeExpr node.
1899 llvm::Constant *
1900 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1901   std::string Str;
1902   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1903 
1904   return GetAddrOfConstantCString(Str);
1905 }
1906 
1907 
1908 /// GenerateWritableString -- Creates storage for a string literal.
1909 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1910                                              bool constant,
1911                                              CodeGenModule &CGM,
1912                                              const char *GlobalName) {
1913   // Create Constant for this string literal. Don't add a '\0'.
1914   llvm::Constant *C =
1915       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1916 
1917   // Create a global variable for this string
1918   llvm::GlobalVariable *GV =
1919     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1920                              llvm::GlobalValue::PrivateLinkage,
1921                              C, GlobalName);
1922   GV->setAlignment(1);
1923   GV->setUnnamedAddr(true);
1924   return GV;
1925 }
1926 
1927 /// GetAddrOfConstantString - Returns a pointer to a character array
1928 /// containing the literal. This contents are exactly that of the
1929 /// given string, i.e. it will not be null terminated automatically;
1930 /// see GetAddrOfConstantCString. Note that whether the result is
1931 /// actually a pointer to an LLVM constant depends on
1932 /// Feature.WriteableStrings.
1933 ///
1934 /// The result has pointer to array type.
1935 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1936                                                        const char *GlobalName) {
1937   bool IsConstant = !Features.WritableStrings;
1938 
1939   // Get the default prefix if a name wasn't specified.
1940   if (!GlobalName)
1941     GlobalName = ".str";
1942 
1943   // Don't share any string literals if strings aren't constant.
1944   if (!IsConstant)
1945     return GenerateStringLiteral(Str, false, *this, GlobalName);
1946 
1947   llvm::StringMapEntry<llvm::Constant *> &Entry =
1948     ConstantStringMap.GetOrCreateValue(Str);
1949 
1950   if (Entry.getValue())
1951     return Entry.getValue();
1952 
1953   // Create a global variable for this.
1954   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1955   Entry.setValue(C);
1956   return C;
1957 }
1958 
1959 /// GetAddrOfConstantCString - Returns a pointer to a character
1960 /// array containing the literal and a terminating '\0'
1961 /// character. The result has pointer to array type.
1962 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1963                                                         const char *GlobalName){
1964   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1965   return GetAddrOfConstantString(StrWithNull, GlobalName);
1966 }
1967 
1968 /// EmitObjCPropertyImplementations - Emit information for synthesized
1969 /// properties for an implementation.
1970 void CodeGenModule::EmitObjCPropertyImplementations(const
1971                                                     ObjCImplementationDecl *D) {
1972   for (ObjCImplementationDecl::propimpl_iterator
1973          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1974     ObjCPropertyImplDecl *PID = *i;
1975 
1976     // Dynamic is just for type-checking.
1977     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1978       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1979 
1980       // Determine which methods need to be implemented, some may have
1981       // been overridden. Note that ::isSynthesized is not the method
1982       // we want, that just indicates if the decl came from a
1983       // property. What we want to know is if the method is defined in
1984       // this implementation.
1985       if (!D->getInstanceMethod(PD->getGetterName()))
1986         CodeGenFunction(*this).GenerateObjCGetter(
1987                                  const_cast<ObjCImplementationDecl *>(D), PID);
1988       if (!PD->isReadOnly() &&
1989           !D->getInstanceMethod(PD->getSetterName()))
1990         CodeGenFunction(*this).GenerateObjCSetter(
1991                                  const_cast<ObjCImplementationDecl *>(D), PID);
1992     }
1993   }
1994 }
1995 
1996 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1997   ObjCInterfaceDecl *iface
1998     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1999   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2000        ivar; ivar = ivar->getNextIvar())
2001     if (ivar->getType().isDestructedType())
2002       return true;
2003 
2004   return false;
2005 }
2006 
2007 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2008 /// for an implementation.
2009 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2010   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2011   if (needsDestructMethod(D)) {
2012     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2013     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2014     ObjCMethodDecl *DTORMethod =
2015       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2016                              cxxSelector, getContext().VoidTy, 0, D, true,
2017                              false, true, false, ObjCMethodDecl::Required);
2018     D->addInstanceMethod(DTORMethod);
2019     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2020     D->setHasCXXStructors(true);
2021   }
2022 
2023   // If the implementation doesn't have any ivar initializers, we don't need
2024   // a .cxx_construct.
2025   if (D->getNumIvarInitializers() == 0)
2026     return;
2027 
2028   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2029   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2030   // The constructor returns 'self'.
2031   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2032                                                 D->getLocation(),
2033                                                 D->getLocation(), cxxSelector,
2034                                                 getContext().getObjCIdType(), 0,
2035                                                 D, true, false, true, false,
2036                                                 ObjCMethodDecl::Required);
2037   D->addInstanceMethod(CTORMethod);
2038   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2039   D->setHasCXXStructors(true);
2040 }
2041 
2042 /// EmitNamespace - Emit all declarations in a namespace.
2043 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2044   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2045        I != E; ++I)
2046     EmitTopLevelDecl(*I);
2047 }
2048 
2049 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2050 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2051   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2052       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2053     ErrorUnsupported(LSD, "linkage spec");
2054     return;
2055   }
2056 
2057   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2058        I != E; ++I)
2059     EmitTopLevelDecl(*I);
2060 }
2061 
2062 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2063 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2064   // If an error has occurred, stop code generation, but continue
2065   // parsing and semantic analysis (to ensure all warnings and errors
2066   // are emitted).
2067   if (Diags.hasErrorOccurred())
2068     return;
2069 
2070   // Ignore dependent declarations.
2071   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2072     return;
2073 
2074   switch (D->getKind()) {
2075   case Decl::CXXConversion:
2076   case Decl::CXXMethod:
2077   case Decl::Function:
2078     // Skip function templates
2079     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2080         cast<FunctionDecl>(D)->isLateTemplateParsed())
2081       return;
2082 
2083     EmitGlobal(cast<FunctionDecl>(D));
2084     break;
2085 
2086   case Decl::Var:
2087     EmitGlobal(cast<VarDecl>(D));
2088     break;
2089 
2090   // Indirect fields from global anonymous structs and unions can be
2091   // ignored; only the actual variable requires IR gen support.
2092   case Decl::IndirectField:
2093     break;
2094 
2095   // C++ Decls
2096   case Decl::Namespace:
2097     EmitNamespace(cast<NamespaceDecl>(D));
2098     break;
2099     // No code generation needed.
2100   case Decl::UsingShadow:
2101   case Decl::Using:
2102   case Decl::UsingDirective:
2103   case Decl::ClassTemplate:
2104   case Decl::FunctionTemplate:
2105   case Decl::TypeAliasTemplate:
2106   case Decl::NamespaceAlias:
2107   case Decl::Block:
2108     break;
2109   case Decl::CXXConstructor:
2110     // Skip function templates
2111     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2112         cast<FunctionDecl>(D)->isLateTemplateParsed())
2113       return;
2114 
2115     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2116     break;
2117   case Decl::CXXDestructor:
2118     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2119       return;
2120     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2121     break;
2122 
2123   case Decl::StaticAssert:
2124     // Nothing to do.
2125     break;
2126 
2127   // Objective-C Decls
2128 
2129   // Forward declarations, no (immediate) code generation.
2130   case Decl::ObjCClass:
2131   case Decl::ObjCForwardProtocol:
2132   case Decl::ObjCInterface:
2133     break;
2134 
2135   case Decl::ObjCCategory: {
2136     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2137     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2138       Context.ResetObjCLayout(CD->getClassInterface());
2139     break;
2140   }
2141 
2142   case Decl::ObjCProtocol:
2143     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2144     break;
2145 
2146   case Decl::ObjCCategoryImpl:
2147     // Categories have properties but don't support synthesize so we
2148     // can ignore them here.
2149     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2150     break;
2151 
2152   case Decl::ObjCImplementation: {
2153     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2154     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2155       Context.ResetObjCLayout(OMD->getClassInterface());
2156     EmitObjCPropertyImplementations(OMD);
2157     EmitObjCIvarInitializations(OMD);
2158     Runtime->GenerateClass(OMD);
2159     break;
2160   }
2161   case Decl::ObjCMethod: {
2162     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2163     // If this is not a prototype, emit the body.
2164     if (OMD->getBody())
2165       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2166     break;
2167   }
2168   case Decl::ObjCCompatibleAlias:
2169     // compatibility-alias is a directive and has no code gen.
2170     break;
2171 
2172   case Decl::LinkageSpec:
2173     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2174     break;
2175 
2176   case Decl::FileScopeAsm: {
2177     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2178     llvm::StringRef AsmString = AD->getAsmString()->getString();
2179 
2180     const std::string &S = getModule().getModuleInlineAsm();
2181     if (S.empty())
2182       getModule().setModuleInlineAsm(AsmString);
2183     else
2184       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2185     break;
2186   }
2187 
2188   default:
2189     // Make sure we handled everything we should, every other kind is a
2190     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2191     // function. Need to recode Decl::Kind to do that easily.
2192     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2193   }
2194 }
2195 
2196 /// Turns the given pointer into a constant.
2197 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2198                                           const void *Ptr) {
2199   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2200   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2201   return llvm::ConstantInt::get(i64, PtrInt);
2202 }
2203 
2204 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2205                                    llvm::NamedMDNode *&GlobalMetadata,
2206                                    GlobalDecl D,
2207                                    llvm::GlobalValue *Addr) {
2208   if (!GlobalMetadata)
2209     GlobalMetadata =
2210       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2211 
2212   // TODO: should we report variant information for ctors/dtors?
2213   llvm::Value *Ops[] = {
2214     Addr,
2215     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2216   };
2217   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2218 }
2219 
2220 /// Emits metadata nodes associating all the global values in the
2221 /// current module with the Decls they came from.  This is useful for
2222 /// projects using IR gen as a subroutine.
2223 ///
2224 /// Since there's currently no way to associate an MDNode directly
2225 /// with an llvm::GlobalValue, we create a global named metadata
2226 /// with the name 'clang.global.decl.ptrs'.
2227 void CodeGenModule::EmitDeclMetadata() {
2228   llvm::NamedMDNode *GlobalMetadata = 0;
2229 
2230   // StaticLocalDeclMap
2231   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2232          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2233        I != E; ++I) {
2234     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2235     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2236   }
2237 }
2238 
2239 /// Emits metadata nodes for all the local variables in the current
2240 /// function.
2241 void CodeGenFunction::EmitDeclMetadata() {
2242   if (LocalDeclMap.empty()) return;
2243 
2244   llvm::LLVMContext &Context = getLLVMContext();
2245 
2246   // Find the unique metadata ID for this name.
2247   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2248 
2249   llvm::NamedMDNode *GlobalMetadata = 0;
2250 
2251   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2252          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2253     const Decl *D = I->first;
2254     llvm::Value *Addr = I->second;
2255 
2256     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2257       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2258       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2259     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2260       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2261       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2262     }
2263   }
2264 }
2265 
2266 void CodeGenModule::EmitCoverageFile() {
2267   if (!getCodeGenOpts().CoverageFile.empty()) {
2268     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2269       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2270       llvm::LLVMContext &Ctx = TheModule.getContext();
2271       llvm::MDString *CoverageFile =
2272           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2273       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2274         llvm::MDNode *CU = CUNode->getOperand(i);
2275         llvm::Value *node[] = { CoverageFile, CU };
2276         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2277         GCov->addOperand(N);
2278       }
2279     }
2280   }
2281 }
2282 
2283 ///@name Custom Runtime Function Interfaces
2284 ///@{
2285 //
2286 // FIXME: These can be eliminated once we can have clients just get the required
2287 // AST nodes from the builtin tables.
2288 
2289 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2290   if (BlockObjectDispose)
2291     return BlockObjectDispose;
2292 
2293   // If we saw an explicit decl, use that.
2294   if (BlockObjectDisposeDecl) {
2295     return BlockObjectDispose = GetAddrOfFunction(
2296       BlockObjectDisposeDecl,
2297       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2298   }
2299 
2300   // Otherwise construct the function by hand.
2301   const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2302   const llvm::FunctionType *fty
2303     = llvm::FunctionType::get(VoidTy, args, false);
2304   return BlockObjectDispose =
2305     CreateRuntimeFunction(fty, "_Block_object_dispose");
2306 }
2307 
2308 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2309   if (BlockObjectAssign)
2310     return BlockObjectAssign;
2311 
2312   // If we saw an explicit decl, use that.
2313   if (BlockObjectAssignDecl) {
2314     return BlockObjectAssign = GetAddrOfFunction(
2315       BlockObjectAssignDecl,
2316       getTypes().GetFunctionType(BlockObjectAssignDecl));
2317   }
2318 
2319   // Otherwise construct the function by hand.
2320   const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2321   const llvm::FunctionType *fty
2322     = llvm::FunctionType::get(VoidTy, args, false);
2323   return BlockObjectAssign =
2324     CreateRuntimeFunction(fty, "_Block_object_assign");
2325 }
2326 
2327 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2328   if (NSConcreteGlobalBlock)
2329     return NSConcreteGlobalBlock;
2330 
2331   // If we saw an explicit decl, use that.
2332   if (NSConcreteGlobalBlockDecl) {
2333     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2334       NSConcreteGlobalBlockDecl,
2335       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2336   }
2337 
2338   // Otherwise construct the variable by hand.
2339   return NSConcreteGlobalBlock =
2340     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2341 }
2342 
2343 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2344   if (NSConcreteStackBlock)
2345     return NSConcreteStackBlock;
2346 
2347   // If we saw an explicit decl, use that.
2348   if (NSConcreteStackBlockDecl) {
2349     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2350       NSConcreteStackBlockDecl,
2351       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2352   }
2353 
2354   // Otherwise construct the variable by hand.
2355   return NSConcreteStackBlock =
2356     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2357 }
2358 
2359 ///@}
2360