1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (Features.ObjC1) 99 createObjCRuntime(); 100 if (Features.OpenCL) 101 createOpenCLRuntime(); 102 if (Features.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. 106 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 107 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 108 ABI.getMangleContext()); 109 110 // If debug info or coverage generation is enabled, create the CGDebugInfo 111 // object. 112 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 113 CodeGenOpts.EmitGcovNotes) 114 DebugInfo = new CGDebugInfo(*this); 115 116 Block.GlobalUniqueCount = 0; 117 118 if (C.getLangOptions().ObjCAutoRefCount) 119 ARCData = new ARCEntrypoints(); 120 RRData = new RREntrypoints(); 121 } 122 123 CodeGenModule::~CodeGenModule() { 124 delete ObjCRuntime; 125 delete OpenCLRuntime; 126 delete CUDARuntime; 127 delete TheTargetCodeGenInfo; 128 delete &ABI; 129 delete TBAA; 130 delete DebugInfo; 131 delete ARCData; 132 delete RRData; 133 } 134 135 void CodeGenModule::createObjCRuntime() { 136 if (!Features.NeXTRuntime) 137 ObjCRuntime = CreateGNUObjCRuntime(*this); 138 else 139 ObjCRuntime = CreateMacObjCRuntime(*this); 140 } 141 142 void CodeGenModule::createOpenCLRuntime() { 143 OpenCLRuntime = new CGOpenCLRuntime(*this); 144 } 145 146 void CodeGenModule::createCUDARuntime() { 147 CUDARuntime = CreateNVCUDARuntime(*this); 148 } 149 150 void CodeGenModule::Release() { 151 EmitDeferred(); 152 EmitCXXGlobalInitFunc(); 153 EmitCXXGlobalDtorFunc(); 154 if (ObjCRuntime) 155 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 156 AddGlobalCtor(ObjCInitFunction); 157 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 158 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 159 EmitGlobalAnnotations(); 160 EmitLLVMUsed(); 161 162 SimplifyPersonality(); 163 164 if (getCodeGenOpts().EmitDeclMetadata) 165 EmitDeclMetadata(); 166 167 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 168 EmitCoverageFile(); 169 170 if (DebugInfo) 171 DebugInfo->finalize(); 172 } 173 174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 175 // Make sure that this type is translated. 176 Types.UpdateCompletedType(TD); 177 } 178 179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 180 if (!TBAA) 181 return 0; 182 return TBAA->getTBAAInfo(QTy); 183 } 184 185 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 186 llvm::MDNode *TBAAInfo) { 187 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 188 } 189 190 bool CodeGenModule::isTargetDarwin() const { 191 return getContext().getTargetInfo().getTriple().isOSDarwin(); 192 } 193 194 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 195 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 196 getDiags().Report(Context.getFullLoc(loc), diagID); 197 } 198 199 /// ErrorUnsupported - Print out an error that codegen doesn't support the 200 /// specified stmt yet. 201 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 202 bool OmitOnError) { 203 if (OmitOnError && getDiags().hasErrorOccurred()) 204 return; 205 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 206 "cannot compile this %0 yet"); 207 std::string Msg = Type; 208 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 209 << Msg << S->getSourceRange(); 210 } 211 212 /// ErrorUnsupported - Print out an error that codegen doesn't support the 213 /// specified decl yet. 214 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 215 bool OmitOnError) { 216 if (OmitOnError && getDiags().hasErrorOccurred()) 217 return; 218 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 219 "cannot compile this %0 yet"); 220 std::string Msg = Type; 221 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 222 } 223 224 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 225 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 226 } 227 228 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 229 const NamedDecl *D) const { 230 // Internal definitions always have default visibility. 231 if (GV->hasLocalLinkage()) { 232 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 233 return; 234 } 235 236 // Set visibility for definitions. 237 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 238 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 239 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 240 } 241 242 /// Set the symbol visibility of type information (vtable and RTTI) 243 /// associated with the given type. 244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 245 const CXXRecordDecl *RD, 246 TypeVisibilityKind TVK) const { 247 setGlobalVisibility(GV, RD); 248 249 if (!CodeGenOpts.HiddenWeakVTables) 250 return; 251 252 // We never want to drop the visibility for RTTI names. 253 if (TVK == TVK_ForRTTIName) 254 return; 255 256 // We want to drop the visibility to hidden for weak type symbols. 257 // This isn't possible if there might be unresolved references 258 // elsewhere that rely on this symbol being visible. 259 260 // This should be kept roughly in sync with setThunkVisibility 261 // in CGVTables.cpp. 262 263 // Preconditions. 264 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 265 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 266 return; 267 268 // Don't override an explicit visibility attribute. 269 if (RD->getExplicitVisibility()) 270 return; 271 272 switch (RD->getTemplateSpecializationKind()) { 273 // We have to disable the optimization if this is an EI definition 274 // because there might be EI declarations in other shared objects. 275 case TSK_ExplicitInstantiationDefinition: 276 case TSK_ExplicitInstantiationDeclaration: 277 return; 278 279 // Every use of a non-template class's type information has to emit it. 280 case TSK_Undeclared: 281 break; 282 283 // In theory, implicit instantiations can ignore the possibility of 284 // an explicit instantiation declaration because there necessarily 285 // must be an EI definition somewhere with default visibility. In 286 // practice, it's possible to have an explicit instantiation for 287 // an arbitrary template class, and linkers aren't necessarily able 288 // to deal with mixed-visibility symbols. 289 case TSK_ExplicitSpecialization: 290 case TSK_ImplicitInstantiation: 291 if (!CodeGenOpts.HiddenWeakTemplateVTables) 292 return; 293 break; 294 } 295 296 // If there's a key function, there may be translation units 297 // that don't have the key function's definition. But ignore 298 // this if we're emitting RTTI under -fno-rtti. 299 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 300 if (Context.getKeyFunction(RD)) 301 return; 302 } 303 304 // Otherwise, drop the visibility to hidden. 305 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 306 GV->setUnnamedAddr(true); 307 } 308 309 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 310 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 311 312 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 313 if (!Str.empty()) 314 return Str; 315 316 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 317 IdentifierInfo *II = ND->getIdentifier(); 318 assert(II && "Attempt to mangle unnamed decl."); 319 320 Str = II->getName(); 321 return Str; 322 } 323 324 SmallString<256> Buffer; 325 llvm::raw_svector_ostream Out(Buffer); 326 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 327 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 328 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 329 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 330 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 331 getCXXABI().getMangleContext().mangleBlock(BD, Out); 332 else 333 getCXXABI().getMangleContext().mangleName(ND, Out); 334 335 // Allocate space for the mangled name. 336 Out.flush(); 337 size_t Length = Buffer.size(); 338 char *Name = MangledNamesAllocator.Allocate<char>(Length); 339 std::copy(Buffer.begin(), Buffer.end(), Name); 340 341 Str = StringRef(Name, Length); 342 343 return Str; 344 } 345 346 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 347 const BlockDecl *BD) { 348 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 349 const Decl *D = GD.getDecl(); 350 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 351 if (D == 0) 352 MangleCtx.mangleGlobalBlock(BD, Out); 353 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 354 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 355 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 356 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 357 else 358 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 359 } 360 361 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 362 return getModule().getNamedValue(Name); 363 } 364 365 /// AddGlobalCtor - Add a function to the list that will be called before 366 /// main() runs. 367 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 368 // FIXME: Type coercion of void()* types. 369 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 370 } 371 372 /// AddGlobalDtor - Add a function to the list that will be called 373 /// when the module is unloaded. 374 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 375 // FIXME: Type coercion of void()* types. 376 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 377 } 378 379 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 380 // Ctor function type is void()*. 381 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 382 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 383 384 // Get the type of a ctor entry, { i32, void ()* }. 385 llvm::StructType *CtorStructTy = 386 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 387 388 // Construct the constructor and destructor arrays. 389 SmallVector<llvm::Constant*, 8> Ctors; 390 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 391 llvm::Constant *S[] = { 392 llvm::ConstantInt::get(Int32Ty, I->second, false), 393 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 394 }; 395 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 396 } 397 398 if (!Ctors.empty()) { 399 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 400 new llvm::GlobalVariable(TheModule, AT, false, 401 llvm::GlobalValue::AppendingLinkage, 402 llvm::ConstantArray::get(AT, Ctors), 403 GlobalName); 404 } 405 } 406 407 llvm::GlobalValue::LinkageTypes 408 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 409 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 410 411 if (Linkage == GVA_Internal) 412 return llvm::Function::InternalLinkage; 413 414 if (D->hasAttr<DLLExportAttr>()) 415 return llvm::Function::DLLExportLinkage; 416 417 if (D->hasAttr<WeakAttr>()) 418 return llvm::Function::WeakAnyLinkage; 419 420 // In C99 mode, 'inline' functions are guaranteed to have a strong 421 // definition somewhere else, so we can use available_externally linkage. 422 if (Linkage == GVA_C99Inline) 423 return llvm::Function::AvailableExternallyLinkage; 424 425 // Note that Apple's kernel linker doesn't support symbol 426 // coalescing, so we need to avoid linkonce and weak linkages there. 427 // Normally, this means we just map to internal, but for explicit 428 // instantiations we'll map to external. 429 430 // In C++, the compiler has to emit a definition in every translation unit 431 // that references the function. We should use linkonce_odr because 432 // a) if all references in this translation unit are optimized away, we 433 // don't need to codegen it. b) if the function persists, it needs to be 434 // merged with other definitions. c) C++ has the ODR, so we know the 435 // definition is dependable. 436 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 437 return !Context.getLangOptions().AppleKext 438 ? llvm::Function::LinkOnceODRLinkage 439 : llvm::Function::InternalLinkage; 440 441 // An explicit instantiation of a template has weak linkage, since 442 // explicit instantiations can occur in multiple translation units 443 // and must all be equivalent. However, we are not allowed to 444 // throw away these explicit instantiations. 445 if (Linkage == GVA_ExplicitTemplateInstantiation) 446 return !Context.getLangOptions().AppleKext 447 ? llvm::Function::WeakODRLinkage 448 : llvm::Function::ExternalLinkage; 449 450 // Otherwise, we have strong external linkage. 451 assert(Linkage == GVA_StrongExternal); 452 return llvm::Function::ExternalLinkage; 453 } 454 455 456 /// SetFunctionDefinitionAttributes - Set attributes for a global. 457 /// 458 /// FIXME: This is currently only done for aliases and functions, but not for 459 /// variables (these details are set in EmitGlobalVarDefinition for variables). 460 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 461 llvm::GlobalValue *GV) { 462 SetCommonAttributes(D, GV); 463 } 464 465 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 466 const CGFunctionInfo &Info, 467 llvm::Function *F) { 468 unsigned CallingConv; 469 AttributeListType AttributeList; 470 ConstructAttributeList(Info, D, AttributeList, CallingConv); 471 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 472 AttributeList.size())); 473 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 474 } 475 476 /// Determines whether the language options require us to model 477 /// unwind exceptions. We treat -fexceptions as mandating this 478 /// except under the fragile ObjC ABI with only ObjC exceptions 479 /// enabled. This means, for example, that C with -fexceptions 480 /// enables this. 481 static bool hasUnwindExceptions(const LangOptions &Features) { 482 // If exceptions are completely disabled, obviously this is false. 483 if (!Features.Exceptions) return false; 484 485 // If C++ exceptions are enabled, this is true. 486 if (Features.CXXExceptions) return true; 487 488 // If ObjC exceptions are enabled, this depends on the ABI. 489 if (Features.ObjCExceptions) { 490 if (!Features.ObjCNonFragileABI) return false; 491 } 492 493 return true; 494 } 495 496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 497 llvm::Function *F) { 498 if (CodeGenOpts.UnwindTables) 499 F->setHasUWTable(); 500 501 if (!hasUnwindExceptions(Features)) 502 F->addFnAttr(llvm::Attribute::NoUnwind); 503 504 if (D->hasAttr<NakedAttr>()) { 505 // Naked implies noinline: we should not be inlining such functions. 506 F->addFnAttr(llvm::Attribute::Naked); 507 F->addFnAttr(llvm::Attribute::NoInline); 508 } 509 510 if (D->hasAttr<NoInlineAttr>()) 511 F->addFnAttr(llvm::Attribute::NoInline); 512 513 // (noinline wins over always_inline, and we can't specify both in IR) 514 if (D->hasAttr<AlwaysInlineAttr>() && 515 !F->hasFnAttr(llvm::Attribute::NoInline)) 516 F->addFnAttr(llvm::Attribute::AlwaysInline); 517 518 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 519 F->setUnnamedAddr(true); 520 521 if (Features.getStackProtector() == LangOptions::SSPOn) 522 F->addFnAttr(llvm::Attribute::StackProtect); 523 else if (Features.getStackProtector() == LangOptions::SSPReq) 524 F->addFnAttr(llvm::Attribute::StackProtectReq); 525 526 if (Features.AddressSanitizer) { 527 // When AddressSanitizer is enabled, set AddressSafety attribute 528 // unless __attribute__((no_address_safety_analysis)) is used. 529 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 530 F->addFnAttr(llvm::Attribute::AddressSafety); 531 } 532 533 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 534 if (alignment) 535 F->setAlignment(alignment); 536 537 // C++ ABI requires 2-byte alignment for member functions. 538 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 539 F->setAlignment(2); 540 } 541 542 void CodeGenModule::SetCommonAttributes(const Decl *D, 543 llvm::GlobalValue *GV) { 544 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 545 setGlobalVisibility(GV, ND); 546 else 547 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 548 549 if (D->hasAttr<UsedAttr>()) 550 AddUsedGlobal(GV); 551 552 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 553 GV->setSection(SA->getName()); 554 555 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 556 } 557 558 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 559 llvm::Function *F, 560 const CGFunctionInfo &FI) { 561 SetLLVMFunctionAttributes(D, FI, F); 562 SetLLVMFunctionAttributesForDefinition(D, F); 563 564 F->setLinkage(llvm::Function::InternalLinkage); 565 566 SetCommonAttributes(D, F); 567 } 568 569 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 570 llvm::Function *F, 571 bool IsIncompleteFunction) { 572 if (unsigned IID = F->getIntrinsicID()) { 573 // If this is an intrinsic function, set the function's attributes 574 // to the intrinsic's attributes. 575 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 576 return; 577 } 578 579 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 580 581 if (!IsIncompleteFunction) 582 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 583 584 // Only a few attributes are set on declarations; these may later be 585 // overridden by a definition. 586 587 if (FD->hasAttr<DLLImportAttr>()) { 588 F->setLinkage(llvm::Function::DLLImportLinkage); 589 } else if (FD->hasAttr<WeakAttr>() || 590 FD->isWeakImported()) { 591 // "extern_weak" is overloaded in LLVM; we probably should have 592 // separate linkage types for this. 593 F->setLinkage(llvm::Function::ExternalWeakLinkage); 594 } else { 595 F->setLinkage(llvm::Function::ExternalLinkage); 596 597 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 598 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 599 F->setVisibility(GetLLVMVisibility(LV.visibility())); 600 } 601 } 602 603 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 604 F->setSection(SA->getName()); 605 } 606 607 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 608 assert(!GV->isDeclaration() && 609 "Only globals with definition can force usage."); 610 LLVMUsed.push_back(GV); 611 } 612 613 void CodeGenModule::EmitLLVMUsed() { 614 // Don't create llvm.used if there is no need. 615 if (LLVMUsed.empty()) 616 return; 617 618 // Convert LLVMUsed to what ConstantArray needs. 619 SmallVector<llvm::Constant*, 8> UsedArray; 620 UsedArray.resize(LLVMUsed.size()); 621 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 622 UsedArray[i] = 623 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 624 Int8PtrTy); 625 } 626 627 if (UsedArray.empty()) 628 return; 629 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 630 631 llvm::GlobalVariable *GV = 632 new llvm::GlobalVariable(getModule(), ATy, false, 633 llvm::GlobalValue::AppendingLinkage, 634 llvm::ConstantArray::get(ATy, UsedArray), 635 "llvm.used"); 636 637 GV->setSection("llvm.metadata"); 638 } 639 640 void CodeGenModule::EmitDeferred() { 641 // Emit code for any potentially referenced deferred decls. Since a 642 // previously unused static decl may become used during the generation of code 643 // for a static function, iterate until no changes are made. 644 645 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 646 if (!DeferredVTables.empty()) { 647 const CXXRecordDecl *RD = DeferredVTables.back(); 648 DeferredVTables.pop_back(); 649 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 650 continue; 651 } 652 653 GlobalDecl D = DeferredDeclsToEmit.back(); 654 DeferredDeclsToEmit.pop_back(); 655 656 // Check to see if we've already emitted this. This is necessary 657 // for a couple of reasons: first, decls can end up in the 658 // deferred-decls queue multiple times, and second, decls can end 659 // up with definitions in unusual ways (e.g. by an extern inline 660 // function acquiring a strong function redefinition). Just 661 // ignore these cases. 662 // 663 // TODO: That said, looking this up multiple times is very wasteful. 664 StringRef Name = getMangledName(D); 665 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 666 assert(CGRef && "Deferred decl wasn't referenced?"); 667 668 if (!CGRef->isDeclaration()) 669 continue; 670 671 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 672 // purposes an alias counts as a definition. 673 if (isa<llvm::GlobalAlias>(CGRef)) 674 continue; 675 676 // Otherwise, emit the definition and move on to the next one. 677 EmitGlobalDefinition(D); 678 } 679 } 680 681 void CodeGenModule::EmitGlobalAnnotations() { 682 if (Annotations.empty()) 683 return; 684 685 // Create a new global variable for the ConstantStruct in the Module. 686 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 687 Annotations[0]->getType(), Annotations.size()), Annotations); 688 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 689 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 690 "llvm.global.annotations"); 691 gv->setSection(AnnotationSection); 692 } 693 694 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 695 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 696 if (i != AnnotationStrings.end()) 697 return i->second; 698 699 // Not found yet, create a new global. 700 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 701 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 702 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 703 gv->setSection(AnnotationSection); 704 gv->setUnnamedAddr(true); 705 AnnotationStrings[Str] = gv; 706 return gv; 707 } 708 709 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 710 SourceManager &SM = getContext().getSourceManager(); 711 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 712 if (PLoc.isValid()) 713 return EmitAnnotationString(PLoc.getFilename()); 714 return EmitAnnotationString(SM.getBufferName(Loc)); 715 } 716 717 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 718 SourceManager &SM = getContext().getSourceManager(); 719 PresumedLoc PLoc = SM.getPresumedLoc(L); 720 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 721 SM.getExpansionLineNumber(L); 722 return llvm::ConstantInt::get(Int32Ty, LineNo); 723 } 724 725 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 726 const AnnotateAttr *AA, 727 SourceLocation L) { 728 // Get the globals for file name, annotation, and the line number. 729 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 730 *UnitGV = EmitAnnotationUnit(L), 731 *LineNoCst = EmitAnnotationLineNo(L); 732 733 // Create the ConstantStruct for the global annotation. 734 llvm::Constant *Fields[4] = { 735 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 736 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 737 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 738 LineNoCst 739 }; 740 return llvm::ConstantStruct::getAnon(Fields); 741 } 742 743 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 744 llvm::GlobalValue *GV) { 745 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 746 // Get the struct elements for these annotations. 747 for (specific_attr_iterator<AnnotateAttr> 748 ai = D->specific_attr_begin<AnnotateAttr>(), 749 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 750 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 751 } 752 753 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 754 // Never defer when EmitAllDecls is specified. 755 if (Features.EmitAllDecls) 756 return false; 757 758 return !getContext().DeclMustBeEmitted(Global); 759 } 760 761 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 762 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 763 assert(AA && "No alias?"); 764 765 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 766 767 // See if there is already something with the target's name in the module. 768 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 769 770 llvm::Constant *Aliasee; 771 if (isa<llvm::FunctionType>(DeclTy)) 772 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 773 /*ForVTable=*/false); 774 else 775 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 776 llvm::PointerType::getUnqual(DeclTy), 0); 777 if (!Entry) { 778 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 779 F->setLinkage(llvm::Function::ExternalWeakLinkage); 780 WeakRefReferences.insert(F); 781 } 782 783 return Aliasee; 784 } 785 786 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 787 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 788 789 // Weak references don't produce any output by themselves. 790 if (Global->hasAttr<WeakRefAttr>()) 791 return; 792 793 // If this is an alias definition (which otherwise looks like a declaration) 794 // emit it now. 795 if (Global->hasAttr<AliasAttr>()) 796 return EmitAliasDefinition(GD); 797 798 // If this is CUDA, be selective about which declarations we emit. 799 if (Features.CUDA) { 800 if (CodeGenOpts.CUDAIsDevice) { 801 if (!Global->hasAttr<CUDADeviceAttr>() && 802 !Global->hasAttr<CUDAGlobalAttr>() && 803 !Global->hasAttr<CUDAConstantAttr>() && 804 !Global->hasAttr<CUDASharedAttr>()) 805 return; 806 } else { 807 if (!Global->hasAttr<CUDAHostAttr>() && ( 808 Global->hasAttr<CUDADeviceAttr>() || 809 Global->hasAttr<CUDAConstantAttr>() || 810 Global->hasAttr<CUDASharedAttr>())) 811 return; 812 } 813 } 814 815 // Ignore declarations, they will be emitted on their first use. 816 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 817 // Forward declarations are emitted lazily on first use. 818 if (!FD->doesThisDeclarationHaveABody()) { 819 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 820 return; 821 822 const FunctionDecl *InlineDefinition = 0; 823 FD->getBody(InlineDefinition); 824 825 StringRef MangledName = getMangledName(GD); 826 llvm::StringMap<GlobalDecl>::iterator DDI = 827 DeferredDecls.find(MangledName); 828 if (DDI != DeferredDecls.end()) 829 DeferredDecls.erase(DDI); 830 EmitGlobalDefinition(InlineDefinition); 831 return; 832 } 833 } else { 834 const VarDecl *VD = cast<VarDecl>(Global); 835 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 836 837 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 838 return; 839 } 840 841 // Defer code generation when possible if this is a static definition, inline 842 // function etc. These we only want to emit if they are used. 843 if (!MayDeferGeneration(Global)) { 844 // Emit the definition if it can't be deferred. 845 EmitGlobalDefinition(GD); 846 return; 847 } 848 849 // If we're deferring emission of a C++ variable with an 850 // initializer, remember the order in which it appeared in the file. 851 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 852 cast<VarDecl>(Global)->hasInit()) { 853 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 854 CXXGlobalInits.push_back(0); 855 } 856 857 // If the value has already been used, add it directly to the 858 // DeferredDeclsToEmit list. 859 StringRef MangledName = getMangledName(GD); 860 if (GetGlobalValue(MangledName)) 861 DeferredDeclsToEmit.push_back(GD); 862 else { 863 // Otherwise, remember that we saw a deferred decl with this name. The 864 // first use of the mangled name will cause it to move into 865 // DeferredDeclsToEmit. 866 DeferredDecls[MangledName] = GD; 867 } 868 } 869 870 namespace { 871 struct FunctionIsDirectlyRecursive : 872 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 873 const StringRef Name; 874 const Builtin::Context &BI; 875 bool Result; 876 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 877 Name(N), BI(C), Result(false) { 878 } 879 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 880 881 bool TraverseCallExpr(CallExpr *E) { 882 const FunctionDecl *FD = E->getDirectCallee(); 883 if (!FD) 884 return true; 885 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 886 if (Attr && Name == Attr->getLabel()) { 887 Result = true; 888 return false; 889 } 890 unsigned BuiltinID = FD->getBuiltinID(); 891 if (!BuiltinID) 892 return true; 893 StringRef BuiltinName = BI.GetName(BuiltinID); 894 if (BuiltinName.startswith("__builtin_") && 895 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 896 Result = true; 897 return false; 898 } 899 return true; 900 } 901 }; 902 } 903 904 // isTriviallyRecursive - Check if this function calls another 905 // decl that, because of the asm attribute or the other decl being a builtin, 906 // ends up pointing to itself. 907 bool 908 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 909 StringRef Name; 910 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 911 // asm labels are a special kind of mangling we have to support. 912 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 913 if (!Attr) 914 return false; 915 Name = Attr->getLabel(); 916 } else { 917 Name = FD->getName(); 918 } 919 920 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 921 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 922 return Walker.Result; 923 } 924 925 bool 926 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 927 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 928 return true; 929 if (CodeGenOpts.OptimizationLevel == 0 && 930 !F->hasAttr<AlwaysInlineAttr>()) 931 return false; 932 // PR9614. Avoid cases where the source code is lying to us. An available 933 // externally function should have an equivalent function somewhere else, 934 // but a function that calls itself is clearly not equivalent to the real 935 // implementation. 936 // This happens in glibc's btowc and in some configure checks. 937 return !isTriviallyRecursive(F); 938 } 939 940 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 941 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 942 943 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 944 Context.getSourceManager(), 945 "Generating code for declaration"); 946 947 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 948 // At -O0, don't generate IR for functions with available_externally 949 // linkage. 950 if (!shouldEmitFunction(Function)) 951 return; 952 953 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 954 // Make sure to emit the definition(s) before we emit the thunks. 955 // This is necessary for the generation of certain thunks. 956 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 957 EmitCXXConstructor(CD, GD.getCtorType()); 958 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 959 EmitCXXDestructor(DD, GD.getDtorType()); 960 else 961 EmitGlobalFunctionDefinition(GD); 962 963 if (Method->isVirtual()) 964 getVTables().EmitThunks(GD); 965 966 return; 967 } 968 969 return EmitGlobalFunctionDefinition(GD); 970 } 971 972 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 973 return EmitGlobalVarDefinition(VD); 974 975 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 976 } 977 978 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 979 /// module, create and return an llvm Function with the specified type. If there 980 /// is something in the module with the specified name, return it potentially 981 /// bitcasted to the right type. 982 /// 983 /// If D is non-null, it specifies a decl that correspond to this. This is used 984 /// to set the attributes on the function when it is first created. 985 llvm::Constant * 986 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 987 llvm::Type *Ty, 988 GlobalDecl D, bool ForVTable, 989 llvm::Attributes ExtraAttrs) { 990 // Lookup the entry, lazily creating it if necessary. 991 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 992 if (Entry) { 993 if (WeakRefReferences.count(Entry)) { 994 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 995 if (FD && !FD->hasAttr<WeakAttr>()) 996 Entry->setLinkage(llvm::Function::ExternalLinkage); 997 998 WeakRefReferences.erase(Entry); 999 } 1000 1001 if (Entry->getType()->getElementType() == Ty) 1002 return Entry; 1003 1004 // Make sure the result is of the correct type. 1005 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1006 } 1007 1008 // This function doesn't have a complete type (for example, the return 1009 // type is an incomplete struct). Use a fake type instead, and make 1010 // sure not to try to set attributes. 1011 bool IsIncompleteFunction = false; 1012 1013 llvm::FunctionType *FTy; 1014 if (isa<llvm::FunctionType>(Ty)) { 1015 FTy = cast<llvm::FunctionType>(Ty); 1016 } else { 1017 FTy = llvm::FunctionType::get(VoidTy, false); 1018 IsIncompleteFunction = true; 1019 } 1020 1021 llvm::Function *F = llvm::Function::Create(FTy, 1022 llvm::Function::ExternalLinkage, 1023 MangledName, &getModule()); 1024 assert(F->getName() == MangledName && "name was uniqued!"); 1025 if (D.getDecl()) 1026 SetFunctionAttributes(D, F, IsIncompleteFunction); 1027 if (ExtraAttrs != llvm::Attribute::None) 1028 F->addFnAttr(ExtraAttrs); 1029 1030 // This is the first use or definition of a mangled name. If there is a 1031 // deferred decl with this name, remember that we need to emit it at the end 1032 // of the file. 1033 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1034 if (DDI != DeferredDecls.end()) { 1035 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1036 // list, and remove it from DeferredDecls (since we don't need it anymore). 1037 DeferredDeclsToEmit.push_back(DDI->second); 1038 DeferredDecls.erase(DDI); 1039 1040 // Otherwise, there are cases we have to worry about where we're 1041 // using a declaration for which we must emit a definition but where 1042 // we might not find a top-level definition: 1043 // - member functions defined inline in their classes 1044 // - friend functions defined inline in some class 1045 // - special member functions with implicit definitions 1046 // If we ever change our AST traversal to walk into class methods, 1047 // this will be unnecessary. 1048 // 1049 // We also don't emit a definition for a function if it's going to be an entry 1050 // in a vtable, unless it's already marked as used. 1051 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 1052 // Look for a declaration that's lexically in a record. 1053 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1054 do { 1055 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1056 if (FD->isImplicit() && !ForVTable) { 1057 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1058 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1059 break; 1060 } else if (FD->doesThisDeclarationHaveABody()) { 1061 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1062 break; 1063 } 1064 } 1065 FD = FD->getPreviousDecl(); 1066 } while (FD); 1067 } 1068 1069 // Make sure the result is of the requested type. 1070 if (!IsIncompleteFunction) { 1071 assert(F->getType()->getElementType() == Ty); 1072 return F; 1073 } 1074 1075 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1076 return llvm::ConstantExpr::getBitCast(F, PTy); 1077 } 1078 1079 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1080 /// non-null, then this function will use the specified type if it has to 1081 /// create it (this occurs when we see a definition of the function). 1082 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1083 llvm::Type *Ty, 1084 bool ForVTable) { 1085 // If there was no specific requested type, just convert it now. 1086 if (!Ty) 1087 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1088 1089 StringRef MangledName = getMangledName(GD); 1090 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1091 } 1092 1093 /// CreateRuntimeFunction - Create a new runtime function with the specified 1094 /// type and name. 1095 llvm::Constant * 1096 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1097 StringRef Name, 1098 llvm::Attributes ExtraAttrs) { 1099 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1100 ExtraAttrs); 1101 } 1102 1103 /// isTypeConstant - Determine whether an object of this type can be emitted 1104 /// as a constant. 1105 /// 1106 /// If ExcludeCtor is true, the duration when the object's constructor runs 1107 /// will not be considered. The caller will need to verify that the object is 1108 /// not written to during its construction. 1109 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1110 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1111 return false; 1112 1113 if (Context.getLangOptions().CPlusPlus) { 1114 if (const CXXRecordDecl *Record 1115 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1116 return ExcludeCtor && !Record->hasMutableFields() && 1117 Record->hasTrivialDestructor(); 1118 } 1119 1120 return true; 1121 } 1122 1123 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1124 /// create and return an llvm GlobalVariable with the specified type. If there 1125 /// is something in the module with the specified name, return it potentially 1126 /// bitcasted to the right type. 1127 /// 1128 /// If D is non-null, it specifies a decl that correspond to this. This is used 1129 /// to set the attributes on the global when it is first created. 1130 llvm::Constant * 1131 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1132 llvm::PointerType *Ty, 1133 const VarDecl *D, 1134 bool UnnamedAddr) { 1135 // Lookup the entry, lazily creating it if necessary. 1136 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1137 if (Entry) { 1138 if (WeakRefReferences.count(Entry)) { 1139 if (D && !D->hasAttr<WeakAttr>()) 1140 Entry->setLinkage(llvm::Function::ExternalLinkage); 1141 1142 WeakRefReferences.erase(Entry); 1143 } 1144 1145 if (UnnamedAddr) 1146 Entry->setUnnamedAddr(true); 1147 1148 if (Entry->getType() == Ty) 1149 return Entry; 1150 1151 // Make sure the result is of the correct type. 1152 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1153 } 1154 1155 // This is the first use or definition of a mangled name. If there is a 1156 // deferred decl with this name, remember that we need to emit it at the end 1157 // of the file. 1158 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1159 if (DDI != DeferredDecls.end()) { 1160 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1161 // list, and remove it from DeferredDecls (since we don't need it anymore). 1162 DeferredDeclsToEmit.push_back(DDI->second); 1163 DeferredDecls.erase(DDI); 1164 } 1165 1166 llvm::GlobalVariable *GV = 1167 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1168 llvm::GlobalValue::ExternalLinkage, 1169 0, MangledName, 0, 1170 false, Ty->getAddressSpace()); 1171 1172 // Handle things which are present even on external declarations. 1173 if (D) { 1174 // FIXME: This code is overly simple and should be merged with other global 1175 // handling. 1176 GV->setConstant(isTypeConstant(D->getType(), false)); 1177 1178 // Set linkage and visibility in case we never see a definition. 1179 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1180 if (LV.linkage() != ExternalLinkage) { 1181 // Don't set internal linkage on declarations. 1182 } else { 1183 if (D->hasAttr<DLLImportAttr>()) 1184 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1185 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1186 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1187 1188 // Set visibility on a declaration only if it's explicit. 1189 if (LV.visibilityExplicit()) 1190 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1191 } 1192 1193 GV->setThreadLocal(D->isThreadSpecified()); 1194 } 1195 1196 return GV; 1197 } 1198 1199 1200 llvm::GlobalVariable * 1201 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1202 llvm::Type *Ty, 1203 llvm::GlobalValue::LinkageTypes Linkage) { 1204 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1205 llvm::GlobalVariable *OldGV = 0; 1206 1207 1208 if (GV) { 1209 // Check if the variable has the right type. 1210 if (GV->getType()->getElementType() == Ty) 1211 return GV; 1212 1213 // Because C++ name mangling, the only way we can end up with an already 1214 // existing global with the same name is if it has been declared extern "C". 1215 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1216 OldGV = GV; 1217 } 1218 1219 // Create a new variable. 1220 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1221 Linkage, 0, Name); 1222 1223 if (OldGV) { 1224 // Replace occurrences of the old variable if needed. 1225 GV->takeName(OldGV); 1226 1227 if (!OldGV->use_empty()) { 1228 llvm::Constant *NewPtrForOldDecl = 1229 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1230 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1231 } 1232 1233 OldGV->eraseFromParent(); 1234 } 1235 1236 return GV; 1237 } 1238 1239 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1240 /// given global variable. If Ty is non-null and if the global doesn't exist, 1241 /// then it will be greated with the specified type instead of whatever the 1242 /// normal requested type would be. 1243 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1244 llvm::Type *Ty) { 1245 assert(D->hasGlobalStorage() && "Not a global variable"); 1246 QualType ASTTy = D->getType(); 1247 if (Ty == 0) 1248 Ty = getTypes().ConvertTypeForMem(ASTTy); 1249 1250 llvm::PointerType *PTy = 1251 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1252 1253 StringRef MangledName = getMangledName(D); 1254 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1255 } 1256 1257 /// CreateRuntimeVariable - Create a new runtime global variable with the 1258 /// specified type and name. 1259 llvm::Constant * 1260 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1261 StringRef Name) { 1262 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1263 true); 1264 } 1265 1266 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1267 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1268 1269 if (MayDeferGeneration(D)) { 1270 // If we have not seen a reference to this variable yet, place it 1271 // into the deferred declarations table to be emitted if needed 1272 // later. 1273 StringRef MangledName = getMangledName(D); 1274 if (!GetGlobalValue(MangledName)) { 1275 DeferredDecls[MangledName] = D; 1276 return; 1277 } 1278 } 1279 1280 // The tentative definition is the only definition. 1281 EmitGlobalVarDefinition(D); 1282 } 1283 1284 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1285 if (DefinitionRequired) 1286 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1287 } 1288 1289 llvm::GlobalVariable::LinkageTypes 1290 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1291 if (RD->getLinkage() != ExternalLinkage) 1292 return llvm::GlobalVariable::InternalLinkage; 1293 1294 if (const CXXMethodDecl *KeyFunction 1295 = RD->getASTContext().getKeyFunction(RD)) { 1296 // If this class has a key function, use that to determine the linkage of 1297 // the vtable. 1298 const FunctionDecl *Def = 0; 1299 if (KeyFunction->hasBody(Def)) 1300 KeyFunction = cast<CXXMethodDecl>(Def); 1301 1302 switch (KeyFunction->getTemplateSpecializationKind()) { 1303 case TSK_Undeclared: 1304 case TSK_ExplicitSpecialization: 1305 // When compiling with optimizations turned on, we emit all vtables, 1306 // even if the key function is not defined in the current translation 1307 // unit. If this is the case, use available_externally linkage. 1308 if (!Def && CodeGenOpts.OptimizationLevel) 1309 return llvm::GlobalVariable::AvailableExternallyLinkage; 1310 1311 if (KeyFunction->isInlined()) 1312 return !Context.getLangOptions().AppleKext ? 1313 llvm::GlobalVariable::LinkOnceODRLinkage : 1314 llvm::Function::InternalLinkage; 1315 1316 return llvm::GlobalVariable::ExternalLinkage; 1317 1318 case TSK_ImplicitInstantiation: 1319 return !Context.getLangOptions().AppleKext ? 1320 llvm::GlobalVariable::LinkOnceODRLinkage : 1321 llvm::Function::InternalLinkage; 1322 1323 case TSK_ExplicitInstantiationDefinition: 1324 return !Context.getLangOptions().AppleKext ? 1325 llvm::GlobalVariable::WeakODRLinkage : 1326 llvm::Function::InternalLinkage; 1327 1328 case TSK_ExplicitInstantiationDeclaration: 1329 // FIXME: Use available_externally linkage. However, this currently 1330 // breaks LLVM's build due to undefined symbols. 1331 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1332 return !Context.getLangOptions().AppleKext ? 1333 llvm::GlobalVariable::LinkOnceODRLinkage : 1334 llvm::Function::InternalLinkage; 1335 } 1336 } 1337 1338 if (Context.getLangOptions().AppleKext) 1339 return llvm::Function::InternalLinkage; 1340 1341 switch (RD->getTemplateSpecializationKind()) { 1342 case TSK_Undeclared: 1343 case TSK_ExplicitSpecialization: 1344 case TSK_ImplicitInstantiation: 1345 // FIXME: Use available_externally linkage. However, this currently 1346 // breaks LLVM's build due to undefined symbols. 1347 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1348 case TSK_ExplicitInstantiationDeclaration: 1349 return llvm::GlobalVariable::LinkOnceODRLinkage; 1350 1351 case TSK_ExplicitInstantiationDefinition: 1352 return llvm::GlobalVariable::WeakODRLinkage; 1353 } 1354 1355 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1356 } 1357 1358 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1359 return Context.toCharUnitsFromBits( 1360 TheTargetData.getTypeStoreSizeInBits(Ty)); 1361 } 1362 1363 llvm::Constant * 1364 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1365 const Expr *rawInit) { 1366 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1367 if (const ExprWithCleanups *withCleanups = 1368 dyn_cast<ExprWithCleanups>(rawInit)) { 1369 cleanups = withCleanups->getObjects(); 1370 rawInit = withCleanups->getSubExpr(); 1371 } 1372 1373 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1374 if (!init || !init->initializesStdInitializerList() || 1375 init->getNumInits() == 0) 1376 return 0; 1377 1378 ASTContext &ctx = getContext(); 1379 unsigned numInits = init->getNumInits(); 1380 // FIXME: This check is here because we would otherwise silently miscompile 1381 // nested global std::initializer_lists. Better would be to have a real 1382 // implementation. 1383 for (unsigned i = 0; i < numInits; ++i) { 1384 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1385 if (inner && inner->initializesStdInitializerList()) { 1386 ErrorUnsupported(inner, "nested global std::initializer_list"); 1387 return 0; 1388 } 1389 } 1390 1391 // Synthesize a fake VarDecl for the array and initialize that. 1392 QualType elementType = init->getInit(0)->getType(); 1393 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1394 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1395 ArrayType::Normal, 0); 1396 1397 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1398 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1399 arrayType, D->getLocation()); 1400 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1401 D->getDeclContext()), 1402 D->getLocStart(), D->getLocation(), 1403 name, arrayType, sourceInfo, 1404 SC_Static, SC_Static); 1405 1406 // Now clone the InitListExpr to initialize the array instead. 1407 // Incredible hack: we want to use the existing InitListExpr here, so we need 1408 // to tell it that it no longer initializes a std::initializer_list. 1409 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1410 const_cast<InitListExpr*>(init)->getInits(), 1411 init->getNumInits(), 1412 init->getRBraceLoc()); 1413 arrayInit->setType(arrayType); 1414 1415 if (!cleanups.empty()) 1416 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1417 1418 backingArray->setInit(arrayInit); 1419 1420 // Emit the definition of the array. 1421 EmitGlobalVarDefinition(backingArray); 1422 1423 // Inspect the initializer list to validate it and determine its type. 1424 // FIXME: doing this every time is probably inefficient; caching would be nice 1425 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1426 RecordDecl::field_iterator field = record->field_begin(); 1427 if (field == record->field_end()) { 1428 ErrorUnsupported(D, "weird std::initializer_list"); 1429 return 0; 1430 } 1431 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1432 // Start pointer. 1433 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1434 ErrorUnsupported(D, "weird std::initializer_list"); 1435 return 0; 1436 } 1437 ++field; 1438 if (field == record->field_end()) { 1439 ErrorUnsupported(D, "weird std::initializer_list"); 1440 return 0; 1441 } 1442 bool isStartEnd = false; 1443 if (ctx.hasSameType(field->getType(), elementPtr)) { 1444 // End pointer. 1445 isStartEnd = true; 1446 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1447 ErrorUnsupported(D, "weird std::initializer_list"); 1448 return 0; 1449 } 1450 1451 // Now build an APValue representing the std::initializer_list. 1452 APValue initListValue(APValue::UninitStruct(), 0, 2); 1453 APValue &startField = initListValue.getStructField(0); 1454 APValue::LValuePathEntry startOffsetPathEntry; 1455 startOffsetPathEntry.ArrayIndex = 0; 1456 startField = APValue(APValue::LValueBase(backingArray), 1457 CharUnits::fromQuantity(0), 1458 llvm::makeArrayRef(startOffsetPathEntry), 1459 /*IsOnePastTheEnd=*/false, 0); 1460 1461 if (isStartEnd) { 1462 APValue &endField = initListValue.getStructField(1); 1463 APValue::LValuePathEntry endOffsetPathEntry; 1464 endOffsetPathEntry.ArrayIndex = numInits; 1465 endField = APValue(APValue::LValueBase(backingArray), 1466 ctx.getTypeSizeInChars(elementType) * numInits, 1467 llvm::makeArrayRef(endOffsetPathEntry), 1468 /*IsOnePastTheEnd=*/true, 0); 1469 } else { 1470 APValue &sizeField = initListValue.getStructField(1); 1471 sizeField = APValue(llvm::APSInt(numElements)); 1472 } 1473 1474 // Emit the constant for the initializer_list. 1475 llvm::Constant *llvmInit = EmitConstantValue(initListValue, D->getType()); 1476 assert(llvmInit && "failed to initialize as constant"); 1477 return llvmInit; 1478 } 1479 1480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1481 llvm::Constant *Init = 0; 1482 QualType ASTTy = D->getType(); 1483 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1484 bool NeedsGlobalCtor = false; 1485 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1486 1487 const VarDecl *InitDecl; 1488 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1489 1490 if (!InitExpr) { 1491 // This is a tentative definition; tentative definitions are 1492 // implicitly initialized with { 0 }. 1493 // 1494 // Note that tentative definitions are only emitted at the end of 1495 // a translation unit, so they should never have incomplete 1496 // type. In addition, EmitTentativeDefinition makes sure that we 1497 // never attempt to emit a tentative definition if a real one 1498 // exists. A use may still exists, however, so we still may need 1499 // to do a RAUW. 1500 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1501 Init = EmitNullConstant(D->getType()); 1502 } else { 1503 // If this is a std::initializer_list, emit the special initializer. 1504 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1505 // An empty init list will perform zero-initialization, which happens 1506 // to be exactly what we want. 1507 // FIXME: It does so in a global constructor, which is *not* what we 1508 // want. 1509 1510 if (!Init) 1511 Init = EmitConstantInit(*InitDecl); 1512 if (!Init) { 1513 QualType T = InitExpr->getType(); 1514 if (D->getType()->isReferenceType()) 1515 T = D->getType(); 1516 1517 if (getLangOptions().CPlusPlus) { 1518 Init = EmitNullConstant(T); 1519 NeedsGlobalCtor = true; 1520 } else { 1521 ErrorUnsupported(D, "static initializer"); 1522 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1523 } 1524 } else { 1525 // We don't need an initializer, so remove the entry for the delayed 1526 // initializer position (just in case this entry was delayed) if we 1527 // also don't need to register a destructor. 1528 if (getLangOptions().CPlusPlus && !NeedsGlobalDtor) 1529 DelayedCXXInitPosition.erase(D); 1530 } 1531 } 1532 1533 llvm::Type* InitType = Init->getType(); 1534 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1535 1536 // Strip off a bitcast if we got one back. 1537 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1538 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1539 // all zero index gep. 1540 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1541 Entry = CE->getOperand(0); 1542 } 1543 1544 // Entry is now either a Function or GlobalVariable. 1545 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1546 1547 // We have a definition after a declaration with the wrong type. 1548 // We must make a new GlobalVariable* and update everything that used OldGV 1549 // (a declaration or tentative definition) with the new GlobalVariable* 1550 // (which will be a definition). 1551 // 1552 // This happens if there is a prototype for a global (e.g. 1553 // "extern int x[];") and then a definition of a different type (e.g. 1554 // "int x[10];"). This also happens when an initializer has a different type 1555 // from the type of the global (this happens with unions). 1556 if (GV == 0 || 1557 GV->getType()->getElementType() != InitType || 1558 GV->getType()->getAddressSpace() != 1559 getContext().getTargetAddressSpace(ASTTy)) { 1560 1561 // Move the old entry aside so that we'll create a new one. 1562 Entry->setName(StringRef()); 1563 1564 // Make a new global with the correct type, this is now guaranteed to work. 1565 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1566 1567 // Replace all uses of the old global with the new global 1568 llvm::Constant *NewPtrForOldDecl = 1569 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1570 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1571 1572 // Erase the old global, since it is no longer used. 1573 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1574 } 1575 1576 if (D->hasAttr<AnnotateAttr>()) 1577 AddGlobalAnnotations(D, GV); 1578 1579 GV->setInitializer(Init); 1580 1581 // If it is safe to mark the global 'constant', do so now. 1582 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1583 isTypeConstant(D->getType(), true)); 1584 1585 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1586 1587 // Set the llvm linkage type as appropriate. 1588 llvm::GlobalValue::LinkageTypes Linkage = 1589 GetLLVMLinkageVarDefinition(D, GV); 1590 GV->setLinkage(Linkage); 1591 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1592 // common vars aren't constant even if declared const. 1593 GV->setConstant(false); 1594 1595 SetCommonAttributes(D, GV); 1596 1597 // Emit the initializer function if necessary. 1598 if (NeedsGlobalCtor || NeedsGlobalDtor) 1599 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1600 1601 // Emit global variable debug information. 1602 if (CGDebugInfo *DI = getModuleDebugInfo()) 1603 DI->EmitGlobalVariable(GV, D); 1604 } 1605 1606 llvm::GlobalValue::LinkageTypes 1607 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1608 llvm::GlobalVariable *GV) { 1609 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1610 if (Linkage == GVA_Internal) 1611 return llvm::Function::InternalLinkage; 1612 else if (D->hasAttr<DLLImportAttr>()) 1613 return llvm::Function::DLLImportLinkage; 1614 else if (D->hasAttr<DLLExportAttr>()) 1615 return llvm::Function::DLLExportLinkage; 1616 else if (D->hasAttr<WeakAttr>()) { 1617 if (GV->isConstant()) 1618 return llvm::GlobalVariable::WeakODRLinkage; 1619 else 1620 return llvm::GlobalVariable::WeakAnyLinkage; 1621 } else if (Linkage == GVA_TemplateInstantiation || 1622 Linkage == GVA_ExplicitTemplateInstantiation) 1623 return llvm::GlobalVariable::WeakODRLinkage; 1624 else if (!getLangOptions().CPlusPlus && 1625 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1626 D->getAttr<CommonAttr>()) && 1627 !D->hasExternalStorage() && !D->getInit() && 1628 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1629 !D->getAttr<WeakImportAttr>()) { 1630 // Thread local vars aren't considered common linkage. 1631 return llvm::GlobalVariable::CommonLinkage; 1632 } 1633 return llvm::GlobalVariable::ExternalLinkage; 1634 } 1635 1636 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1637 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1638 /// existing call uses of the old function in the module, this adjusts them to 1639 /// call the new function directly. 1640 /// 1641 /// This is not just a cleanup: the always_inline pass requires direct calls to 1642 /// functions to be able to inline them. If there is a bitcast in the way, it 1643 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1644 /// run at -O0. 1645 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1646 llvm::Function *NewFn) { 1647 // If we're redefining a global as a function, don't transform it. 1648 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1649 if (OldFn == 0) return; 1650 1651 llvm::Type *NewRetTy = NewFn->getReturnType(); 1652 SmallVector<llvm::Value*, 4> ArgList; 1653 1654 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1655 UI != E; ) { 1656 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1657 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1658 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1659 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1660 llvm::CallSite CS(CI); 1661 if (!CI || !CS.isCallee(I)) continue; 1662 1663 // If the return types don't match exactly, and if the call isn't dead, then 1664 // we can't transform this call. 1665 if (CI->getType() != NewRetTy && !CI->use_empty()) 1666 continue; 1667 1668 // Get the attribute list. 1669 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1670 llvm::AttrListPtr AttrList = CI->getAttributes(); 1671 1672 // Get any return attributes. 1673 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1674 1675 // Add the return attributes. 1676 if (RAttrs) 1677 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1678 1679 // If the function was passed too few arguments, don't transform. If extra 1680 // arguments were passed, we silently drop them. If any of the types 1681 // mismatch, we don't transform. 1682 unsigned ArgNo = 0; 1683 bool DontTransform = false; 1684 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1685 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1686 if (CS.arg_size() == ArgNo || 1687 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1688 DontTransform = true; 1689 break; 1690 } 1691 1692 // Add any parameter attributes. 1693 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1694 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1695 } 1696 if (DontTransform) 1697 continue; 1698 1699 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1700 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1701 1702 // Okay, we can transform this. Create the new call instruction and copy 1703 // over the required information. 1704 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1705 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1706 ArgList.clear(); 1707 if (!NewCall->getType()->isVoidTy()) 1708 NewCall->takeName(CI); 1709 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1710 AttrVec.end())); 1711 NewCall->setCallingConv(CI->getCallingConv()); 1712 1713 // Finally, remove the old call, replacing any uses with the new one. 1714 if (!CI->use_empty()) 1715 CI->replaceAllUsesWith(NewCall); 1716 1717 // Copy debug location attached to CI. 1718 if (!CI->getDebugLoc().isUnknown()) 1719 NewCall->setDebugLoc(CI->getDebugLoc()); 1720 CI->eraseFromParent(); 1721 } 1722 } 1723 1724 1725 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1726 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1727 1728 // Compute the function info and LLVM type. 1729 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1730 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1731 1732 // Get or create the prototype for the function. 1733 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1734 1735 // Strip off a bitcast if we got one back. 1736 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1737 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1738 Entry = CE->getOperand(0); 1739 } 1740 1741 1742 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1743 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1744 1745 // If the types mismatch then we have to rewrite the definition. 1746 assert(OldFn->isDeclaration() && 1747 "Shouldn't replace non-declaration"); 1748 1749 // F is the Function* for the one with the wrong type, we must make a new 1750 // Function* and update everything that used F (a declaration) with the new 1751 // Function* (which will be a definition). 1752 // 1753 // This happens if there is a prototype for a function 1754 // (e.g. "int f()") and then a definition of a different type 1755 // (e.g. "int f(int x)"). Move the old function aside so that it 1756 // doesn't interfere with GetAddrOfFunction. 1757 OldFn->setName(StringRef()); 1758 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1759 1760 // If this is an implementation of a function without a prototype, try to 1761 // replace any existing uses of the function (which may be calls) with uses 1762 // of the new function 1763 if (D->getType()->isFunctionNoProtoType()) { 1764 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1765 OldFn->removeDeadConstantUsers(); 1766 } 1767 1768 // Replace uses of F with the Function we will endow with a body. 1769 if (!Entry->use_empty()) { 1770 llvm::Constant *NewPtrForOldDecl = 1771 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1772 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1773 } 1774 1775 // Ok, delete the old function now, which is dead. 1776 OldFn->eraseFromParent(); 1777 1778 Entry = NewFn; 1779 } 1780 1781 // We need to set linkage and visibility on the function before 1782 // generating code for it because various parts of IR generation 1783 // want to propagate this information down (e.g. to local static 1784 // declarations). 1785 llvm::Function *Fn = cast<llvm::Function>(Entry); 1786 setFunctionLinkage(D, Fn); 1787 1788 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1789 setGlobalVisibility(Fn, D); 1790 1791 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1792 1793 SetFunctionDefinitionAttributes(D, Fn); 1794 SetLLVMFunctionAttributesForDefinition(D, Fn); 1795 1796 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1797 AddGlobalCtor(Fn, CA->getPriority()); 1798 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1799 AddGlobalDtor(Fn, DA->getPriority()); 1800 if (D->hasAttr<AnnotateAttr>()) 1801 AddGlobalAnnotations(D, Fn); 1802 } 1803 1804 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1805 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1806 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1807 assert(AA && "Not an alias?"); 1808 1809 StringRef MangledName = getMangledName(GD); 1810 1811 // If there is a definition in the module, then it wins over the alias. 1812 // This is dubious, but allow it to be safe. Just ignore the alias. 1813 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1814 if (Entry && !Entry->isDeclaration()) 1815 return; 1816 1817 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1818 1819 // Create a reference to the named value. This ensures that it is emitted 1820 // if a deferred decl. 1821 llvm::Constant *Aliasee; 1822 if (isa<llvm::FunctionType>(DeclTy)) 1823 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1824 /*ForVTable=*/false); 1825 else 1826 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1827 llvm::PointerType::getUnqual(DeclTy), 0); 1828 1829 // Create the new alias itself, but don't set a name yet. 1830 llvm::GlobalValue *GA = 1831 new llvm::GlobalAlias(Aliasee->getType(), 1832 llvm::Function::ExternalLinkage, 1833 "", Aliasee, &getModule()); 1834 1835 if (Entry) { 1836 assert(Entry->isDeclaration()); 1837 1838 // If there is a declaration in the module, then we had an extern followed 1839 // by the alias, as in: 1840 // extern int test6(); 1841 // ... 1842 // int test6() __attribute__((alias("test7"))); 1843 // 1844 // Remove it and replace uses of it with the alias. 1845 GA->takeName(Entry); 1846 1847 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1848 Entry->getType())); 1849 Entry->eraseFromParent(); 1850 } else { 1851 GA->setName(MangledName); 1852 } 1853 1854 // Set attributes which are particular to an alias; this is a 1855 // specialization of the attributes which may be set on a global 1856 // variable/function. 1857 if (D->hasAttr<DLLExportAttr>()) { 1858 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1859 // The dllexport attribute is ignored for undefined symbols. 1860 if (FD->hasBody()) 1861 GA->setLinkage(llvm::Function::DLLExportLinkage); 1862 } else { 1863 GA->setLinkage(llvm::Function::DLLExportLinkage); 1864 } 1865 } else if (D->hasAttr<WeakAttr>() || 1866 D->hasAttr<WeakRefAttr>() || 1867 D->isWeakImported()) { 1868 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1869 } 1870 1871 SetCommonAttributes(D, GA); 1872 } 1873 1874 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1875 ArrayRef<llvm::Type*> Tys) { 1876 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1877 Tys); 1878 } 1879 1880 static llvm::StringMapEntry<llvm::Constant*> & 1881 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1882 const StringLiteral *Literal, 1883 bool TargetIsLSB, 1884 bool &IsUTF16, 1885 unsigned &StringLength) { 1886 StringRef String = Literal->getString(); 1887 unsigned NumBytes = String.size(); 1888 1889 // Check for simple case. 1890 if (!Literal->containsNonAsciiOrNull()) { 1891 StringLength = NumBytes; 1892 return Map.GetOrCreateValue(String); 1893 } 1894 1895 // Otherwise, convert the UTF8 literals into a byte string. 1896 SmallVector<UTF16, 128> ToBuf(NumBytes); 1897 const UTF8 *FromPtr = (UTF8 *)String.data(); 1898 UTF16 *ToPtr = &ToBuf[0]; 1899 1900 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1901 &ToPtr, ToPtr + NumBytes, 1902 strictConversion); 1903 1904 // ConvertUTF8toUTF16 returns the length in ToPtr. 1905 StringLength = ToPtr - &ToBuf[0]; 1906 1907 // Render the UTF-16 string into a byte array and convert to the target byte 1908 // order. 1909 // 1910 // FIXME: This isn't something we should need to do here. 1911 SmallString<128> AsBytes; 1912 AsBytes.reserve(StringLength * 2); 1913 for (unsigned i = 0; i != StringLength; ++i) { 1914 unsigned short Val = ToBuf[i]; 1915 if (TargetIsLSB) { 1916 AsBytes.push_back(Val & 0xFF); 1917 AsBytes.push_back(Val >> 8); 1918 } else { 1919 AsBytes.push_back(Val >> 8); 1920 AsBytes.push_back(Val & 0xFF); 1921 } 1922 } 1923 // Append one extra null character, the second is automatically added by our 1924 // caller. 1925 AsBytes.push_back(0); 1926 1927 IsUTF16 = true; 1928 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1929 } 1930 1931 static llvm::StringMapEntry<llvm::Constant*> & 1932 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1933 const StringLiteral *Literal, 1934 unsigned &StringLength) 1935 { 1936 StringRef String = Literal->getString(); 1937 StringLength = String.size(); 1938 return Map.GetOrCreateValue(String); 1939 } 1940 1941 llvm::Constant * 1942 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1943 unsigned StringLength = 0; 1944 bool isUTF16 = false; 1945 llvm::StringMapEntry<llvm::Constant*> &Entry = 1946 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1947 getTargetData().isLittleEndian(), 1948 isUTF16, StringLength); 1949 1950 if (llvm::Constant *C = Entry.getValue()) 1951 return C; 1952 1953 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1954 llvm::Constant *Zeros[] = { Zero, Zero }; 1955 1956 // If we don't already have it, get __CFConstantStringClassReference. 1957 if (!CFConstantStringClassRef) { 1958 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1959 Ty = llvm::ArrayType::get(Ty, 0); 1960 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1961 "__CFConstantStringClassReference"); 1962 // Decay array -> ptr 1963 CFConstantStringClassRef = 1964 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1965 } 1966 1967 QualType CFTy = getContext().getCFConstantStringType(); 1968 1969 llvm::StructType *STy = 1970 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1971 1972 llvm::Constant *Fields[4]; 1973 1974 // Class pointer. 1975 Fields[0] = CFConstantStringClassRef; 1976 1977 // Flags. 1978 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1979 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1980 llvm::ConstantInt::get(Ty, 0x07C8); 1981 1982 // String pointer. 1983 llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext, 1984 Entry.getKey()); 1985 1986 llvm::GlobalValue::LinkageTypes Linkage; 1987 if (isUTF16) 1988 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1989 Linkage = llvm::GlobalValue::InternalLinkage; 1990 else 1991 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1992 // when using private linkage. It is not clear if this is a bug in ld 1993 // or a reasonable new restriction. 1994 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1995 1996 // Note: -fwritable-strings doesn't make the backing store strings of 1997 // CFStrings writable. (See <rdar://problem/10657500>) 1998 llvm::GlobalVariable *GV = 1999 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2000 Linkage, C, ".str"); 2001 GV->setUnnamedAddr(true); 2002 if (isUTF16) { 2003 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2004 GV->setAlignment(Align.getQuantity()); 2005 } else { 2006 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2007 GV->setAlignment(Align.getQuantity()); 2008 } 2009 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2010 2011 // String length. 2012 Ty = getTypes().ConvertType(getContext().LongTy); 2013 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2014 2015 // The struct. 2016 C = llvm::ConstantStruct::get(STy, Fields); 2017 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2018 llvm::GlobalVariable::PrivateLinkage, C, 2019 "_unnamed_cfstring_"); 2020 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2021 GV->setSection(Sect); 2022 Entry.setValue(GV); 2023 2024 return GV; 2025 } 2026 2027 static RecordDecl * 2028 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2029 DeclContext *DC, IdentifierInfo *Id) { 2030 SourceLocation Loc; 2031 if (Ctx.getLangOptions().CPlusPlus) 2032 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2033 else 2034 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2035 } 2036 2037 llvm::Constant * 2038 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2039 unsigned StringLength = 0; 2040 llvm::StringMapEntry<llvm::Constant*> &Entry = 2041 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2042 2043 if (llvm::Constant *C = Entry.getValue()) 2044 return C; 2045 2046 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2047 llvm::Constant *Zeros[] = { Zero, Zero }; 2048 2049 // If we don't already have it, get _NSConstantStringClassReference. 2050 if (!ConstantStringClassRef) { 2051 std::string StringClass(getLangOptions().ObjCConstantStringClass); 2052 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2053 llvm::Constant *GV; 2054 if (Features.ObjCNonFragileABI) { 2055 std::string str = 2056 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2057 : "OBJC_CLASS_$_" + StringClass; 2058 GV = getObjCRuntime().GetClassGlobal(str); 2059 // Make sure the result is of the correct type. 2060 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2061 ConstantStringClassRef = 2062 llvm::ConstantExpr::getBitCast(GV, PTy); 2063 } else { 2064 std::string str = 2065 StringClass.empty() ? "_NSConstantStringClassReference" 2066 : "_" + StringClass + "ClassReference"; 2067 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2068 GV = CreateRuntimeVariable(PTy, str); 2069 // Decay array -> ptr 2070 ConstantStringClassRef = 2071 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2072 } 2073 } 2074 2075 if (!NSConstantStringType) { 2076 // Construct the type for a constant NSString. 2077 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2078 Context.getTranslationUnitDecl(), 2079 &Context.Idents.get("__builtin_NSString")); 2080 D->startDefinition(); 2081 2082 QualType FieldTypes[3]; 2083 2084 // const int *isa; 2085 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2086 // const char *str; 2087 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2088 // unsigned int length; 2089 FieldTypes[2] = Context.UnsignedIntTy; 2090 2091 // Create fields 2092 for (unsigned i = 0; i < 3; ++i) { 2093 FieldDecl *Field = FieldDecl::Create(Context, D, 2094 SourceLocation(), 2095 SourceLocation(), 0, 2096 FieldTypes[i], /*TInfo=*/0, 2097 /*BitWidth=*/0, 2098 /*Mutable=*/false, 2099 /*HasInit=*/false); 2100 Field->setAccess(AS_public); 2101 D->addDecl(Field); 2102 } 2103 2104 D->completeDefinition(); 2105 QualType NSTy = Context.getTagDeclType(D); 2106 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2107 } 2108 2109 llvm::Constant *Fields[3]; 2110 2111 // Class pointer. 2112 Fields[0] = ConstantStringClassRef; 2113 2114 // String pointer. 2115 llvm::Constant *C = 2116 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2117 2118 llvm::GlobalValue::LinkageTypes Linkage; 2119 bool isConstant; 2120 Linkage = llvm::GlobalValue::PrivateLinkage; 2121 isConstant = !Features.WritableStrings; 2122 2123 llvm::GlobalVariable *GV = 2124 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2125 ".str"); 2126 GV->setUnnamedAddr(true); 2127 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2128 GV->setAlignment(Align.getQuantity()); 2129 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2130 2131 // String length. 2132 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2133 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2134 2135 // The struct. 2136 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2137 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2138 llvm::GlobalVariable::PrivateLinkage, C, 2139 "_unnamed_nsstring_"); 2140 // FIXME. Fix section. 2141 if (const char *Sect = 2142 Features.ObjCNonFragileABI 2143 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2144 : getContext().getTargetInfo().getNSStringSection()) 2145 GV->setSection(Sect); 2146 Entry.setValue(GV); 2147 2148 return GV; 2149 } 2150 2151 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2152 if (ObjCFastEnumerationStateType.isNull()) { 2153 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2154 Context.getTranslationUnitDecl(), 2155 &Context.Idents.get("__objcFastEnumerationState")); 2156 D->startDefinition(); 2157 2158 QualType FieldTypes[] = { 2159 Context.UnsignedLongTy, 2160 Context.getPointerType(Context.getObjCIdType()), 2161 Context.getPointerType(Context.UnsignedLongTy), 2162 Context.getConstantArrayType(Context.UnsignedLongTy, 2163 llvm::APInt(32, 5), ArrayType::Normal, 0) 2164 }; 2165 2166 for (size_t i = 0; i < 4; ++i) { 2167 FieldDecl *Field = FieldDecl::Create(Context, 2168 D, 2169 SourceLocation(), 2170 SourceLocation(), 0, 2171 FieldTypes[i], /*TInfo=*/0, 2172 /*BitWidth=*/0, 2173 /*Mutable=*/false, 2174 /*HasInit=*/false); 2175 Field->setAccess(AS_public); 2176 D->addDecl(Field); 2177 } 2178 2179 D->completeDefinition(); 2180 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2181 } 2182 2183 return ObjCFastEnumerationStateType; 2184 } 2185 2186 llvm::Constant * 2187 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2188 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2189 2190 // Don't emit it as the address of the string, emit the string data itself 2191 // as an inline array. 2192 if (E->getCharByteWidth() == 1) { 2193 SmallString<64> Str(E->getString()); 2194 2195 // Resize the string to the right size, which is indicated by its type. 2196 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2197 Str.resize(CAT->getSize().getZExtValue()); 2198 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2199 } 2200 2201 llvm::ArrayType *AType = 2202 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2203 llvm::Type *ElemTy = AType->getElementType(); 2204 unsigned NumElements = AType->getNumElements(); 2205 2206 // Wide strings have either 2-byte or 4-byte elements. 2207 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2208 SmallVector<uint16_t, 32> Elements; 2209 Elements.reserve(NumElements); 2210 2211 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2212 Elements.push_back(E->getCodeUnit(i)); 2213 Elements.resize(NumElements); 2214 return llvm::ConstantDataArray::get(VMContext, Elements); 2215 } 2216 2217 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2218 SmallVector<uint32_t, 32> Elements; 2219 Elements.reserve(NumElements); 2220 2221 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2222 Elements.push_back(E->getCodeUnit(i)); 2223 Elements.resize(NumElements); 2224 return llvm::ConstantDataArray::get(VMContext, Elements); 2225 } 2226 2227 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2228 /// constant array for the given string literal. 2229 llvm::Constant * 2230 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2231 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2232 if (S->isAscii() || S->isUTF8()) { 2233 SmallString<64> Str(S->getString()); 2234 2235 // Resize the string to the right size, which is indicated by its type. 2236 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2237 Str.resize(CAT->getSize().getZExtValue()); 2238 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2239 } 2240 2241 // FIXME: the following does not memoize wide strings. 2242 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2243 llvm::GlobalVariable *GV = 2244 new llvm::GlobalVariable(getModule(),C->getType(), 2245 !Features.WritableStrings, 2246 llvm::GlobalValue::PrivateLinkage, 2247 C,".str"); 2248 2249 GV->setAlignment(Align.getQuantity()); 2250 GV->setUnnamedAddr(true); 2251 return GV; 2252 } 2253 2254 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2255 /// array for the given ObjCEncodeExpr node. 2256 llvm::Constant * 2257 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2258 std::string Str; 2259 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2260 2261 return GetAddrOfConstantCString(Str); 2262 } 2263 2264 2265 /// GenerateWritableString -- Creates storage for a string literal. 2266 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2267 bool constant, 2268 CodeGenModule &CGM, 2269 const char *GlobalName, 2270 unsigned Alignment) { 2271 // Create Constant for this string literal. Don't add a '\0'. 2272 llvm::Constant *C = 2273 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2274 2275 // Create a global variable for this string 2276 llvm::GlobalVariable *GV = 2277 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2278 llvm::GlobalValue::PrivateLinkage, 2279 C, GlobalName); 2280 GV->setAlignment(Alignment); 2281 GV->setUnnamedAddr(true); 2282 return GV; 2283 } 2284 2285 /// GetAddrOfConstantString - Returns a pointer to a character array 2286 /// containing the literal. This contents are exactly that of the 2287 /// given string, i.e. it will not be null terminated automatically; 2288 /// see GetAddrOfConstantCString. Note that whether the result is 2289 /// actually a pointer to an LLVM constant depends on 2290 /// Feature.WriteableStrings. 2291 /// 2292 /// The result has pointer to array type. 2293 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2294 const char *GlobalName, 2295 unsigned Alignment) { 2296 // Get the default prefix if a name wasn't specified. 2297 if (!GlobalName) 2298 GlobalName = ".str"; 2299 2300 // Don't share any string literals if strings aren't constant. 2301 if (Features.WritableStrings) 2302 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2303 2304 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2305 ConstantStringMap.GetOrCreateValue(Str); 2306 2307 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2308 if (Alignment > GV->getAlignment()) { 2309 GV->setAlignment(Alignment); 2310 } 2311 return GV; 2312 } 2313 2314 // Create a global variable for this. 2315 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2316 Alignment); 2317 Entry.setValue(GV); 2318 return GV; 2319 } 2320 2321 /// GetAddrOfConstantCString - Returns a pointer to a character 2322 /// array containing the literal and a terminating '\0' 2323 /// character. The result has pointer to array type. 2324 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2325 const char *GlobalName, 2326 unsigned Alignment) { 2327 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2328 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2329 } 2330 2331 /// EmitObjCPropertyImplementations - Emit information for synthesized 2332 /// properties for an implementation. 2333 void CodeGenModule::EmitObjCPropertyImplementations(const 2334 ObjCImplementationDecl *D) { 2335 for (ObjCImplementationDecl::propimpl_iterator 2336 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2337 ObjCPropertyImplDecl *PID = *i; 2338 2339 // Dynamic is just for type-checking. 2340 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2341 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2342 2343 // Determine which methods need to be implemented, some may have 2344 // been overridden. Note that ::isSynthesized is not the method 2345 // we want, that just indicates if the decl came from a 2346 // property. What we want to know is if the method is defined in 2347 // this implementation. 2348 if (!D->getInstanceMethod(PD->getGetterName())) 2349 CodeGenFunction(*this).GenerateObjCGetter( 2350 const_cast<ObjCImplementationDecl *>(D), PID); 2351 if (!PD->isReadOnly() && 2352 !D->getInstanceMethod(PD->getSetterName())) 2353 CodeGenFunction(*this).GenerateObjCSetter( 2354 const_cast<ObjCImplementationDecl *>(D), PID); 2355 } 2356 } 2357 } 2358 2359 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2360 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2361 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2362 ivar; ivar = ivar->getNextIvar()) 2363 if (ivar->getType().isDestructedType()) 2364 return true; 2365 2366 return false; 2367 } 2368 2369 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2370 /// for an implementation. 2371 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2372 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2373 if (needsDestructMethod(D)) { 2374 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2375 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2376 ObjCMethodDecl *DTORMethod = 2377 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2378 cxxSelector, getContext().VoidTy, 0, D, 2379 /*isInstance=*/true, /*isVariadic=*/false, 2380 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2381 /*isDefined=*/false, ObjCMethodDecl::Required); 2382 D->addInstanceMethod(DTORMethod); 2383 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2384 D->setHasCXXStructors(true); 2385 } 2386 2387 // If the implementation doesn't have any ivar initializers, we don't need 2388 // a .cxx_construct. 2389 if (D->getNumIvarInitializers() == 0) 2390 return; 2391 2392 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2393 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2394 // The constructor returns 'self'. 2395 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2396 D->getLocation(), 2397 D->getLocation(), 2398 cxxSelector, 2399 getContext().getObjCIdType(), 0, 2400 D, /*isInstance=*/true, 2401 /*isVariadic=*/false, 2402 /*isSynthesized=*/true, 2403 /*isImplicitlyDeclared=*/true, 2404 /*isDefined=*/false, 2405 ObjCMethodDecl::Required); 2406 D->addInstanceMethod(CTORMethod); 2407 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2408 D->setHasCXXStructors(true); 2409 } 2410 2411 /// EmitNamespace - Emit all declarations in a namespace. 2412 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2413 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2414 I != E; ++I) 2415 EmitTopLevelDecl(*I); 2416 } 2417 2418 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2419 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2420 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2421 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2422 ErrorUnsupported(LSD, "linkage spec"); 2423 return; 2424 } 2425 2426 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2427 I != E; ++I) 2428 EmitTopLevelDecl(*I); 2429 } 2430 2431 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2432 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2433 // If an error has occurred, stop code generation, but continue 2434 // parsing and semantic analysis (to ensure all warnings and errors 2435 // are emitted). 2436 if (Diags.hasErrorOccurred()) 2437 return; 2438 2439 // Ignore dependent declarations. 2440 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2441 return; 2442 2443 switch (D->getKind()) { 2444 case Decl::CXXConversion: 2445 case Decl::CXXMethod: 2446 case Decl::Function: 2447 // Skip function templates 2448 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2449 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2450 return; 2451 2452 EmitGlobal(cast<FunctionDecl>(D)); 2453 break; 2454 2455 case Decl::Var: 2456 EmitGlobal(cast<VarDecl>(D)); 2457 break; 2458 2459 // Indirect fields from global anonymous structs and unions can be 2460 // ignored; only the actual variable requires IR gen support. 2461 case Decl::IndirectField: 2462 break; 2463 2464 // C++ Decls 2465 case Decl::Namespace: 2466 EmitNamespace(cast<NamespaceDecl>(D)); 2467 break; 2468 // No code generation needed. 2469 case Decl::UsingShadow: 2470 case Decl::Using: 2471 case Decl::UsingDirective: 2472 case Decl::ClassTemplate: 2473 case Decl::FunctionTemplate: 2474 case Decl::TypeAliasTemplate: 2475 case Decl::NamespaceAlias: 2476 case Decl::Block: 2477 case Decl::Import: 2478 break; 2479 case Decl::CXXConstructor: 2480 // Skip function templates 2481 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2482 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2483 return; 2484 2485 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2486 break; 2487 case Decl::CXXDestructor: 2488 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2489 return; 2490 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2491 break; 2492 2493 case Decl::StaticAssert: 2494 // Nothing to do. 2495 break; 2496 2497 // Objective-C Decls 2498 2499 // Forward declarations, no (immediate) code generation. 2500 case Decl::ObjCInterface: 2501 break; 2502 2503 case Decl::ObjCCategory: { 2504 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2505 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2506 Context.ResetObjCLayout(CD->getClassInterface()); 2507 break; 2508 } 2509 2510 case Decl::ObjCProtocol: { 2511 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2512 if (Proto->isThisDeclarationADefinition()) 2513 ObjCRuntime->GenerateProtocol(Proto); 2514 break; 2515 } 2516 2517 case Decl::ObjCCategoryImpl: 2518 // Categories have properties but don't support synthesize so we 2519 // can ignore them here. 2520 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2521 break; 2522 2523 case Decl::ObjCImplementation: { 2524 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2525 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2526 Context.ResetObjCLayout(OMD->getClassInterface()); 2527 EmitObjCPropertyImplementations(OMD); 2528 EmitObjCIvarInitializations(OMD); 2529 ObjCRuntime->GenerateClass(OMD); 2530 break; 2531 } 2532 case Decl::ObjCMethod: { 2533 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2534 // If this is not a prototype, emit the body. 2535 if (OMD->getBody()) 2536 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2537 break; 2538 } 2539 case Decl::ObjCCompatibleAlias: 2540 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2541 break; 2542 2543 case Decl::LinkageSpec: 2544 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2545 break; 2546 2547 case Decl::FileScopeAsm: { 2548 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2549 StringRef AsmString = AD->getAsmString()->getString(); 2550 2551 const std::string &S = getModule().getModuleInlineAsm(); 2552 if (S.empty()) 2553 getModule().setModuleInlineAsm(AsmString); 2554 else if (*--S.end() == '\n') 2555 getModule().setModuleInlineAsm(S + AsmString.str()); 2556 else 2557 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2558 break; 2559 } 2560 2561 default: 2562 // Make sure we handled everything we should, every other kind is a 2563 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2564 // function. Need to recode Decl::Kind to do that easily. 2565 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2566 } 2567 } 2568 2569 /// Turns the given pointer into a constant. 2570 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2571 const void *Ptr) { 2572 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2573 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2574 return llvm::ConstantInt::get(i64, PtrInt); 2575 } 2576 2577 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2578 llvm::NamedMDNode *&GlobalMetadata, 2579 GlobalDecl D, 2580 llvm::GlobalValue *Addr) { 2581 if (!GlobalMetadata) 2582 GlobalMetadata = 2583 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2584 2585 // TODO: should we report variant information for ctors/dtors? 2586 llvm::Value *Ops[] = { 2587 Addr, 2588 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2589 }; 2590 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2591 } 2592 2593 /// Emits metadata nodes associating all the global values in the 2594 /// current module with the Decls they came from. This is useful for 2595 /// projects using IR gen as a subroutine. 2596 /// 2597 /// Since there's currently no way to associate an MDNode directly 2598 /// with an llvm::GlobalValue, we create a global named metadata 2599 /// with the name 'clang.global.decl.ptrs'. 2600 void CodeGenModule::EmitDeclMetadata() { 2601 llvm::NamedMDNode *GlobalMetadata = 0; 2602 2603 // StaticLocalDeclMap 2604 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2605 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2606 I != E; ++I) { 2607 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2608 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2609 } 2610 } 2611 2612 /// Emits metadata nodes for all the local variables in the current 2613 /// function. 2614 void CodeGenFunction::EmitDeclMetadata() { 2615 if (LocalDeclMap.empty()) return; 2616 2617 llvm::LLVMContext &Context = getLLVMContext(); 2618 2619 // Find the unique metadata ID for this name. 2620 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2621 2622 llvm::NamedMDNode *GlobalMetadata = 0; 2623 2624 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2625 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2626 const Decl *D = I->first; 2627 llvm::Value *Addr = I->second; 2628 2629 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2630 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2631 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2632 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2633 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2634 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2635 } 2636 } 2637 } 2638 2639 void CodeGenModule::EmitCoverageFile() { 2640 if (!getCodeGenOpts().CoverageFile.empty()) { 2641 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2642 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2643 llvm::LLVMContext &Ctx = TheModule.getContext(); 2644 llvm::MDString *CoverageFile = 2645 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2646 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2647 llvm::MDNode *CU = CUNode->getOperand(i); 2648 llvm::Value *node[] = { CoverageFile, CU }; 2649 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2650 GCov->addOperand(N); 2651 } 2652 } 2653 } 2654 } 2655