xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a235e2d8ad338410e3c9f5d732e4357953e3d82e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (Features.ObjC1)
99     createObjCRuntime();
100   if (Features.OpenCL)
101     createOpenCLRuntime();
102   if (Features.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed.
106   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
107     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
108                            ABI.getMangleContext());
109 
110   // If debug info or coverage generation is enabled, create the CGDebugInfo
111   // object.
112   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
113       CodeGenOpts.EmitGcovNotes)
114     DebugInfo = new CGDebugInfo(*this);
115 
116   Block.GlobalUniqueCount = 0;
117 
118   if (C.getLangOptions().ObjCAutoRefCount)
119     ARCData = new ARCEntrypoints();
120   RRData = new RREntrypoints();
121 }
122 
123 CodeGenModule::~CodeGenModule() {
124   delete ObjCRuntime;
125   delete OpenCLRuntime;
126   delete CUDARuntime;
127   delete TheTargetCodeGenInfo;
128   delete &ABI;
129   delete TBAA;
130   delete DebugInfo;
131   delete ARCData;
132   delete RRData;
133 }
134 
135 void CodeGenModule::createObjCRuntime() {
136   if (!Features.NeXTRuntime)
137     ObjCRuntime = CreateGNUObjCRuntime(*this);
138   else
139     ObjCRuntime = CreateMacObjCRuntime(*this);
140 }
141 
142 void CodeGenModule::createOpenCLRuntime() {
143   OpenCLRuntime = new CGOpenCLRuntime(*this);
144 }
145 
146 void CodeGenModule::createCUDARuntime() {
147   CUDARuntime = CreateNVCUDARuntime(*this);
148 }
149 
150 void CodeGenModule::Release() {
151   EmitDeferred();
152   EmitCXXGlobalInitFunc();
153   EmitCXXGlobalDtorFunc();
154   if (ObjCRuntime)
155     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
156       AddGlobalCtor(ObjCInitFunction);
157   EmitCtorList(GlobalCtors, "llvm.global_ctors");
158   EmitCtorList(GlobalDtors, "llvm.global_dtors");
159   EmitGlobalAnnotations();
160   EmitLLVMUsed();
161 
162   SimplifyPersonality();
163 
164   if (getCodeGenOpts().EmitDeclMetadata)
165     EmitDeclMetadata();
166 
167   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
168     EmitCoverageFile();
169 
170   if (DebugInfo)
171     DebugInfo->finalize();
172 }
173 
174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
175   // Make sure that this type is translated.
176   Types.UpdateCompletedType(TD);
177 }
178 
179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
180   if (!TBAA)
181     return 0;
182   return TBAA->getTBAAInfo(QTy);
183 }
184 
185 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
186                                         llvm::MDNode *TBAAInfo) {
187   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
188 }
189 
190 bool CodeGenModule::isTargetDarwin() const {
191   return getContext().getTargetInfo().getTriple().isOSDarwin();
192 }
193 
194 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
195   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
196   getDiags().Report(Context.getFullLoc(loc), diagID);
197 }
198 
199 /// ErrorUnsupported - Print out an error that codegen doesn't support the
200 /// specified stmt yet.
201 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
202                                      bool OmitOnError) {
203   if (OmitOnError && getDiags().hasErrorOccurred())
204     return;
205   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
206                                                "cannot compile this %0 yet");
207   std::string Msg = Type;
208   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
209     << Msg << S->getSourceRange();
210 }
211 
212 /// ErrorUnsupported - Print out an error that codegen doesn't support the
213 /// specified decl yet.
214 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
215                                      bool OmitOnError) {
216   if (OmitOnError && getDiags().hasErrorOccurred())
217     return;
218   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
219                                                "cannot compile this %0 yet");
220   std::string Msg = Type;
221   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
222 }
223 
224 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
225   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
226 }
227 
228 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
229                                         const NamedDecl *D) const {
230   // Internal definitions always have default visibility.
231   if (GV->hasLocalLinkage()) {
232     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
233     return;
234   }
235 
236   // Set visibility for definitions.
237   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
238   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
239     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
240 }
241 
242 /// Set the symbol visibility of type information (vtable and RTTI)
243 /// associated with the given type.
244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
245                                       const CXXRecordDecl *RD,
246                                       TypeVisibilityKind TVK) const {
247   setGlobalVisibility(GV, RD);
248 
249   if (!CodeGenOpts.HiddenWeakVTables)
250     return;
251 
252   // We never want to drop the visibility for RTTI names.
253   if (TVK == TVK_ForRTTIName)
254     return;
255 
256   // We want to drop the visibility to hidden for weak type symbols.
257   // This isn't possible if there might be unresolved references
258   // elsewhere that rely on this symbol being visible.
259 
260   // This should be kept roughly in sync with setThunkVisibility
261   // in CGVTables.cpp.
262 
263   // Preconditions.
264   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
265       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
266     return;
267 
268   // Don't override an explicit visibility attribute.
269   if (RD->getExplicitVisibility())
270     return;
271 
272   switch (RD->getTemplateSpecializationKind()) {
273   // We have to disable the optimization if this is an EI definition
274   // because there might be EI declarations in other shared objects.
275   case TSK_ExplicitInstantiationDefinition:
276   case TSK_ExplicitInstantiationDeclaration:
277     return;
278 
279   // Every use of a non-template class's type information has to emit it.
280   case TSK_Undeclared:
281     break;
282 
283   // In theory, implicit instantiations can ignore the possibility of
284   // an explicit instantiation declaration because there necessarily
285   // must be an EI definition somewhere with default visibility.  In
286   // practice, it's possible to have an explicit instantiation for
287   // an arbitrary template class, and linkers aren't necessarily able
288   // to deal with mixed-visibility symbols.
289   case TSK_ExplicitSpecialization:
290   case TSK_ImplicitInstantiation:
291     if (!CodeGenOpts.HiddenWeakTemplateVTables)
292       return;
293     break;
294   }
295 
296   // If there's a key function, there may be translation units
297   // that don't have the key function's definition.  But ignore
298   // this if we're emitting RTTI under -fno-rtti.
299   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
300     if (Context.getKeyFunction(RD))
301       return;
302   }
303 
304   // Otherwise, drop the visibility to hidden.
305   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
306   GV->setUnnamedAddr(true);
307 }
308 
309 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
310   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
311 
312   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
313   if (!Str.empty())
314     return Str;
315 
316   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
317     IdentifierInfo *II = ND->getIdentifier();
318     assert(II && "Attempt to mangle unnamed decl.");
319 
320     Str = II->getName();
321     return Str;
322   }
323 
324   SmallString<256> Buffer;
325   llvm::raw_svector_ostream Out(Buffer);
326   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
327     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
328   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
329     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
330   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
331     getCXXABI().getMangleContext().mangleBlock(BD, Out);
332   else
333     getCXXABI().getMangleContext().mangleName(ND, Out);
334 
335   // Allocate space for the mangled name.
336   Out.flush();
337   size_t Length = Buffer.size();
338   char *Name = MangledNamesAllocator.Allocate<char>(Length);
339   std::copy(Buffer.begin(), Buffer.end(), Name);
340 
341   Str = StringRef(Name, Length);
342 
343   return Str;
344 }
345 
346 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
347                                         const BlockDecl *BD) {
348   MangleContext &MangleCtx = getCXXABI().getMangleContext();
349   const Decl *D = GD.getDecl();
350   llvm::raw_svector_ostream Out(Buffer.getBuffer());
351   if (D == 0)
352     MangleCtx.mangleGlobalBlock(BD, Out);
353   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
354     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
355   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
356     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
357   else
358     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
359 }
360 
361 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
362   return getModule().getNamedValue(Name);
363 }
364 
365 /// AddGlobalCtor - Add a function to the list that will be called before
366 /// main() runs.
367 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
368   // FIXME: Type coercion of void()* types.
369   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
370 }
371 
372 /// AddGlobalDtor - Add a function to the list that will be called
373 /// when the module is unloaded.
374 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
375   // FIXME: Type coercion of void()* types.
376   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
377 }
378 
379 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
380   // Ctor function type is void()*.
381   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
382   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
383 
384   // Get the type of a ctor entry, { i32, void ()* }.
385   llvm::StructType *CtorStructTy =
386     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
387 
388   // Construct the constructor and destructor arrays.
389   SmallVector<llvm::Constant*, 8> Ctors;
390   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
391     llvm::Constant *S[] = {
392       llvm::ConstantInt::get(Int32Ty, I->second, false),
393       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
394     };
395     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
396   }
397 
398   if (!Ctors.empty()) {
399     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
400     new llvm::GlobalVariable(TheModule, AT, false,
401                              llvm::GlobalValue::AppendingLinkage,
402                              llvm::ConstantArray::get(AT, Ctors),
403                              GlobalName);
404   }
405 }
406 
407 llvm::GlobalValue::LinkageTypes
408 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
409   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
410 
411   if (Linkage == GVA_Internal)
412     return llvm::Function::InternalLinkage;
413 
414   if (D->hasAttr<DLLExportAttr>())
415     return llvm::Function::DLLExportLinkage;
416 
417   if (D->hasAttr<WeakAttr>())
418     return llvm::Function::WeakAnyLinkage;
419 
420   // In C99 mode, 'inline' functions are guaranteed to have a strong
421   // definition somewhere else, so we can use available_externally linkage.
422   if (Linkage == GVA_C99Inline)
423     return llvm::Function::AvailableExternallyLinkage;
424 
425   // Note that Apple's kernel linker doesn't support symbol
426   // coalescing, so we need to avoid linkonce and weak linkages there.
427   // Normally, this means we just map to internal, but for explicit
428   // instantiations we'll map to external.
429 
430   // In C++, the compiler has to emit a definition in every translation unit
431   // that references the function.  We should use linkonce_odr because
432   // a) if all references in this translation unit are optimized away, we
433   // don't need to codegen it.  b) if the function persists, it needs to be
434   // merged with other definitions. c) C++ has the ODR, so we know the
435   // definition is dependable.
436   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
437     return !Context.getLangOptions().AppleKext
438              ? llvm::Function::LinkOnceODRLinkage
439              : llvm::Function::InternalLinkage;
440 
441   // An explicit instantiation of a template has weak linkage, since
442   // explicit instantiations can occur in multiple translation units
443   // and must all be equivalent. However, we are not allowed to
444   // throw away these explicit instantiations.
445   if (Linkage == GVA_ExplicitTemplateInstantiation)
446     return !Context.getLangOptions().AppleKext
447              ? llvm::Function::WeakODRLinkage
448              : llvm::Function::ExternalLinkage;
449 
450   // Otherwise, we have strong external linkage.
451   assert(Linkage == GVA_StrongExternal);
452   return llvm::Function::ExternalLinkage;
453 }
454 
455 
456 /// SetFunctionDefinitionAttributes - Set attributes for a global.
457 ///
458 /// FIXME: This is currently only done for aliases and functions, but not for
459 /// variables (these details are set in EmitGlobalVarDefinition for variables).
460 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
461                                                     llvm::GlobalValue *GV) {
462   SetCommonAttributes(D, GV);
463 }
464 
465 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
466                                               const CGFunctionInfo &Info,
467                                               llvm::Function *F) {
468   unsigned CallingConv;
469   AttributeListType AttributeList;
470   ConstructAttributeList(Info, D, AttributeList, CallingConv);
471   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
472                                           AttributeList.size()));
473   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
474 }
475 
476 /// Determines whether the language options require us to model
477 /// unwind exceptions.  We treat -fexceptions as mandating this
478 /// except under the fragile ObjC ABI with only ObjC exceptions
479 /// enabled.  This means, for example, that C with -fexceptions
480 /// enables this.
481 static bool hasUnwindExceptions(const LangOptions &Features) {
482   // If exceptions are completely disabled, obviously this is false.
483   if (!Features.Exceptions) return false;
484 
485   // If C++ exceptions are enabled, this is true.
486   if (Features.CXXExceptions) return true;
487 
488   // If ObjC exceptions are enabled, this depends on the ABI.
489   if (Features.ObjCExceptions) {
490     if (!Features.ObjCNonFragileABI) return false;
491   }
492 
493   return true;
494 }
495 
496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
497                                                            llvm::Function *F) {
498   if (CodeGenOpts.UnwindTables)
499     F->setHasUWTable();
500 
501   if (!hasUnwindExceptions(Features))
502     F->addFnAttr(llvm::Attribute::NoUnwind);
503 
504   if (D->hasAttr<NakedAttr>()) {
505     // Naked implies noinline: we should not be inlining such functions.
506     F->addFnAttr(llvm::Attribute::Naked);
507     F->addFnAttr(llvm::Attribute::NoInline);
508   }
509 
510   if (D->hasAttr<NoInlineAttr>())
511     F->addFnAttr(llvm::Attribute::NoInline);
512 
513   // (noinline wins over always_inline, and we can't specify both in IR)
514   if (D->hasAttr<AlwaysInlineAttr>() &&
515       !F->hasFnAttr(llvm::Attribute::NoInline))
516     F->addFnAttr(llvm::Attribute::AlwaysInline);
517 
518   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
519     F->setUnnamedAddr(true);
520 
521   if (Features.getStackProtector() == LangOptions::SSPOn)
522     F->addFnAttr(llvm::Attribute::StackProtect);
523   else if (Features.getStackProtector() == LangOptions::SSPReq)
524     F->addFnAttr(llvm::Attribute::StackProtectReq);
525 
526   if (Features.AddressSanitizer) {
527     // When AddressSanitizer is enabled, set AddressSafety attribute
528     // unless __attribute__((no_address_safety_analysis)) is used.
529     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
530       F->addFnAttr(llvm::Attribute::AddressSafety);
531   }
532 
533   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
534   if (alignment)
535     F->setAlignment(alignment);
536 
537   // C++ ABI requires 2-byte alignment for member functions.
538   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
539     F->setAlignment(2);
540 }
541 
542 void CodeGenModule::SetCommonAttributes(const Decl *D,
543                                         llvm::GlobalValue *GV) {
544   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
545     setGlobalVisibility(GV, ND);
546   else
547     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
548 
549   if (D->hasAttr<UsedAttr>())
550     AddUsedGlobal(GV);
551 
552   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
553     GV->setSection(SA->getName());
554 
555   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
556 }
557 
558 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
559                                                   llvm::Function *F,
560                                                   const CGFunctionInfo &FI) {
561   SetLLVMFunctionAttributes(D, FI, F);
562   SetLLVMFunctionAttributesForDefinition(D, F);
563 
564   F->setLinkage(llvm::Function::InternalLinkage);
565 
566   SetCommonAttributes(D, F);
567 }
568 
569 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
570                                           llvm::Function *F,
571                                           bool IsIncompleteFunction) {
572   if (unsigned IID = F->getIntrinsicID()) {
573     // If this is an intrinsic function, set the function's attributes
574     // to the intrinsic's attributes.
575     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
576     return;
577   }
578 
579   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
580 
581   if (!IsIncompleteFunction)
582     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
583 
584   // Only a few attributes are set on declarations; these may later be
585   // overridden by a definition.
586 
587   if (FD->hasAttr<DLLImportAttr>()) {
588     F->setLinkage(llvm::Function::DLLImportLinkage);
589   } else if (FD->hasAttr<WeakAttr>() ||
590              FD->isWeakImported()) {
591     // "extern_weak" is overloaded in LLVM; we probably should have
592     // separate linkage types for this.
593     F->setLinkage(llvm::Function::ExternalWeakLinkage);
594   } else {
595     F->setLinkage(llvm::Function::ExternalLinkage);
596 
597     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
598     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
599       F->setVisibility(GetLLVMVisibility(LV.visibility()));
600     }
601   }
602 
603   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
604     F->setSection(SA->getName());
605 }
606 
607 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
608   assert(!GV->isDeclaration() &&
609          "Only globals with definition can force usage.");
610   LLVMUsed.push_back(GV);
611 }
612 
613 void CodeGenModule::EmitLLVMUsed() {
614   // Don't create llvm.used if there is no need.
615   if (LLVMUsed.empty())
616     return;
617 
618   // Convert LLVMUsed to what ConstantArray needs.
619   SmallVector<llvm::Constant*, 8> UsedArray;
620   UsedArray.resize(LLVMUsed.size());
621   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
622     UsedArray[i] =
623      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
624                                     Int8PtrTy);
625   }
626 
627   if (UsedArray.empty())
628     return;
629   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
630 
631   llvm::GlobalVariable *GV =
632     new llvm::GlobalVariable(getModule(), ATy, false,
633                              llvm::GlobalValue::AppendingLinkage,
634                              llvm::ConstantArray::get(ATy, UsedArray),
635                              "llvm.used");
636 
637   GV->setSection("llvm.metadata");
638 }
639 
640 void CodeGenModule::EmitDeferred() {
641   // Emit code for any potentially referenced deferred decls.  Since a
642   // previously unused static decl may become used during the generation of code
643   // for a static function, iterate until no changes are made.
644 
645   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
646     if (!DeferredVTables.empty()) {
647       const CXXRecordDecl *RD = DeferredVTables.back();
648       DeferredVTables.pop_back();
649       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
650       continue;
651     }
652 
653     GlobalDecl D = DeferredDeclsToEmit.back();
654     DeferredDeclsToEmit.pop_back();
655 
656     // Check to see if we've already emitted this.  This is necessary
657     // for a couple of reasons: first, decls can end up in the
658     // deferred-decls queue multiple times, and second, decls can end
659     // up with definitions in unusual ways (e.g. by an extern inline
660     // function acquiring a strong function redefinition).  Just
661     // ignore these cases.
662     //
663     // TODO: That said, looking this up multiple times is very wasteful.
664     StringRef Name = getMangledName(D);
665     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
666     assert(CGRef && "Deferred decl wasn't referenced?");
667 
668     if (!CGRef->isDeclaration())
669       continue;
670 
671     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
672     // purposes an alias counts as a definition.
673     if (isa<llvm::GlobalAlias>(CGRef))
674       continue;
675 
676     // Otherwise, emit the definition and move on to the next one.
677     EmitGlobalDefinition(D);
678   }
679 }
680 
681 void CodeGenModule::EmitGlobalAnnotations() {
682   if (Annotations.empty())
683     return;
684 
685   // Create a new global variable for the ConstantStruct in the Module.
686   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
687     Annotations[0]->getType(), Annotations.size()), Annotations);
688   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
689     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
690     "llvm.global.annotations");
691   gv->setSection(AnnotationSection);
692 }
693 
694 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
695   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
696   if (i != AnnotationStrings.end())
697     return i->second;
698 
699   // Not found yet, create a new global.
700   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
701   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
702     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
703   gv->setSection(AnnotationSection);
704   gv->setUnnamedAddr(true);
705   AnnotationStrings[Str] = gv;
706   return gv;
707 }
708 
709 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
710   SourceManager &SM = getContext().getSourceManager();
711   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
712   if (PLoc.isValid())
713     return EmitAnnotationString(PLoc.getFilename());
714   return EmitAnnotationString(SM.getBufferName(Loc));
715 }
716 
717 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
718   SourceManager &SM = getContext().getSourceManager();
719   PresumedLoc PLoc = SM.getPresumedLoc(L);
720   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
721     SM.getExpansionLineNumber(L);
722   return llvm::ConstantInt::get(Int32Ty, LineNo);
723 }
724 
725 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
726                                                 const AnnotateAttr *AA,
727                                                 SourceLocation L) {
728   // Get the globals for file name, annotation, and the line number.
729   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
730                  *UnitGV = EmitAnnotationUnit(L),
731                  *LineNoCst = EmitAnnotationLineNo(L);
732 
733   // Create the ConstantStruct for the global annotation.
734   llvm::Constant *Fields[4] = {
735     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
736     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
737     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
738     LineNoCst
739   };
740   return llvm::ConstantStruct::getAnon(Fields);
741 }
742 
743 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
744                                          llvm::GlobalValue *GV) {
745   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
746   // Get the struct elements for these annotations.
747   for (specific_attr_iterator<AnnotateAttr>
748        ai = D->specific_attr_begin<AnnotateAttr>(),
749        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
750     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
751 }
752 
753 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
754   // Never defer when EmitAllDecls is specified.
755   if (Features.EmitAllDecls)
756     return false;
757 
758   return !getContext().DeclMustBeEmitted(Global);
759 }
760 
761 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
762   const AliasAttr *AA = VD->getAttr<AliasAttr>();
763   assert(AA && "No alias?");
764 
765   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
766 
767   // See if there is already something with the target's name in the module.
768   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
769 
770   llvm::Constant *Aliasee;
771   if (isa<llvm::FunctionType>(DeclTy))
772     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
773                                       /*ForVTable=*/false);
774   else
775     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
776                                     llvm::PointerType::getUnqual(DeclTy), 0);
777   if (!Entry) {
778     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
779     F->setLinkage(llvm::Function::ExternalWeakLinkage);
780     WeakRefReferences.insert(F);
781   }
782 
783   return Aliasee;
784 }
785 
786 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
787   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
788 
789   // Weak references don't produce any output by themselves.
790   if (Global->hasAttr<WeakRefAttr>())
791     return;
792 
793   // If this is an alias definition (which otherwise looks like a declaration)
794   // emit it now.
795   if (Global->hasAttr<AliasAttr>())
796     return EmitAliasDefinition(GD);
797 
798   // If this is CUDA, be selective about which declarations we emit.
799   if (Features.CUDA) {
800     if (CodeGenOpts.CUDAIsDevice) {
801       if (!Global->hasAttr<CUDADeviceAttr>() &&
802           !Global->hasAttr<CUDAGlobalAttr>() &&
803           !Global->hasAttr<CUDAConstantAttr>() &&
804           !Global->hasAttr<CUDASharedAttr>())
805         return;
806     } else {
807       if (!Global->hasAttr<CUDAHostAttr>() && (
808             Global->hasAttr<CUDADeviceAttr>() ||
809             Global->hasAttr<CUDAConstantAttr>() ||
810             Global->hasAttr<CUDASharedAttr>()))
811         return;
812     }
813   }
814 
815   // Ignore declarations, they will be emitted on their first use.
816   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
817     // Forward declarations are emitted lazily on first use.
818     if (!FD->doesThisDeclarationHaveABody()) {
819       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
820         return;
821 
822       const FunctionDecl *InlineDefinition = 0;
823       FD->getBody(InlineDefinition);
824 
825       StringRef MangledName = getMangledName(GD);
826       llvm::StringMap<GlobalDecl>::iterator DDI =
827           DeferredDecls.find(MangledName);
828       if (DDI != DeferredDecls.end())
829         DeferredDecls.erase(DDI);
830       EmitGlobalDefinition(InlineDefinition);
831       return;
832     }
833   } else {
834     const VarDecl *VD = cast<VarDecl>(Global);
835     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
836 
837     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
838       return;
839   }
840 
841   // Defer code generation when possible if this is a static definition, inline
842   // function etc.  These we only want to emit if they are used.
843   if (!MayDeferGeneration(Global)) {
844     // Emit the definition if it can't be deferred.
845     EmitGlobalDefinition(GD);
846     return;
847   }
848 
849   // If we're deferring emission of a C++ variable with an
850   // initializer, remember the order in which it appeared in the file.
851   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
852       cast<VarDecl>(Global)->hasInit()) {
853     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
854     CXXGlobalInits.push_back(0);
855   }
856 
857   // If the value has already been used, add it directly to the
858   // DeferredDeclsToEmit list.
859   StringRef MangledName = getMangledName(GD);
860   if (GetGlobalValue(MangledName))
861     DeferredDeclsToEmit.push_back(GD);
862   else {
863     // Otherwise, remember that we saw a deferred decl with this name.  The
864     // first use of the mangled name will cause it to move into
865     // DeferredDeclsToEmit.
866     DeferredDecls[MangledName] = GD;
867   }
868 }
869 
870 namespace {
871   struct FunctionIsDirectlyRecursive :
872     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
873     const StringRef Name;
874     const Builtin::Context &BI;
875     bool Result;
876     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
877       Name(N), BI(C), Result(false) {
878     }
879     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
880 
881     bool TraverseCallExpr(CallExpr *E) {
882       const FunctionDecl *FD = E->getDirectCallee();
883       if (!FD)
884         return true;
885       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
886       if (Attr && Name == Attr->getLabel()) {
887         Result = true;
888         return false;
889       }
890       unsigned BuiltinID = FD->getBuiltinID();
891       if (!BuiltinID)
892         return true;
893       StringRef BuiltinName = BI.GetName(BuiltinID);
894       if (BuiltinName.startswith("__builtin_") &&
895           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
896         Result = true;
897         return false;
898       }
899       return true;
900     }
901   };
902 }
903 
904 // isTriviallyRecursive - Check if this function calls another
905 // decl that, because of the asm attribute or the other decl being a builtin,
906 // ends up pointing to itself.
907 bool
908 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
909   StringRef Name;
910   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
911     // asm labels are a special kind of mangling we have to support.
912     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
913     if (!Attr)
914       return false;
915     Name = Attr->getLabel();
916   } else {
917     Name = FD->getName();
918   }
919 
920   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
921   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
922   return Walker.Result;
923 }
924 
925 bool
926 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
927   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
928     return true;
929   if (CodeGenOpts.OptimizationLevel == 0 &&
930       !F->hasAttr<AlwaysInlineAttr>())
931     return false;
932   // PR9614. Avoid cases where the source code is lying to us. An available
933   // externally function should have an equivalent function somewhere else,
934   // but a function that calls itself is clearly not equivalent to the real
935   // implementation.
936   // This happens in glibc's btowc and in some configure checks.
937   return !isTriviallyRecursive(F);
938 }
939 
940 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
941   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
942 
943   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
944                                  Context.getSourceManager(),
945                                  "Generating code for declaration");
946 
947   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
948     // At -O0, don't generate IR for functions with available_externally
949     // linkage.
950     if (!shouldEmitFunction(Function))
951       return;
952 
953     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
954       // Make sure to emit the definition(s) before we emit the thunks.
955       // This is necessary for the generation of certain thunks.
956       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
957         EmitCXXConstructor(CD, GD.getCtorType());
958       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
959         EmitCXXDestructor(DD, GD.getDtorType());
960       else
961         EmitGlobalFunctionDefinition(GD);
962 
963       if (Method->isVirtual())
964         getVTables().EmitThunks(GD);
965 
966       return;
967     }
968 
969     return EmitGlobalFunctionDefinition(GD);
970   }
971 
972   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
973     return EmitGlobalVarDefinition(VD);
974 
975   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
976 }
977 
978 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
979 /// module, create and return an llvm Function with the specified type. If there
980 /// is something in the module with the specified name, return it potentially
981 /// bitcasted to the right type.
982 ///
983 /// If D is non-null, it specifies a decl that correspond to this.  This is used
984 /// to set the attributes on the function when it is first created.
985 llvm::Constant *
986 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
987                                        llvm::Type *Ty,
988                                        GlobalDecl D, bool ForVTable,
989                                        llvm::Attributes ExtraAttrs) {
990   // Lookup the entry, lazily creating it if necessary.
991   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
992   if (Entry) {
993     if (WeakRefReferences.count(Entry)) {
994       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
995       if (FD && !FD->hasAttr<WeakAttr>())
996         Entry->setLinkage(llvm::Function::ExternalLinkage);
997 
998       WeakRefReferences.erase(Entry);
999     }
1000 
1001     if (Entry->getType()->getElementType() == Ty)
1002       return Entry;
1003 
1004     // Make sure the result is of the correct type.
1005     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1006   }
1007 
1008   // This function doesn't have a complete type (for example, the return
1009   // type is an incomplete struct). Use a fake type instead, and make
1010   // sure not to try to set attributes.
1011   bool IsIncompleteFunction = false;
1012 
1013   llvm::FunctionType *FTy;
1014   if (isa<llvm::FunctionType>(Ty)) {
1015     FTy = cast<llvm::FunctionType>(Ty);
1016   } else {
1017     FTy = llvm::FunctionType::get(VoidTy, false);
1018     IsIncompleteFunction = true;
1019   }
1020 
1021   llvm::Function *F = llvm::Function::Create(FTy,
1022                                              llvm::Function::ExternalLinkage,
1023                                              MangledName, &getModule());
1024   assert(F->getName() == MangledName && "name was uniqued!");
1025   if (D.getDecl())
1026     SetFunctionAttributes(D, F, IsIncompleteFunction);
1027   if (ExtraAttrs != llvm::Attribute::None)
1028     F->addFnAttr(ExtraAttrs);
1029 
1030   // This is the first use or definition of a mangled name.  If there is a
1031   // deferred decl with this name, remember that we need to emit it at the end
1032   // of the file.
1033   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1034   if (DDI != DeferredDecls.end()) {
1035     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1036     // list, and remove it from DeferredDecls (since we don't need it anymore).
1037     DeferredDeclsToEmit.push_back(DDI->second);
1038     DeferredDecls.erase(DDI);
1039 
1040   // Otherwise, there are cases we have to worry about where we're
1041   // using a declaration for which we must emit a definition but where
1042   // we might not find a top-level definition:
1043   //   - member functions defined inline in their classes
1044   //   - friend functions defined inline in some class
1045   //   - special member functions with implicit definitions
1046   // If we ever change our AST traversal to walk into class methods,
1047   // this will be unnecessary.
1048   //
1049   // We also don't emit a definition for a function if it's going to be an entry
1050   // in a vtable, unless it's already marked as used.
1051   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1052     // Look for a declaration that's lexically in a record.
1053     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1054     do {
1055       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1056         if (FD->isImplicit() && !ForVTable) {
1057           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1058           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1059           break;
1060         } else if (FD->doesThisDeclarationHaveABody()) {
1061           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1062           break;
1063         }
1064       }
1065       FD = FD->getPreviousDecl();
1066     } while (FD);
1067   }
1068 
1069   // Make sure the result is of the requested type.
1070   if (!IsIncompleteFunction) {
1071     assert(F->getType()->getElementType() == Ty);
1072     return F;
1073   }
1074 
1075   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1076   return llvm::ConstantExpr::getBitCast(F, PTy);
1077 }
1078 
1079 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1080 /// non-null, then this function will use the specified type if it has to
1081 /// create it (this occurs when we see a definition of the function).
1082 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1083                                                  llvm::Type *Ty,
1084                                                  bool ForVTable) {
1085   // If there was no specific requested type, just convert it now.
1086   if (!Ty)
1087     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1088 
1089   StringRef MangledName = getMangledName(GD);
1090   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1091 }
1092 
1093 /// CreateRuntimeFunction - Create a new runtime function with the specified
1094 /// type and name.
1095 llvm::Constant *
1096 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1097                                      StringRef Name,
1098                                      llvm::Attributes ExtraAttrs) {
1099   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1100                                  ExtraAttrs);
1101 }
1102 
1103 /// isTypeConstant - Determine whether an object of this type can be emitted
1104 /// as a constant.
1105 ///
1106 /// If ExcludeCtor is true, the duration when the object's constructor runs
1107 /// will not be considered. The caller will need to verify that the object is
1108 /// not written to during its construction.
1109 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1110   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1111     return false;
1112 
1113   if (Context.getLangOptions().CPlusPlus) {
1114     if (const CXXRecordDecl *Record
1115           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1116       return ExcludeCtor && !Record->hasMutableFields() &&
1117              Record->hasTrivialDestructor();
1118   }
1119 
1120   return true;
1121 }
1122 
1123 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1124 /// create and return an llvm GlobalVariable with the specified type.  If there
1125 /// is something in the module with the specified name, return it potentially
1126 /// bitcasted to the right type.
1127 ///
1128 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1129 /// to set the attributes on the global when it is first created.
1130 llvm::Constant *
1131 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1132                                      llvm::PointerType *Ty,
1133                                      const VarDecl *D,
1134                                      bool UnnamedAddr) {
1135   // Lookup the entry, lazily creating it if necessary.
1136   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1137   if (Entry) {
1138     if (WeakRefReferences.count(Entry)) {
1139       if (D && !D->hasAttr<WeakAttr>())
1140         Entry->setLinkage(llvm::Function::ExternalLinkage);
1141 
1142       WeakRefReferences.erase(Entry);
1143     }
1144 
1145     if (UnnamedAddr)
1146       Entry->setUnnamedAddr(true);
1147 
1148     if (Entry->getType() == Ty)
1149       return Entry;
1150 
1151     // Make sure the result is of the correct type.
1152     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1153   }
1154 
1155   // This is the first use or definition of a mangled name.  If there is a
1156   // deferred decl with this name, remember that we need to emit it at the end
1157   // of the file.
1158   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1159   if (DDI != DeferredDecls.end()) {
1160     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1161     // list, and remove it from DeferredDecls (since we don't need it anymore).
1162     DeferredDeclsToEmit.push_back(DDI->second);
1163     DeferredDecls.erase(DDI);
1164   }
1165 
1166   llvm::GlobalVariable *GV =
1167     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1168                              llvm::GlobalValue::ExternalLinkage,
1169                              0, MangledName, 0,
1170                              false, Ty->getAddressSpace());
1171 
1172   // Handle things which are present even on external declarations.
1173   if (D) {
1174     // FIXME: This code is overly simple and should be merged with other global
1175     // handling.
1176     GV->setConstant(isTypeConstant(D->getType(), false));
1177 
1178     // Set linkage and visibility in case we never see a definition.
1179     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1180     if (LV.linkage() != ExternalLinkage) {
1181       // Don't set internal linkage on declarations.
1182     } else {
1183       if (D->hasAttr<DLLImportAttr>())
1184         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1185       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1186         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1187 
1188       // Set visibility on a declaration only if it's explicit.
1189       if (LV.visibilityExplicit())
1190         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1191     }
1192 
1193     GV->setThreadLocal(D->isThreadSpecified());
1194   }
1195 
1196   return GV;
1197 }
1198 
1199 
1200 llvm::GlobalVariable *
1201 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1202                                       llvm::Type *Ty,
1203                                       llvm::GlobalValue::LinkageTypes Linkage) {
1204   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1205   llvm::GlobalVariable *OldGV = 0;
1206 
1207 
1208   if (GV) {
1209     // Check if the variable has the right type.
1210     if (GV->getType()->getElementType() == Ty)
1211       return GV;
1212 
1213     // Because C++ name mangling, the only way we can end up with an already
1214     // existing global with the same name is if it has been declared extern "C".
1215       assert(GV->isDeclaration() && "Declaration has wrong type!");
1216     OldGV = GV;
1217   }
1218 
1219   // Create a new variable.
1220   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1221                                 Linkage, 0, Name);
1222 
1223   if (OldGV) {
1224     // Replace occurrences of the old variable if needed.
1225     GV->takeName(OldGV);
1226 
1227     if (!OldGV->use_empty()) {
1228       llvm::Constant *NewPtrForOldDecl =
1229       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1230       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1231     }
1232 
1233     OldGV->eraseFromParent();
1234   }
1235 
1236   return GV;
1237 }
1238 
1239 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1240 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1241 /// then it will be greated with the specified type instead of whatever the
1242 /// normal requested type would be.
1243 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1244                                                   llvm::Type *Ty) {
1245   assert(D->hasGlobalStorage() && "Not a global variable");
1246   QualType ASTTy = D->getType();
1247   if (Ty == 0)
1248     Ty = getTypes().ConvertTypeForMem(ASTTy);
1249 
1250   llvm::PointerType *PTy =
1251     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1252 
1253   StringRef MangledName = getMangledName(D);
1254   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1255 }
1256 
1257 /// CreateRuntimeVariable - Create a new runtime global variable with the
1258 /// specified type and name.
1259 llvm::Constant *
1260 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1261                                      StringRef Name) {
1262   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1263                                true);
1264 }
1265 
1266 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1267   assert(!D->getInit() && "Cannot emit definite definitions here!");
1268 
1269   if (MayDeferGeneration(D)) {
1270     // If we have not seen a reference to this variable yet, place it
1271     // into the deferred declarations table to be emitted if needed
1272     // later.
1273     StringRef MangledName = getMangledName(D);
1274     if (!GetGlobalValue(MangledName)) {
1275       DeferredDecls[MangledName] = D;
1276       return;
1277     }
1278   }
1279 
1280   // The tentative definition is the only definition.
1281   EmitGlobalVarDefinition(D);
1282 }
1283 
1284 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1285   if (DefinitionRequired)
1286     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1287 }
1288 
1289 llvm::GlobalVariable::LinkageTypes
1290 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1291   if (RD->getLinkage() != ExternalLinkage)
1292     return llvm::GlobalVariable::InternalLinkage;
1293 
1294   if (const CXXMethodDecl *KeyFunction
1295                                     = RD->getASTContext().getKeyFunction(RD)) {
1296     // If this class has a key function, use that to determine the linkage of
1297     // the vtable.
1298     const FunctionDecl *Def = 0;
1299     if (KeyFunction->hasBody(Def))
1300       KeyFunction = cast<CXXMethodDecl>(Def);
1301 
1302     switch (KeyFunction->getTemplateSpecializationKind()) {
1303       case TSK_Undeclared:
1304       case TSK_ExplicitSpecialization:
1305         // When compiling with optimizations turned on, we emit all vtables,
1306         // even if the key function is not defined in the current translation
1307         // unit. If this is the case, use available_externally linkage.
1308         if (!Def && CodeGenOpts.OptimizationLevel)
1309           return llvm::GlobalVariable::AvailableExternallyLinkage;
1310 
1311         if (KeyFunction->isInlined())
1312           return !Context.getLangOptions().AppleKext ?
1313                    llvm::GlobalVariable::LinkOnceODRLinkage :
1314                    llvm::Function::InternalLinkage;
1315 
1316         return llvm::GlobalVariable::ExternalLinkage;
1317 
1318       case TSK_ImplicitInstantiation:
1319         return !Context.getLangOptions().AppleKext ?
1320                  llvm::GlobalVariable::LinkOnceODRLinkage :
1321                  llvm::Function::InternalLinkage;
1322 
1323       case TSK_ExplicitInstantiationDefinition:
1324         return !Context.getLangOptions().AppleKext ?
1325                  llvm::GlobalVariable::WeakODRLinkage :
1326                  llvm::Function::InternalLinkage;
1327 
1328       case TSK_ExplicitInstantiationDeclaration:
1329         // FIXME: Use available_externally linkage. However, this currently
1330         // breaks LLVM's build due to undefined symbols.
1331         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1332         return !Context.getLangOptions().AppleKext ?
1333                  llvm::GlobalVariable::LinkOnceODRLinkage :
1334                  llvm::Function::InternalLinkage;
1335     }
1336   }
1337 
1338   if (Context.getLangOptions().AppleKext)
1339     return llvm::Function::InternalLinkage;
1340 
1341   switch (RD->getTemplateSpecializationKind()) {
1342   case TSK_Undeclared:
1343   case TSK_ExplicitSpecialization:
1344   case TSK_ImplicitInstantiation:
1345     // FIXME: Use available_externally linkage. However, this currently
1346     // breaks LLVM's build due to undefined symbols.
1347     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1348   case TSK_ExplicitInstantiationDeclaration:
1349     return llvm::GlobalVariable::LinkOnceODRLinkage;
1350 
1351   case TSK_ExplicitInstantiationDefinition:
1352       return llvm::GlobalVariable::WeakODRLinkage;
1353   }
1354 
1355   llvm_unreachable("Invalid TemplateSpecializationKind!");
1356 }
1357 
1358 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1359     return Context.toCharUnitsFromBits(
1360       TheTargetData.getTypeStoreSizeInBits(Ty));
1361 }
1362 
1363 llvm::Constant *
1364 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1365                                                        const Expr *rawInit) {
1366   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1367   if (const ExprWithCleanups *withCleanups =
1368           dyn_cast<ExprWithCleanups>(rawInit)) {
1369     cleanups = withCleanups->getObjects();
1370     rawInit = withCleanups->getSubExpr();
1371   }
1372 
1373   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1374   if (!init || !init->initializesStdInitializerList() ||
1375       init->getNumInits() == 0)
1376     return 0;
1377 
1378   ASTContext &ctx = getContext();
1379   unsigned numInits = init->getNumInits();
1380   // FIXME: This check is here because we would otherwise silently miscompile
1381   // nested global std::initializer_lists. Better would be to have a real
1382   // implementation.
1383   for (unsigned i = 0; i < numInits; ++i) {
1384     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1385     if (inner && inner->initializesStdInitializerList()) {
1386       ErrorUnsupported(inner, "nested global std::initializer_list");
1387       return 0;
1388     }
1389   }
1390 
1391   // Synthesize a fake VarDecl for the array and initialize that.
1392   QualType elementType = init->getInit(0)->getType();
1393   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1394   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1395                                                 ArrayType::Normal, 0);
1396 
1397   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1398   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1399                                               arrayType, D->getLocation());
1400   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1401                                                           D->getDeclContext()),
1402                                           D->getLocStart(), D->getLocation(),
1403                                           name, arrayType, sourceInfo,
1404                                           SC_Static, SC_Static);
1405 
1406   // Now clone the InitListExpr to initialize the array instead.
1407   // Incredible hack: we want to use the existing InitListExpr here, so we need
1408   // to tell it that it no longer initializes a std::initializer_list.
1409   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1410                                     const_cast<InitListExpr*>(init)->getInits(),
1411                                                    init->getNumInits(),
1412                                                    init->getRBraceLoc());
1413   arrayInit->setType(arrayType);
1414 
1415   if (!cleanups.empty())
1416     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1417 
1418   backingArray->setInit(arrayInit);
1419 
1420   // Emit the definition of the array.
1421   EmitGlobalVarDefinition(backingArray);
1422 
1423   // Inspect the initializer list to validate it and determine its type.
1424   // FIXME: doing this every time is probably inefficient; caching would be nice
1425   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1426   RecordDecl::field_iterator field = record->field_begin();
1427   if (field == record->field_end()) {
1428     ErrorUnsupported(D, "weird std::initializer_list");
1429     return 0;
1430   }
1431   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1432   // Start pointer.
1433   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1434     ErrorUnsupported(D, "weird std::initializer_list");
1435     return 0;
1436   }
1437   ++field;
1438   if (field == record->field_end()) {
1439     ErrorUnsupported(D, "weird std::initializer_list");
1440     return 0;
1441   }
1442   bool isStartEnd = false;
1443   if (ctx.hasSameType(field->getType(), elementPtr)) {
1444     // End pointer.
1445     isStartEnd = true;
1446   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1447     ErrorUnsupported(D, "weird std::initializer_list");
1448     return 0;
1449   }
1450 
1451   // Now build an APValue representing the std::initializer_list.
1452   APValue initListValue(APValue::UninitStruct(), 0, 2);
1453   APValue &startField = initListValue.getStructField(0);
1454   APValue::LValuePathEntry startOffsetPathEntry;
1455   startOffsetPathEntry.ArrayIndex = 0;
1456   startField = APValue(APValue::LValueBase(backingArray),
1457                        CharUnits::fromQuantity(0),
1458                        llvm::makeArrayRef(startOffsetPathEntry),
1459                        /*IsOnePastTheEnd=*/false, 0);
1460 
1461   if (isStartEnd) {
1462     APValue &endField = initListValue.getStructField(1);
1463     APValue::LValuePathEntry endOffsetPathEntry;
1464     endOffsetPathEntry.ArrayIndex = numInits;
1465     endField = APValue(APValue::LValueBase(backingArray),
1466                        ctx.getTypeSizeInChars(elementType) * numInits,
1467                        llvm::makeArrayRef(endOffsetPathEntry),
1468                        /*IsOnePastTheEnd=*/true, 0);
1469   } else {
1470     APValue &sizeField = initListValue.getStructField(1);
1471     sizeField = APValue(llvm::APSInt(numElements));
1472   }
1473 
1474   // Emit the constant for the initializer_list.
1475   llvm::Constant *llvmInit = EmitConstantValue(initListValue, D->getType());
1476   assert(llvmInit && "failed to initialize as constant");
1477   return llvmInit;
1478 }
1479 
1480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1481   llvm::Constant *Init = 0;
1482   QualType ASTTy = D->getType();
1483   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1484   bool NeedsGlobalCtor = false;
1485   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1486 
1487   const VarDecl *InitDecl;
1488   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1489 
1490   if (!InitExpr) {
1491     // This is a tentative definition; tentative definitions are
1492     // implicitly initialized with { 0 }.
1493     //
1494     // Note that tentative definitions are only emitted at the end of
1495     // a translation unit, so they should never have incomplete
1496     // type. In addition, EmitTentativeDefinition makes sure that we
1497     // never attempt to emit a tentative definition if a real one
1498     // exists. A use may still exists, however, so we still may need
1499     // to do a RAUW.
1500     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1501     Init = EmitNullConstant(D->getType());
1502   } else {
1503     // If this is a std::initializer_list, emit the special initializer.
1504     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1505     // An empty init list will perform zero-initialization, which happens
1506     // to be exactly what we want.
1507     // FIXME: It does so in a global constructor, which is *not* what we
1508     // want.
1509 
1510     if (!Init)
1511       Init = EmitConstantInit(*InitDecl);
1512     if (!Init) {
1513       QualType T = InitExpr->getType();
1514       if (D->getType()->isReferenceType())
1515         T = D->getType();
1516 
1517       if (getLangOptions().CPlusPlus) {
1518         Init = EmitNullConstant(T);
1519         NeedsGlobalCtor = true;
1520       } else {
1521         ErrorUnsupported(D, "static initializer");
1522         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1523       }
1524     } else {
1525       // We don't need an initializer, so remove the entry for the delayed
1526       // initializer position (just in case this entry was delayed) if we
1527       // also don't need to register a destructor.
1528       if (getLangOptions().CPlusPlus && !NeedsGlobalDtor)
1529         DelayedCXXInitPosition.erase(D);
1530     }
1531   }
1532 
1533   llvm::Type* InitType = Init->getType();
1534   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1535 
1536   // Strip off a bitcast if we got one back.
1537   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1538     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1539            // all zero index gep.
1540            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1541     Entry = CE->getOperand(0);
1542   }
1543 
1544   // Entry is now either a Function or GlobalVariable.
1545   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1546 
1547   // We have a definition after a declaration with the wrong type.
1548   // We must make a new GlobalVariable* and update everything that used OldGV
1549   // (a declaration or tentative definition) with the new GlobalVariable*
1550   // (which will be a definition).
1551   //
1552   // This happens if there is a prototype for a global (e.g.
1553   // "extern int x[];") and then a definition of a different type (e.g.
1554   // "int x[10];"). This also happens when an initializer has a different type
1555   // from the type of the global (this happens with unions).
1556   if (GV == 0 ||
1557       GV->getType()->getElementType() != InitType ||
1558       GV->getType()->getAddressSpace() !=
1559         getContext().getTargetAddressSpace(ASTTy)) {
1560 
1561     // Move the old entry aside so that we'll create a new one.
1562     Entry->setName(StringRef());
1563 
1564     // Make a new global with the correct type, this is now guaranteed to work.
1565     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1566 
1567     // Replace all uses of the old global with the new global
1568     llvm::Constant *NewPtrForOldDecl =
1569         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1570     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1571 
1572     // Erase the old global, since it is no longer used.
1573     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1574   }
1575 
1576   if (D->hasAttr<AnnotateAttr>())
1577     AddGlobalAnnotations(D, GV);
1578 
1579   GV->setInitializer(Init);
1580 
1581   // If it is safe to mark the global 'constant', do so now.
1582   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1583                   isTypeConstant(D->getType(), true));
1584 
1585   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1586 
1587   // Set the llvm linkage type as appropriate.
1588   llvm::GlobalValue::LinkageTypes Linkage =
1589     GetLLVMLinkageVarDefinition(D, GV);
1590   GV->setLinkage(Linkage);
1591   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1592     // common vars aren't constant even if declared const.
1593     GV->setConstant(false);
1594 
1595   SetCommonAttributes(D, GV);
1596 
1597   // Emit the initializer function if necessary.
1598   if (NeedsGlobalCtor || NeedsGlobalDtor)
1599     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1600 
1601   // Emit global variable debug information.
1602   if (CGDebugInfo *DI = getModuleDebugInfo())
1603     DI->EmitGlobalVariable(GV, D);
1604 }
1605 
1606 llvm::GlobalValue::LinkageTypes
1607 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1608                                            llvm::GlobalVariable *GV) {
1609   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1610   if (Linkage == GVA_Internal)
1611     return llvm::Function::InternalLinkage;
1612   else if (D->hasAttr<DLLImportAttr>())
1613     return llvm::Function::DLLImportLinkage;
1614   else if (D->hasAttr<DLLExportAttr>())
1615     return llvm::Function::DLLExportLinkage;
1616   else if (D->hasAttr<WeakAttr>()) {
1617     if (GV->isConstant())
1618       return llvm::GlobalVariable::WeakODRLinkage;
1619     else
1620       return llvm::GlobalVariable::WeakAnyLinkage;
1621   } else if (Linkage == GVA_TemplateInstantiation ||
1622              Linkage == GVA_ExplicitTemplateInstantiation)
1623     return llvm::GlobalVariable::WeakODRLinkage;
1624   else if (!getLangOptions().CPlusPlus &&
1625            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1626              D->getAttr<CommonAttr>()) &&
1627            !D->hasExternalStorage() && !D->getInit() &&
1628            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1629            !D->getAttr<WeakImportAttr>()) {
1630     // Thread local vars aren't considered common linkage.
1631     return llvm::GlobalVariable::CommonLinkage;
1632   }
1633   return llvm::GlobalVariable::ExternalLinkage;
1634 }
1635 
1636 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1637 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1638 /// existing call uses of the old function in the module, this adjusts them to
1639 /// call the new function directly.
1640 ///
1641 /// This is not just a cleanup: the always_inline pass requires direct calls to
1642 /// functions to be able to inline them.  If there is a bitcast in the way, it
1643 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1644 /// run at -O0.
1645 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1646                                                       llvm::Function *NewFn) {
1647   // If we're redefining a global as a function, don't transform it.
1648   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1649   if (OldFn == 0) return;
1650 
1651   llvm::Type *NewRetTy = NewFn->getReturnType();
1652   SmallVector<llvm::Value*, 4> ArgList;
1653 
1654   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1655        UI != E; ) {
1656     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1657     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1658     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1659     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1660     llvm::CallSite CS(CI);
1661     if (!CI || !CS.isCallee(I)) continue;
1662 
1663     // If the return types don't match exactly, and if the call isn't dead, then
1664     // we can't transform this call.
1665     if (CI->getType() != NewRetTy && !CI->use_empty())
1666       continue;
1667 
1668     // Get the attribute list.
1669     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1670     llvm::AttrListPtr AttrList = CI->getAttributes();
1671 
1672     // Get any return attributes.
1673     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1674 
1675     // Add the return attributes.
1676     if (RAttrs)
1677       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1678 
1679     // If the function was passed too few arguments, don't transform.  If extra
1680     // arguments were passed, we silently drop them.  If any of the types
1681     // mismatch, we don't transform.
1682     unsigned ArgNo = 0;
1683     bool DontTransform = false;
1684     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1685          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1686       if (CS.arg_size() == ArgNo ||
1687           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1688         DontTransform = true;
1689         break;
1690       }
1691 
1692       // Add any parameter attributes.
1693       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1694         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1695     }
1696     if (DontTransform)
1697       continue;
1698 
1699     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1700       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1701 
1702     // Okay, we can transform this.  Create the new call instruction and copy
1703     // over the required information.
1704     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1705     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1706     ArgList.clear();
1707     if (!NewCall->getType()->isVoidTy())
1708       NewCall->takeName(CI);
1709     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1710                                                   AttrVec.end()));
1711     NewCall->setCallingConv(CI->getCallingConv());
1712 
1713     // Finally, remove the old call, replacing any uses with the new one.
1714     if (!CI->use_empty())
1715       CI->replaceAllUsesWith(NewCall);
1716 
1717     // Copy debug location attached to CI.
1718     if (!CI->getDebugLoc().isUnknown())
1719       NewCall->setDebugLoc(CI->getDebugLoc());
1720     CI->eraseFromParent();
1721   }
1722 }
1723 
1724 
1725 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1726   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1727 
1728   // Compute the function info and LLVM type.
1729   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1730   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1731 
1732   // Get or create the prototype for the function.
1733   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1734 
1735   // Strip off a bitcast if we got one back.
1736   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1737     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1738     Entry = CE->getOperand(0);
1739   }
1740 
1741 
1742   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1743     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1744 
1745     // If the types mismatch then we have to rewrite the definition.
1746     assert(OldFn->isDeclaration() &&
1747            "Shouldn't replace non-declaration");
1748 
1749     // F is the Function* for the one with the wrong type, we must make a new
1750     // Function* and update everything that used F (a declaration) with the new
1751     // Function* (which will be a definition).
1752     //
1753     // This happens if there is a prototype for a function
1754     // (e.g. "int f()") and then a definition of a different type
1755     // (e.g. "int f(int x)").  Move the old function aside so that it
1756     // doesn't interfere with GetAddrOfFunction.
1757     OldFn->setName(StringRef());
1758     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1759 
1760     // If this is an implementation of a function without a prototype, try to
1761     // replace any existing uses of the function (which may be calls) with uses
1762     // of the new function
1763     if (D->getType()->isFunctionNoProtoType()) {
1764       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1765       OldFn->removeDeadConstantUsers();
1766     }
1767 
1768     // Replace uses of F with the Function we will endow with a body.
1769     if (!Entry->use_empty()) {
1770       llvm::Constant *NewPtrForOldDecl =
1771         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1772       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1773     }
1774 
1775     // Ok, delete the old function now, which is dead.
1776     OldFn->eraseFromParent();
1777 
1778     Entry = NewFn;
1779   }
1780 
1781   // We need to set linkage and visibility on the function before
1782   // generating code for it because various parts of IR generation
1783   // want to propagate this information down (e.g. to local static
1784   // declarations).
1785   llvm::Function *Fn = cast<llvm::Function>(Entry);
1786   setFunctionLinkage(D, Fn);
1787 
1788   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1789   setGlobalVisibility(Fn, D);
1790 
1791   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1792 
1793   SetFunctionDefinitionAttributes(D, Fn);
1794   SetLLVMFunctionAttributesForDefinition(D, Fn);
1795 
1796   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1797     AddGlobalCtor(Fn, CA->getPriority());
1798   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1799     AddGlobalDtor(Fn, DA->getPriority());
1800   if (D->hasAttr<AnnotateAttr>())
1801     AddGlobalAnnotations(D, Fn);
1802 }
1803 
1804 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1805   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1806   const AliasAttr *AA = D->getAttr<AliasAttr>();
1807   assert(AA && "Not an alias?");
1808 
1809   StringRef MangledName = getMangledName(GD);
1810 
1811   // If there is a definition in the module, then it wins over the alias.
1812   // This is dubious, but allow it to be safe.  Just ignore the alias.
1813   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1814   if (Entry && !Entry->isDeclaration())
1815     return;
1816 
1817   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1818 
1819   // Create a reference to the named value.  This ensures that it is emitted
1820   // if a deferred decl.
1821   llvm::Constant *Aliasee;
1822   if (isa<llvm::FunctionType>(DeclTy))
1823     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1824                                       /*ForVTable=*/false);
1825   else
1826     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1827                                     llvm::PointerType::getUnqual(DeclTy), 0);
1828 
1829   // Create the new alias itself, but don't set a name yet.
1830   llvm::GlobalValue *GA =
1831     new llvm::GlobalAlias(Aliasee->getType(),
1832                           llvm::Function::ExternalLinkage,
1833                           "", Aliasee, &getModule());
1834 
1835   if (Entry) {
1836     assert(Entry->isDeclaration());
1837 
1838     // If there is a declaration in the module, then we had an extern followed
1839     // by the alias, as in:
1840     //   extern int test6();
1841     //   ...
1842     //   int test6() __attribute__((alias("test7")));
1843     //
1844     // Remove it and replace uses of it with the alias.
1845     GA->takeName(Entry);
1846 
1847     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1848                                                           Entry->getType()));
1849     Entry->eraseFromParent();
1850   } else {
1851     GA->setName(MangledName);
1852   }
1853 
1854   // Set attributes which are particular to an alias; this is a
1855   // specialization of the attributes which may be set on a global
1856   // variable/function.
1857   if (D->hasAttr<DLLExportAttr>()) {
1858     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1859       // The dllexport attribute is ignored for undefined symbols.
1860       if (FD->hasBody())
1861         GA->setLinkage(llvm::Function::DLLExportLinkage);
1862     } else {
1863       GA->setLinkage(llvm::Function::DLLExportLinkage);
1864     }
1865   } else if (D->hasAttr<WeakAttr>() ||
1866              D->hasAttr<WeakRefAttr>() ||
1867              D->isWeakImported()) {
1868     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1869   }
1870 
1871   SetCommonAttributes(D, GA);
1872 }
1873 
1874 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1875                                             ArrayRef<llvm::Type*> Tys) {
1876   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1877                                          Tys);
1878 }
1879 
1880 static llvm::StringMapEntry<llvm::Constant*> &
1881 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1882                          const StringLiteral *Literal,
1883                          bool TargetIsLSB,
1884                          bool &IsUTF16,
1885                          unsigned &StringLength) {
1886   StringRef String = Literal->getString();
1887   unsigned NumBytes = String.size();
1888 
1889   // Check for simple case.
1890   if (!Literal->containsNonAsciiOrNull()) {
1891     StringLength = NumBytes;
1892     return Map.GetOrCreateValue(String);
1893   }
1894 
1895   // Otherwise, convert the UTF8 literals into a byte string.
1896   SmallVector<UTF16, 128> ToBuf(NumBytes);
1897   const UTF8 *FromPtr = (UTF8 *)String.data();
1898   UTF16 *ToPtr = &ToBuf[0];
1899 
1900   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1901                            &ToPtr, ToPtr + NumBytes,
1902                            strictConversion);
1903 
1904   // ConvertUTF8toUTF16 returns the length in ToPtr.
1905   StringLength = ToPtr - &ToBuf[0];
1906 
1907   // Render the UTF-16 string into a byte array and convert to the target byte
1908   // order.
1909   //
1910   // FIXME: This isn't something we should need to do here.
1911   SmallString<128> AsBytes;
1912   AsBytes.reserve(StringLength * 2);
1913   for (unsigned i = 0; i != StringLength; ++i) {
1914     unsigned short Val = ToBuf[i];
1915     if (TargetIsLSB) {
1916       AsBytes.push_back(Val & 0xFF);
1917       AsBytes.push_back(Val >> 8);
1918     } else {
1919       AsBytes.push_back(Val >> 8);
1920       AsBytes.push_back(Val & 0xFF);
1921     }
1922   }
1923   // Append one extra null character, the second is automatically added by our
1924   // caller.
1925   AsBytes.push_back(0);
1926 
1927   IsUTF16 = true;
1928   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1929 }
1930 
1931 static llvm::StringMapEntry<llvm::Constant*> &
1932 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1933 		       const StringLiteral *Literal,
1934 		       unsigned &StringLength)
1935 {
1936 	StringRef String = Literal->getString();
1937 	StringLength = String.size();
1938 	return Map.GetOrCreateValue(String);
1939 }
1940 
1941 llvm::Constant *
1942 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1943   unsigned StringLength = 0;
1944   bool isUTF16 = false;
1945   llvm::StringMapEntry<llvm::Constant*> &Entry =
1946     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1947                              getTargetData().isLittleEndian(),
1948                              isUTF16, StringLength);
1949 
1950   if (llvm::Constant *C = Entry.getValue())
1951     return C;
1952 
1953   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1954   llvm::Constant *Zeros[] = { Zero, Zero };
1955 
1956   // If we don't already have it, get __CFConstantStringClassReference.
1957   if (!CFConstantStringClassRef) {
1958     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1959     Ty = llvm::ArrayType::get(Ty, 0);
1960     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1961                                            "__CFConstantStringClassReference");
1962     // Decay array -> ptr
1963     CFConstantStringClassRef =
1964       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1965   }
1966 
1967   QualType CFTy = getContext().getCFConstantStringType();
1968 
1969   llvm::StructType *STy =
1970     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1971 
1972   llvm::Constant *Fields[4];
1973 
1974   // Class pointer.
1975   Fields[0] = CFConstantStringClassRef;
1976 
1977   // Flags.
1978   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1979   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1980     llvm::ConstantInt::get(Ty, 0x07C8);
1981 
1982   // String pointer.
1983   llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext,
1984                                                          Entry.getKey());
1985 
1986   llvm::GlobalValue::LinkageTypes Linkage;
1987   if (isUTF16)
1988     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1989     Linkage = llvm::GlobalValue::InternalLinkage;
1990   else
1991     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1992     // when using private linkage. It is not clear if this is a bug in ld
1993     // or a reasonable new restriction.
1994     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1995 
1996   // Note: -fwritable-strings doesn't make the backing store strings of
1997   // CFStrings writable. (See <rdar://problem/10657500>)
1998   llvm::GlobalVariable *GV =
1999     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2000                              Linkage, C, ".str");
2001   GV->setUnnamedAddr(true);
2002   if (isUTF16) {
2003     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2004     GV->setAlignment(Align.getQuantity());
2005   } else {
2006     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2007     GV->setAlignment(Align.getQuantity());
2008   }
2009   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2010 
2011   // String length.
2012   Ty = getTypes().ConvertType(getContext().LongTy);
2013   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2014 
2015   // The struct.
2016   C = llvm::ConstantStruct::get(STy, Fields);
2017   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2018                                 llvm::GlobalVariable::PrivateLinkage, C,
2019                                 "_unnamed_cfstring_");
2020   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2021     GV->setSection(Sect);
2022   Entry.setValue(GV);
2023 
2024   return GV;
2025 }
2026 
2027 static RecordDecl *
2028 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2029                  DeclContext *DC, IdentifierInfo *Id) {
2030   SourceLocation Loc;
2031   if (Ctx.getLangOptions().CPlusPlus)
2032     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2033   else
2034     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2035 }
2036 
2037 llvm::Constant *
2038 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2039   unsigned StringLength = 0;
2040   llvm::StringMapEntry<llvm::Constant*> &Entry =
2041     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2042 
2043   if (llvm::Constant *C = Entry.getValue())
2044     return C;
2045 
2046   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2047   llvm::Constant *Zeros[] = { Zero, Zero };
2048 
2049   // If we don't already have it, get _NSConstantStringClassReference.
2050   if (!ConstantStringClassRef) {
2051     std::string StringClass(getLangOptions().ObjCConstantStringClass);
2052     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2053     llvm::Constant *GV;
2054     if (Features.ObjCNonFragileABI) {
2055       std::string str =
2056         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2057                             : "OBJC_CLASS_$_" + StringClass;
2058       GV = getObjCRuntime().GetClassGlobal(str);
2059       // Make sure the result is of the correct type.
2060       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2061       ConstantStringClassRef =
2062         llvm::ConstantExpr::getBitCast(GV, PTy);
2063     } else {
2064       std::string str =
2065         StringClass.empty() ? "_NSConstantStringClassReference"
2066                             : "_" + StringClass + "ClassReference";
2067       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2068       GV = CreateRuntimeVariable(PTy, str);
2069       // Decay array -> ptr
2070       ConstantStringClassRef =
2071         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2072     }
2073   }
2074 
2075   if (!NSConstantStringType) {
2076     // Construct the type for a constant NSString.
2077     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2078                                      Context.getTranslationUnitDecl(),
2079                                    &Context.Idents.get("__builtin_NSString"));
2080     D->startDefinition();
2081 
2082     QualType FieldTypes[3];
2083 
2084     // const int *isa;
2085     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2086     // const char *str;
2087     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2088     // unsigned int length;
2089     FieldTypes[2] = Context.UnsignedIntTy;
2090 
2091     // Create fields
2092     for (unsigned i = 0; i < 3; ++i) {
2093       FieldDecl *Field = FieldDecl::Create(Context, D,
2094                                            SourceLocation(),
2095                                            SourceLocation(), 0,
2096                                            FieldTypes[i], /*TInfo=*/0,
2097                                            /*BitWidth=*/0,
2098                                            /*Mutable=*/false,
2099                                            /*HasInit=*/false);
2100       Field->setAccess(AS_public);
2101       D->addDecl(Field);
2102     }
2103 
2104     D->completeDefinition();
2105     QualType NSTy = Context.getTagDeclType(D);
2106     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2107   }
2108 
2109   llvm::Constant *Fields[3];
2110 
2111   // Class pointer.
2112   Fields[0] = ConstantStringClassRef;
2113 
2114   // String pointer.
2115   llvm::Constant *C =
2116     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2117 
2118   llvm::GlobalValue::LinkageTypes Linkage;
2119   bool isConstant;
2120   Linkage = llvm::GlobalValue::PrivateLinkage;
2121   isConstant = !Features.WritableStrings;
2122 
2123   llvm::GlobalVariable *GV =
2124   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2125                            ".str");
2126   GV->setUnnamedAddr(true);
2127   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2128   GV->setAlignment(Align.getQuantity());
2129   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2130 
2131   // String length.
2132   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2133   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2134 
2135   // The struct.
2136   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2137   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2138                                 llvm::GlobalVariable::PrivateLinkage, C,
2139                                 "_unnamed_nsstring_");
2140   // FIXME. Fix section.
2141   if (const char *Sect =
2142         Features.ObjCNonFragileABI
2143           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2144           : getContext().getTargetInfo().getNSStringSection())
2145     GV->setSection(Sect);
2146   Entry.setValue(GV);
2147 
2148   return GV;
2149 }
2150 
2151 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2152   if (ObjCFastEnumerationStateType.isNull()) {
2153     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2154                                      Context.getTranslationUnitDecl(),
2155                       &Context.Idents.get("__objcFastEnumerationState"));
2156     D->startDefinition();
2157 
2158     QualType FieldTypes[] = {
2159       Context.UnsignedLongTy,
2160       Context.getPointerType(Context.getObjCIdType()),
2161       Context.getPointerType(Context.UnsignedLongTy),
2162       Context.getConstantArrayType(Context.UnsignedLongTy,
2163                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2164     };
2165 
2166     for (size_t i = 0; i < 4; ++i) {
2167       FieldDecl *Field = FieldDecl::Create(Context,
2168                                            D,
2169                                            SourceLocation(),
2170                                            SourceLocation(), 0,
2171                                            FieldTypes[i], /*TInfo=*/0,
2172                                            /*BitWidth=*/0,
2173                                            /*Mutable=*/false,
2174                                            /*HasInit=*/false);
2175       Field->setAccess(AS_public);
2176       D->addDecl(Field);
2177     }
2178 
2179     D->completeDefinition();
2180     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2181   }
2182 
2183   return ObjCFastEnumerationStateType;
2184 }
2185 
2186 llvm::Constant *
2187 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2188   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2189 
2190   // Don't emit it as the address of the string, emit the string data itself
2191   // as an inline array.
2192   if (E->getCharByteWidth() == 1) {
2193     SmallString<64> Str(E->getString());
2194 
2195     // Resize the string to the right size, which is indicated by its type.
2196     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2197     Str.resize(CAT->getSize().getZExtValue());
2198     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2199   }
2200 
2201   llvm::ArrayType *AType =
2202     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2203   llvm::Type *ElemTy = AType->getElementType();
2204   unsigned NumElements = AType->getNumElements();
2205 
2206   // Wide strings have either 2-byte or 4-byte elements.
2207   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2208     SmallVector<uint16_t, 32> Elements;
2209     Elements.reserve(NumElements);
2210 
2211     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2212       Elements.push_back(E->getCodeUnit(i));
2213     Elements.resize(NumElements);
2214     return llvm::ConstantDataArray::get(VMContext, Elements);
2215   }
2216 
2217   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2218   SmallVector<uint32_t, 32> Elements;
2219   Elements.reserve(NumElements);
2220 
2221   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2222     Elements.push_back(E->getCodeUnit(i));
2223   Elements.resize(NumElements);
2224   return llvm::ConstantDataArray::get(VMContext, Elements);
2225 }
2226 
2227 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2228 /// constant array for the given string literal.
2229 llvm::Constant *
2230 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2231   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2232   if (S->isAscii() || S->isUTF8()) {
2233     SmallString<64> Str(S->getString());
2234 
2235     // Resize the string to the right size, which is indicated by its type.
2236     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2237     Str.resize(CAT->getSize().getZExtValue());
2238     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2239   }
2240 
2241   // FIXME: the following does not memoize wide strings.
2242   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2243   llvm::GlobalVariable *GV =
2244     new llvm::GlobalVariable(getModule(),C->getType(),
2245                              !Features.WritableStrings,
2246                              llvm::GlobalValue::PrivateLinkage,
2247                              C,".str");
2248 
2249   GV->setAlignment(Align.getQuantity());
2250   GV->setUnnamedAddr(true);
2251   return GV;
2252 }
2253 
2254 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2255 /// array for the given ObjCEncodeExpr node.
2256 llvm::Constant *
2257 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2258   std::string Str;
2259   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2260 
2261   return GetAddrOfConstantCString(Str);
2262 }
2263 
2264 
2265 /// GenerateWritableString -- Creates storage for a string literal.
2266 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2267                                              bool constant,
2268                                              CodeGenModule &CGM,
2269                                              const char *GlobalName,
2270                                              unsigned Alignment) {
2271   // Create Constant for this string literal. Don't add a '\0'.
2272   llvm::Constant *C =
2273       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2274 
2275   // Create a global variable for this string
2276   llvm::GlobalVariable *GV =
2277     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2278                              llvm::GlobalValue::PrivateLinkage,
2279                              C, GlobalName);
2280   GV->setAlignment(Alignment);
2281   GV->setUnnamedAddr(true);
2282   return GV;
2283 }
2284 
2285 /// GetAddrOfConstantString - Returns a pointer to a character array
2286 /// containing the literal. This contents are exactly that of the
2287 /// given string, i.e. it will not be null terminated automatically;
2288 /// see GetAddrOfConstantCString. Note that whether the result is
2289 /// actually a pointer to an LLVM constant depends on
2290 /// Feature.WriteableStrings.
2291 ///
2292 /// The result has pointer to array type.
2293 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2294                                                        const char *GlobalName,
2295                                                        unsigned Alignment) {
2296   // Get the default prefix if a name wasn't specified.
2297   if (!GlobalName)
2298     GlobalName = ".str";
2299 
2300   // Don't share any string literals if strings aren't constant.
2301   if (Features.WritableStrings)
2302     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2303 
2304   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2305     ConstantStringMap.GetOrCreateValue(Str);
2306 
2307   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2308     if (Alignment > GV->getAlignment()) {
2309       GV->setAlignment(Alignment);
2310     }
2311     return GV;
2312   }
2313 
2314   // Create a global variable for this.
2315   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2316                                                    Alignment);
2317   Entry.setValue(GV);
2318   return GV;
2319 }
2320 
2321 /// GetAddrOfConstantCString - Returns a pointer to a character
2322 /// array containing the literal and a terminating '\0'
2323 /// character. The result has pointer to array type.
2324 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2325                                                         const char *GlobalName,
2326                                                         unsigned Alignment) {
2327   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2328   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2329 }
2330 
2331 /// EmitObjCPropertyImplementations - Emit information for synthesized
2332 /// properties for an implementation.
2333 void CodeGenModule::EmitObjCPropertyImplementations(const
2334                                                     ObjCImplementationDecl *D) {
2335   for (ObjCImplementationDecl::propimpl_iterator
2336          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2337     ObjCPropertyImplDecl *PID = *i;
2338 
2339     // Dynamic is just for type-checking.
2340     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2341       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2342 
2343       // Determine which methods need to be implemented, some may have
2344       // been overridden. Note that ::isSynthesized is not the method
2345       // we want, that just indicates if the decl came from a
2346       // property. What we want to know is if the method is defined in
2347       // this implementation.
2348       if (!D->getInstanceMethod(PD->getGetterName()))
2349         CodeGenFunction(*this).GenerateObjCGetter(
2350                                  const_cast<ObjCImplementationDecl *>(D), PID);
2351       if (!PD->isReadOnly() &&
2352           !D->getInstanceMethod(PD->getSetterName()))
2353         CodeGenFunction(*this).GenerateObjCSetter(
2354                                  const_cast<ObjCImplementationDecl *>(D), PID);
2355     }
2356   }
2357 }
2358 
2359 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2360   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2361   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2362        ivar; ivar = ivar->getNextIvar())
2363     if (ivar->getType().isDestructedType())
2364       return true;
2365 
2366   return false;
2367 }
2368 
2369 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2370 /// for an implementation.
2371 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2372   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2373   if (needsDestructMethod(D)) {
2374     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2375     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2376     ObjCMethodDecl *DTORMethod =
2377       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2378                              cxxSelector, getContext().VoidTy, 0, D,
2379                              /*isInstance=*/true, /*isVariadic=*/false,
2380                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2381                              /*isDefined=*/false, ObjCMethodDecl::Required);
2382     D->addInstanceMethod(DTORMethod);
2383     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2384     D->setHasCXXStructors(true);
2385   }
2386 
2387   // If the implementation doesn't have any ivar initializers, we don't need
2388   // a .cxx_construct.
2389   if (D->getNumIvarInitializers() == 0)
2390     return;
2391 
2392   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2393   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2394   // The constructor returns 'self'.
2395   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2396                                                 D->getLocation(),
2397                                                 D->getLocation(),
2398                                                 cxxSelector,
2399                                                 getContext().getObjCIdType(), 0,
2400                                                 D, /*isInstance=*/true,
2401                                                 /*isVariadic=*/false,
2402                                                 /*isSynthesized=*/true,
2403                                                 /*isImplicitlyDeclared=*/true,
2404                                                 /*isDefined=*/false,
2405                                                 ObjCMethodDecl::Required);
2406   D->addInstanceMethod(CTORMethod);
2407   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2408   D->setHasCXXStructors(true);
2409 }
2410 
2411 /// EmitNamespace - Emit all declarations in a namespace.
2412 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2413   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2414        I != E; ++I)
2415     EmitTopLevelDecl(*I);
2416 }
2417 
2418 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2419 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2420   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2421       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2422     ErrorUnsupported(LSD, "linkage spec");
2423     return;
2424   }
2425 
2426   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2427        I != E; ++I)
2428     EmitTopLevelDecl(*I);
2429 }
2430 
2431 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2432 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2433   // If an error has occurred, stop code generation, but continue
2434   // parsing and semantic analysis (to ensure all warnings and errors
2435   // are emitted).
2436   if (Diags.hasErrorOccurred())
2437     return;
2438 
2439   // Ignore dependent declarations.
2440   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2441     return;
2442 
2443   switch (D->getKind()) {
2444   case Decl::CXXConversion:
2445   case Decl::CXXMethod:
2446   case Decl::Function:
2447     // Skip function templates
2448     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2449         cast<FunctionDecl>(D)->isLateTemplateParsed())
2450       return;
2451 
2452     EmitGlobal(cast<FunctionDecl>(D));
2453     break;
2454 
2455   case Decl::Var:
2456     EmitGlobal(cast<VarDecl>(D));
2457     break;
2458 
2459   // Indirect fields from global anonymous structs and unions can be
2460   // ignored; only the actual variable requires IR gen support.
2461   case Decl::IndirectField:
2462     break;
2463 
2464   // C++ Decls
2465   case Decl::Namespace:
2466     EmitNamespace(cast<NamespaceDecl>(D));
2467     break;
2468     // No code generation needed.
2469   case Decl::UsingShadow:
2470   case Decl::Using:
2471   case Decl::UsingDirective:
2472   case Decl::ClassTemplate:
2473   case Decl::FunctionTemplate:
2474   case Decl::TypeAliasTemplate:
2475   case Decl::NamespaceAlias:
2476   case Decl::Block:
2477   case Decl::Import:
2478     break;
2479   case Decl::CXXConstructor:
2480     // Skip function templates
2481     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2482         cast<FunctionDecl>(D)->isLateTemplateParsed())
2483       return;
2484 
2485     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2486     break;
2487   case Decl::CXXDestructor:
2488     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2489       return;
2490     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2491     break;
2492 
2493   case Decl::StaticAssert:
2494     // Nothing to do.
2495     break;
2496 
2497   // Objective-C Decls
2498 
2499   // Forward declarations, no (immediate) code generation.
2500   case Decl::ObjCInterface:
2501     break;
2502 
2503   case Decl::ObjCCategory: {
2504     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2505     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2506       Context.ResetObjCLayout(CD->getClassInterface());
2507     break;
2508   }
2509 
2510   case Decl::ObjCProtocol: {
2511     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2512     if (Proto->isThisDeclarationADefinition())
2513       ObjCRuntime->GenerateProtocol(Proto);
2514     break;
2515   }
2516 
2517   case Decl::ObjCCategoryImpl:
2518     // Categories have properties but don't support synthesize so we
2519     // can ignore them here.
2520     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2521     break;
2522 
2523   case Decl::ObjCImplementation: {
2524     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2525     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2526       Context.ResetObjCLayout(OMD->getClassInterface());
2527     EmitObjCPropertyImplementations(OMD);
2528     EmitObjCIvarInitializations(OMD);
2529     ObjCRuntime->GenerateClass(OMD);
2530     break;
2531   }
2532   case Decl::ObjCMethod: {
2533     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2534     // If this is not a prototype, emit the body.
2535     if (OMD->getBody())
2536       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2537     break;
2538   }
2539   case Decl::ObjCCompatibleAlias:
2540     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2541     break;
2542 
2543   case Decl::LinkageSpec:
2544     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2545     break;
2546 
2547   case Decl::FileScopeAsm: {
2548     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2549     StringRef AsmString = AD->getAsmString()->getString();
2550 
2551     const std::string &S = getModule().getModuleInlineAsm();
2552     if (S.empty())
2553       getModule().setModuleInlineAsm(AsmString);
2554     else if (*--S.end() == '\n')
2555       getModule().setModuleInlineAsm(S + AsmString.str());
2556     else
2557       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2558     break;
2559   }
2560 
2561   default:
2562     // Make sure we handled everything we should, every other kind is a
2563     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2564     // function. Need to recode Decl::Kind to do that easily.
2565     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2566   }
2567 }
2568 
2569 /// Turns the given pointer into a constant.
2570 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2571                                           const void *Ptr) {
2572   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2573   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2574   return llvm::ConstantInt::get(i64, PtrInt);
2575 }
2576 
2577 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2578                                    llvm::NamedMDNode *&GlobalMetadata,
2579                                    GlobalDecl D,
2580                                    llvm::GlobalValue *Addr) {
2581   if (!GlobalMetadata)
2582     GlobalMetadata =
2583       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2584 
2585   // TODO: should we report variant information for ctors/dtors?
2586   llvm::Value *Ops[] = {
2587     Addr,
2588     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2589   };
2590   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2591 }
2592 
2593 /// Emits metadata nodes associating all the global values in the
2594 /// current module with the Decls they came from.  This is useful for
2595 /// projects using IR gen as a subroutine.
2596 ///
2597 /// Since there's currently no way to associate an MDNode directly
2598 /// with an llvm::GlobalValue, we create a global named metadata
2599 /// with the name 'clang.global.decl.ptrs'.
2600 void CodeGenModule::EmitDeclMetadata() {
2601   llvm::NamedMDNode *GlobalMetadata = 0;
2602 
2603   // StaticLocalDeclMap
2604   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2605          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2606        I != E; ++I) {
2607     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2608     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2609   }
2610 }
2611 
2612 /// Emits metadata nodes for all the local variables in the current
2613 /// function.
2614 void CodeGenFunction::EmitDeclMetadata() {
2615   if (LocalDeclMap.empty()) return;
2616 
2617   llvm::LLVMContext &Context = getLLVMContext();
2618 
2619   // Find the unique metadata ID for this name.
2620   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2621 
2622   llvm::NamedMDNode *GlobalMetadata = 0;
2623 
2624   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2625          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2626     const Decl *D = I->first;
2627     llvm::Value *Addr = I->second;
2628 
2629     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2630       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2631       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2632     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2633       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2634       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2635     }
2636   }
2637 }
2638 
2639 void CodeGenModule::EmitCoverageFile() {
2640   if (!getCodeGenOpts().CoverageFile.empty()) {
2641     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2642       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2643       llvm::LLVMContext &Ctx = TheModule.getContext();
2644       llvm::MDString *CoverageFile =
2645           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2646       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2647         llvm::MDNode *CU = CUNode->getOperand(i);
2648         llvm::Value *node[] = { CoverageFile, CU };
2649         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2650         GCov->addOperand(N);
2651       }
2652     }
2653   }
2654 }
2655