xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a0f99ff2308e5d91d37562e04fd66fd1765843d3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Support/ErrorHandling.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 
42 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
43                              llvm::Module &M, const llvm::TargetData &TD,
44                              Diagnostic &diags)
45   : BlockModule(C, M, TD, Types, *this), Context(C),
46     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
47     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
48     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
49     MangleCtx(C), VtableInfo(*this), Runtime(0),
50     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
51     VMContext(M.getContext()) {
52 
53   if (!Features.ObjC1)
54     Runtime = 0;
55   else if (!Features.NeXTRuntime)
56     Runtime = CreateGNUObjCRuntime(*this);
57   else if (Features.ObjCNonFragileABI)
58     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
59   else
60     Runtime = CreateMacObjCRuntime(*this);
61 
62   // If debug info generation is enabled, create the CGDebugInfo object.
63   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
64 }
65 
66 CodeGenModule::~CodeGenModule() {
67   delete Runtime;
68   delete DebugInfo;
69 }
70 
71 void CodeGenModule::createObjCRuntime() {
72   if (!Features.NeXTRuntime)
73     Runtime = CreateGNUObjCRuntime(*this);
74   else if (Features.ObjCNonFragileABI)
75     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
76   else
77     Runtime = CreateMacObjCRuntime(*this);
78 }
79 
80 void CodeGenModule::Release() {
81   EmitDeferred();
82   EmitCXXGlobalInitFunc();
83   if (Runtime)
84     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
85       AddGlobalCtor(ObjCInitFunction);
86   EmitCtorList(GlobalCtors, "llvm.global_ctors");
87   EmitCtorList(GlobalDtors, "llvm.global_dtors");
88   EmitAnnotations();
89   EmitLLVMUsed();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified stmt yet.
94 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
102     << Msg << S->getSourceRange();
103 }
104 
105 /// ErrorUnsupported - Print out an error that codegen doesn't support the
106 /// specified decl yet.
107 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
108                                      bool OmitOnError) {
109   if (OmitOnError && getDiags().hasErrorOccurred())
110     return;
111   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
112                                                "cannot compile this %0 yet");
113   std::string Msg = Type;
114   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
115 }
116 
117 LangOptions::VisibilityMode
118 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
119   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
120     if (VD->getStorageClass() == VarDecl::PrivateExtern)
121       return LangOptions::Hidden;
122 
123   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
124     switch (attr->getVisibility()) {
125     default: assert(0 && "Unknown visibility!");
126     case VisibilityAttr::DefaultVisibility:
127       return LangOptions::Default;
128     case VisibilityAttr::HiddenVisibility:
129       return LangOptions::Hidden;
130     case VisibilityAttr::ProtectedVisibility:
131       return LangOptions::Protected;
132     }
133   }
134 
135   return getLangOptions().getVisibilityMode();
136 }
137 
138 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
139                                         const Decl *D) const {
140   // Internal definitions always have default visibility.
141   if (GV->hasLocalLinkage()) {
142     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
143     return;
144   }
145 
146   switch (getDeclVisibilityMode(D)) {
147   default: assert(0 && "Unknown visibility!");
148   case LangOptions::Default:
149     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
150   case LangOptions::Hidden:
151     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
152   case LangOptions::Protected:
153     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
154   }
155 }
156 
157 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
158   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
159 
160   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
161     return getMangledCXXCtorName(D, GD.getCtorType());
162   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
163     return getMangledCXXDtorName(D, GD.getDtorType());
164 
165   return getMangledName(ND);
166 }
167 
168 /// \brief Retrieves the mangled name for the given declaration.
169 ///
170 /// If the given declaration requires a mangled name, returns an
171 /// const char* containing the mangled name.  Otherwise, returns
172 /// the unmangled name.
173 ///
174 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
175   if (!getMangleContext().shouldMangleDeclName(ND)) {
176     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
177     return ND->getNameAsCString();
178   }
179 
180   llvm::SmallString<256> Name;
181   getMangleContext().mangleName(ND, Name);
182   Name += '\0';
183   return UniqueMangledName(Name.begin(), Name.end());
184 }
185 
186 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
187                                              const char *NameEnd) {
188   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
189 
190   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
191 }
192 
193 /// AddGlobalCtor - Add a function to the list that will be called before
194 /// main() runs.
195 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
198 }
199 
200 /// AddGlobalDtor - Add a function to the list that will be called
201 /// when the module is unloaded.
202 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
203   // FIXME: Type coercion of void()* types.
204   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
205 }
206 
207 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
208   // Ctor function type is void()*.
209   llvm::FunctionType* CtorFTy =
210     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
211                             std::vector<const llvm::Type*>(),
212                             false);
213   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
214 
215   // Get the type of a ctor entry, { i32, void ()* }.
216   llvm::StructType* CtorStructTy =
217     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
218                           llvm::PointerType::getUnqual(CtorFTy), NULL);
219 
220   // Construct the constructor and destructor arrays.
221   std::vector<llvm::Constant*> Ctors;
222   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
223     std::vector<llvm::Constant*> S;
224     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
225                 I->second, false));
226     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
227     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
228   }
229 
230   if (!Ctors.empty()) {
231     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
232     new llvm::GlobalVariable(TheModule, AT, false,
233                              llvm::GlobalValue::AppendingLinkage,
234                              llvm::ConstantArray::get(AT, Ctors),
235                              GlobalName);
236   }
237 }
238 
239 void CodeGenModule::EmitAnnotations() {
240   if (Annotations.empty())
241     return;
242 
243   // Create a new global variable for the ConstantStruct in the Module.
244   llvm::Constant *Array =
245   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
246                                                 Annotations.size()),
247                            Annotations);
248   llvm::GlobalValue *gv =
249   new llvm::GlobalVariable(TheModule, Array->getType(), false,
250                            llvm::GlobalValue::AppendingLinkage, Array,
251                            "llvm.global.annotations");
252   gv->setSection("llvm.metadata");
253 }
254 
255 static CodeGenModule::GVALinkage
256 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
257                       const LangOptions &Features) {
258   // Everything located semantically within an anonymous namespace is
259   // always internal.
260   if (FD->isInAnonymousNamespace())
261     return CodeGenModule::GVA_Internal;
262 
263   // "static" functions get internal linkage.
264   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
265     return CodeGenModule::GVA_Internal;
266 
267   // The kind of external linkage this function will have, if it is not
268   // inline or static.
269   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
270   if (Context.getLangOptions().CPlusPlus) {
271     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
272 
273     if (TSK == TSK_ExplicitInstantiationDefinition) {
274       // If a function has been explicitly instantiated, then it should
275       // always have strong external linkage.
276       return CodeGenModule::GVA_StrongExternal;
277     }
278 
279     if (TSK == TSK_ImplicitInstantiation)
280       External = CodeGenModule::GVA_TemplateInstantiation;
281   }
282 
283   if (!FD->isInlined())
284     return External;
285 
286   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
287     // GNU or C99 inline semantics. Determine whether this symbol should be
288     // externally visible.
289     if (FD->isInlineDefinitionExternallyVisible())
290       return External;
291 
292     // C99 inline semantics, where the symbol is not externally visible.
293     return CodeGenModule::GVA_C99Inline;
294   }
295 
296   // C++0x [temp.explicit]p9:
297   //   [ Note: The intent is that an inline function that is the subject of
298   //   an explicit instantiation declaration will still be implicitly
299   //   instantiated when used so that the body can be considered for
300   //   inlining, but that no out-of-line copy of the inline function would be
301   //   generated in the translation unit. -- end note ]
302   if (FD->getTemplateSpecializationKind()
303                                        == TSK_ExplicitInstantiationDeclaration)
304     return CodeGenModule::GVA_C99Inline;
305 
306   return CodeGenModule::GVA_CXXInline;
307 }
308 
309 /// SetFunctionDefinitionAttributes - Set attributes for a global.
310 ///
311 /// FIXME: This is currently only done for aliases and functions, but not for
312 /// variables (these details are set in EmitGlobalVarDefinition for variables).
313 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
314                                                     llvm::GlobalValue *GV) {
315   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
316 
317   if (Linkage == GVA_Internal) {
318     GV->setLinkage(llvm::Function::InternalLinkage);
319   } else if (D->hasAttr<DLLExportAttr>()) {
320     GV->setLinkage(llvm::Function::DLLExportLinkage);
321   } else if (D->hasAttr<WeakAttr>()) {
322     GV->setLinkage(llvm::Function::WeakAnyLinkage);
323   } else if (Linkage == GVA_C99Inline) {
324     // In C99 mode, 'inline' functions are guaranteed to have a strong
325     // definition somewhere else, so we can use available_externally linkage.
326     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
327   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
328     // In C++, the compiler has to emit a definition in every translation unit
329     // that references the function.  We should use linkonce_odr because
330     // a) if all references in this translation unit are optimized away, we
331     // don't need to codegen it.  b) if the function persists, it needs to be
332     // merged with other definitions. c) C++ has the ODR, so we know the
333     // definition is dependable.
334     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
335   } else {
336     assert(Linkage == GVA_StrongExternal);
337     // Otherwise, we have strong external linkage.
338     GV->setLinkage(llvm::Function::ExternalLinkage);
339   }
340 
341   SetCommonAttributes(D, GV);
342 }
343 
344 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
345                                               const CGFunctionInfo &Info,
346                                               llvm::Function *F) {
347   unsigned CallingConv;
348   AttributeListType AttributeList;
349   ConstructAttributeList(Info, D, AttributeList, CallingConv);
350   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
351                                           AttributeList.size()));
352   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
353 }
354 
355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                            llvm::Function *F) {
357   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358     F->addFnAttr(llvm::Attribute::NoUnwind);
359 
360   if (D->hasAttr<AlwaysInlineAttr>())
361     F->addFnAttr(llvm::Attribute::AlwaysInline);
362 
363   if (D->hasAttr<NoInlineAttr>())
364     F->addFnAttr(llvm::Attribute::NoInline);
365 
366   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
367     F->addFnAttr(llvm::Attribute::StackProtect);
368   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
369     F->addFnAttr(llvm::Attribute::StackProtectReq);
370 
371   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
372     unsigned width = Context.Target.getCharWidth();
373     F->setAlignment(AA->getAlignment() / width);
374     while ((AA = AA->getNext<AlignedAttr>()))
375       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
376   }
377   // C++ ABI requires 2-byte alignment for member functions.
378   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
379     F->setAlignment(2);
380 }
381 
382 void CodeGenModule::SetCommonAttributes(const Decl *D,
383                                         llvm::GlobalValue *GV) {
384   setGlobalVisibility(GV, D);
385 
386   if (D->hasAttr<UsedAttr>())
387     AddUsedGlobal(GV);
388 
389   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
390     GV->setSection(SA->getName());
391 
392   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
393 }
394 
395 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
396                                                   llvm::Function *F,
397                                                   const CGFunctionInfo &FI) {
398   SetLLVMFunctionAttributes(D, FI, F);
399   SetLLVMFunctionAttributesForDefinition(D, F);
400 
401   F->setLinkage(llvm::Function::InternalLinkage);
402 
403   SetCommonAttributes(D, F);
404 }
405 
406 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
407                                           llvm::Function *F,
408                                           bool IsIncompleteFunction) {
409   if (!IsIncompleteFunction)
410     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
411 
412   // Only a few attributes are set on declarations; these may later be
413   // overridden by a definition.
414 
415   if (FD->hasAttr<DLLImportAttr>()) {
416     F->setLinkage(llvm::Function::DLLImportLinkage);
417   } else if (FD->hasAttr<WeakAttr>() ||
418              FD->hasAttr<WeakImportAttr>()) {
419     // "extern_weak" is overloaded in LLVM; we probably should have
420     // separate linkage types for this.
421     F->setLinkage(llvm::Function::ExternalWeakLinkage);
422   } else {
423     F->setLinkage(llvm::Function::ExternalLinkage);
424   }
425 
426   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
427     F->setSection(SA->getName());
428 }
429 
430 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
431   assert(!GV->isDeclaration() &&
432          "Only globals with definition can force usage.");
433   LLVMUsed.push_back(GV);
434 }
435 
436 void CodeGenModule::EmitLLVMUsed() {
437   // Don't create llvm.used if there is no need.
438   if (LLVMUsed.empty())
439     return;
440 
441   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
442 
443   // Convert LLVMUsed to what ConstantArray needs.
444   std::vector<llvm::Constant*> UsedArray;
445   UsedArray.resize(LLVMUsed.size());
446   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
447     UsedArray[i] =
448      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
449                                       i8PTy);
450   }
451 
452   if (UsedArray.empty())
453     return;
454   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
455 
456   llvm::GlobalVariable *GV =
457     new llvm::GlobalVariable(getModule(), ATy, false,
458                              llvm::GlobalValue::AppendingLinkage,
459                              llvm::ConstantArray::get(ATy, UsedArray),
460                              "llvm.used");
461 
462   GV->setSection("llvm.metadata");
463 }
464 
465 void CodeGenModule::EmitDeferred() {
466   // Emit code for any potentially referenced deferred decls.  Since a
467   // previously unused static decl may become used during the generation of code
468   // for a static function, iterate until no  changes are made.
469   while (!DeferredDeclsToEmit.empty()) {
470     GlobalDecl D = DeferredDeclsToEmit.back();
471     DeferredDeclsToEmit.pop_back();
472 
473     // The mangled name for the decl must have been emitted in GlobalDeclMap.
474     // Look it up to see if it was defined with a stronger definition (e.g. an
475     // extern inline function with a strong function redefinition).  If so,
476     // just ignore the deferred decl.
477     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
478     assert(CGRef && "Deferred decl wasn't referenced?");
479 
480     if (!CGRef->isDeclaration())
481       continue;
482 
483     // Otherwise, emit the definition and move on to the next one.
484     EmitGlobalDefinition(D);
485   }
486 }
487 
488 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
489 /// annotation information for a given GlobalValue.  The annotation struct is
490 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
491 /// GlobalValue being annotated.  The second field is the constant string
492 /// created from the AnnotateAttr's annotation.  The third field is a constant
493 /// string containing the name of the translation unit.  The fourth field is
494 /// the line number in the file of the annotated value declaration.
495 ///
496 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
497 ///        appears to.
498 ///
499 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
500                                                 const AnnotateAttr *AA,
501                                                 unsigned LineNo) {
502   llvm::Module *M = &getModule();
503 
504   // get [N x i8] constants for the annotation string, and the filename string
505   // which are the 2nd and 3rd elements of the global annotation structure.
506   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
507   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
508                                                   AA->getAnnotation(), true);
509   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
510                                                   M->getModuleIdentifier(),
511                                                   true);
512 
513   // Get the two global values corresponding to the ConstantArrays we just
514   // created to hold the bytes of the strings.
515   llvm::GlobalValue *annoGV =
516     new llvm::GlobalVariable(*M, anno->getType(), false,
517                              llvm::GlobalValue::PrivateLinkage, anno,
518                              GV->getName());
519   // translation unit name string, emitted into the llvm.metadata section.
520   llvm::GlobalValue *unitGV =
521     new llvm::GlobalVariable(*M, unit->getType(), false,
522                              llvm::GlobalValue::PrivateLinkage, unit,
523                              ".str");
524 
525   // Create the ConstantStruct for the global annotation.
526   llvm::Constant *Fields[4] = {
527     llvm::ConstantExpr::getBitCast(GV, SBP),
528     llvm::ConstantExpr::getBitCast(annoGV, SBP),
529     llvm::ConstantExpr::getBitCast(unitGV, SBP),
530     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
531   };
532   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
533 }
534 
535 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
536   // Never defer when EmitAllDecls is specified or the decl has
537   // attribute used.
538   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
539     return false;
540 
541   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
542     // Constructors and destructors should never be deferred.
543     if (FD->hasAttr<ConstructorAttr>() ||
544         FD->hasAttr<DestructorAttr>())
545       return false;
546 
547     // The key function for a class must never be deferred.
548     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
549       const CXXRecordDecl *RD = MD->getParent();
550       if (MD->isOutOfLine() && RD->isDynamicClass()) {
551         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
552         if (KeyFunction &&
553             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
554           return false;
555       }
556     }
557 
558     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
559 
560     // static, static inline, always_inline, and extern inline functions can
561     // always be deferred.  Normal inline functions can be deferred in C99/C++.
562     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
563         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
564       return true;
565     return false;
566   }
567 
568   const VarDecl *VD = cast<VarDecl>(Global);
569   assert(VD->isFileVarDecl() && "Invalid decl");
570 
571   // We never want to defer structs that have non-trivial constructors or
572   // destructors.
573 
574   // FIXME: Handle references.
575   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
576     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
577       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
578         return false;
579     }
580   }
581 
582   // Static data may be deferred, but out-of-line static data members
583   // cannot be.
584   if (VD->getLinkage() == VarDecl::InternalLinkage ||
585       VD->isInAnonymousNamespace()) {
586     // Initializer has side effects?
587     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
588       return false;
589     return !(VD->isStaticDataMember() && VD->isOutOfLine());
590   }
591   return false;
592 }
593 
594 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
595   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
596 
597   // If this is an alias definition (which otherwise looks like a declaration)
598   // emit it now.
599   if (Global->hasAttr<AliasAttr>())
600     return EmitAliasDefinition(Global);
601 
602   // Ignore declarations, they will be emitted on their first use.
603   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
604     // Forward declarations are emitted lazily on first use.
605     if (!FD->isThisDeclarationADefinition())
606       return;
607   } else {
608     const VarDecl *VD = cast<VarDecl>(Global);
609     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
610 
611     if (getLangOptions().CPlusPlus && !VD->getInit()) {
612       // In C++, if this is marked "extern", defer code generation.
613       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
614         return;
615 
616       // If this is a declaration of an explicit specialization of a static
617       // data member in a class template, don't emit it.
618       if (VD->isStaticDataMember() &&
619           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
620         return;
621     }
622 
623     // In C, if this isn't a definition, defer code generation.
624     if (!getLangOptions().CPlusPlus && !VD->getInit())
625       return;
626   }
627 
628   // Defer code generation when possible if this is a static definition, inline
629   // function etc.  These we only want to emit if they are used.
630   if (MayDeferGeneration(Global)) {
631     // If the value has already been used, add it directly to the
632     // DeferredDeclsToEmit list.
633     const char *MangledName = getMangledName(GD);
634     if (GlobalDeclMap.count(MangledName))
635       DeferredDeclsToEmit.push_back(GD);
636     else {
637       // Otherwise, remember that we saw a deferred decl with this name.  The
638       // first use of the mangled name will cause it to move into
639       // DeferredDeclsToEmit.
640       DeferredDecls[MangledName] = GD;
641     }
642     return;
643   }
644 
645   // Otherwise emit the definition.
646   EmitGlobalDefinition(GD);
647 }
648 
649 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
650   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
651 
652   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
653                                  Context.getSourceManager(),
654                                  "Generating code for declaration");
655 
656   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
657     getVtableInfo().MaybeEmitVtable(GD);
658     if (MD->isVirtual() && MD->isOutOfLine() &&
659         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
660       if (isa<CXXDestructorDecl>(D)) {
661         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
662                            GD.getDtorType());
663         BuildThunksForVirtual(CanonGD);
664       } else {
665         BuildThunksForVirtual(MD->getCanonicalDecl());
666       }
667     }
668   }
669 
670   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
671     EmitCXXConstructor(CD, GD.getCtorType());
672   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
673     EmitCXXDestructor(DD, GD.getDtorType());
674   else if (isa<FunctionDecl>(D))
675     EmitGlobalFunctionDefinition(GD);
676   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
677     EmitGlobalVarDefinition(VD);
678   else {
679     assert(0 && "Invalid argument to EmitGlobalDefinition()");
680   }
681 }
682 
683 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
684 /// module, create and return an llvm Function with the specified type. If there
685 /// is something in the module with the specified name, return it potentially
686 /// bitcasted to the right type.
687 ///
688 /// If D is non-null, it specifies a decl that correspond to this.  This is used
689 /// to set the attributes on the function when it is first created.
690 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
691                                                        const llvm::Type *Ty,
692                                                        GlobalDecl D) {
693   // Lookup the entry, lazily creating it if necessary.
694   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
695   if (Entry) {
696     if (Entry->getType()->getElementType() == Ty)
697       return Entry;
698 
699     // Make sure the result is of the correct type.
700     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
701     return llvm::ConstantExpr::getBitCast(Entry, PTy);
702   }
703 
704   // This function doesn't have a complete type (for example, the return
705   // type is an incomplete struct). Use a fake type instead, and make
706   // sure not to try to set attributes.
707   bool IsIncompleteFunction = false;
708   if (!isa<llvm::FunctionType>(Ty)) {
709     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
710                                  std::vector<const llvm::Type*>(), false);
711     IsIncompleteFunction = true;
712   }
713   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
714                                              llvm::Function::ExternalLinkage,
715                                              "", &getModule());
716   F->setName(MangledName);
717   if (D.getDecl())
718     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
719                           IsIncompleteFunction);
720   Entry = F;
721 
722   // This is the first use or definition of a mangled name.  If there is a
723   // deferred decl with this name, remember that we need to emit it at the end
724   // of the file.
725   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
726     DeferredDecls.find(MangledName);
727   if (DDI != DeferredDecls.end()) {
728     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
729     // list, and remove it from DeferredDecls (since we don't need it anymore).
730     DeferredDeclsToEmit.push_back(DDI->second);
731     DeferredDecls.erase(DDI);
732   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
733     // If this the first reference to a C++ inline function in a class, queue up
734     // the deferred function body for emission.  These are not seen as
735     // top-level declarations.
736     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
737       DeferredDeclsToEmit.push_back(D);
738     // A called constructor which has no definition or declaration need be
739     // synthesized.
740     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
741       if (CD->isImplicit())
742         DeferredDeclsToEmit.push_back(D);
743     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
744       if (DD->isImplicit())
745         DeferredDeclsToEmit.push_back(D);
746     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
747       if (MD->isCopyAssignment() && MD->isImplicit())
748         DeferredDeclsToEmit.push_back(D);
749     }
750   }
751 
752   return F;
753 }
754 
755 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
756 /// non-null, then this function will use the specified type if it has to
757 /// create it (this occurs when we see a definition of the function).
758 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
759                                                  const llvm::Type *Ty) {
760   // If there was no specific requested type, just convert it now.
761   if (!Ty)
762     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
763   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
764 }
765 
766 /// CreateRuntimeFunction - Create a new runtime function with the specified
767 /// type and name.
768 llvm::Constant *
769 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
770                                      const char *Name) {
771   // Convert Name to be a uniqued string from the IdentifierInfo table.
772   Name = getContext().Idents.get(Name).getNameStart();
773   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
774 }
775 
776 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
777   if (!D->getType().isConstant(Context))
778     return false;
779   if (Context.getLangOptions().CPlusPlus &&
780       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
781     // FIXME: We should do something fancier here!
782     return false;
783   }
784   return true;
785 }
786 
787 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
788 /// create and return an llvm GlobalVariable with the specified type.  If there
789 /// is something in the module with the specified name, return it potentially
790 /// bitcasted to the right type.
791 ///
792 /// If D is non-null, it specifies a decl that correspond to this.  This is used
793 /// to set the attributes on the global when it is first created.
794 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
795                                                      const llvm::PointerType*Ty,
796                                                      const VarDecl *D) {
797   // Lookup the entry, lazily creating it if necessary.
798   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
799   if (Entry) {
800     if (Entry->getType() == Ty)
801       return Entry;
802 
803     // Make sure the result is of the correct type.
804     return llvm::ConstantExpr::getBitCast(Entry, Ty);
805   }
806 
807   // This is the first use or definition of a mangled name.  If there is a
808   // deferred decl with this name, remember that we need to emit it at the end
809   // of the file.
810   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
811     DeferredDecls.find(MangledName);
812   if (DDI != DeferredDecls.end()) {
813     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
814     // list, and remove it from DeferredDecls (since we don't need it anymore).
815     DeferredDeclsToEmit.push_back(DDI->second);
816     DeferredDecls.erase(DDI);
817   }
818 
819   llvm::GlobalVariable *GV =
820     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
821                              llvm::GlobalValue::ExternalLinkage,
822                              0, "", 0,
823                              false, Ty->getAddressSpace());
824   GV->setName(MangledName);
825 
826   // Handle things which are present even on external declarations.
827   if (D) {
828     // FIXME: This code is overly simple and should be merged with other global
829     // handling.
830     GV->setConstant(DeclIsConstantGlobal(Context, D));
831 
832     // FIXME: Merge with other attribute handling code.
833     if (D->getStorageClass() == VarDecl::PrivateExtern)
834       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
835 
836     if (D->hasAttr<WeakAttr>() ||
837         D->hasAttr<WeakImportAttr>())
838       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
839 
840     GV->setThreadLocal(D->isThreadSpecified());
841   }
842 
843   return Entry = GV;
844 }
845 
846 
847 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
848 /// given global variable.  If Ty is non-null and if the global doesn't exist,
849 /// then it will be greated with the specified type instead of whatever the
850 /// normal requested type would be.
851 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
852                                                   const llvm::Type *Ty) {
853   assert(D->hasGlobalStorage() && "Not a global variable");
854   QualType ASTTy = D->getType();
855   if (Ty == 0)
856     Ty = getTypes().ConvertTypeForMem(ASTTy);
857 
858   const llvm::PointerType *PTy =
859     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
860   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
861 }
862 
863 /// CreateRuntimeVariable - Create a new runtime global variable with the
864 /// specified type and name.
865 llvm::Constant *
866 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
867                                      const char *Name) {
868   // Convert Name to be a uniqued string from the IdentifierInfo table.
869   Name = getContext().Idents.get(Name).getNameStart();
870   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
871 }
872 
873 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
874   assert(!D->getInit() && "Cannot emit definite definitions here!");
875 
876   if (MayDeferGeneration(D)) {
877     // If we have not seen a reference to this variable yet, place it
878     // into the deferred declarations table to be emitted if needed
879     // later.
880     const char *MangledName = getMangledName(D);
881     if (GlobalDeclMap.count(MangledName) == 0) {
882       DeferredDecls[MangledName] = D;
883       return;
884     }
885   }
886 
887   // The tentative definition is the only definition.
888   EmitGlobalVarDefinition(D);
889 }
890 
891 llvm::GlobalVariable::LinkageTypes
892 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
893   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
894     return llvm::GlobalVariable::InternalLinkage;
895 
896   if (const CXXMethodDecl *KeyFunction
897                                     = RD->getASTContext().getKeyFunction(RD)) {
898     // If this class has a key function, use that to determine the linkage of
899     // the vtable.
900     const FunctionDecl *Def = 0;
901     if (KeyFunction->getBody(Def))
902       KeyFunction = cast<CXXMethodDecl>(Def);
903 
904     switch (KeyFunction->getTemplateSpecializationKind()) {
905       case TSK_Undeclared:
906       case TSK_ExplicitSpecialization:
907         if (KeyFunction->isInlined())
908           return llvm::GlobalVariable::WeakODRLinkage;
909 
910         return llvm::GlobalVariable::ExternalLinkage;
911 
912       case TSK_ImplicitInstantiation:
913       case TSK_ExplicitInstantiationDefinition:
914         return llvm::GlobalVariable::WeakODRLinkage;
915 
916       case TSK_ExplicitInstantiationDeclaration:
917         // FIXME: Use available_externally linkage. However, this currently
918         // breaks LLVM's build due to undefined symbols.
919         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
920         return llvm::GlobalVariable::WeakODRLinkage;
921     }
922   }
923 
924   switch (RD->getTemplateSpecializationKind()) {
925   case TSK_Undeclared:
926   case TSK_ExplicitSpecialization:
927   case TSK_ImplicitInstantiation:
928   case TSK_ExplicitInstantiationDefinition:
929     return llvm::GlobalVariable::WeakODRLinkage;
930 
931   case TSK_ExplicitInstantiationDeclaration:
932     // FIXME: Use available_externally linkage. However, this currently
933     // breaks LLVM's build due to undefined symbols.
934     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
935     return llvm::GlobalVariable::WeakODRLinkage;
936   }
937 
938   // Silence GCC warning.
939   return llvm::GlobalVariable::WeakODRLinkage;
940 }
941 
942 static CodeGenModule::GVALinkage
943 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
944   // Everything located semantically within an anonymous namespace is
945   // always internal.
946   if (VD->isInAnonymousNamespace())
947     return CodeGenModule::GVA_Internal;
948 
949   // Handle linkage for static data members.
950   if (VD->isStaticDataMember()) {
951     switch (VD->getTemplateSpecializationKind()) {
952     case TSK_Undeclared:
953     case TSK_ExplicitSpecialization:
954     case TSK_ExplicitInstantiationDefinition:
955       return CodeGenModule::GVA_StrongExternal;
956 
957     case TSK_ExplicitInstantiationDeclaration:
958       llvm_unreachable("Variable should not be instantiated");
959       // Fall through to treat this like any other instantiation.
960 
961     case TSK_ImplicitInstantiation:
962       return CodeGenModule::GVA_TemplateInstantiation;
963     }
964   }
965 
966   if (VD->getLinkage() == VarDecl::InternalLinkage)
967     return CodeGenModule::GVA_Internal;
968 
969   return CodeGenModule::GVA_StrongExternal;
970 }
971 
972 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
973     return CharUnits::fromQuantity(
974       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
975 }
976 
977 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
978   llvm::Constant *Init = 0;
979   QualType ASTTy = D->getType();
980   bool NonConstInit = false;
981 
982   const Expr *InitExpr = D->getDefinition();
983 
984   if (!InitExpr) {
985     // This is a tentative definition; tentative definitions are
986     // implicitly initialized with { 0 }.
987     //
988     // Note that tentative definitions are only emitted at the end of
989     // a translation unit, so they should never have incomplete
990     // type. In addition, EmitTentativeDefinition makes sure that we
991     // never attempt to emit a tentative definition if a real one
992     // exists. A use may still exists, however, so we still may need
993     // to do a RAUW.
994     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
995     Init = EmitNullConstant(D->getType());
996   } else {
997     Init = EmitConstantExpr(InitExpr, D->getType());
998 
999     if (!Init) {
1000       QualType T = InitExpr->getType();
1001       if (getLangOptions().CPlusPlus) {
1002         EmitCXXGlobalVarDeclInitFunc(D);
1003         Init = EmitNullConstant(T);
1004         NonConstInit = true;
1005       } else {
1006         ErrorUnsupported(D, "static initializer");
1007         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1008       }
1009     }
1010   }
1011 
1012   const llvm::Type* InitType = Init->getType();
1013   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1014 
1015   // Strip off a bitcast if we got one back.
1016   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1017     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1018            // all zero index gep.
1019            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1020     Entry = CE->getOperand(0);
1021   }
1022 
1023   // Entry is now either a Function or GlobalVariable.
1024   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1025 
1026   // We have a definition after a declaration with the wrong type.
1027   // We must make a new GlobalVariable* and update everything that used OldGV
1028   // (a declaration or tentative definition) with the new GlobalVariable*
1029   // (which will be a definition).
1030   //
1031   // This happens if there is a prototype for a global (e.g.
1032   // "extern int x[];") and then a definition of a different type (e.g.
1033   // "int x[10];"). This also happens when an initializer has a different type
1034   // from the type of the global (this happens with unions).
1035   if (GV == 0 ||
1036       GV->getType()->getElementType() != InitType ||
1037       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1038 
1039     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1040     GlobalDeclMap.erase(getMangledName(D));
1041 
1042     // Make a new global with the correct type, this is now guaranteed to work.
1043     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1044     GV->takeName(cast<llvm::GlobalValue>(Entry));
1045 
1046     // Replace all uses of the old global with the new global
1047     llvm::Constant *NewPtrForOldDecl =
1048         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1049     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1050 
1051     // Erase the old global, since it is no longer used.
1052     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1053   }
1054 
1055   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1056     SourceManager &SM = Context.getSourceManager();
1057     AddAnnotation(EmitAnnotateAttr(GV, AA,
1058                               SM.getInstantiationLineNumber(D->getLocation())));
1059   }
1060 
1061   GV->setInitializer(Init);
1062 
1063   // If it is safe to mark the global 'constant', do so now.
1064   GV->setConstant(false);
1065   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1066     GV->setConstant(true);
1067 
1068   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1069 
1070   // Set the llvm linkage type as appropriate.
1071   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1072   if (Linkage == GVA_Internal)
1073     GV->setLinkage(llvm::Function::InternalLinkage);
1074   else if (D->hasAttr<DLLImportAttr>())
1075     GV->setLinkage(llvm::Function::DLLImportLinkage);
1076   else if (D->hasAttr<DLLExportAttr>())
1077     GV->setLinkage(llvm::Function::DLLExportLinkage);
1078   else if (D->hasAttr<WeakAttr>()) {
1079     if (GV->isConstant())
1080       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1081     else
1082       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1083   } else if (Linkage == GVA_TemplateInstantiation)
1084     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1085   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1086            !D->hasExternalStorage() && !D->getInit() &&
1087            !D->getAttr<SectionAttr>()) {
1088     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1089     // common vars aren't constant even if declared const.
1090     GV->setConstant(false);
1091   } else
1092     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1093 
1094   SetCommonAttributes(D, GV);
1095 
1096   // Emit global variable debug information.
1097   if (CGDebugInfo *DI = getDebugInfo()) {
1098     DI->setLocation(D->getLocation());
1099     DI->EmitGlobalVariable(GV, D);
1100   }
1101 }
1102 
1103 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1104 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1105 /// existing call uses of the old function in the module, this adjusts them to
1106 /// call the new function directly.
1107 ///
1108 /// This is not just a cleanup: the always_inline pass requires direct calls to
1109 /// functions to be able to inline them.  If there is a bitcast in the way, it
1110 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1111 /// run at -O0.
1112 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1113                                                       llvm::Function *NewFn) {
1114   // If we're redefining a global as a function, don't transform it.
1115   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1116   if (OldFn == 0) return;
1117 
1118   const llvm::Type *NewRetTy = NewFn->getReturnType();
1119   llvm::SmallVector<llvm::Value*, 4> ArgList;
1120 
1121   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1122        UI != E; ) {
1123     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1124     unsigned OpNo = UI.getOperandNo();
1125     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1126     if (!CI || OpNo != 0) continue;
1127 
1128     // If the return types don't match exactly, and if the call isn't dead, then
1129     // we can't transform this call.
1130     if (CI->getType() != NewRetTy && !CI->use_empty())
1131       continue;
1132 
1133     // If the function was passed too few arguments, don't transform.  If extra
1134     // arguments were passed, we silently drop them.  If any of the types
1135     // mismatch, we don't transform.
1136     unsigned ArgNo = 0;
1137     bool DontTransform = false;
1138     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1139          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1140       if (CI->getNumOperands()-1 == ArgNo ||
1141           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1142         DontTransform = true;
1143         break;
1144       }
1145     }
1146     if (DontTransform)
1147       continue;
1148 
1149     // Okay, we can transform this.  Create the new call instruction and copy
1150     // over the required information.
1151     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1152     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1153                                                      ArgList.end(), "", CI);
1154     ArgList.clear();
1155     if (!NewCall->getType()->isVoidTy())
1156       NewCall->takeName(CI);
1157     NewCall->setAttributes(CI->getAttributes());
1158     NewCall->setCallingConv(CI->getCallingConv());
1159 
1160     // Finally, remove the old call, replacing any uses with the new one.
1161     if (!CI->use_empty())
1162       CI->replaceAllUsesWith(NewCall);
1163 
1164     // Copy any custom metadata attached with CI.
1165     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1166       NewCall->setMetadata("dbg", DbgNode);
1167     CI->eraseFromParent();
1168   }
1169 }
1170 
1171 
1172 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1173   const llvm::FunctionType *Ty;
1174   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1175 
1176   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1177     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1178 
1179     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1180   } else {
1181     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1182 
1183     // As a special case, make sure that definitions of K&R function
1184     // "type foo()" aren't declared as varargs (which forces the backend
1185     // to do unnecessary work).
1186     if (D->getType()->isFunctionNoProtoType()) {
1187       assert(Ty->isVarArg() && "Didn't lower type as expected");
1188       // Due to stret, the lowered function could have arguments.
1189       // Just create the same type as was lowered by ConvertType
1190       // but strip off the varargs bit.
1191       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1192       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1193     }
1194   }
1195 
1196   // Get or create the prototype for the function.
1197   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1198 
1199   // Strip off a bitcast if we got one back.
1200   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1201     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1202     Entry = CE->getOperand(0);
1203   }
1204 
1205 
1206   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1207     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1208 
1209     // If the types mismatch then we have to rewrite the definition.
1210     assert(OldFn->isDeclaration() &&
1211            "Shouldn't replace non-declaration");
1212 
1213     // F is the Function* for the one with the wrong type, we must make a new
1214     // Function* and update everything that used F (a declaration) with the new
1215     // Function* (which will be a definition).
1216     //
1217     // This happens if there is a prototype for a function
1218     // (e.g. "int f()") and then a definition of a different type
1219     // (e.g. "int f(int x)").  Start by making a new function of the
1220     // correct type, RAUW, then steal the name.
1221     GlobalDeclMap.erase(getMangledName(D));
1222     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1223     NewFn->takeName(OldFn);
1224 
1225     // If this is an implementation of a function without a prototype, try to
1226     // replace any existing uses of the function (which may be calls) with uses
1227     // of the new function
1228     if (D->getType()->isFunctionNoProtoType()) {
1229       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1230       OldFn->removeDeadConstantUsers();
1231     }
1232 
1233     // Replace uses of F with the Function we will endow with a body.
1234     if (!Entry->use_empty()) {
1235       llvm::Constant *NewPtrForOldDecl =
1236         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1237       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1238     }
1239 
1240     // Ok, delete the old function now, which is dead.
1241     OldFn->eraseFromParent();
1242 
1243     Entry = NewFn;
1244   }
1245 
1246   llvm::Function *Fn = cast<llvm::Function>(Entry);
1247 
1248   CodeGenFunction(*this).GenerateCode(D, Fn);
1249 
1250   SetFunctionDefinitionAttributes(D, Fn);
1251   SetLLVMFunctionAttributesForDefinition(D, Fn);
1252 
1253   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1254     AddGlobalCtor(Fn, CA->getPriority());
1255   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1256     AddGlobalDtor(Fn, DA->getPriority());
1257 }
1258 
1259 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1260   const AliasAttr *AA = D->getAttr<AliasAttr>();
1261   assert(AA && "Not an alias?");
1262 
1263   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1264 
1265   // Unique the name through the identifier table.
1266   const char *AliaseeName = AA->getAliasee().c_str();
1267   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1268 
1269   // Create a reference to the named value.  This ensures that it is emitted
1270   // if a deferred decl.
1271   llvm::Constant *Aliasee;
1272   if (isa<llvm::FunctionType>(DeclTy))
1273     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1274   else
1275     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1276                                     llvm::PointerType::getUnqual(DeclTy), 0);
1277 
1278   // Create the new alias itself, but don't set a name yet.
1279   llvm::GlobalValue *GA =
1280     new llvm::GlobalAlias(Aliasee->getType(),
1281                           llvm::Function::ExternalLinkage,
1282                           "", Aliasee, &getModule());
1283 
1284   // See if there is already something with the alias' name in the module.
1285   const char *MangledName = getMangledName(D);
1286   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1287 
1288   if (Entry && !Entry->isDeclaration()) {
1289     // If there is a definition in the module, then it wins over the alias.
1290     // This is dubious, but allow it to be safe.  Just ignore the alias.
1291     GA->eraseFromParent();
1292     return;
1293   }
1294 
1295   if (Entry) {
1296     // If there is a declaration in the module, then we had an extern followed
1297     // by the alias, as in:
1298     //   extern int test6();
1299     //   ...
1300     //   int test6() __attribute__((alias("test7")));
1301     //
1302     // Remove it and replace uses of it with the alias.
1303 
1304     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1305                                                           Entry->getType()));
1306     Entry->eraseFromParent();
1307   }
1308 
1309   // Now we know that there is no conflict, set the name.
1310   Entry = GA;
1311   GA->setName(MangledName);
1312 
1313   // Set attributes which are particular to an alias; this is a
1314   // specialization of the attributes which may be set on a global
1315   // variable/function.
1316   if (D->hasAttr<DLLExportAttr>()) {
1317     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1318       // The dllexport attribute is ignored for undefined symbols.
1319       if (FD->getBody())
1320         GA->setLinkage(llvm::Function::DLLExportLinkage);
1321     } else {
1322       GA->setLinkage(llvm::Function::DLLExportLinkage);
1323     }
1324   } else if (D->hasAttr<WeakAttr>() ||
1325              D->hasAttr<WeakImportAttr>()) {
1326     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1327   }
1328 
1329   SetCommonAttributes(D, GA);
1330 }
1331 
1332 /// getBuiltinLibFunction - Given a builtin id for a function like
1333 /// "__builtin_fabsf", return a Function* for "fabsf".
1334 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1335                                                   unsigned BuiltinID) {
1336   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1337           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1338          "isn't a lib fn");
1339 
1340   // Get the name, skip over the __builtin_ prefix (if necessary).
1341   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1342   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1343     Name += 10;
1344 
1345   const llvm::FunctionType *Ty =
1346     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1347 
1348   // Unique the name through the identifier table.
1349   Name = getContext().Idents.get(Name).getNameStart();
1350   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1351 }
1352 
1353 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1354                                             unsigned NumTys) {
1355   return llvm::Intrinsic::getDeclaration(&getModule(),
1356                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1357 }
1358 
1359 llvm::Function *CodeGenModule::getMemCpyFn() {
1360   if (MemCpyFn) return MemCpyFn;
1361   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1362   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1363 }
1364 
1365 llvm::Function *CodeGenModule::getMemMoveFn() {
1366   if (MemMoveFn) return MemMoveFn;
1367   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1368   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1369 }
1370 
1371 llvm::Function *CodeGenModule::getMemSetFn() {
1372   if (MemSetFn) return MemSetFn;
1373   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1374   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1375 }
1376 
1377 static llvm::StringMapEntry<llvm::Constant*> &
1378 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1379                          const StringLiteral *Literal,
1380                          bool TargetIsLSB,
1381                          bool &IsUTF16,
1382                          unsigned &StringLength) {
1383   unsigned NumBytes = Literal->getByteLength();
1384 
1385   // Check for simple case.
1386   if (!Literal->containsNonAsciiOrNull()) {
1387     StringLength = NumBytes;
1388     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1389                                                 StringLength));
1390   }
1391 
1392   // Otherwise, convert the UTF8 literals into a byte string.
1393   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1394   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1395   UTF16 *ToPtr = &ToBuf[0];
1396 
1397   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1398                                                &ToPtr, ToPtr + NumBytes,
1399                                                strictConversion);
1400 
1401   // Check for conversion failure.
1402   if (Result != conversionOK) {
1403     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1404     // this duplicate code.
1405     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1406     StringLength = NumBytes;
1407     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1408                                                 StringLength));
1409   }
1410 
1411   // ConvertUTF8toUTF16 returns the length in ToPtr.
1412   StringLength = ToPtr - &ToBuf[0];
1413 
1414   // Render the UTF-16 string into a byte array and convert to the target byte
1415   // order.
1416   //
1417   // FIXME: This isn't something we should need to do here.
1418   llvm::SmallString<128> AsBytes;
1419   AsBytes.reserve(StringLength * 2);
1420   for (unsigned i = 0; i != StringLength; ++i) {
1421     unsigned short Val = ToBuf[i];
1422     if (TargetIsLSB) {
1423       AsBytes.push_back(Val & 0xFF);
1424       AsBytes.push_back(Val >> 8);
1425     } else {
1426       AsBytes.push_back(Val >> 8);
1427       AsBytes.push_back(Val & 0xFF);
1428     }
1429   }
1430   // Append one extra null character, the second is automatically added by our
1431   // caller.
1432   AsBytes.push_back(0);
1433 
1434   IsUTF16 = true;
1435   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1436 }
1437 
1438 llvm::Constant *
1439 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1440   unsigned StringLength = 0;
1441   bool isUTF16 = false;
1442   llvm::StringMapEntry<llvm::Constant*> &Entry =
1443     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1444                              getTargetData().isLittleEndian(),
1445                              isUTF16, StringLength);
1446 
1447   if (llvm::Constant *C = Entry.getValue())
1448     return C;
1449 
1450   llvm::Constant *Zero =
1451       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1452   llvm::Constant *Zeros[] = { Zero, Zero };
1453 
1454   // If we don't already have it, get __CFConstantStringClassReference.
1455   if (!CFConstantStringClassRef) {
1456     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1457     Ty = llvm::ArrayType::get(Ty, 0);
1458     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1459                                            "__CFConstantStringClassReference");
1460     // Decay array -> ptr
1461     CFConstantStringClassRef =
1462       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1463   }
1464 
1465   QualType CFTy = getContext().getCFConstantStringType();
1466 
1467   const llvm::StructType *STy =
1468     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1469 
1470   std::vector<llvm::Constant*> Fields(4);
1471 
1472   // Class pointer.
1473   Fields[0] = CFConstantStringClassRef;
1474 
1475   // Flags.
1476   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1477   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1478     llvm::ConstantInt::get(Ty, 0x07C8);
1479 
1480   // String pointer.
1481   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1482 
1483   const char *Sect = 0;
1484   llvm::GlobalValue::LinkageTypes Linkage;
1485   bool isConstant;
1486   if (isUTF16) {
1487     Sect = getContext().Target.getUnicodeStringSection();
1488     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1489     Linkage = llvm::GlobalValue::InternalLinkage;
1490     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1491     // does make plain ascii ones writable.
1492     isConstant = true;
1493   } else {
1494     Linkage = llvm::GlobalValue::PrivateLinkage;
1495     isConstant = !Features.WritableStrings;
1496   }
1497 
1498   llvm::GlobalVariable *GV =
1499     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1500                              ".str");
1501   if (Sect)
1502     GV->setSection(Sect);
1503   if (isUTF16) {
1504     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1505     GV->setAlignment(Align.getQuantity());
1506   }
1507   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1508 
1509   // String length.
1510   Ty = getTypes().ConvertType(getContext().LongTy);
1511   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1512 
1513   // The struct.
1514   C = llvm::ConstantStruct::get(STy, Fields);
1515   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1516                                 llvm::GlobalVariable::PrivateLinkage, C,
1517                                 "_unnamed_cfstring_");
1518   if (const char *Sect = getContext().Target.getCFStringSection())
1519     GV->setSection(Sect);
1520   Entry.setValue(GV);
1521 
1522   return GV;
1523 }
1524 
1525 /// GetStringForStringLiteral - Return the appropriate bytes for a
1526 /// string literal, properly padded to match the literal type.
1527 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1528   const char *StrData = E->getStrData();
1529   unsigned Len = E->getByteLength();
1530 
1531   const ConstantArrayType *CAT =
1532     getContext().getAsConstantArrayType(E->getType());
1533   assert(CAT && "String isn't pointer or array!");
1534 
1535   // Resize the string to the right size.
1536   std::string Str(StrData, StrData+Len);
1537   uint64_t RealLen = CAT->getSize().getZExtValue();
1538 
1539   if (E->isWide())
1540     RealLen *= getContext().Target.getWCharWidth()/8;
1541 
1542   Str.resize(RealLen, '\0');
1543 
1544   return Str;
1545 }
1546 
1547 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1548 /// constant array for the given string literal.
1549 llvm::Constant *
1550 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1551   // FIXME: This can be more efficient.
1552   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1553   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1554   if (S->isWide()) {
1555     llvm::Type *DestTy =
1556         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1557     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1558   }
1559   return C;
1560 }
1561 
1562 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1563 /// array for the given ObjCEncodeExpr node.
1564 llvm::Constant *
1565 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1566   std::string Str;
1567   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1568 
1569   return GetAddrOfConstantCString(Str);
1570 }
1571 
1572 
1573 /// GenerateWritableString -- Creates storage for a string literal.
1574 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1575                                              bool constant,
1576                                              CodeGenModule &CGM,
1577                                              const char *GlobalName) {
1578   // Create Constant for this string literal. Don't add a '\0'.
1579   llvm::Constant *C =
1580       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1581 
1582   // Create a global variable for this string
1583   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1584                                   llvm::GlobalValue::PrivateLinkage,
1585                                   C, GlobalName);
1586 }
1587 
1588 /// GetAddrOfConstantString - Returns a pointer to a character array
1589 /// containing the literal. This contents are exactly that of the
1590 /// given string, i.e. it will not be null terminated automatically;
1591 /// see GetAddrOfConstantCString. Note that whether the result is
1592 /// actually a pointer to an LLVM constant depends on
1593 /// Feature.WriteableStrings.
1594 ///
1595 /// The result has pointer to array type.
1596 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1597                                                        const char *GlobalName) {
1598   bool IsConstant = !Features.WritableStrings;
1599 
1600   // Get the default prefix if a name wasn't specified.
1601   if (!GlobalName)
1602     GlobalName = ".str";
1603 
1604   // Don't share any string literals if strings aren't constant.
1605   if (!IsConstant)
1606     return GenerateStringLiteral(str, false, *this, GlobalName);
1607 
1608   llvm::StringMapEntry<llvm::Constant *> &Entry =
1609     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1610 
1611   if (Entry.getValue())
1612     return Entry.getValue();
1613 
1614   // Create a global variable for this.
1615   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1616   Entry.setValue(C);
1617   return C;
1618 }
1619 
1620 /// GetAddrOfConstantCString - Returns a pointer to a character
1621 /// array containing the literal and a terminating '\-'
1622 /// character. The result has pointer to array type.
1623 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1624                                                         const char *GlobalName){
1625   return GetAddrOfConstantString(str + '\0', GlobalName);
1626 }
1627 
1628 /// EmitObjCPropertyImplementations - Emit information for synthesized
1629 /// properties for an implementation.
1630 void CodeGenModule::EmitObjCPropertyImplementations(const
1631                                                     ObjCImplementationDecl *D) {
1632   for (ObjCImplementationDecl::propimpl_iterator
1633          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1634     ObjCPropertyImplDecl *PID = *i;
1635 
1636     // Dynamic is just for type-checking.
1637     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1638       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1639 
1640       // Determine which methods need to be implemented, some may have
1641       // been overridden. Note that ::isSynthesized is not the method
1642       // we want, that just indicates if the decl came from a
1643       // property. What we want to know is if the method is defined in
1644       // this implementation.
1645       if (!D->getInstanceMethod(PD->getGetterName()))
1646         CodeGenFunction(*this).GenerateObjCGetter(
1647                                  const_cast<ObjCImplementationDecl *>(D), PID);
1648       if (!PD->isReadOnly() &&
1649           !D->getInstanceMethod(PD->getSetterName()))
1650         CodeGenFunction(*this).GenerateObjCSetter(
1651                                  const_cast<ObjCImplementationDecl *>(D), PID);
1652     }
1653   }
1654 }
1655 
1656 /// EmitNamespace - Emit all declarations in a namespace.
1657 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1658   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1659        I != E; ++I)
1660     EmitTopLevelDecl(*I);
1661 }
1662 
1663 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1664 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1665   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1666       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1667     ErrorUnsupported(LSD, "linkage spec");
1668     return;
1669   }
1670 
1671   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1672        I != E; ++I)
1673     EmitTopLevelDecl(*I);
1674 }
1675 
1676 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1677 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1678   // If an error has occurred, stop code generation, but continue
1679   // parsing and semantic analysis (to ensure all warnings and errors
1680   // are emitted).
1681   if (Diags.hasErrorOccurred())
1682     return;
1683 
1684   // Ignore dependent declarations.
1685   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1686     return;
1687 
1688   switch (D->getKind()) {
1689   case Decl::CXXConversion:
1690   case Decl::CXXMethod:
1691   case Decl::Function:
1692     // Skip function templates
1693     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1694       return;
1695 
1696     EmitGlobal(cast<FunctionDecl>(D));
1697     break;
1698 
1699   case Decl::Var:
1700     EmitGlobal(cast<VarDecl>(D));
1701     break;
1702 
1703   // C++ Decls
1704   case Decl::Namespace:
1705     EmitNamespace(cast<NamespaceDecl>(D));
1706     break;
1707     // No code generation needed.
1708   case Decl::UsingShadow:
1709   case Decl::Using:
1710   case Decl::UsingDirective:
1711   case Decl::ClassTemplate:
1712   case Decl::FunctionTemplate:
1713   case Decl::NamespaceAlias:
1714     break;
1715   case Decl::CXXConstructor:
1716     // Skip function templates
1717     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1718       return;
1719 
1720     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1721     break;
1722   case Decl::CXXDestructor:
1723     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1724     break;
1725 
1726   case Decl::StaticAssert:
1727     // Nothing to do.
1728     break;
1729 
1730   // Objective-C Decls
1731 
1732   // Forward declarations, no (immediate) code generation.
1733   case Decl::ObjCClass:
1734   case Decl::ObjCForwardProtocol:
1735   case Decl::ObjCCategory:
1736   case Decl::ObjCInterface:
1737     break;
1738 
1739   case Decl::ObjCProtocol:
1740     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1741     break;
1742 
1743   case Decl::ObjCCategoryImpl:
1744     // Categories have properties but don't support synthesize so we
1745     // can ignore them here.
1746     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1747     break;
1748 
1749   case Decl::ObjCImplementation: {
1750     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1751     EmitObjCPropertyImplementations(OMD);
1752     Runtime->GenerateClass(OMD);
1753     break;
1754   }
1755   case Decl::ObjCMethod: {
1756     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1757     // If this is not a prototype, emit the body.
1758     if (OMD->getBody())
1759       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1760     break;
1761   }
1762   case Decl::ObjCCompatibleAlias:
1763     // compatibility-alias is a directive and has no code gen.
1764     break;
1765 
1766   case Decl::LinkageSpec:
1767     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1768     break;
1769 
1770   case Decl::FileScopeAsm: {
1771     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1772     llvm::StringRef AsmString = AD->getAsmString()->getString();
1773 
1774     const std::string &S = getModule().getModuleInlineAsm();
1775     if (S.empty())
1776       getModule().setModuleInlineAsm(AsmString);
1777     else
1778       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1779     break;
1780   }
1781 
1782   default:
1783     // Make sure we handled everything we should, every other kind is a
1784     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1785     // function. Need to recode Decl::Kind to do that easily.
1786     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1787   }
1788 }
1789