xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a03ae73c2932c1795830bfbf6e6b8e87baf8aa3a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(
422         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
423         llvm::ProfileSummary::PSK_Instr);
424     if (PGOStats.hasDiagnostics())
425       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
426   }
427   EmitCtorList(GlobalCtors, "llvm.global_ctors");
428   EmitCtorList(GlobalDtors, "llvm.global_dtors");
429   EmitGlobalAnnotations();
430   EmitStaticExternCAliases();
431   EmitDeferredUnusedCoverageMappings();
432   if (CoverageMapping)
433     CoverageMapping->emit();
434   if (CodeGenOpts.SanitizeCfiCrossDso) {
435     CodeGenFunction(*this).EmitCfiCheckFail();
436     CodeGenFunction(*this).EmitCfiCheckStub();
437   }
438   emitAtAvailableLinkGuard();
439   emitLLVMUsed();
440   if (SanStats)
441     SanStats->finish();
442 
443   if (CodeGenOpts.Autolink &&
444       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
445     EmitModuleLinkOptions();
446   }
447 
448   // Record mregparm value now so it is visible through rest of codegen.
449   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
450     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
451                               CodeGenOpts.NumRegisterParameters);
452 
453   if (CodeGenOpts.DwarfVersion) {
454     // We actually want the latest version when there are conflicts.
455     // We can change from Warning to Latest if such mode is supported.
456     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
457                               CodeGenOpts.DwarfVersion);
458   }
459   if (CodeGenOpts.EmitCodeView) {
460     // Indicate that we want CodeView in the metadata.
461     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
462   }
463   if (CodeGenOpts.CodeViewGHash) {
464     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
465   }
466   if (CodeGenOpts.ControlFlowGuard) {
467     // We want function ID tables for Control Flow Guard.
468     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
469   }
470   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
471     // We don't support LTO with 2 with different StrictVTablePointers
472     // FIXME: we could support it by stripping all the information introduced
473     // by StrictVTablePointers.
474 
475     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
476 
477     llvm::Metadata *Ops[2] = {
478               llvm::MDString::get(VMContext, "StrictVTablePointers"),
479               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
480                   llvm::Type::getInt32Ty(VMContext), 1))};
481 
482     getModule().addModuleFlag(llvm::Module::Require,
483                               "StrictVTablePointersRequirement",
484                               llvm::MDNode::get(VMContext, Ops));
485   }
486   if (DebugInfo)
487     // We support a single version in the linked module. The LLVM
488     // parser will drop debug info with a different version number
489     // (and warn about it, too).
490     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
491                               llvm::DEBUG_METADATA_VERSION);
492 
493   // We need to record the widths of enums and wchar_t, so that we can generate
494   // the correct build attributes in the ARM backend. wchar_size is also used by
495   // TargetLibraryInfo.
496   uint64_t WCharWidth =
497       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
498   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
499 
500   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
501   if (   Arch == llvm::Triple::arm
502       || Arch == llvm::Triple::armeb
503       || Arch == llvm::Triple::thumb
504       || Arch == llvm::Triple::thumbeb) {
505     // The minimum width of an enum in bytes
506     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
507     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
508   }
509 
510   if (CodeGenOpts.SanitizeCfiCrossDso) {
511     // Indicate that we want cross-DSO control flow integrity checks.
512     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
513   }
514 
515   if (CodeGenOpts.CFProtectionReturn &&
516       Target.checkCFProtectionReturnSupported(getDiags())) {
517     // Indicate that we want to instrument return control flow protection.
518     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
519                               1);
520   }
521 
522   if (CodeGenOpts.CFProtectionBranch &&
523       Target.checkCFProtectionBranchSupported(getDiags())) {
524     // Indicate that we want to instrument branch control flow protection.
525     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
526                               1);
527   }
528 
529   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
530     // Indicate whether __nvvm_reflect should be configured to flush denormal
531     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
532     // property.)
533     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
534                               CodeGenOpts.FlushDenorm ? 1 : 0);
535   }
536 
537   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
538   if (LangOpts.OpenCL) {
539     EmitOpenCLMetadata();
540     // Emit SPIR version.
541     if (getTriple().getArch() == llvm::Triple::spir ||
542         getTriple().getArch() == llvm::Triple::spir64) {
543       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
544       // opencl.spir.version named metadata.
545       llvm::Metadata *SPIRVerElts[] = {
546           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
547               Int32Ty, LangOpts.OpenCLVersion / 100)),
548           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
549               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
550       llvm::NamedMDNode *SPIRVerMD =
551           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
552       llvm::LLVMContext &Ctx = TheModule.getContext();
553       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
554     }
555   }
556 
557   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
558     assert(PLevel < 3 && "Invalid PIC Level");
559     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
560     if (Context.getLangOpts().PIE)
561       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
562   }
563 
564   if (getCodeGenOpts().CodeModel.size() > 0) {
565     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
566                   .Case("tiny", llvm::CodeModel::Tiny)
567                   .Case("small", llvm::CodeModel::Small)
568                   .Case("kernel", llvm::CodeModel::Kernel)
569                   .Case("medium", llvm::CodeModel::Medium)
570                   .Case("large", llvm::CodeModel::Large)
571                   .Default(~0u);
572     if (CM != ~0u) {
573       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
574       getModule().setCodeModel(codeModel);
575     }
576   }
577 
578   if (CodeGenOpts.NoPLT)
579     getModule().setRtLibUseGOT();
580 
581   SimplifyPersonality();
582 
583   if (getCodeGenOpts().EmitDeclMetadata)
584     EmitDeclMetadata();
585 
586   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
587     EmitCoverageFile();
588 
589   if (DebugInfo)
590     DebugInfo->finalize();
591 
592   if (getCodeGenOpts().EmitVersionIdentMetadata)
593     EmitVersionIdentMetadata();
594 
595   if (!getCodeGenOpts().RecordCommandLine.empty())
596     EmitCommandLineMetadata();
597 
598   EmitTargetMetadata();
599 }
600 
601 void CodeGenModule::EmitOpenCLMetadata() {
602   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
603   // opencl.ocl.version named metadata node.
604   llvm::Metadata *OCLVerElts[] = {
605       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606           Int32Ty, LangOpts.OpenCLVersion / 100)),
607       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
608           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
609   llvm::NamedMDNode *OCLVerMD =
610       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
611   llvm::LLVMContext &Ctx = TheModule.getContext();
612   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
613 }
614 
615 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
616   // Make sure that this type is translated.
617   Types.UpdateCompletedType(TD);
618 }
619 
620 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
621   // Make sure that this type is translated.
622   Types.RefreshTypeCacheForClass(RD);
623 }
624 
625 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
626   if (!TBAA)
627     return nullptr;
628   return TBAA->getTypeInfo(QTy);
629 }
630 
631 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
632   if (!TBAA)
633     return TBAAAccessInfo();
634   return TBAA->getAccessInfo(AccessType);
635 }
636 
637 TBAAAccessInfo
638 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
639   if (!TBAA)
640     return TBAAAccessInfo();
641   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
642 }
643 
644 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
645   if (!TBAA)
646     return nullptr;
647   return TBAA->getTBAAStructInfo(QTy);
648 }
649 
650 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
651   if (!TBAA)
652     return nullptr;
653   return TBAA->getBaseTypeInfo(QTy);
654 }
655 
656 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
657   if (!TBAA)
658     return nullptr;
659   return TBAA->getAccessTagInfo(Info);
660 }
661 
662 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
663                                                    TBAAAccessInfo TargetInfo) {
664   if (!TBAA)
665     return TBAAAccessInfo();
666   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
667 }
668 
669 TBAAAccessInfo
670 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
671                                                    TBAAAccessInfo InfoB) {
672   if (!TBAA)
673     return TBAAAccessInfo();
674   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
675 }
676 
677 TBAAAccessInfo
678 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
679                                               TBAAAccessInfo SrcInfo) {
680   if (!TBAA)
681     return TBAAAccessInfo();
682   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
683 }
684 
685 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
686                                                 TBAAAccessInfo TBAAInfo) {
687   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
688     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
689 }
690 
691 void CodeGenModule::DecorateInstructionWithInvariantGroup(
692     llvm::Instruction *I, const CXXRecordDecl *RD) {
693   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
694                  llvm::MDNode::get(getLLVMContext(), {}));
695 }
696 
697 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
698   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
699   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
700 }
701 
702 /// ErrorUnsupported - Print out an error that codegen doesn't support the
703 /// specified stmt yet.
704 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
705   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
706                                                "cannot compile this %0 yet");
707   std::string Msg = Type;
708   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
709       << Msg << S->getSourceRange();
710 }
711 
712 /// ErrorUnsupported - Print out an error that codegen doesn't support the
713 /// specified decl yet.
714 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
715   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
716                                                "cannot compile this %0 yet");
717   std::string Msg = Type;
718   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
719 }
720 
721 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
722   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
723 }
724 
725 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
726                                         const NamedDecl *D) const {
727   if (GV->hasDLLImportStorageClass())
728     return;
729   // Internal definitions always have default visibility.
730   if (GV->hasLocalLinkage()) {
731     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
732     return;
733   }
734   if (!D)
735     return;
736   // Set visibility for definitions, and for declarations if requested globally
737   // or set explicitly.
738   LinkageInfo LV = D->getLinkageAndVisibility();
739   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
740       !GV->isDeclarationForLinker())
741     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
742 }
743 
744 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
745                                  llvm::GlobalValue *GV) {
746   if (GV->hasLocalLinkage())
747     return true;
748 
749   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
750     return true;
751 
752   // DLLImport explicitly marks the GV as external.
753   if (GV->hasDLLImportStorageClass())
754     return false;
755 
756   const llvm::Triple &TT = CGM.getTriple();
757   if (TT.isWindowsGNUEnvironment()) {
758     // In MinGW, variables without DLLImport can still be automatically
759     // imported from a DLL by the linker; don't mark variables that
760     // potentially could come from another DLL as DSO local.
761     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
762         !GV->isThreadLocal())
763       return false;
764   }
765   // Every other GV is local on COFF.
766   // Make an exception for windows OS in the triple: Some firmware builds use
767   // *-win32-macho triples. This (accidentally?) produced windows relocations
768   // without GOT tables in older clang versions; Keep this behaviour.
769   // FIXME: even thread local variables?
770   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
771     return true;
772 
773   // Only handle COFF and ELF for now.
774   if (!TT.isOSBinFormatELF())
775     return false;
776 
777   // If this is not an executable, don't assume anything is local.
778   const auto &CGOpts = CGM.getCodeGenOpts();
779   llvm::Reloc::Model RM = CGOpts.RelocationModel;
780   const auto &LOpts = CGM.getLangOpts();
781   if (RM != llvm::Reloc::Static && !LOpts.PIE)
782     return false;
783 
784   // A definition cannot be preempted from an executable.
785   if (!GV->isDeclarationForLinker())
786     return true;
787 
788   // Most PIC code sequences that assume that a symbol is local cannot produce a
789   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
790   // depended, it seems worth it to handle it here.
791   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
792     return false;
793 
794   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
795   llvm::Triple::ArchType Arch = TT.getArch();
796   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
797       Arch == llvm::Triple::ppc64le)
798     return false;
799 
800   // If we can use copy relocations we can assume it is local.
801   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
802     if (!Var->isThreadLocal() &&
803         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
804       return true;
805 
806   // If we can use a plt entry as the symbol address we can assume it
807   // is local.
808   // FIXME: This should work for PIE, but the gold linker doesn't support it.
809   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
810     return true;
811 
812   // Otherwise don't assue it is local.
813   return false;
814 }
815 
816 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
817   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
818 }
819 
820 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
821                                           GlobalDecl GD) const {
822   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
823   // C++ destructors have a few C++ ABI specific special cases.
824   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
825     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
826     return;
827   }
828   setDLLImportDLLExport(GV, D);
829 }
830 
831 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
832                                           const NamedDecl *D) const {
833   if (D && D->isExternallyVisible()) {
834     if (D->hasAttr<DLLImportAttr>())
835       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
836     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
837       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
838   }
839 }
840 
841 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
842                                     GlobalDecl GD) const {
843   setDLLImportDLLExport(GV, GD);
844   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
845 }
846 
847 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
848                                     const NamedDecl *D) const {
849   setDLLImportDLLExport(GV, D);
850   setGlobalVisibilityAndLocal(GV, D);
851 }
852 
853 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
854                                                 const NamedDecl *D) const {
855   setGlobalVisibility(GV, D);
856   setDSOLocal(GV);
857 }
858 
859 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
860   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
861       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
862       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
863       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
864       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
865 }
866 
867 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
868     CodeGenOptions::TLSModel M) {
869   switch (M) {
870   case CodeGenOptions::GeneralDynamicTLSModel:
871     return llvm::GlobalVariable::GeneralDynamicTLSModel;
872   case CodeGenOptions::LocalDynamicTLSModel:
873     return llvm::GlobalVariable::LocalDynamicTLSModel;
874   case CodeGenOptions::InitialExecTLSModel:
875     return llvm::GlobalVariable::InitialExecTLSModel;
876   case CodeGenOptions::LocalExecTLSModel:
877     return llvm::GlobalVariable::LocalExecTLSModel;
878   }
879   llvm_unreachable("Invalid TLS model!");
880 }
881 
882 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
883   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
884 
885   llvm::GlobalValue::ThreadLocalMode TLM;
886   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
887 
888   // Override the TLS model if it is explicitly specified.
889   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
890     TLM = GetLLVMTLSModel(Attr->getModel());
891   }
892 
893   GV->setThreadLocalMode(TLM);
894 }
895 
896 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
897                                           StringRef Name) {
898   const TargetInfo &Target = CGM.getTarget();
899   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
900 }
901 
902 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
903                                                  const CPUSpecificAttr *Attr,
904                                                  unsigned CPUIndex,
905                                                  raw_ostream &Out) {
906   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
907   // supported.
908   if (Attr)
909     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
910   else if (CGM.getTarget().supportsIFunc())
911     Out << ".resolver";
912 }
913 
914 static void AppendTargetMangling(const CodeGenModule &CGM,
915                                  const TargetAttr *Attr, raw_ostream &Out) {
916   if (Attr->isDefaultVersion())
917     return;
918 
919   Out << '.';
920   const TargetInfo &Target = CGM.getTarget();
921   TargetAttr::ParsedTargetAttr Info =
922       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
923         // Multiversioning doesn't allow "no-${feature}", so we can
924         // only have "+" prefixes here.
925         assert(LHS.startswith("+") && RHS.startswith("+") &&
926                "Features should always have a prefix.");
927         return Target.multiVersionSortPriority(LHS.substr(1)) >
928                Target.multiVersionSortPriority(RHS.substr(1));
929       });
930 
931   bool IsFirst = true;
932 
933   if (!Info.Architecture.empty()) {
934     IsFirst = false;
935     Out << "arch_" << Info.Architecture;
936   }
937 
938   for (StringRef Feat : Info.Features) {
939     if (!IsFirst)
940       Out << '_';
941     IsFirst = false;
942     Out << Feat.substr(1);
943   }
944 }
945 
946 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
947                                       const NamedDecl *ND,
948                                       bool OmitMultiVersionMangling = false) {
949   SmallString<256> Buffer;
950   llvm::raw_svector_ostream Out(Buffer);
951   MangleContext &MC = CGM.getCXXABI().getMangleContext();
952   if (MC.shouldMangleDeclName(ND)) {
953     llvm::raw_svector_ostream Out(Buffer);
954     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
955       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
956     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
957       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
958     else
959       MC.mangleName(ND, Out);
960   } else {
961     IdentifierInfo *II = ND->getIdentifier();
962     assert(II && "Attempt to mangle unnamed decl.");
963     const auto *FD = dyn_cast<FunctionDecl>(ND);
964 
965     if (FD &&
966         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
967       llvm::raw_svector_ostream Out(Buffer);
968       Out << "__regcall3__" << II->getName();
969     } else {
970       Out << II->getName();
971     }
972   }
973 
974   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
975     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
976       switch (FD->getMultiVersionKind()) {
977       case MultiVersionKind::CPUDispatch:
978       case MultiVersionKind::CPUSpecific:
979         AppendCPUSpecificCPUDispatchMangling(CGM,
980                                              FD->getAttr<CPUSpecificAttr>(),
981                                              GD.getMultiVersionIndex(), Out);
982         break;
983       case MultiVersionKind::Target:
984         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
985         break;
986       case MultiVersionKind::None:
987         llvm_unreachable("None multiversion type isn't valid here");
988       }
989     }
990 
991   return Out.str();
992 }
993 
994 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
995                                             const FunctionDecl *FD) {
996   if (!FD->isMultiVersion())
997     return;
998 
999   // Get the name of what this would be without the 'target' attribute.  This
1000   // allows us to lookup the version that was emitted when this wasn't a
1001   // multiversion function.
1002   std::string NonTargetName =
1003       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1004   GlobalDecl OtherGD;
1005   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1006     assert(OtherGD.getCanonicalDecl()
1007                .getDecl()
1008                ->getAsFunction()
1009                ->isMultiVersion() &&
1010            "Other GD should now be a multiversioned function");
1011     // OtherFD is the version of this function that was mangled BEFORE
1012     // becoming a MultiVersion function.  It potentially needs to be updated.
1013     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1014                                       .getDecl()
1015                                       ->getAsFunction()
1016                                       ->getMostRecentDecl();
1017     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1018     // This is so that if the initial version was already the 'default'
1019     // version, we don't try to update it.
1020     if (OtherName != NonTargetName) {
1021       // Remove instead of erase, since others may have stored the StringRef
1022       // to this.
1023       const auto ExistingRecord = Manglings.find(NonTargetName);
1024       if (ExistingRecord != std::end(Manglings))
1025         Manglings.remove(&(*ExistingRecord));
1026       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1027       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1028       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1029         Entry->setName(OtherName);
1030     }
1031   }
1032 }
1033 
1034 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1035   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1036 
1037   // Some ABIs don't have constructor variants.  Make sure that base and
1038   // complete constructors get mangled the same.
1039   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1040     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1041       CXXCtorType OrigCtorType = GD.getCtorType();
1042       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1043       if (OrigCtorType == Ctor_Base)
1044         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1045     }
1046   }
1047 
1048   auto FoundName = MangledDeclNames.find(CanonicalGD);
1049   if (FoundName != MangledDeclNames.end())
1050     return FoundName->second;
1051 
1052   // Keep the first result in the case of a mangling collision.
1053   const auto *ND = cast<NamedDecl>(GD.getDecl());
1054   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1055 
1056   // Postfix kernel stub names with .stub to differentiate them from kernel
1057   // names in device binaries. This is to facilitate the debugger to find
1058   // the correct symbols for kernels in the device binary.
1059   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1060     if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice &&
1061         FD->hasAttr<CUDAGlobalAttr>())
1062       MangledName = MangledName + ".stub";
1063 
1064   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1065   return MangledDeclNames[CanonicalGD] = Result.first->first();
1066 }
1067 
1068 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1069                                              const BlockDecl *BD) {
1070   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1071   const Decl *D = GD.getDecl();
1072 
1073   SmallString<256> Buffer;
1074   llvm::raw_svector_ostream Out(Buffer);
1075   if (!D)
1076     MangleCtx.mangleGlobalBlock(BD,
1077       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1078   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1079     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1080   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1081     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1082   else
1083     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1084 
1085   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1086   return Result.first->first();
1087 }
1088 
1089 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1090   return getModule().getNamedValue(Name);
1091 }
1092 
1093 /// AddGlobalCtor - Add a function to the list that will be called before
1094 /// main() runs.
1095 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1096                                   llvm::Constant *AssociatedData) {
1097   // FIXME: Type coercion of void()* types.
1098   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1099 }
1100 
1101 /// AddGlobalDtor - Add a function to the list that will be called
1102 /// when the module is unloaded.
1103 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1104   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1105     DtorsUsingAtExit[Priority].push_back(Dtor);
1106     return;
1107   }
1108 
1109   // FIXME: Type coercion of void()* types.
1110   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1111 }
1112 
1113 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1114   if (Fns.empty()) return;
1115 
1116   // Ctor function type is void()*.
1117   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1118   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1119       TheModule.getDataLayout().getProgramAddressSpace());
1120 
1121   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1122   llvm::StructType *CtorStructTy = llvm::StructType::get(
1123       Int32Ty, CtorPFTy, VoidPtrTy);
1124 
1125   // Construct the constructor and destructor arrays.
1126   ConstantInitBuilder builder(*this);
1127   auto ctors = builder.beginArray(CtorStructTy);
1128   for (const auto &I : Fns) {
1129     auto ctor = ctors.beginStruct(CtorStructTy);
1130     ctor.addInt(Int32Ty, I.Priority);
1131     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1132     if (I.AssociatedData)
1133       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1134     else
1135       ctor.addNullPointer(VoidPtrTy);
1136     ctor.finishAndAddTo(ctors);
1137   }
1138 
1139   auto list =
1140     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1141                                 /*constant*/ false,
1142                                 llvm::GlobalValue::AppendingLinkage);
1143 
1144   // The LTO linker doesn't seem to like it when we set an alignment
1145   // on appending variables.  Take it off as a workaround.
1146   list->setAlignment(0);
1147 
1148   Fns.clear();
1149 }
1150 
1151 llvm::GlobalValue::LinkageTypes
1152 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1153   const auto *D = cast<FunctionDecl>(GD.getDecl());
1154 
1155   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1156 
1157   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1158     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1159 
1160   if (isa<CXXConstructorDecl>(D) &&
1161       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1162       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1163     // Our approach to inheriting constructors is fundamentally different from
1164     // that used by the MS ABI, so keep our inheriting constructor thunks
1165     // internal rather than trying to pick an unambiguous mangling for them.
1166     return llvm::GlobalValue::InternalLinkage;
1167   }
1168 
1169   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1170 }
1171 
1172 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1173   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1174   if (!MDS) return nullptr;
1175 
1176   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1177 }
1178 
1179 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1180                                               const CGFunctionInfo &Info,
1181                                               llvm::Function *F) {
1182   unsigned CallingConv;
1183   llvm::AttributeList PAL;
1184   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1185   F->setAttributes(PAL);
1186   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1187 }
1188 
1189 /// Determines whether the language options require us to model
1190 /// unwind exceptions.  We treat -fexceptions as mandating this
1191 /// except under the fragile ObjC ABI with only ObjC exceptions
1192 /// enabled.  This means, for example, that C with -fexceptions
1193 /// enables this.
1194 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1195   // If exceptions are completely disabled, obviously this is false.
1196   if (!LangOpts.Exceptions) return false;
1197 
1198   // If C++ exceptions are enabled, this is true.
1199   if (LangOpts.CXXExceptions) return true;
1200 
1201   // If ObjC exceptions are enabled, this depends on the ABI.
1202   if (LangOpts.ObjCExceptions) {
1203     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1204   }
1205 
1206   return true;
1207 }
1208 
1209 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1210                                                       const CXXMethodDecl *MD) {
1211   // Check that the type metadata can ever actually be used by a call.
1212   if (!CGM.getCodeGenOpts().LTOUnit ||
1213       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1214     return false;
1215 
1216   // Only functions whose address can be taken with a member function pointer
1217   // need this sort of type metadata.
1218   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1219          !isa<CXXDestructorDecl>(MD);
1220 }
1221 
1222 std::vector<const CXXRecordDecl *>
1223 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1224   llvm::SetVector<const CXXRecordDecl *> MostBases;
1225 
1226   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1227   CollectMostBases = [&](const CXXRecordDecl *RD) {
1228     if (RD->getNumBases() == 0)
1229       MostBases.insert(RD);
1230     for (const CXXBaseSpecifier &B : RD->bases())
1231       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1232   };
1233   CollectMostBases(RD);
1234   return MostBases.takeVector();
1235 }
1236 
1237 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1238                                                            llvm::Function *F) {
1239   llvm::AttrBuilder B;
1240 
1241   if (CodeGenOpts.UnwindTables)
1242     B.addAttribute(llvm::Attribute::UWTable);
1243 
1244   if (!hasUnwindExceptions(LangOpts))
1245     B.addAttribute(llvm::Attribute::NoUnwind);
1246 
1247   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1248     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1249       B.addAttribute(llvm::Attribute::StackProtect);
1250     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1251       B.addAttribute(llvm::Attribute::StackProtectStrong);
1252     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1253       B.addAttribute(llvm::Attribute::StackProtectReq);
1254   }
1255 
1256   if (!D) {
1257     // If we don't have a declaration to control inlining, the function isn't
1258     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1259     // disabled, mark the function as noinline.
1260     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1261         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1262       B.addAttribute(llvm::Attribute::NoInline);
1263 
1264     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1265     return;
1266   }
1267 
1268   // Track whether we need to add the optnone LLVM attribute,
1269   // starting with the default for this optimization level.
1270   bool ShouldAddOptNone =
1271       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1272   // We can't add optnone in the following cases, it won't pass the verifier.
1273   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1274   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1275   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1276 
1277   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1278     B.addAttribute(llvm::Attribute::OptimizeNone);
1279 
1280     // OptimizeNone implies noinline; we should not be inlining such functions.
1281     B.addAttribute(llvm::Attribute::NoInline);
1282     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1283            "OptimizeNone and AlwaysInline on same function!");
1284 
1285     // We still need to handle naked functions even though optnone subsumes
1286     // much of their semantics.
1287     if (D->hasAttr<NakedAttr>())
1288       B.addAttribute(llvm::Attribute::Naked);
1289 
1290     // OptimizeNone wins over OptimizeForSize and MinSize.
1291     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1292     F->removeFnAttr(llvm::Attribute::MinSize);
1293   } else if (D->hasAttr<NakedAttr>()) {
1294     // Naked implies noinline: we should not be inlining such functions.
1295     B.addAttribute(llvm::Attribute::Naked);
1296     B.addAttribute(llvm::Attribute::NoInline);
1297   } else if (D->hasAttr<NoDuplicateAttr>()) {
1298     B.addAttribute(llvm::Attribute::NoDuplicate);
1299   } else if (D->hasAttr<NoInlineAttr>()) {
1300     B.addAttribute(llvm::Attribute::NoInline);
1301   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1302              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1303     // (noinline wins over always_inline, and we can't specify both in IR)
1304     B.addAttribute(llvm::Attribute::AlwaysInline);
1305   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1306     // If we're not inlining, then force everything that isn't always_inline to
1307     // carry an explicit noinline attribute.
1308     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1309       B.addAttribute(llvm::Attribute::NoInline);
1310   } else {
1311     // Otherwise, propagate the inline hint attribute and potentially use its
1312     // absence to mark things as noinline.
1313     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1314       // Search function and template pattern redeclarations for inline.
1315       auto CheckForInline = [](const FunctionDecl *FD) {
1316         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1317           return Redecl->isInlineSpecified();
1318         };
1319         if (any_of(FD->redecls(), CheckRedeclForInline))
1320           return true;
1321         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1322         if (!Pattern)
1323           return false;
1324         return any_of(Pattern->redecls(), CheckRedeclForInline);
1325       };
1326       if (CheckForInline(FD)) {
1327         B.addAttribute(llvm::Attribute::InlineHint);
1328       } else if (CodeGenOpts.getInlining() ==
1329                      CodeGenOptions::OnlyHintInlining &&
1330                  !FD->isInlined() &&
1331                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1332         B.addAttribute(llvm::Attribute::NoInline);
1333       }
1334     }
1335   }
1336 
1337   // Add other optimization related attributes if we are optimizing this
1338   // function.
1339   if (!D->hasAttr<OptimizeNoneAttr>()) {
1340     if (D->hasAttr<ColdAttr>()) {
1341       if (!ShouldAddOptNone)
1342         B.addAttribute(llvm::Attribute::OptimizeForSize);
1343       B.addAttribute(llvm::Attribute::Cold);
1344     }
1345 
1346     if (D->hasAttr<MinSizeAttr>())
1347       B.addAttribute(llvm::Attribute::MinSize);
1348   }
1349 
1350   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1351 
1352   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1353   if (alignment)
1354     F->setAlignment(alignment);
1355 
1356   if (!D->hasAttr<AlignedAttr>())
1357     if (LangOpts.FunctionAlignment)
1358       F->setAlignment(1 << LangOpts.FunctionAlignment);
1359 
1360   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1361   // reserve a bit for differentiating between virtual and non-virtual member
1362   // functions. If the current target's C++ ABI requires this and this is a
1363   // member function, set its alignment accordingly.
1364   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1365     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1366       F->setAlignment(2);
1367   }
1368 
1369   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1370   if (CodeGenOpts.SanitizeCfiCrossDso)
1371     if (auto *FD = dyn_cast<FunctionDecl>(D))
1372       CreateFunctionTypeMetadataForIcall(FD, F);
1373 
1374   // Emit type metadata on member functions for member function pointer checks.
1375   // These are only ever necessary on definitions; we're guaranteed that the
1376   // definition will be present in the LTO unit as a result of LTO visibility.
1377   auto *MD = dyn_cast<CXXMethodDecl>(D);
1378   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1379     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1380       llvm::Metadata *Id =
1381           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1382               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1383       F->addTypeMetadata(0, Id);
1384     }
1385   }
1386 }
1387 
1388 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1389   const Decl *D = GD.getDecl();
1390   if (dyn_cast_or_null<NamedDecl>(D))
1391     setGVProperties(GV, GD);
1392   else
1393     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1394 
1395   if (D && D->hasAttr<UsedAttr>())
1396     addUsedGlobal(GV);
1397 
1398   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1399     const auto *VD = cast<VarDecl>(D);
1400     if (VD->getType().isConstQualified() &&
1401         VD->getStorageDuration() == SD_Static)
1402       addUsedGlobal(GV);
1403   }
1404 }
1405 
1406 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1407                                                 llvm::AttrBuilder &Attrs) {
1408   // Add target-cpu and target-features attributes to functions. If
1409   // we have a decl for the function and it has a target attribute then
1410   // parse that and add it to the feature set.
1411   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1412   std::vector<std::string> Features;
1413   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1414   FD = FD ? FD->getMostRecentDecl() : FD;
1415   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1416   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1417   bool AddedAttr = false;
1418   if (TD || SD) {
1419     llvm::StringMap<bool> FeatureMap;
1420     getFunctionFeatureMap(FeatureMap, GD);
1421 
1422     // Produce the canonical string for this set of features.
1423     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1424       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1425 
1426     // Now add the target-cpu and target-features to the function.
1427     // While we populated the feature map above, we still need to
1428     // get and parse the target attribute so we can get the cpu for
1429     // the function.
1430     if (TD) {
1431       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1432       if (ParsedAttr.Architecture != "" &&
1433           getTarget().isValidCPUName(ParsedAttr.Architecture))
1434         TargetCPU = ParsedAttr.Architecture;
1435     }
1436   } else {
1437     // Otherwise just add the existing target cpu and target features to the
1438     // function.
1439     Features = getTarget().getTargetOpts().Features;
1440   }
1441 
1442   if (TargetCPU != "") {
1443     Attrs.addAttribute("target-cpu", TargetCPU);
1444     AddedAttr = true;
1445   }
1446   if (!Features.empty()) {
1447     llvm::sort(Features);
1448     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1449     AddedAttr = true;
1450   }
1451 
1452   return AddedAttr;
1453 }
1454 
1455 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1456                                           llvm::GlobalObject *GO) {
1457   const Decl *D = GD.getDecl();
1458   SetCommonAttributes(GD, GO);
1459 
1460   if (D) {
1461     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1462       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1463         GV->addAttribute("bss-section", SA->getName());
1464       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1465         GV->addAttribute("data-section", SA->getName());
1466       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1467         GV->addAttribute("rodata-section", SA->getName());
1468     }
1469 
1470     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1471       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1472         if (!D->getAttr<SectionAttr>())
1473           F->addFnAttr("implicit-section-name", SA->getName());
1474 
1475       llvm::AttrBuilder Attrs;
1476       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1477         // We know that GetCPUAndFeaturesAttributes will always have the
1478         // newest set, since it has the newest possible FunctionDecl, so the
1479         // new ones should replace the old.
1480         F->removeFnAttr("target-cpu");
1481         F->removeFnAttr("target-features");
1482         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1483       }
1484     }
1485 
1486     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1487       GO->setSection(CSA->getName());
1488     else if (const auto *SA = D->getAttr<SectionAttr>())
1489       GO->setSection(SA->getName());
1490   }
1491 
1492   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1493 }
1494 
1495 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1496                                                   llvm::Function *F,
1497                                                   const CGFunctionInfo &FI) {
1498   const Decl *D = GD.getDecl();
1499   SetLLVMFunctionAttributes(GD, FI, F);
1500   SetLLVMFunctionAttributesForDefinition(D, F);
1501 
1502   F->setLinkage(llvm::Function::InternalLinkage);
1503 
1504   setNonAliasAttributes(GD, F);
1505 }
1506 
1507 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1508   // Set linkage and visibility in case we never see a definition.
1509   LinkageInfo LV = ND->getLinkageAndVisibility();
1510   // Don't set internal linkage on declarations.
1511   // "extern_weak" is overloaded in LLVM; we probably should have
1512   // separate linkage types for this.
1513   if (isExternallyVisible(LV.getLinkage()) &&
1514       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1515     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1516 }
1517 
1518 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1519                                                        llvm::Function *F) {
1520   // Only if we are checking indirect calls.
1521   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1522     return;
1523 
1524   // Non-static class methods are handled via vtable or member function pointer
1525   // checks elsewhere.
1526   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1527     return;
1528 
1529   // Additionally, if building with cross-DSO support...
1530   if (CodeGenOpts.SanitizeCfiCrossDso) {
1531     // Skip available_externally functions. They won't be codegen'ed in the
1532     // current module anyway.
1533     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1534       return;
1535   }
1536 
1537   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1538   F->addTypeMetadata(0, MD);
1539   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1540 
1541   // Emit a hash-based bit set entry for cross-DSO calls.
1542   if (CodeGenOpts.SanitizeCfiCrossDso)
1543     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1544       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1545 }
1546 
1547 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1548                                           bool IsIncompleteFunction,
1549                                           bool IsThunk) {
1550 
1551   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1552     // If this is an intrinsic function, set the function's attributes
1553     // to the intrinsic's attributes.
1554     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1555     return;
1556   }
1557 
1558   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1559 
1560   if (!IsIncompleteFunction) {
1561     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1562     // Setup target-specific attributes.
1563     if (F->isDeclaration())
1564       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1565   }
1566 
1567   // Add the Returned attribute for "this", except for iOS 5 and earlier
1568   // where substantial code, including the libstdc++ dylib, was compiled with
1569   // GCC and does not actually return "this".
1570   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1571       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1572     assert(!F->arg_empty() &&
1573            F->arg_begin()->getType()
1574              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1575            "unexpected this return");
1576     F->addAttribute(1, llvm::Attribute::Returned);
1577   }
1578 
1579   // Only a few attributes are set on declarations; these may later be
1580   // overridden by a definition.
1581 
1582   setLinkageForGV(F, FD);
1583   setGVProperties(F, FD);
1584 
1585   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1586     F->setSection(CSA->getName());
1587   else if (const auto *SA = FD->getAttr<SectionAttr>())
1588      F->setSection(SA->getName());
1589 
1590   if (FD->isReplaceableGlobalAllocationFunction()) {
1591     // A replaceable global allocation function does not act like a builtin by
1592     // default, only if it is invoked by a new-expression or delete-expression.
1593     F->addAttribute(llvm::AttributeList::FunctionIndex,
1594                     llvm::Attribute::NoBuiltin);
1595 
1596     // A sane operator new returns a non-aliasing pointer.
1597     // FIXME: Also add NonNull attribute to the return value
1598     // for the non-nothrow forms?
1599     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1600     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1601         (Kind == OO_New || Kind == OO_Array_New))
1602       F->addAttribute(llvm::AttributeList::ReturnIndex,
1603                       llvm::Attribute::NoAlias);
1604   }
1605 
1606   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1607     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1608   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1609     if (MD->isVirtual())
1610       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1611 
1612   // Don't emit entries for function declarations in the cross-DSO mode. This
1613   // is handled with better precision by the receiving DSO.
1614   if (!CodeGenOpts.SanitizeCfiCrossDso)
1615     CreateFunctionTypeMetadataForIcall(FD, F);
1616 
1617   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1618     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1619 
1620   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1621     // Annotate the callback behavior as metadata:
1622     //  - The callback callee (as argument number).
1623     //  - The callback payloads (as argument numbers).
1624     llvm::LLVMContext &Ctx = F->getContext();
1625     llvm::MDBuilder MDB(Ctx);
1626 
1627     // The payload indices are all but the first one in the encoding. The first
1628     // identifies the callback callee.
1629     int CalleeIdx = *CB->encoding_begin();
1630     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1631     F->addMetadata(llvm::LLVMContext::MD_callback,
1632                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1633                                                CalleeIdx, PayloadIndices,
1634                                                /* VarArgsArePassed */ false)}));
1635   }
1636 }
1637 
1638 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1639   assert(!GV->isDeclaration() &&
1640          "Only globals with definition can force usage.");
1641   LLVMUsed.emplace_back(GV);
1642 }
1643 
1644 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1645   assert(!GV->isDeclaration() &&
1646          "Only globals with definition can force usage.");
1647   LLVMCompilerUsed.emplace_back(GV);
1648 }
1649 
1650 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1651                      std::vector<llvm::WeakTrackingVH> &List) {
1652   // Don't create llvm.used if there is no need.
1653   if (List.empty())
1654     return;
1655 
1656   // Convert List to what ConstantArray needs.
1657   SmallVector<llvm::Constant*, 8> UsedArray;
1658   UsedArray.resize(List.size());
1659   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1660     UsedArray[i] =
1661         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1662             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1663   }
1664 
1665   if (UsedArray.empty())
1666     return;
1667   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1668 
1669   auto *GV = new llvm::GlobalVariable(
1670       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1671       llvm::ConstantArray::get(ATy, UsedArray), Name);
1672 
1673   GV->setSection("llvm.metadata");
1674 }
1675 
1676 void CodeGenModule::emitLLVMUsed() {
1677   emitUsed(*this, "llvm.used", LLVMUsed);
1678   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1679 }
1680 
1681 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1682   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1683   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1684 }
1685 
1686 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1687   llvm::SmallString<32> Opt;
1688   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1689   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1690   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1691 }
1692 
1693 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1694   auto &C = getLLVMContext();
1695   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1696       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1697 }
1698 
1699 void CodeGenModule::AddDependentLib(StringRef Lib) {
1700   llvm::SmallString<24> Opt;
1701   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1702   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1703   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1704 }
1705 
1706 /// Add link options implied by the given module, including modules
1707 /// it depends on, using a postorder walk.
1708 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1709                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1710                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1711   // Import this module's parent.
1712   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1713     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1714   }
1715 
1716   // Import this module's dependencies.
1717   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1718     if (Visited.insert(Mod->Imports[I - 1]).second)
1719       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1720   }
1721 
1722   // Add linker options to link against the libraries/frameworks
1723   // described by this module.
1724   llvm::LLVMContext &Context = CGM.getLLVMContext();
1725   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1726   bool IsPS4 = CGM.getTarget().getTriple().isPS4();
1727 
1728   // For modules that use export_as for linking, use that module
1729   // name instead.
1730   if (Mod->UseExportAsModuleLinkName)
1731     return;
1732 
1733   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1734     // Link against a framework.  Frameworks are currently Darwin only, so we
1735     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1736     if (Mod->LinkLibraries[I-1].IsFramework) {
1737       llvm::Metadata *Args[2] = {
1738           llvm::MDString::get(Context, "-framework"),
1739           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1740 
1741       Metadata.push_back(llvm::MDNode::get(Context, Args));
1742       continue;
1743     }
1744 
1745     // Link against a library.
1746     if (IsELF && !IsPS4) {
1747       llvm::Metadata *Args[2] = {
1748           llvm::MDString::get(Context, "lib"),
1749           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1750       };
1751       Metadata.push_back(llvm::MDNode::get(Context, Args));
1752     } else {
1753       llvm::SmallString<24> Opt;
1754       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1755           Mod->LinkLibraries[I - 1].Library, Opt);
1756       auto *OptString = llvm::MDString::get(Context, Opt);
1757       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1758     }
1759   }
1760 }
1761 
1762 void CodeGenModule::EmitModuleLinkOptions() {
1763   // Collect the set of all of the modules we want to visit to emit link
1764   // options, which is essentially the imported modules and all of their
1765   // non-explicit child modules.
1766   llvm::SetVector<clang::Module *> LinkModules;
1767   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1768   SmallVector<clang::Module *, 16> Stack;
1769 
1770   // Seed the stack with imported modules.
1771   for (Module *M : ImportedModules) {
1772     // Do not add any link flags when an implementation TU of a module imports
1773     // a header of that same module.
1774     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1775         !getLangOpts().isCompilingModule())
1776       continue;
1777     if (Visited.insert(M).second)
1778       Stack.push_back(M);
1779   }
1780 
1781   // Find all of the modules to import, making a little effort to prune
1782   // non-leaf modules.
1783   while (!Stack.empty()) {
1784     clang::Module *Mod = Stack.pop_back_val();
1785 
1786     bool AnyChildren = false;
1787 
1788     // Visit the submodules of this module.
1789     for (const auto &SM : Mod->submodules()) {
1790       // Skip explicit children; they need to be explicitly imported to be
1791       // linked against.
1792       if (SM->IsExplicit)
1793         continue;
1794 
1795       if (Visited.insert(SM).second) {
1796         Stack.push_back(SM);
1797         AnyChildren = true;
1798       }
1799     }
1800 
1801     // We didn't find any children, so add this module to the list of
1802     // modules to link against.
1803     if (!AnyChildren) {
1804       LinkModules.insert(Mod);
1805     }
1806   }
1807 
1808   // Add link options for all of the imported modules in reverse topological
1809   // order.  We don't do anything to try to order import link flags with respect
1810   // to linker options inserted by things like #pragma comment().
1811   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1812   Visited.clear();
1813   for (Module *M : LinkModules)
1814     if (Visited.insert(M).second)
1815       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1816   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1817   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1818 
1819   // Add the linker options metadata flag.
1820   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1821   for (auto *MD : LinkerOptionsMetadata)
1822     NMD->addOperand(MD);
1823 }
1824 
1825 void CodeGenModule::EmitDeferred() {
1826   // Emit deferred declare target declarations.
1827   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1828     getOpenMPRuntime().emitDeferredTargetDecls();
1829 
1830   // Emit code for any potentially referenced deferred decls.  Since a
1831   // previously unused static decl may become used during the generation of code
1832   // for a static function, iterate until no changes are made.
1833 
1834   if (!DeferredVTables.empty()) {
1835     EmitDeferredVTables();
1836 
1837     // Emitting a vtable doesn't directly cause more vtables to
1838     // become deferred, although it can cause functions to be
1839     // emitted that then need those vtables.
1840     assert(DeferredVTables.empty());
1841   }
1842 
1843   // Stop if we're out of both deferred vtables and deferred declarations.
1844   if (DeferredDeclsToEmit.empty())
1845     return;
1846 
1847   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1848   // work, it will not interfere with this.
1849   std::vector<GlobalDecl> CurDeclsToEmit;
1850   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1851 
1852   for (GlobalDecl &D : CurDeclsToEmit) {
1853     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1854     // to get GlobalValue with exactly the type we need, not something that
1855     // might had been created for another decl with the same mangled name but
1856     // different type.
1857     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1858         GetAddrOfGlobal(D, ForDefinition));
1859 
1860     // In case of different address spaces, we may still get a cast, even with
1861     // IsForDefinition equal to true. Query mangled names table to get
1862     // GlobalValue.
1863     if (!GV)
1864       GV = GetGlobalValue(getMangledName(D));
1865 
1866     // Make sure GetGlobalValue returned non-null.
1867     assert(GV);
1868 
1869     // Check to see if we've already emitted this.  This is necessary
1870     // for a couple of reasons: first, decls can end up in the
1871     // deferred-decls queue multiple times, and second, decls can end
1872     // up with definitions in unusual ways (e.g. by an extern inline
1873     // function acquiring a strong function redefinition).  Just
1874     // ignore these cases.
1875     if (!GV->isDeclaration())
1876       continue;
1877 
1878     // Otherwise, emit the definition and move on to the next one.
1879     EmitGlobalDefinition(D, GV);
1880 
1881     // If we found out that we need to emit more decls, do that recursively.
1882     // This has the advantage that the decls are emitted in a DFS and related
1883     // ones are close together, which is convenient for testing.
1884     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1885       EmitDeferred();
1886       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1887     }
1888   }
1889 }
1890 
1891 void CodeGenModule::EmitVTablesOpportunistically() {
1892   // Try to emit external vtables as available_externally if they have emitted
1893   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1894   // is not allowed to create new references to things that need to be emitted
1895   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1896 
1897   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1898          && "Only emit opportunistic vtables with optimizations");
1899 
1900   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1901     assert(getVTables().isVTableExternal(RD) &&
1902            "This queue should only contain external vtables");
1903     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1904       VTables.GenerateClassData(RD);
1905   }
1906   OpportunisticVTables.clear();
1907 }
1908 
1909 void CodeGenModule::EmitGlobalAnnotations() {
1910   if (Annotations.empty())
1911     return;
1912 
1913   // Create a new global variable for the ConstantStruct in the Module.
1914   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1915     Annotations[0]->getType(), Annotations.size()), Annotations);
1916   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1917                                       llvm::GlobalValue::AppendingLinkage,
1918                                       Array, "llvm.global.annotations");
1919   gv->setSection(AnnotationSection);
1920 }
1921 
1922 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1923   llvm::Constant *&AStr = AnnotationStrings[Str];
1924   if (AStr)
1925     return AStr;
1926 
1927   // Not found yet, create a new global.
1928   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1929   auto *gv =
1930       new llvm::GlobalVariable(getModule(), s->getType(), true,
1931                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1932   gv->setSection(AnnotationSection);
1933   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1934   AStr = gv;
1935   return gv;
1936 }
1937 
1938 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1939   SourceManager &SM = getContext().getSourceManager();
1940   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1941   if (PLoc.isValid())
1942     return EmitAnnotationString(PLoc.getFilename());
1943   return EmitAnnotationString(SM.getBufferName(Loc));
1944 }
1945 
1946 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1947   SourceManager &SM = getContext().getSourceManager();
1948   PresumedLoc PLoc = SM.getPresumedLoc(L);
1949   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1950     SM.getExpansionLineNumber(L);
1951   return llvm::ConstantInt::get(Int32Ty, LineNo);
1952 }
1953 
1954 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1955                                                 const AnnotateAttr *AA,
1956                                                 SourceLocation L) {
1957   // Get the globals for file name, annotation, and the line number.
1958   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1959                  *UnitGV = EmitAnnotationUnit(L),
1960                  *LineNoCst = EmitAnnotationLineNo(L);
1961 
1962   // Create the ConstantStruct for the global annotation.
1963   llvm::Constant *Fields[4] = {
1964     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1965     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1966     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1967     LineNoCst
1968   };
1969   return llvm::ConstantStruct::getAnon(Fields);
1970 }
1971 
1972 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1973                                          llvm::GlobalValue *GV) {
1974   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1975   // Get the struct elements for these annotations.
1976   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1977     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1978 }
1979 
1980 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1981                                            llvm::Function *Fn,
1982                                            SourceLocation Loc) const {
1983   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1984   // Blacklist by function name.
1985   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1986     return true;
1987   // Blacklist by location.
1988   if (Loc.isValid())
1989     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1990   // If location is unknown, this may be a compiler-generated function. Assume
1991   // it's located in the main file.
1992   auto &SM = Context.getSourceManager();
1993   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1994     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1995   }
1996   return false;
1997 }
1998 
1999 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2000                                            SourceLocation Loc, QualType Ty,
2001                                            StringRef Category) const {
2002   // For now globals can be blacklisted only in ASan and KASan.
2003   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2004       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2005        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2006   if (!EnabledAsanMask)
2007     return false;
2008   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2009   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2010     return true;
2011   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2012     return true;
2013   // Check global type.
2014   if (!Ty.isNull()) {
2015     // Drill down the array types: if global variable of a fixed type is
2016     // blacklisted, we also don't instrument arrays of them.
2017     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2018       Ty = AT->getElementType();
2019     Ty = Ty.getCanonicalType().getUnqualifiedType();
2020     // We allow to blacklist only record types (classes, structs etc.)
2021     if (Ty->isRecordType()) {
2022       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2023       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2024         return true;
2025     }
2026   }
2027   return false;
2028 }
2029 
2030 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2031                                    StringRef Category) const {
2032   const auto &XRayFilter = getContext().getXRayFilter();
2033   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2034   auto Attr = ImbueAttr::NONE;
2035   if (Loc.isValid())
2036     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2037   if (Attr == ImbueAttr::NONE)
2038     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2039   switch (Attr) {
2040   case ImbueAttr::NONE:
2041     return false;
2042   case ImbueAttr::ALWAYS:
2043     Fn->addFnAttr("function-instrument", "xray-always");
2044     break;
2045   case ImbueAttr::ALWAYS_ARG1:
2046     Fn->addFnAttr("function-instrument", "xray-always");
2047     Fn->addFnAttr("xray-log-args", "1");
2048     break;
2049   case ImbueAttr::NEVER:
2050     Fn->addFnAttr("function-instrument", "xray-never");
2051     break;
2052   }
2053   return true;
2054 }
2055 
2056 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2057   // Never defer when EmitAllDecls is specified.
2058   if (LangOpts.EmitAllDecls)
2059     return true;
2060 
2061   if (CodeGenOpts.KeepStaticConsts) {
2062     const auto *VD = dyn_cast<VarDecl>(Global);
2063     if (VD && VD->getType().isConstQualified() &&
2064         VD->getStorageDuration() == SD_Static)
2065       return true;
2066   }
2067 
2068   return getContext().DeclMustBeEmitted(Global);
2069 }
2070 
2071 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2072   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2073     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2074       // Implicit template instantiations may change linkage if they are later
2075       // explicitly instantiated, so they should not be emitted eagerly.
2076       return false;
2077   if (const auto *VD = dyn_cast<VarDecl>(Global))
2078     if (Context.getInlineVariableDefinitionKind(VD) ==
2079         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2080       // A definition of an inline constexpr static data member may change
2081       // linkage later if it's redeclared outside the class.
2082       return false;
2083   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2084   // codegen for global variables, because they may be marked as threadprivate.
2085   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2086       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2087       !isTypeConstant(Global->getType(), false) &&
2088       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2089     return false;
2090 
2091   return true;
2092 }
2093 
2094 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2095     const CXXUuidofExpr* E) {
2096   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2097   // well-formed.
2098   StringRef Uuid = E->getUuidStr();
2099   std::string Name = "_GUID_" + Uuid.lower();
2100   std::replace(Name.begin(), Name.end(), '-', '_');
2101 
2102   // The UUID descriptor should be pointer aligned.
2103   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2104 
2105   // Look for an existing global.
2106   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2107     return ConstantAddress(GV, Alignment);
2108 
2109   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2110   assert(Init && "failed to initialize as constant");
2111 
2112   auto *GV = new llvm::GlobalVariable(
2113       getModule(), Init->getType(),
2114       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2115   if (supportsCOMDAT())
2116     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2117   setDSOLocal(GV);
2118   return ConstantAddress(GV, Alignment);
2119 }
2120 
2121 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2122   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2123   assert(AA && "No alias?");
2124 
2125   CharUnits Alignment = getContext().getDeclAlign(VD);
2126   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2127 
2128   // See if there is already something with the target's name in the module.
2129   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2130   if (Entry) {
2131     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2132     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2133     return ConstantAddress(Ptr, Alignment);
2134   }
2135 
2136   llvm::Constant *Aliasee;
2137   if (isa<llvm::FunctionType>(DeclTy))
2138     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2139                                       GlobalDecl(cast<FunctionDecl>(VD)),
2140                                       /*ForVTable=*/false);
2141   else
2142     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2143                                     llvm::PointerType::getUnqual(DeclTy),
2144                                     nullptr);
2145 
2146   auto *F = cast<llvm::GlobalValue>(Aliasee);
2147   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2148   WeakRefReferences.insert(F);
2149 
2150   return ConstantAddress(Aliasee, Alignment);
2151 }
2152 
2153 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2154   const auto *Global = cast<ValueDecl>(GD.getDecl());
2155 
2156   // Weak references don't produce any output by themselves.
2157   if (Global->hasAttr<WeakRefAttr>())
2158     return;
2159 
2160   // If this is an alias definition (which otherwise looks like a declaration)
2161   // emit it now.
2162   if (Global->hasAttr<AliasAttr>())
2163     return EmitAliasDefinition(GD);
2164 
2165   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2166   if (Global->hasAttr<IFuncAttr>())
2167     return emitIFuncDefinition(GD);
2168 
2169   // If this is a cpu_dispatch multiversion function, emit the resolver.
2170   if (Global->hasAttr<CPUDispatchAttr>())
2171     return emitCPUDispatchDefinition(GD);
2172 
2173   // If this is CUDA, be selective about which declarations we emit.
2174   if (LangOpts.CUDA) {
2175     if (LangOpts.CUDAIsDevice) {
2176       if (!Global->hasAttr<CUDADeviceAttr>() &&
2177           !Global->hasAttr<CUDAGlobalAttr>() &&
2178           !Global->hasAttr<CUDAConstantAttr>() &&
2179           !Global->hasAttr<CUDASharedAttr>())
2180         return;
2181     } else {
2182       // We need to emit host-side 'shadows' for all global
2183       // device-side variables because the CUDA runtime needs their
2184       // size and host-side address in order to provide access to
2185       // their device-side incarnations.
2186 
2187       // So device-only functions are the only things we skip.
2188       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2189           Global->hasAttr<CUDADeviceAttr>())
2190         return;
2191 
2192       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2193              "Expected Variable or Function");
2194     }
2195   }
2196 
2197   if (LangOpts.OpenMP) {
2198     // If this is OpenMP device, check if it is legal to emit this global
2199     // normally.
2200     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2201       return;
2202     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2203       if (MustBeEmitted(Global))
2204         EmitOMPDeclareReduction(DRD);
2205       return;
2206     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2207       if (MustBeEmitted(Global))
2208         EmitOMPDeclareMapper(DMD);
2209       return;
2210     }
2211   }
2212 
2213   // Ignore declarations, they will be emitted on their first use.
2214   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2215     // Forward declarations are emitted lazily on first use.
2216     if (!FD->doesThisDeclarationHaveABody()) {
2217       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2218         return;
2219 
2220       StringRef MangledName = getMangledName(GD);
2221 
2222       // Compute the function info and LLVM type.
2223       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2224       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2225 
2226       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2227                               /*DontDefer=*/false);
2228       return;
2229     }
2230   } else {
2231     const auto *VD = cast<VarDecl>(Global);
2232     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2233     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2234         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2235       if (LangOpts.OpenMP) {
2236         // Emit declaration of the must-be-emitted declare target variable.
2237         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2238                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2239           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2240             (void)GetAddrOfGlobalVar(VD);
2241           } else {
2242             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2243                    "link claue expected.");
2244             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2245           }
2246           return;
2247         }
2248       }
2249       // If this declaration may have caused an inline variable definition to
2250       // change linkage, make sure that it's emitted.
2251       if (Context.getInlineVariableDefinitionKind(VD) ==
2252           ASTContext::InlineVariableDefinitionKind::Strong)
2253         GetAddrOfGlobalVar(VD);
2254       return;
2255     }
2256   }
2257 
2258   // Defer code generation to first use when possible, e.g. if this is an inline
2259   // function. If the global must always be emitted, do it eagerly if possible
2260   // to benefit from cache locality.
2261   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2262     // Emit the definition if it can't be deferred.
2263     EmitGlobalDefinition(GD);
2264     return;
2265   }
2266 
2267   // If we're deferring emission of a C++ variable with an
2268   // initializer, remember the order in which it appeared in the file.
2269   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2270       cast<VarDecl>(Global)->hasInit()) {
2271     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2272     CXXGlobalInits.push_back(nullptr);
2273   }
2274 
2275   StringRef MangledName = getMangledName(GD);
2276   if (GetGlobalValue(MangledName) != nullptr) {
2277     // The value has already been used and should therefore be emitted.
2278     addDeferredDeclToEmit(GD);
2279   } else if (MustBeEmitted(Global)) {
2280     // The value must be emitted, but cannot be emitted eagerly.
2281     assert(!MayBeEmittedEagerly(Global));
2282     addDeferredDeclToEmit(GD);
2283   } else {
2284     // Otherwise, remember that we saw a deferred decl with this name.  The
2285     // first use of the mangled name will cause it to move into
2286     // DeferredDeclsToEmit.
2287     DeferredDecls[MangledName] = GD;
2288   }
2289 }
2290 
2291 // Check if T is a class type with a destructor that's not dllimport.
2292 static bool HasNonDllImportDtor(QualType T) {
2293   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2294     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2295       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2296         return true;
2297 
2298   return false;
2299 }
2300 
2301 namespace {
2302   struct FunctionIsDirectlyRecursive
2303       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2304     const StringRef Name;
2305     const Builtin::Context &BI;
2306     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2307         : Name(N), BI(C) {}
2308 
2309     bool VisitCallExpr(const CallExpr *E) {
2310       const FunctionDecl *FD = E->getDirectCallee();
2311       if (!FD)
2312         return false;
2313       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2314       if (Attr && Name == Attr->getLabel())
2315         return true;
2316       unsigned BuiltinID = FD->getBuiltinID();
2317       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2318         return false;
2319       StringRef BuiltinName = BI.getName(BuiltinID);
2320       if (BuiltinName.startswith("__builtin_") &&
2321           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2322         return true;
2323       }
2324       return false;
2325     }
2326 
2327     bool VisitStmt(const Stmt *S) {
2328       for (const Stmt *Child : S->children())
2329         if (Child && this->Visit(Child))
2330           return true;
2331       return false;
2332     }
2333   };
2334 
2335   // Make sure we're not referencing non-imported vars or functions.
2336   struct DLLImportFunctionVisitor
2337       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2338     bool SafeToInline = true;
2339 
2340     bool shouldVisitImplicitCode() const { return true; }
2341 
2342     bool VisitVarDecl(VarDecl *VD) {
2343       if (VD->getTLSKind()) {
2344         // A thread-local variable cannot be imported.
2345         SafeToInline = false;
2346         return SafeToInline;
2347       }
2348 
2349       // A variable definition might imply a destructor call.
2350       if (VD->isThisDeclarationADefinition())
2351         SafeToInline = !HasNonDllImportDtor(VD->getType());
2352 
2353       return SafeToInline;
2354     }
2355 
2356     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2357       if (const auto *D = E->getTemporary()->getDestructor())
2358         SafeToInline = D->hasAttr<DLLImportAttr>();
2359       return SafeToInline;
2360     }
2361 
2362     bool VisitDeclRefExpr(DeclRefExpr *E) {
2363       ValueDecl *VD = E->getDecl();
2364       if (isa<FunctionDecl>(VD))
2365         SafeToInline = VD->hasAttr<DLLImportAttr>();
2366       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2367         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2368       return SafeToInline;
2369     }
2370 
2371     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2372       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2373       return SafeToInline;
2374     }
2375 
2376     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2377       CXXMethodDecl *M = E->getMethodDecl();
2378       if (!M) {
2379         // Call through a pointer to member function. This is safe to inline.
2380         SafeToInline = true;
2381       } else {
2382         SafeToInline = M->hasAttr<DLLImportAttr>();
2383       }
2384       return SafeToInline;
2385     }
2386 
2387     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2388       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2389       return SafeToInline;
2390     }
2391 
2392     bool VisitCXXNewExpr(CXXNewExpr *E) {
2393       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2394       return SafeToInline;
2395     }
2396   };
2397 }
2398 
2399 // isTriviallyRecursive - Check if this function calls another
2400 // decl that, because of the asm attribute or the other decl being a builtin,
2401 // ends up pointing to itself.
2402 bool
2403 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2404   StringRef Name;
2405   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2406     // asm labels are a special kind of mangling we have to support.
2407     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2408     if (!Attr)
2409       return false;
2410     Name = Attr->getLabel();
2411   } else {
2412     Name = FD->getName();
2413   }
2414 
2415   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2416   const Stmt *Body = FD->getBody();
2417   return Body ? Walker.Visit(Body) : false;
2418 }
2419 
2420 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2421   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2422     return true;
2423   const auto *F = cast<FunctionDecl>(GD.getDecl());
2424   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2425     return false;
2426 
2427   if (F->hasAttr<DLLImportAttr>()) {
2428     // Check whether it would be safe to inline this dllimport function.
2429     DLLImportFunctionVisitor Visitor;
2430     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2431     if (!Visitor.SafeToInline)
2432       return false;
2433 
2434     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2435       // Implicit destructor invocations aren't captured in the AST, so the
2436       // check above can't see them. Check for them manually here.
2437       for (const Decl *Member : Dtor->getParent()->decls())
2438         if (isa<FieldDecl>(Member))
2439           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2440             return false;
2441       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2442         if (HasNonDllImportDtor(B.getType()))
2443           return false;
2444     }
2445   }
2446 
2447   // PR9614. Avoid cases where the source code is lying to us. An available
2448   // externally function should have an equivalent function somewhere else,
2449   // but a function that calls itself is clearly not equivalent to the real
2450   // implementation.
2451   // This happens in glibc's btowc and in some configure checks.
2452   return !isTriviallyRecursive(F);
2453 }
2454 
2455 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2456   return CodeGenOpts.OptimizationLevel > 0;
2457 }
2458 
2459 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2460                                                        llvm::GlobalValue *GV) {
2461   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2462 
2463   if (FD->isCPUSpecificMultiVersion()) {
2464     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2465     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2466       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2467     // Requires multiple emits.
2468   } else
2469     EmitGlobalFunctionDefinition(GD, GV);
2470 }
2471 
2472 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2473   const auto *D = cast<ValueDecl>(GD.getDecl());
2474 
2475   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2476                                  Context.getSourceManager(),
2477                                  "Generating code for declaration");
2478 
2479   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2480     // At -O0, don't generate IR for functions with available_externally
2481     // linkage.
2482     if (!shouldEmitFunction(GD))
2483       return;
2484 
2485     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2486       // Make sure to emit the definition(s) before we emit the thunks.
2487       // This is necessary for the generation of certain thunks.
2488       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2489         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2490       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2491         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2492       else if (FD->isMultiVersion())
2493         EmitMultiVersionFunctionDefinition(GD, GV);
2494       else
2495         EmitGlobalFunctionDefinition(GD, GV);
2496 
2497       if (Method->isVirtual())
2498         getVTables().EmitThunks(GD);
2499 
2500       return;
2501     }
2502 
2503     if (FD->isMultiVersion())
2504       return EmitMultiVersionFunctionDefinition(GD, GV);
2505     return EmitGlobalFunctionDefinition(GD, GV);
2506   }
2507 
2508   if (const auto *VD = dyn_cast<VarDecl>(D))
2509     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2510 
2511   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2512 }
2513 
2514 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2515                                                       llvm::Function *NewFn);
2516 
2517 static unsigned
2518 TargetMVPriority(const TargetInfo &TI,
2519                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2520   unsigned Priority = 0;
2521   for (StringRef Feat : RO.Conditions.Features)
2522     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2523 
2524   if (!RO.Conditions.Architecture.empty())
2525     Priority = std::max(
2526         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2527   return Priority;
2528 }
2529 
2530 void CodeGenModule::emitMultiVersionFunctions() {
2531   for (GlobalDecl GD : MultiVersionFuncs) {
2532     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2533     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2534     getContext().forEachMultiversionedFunctionVersion(
2535         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2536           GlobalDecl CurGD{
2537               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2538           StringRef MangledName = getMangledName(CurGD);
2539           llvm::Constant *Func = GetGlobalValue(MangledName);
2540           if (!Func) {
2541             if (CurFD->isDefined()) {
2542               EmitGlobalFunctionDefinition(CurGD, nullptr);
2543               Func = GetGlobalValue(MangledName);
2544             } else {
2545               const CGFunctionInfo &FI =
2546                   getTypes().arrangeGlobalDeclaration(GD);
2547               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2548               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2549                                        /*DontDefer=*/false, ForDefinition);
2550             }
2551             assert(Func && "This should have just been created");
2552           }
2553 
2554           const auto *TA = CurFD->getAttr<TargetAttr>();
2555           llvm::SmallVector<StringRef, 8> Feats;
2556           TA->getAddedFeatures(Feats);
2557 
2558           Options.emplace_back(cast<llvm::Function>(Func),
2559                                TA->getArchitecture(), Feats);
2560         });
2561 
2562     llvm::Function *ResolverFunc;
2563     const TargetInfo &TI = getTarget();
2564 
2565     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2566       ResolverFunc = cast<llvm::Function>(
2567           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2568     else
2569       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2570 
2571     if (supportsCOMDAT())
2572       ResolverFunc->setComdat(
2573           getModule().getOrInsertComdat(ResolverFunc->getName()));
2574 
2575     std::stable_sort(
2576         Options.begin(), Options.end(),
2577         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2578               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2579           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2580         });
2581     CodeGenFunction CGF(*this);
2582     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2583   }
2584 }
2585 
2586 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2587   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2588   assert(FD && "Not a FunctionDecl?");
2589   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2590   assert(DD && "Not a cpu_dispatch Function?");
2591   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2592 
2593   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2594     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2595     DeclTy = getTypes().GetFunctionType(FInfo);
2596   }
2597 
2598   StringRef ResolverName = getMangledName(GD);
2599 
2600   llvm::Type *ResolverType;
2601   GlobalDecl ResolverGD;
2602   if (getTarget().supportsIFunc())
2603     ResolverType = llvm::FunctionType::get(
2604         llvm::PointerType::get(DeclTy,
2605                                Context.getTargetAddressSpace(FD->getType())),
2606         false);
2607   else {
2608     ResolverType = DeclTy;
2609     ResolverGD = GD;
2610   }
2611 
2612   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2613       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2614 
2615   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2616   const TargetInfo &Target = getTarget();
2617   unsigned Index = 0;
2618   for (const IdentifierInfo *II : DD->cpus()) {
2619     // Get the name of the target function so we can look it up/create it.
2620     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2621                               getCPUSpecificMangling(*this, II->getName());
2622 
2623     llvm::Constant *Func = GetGlobalValue(MangledName);
2624 
2625     if (!Func) {
2626       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2627       if (ExistingDecl.getDecl() &&
2628           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2629         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2630         Func = GetGlobalValue(MangledName);
2631       } else {
2632         if (!ExistingDecl.getDecl())
2633           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2634 
2635       Func = GetOrCreateLLVMFunction(
2636           MangledName, DeclTy, ExistingDecl,
2637           /*ForVTable=*/false, /*DontDefer=*/true,
2638           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2639       }
2640     }
2641 
2642     llvm::SmallVector<StringRef, 32> Features;
2643     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2644     llvm::transform(Features, Features.begin(),
2645                     [](StringRef Str) { return Str.substr(1); });
2646     Features.erase(std::remove_if(
2647         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2648           return !Target.validateCpuSupports(Feat);
2649         }), Features.end());
2650     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2651     ++Index;
2652   }
2653 
2654   llvm::sort(
2655       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2656                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2657         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2658                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2659       });
2660 
2661   // If the list contains multiple 'default' versions, such as when it contains
2662   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2663   // always run on at least a 'pentium'). We do this by deleting the 'least
2664   // advanced' (read, lowest mangling letter).
2665   while (Options.size() > 1 &&
2666          CodeGenFunction::GetX86CpuSupportsMask(
2667              (Options.end() - 2)->Conditions.Features) == 0) {
2668     StringRef LHSName = (Options.end() - 2)->Function->getName();
2669     StringRef RHSName = (Options.end() - 1)->Function->getName();
2670     if (LHSName.compare(RHSName) < 0)
2671       Options.erase(Options.end() - 2);
2672     else
2673       Options.erase(Options.end() - 1);
2674   }
2675 
2676   CodeGenFunction CGF(*this);
2677   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2678 }
2679 
2680 /// If a dispatcher for the specified mangled name is not in the module, create
2681 /// and return an llvm Function with the specified type.
2682 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2683     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2684   std::string MangledName =
2685       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2686 
2687   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2688   // a separate resolver).
2689   std::string ResolverName = MangledName;
2690   if (getTarget().supportsIFunc())
2691     ResolverName += ".ifunc";
2692   else if (FD->isTargetMultiVersion())
2693     ResolverName += ".resolver";
2694 
2695   // If this already exists, just return that one.
2696   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2697     return ResolverGV;
2698 
2699   // Since this is the first time we've created this IFunc, make sure
2700   // that we put this multiversioned function into the list to be
2701   // replaced later if necessary (target multiversioning only).
2702   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2703     MultiVersionFuncs.push_back(GD);
2704 
2705   if (getTarget().supportsIFunc()) {
2706     llvm::Type *ResolverType = llvm::FunctionType::get(
2707         llvm::PointerType::get(
2708             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2709         false);
2710     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2711         MangledName + ".resolver", ResolverType, GlobalDecl{},
2712         /*ForVTable=*/false);
2713     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2714         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2715     GIF->setName(ResolverName);
2716     SetCommonAttributes(FD, GIF);
2717 
2718     return GIF;
2719   }
2720 
2721   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2722       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2723   assert(isa<llvm::GlobalValue>(Resolver) &&
2724          "Resolver should be created for the first time");
2725   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2726   return Resolver;
2727 }
2728 
2729 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2730 /// module, create and return an llvm Function with the specified type. If there
2731 /// is something in the module with the specified name, return it potentially
2732 /// bitcasted to the right type.
2733 ///
2734 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2735 /// to set the attributes on the function when it is first created.
2736 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2737     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2738     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2739     ForDefinition_t IsForDefinition) {
2740   const Decl *D = GD.getDecl();
2741 
2742   // Any attempts to use a MultiVersion function should result in retrieving
2743   // the iFunc instead. Name Mangling will handle the rest of the changes.
2744   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2745     // For the device mark the function as one that should be emitted.
2746     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2747         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2748         !DontDefer && !IsForDefinition) {
2749       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2750         GlobalDecl GDDef;
2751         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2752           GDDef = GlobalDecl(CD, GD.getCtorType());
2753         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2754           GDDef = GlobalDecl(DD, GD.getDtorType());
2755         else
2756           GDDef = GlobalDecl(FDDef);
2757         EmitGlobal(GDDef);
2758       }
2759     }
2760 
2761     if (FD->isMultiVersion()) {
2762       const auto *TA = FD->getAttr<TargetAttr>();
2763       if (TA && TA->isDefaultVersion())
2764         UpdateMultiVersionNames(GD, FD);
2765       if (!IsForDefinition)
2766         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2767     }
2768   }
2769 
2770   // Lookup the entry, lazily creating it if necessary.
2771   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2772   if (Entry) {
2773     if (WeakRefReferences.erase(Entry)) {
2774       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2775       if (FD && !FD->hasAttr<WeakAttr>())
2776         Entry->setLinkage(llvm::Function::ExternalLinkage);
2777     }
2778 
2779     // Handle dropped DLL attributes.
2780     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2781       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2782       setDSOLocal(Entry);
2783     }
2784 
2785     // If there are two attempts to define the same mangled name, issue an
2786     // error.
2787     if (IsForDefinition && !Entry->isDeclaration()) {
2788       GlobalDecl OtherGD;
2789       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2790       // to make sure that we issue an error only once.
2791       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2792           (GD.getCanonicalDecl().getDecl() !=
2793            OtherGD.getCanonicalDecl().getDecl()) &&
2794           DiagnosedConflictingDefinitions.insert(GD).second) {
2795         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2796             << MangledName;
2797         getDiags().Report(OtherGD.getDecl()->getLocation(),
2798                           diag::note_previous_definition);
2799       }
2800     }
2801 
2802     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2803         (Entry->getType()->getElementType() == Ty)) {
2804       return Entry;
2805     }
2806 
2807     // Make sure the result is of the correct type.
2808     // (If function is requested for a definition, we always need to create a new
2809     // function, not just return a bitcast.)
2810     if (!IsForDefinition)
2811       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2812   }
2813 
2814   // This function doesn't have a complete type (for example, the return
2815   // type is an incomplete struct). Use a fake type instead, and make
2816   // sure not to try to set attributes.
2817   bool IsIncompleteFunction = false;
2818 
2819   llvm::FunctionType *FTy;
2820   if (isa<llvm::FunctionType>(Ty)) {
2821     FTy = cast<llvm::FunctionType>(Ty);
2822   } else {
2823     FTy = llvm::FunctionType::get(VoidTy, false);
2824     IsIncompleteFunction = true;
2825   }
2826 
2827   llvm::Function *F =
2828       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2829                              Entry ? StringRef() : MangledName, &getModule());
2830 
2831   // If we already created a function with the same mangled name (but different
2832   // type) before, take its name and add it to the list of functions to be
2833   // replaced with F at the end of CodeGen.
2834   //
2835   // This happens if there is a prototype for a function (e.g. "int f()") and
2836   // then a definition of a different type (e.g. "int f(int x)").
2837   if (Entry) {
2838     F->takeName(Entry);
2839 
2840     // This might be an implementation of a function without a prototype, in
2841     // which case, try to do special replacement of calls which match the new
2842     // prototype.  The really key thing here is that we also potentially drop
2843     // arguments from the call site so as to make a direct call, which makes the
2844     // inliner happier and suppresses a number of optimizer warnings (!) about
2845     // dropping arguments.
2846     if (!Entry->use_empty()) {
2847       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2848       Entry->removeDeadConstantUsers();
2849     }
2850 
2851     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2852         F, Entry->getType()->getElementType()->getPointerTo());
2853     addGlobalValReplacement(Entry, BC);
2854   }
2855 
2856   assert(F->getName() == MangledName && "name was uniqued!");
2857   if (D)
2858     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2859   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2860     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2861     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2862   }
2863 
2864   if (!DontDefer) {
2865     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2866     // each other bottoming out with the base dtor.  Therefore we emit non-base
2867     // dtors on usage, even if there is no dtor definition in the TU.
2868     if (D && isa<CXXDestructorDecl>(D) &&
2869         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2870                                            GD.getDtorType()))
2871       addDeferredDeclToEmit(GD);
2872 
2873     // This is the first use or definition of a mangled name.  If there is a
2874     // deferred decl with this name, remember that we need to emit it at the end
2875     // of the file.
2876     auto DDI = DeferredDecls.find(MangledName);
2877     if (DDI != DeferredDecls.end()) {
2878       // Move the potentially referenced deferred decl to the
2879       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2880       // don't need it anymore).
2881       addDeferredDeclToEmit(DDI->second);
2882       DeferredDecls.erase(DDI);
2883 
2884       // Otherwise, there are cases we have to worry about where we're
2885       // using a declaration for which we must emit a definition but where
2886       // we might not find a top-level definition:
2887       //   - member functions defined inline in their classes
2888       //   - friend functions defined inline in some class
2889       //   - special member functions with implicit definitions
2890       // If we ever change our AST traversal to walk into class methods,
2891       // this will be unnecessary.
2892       //
2893       // We also don't emit a definition for a function if it's going to be an
2894       // entry in a vtable, unless it's already marked as used.
2895     } else if (getLangOpts().CPlusPlus && D) {
2896       // Look for a declaration that's lexically in a record.
2897       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2898            FD = FD->getPreviousDecl()) {
2899         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2900           if (FD->doesThisDeclarationHaveABody()) {
2901             addDeferredDeclToEmit(GD.getWithDecl(FD));
2902             break;
2903           }
2904         }
2905       }
2906     }
2907   }
2908 
2909   // Make sure the result is of the requested type.
2910   if (!IsIncompleteFunction) {
2911     assert(F->getType()->getElementType() == Ty);
2912     return F;
2913   }
2914 
2915   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2916   return llvm::ConstantExpr::getBitCast(F, PTy);
2917 }
2918 
2919 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2920 /// non-null, then this function will use the specified type if it has to
2921 /// create it (this occurs when we see a definition of the function).
2922 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2923                                                  llvm::Type *Ty,
2924                                                  bool ForVTable,
2925                                                  bool DontDefer,
2926                                               ForDefinition_t IsForDefinition) {
2927   // If there was no specific requested type, just convert it now.
2928   if (!Ty) {
2929     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2930     Ty = getTypes().ConvertType(FD->getType());
2931   }
2932 
2933   // Devirtualized destructor calls may come through here instead of via
2934   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2935   // of the complete destructor when necessary.
2936   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2937     if (getTarget().getCXXABI().isMicrosoft() &&
2938         GD.getDtorType() == Dtor_Complete &&
2939         DD->getParent()->getNumVBases() == 0)
2940       GD = GlobalDecl(DD, Dtor_Base);
2941   }
2942 
2943   StringRef MangledName = getMangledName(GD);
2944   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2945                                  /*IsThunk=*/false, llvm::AttributeList(),
2946                                  IsForDefinition);
2947 }
2948 
2949 static const FunctionDecl *
2950 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2951   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2952   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2953 
2954   IdentifierInfo &CII = C.Idents.get(Name);
2955   for (const auto &Result : DC->lookup(&CII))
2956     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2957       return FD;
2958 
2959   if (!C.getLangOpts().CPlusPlus)
2960     return nullptr;
2961 
2962   // Demangle the premangled name from getTerminateFn()
2963   IdentifierInfo &CXXII =
2964       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2965           ? C.Idents.get("terminate")
2966           : C.Idents.get(Name);
2967 
2968   for (const auto &N : {"__cxxabiv1", "std"}) {
2969     IdentifierInfo &NS = C.Idents.get(N);
2970     for (const auto &Result : DC->lookup(&NS)) {
2971       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2972       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2973         for (const auto &Result : LSD->lookup(&NS))
2974           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2975             break;
2976 
2977       if (ND)
2978         for (const auto &Result : ND->lookup(&CXXII))
2979           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2980             return FD;
2981     }
2982   }
2983 
2984   return nullptr;
2985 }
2986 
2987 /// CreateRuntimeFunction - Create a new runtime function with the specified
2988 /// type and name.
2989 llvm::FunctionCallee
2990 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2991                                      llvm::AttributeList ExtraAttrs,
2992                                      bool Local) {
2993   llvm::Constant *C =
2994       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2995                               /*DontDefer=*/false, /*IsThunk=*/false,
2996                               ExtraAttrs);
2997 
2998   if (auto *F = dyn_cast<llvm::Function>(C)) {
2999     if (F->empty()) {
3000       F->setCallingConv(getRuntimeCC());
3001 
3002       if (!Local && getTriple().isOSBinFormatCOFF() &&
3003           !getCodeGenOpts().LTOVisibilityPublicStd &&
3004           !getTriple().isWindowsGNUEnvironment()) {
3005         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3006         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3007           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3008           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3009         }
3010       }
3011       setDSOLocal(F);
3012     }
3013   }
3014 
3015   return {FTy, C};
3016 }
3017 
3018 /// isTypeConstant - Determine whether an object of this type can be emitted
3019 /// as a constant.
3020 ///
3021 /// If ExcludeCtor is true, the duration when the object's constructor runs
3022 /// will not be considered. The caller will need to verify that the object is
3023 /// not written to during its construction.
3024 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3025   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3026     return false;
3027 
3028   if (Context.getLangOpts().CPlusPlus) {
3029     if (const CXXRecordDecl *Record
3030           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3031       return ExcludeCtor && !Record->hasMutableFields() &&
3032              Record->hasTrivialDestructor();
3033   }
3034 
3035   return true;
3036 }
3037 
3038 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3039 /// create and return an llvm GlobalVariable with the specified type.  If there
3040 /// is something in the module with the specified name, return it potentially
3041 /// bitcasted to the right type.
3042 ///
3043 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3044 /// to set the attributes on the global when it is first created.
3045 ///
3046 /// If IsForDefinition is true, it is guaranteed that an actual global with
3047 /// type Ty will be returned, not conversion of a variable with the same
3048 /// mangled name but some other type.
3049 llvm::Constant *
3050 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3051                                      llvm::PointerType *Ty,
3052                                      const VarDecl *D,
3053                                      ForDefinition_t IsForDefinition) {
3054   // Lookup the entry, lazily creating it if necessary.
3055   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3056   if (Entry) {
3057     if (WeakRefReferences.erase(Entry)) {
3058       if (D && !D->hasAttr<WeakAttr>())
3059         Entry->setLinkage(llvm::Function::ExternalLinkage);
3060     }
3061 
3062     // Handle dropped DLL attributes.
3063     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3064       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3065 
3066     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3067       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3068 
3069     if (Entry->getType() == Ty)
3070       return Entry;
3071 
3072     // If there are two attempts to define the same mangled name, issue an
3073     // error.
3074     if (IsForDefinition && !Entry->isDeclaration()) {
3075       GlobalDecl OtherGD;
3076       const VarDecl *OtherD;
3077 
3078       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3079       // to make sure that we issue an error only once.
3080       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3081           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3082           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3083           OtherD->hasInit() &&
3084           DiagnosedConflictingDefinitions.insert(D).second) {
3085         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3086             << MangledName;
3087         getDiags().Report(OtherGD.getDecl()->getLocation(),
3088                           diag::note_previous_definition);
3089       }
3090     }
3091 
3092     // Make sure the result is of the correct type.
3093     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3094       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3095 
3096     // (If global is requested for a definition, we always need to create a new
3097     // global, not just return a bitcast.)
3098     if (!IsForDefinition)
3099       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3100   }
3101 
3102   auto AddrSpace = GetGlobalVarAddressSpace(D);
3103   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3104 
3105   auto *GV = new llvm::GlobalVariable(
3106       getModule(), Ty->getElementType(), false,
3107       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3108       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3109 
3110   // If we already created a global with the same mangled name (but different
3111   // type) before, take its name and remove it from its parent.
3112   if (Entry) {
3113     GV->takeName(Entry);
3114 
3115     if (!Entry->use_empty()) {
3116       llvm::Constant *NewPtrForOldDecl =
3117           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3118       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3119     }
3120 
3121     Entry->eraseFromParent();
3122   }
3123 
3124   // This is the first use or definition of a mangled name.  If there is a
3125   // deferred decl with this name, remember that we need to emit it at the end
3126   // of the file.
3127   auto DDI = DeferredDecls.find(MangledName);
3128   if (DDI != DeferredDecls.end()) {
3129     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3130     // list, and remove it from DeferredDecls (since we don't need it anymore).
3131     addDeferredDeclToEmit(DDI->second);
3132     DeferredDecls.erase(DDI);
3133   }
3134 
3135   // Handle things which are present even on external declarations.
3136   if (D) {
3137     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3138       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3139 
3140     // FIXME: This code is overly simple and should be merged with other global
3141     // handling.
3142     GV->setConstant(isTypeConstant(D->getType(), false));
3143 
3144     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3145 
3146     setLinkageForGV(GV, D);
3147 
3148     if (D->getTLSKind()) {
3149       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3150         CXXThreadLocals.push_back(D);
3151       setTLSMode(GV, *D);
3152     }
3153 
3154     setGVProperties(GV, D);
3155 
3156     // If required by the ABI, treat declarations of static data members with
3157     // inline initializers as definitions.
3158     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3159       EmitGlobalVarDefinition(D);
3160     }
3161 
3162     // Emit section information for extern variables.
3163     if (D->hasExternalStorage()) {
3164       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3165         GV->setSection(SA->getName());
3166     }
3167 
3168     // Handle XCore specific ABI requirements.
3169     if (getTriple().getArch() == llvm::Triple::xcore &&
3170         D->getLanguageLinkage() == CLanguageLinkage &&
3171         D->getType().isConstant(Context) &&
3172         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3173       GV->setSection(".cp.rodata");
3174 
3175     // Check if we a have a const declaration with an initializer, we may be
3176     // able to emit it as available_externally to expose it's value to the
3177     // optimizer.
3178     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3179         D->getType().isConstQualified() && !GV->hasInitializer() &&
3180         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3181       const auto *Record =
3182           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3183       bool HasMutableFields = Record && Record->hasMutableFields();
3184       if (!HasMutableFields) {
3185         const VarDecl *InitDecl;
3186         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3187         if (InitExpr) {
3188           ConstantEmitter emitter(*this);
3189           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3190           if (Init) {
3191             auto *InitType = Init->getType();
3192             if (GV->getType()->getElementType() != InitType) {
3193               // The type of the initializer does not match the definition.
3194               // This happens when an initializer has a different type from
3195               // the type of the global (because of padding at the end of a
3196               // structure for instance).
3197               GV->setName(StringRef());
3198               // Make a new global with the correct type, this is now guaranteed
3199               // to work.
3200               auto *NewGV = cast<llvm::GlobalVariable>(
3201                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3202 
3203               // Erase the old global, since it is no longer used.
3204               GV->eraseFromParent();
3205               GV = NewGV;
3206             } else {
3207               GV->setInitializer(Init);
3208               GV->setConstant(true);
3209               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3210             }
3211             emitter.finalize(GV);
3212           }
3213         }
3214       }
3215     }
3216   }
3217 
3218   LangAS ExpectedAS =
3219       D ? D->getType().getAddressSpace()
3220         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3221   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3222          Ty->getPointerAddressSpace());
3223   if (AddrSpace != ExpectedAS)
3224     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3225                                                        ExpectedAS, Ty);
3226 
3227   if (GV->isDeclaration())
3228     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3229 
3230   return GV;
3231 }
3232 
3233 llvm::Constant *
3234 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3235                                ForDefinition_t IsForDefinition) {
3236   const Decl *D = GD.getDecl();
3237   if (isa<CXXConstructorDecl>(D))
3238     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3239                                 getFromCtorType(GD.getCtorType()),
3240                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3241                                 /*DontDefer=*/false, IsForDefinition);
3242   else if (isa<CXXDestructorDecl>(D))
3243     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3244                                 getFromDtorType(GD.getDtorType()),
3245                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3246                                 /*DontDefer=*/false, IsForDefinition);
3247   else if (isa<CXXMethodDecl>(D)) {
3248     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3249         cast<CXXMethodDecl>(D));
3250     auto Ty = getTypes().GetFunctionType(*FInfo);
3251     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3252                              IsForDefinition);
3253   } else if (isa<FunctionDecl>(D)) {
3254     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3255     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3256     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3257                              IsForDefinition);
3258   } else
3259     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3260                               IsForDefinition);
3261 }
3262 
3263 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3264     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3265     unsigned Alignment) {
3266   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3267   llvm::GlobalVariable *OldGV = nullptr;
3268 
3269   if (GV) {
3270     // Check if the variable has the right type.
3271     if (GV->getType()->getElementType() == Ty)
3272       return GV;
3273 
3274     // Because C++ name mangling, the only way we can end up with an already
3275     // existing global with the same name is if it has been declared extern "C".
3276     assert(GV->isDeclaration() && "Declaration has wrong type!");
3277     OldGV = GV;
3278   }
3279 
3280   // Create a new variable.
3281   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3282                                 Linkage, nullptr, Name);
3283 
3284   if (OldGV) {
3285     // Replace occurrences of the old variable if needed.
3286     GV->takeName(OldGV);
3287 
3288     if (!OldGV->use_empty()) {
3289       llvm::Constant *NewPtrForOldDecl =
3290       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3291       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3292     }
3293 
3294     OldGV->eraseFromParent();
3295   }
3296 
3297   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3298       !GV->hasAvailableExternallyLinkage())
3299     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3300 
3301   GV->setAlignment(Alignment);
3302 
3303   return GV;
3304 }
3305 
3306 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3307 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3308 /// then it will be created with the specified type instead of whatever the
3309 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3310 /// that an actual global with type Ty will be returned, not conversion of a
3311 /// variable with the same mangled name but some other type.
3312 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3313                                                   llvm::Type *Ty,
3314                                            ForDefinition_t IsForDefinition) {
3315   assert(D->hasGlobalStorage() && "Not a global variable");
3316   QualType ASTTy = D->getType();
3317   if (!Ty)
3318     Ty = getTypes().ConvertTypeForMem(ASTTy);
3319 
3320   llvm::PointerType *PTy =
3321     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3322 
3323   StringRef MangledName = getMangledName(D);
3324   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3325 }
3326 
3327 /// CreateRuntimeVariable - Create a new runtime global variable with the
3328 /// specified type and name.
3329 llvm::Constant *
3330 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3331                                      StringRef Name) {
3332   auto *Ret =
3333       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3334   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3335   return Ret;
3336 }
3337 
3338 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3339   assert(!D->getInit() && "Cannot emit definite definitions here!");
3340 
3341   StringRef MangledName = getMangledName(D);
3342   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3343 
3344   // We already have a definition, not declaration, with the same mangled name.
3345   // Emitting of declaration is not required (and actually overwrites emitted
3346   // definition).
3347   if (GV && !GV->isDeclaration())
3348     return;
3349 
3350   // If we have not seen a reference to this variable yet, place it into the
3351   // deferred declarations table to be emitted if needed later.
3352   if (!MustBeEmitted(D) && !GV) {
3353       DeferredDecls[MangledName] = D;
3354       return;
3355   }
3356 
3357   // The tentative definition is the only definition.
3358   EmitGlobalVarDefinition(D);
3359 }
3360 
3361 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3362   return Context.toCharUnitsFromBits(
3363       getDataLayout().getTypeStoreSizeInBits(Ty));
3364 }
3365 
3366 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3367   LangAS AddrSpace = LangAS::Default;
3368   if (LangOpts.OpenCL) {
3369     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3370     assert(AddrSpace == LangAS::opencl_global ||
3371            AddrSpace == LangAS::opencl_constant ||
3372            AddrSpace == LangAS::opencl_local ||
3373            AddrSpace >= LangAS::FirstTargetAddressSpace);
3374     return AddrSpace;
3375   }
3376 
3377   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3378     if (D && D->hasAttr<CUDAConstantAttr>())
3379       return LangAS::cuda_constant;
3380     else if (D && D->hasAttr<CUDASharedAttr>())
3381       return LangAS::cuda_shared;
3382     else if (D && D->hasAttr<CUDADeviceAttr>())
3383       return LangAS::cuda_device;
3384     else if (D && D->getType().isConstQualified())
3385       return LangAS::cuda_constant;
3386     else
3387       return LangAS::cuda_device;
3388   }
3389 
3390   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3391 }
3392 
3393 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3394   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3395   if (LangOpts.OpenCL)
3396     return LangAS::opencl_constant;
3397   if (auto AS = getTarget().getConstantAddressSpace())
3398     return AS.getValue();
3399   return LangAS::Default;
3400 }
3401 
3402 // In address space agnostic languages, string literals are in default address
3403 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3404 // emitted in constant address space in LLVM IR. To be consistent with other
3405 // parts of AST, string literal global variables in constant address space
3406 // need to be casted to default address space before being put into address
3407 // map and referenced by other part of CodeGen.
3408 // In OpenCL, string literals are in constant address space in AST, therefore
3409 // they should not be casted to default address space.
3410 static llvm::Constant *
3411 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3412                                        llvm::GlobalVariable *GV) {
3413   llvm::Constant *Cast = GV;
3414   if (!CGM.getLangOpts().OpenCL) {
3415     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3416       if (AS != LangAS::Default)
3417         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3418             CGM, GV, AS.getValue(), LangAS::Default,
3419             GV->getValueType()->getPointerTo(
3420                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3421     }
3422   }
3423   return Cast;
3424 }
3425 
3426 template<typename SomeDecl>
3427 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3428                                                llvm::GlobalValue *GV) {
3429   if (!getLangOpts().CPlusPlus)
3430     return;
3431 
3432   // Must have 'used' attribute, or else inline assembly can't rely on
3433   // the name existing.
3434   if (!D->template hasAttr<UsedAttr>())
3435     return;
3436 
3437   // Must have internal linkage and an ordinary name.
3438   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3439     return;
3440 
3441   // Must be in an extern "C" context. Entities declared directly within
3442   // a record are not extern "C" even if the record is in such a context.
3443   const SomeDecl *First = D->getFirstDecl();
3444   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3445     return;
3446 
3447   // OK, this is an internal linkage entity inside an extern "C" linkage
3448   // specification. Make a note of that so we can give it the "expected"
3449   // mangled name if nothing else is using that name.
3450   std::pair<StaticExternCMap::iterator, bool> R =
3451       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3452 
3453   // If we have multiple internal linkage entities with the same name
3454   // in extern "C" regions, none of them gets that name.
3455   if (!R.second)
3456     R.first->second = nullptr;
3457 }
3458 
3459 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3460   if (!CGM.supportsCOMDAT())
3461     return false;
3462 
3463   if (D.hasAttr<SelectAnyAttr>())
3464     return true;
3465 
3466   GVALinkage Linkage;
3467   if (auto *VD = dyn_cast<VarDecl>(&D))
3468     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3469   else
3470     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3471 
3472   switch (Linkage) {
3473   case GVA_Internal:
3474   case GVA_AvailableExternally:
3475   case GVA_StrongExternal:
3476     return false;
3477   case GVA_DiscardableODR:
3478   case GVA_StrongODR:
3479     return true;
3480   }
3481   llvm_unreachable("No such linkage");
3482 }
3483 
3484 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3485                                           llvm::GlobalObject &GO) {
3486   if (!shouldBeInCOMDAT(*this, D))
3487     return;
3488   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3489 }
3490 
3491 /// Pass IsTentative as true if you want to create a tentative definition.
3492 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3493                                             bool IsTentative) {
3494   // OpenCL global variables of sampler type are translated to function calls,
3495   // therefore no need to be translated.
3496   QualType ASTTy = D->getType();
3497   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3498     return;
3499 
3500   // If this is OpenMP device, check if it is legal to emit this global
3501   // normally.
3502   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3503       OpenMPRuntime->emitTargetGlobalVariable(D))
3504     return;
3505 
3506   llvm::Constant *Init = nullptr;
3507   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3508   bool NeedsGlobalCtor = false;
3509   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3510 
3511   const VarDecl *InitDecl;
3512   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3513 
3514   Optional<ConstantEmitter> emitter;
3515 
3516   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3517   // as part of their declaration."  Sema has already checked for
3518   // error cases, so we just need to set Init to UndefValue.
3519   bool IsCUDASharedVar =
3520       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3521   // Shadows of initialized device-side global variables are also left
3522   // undefined.
3523   bool IsCUDAShadowVar =
3524       !getLangOpts().CUDAIsDevice &&
3525       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3526        D->hasAttr<CUDASharedAttr>());
3527   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3528     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3529   else if (!InitExpr) {
3530     // This is a tentative definition; tentative definitions are
3531     // implicitly initialized with { 0 }.
3532     //
3533     // Note that tentative definitions are only emitted at the end of
3534     // a translation unit, so they should never have incomplete
3535     // type. In addition, EmitTentativeDefinition makes sure that we
3536     // never attempt to emit a tentative definition if a real one
3537     // exists. A use may still exists, however, so we still may need
3538     // to do a RAUW.
3539     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3540     Init = EmitNullConstant(D->getType());
3541   } else {
3542     initializedGlobalDecl = GlobalDecl(D);
3543     emitter.emplace(*this);
3544     Init = emitter->tryEmitForInitializer(*InitDecl);
3545 
3546     if (!Init) {
3547       QualType T = InitExpr->getType();
3548       if (D->getType()->isReferenceType())
3549         T = D->getType();
3550 
3551       if (getLangOpts().CPlusPlus) {
3552         Init = EmitNullConstant(T);
3553         NeedsGlobalCtor = true;
3554       } else {
3555         ErrorUnsupported(D, "static initializer");
3556         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3557       }
3558     } else {
3559       // We don't need an initializer, so remove the entry for the delayed
3560       // initializer position (just in case this entry was delayed) if we
3561       // also don't need to register a destructor.
3562       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3563         DelayedCXXInitPosition.erase(D);
3564     }
3565   }
3566 
3567   llvm::Type* InitType = Init->getType();
3568   llvm::Constant *Entry =
3569       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3570 
3571   // Strip off a bitcast if we got one back.
3572   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3573     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3574            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3575            // All zero index gep.
3576            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3577     Entry = CE->getOperand(0);
3578   }
3579 
3580   // Entry is now either a Function or GlobalVariable.
3581   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3582 
3583   // We have a definition after a declaration with the wrong type.
3584   // We must make a new GlobalVariable* and update everything that used OldGV
3585   // (a declaration or tentative definition) with the new GlobalVariable*
3586   // (which will be a definition).
3587   //
3588   // This happens if there is a prototype for a global (e.g.
3589   // "extern int x[];") and then a definition of a different type (e.g.
3590   // "int x[10];"). This also happens when an initializer has a different type
3591   // from the type of the global (this happens with unions).
3592   if (!GV || GV->getType()->getElementType() != InitType ||
3593       GV->getType()->getAddressSpace() !=
3594           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3595 
3596     // Move the old entry aside so that we'll create a new one.
3597     Entry->setName(StringRef());
3598 
3599     // Make a new global with the correct type, this is now guaranteed to work.
3600     GV = cast<llvm::GlobalVariable>(
3601         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3602 
3603     // Replace all uses of the old global with the new global
3604     llvm::Constant *NewPtrForOldDecl =
3605         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3606     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3607 
3608     // Erase the old global, since it is no longer used.
3609     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3610   }
3611 
3612   MaybeHandleStaticInExternC(D, GV);
3613 
3614   if (D->hasAttr<AnnotateAttr>())
3615     AddGlobalAnnotations(D, GV);
3616 
3617   // Set the llvm linkage type as appropriate.
3618   llvm::GlobalValue::LinkageTypes Linkage =
3619       getLLVMLinkageVarDefinition(D, GV->isConstant());
3620 
3621   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3622   // the device. [...]"
3623   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3624   // __device__, declares a variable that: [...]
3625   // Is accessible from all the threads within the grid and from the host
3626   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3627   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3628   if (GV && LangOpts.CUDA) {
3629     if (LangOpts.CUDAIsDevice) {
3630       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3631         GV->setExternallyInitialized(true);
3632     } else {
3633       // Host-side shadows of external declarations of device-side
3634       // global variables become internal definitions. These have to
3635       // be internal in order to prevent name conflicts with global
3636       // host variables with the same name in a different TUs.
3637       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3638         Linkage = llvm::GlobalValue::InternalLinkage;
3639 
3640         // Shadow variables and their properties must be registered
3641         // with CUDA runtime.
3642         unsigned Flags = 0;
3643         if (!D->hasDefinition())
3644           Flags |= CGCUDARuntime::ExternDeviceVar;
3645         if (D->hasAttr<CUDAConstantAttr>())
3646           Flags |= CGCUDARuntime::ConstantDeviceVar;
3647         // Extern global variables will be registered in the TU where they are
3648         // defined.
3649         if (!D->hasExternalStorage())
3650           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3651       } else if (D->hasAttr<CUDASharedAttr>())
3652         // __shared__ variables are odd. Shadows do get created, but
3653         // they are not registered with the CUDA runtime, so they
3654         // can't really be used to access their device-side
3655         // counterparts. It's not clear yet whether it's nvcc's bug or
3656         // a feature, but we've got to do the same for compatibility.
3657         Linkage = llvm::GlobalValue::InternalLinkage;
3658     }
3659   }
3660 
3661   GV->setInitializer(Init);
3662   if (emitter) emitter->finalize(GV);
3663 
3664   // If it is safe to mark the global 'constant', do so now.
3665   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3666                   isTypeConstant(D->getType(), true));
3667 
3668   // If it is in a read-only section, mark it 'constant'.
3669   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3670     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3671     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3672       GV->setConstant(true);
3673   }
3674 
3675   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3676 
3677 
3678   // On Darwin, if the normal linkage of a C++ thread_local variable is
3679   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3680   // copies within a linkage unit; otherwise, the backing variable has
3681   // internal linkage and all accesses should just be calls to the
3682   // Itanium-specified entry point, which has the normal linkage of the
3683   // variable. This is to preserve the ability to change the implementation
3684   // behind the scenes.
3685   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3686       Context.getTargetInfo().getTriple().isOSDarwin() &&
3687       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3688       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3689     Linkage = llvm::GlobalValue::InternalLinkage;
3690 
3691   GV->setLinkage(Linkage);
3692   if (D->hasAttr<DLLImportAttr>())
3693     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3694   else if (D->hasAttr<DLLExportAttr>())
3695     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3696   else
3697     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3698 
3699   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3700     // common vars aren't constant even if declared const.
3701     GV->setConstant(false);
3702     // Tentative definition of global variables may be initialized with
3703     // non-zero null pointers. In this case they should have weak linkage
3704     // since common linkage must have zero initializer and must not have
3705     // explicit section therefore cannot have non-zero initial value.
3706     if (!GV->getInitializer()->isNullValue())
3707       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3708   }
3709 
3710   setNonAliasAttributes(D, GV);
3711 
3712   if (D->getTLSKind() && !GV->isThreadLocal()) {
3713     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3714       CXXThreadLocals.push_back(D);
3715     setTLSMode(GV, *D);
3716   }
3717 
3718   maybeSetTrivialComdat(*D, *GV);
3719 
3720   // Emit the initializer function if necessary.
3721   if (NeedsGlobalCtor || NeedsGlobalDtor)
3722     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3723 
3724   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3725 
3726   // Emit global variable debug information.
3727   if (CGDebugInfo *DI = getModuleDebugInfo())
3728     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3729       DI->EmitGlobalVariable(GV, D);
3730 }
3731 
3732 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3733                                       CodeGenModule &CGM, const VarDecl *D,
3734                                       bool NoCommon) {
3735   // Don't give variables common linkage if -fno-common was specified unless it
3736   // was overridden by a NoCommon attribute.
3737   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3738     return true;
3739 
3740   // C11 6.9.2/2:
3741   //   A declaration of an identifier for an object that has file scope without
3742   //   an initializer, and without a storage-class specifier or with the
3743   //   storage-class specifier static, constitutes a tentative definition.
3744   if (D->getInit() || D->hasExternalStorage())
3745     return true;
3746 
3747   // A variable cannot be both common and exist in a section.
3748   if (D->hasAttr<SectionAttr>())
3749     return true;
3750 
3751   // A variable cannot be both common and exist in a section.
3752   // We don't try to determine which is the right section in the front-end.
3753   // If no specialized section name is applicable, it will resort to default.
3754   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3755       D->hasAttr<PragmaClangDataSectionAttr>() ||
3756       D->hasAttr<PragmaClangRodataSectionAttr>())
3757     return true;
3758 
3759   // Thread local vars aren't considered common linkage.
3760   if (D->getTLSKind())
3761     return true;
3762 
3763   // Tentative definitions marked with WeakImportAttr are true definitions.
3764   if (D->hasAttr<WeakImportAttr>())
3765     return true;
3766 
3767   // A variable cannot be both common and exist in a comdat.
3768   if (shouldBeInCOMDAT(CGM, *D))
3769     return true;
3770 
3771   // Declarations with a required alignment do not have common linkage in MSVC
3772   // mode.
3773   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3774     if (D->hasAttr<AlignedAttr>())
3775       return true;
3776     QualType VarType = D->getType();
3777     if (Context.isAlignmentRequired(VarType))
3778       return true;
3779 
3780     if (const auto *RT = VarType->getAs<RecordType>()) {
3781       const RecordDecl *RD = RT->getDecl();
3782       for (const FieldDecl *FD : RD->fields()) {
3783         if (FD->isBitField())
3784           continue;
3785         if (FD->hasAttr<AlignedAttr>())
3786           return true;
3787         if (Context.isAlignmentRequired(FD->getType()))
3788           return true;
3789       }
3790     }
3791   }
3792 
3793   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
3794   // common symbols, so symbols with greater alignment requirements cannot be
3795   // common.
3796   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
3797   // alignments for common symbols via the aligncomm directive, so this
3798   // restriction only applies to MSVC environments.
3799   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
3800       Context.getTypeAlignIfKnown(D->getType()) >
3801           Context.toBits(CharUnits::fromQuantity(32)))
3802     return true;
3803 
3804   return false;
3805 }
3806 
3807 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3808     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3809   if (Linkage == GVA_Internal)
3810     return llvm::Function::InternalLinkage;
3811 
3812   if (D->hasAttr<WeakAttr>()) {
3813     if (IsConstantVariable)
3814       return llvm::GlobalVariable::WeakODRLinkage;
3815     else
3816       return llvm::GlobalVariable::WeakAnyLinkage;
3817   }
3818 
3819   if (const auto *FD = D->getAsFunction())
3820     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3821       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3822 
3823   // We are guaranteed to have a strong definition somewhere else,
3824   // so we can use available_externally linkage.
3825   if (Linkage == GVA_AvailableExternally)
3826     return llvm::GlobalValue::AvailableExternallyLinkage;
3827 
3828   // Note that Apple's kernel linker doesn't support symbol
3829   // coalescing, so we need to avoid linkonce and weak linkages there.
3830   // Normally, this means we just map to internal, but for explicit
3831   // instantiations we'll map to external.
3832 
3833   // In C++, the compiler has to emit a definition in every translation unit
3834   // that references the function.  We should use linkonce_odr because
3835   // a) if all references in this translation unit are optimized away, we
3836   // don't need to codegen it.  b) if the function persists, it needs to be
3837   // merged with other definitions. c) C++ has the ODR, so we know the
3838   // definition is dependable.
3839   if (Linkage == GVA_DiscardableODR)
3840     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3841                                             : llvm::Function::InternalLinkage;
3842 
3843   // An explicit instantiation of a template has weak linkage, since
3844   // explicit instantiations can occur in multiple translation units
3845   // and must all be equivalent. However, we are not allowed to
3846   // throw away these explicit instantiations.
3847   //
3848   // We don't currently support CUDA device code spread out across multiple TUs,
3849   // so say that CUDA templates are either external (for kernels) or internal.
3850   // This lets llvm perform aggressive inter-procedural optimizations.
3851   if (Linkage == GVA_StrongODR) {
3852     if (Context.getLangOpts().AppleKext)
3853       return llvm::Function::ExternalLinkage;
3854     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3855       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3856                                           : llvm::Function::InternalLinkage;
3857     return llvm::Function::WeakODRLinkage;
3858   }
3859 
3860   // C++ doesn't have tentative definitions and thus cannot have common
3861   // linkage.
3862   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3863       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3864                                  CodeGenOpts.NoCommon))
3865     return llvm::GlobalVariable::CommonLinkage;
3866 
3867   // selectany symbols are externally visible, so use weak instead of
3868   // linkonce.  MSVC optimizes away references to const selectany globals, so
3869   // all definitions should be the same and ODR linkage should be used.
3870   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3871   if (D->hasAttr<SelectAnyAttr>())
3872     return llvm::GlobalVariable::WeakODRLinkage;
3873 
3874   // Otherwise, we have strong external linkage.
3875   assert(Linkage == GVA_StrongExternal);
3876   return llvm::GlobalVariable::ExternalLinkage;
3877 }
3878 
3879 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3880     const VarDecl *VD, bool IsConstant) {
3881   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3882   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3883 }
3884 
3885 /// Replace the uses of a function that was declared with a non-proto type.
3886 /// We want to silently drop extra arguments from call sites
3887 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3888                                           llvm::Function *newFn) {
3889   // Fast path.
3890   if (old->use_empty()) return;
3891 
3892   llvm::Type *newRetTy = newFn->getReturnType();
3893   SmallVector<llvm::Value*, 4> newArgs;
3894   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3895 
3896   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3897          ui != ue; ) {
3898     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3899     llvm::User *user = use->getUser();
3900 
3901     // Recognize and replace uses of bitcasts.  Most calls to
3902     // unprototyped functions will use bitcasts.
3903     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3904       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3905         replaceUsesOfNonProtoConstant(bitcast, newFn);
3906       continue;
3907     }
3908 
3909     // Recognize calls to the function.
3910     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
3911     if (!callSite) continue;
3912     if (!callSite->isCallee(&*use))
3913       continue;
3914 
3915     // If the return types don't match exactly, then we can't
3916     // transform this call unless it's dead.
3917     if (callSite->getType() != newRetTy && !callSite->use_empty())
3918       continue;
3919 
3920     // Get the call site's attribute list.
3921     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3922     llvm::AttributeList oldAttrs = callSite->getAttributes();
3923 
3924     // If the function was passed too few arguments, don't transform.
3925     unsigned newNumArgs = newFn->arg_size();
3926     if (callSite->arg_size() < newNumArgs)
3927       continue;
3928 
3929     // If extra arguments were passed, we silently drop them.
3930     // If any of the types mismatch, we don't transform.
3931     unsigned argNo = 0;
3932     bool dontTransform = false;
3933     for (llvm::Argument &A : newFn->args()) {
3934       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
3935         dontTransform = true;
3936         break;
3937       }
3938 
3939       // Add any parameter attributes.
3940       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3941       argNo++;
3942     }
3943     if (dontTransform)
3944       continue;
3945 
3946     // Okay, we can transform this.  Create the new call instruction and copy
3947     // over the required information.
3948     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
3949 
3950     // Copy over any operand bundles.
3951     callSite->getOperandBundlesAsDefs(newBundles);
3952 
3953     llvm::CallBase *newCall;
3954     if (dyn_cast<llvm::CallInst>(callSite)) {
3955       newCall =
3956           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
3957     } else {
3958       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
3959       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
3960                                          oldInvoke->getUnwindDest(), newArgs,
3961                                          newBundles, "", callSite);
3962     }
3963     newArgs.clear(); // for the next iteration
3964 
3965     if (!newCall->getType()->isVoidTy())
3966       newCall->takeName(callSite);
3967     newCall->setAttributes(llvm::AttributeList::get(
3968         newFn->getContext(), oldAttrs.getFnAttributes(),
3969         oldAttrs.getRetAttributes(), newArgAttrs));
3970     newCall->setCallingConv(callSite->getCallingConv());
3971 
3972     // Finally, remove the old call, replacing any uses with the new one.
3973     if (!callSite->use_empty())
3974       callSite->replaceAllUsesWith(newCall);
3975 
3976     // Copy debug location attached to CI.
3977     if (callSite->getDebugLoc())
3978       newCall->setDebugLoc(callSite->getDebugLoc());
3979 
3980     callSite->eraseFromParent();
3981   }
3982 }
3983 
3984 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3985 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3986 /// existing call uses of the old function in the module, this adjusts them to
3987 /// call the new function directly.
3988 ///
3989 /// This is not just a cleanup: the always_inline pass requires direct calls to
3990 /// functions to be able to inline them.  If there is a bitcast in the way, it
3991 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3992 /// run at -O0.
3993 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3994                                                       llvm::Function *NewFn) {
3995   // If we're redefining a global as a function, don't transform it.
3996   if (!isa<llvm::Function>(Old)) return;
3997 
3998   replaceUsesOfNonProtoConstant(Old, NewFn);
3999 }
4000 
4001 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4002   auto DK = VD->isThisDeclarationADefinition();
4003   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4004     return;
4005 
4006   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4007   // If we have a definition, this might be a deferred decl. If the
4008   // instantiation is explicit, make sure we emit it at the end.
4009   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4010     GetAddrOfGlobalVar(VD);
4011 
4012   EmitTopLevelDecl(VD);
4013 }
4014 
4015 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4016                                                  llvm::GlobalValue *GV) {
4017   const auto *D = cast<FunctionDecl>(GD.getDecl());
4018 
4019   // Compute the function info and LLVM type.
4020   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4021   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4022 
4023   // Get or create the prototype for the function.
4024   if (!GV || (GV->getType()->getElementType() != Ty))
4025     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4026                                                    /*DontDefer=*/true,
4027                                                    ForDefinition));
4028 
4029   // Already emitted.
4030   if (!GV->isDeclaration())
4031     return;
4032 
4033   // We need to set linkage and visibility on the function before
4034   // generating code for it because various parts of IR generation
4035   // want to propagate this information down (e.g. to local static
4036   // declarations).
4037   auto *Fn = cast<llvm::Function>(GV);
4038   setFunctionLinkage(GD, Fn);
4039 
4040   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4041   setGVProperties(Fn, GD);
4042 
4043   MaybeHandleStaticInExternC(D, Fn);
4044 
4045 
4046   maybeSetTrivialComdat(*D, *Fn);
4047 
4048   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4049 
4050   setNonAliasAttributes(GD, Fn);
4051   SetLLVMFunctionAttributesForDefinition(D, Fn);
4052 
4053   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4054     AddGlobalCtor(Fn, CA->getPriority());
4055   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4056     AddGlobalDtor(Fn, DA->getPriority());
4057   if (D->hasAttr<AnnotateAttr>())
4058     AddGlobalAnnotations(D, Fn);
4059 }
4060 
4061 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4062   const auto *D = cast<ValueDecl>(GD.getDecl());
4063   const AliasAttr *AA = D->getAttr<AliasAttr>();
4064   assert(AA && "Not an alias?");
4065 
4066   StringRef MangledName = getMangledName(GD);
4067 
4068   if (AA->getAliasee() == MangledName) {
4069     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4070     return;
4071   }
4072 
4073   // If there is a definition in the module, then it wins over the alias.
4074   // This is dubious, but allow it to be safe.  Just ignore the alias.
4075   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4076   if (Entry && !Entry->isDeclaration())
4077     return;
4078 
4079   Aliases.push_back(GD);
4080 
4081   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4082 
4083   // Create a reference to the named value.  This ensures that it is emitted
4084   // if a deferred decl.
4085   llvm::Constant *Aliasee;
4086   if (isa<llvm::FunctionType>(DeclTy))
4087     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4088                                       /*ForVTable=*/false);
4089   else
4090     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4091                                     llvm::PointerType::getUnqual(DeclTy),
4092                                     /*D=*/nullptr);
4093 
4094   // Create the new alias itself, but don't set a name yet.
4095   auto *GA = llvm::GlobalAlias::create(
4096       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4097 
4098   if (Entry) {
4099     if (GA->getAliasee() == Entry) {
4100       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4101       return;
4102     }
4103 
4104     assert(Entry->isDeclaration());
4105 
4106     // If there is a declaration in the module, then we had an extern followed
4107     // by the alias, as in:
4108     //   extern int test6();
4109     //   ...
4110     //   int test6() __attribute__((alias("test7")));
4111     //
4112     // Remove it and replace uses of it with the alias.
4113     GA->takeName(Entry);
4114 
4115     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4116                                                           Entry->getType()));
4117     Entry->eraseFromParent();
4118   } else {
4119     GA->setName(MangledName);
4120   }
4121 
4122   // Set attributes which are particular to an alias; this is a
4123   // specialization of the attributes which may be set on a global
4124   // variable/function.
4125   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4126       D->isWeakImported()) {
4127     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4128   }
4129 
4130   if (const auto *VD = dyn_cast<VarDecl>(D))
4131     if (VD->getTLSKind())
4132       setTLSMode(GA, *VD);
4133 
4134   SetCommonAttributes(GD, GA);
4135 }
4136 
4137 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4138   const auto *D = cast<ValueDecl>(GD.getDecl());
4139   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4140   assert(IFA && "Not an ifunc?");
4141 
4142   StringRef MangledName = getMangledName(GD);
4143 
4144   if (IFA->getResolver() == MangledName) {
4145     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4146     return;
4147   }
4148 
4149   // Report an error if some definition overrides ifunc.
4150   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4151   if (Entry && !Entry->isDeclaration()) {
4152     GlobalDecl OtherGD;
4153     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4154         DiagnosedConflictingDefinitions.insert(GD).second) {
4155       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4156           << MangledName;
4157       Diags.Report(OtherGD.getDecl()->getLocation(),
4158                    diag::note_previous_definition);
4159     }
4160     return;
4161   }
4162 
4163   Aliases.push_back(GD);
4164 
4165   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4166   llvm::Constant *Resolver =
4167       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4168                               /*ForVTable=*/false);
4169   llvm::GlobalIFunc *GIF =
4170       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4171                                 "", Resolver, &getModule());
4172   if (Entry) {
4173     if (GIF->getResolver() == Entry) {
4174       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4175       return;
4176     }
4177     assert(Entry->isDeclaration());
4178 
4179     // If there is a declaration in the module, then we had an extern followed
4180     // by the ifunc, as in:
4181     //   extern int test();
4182     //   ...
4183     //   int test() __attribute__((ifunc("resolver")));
4184     //
4185     // Remove it and replace uses of it with the ifunc.
4186     GIF->takeName(Entry);
4187 
4188     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4189                                                           Entry->getType()));
4190     Entry->eraseFromParent();
4191   } else
4192     GIF->setName(MangledName);
4193 
4194   SetCommonAttributes(GD, GIF);
4195 }
4196 
4197 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4198                                             ArrayRef<llvm::Type*> Tys) {
4199   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4200                                          Tys);
4201 }
4202 
4203 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4204 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4205                          const StringLiteral *Literal, bool TargetIsLSB,
4206                          bool &IsUTF16, unsigned &StringLength) {
4207   StringRef String = Literal->getString();
4208   unsigned NumBytes = String.size();
4209 
4210   // Check for simple case.
4211   if (!Literal->containsNonAsciiOrNull()) {
4212     StringLength = NumBytes;
4213     return *Map.insert(std::make_pair(String, nullptr)).first;
4214   }
4215 
4216   // Otherwise, convert the UTF8 literals into a string of shorts.
4217   IsUTF16 = true;
4218 
4219   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4220   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4221   llvm::UTF16 *ToPtr = &ToBuf[0];
4222 
4223   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4224                                  ToPtr + NumBytes, llvm::strictConversion);
4225 
4226   // ConvertUTF8toUTF16 returns the length in ToPtr.
4227   StringLength = ToPtr - &ToBuf[0];
4228 
4229   // Add an explicit null.
4230   *ToPtr = 0;
4231   return *Map.insert(std::make_pair(
4232                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4233                                    (StringLength + 1) * 2),
4234                          nullptr)).first;
4235 }
4236 
4237 ConstantAddress
4238 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4239   unsigned StringLength = 0;
4240   bool isUTF16 = false;
4241   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4242       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4243                                getDataLayout().isLittleEndian(), isUTF16,
4244                                StringLength);
4245 
4246   if (auto *C = Entry.second)
4247     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4248 
4249   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4250   llvm::Constant *Zeros[] = { Zero, Zero };
4251 
4252   const ASTContext &Context = getContext();
4253   const llvm::Triple &Triple = getTriple();
4254 
4255   const auto CFRuntime = getLangOpts().CFRuntime;
4256   const bool IsSwiftABI =
4257       static_cast<unsigned>(CFRuntime) >=
4258       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4259   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4260 
4261   // If we don't already have it, get __CFConstantStringClassReference.
4262   if (!CFConstantStringClassRef) {
4263     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4264     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4265     Ty = llvm::ArrayType::get(Ty, 0);
4266 
4267     switch (CFRuntime) {
4268     default: break;
4269     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4270     case LangOptions::CoreFoundationABI::Swift5_0:
4271       CFConstantStringClassName =
4272           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4273                               : "$s10Foundation19_NSCFConstantStringCN";
4274       Ty = IntPtrTy;
4275       break;
4276     case LangOptions::CoreFoundationABI::Swift4_2:
4277       CFConstantStringClassName =
4278           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4279                               : "$S10Foundation19_NSCFConstantStringCN";
4280       Ty = IntPtrTy;
4281       break;
4282     case LangOptions::CoreFoundationABI::Swift4_1:
4283       CFConstantStringClassName =
4284           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4285                               : "__T010Foundation19_NSCFConstantStringCN";
4286       Ty = IntPtrTy;
4287       break;
4288     }
4289 
4290     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4291 
4292     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4293       llvm::GlobalValue *GV = nullptr;
4294 
4295       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4296         IdentifierInfo &II = Context.Idents.get(GV->getName());
4297         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4298         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4299 
4300         const VarDecl *VD = nullptr;
4301         for (const auto &Result : DC->lookup(&II))
4302           if ((VD = dyn_cast<VarDecl>(Result)))
4303             break;
4304 
4305         if (Triple.isOSBinFormatELF()) {
4306           if (!VD)
4307             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4308         } else {
4309           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4310           if (!VD || !VD->hasAttr<DLLExportAttr>())
4311             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4312           else
4313             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4314         }
4315 
4316         setDSOLocal(GV);
4317       }
4318     }
4319 
4320     // Decay array -> ptr
4321     CFConstantStringClassRef =
4322         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4323                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4324   }
4325 
4326   QualType CFTy = Context.getCFConstantStringType();
4327 
4328   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4329 
4330   ConstantInitBuilder Builder(*this);
4331   auto Fields = Builder.beginStruct(STy);
4332 
4333   // Class pointer.
4334   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4335 
4336   // Flags.
4337   if (IsSwiftABI) {
4338     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4339     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4340   } else {
4341     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4342   }
4343 
4344   // String pointer.
4345   llvm::Constant *C = nullptr;
4346   if (isUTF16) {
4347     auto Arr = llvm::makeArrayRef(
4348         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4349         Entry.first().size() / 2);
4350     C = llvm::ConstantDataArray::get(VMContext, Arr);
4351   } else {
4352     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4353   }
4354 
4355   // Note: -fwritable-strings doesn't make the backing store strings of
4356   // CFStrings writable. (See <rdar://problem/10657500>)
4357   auto *GV =
4358       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4359                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4360   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4361   // Don't enforce the target's minimum global alignment, since the only use
4362   // of the string is via this class initializer.
4363   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4364                             : Context.getTypeAlignInChars(Context.CharTy);
4365   GV->setAlignment(Align.getQuantity());
4366 
4367   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4368   // Without it LLVM can merge the string with a non unnamed_addr one during
4369   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4370   if (Triple.isOSBinFormatMachO())
4371     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4372                            : "__TEXT,__cstring,cstring_literals");
4373   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4374   // the static linker to adjust permissions to read-only later on.
4375   else if (Triple.isOSBinFormatELF())
4376     GV->setSection(".rodata");
4377 
4378   // String.
4379   llvm::Constant *Str =
4380       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4381 
4382   if (isUTF16)
4383     // Cast the UTF16 string to the correct type.
4384     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4385   Fields.add(Str);
4386 
4387   // String length.
4388   llvm::IntegerType *LengthTy =
4389       llvm::IntegerType::get(getModule().getContext(),
4390                              Context.getTargetInfo().getLongWidth());
4391   if (IsSwiftABI) {
4392     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4393         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4394       LengthTy = Int32Ty;
4395     else
4396       LengthTy = IntPtrTy;
4397   }
4398   Fields.addInt(LengthTy, StringLength);
4399 
4400   CharUnits Alignment = getPointerAlign();
4401 
4402   // The struct.
4403   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4404                                     /*isConstant=*/false,
4405                                     llvm::GlobalVariable::PrivateLinkage);
4406   switch (Triple.getObjectFormat()) {
4407   case llvm::Triple::UnknownObjectFormat:
4408     llvm_unreachable("unknown file format");
4409   case llvm::Triple::XCOFF:
4410     llvm_unreachable("XCOFF is not yet implemented");
4411   case llvm::Triple::COFF:
4412   case llvm::Triple::ELF:
4413   case llvm::Triple::Wasm:
4414     GV->setSection("cfstring");
4415     break;
4416   case llvm::Triple::MachO:
4417     GV->setSection("__DATA,__cfstring");
4418     break;
4419   }
4420   Entry.second = GV;
4421 
4422   return ConstantAddress(GV, Alignment);
4423 }
4424 
4425 bool CodeGenModule::getExpressionLocationsEnabled() const {
4426   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4427 }
4428 
4429 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4430   if (ObjCFastEnumerationStateType.isNull()) {
4431     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4432     D->startDefinition();
4433 
4434     QualType FieldTypes[] = {
4435       Context.UnsignedLongTy,
4436       Context.getPointerType(Context.getObjCIdType()),
4437       Context.getPointerType(Context.UnsignedLongTy),
4438       Context.getConstantArrayType(Context.UnsignedLongTy,
4439                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4440     };
4441 
4442     for (size_t i = 0; i < 4; ++i) {
4443       FieldDecl *Field = FieldDecl::Create(Context,
4444                                            D,
4445                                            SourceLocation(),
4446                                            SourceLocation(), nullptr,
4447                                            FieldTypes[i], /*TInfo=*/nullptr,
4448                                            /*BitWidth=*/nullptr,
4449                                            /*Mutable=*/false,
4450                                            ICIS_NoInit);
4451       Field->setAccess(AS_public);
4452       D->addDecl(Field);
4453     }
4454 
4455     D->completeDefinition();
4456     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4457   }
4458 
4459   return ObjCFastEnumerationStateType;
4460 }
4461 
4462 llvm::Constant *
4463 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4464   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4465 
4466   // Don't emit it as the address of the string, emit the string data itself
4467   // as an inline array.
4468   if (E->getCharByteWidth() == 1) {
4469     SmallString<64> Str(E->getString());
4470 
4471     // Resize the string to the right size, which is indicated by its type.
4472     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4473     Str.resize(CAT->getSize().getZExtValue());
4474     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4475   }
4476 
4477   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4478   llvm::Type *ElemTy = AType->getElementType();
4479   unsigned NumElements = AType->getNumElements();
4480 
4481   // Wide strings have either 2-byte or 4-byte elements.
4482   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4483     SmallVector<uint16_t, 32> Elements;
4484     Elements.reserve(NumElements);
4485 
4486     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4487       Elements.push_back(E->getCodeUnit(i));
4488     Elements.resize(NumElements);
4489     return llvm::ConstantDataArray::get(VMContext, Elements);
4490   }
4491 
4492   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4493   SmallVector<uint32_t, 32> Elements;
4494   Elements.reserve(NumElements);
4495 
4496   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4497     Elements.push_back(E->getCodeUnit(i));
4498   Elements.resize(NumElements);
4499   return llvm::ConstantDataArray::get(VMContext, Elements);
4500 }
4501 
4502 static llvm::GlobalVariable *
4503 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4504                       CodeGenModule &CGM, StringRef GlobalName,
4505                       CharUnits Alignment) {
4506   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4507       CGM.getStringLiteralAddressSpace());
4508 
4509   llvm::Module &M = CGM.getModule();
4510   // Create a global variable for this string
4511   auto *GV = new llvm::GlobalVariable(
4512       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4513       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4514   GV->setAlignment(Alignment.getQuantity());
4515   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4516   if (GV->isWeakForLinker()) {
4517     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4518     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4519   }
4520   CGM.setDSOLocal(GV);
4521 
4522   return GV;
4523 }
4524 
4525 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4526 /// constant array for the given string literal.
4527 ConstantAddress
4528 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4529                                                   StringRef Name) {
4530   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4531 
4532   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4533   llvm::GlobalVariable **Entry = nullptr;
4534   if (!LangOpts.WritableStrings) {
4535     Entry = &ConstantStringMap[C];
4536     if (auto GV = *Entry) {
4537       if (Alignment.getQuantity() > GV->getAlignment())
4538         GV->setAlignment(Alignment.getQuantity());
4539       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4540                              Alignment);
4541     }
4542   }
4543 
4544   SmallString<256> MangledNameBuffer;
4545   StringRef GlobalVariableName;
4546   llvm::GlobalValue::LinkageTypes LT;
4547 
4548   // Mangle the string literal if that's how the ABI merges duplicate strings.
4549   // Don't do it if they are writable, since we don't want writes in one TU to
4550   // affect strings in another.
4551   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4552       !LangOpts.WritableStrings) {
4553     llvm::raw_svector_ostream Out(MangledNameBuffer);
4554     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4555     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4556     GlobalVariableName = MangledNameBuffer;
4557   } else {
4558     LT = llvm::GlobalValue::PrivateLinkage;
4559     GlobalVariableName = Name;
4560   }
4561 
4562   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4563   if (Entry)
4564     *Entry = GV;
4565 
4566   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4567                                   QualType());
4568 
4569   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4570                          Alignment);
4571 }
4572 
4573 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4574 /// array for the given ObjCEncodeExpr node.
4575 ConstantAddress
4576 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4577   std::string Str;
4578   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4579 
4580   return GetAddrOfConstantCString(Str);
4581 }
4582 
4583 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4584 /// the literal and a terminating '\0' character.
4585 /// The result has pointer to array type.
4586 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4587     const std::string &Str, const char *GlobalName) {
4588   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4589   CharUnits Alignment =
4590     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4591 
4592   llvm::Constant *C =
4593       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4594 
4595   // Don't share any string literals if strings aren't constant.
4596   llvm::GlobalVariable **Entry = nullptr;
4597   if (!LangOpts.WritableStrings) {
4598     Entry = &ConstantStringMap[C];
4599     if (auto GV = *Entry) {
4600       if (Alignment.getQuantity() > GV->getAlignment())
4601         GV->setAlignment(Alignment.getQuantity());
4602       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4603                              Alignment);
4604     }
4605   }
4606 
4607   // Get the default prefix if a name wasn't specified.
4608   if (!GlobalName)
4609     GlobalName = ".str";
4610   // Create a global variable for this.
4611   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4612                                   GlobalName, Alignment);
4613   if (Entry)
4614     *Entry = GV;
4615 
4616   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4617                          Alignment);
4618 }
4619 
4620 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4621     const MaterializeTemporaryExpr *E, const Expr *Init) {
4622   assert((E->getStorageDuration() == SD_Static ||
4623           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4624   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4625 
4626   // If we're not materializing a subobject of the temporary, keep the
4627   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4628   QualType MaterializedType = Init->getType();
4629   if (Init == E->GetTemporaryExpr())
4630     MaterializedType = E->getType();
4631 
4632   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4633 
4634   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4635     return ConstantAddress(Slot, Align);
4636 
4637   // FIXME: If an externally-visible declaration extends multiple temporaries,
4638   // we need to give each temporary the same name in every translation unit (and
4639   // we also need to make the temporaries externally-visible).
4640   SmallString<256> Name;
4641   llvm::raw_svector_ostream Out(Name);
4642   getCXXABI().getMangleContext().mangleReferenceTemporary(
4643       VD, E->getManglingNumber(), Out);
4644 
4645   APValue *Value = nullptr;
4646   if (E->getStorageDuration() == SD_Static) {
4647     // We might have a cached constant initializer for this temporary. Note
4648     // that this might have a different value from the value computed by
4649     // evaluating the initializer if the surrounding constant expression
4650     // modifies the temporary.
4651     Value = getContext().getMaterializedTemporaryValue(E, false);
4652     if (Value && Value->isUninit())
4653       Value = nullptr;
4654   }
4655 
4656   // Try evaluating it now, it might have a constant initializer.
4657   Expr::EvalResult EvalResult;
4658   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4659       !EvalResult.hasSideEffects())
4660     Value = &EvalResult.Val;
4661 
4662   LangAS AddrSpace =
4663       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4664 
4665   Optional<ConstantEmitter> emitter;
4666   llvm::Constant *InitialValue = nullptr;
4667   bool Constant = false;
4668   llvm::Type *Type;
4669   if (Value) {
4670     // The temporary has a constant initializer, use it.
4671     emitter.emplace(*this);
4672     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4673                                                MaterializedType);
4674     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4675     Type = InitialValue->getType();
4676   } else {
4677     // No initializer, the initialization will be provided when we
4678     // initialize the declaration which performed lifetime extension.
4679     Type = getTypes().ConvertTypeForMem(MaterializedType);
4680   }
4681 
4682   // Create a global variable for this lifetime-extended temporary.
4683   llvm::GlobalValue::LinkageTypes Linkage =
4684       getLLVMLinkageVarDefinition(VD, Constant);
4685   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4686     const VarDecl *InitVD;
4687     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4688         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4689       // Temporaries defined inside a class get linkonce_odr linkage because the
4690       // class can be defined in multiple translation units.
4691       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4692     } else {
4693       // There is no need for this temporary to have external linkage if the
4694       // VarDecl has external linkage.
4695       Linkage = llvm::GlobalVariable::InternalLinkage;
4696     }
4697   }
4698   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4699   auto *GV = new llvm::GlobalVariable(
4700       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4701       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4702   if (emitter) emitter->finalize(GV);
4703   setGVProperties(GV, VD);
4704   GV->setAlignment(Align.getQuantity());
4705   if (supportsCOMDAT() && GV->isWeakForLinker())
4706     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4707   if (VD->getTLSKind())
4708     setTLSMode(GV, *VD);
4709   llvm::Constant *CV = GV;
4710   if (AddrSpace != LangAS::Default)
4711     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4712         *this, GV, AddrSpace, LangAS::Default,
4713         Type->getPointerTo(
4714             getContext().getTargetAddressSpace(LangAS::Default)));
4715   MaterializedGlobalTemporaryMap[E] = CV;
4716   return ConstantAddress(CV, Align);
4717 }
4718 
4719 /// EmitObjCPropertyImplementations - Emit information for synthesized
4720 /// properties for an implementation.
4721 void CodeGenModule::EmitObjCPropertyImplementations(const
4722                                                     ObjCImplementationDecl *D) {
4723   for (const auto *PID : D->property_impls()) {
4724     // Dynamic is just for type-checking.
4725     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4726       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4727 
4728       // Determine which methods need to be implemented, some may have
4729       // been overridden. Note that ::isPropertyAccessor is not the method
4730       // we want, that just indicates if the decl came from a
4731       // property. What we want to know is if the method is defined in
4732       // this implementation.
4733       if (!D->getInstanceMethod(PD->getGetterName()))
4734         CodeGenFunction(*this).GenerateObjCGetter(
4735                                  const_cast<ObjCImplementationDecl *>(D), PID);
4736       if (!PD->isReadOnly() &&
4737           !D->getInstanceMethod(PD->getSetterName()))
4738         CodeGenFunction(*this).GenerateObjCSetter(
4739                                  const_cast<ObjCImplementationDecl *>(D), PID);
4740     }
4741   }
4742 }
4743 
4744 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4745   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4746   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4747        ivar; ivar = ivar->getNextIvar())
4748     if (ivar->getType().isDestructedType())
4749       return true;
4750 
4751   return false;
4752 }
4753 
4754 static bool AllTrivialInitializers(CodeGenModule &CGM,
4755                                    ObjCImplementationDecl *D) {
4756   CodeGenFunction CGF(CGM);
4757   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4758        E = D->init_end(); B != E; ++B) {
4759     CXXCtorInitializer *CtorInitExp = *B;
4760     Expr *Init = CtorInitExp->getInit();
4761     if (!CGF.isTrivialInitializer(Init))
4762       return false;
4763   }
4764   return true;
4765 }
4766 
4767 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4768 /// for an implementation.
4769 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4770   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4771   if (needsDestructMethod(D)) {
4772     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4773     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4774     ObjCMethodDecl *DTORMethod =
4775       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4776                              cxxSelector, getContext().VoidTy, nullptr, D,
4777                              /*isInstance=*/true, /*isVariadic=*/false,
4778                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4779                              /*isDefined=*/false, ObjCMethodDecl::Required);
4780     D->addInstanceMethod(DTORMethod);
4781     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4782     D->setHasDestructors(true);
4783   }
4784 
4785   // If the implementation doesn't have any ivar initializers, we don't need
4786   // a .cxx_construct.
4787   if (D->getNumIvarInitializers() == 0 ||
4788       AllTrivialInitializers(*this, D))
4789     return;
4790 
4791   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4792   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4793   // The constructor returns 'self'.
4794   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4795                                                 D->getLocation(),
4796                                                 D->getLocation(),
4797                                                 cxxSelector,
4798                                                 getContext().getObjCIdType(),
4799                                                 nullptr, D, /*isInstance=*/true,
4800                                                 /*isVariadic=*/false,
4801                                                 /*isPropertyAccessor=*/true,
4802                                                 /*isImplicitlyDeclared=*/true,
4803                                                 /*isDefined=*/false,
4804                                                 ObjCMethodDecl::Required);
4805   D->addInstanceMethod(CTORMethod);
4806   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4807   D->setHasNonZeroConstructors(true);
4808 }
4809 
4810 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4811 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4812   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4813       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4814     ErrorUnsupported(LSD, "linkage spec");
4815     return;
4816   }
4817 
4818   EmitDeclContext(LSD);
4819 }
4820 
4821 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4822   for (auto *I : DC->decls()) {
4823     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4824     // are themselves considered "top-level", so EmitTopLevelDecl on an
4825     // ObjCImplDecl does not recursively visit them. We need to do that in
4826     // case they're nested inside another construct (LinkageSpecDecl /
4827     // ExportDecl) that does stop them from being considered "top-level".
4828     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4829       for (auto *M : OID->methods())
4830         EmitTopLevelDecl(M);
4831     }
4832 
4833     EmitTopLevelDecl(I);
4834   }
4835 }
4836 
4837 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4838 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4839   // Ignore dependent declarations.
4840   if (D->isTemplated())
4841     return;
4842 
4843   switch (D->getKind()) {
4844   case Decl::CXXConversion:
4845   case Decl::CXXMethod:
4846   case Decl::Function:
4847     EmitGlobal(cast<FunctionDecl>(D));
4848     // Always provide some coverage mapping
4849     // even for the functions that aren't emitted.
4850     AddDeferredUnusedCoverageMapping(D);
4851     break;
4852 
4853   case Decl::CXXDeductionGuide:
4854     // Function-like, but does not result in code emission.
4855     break;
4856 
4857   case Decl::Var:
4858   case Decl::Decomposition:
4859   case Decl::VarTemplateSpecialization:
4860     EmitGlobal(cast<VarDecl>(D));
4861     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4862       for (auto *B : DD->bindings())
4863         if (auto *HD = B->getHoldingVar())
4864           EmitGlobal(HD);
4865     break;
4866 
4867   // Indirect fields from global anonymous structs and unions can be
4868   // ignored; only the actual variable requires IR gen support.
4869   case Decl::IndirectField:
4870     break;
4871 
4872   // C++ Decls
4873   case Decl::Namespace:
4874     EmitDeclContext(cast<NamespaceDecl>(D));
4875     break;
4876   case Decl::ClassTemplateSpecialization: {
4877     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4878     if (DebugInfo &&
4879         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4880         Spec->hasDefinition())
4881       DebugInfo->completeTemplateDefinition(*Spec);
4882   } LLVM_FALLTHROUGH;
4883   case Decl::CXXRecord:
4884     if (DebugInfo) {
4885       if (auto *ES = D->getASTContext().getExternalSource())
4886         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4887           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4888     }
4889     // Emit any static data members, they may be definitions.
4890     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4891       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4892         EmitTopLevelDecl(I);
4893     break;
4894     // No code generation needed.
4895   case Decl::UsingShadow:
4896   case Decl::ClassTemplate:
4897   case Decl::VarTemplate:
4898   case Decl::VarTemplatePartialSpecialization:
4899   case Decl::FunctionTemplate:
4900   case Decl::TypeAliasTemplate:
4901   case Decl::Block:
4902   case Decl::Empty:
4903   case Decl::Binding:
4904     break;
4905   case Decl::Using:          // using X; [C++]
4906     if (CGDebugInfo *DI = getModuleDebugInfo())
4907         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4908     return;
4909   case Decl::NamespaceAlias:
4910     if (CGDebugInfo *DI = getModuleDebugInfo())
4911         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4912     return;
4913   case Decl::UsingDirective: // using namespace X; [C++]
4914     if (CGDebugInfo *DI = getModuleDebugInfo())
4915       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4916     return;
4917   case Decl::CXXConstructor:
4918     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4919     break;
4920   case Decl::CXXDestructor:
4921     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4922     break;
4923 
4924   case Decl::StaticAssert:
4925     // Nothing to do.
4926     break;
4927 
4928   // Objective-C Decls
4929 
4930   // Forward declarations, no (immediate) code generation.
4931   case Decl::ObjCInterface:
4932   case Decl::ObjCCategory:
4933     break;
4934 
4935   case Decl::ObjCProtocol: {
4936     auto *Proto = cast<ObjCProtocolDecl>(D);
4937     if (Proto->isThisDeclarationADefinition())
4938       ObjCRuntime->GenerateProtocol(Proto);
4939     break;
4940   }
4941 
4942   case Decl::ObjCCategoryImpl:
4943     // Categories have properties but don't support synthesize so we
4944     // can ignore them here.
4945     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4946     break;
4947 
4948   case Decl::ObjCImplementation: {
4949     auto *OMD = cast<ObjCImplementationDecl>(D);
4950     EmitObjCPropertyImplementations(OMD);
4951     EmitObjCIvarInitializations(OMD);
4952     ObjCRuntime->GenerateClass(OMD);
4953     // Emit global variable debug information.
4954     if (CGDebugInfo *DI = getModuleDebugInfo())
4955       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4956         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4957             OMD->getClassInterface()), OMD->getLocation());
4958     break;
4959   }
4960   case Decl::ObjCMethod: {
4961     auto *OMD = cast<ObjCMethodDecl>(D);
4962     // If this is not a prototype, emit the body.
4963     if (OMD->getBody())
4964       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4965     break;
4966   }
4967   case Decl::ObjCCompatibleAlias:
4968     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4969     break;
4970 
4971   case Decl::PragmaComment: {
4972     const auto *PCD = cast<PragmaCommentDecl>(D);
4973     switch (PCD->getCommentKind()) {
4974     case PCK_Unknown:
4975       llvm_unreachable("unexpected pragma comment kind");
4976     case PCK_Linker:
4977       AppendLinkerOptions(PCD->getArg());
4978       break;
4979     case PCK_Lib:
4980       if (getTarget().getTriple().isOSBinFormatELF() &&
4981           !getTarget().getTriple().isPS4())
4982         AddELFLibDirective(PCD->getArg());
4983       else
4984         AddDependentLib(PCD->getArg());
4985       break;
4986     case PCK_Compiler:
4987     case PCK_ExeStr:
4988     case PCK_User:
4989       break; // We ignore all of these.
4990     }
4991     break;
4992   }
4993 
4994   case Decl::PragmaDetectMismatch: {
4995     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4996     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4997     break;
4998   }
4999 
5000   case Decl::LinkageSpec:
5001     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5002     break;
5003 
5004   case Decl::FileScopeAsm: {
5005     // File-scope asm is ignored during device-side CUDA compilation.
5006     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5007       break;
5008     // File-scope asm is ignored during device-side OpenMP compilation.
5009     if (LangOpts.OpenMPIsDevice)
5010       break;
5011     auto *AD = cast<FileScopeAsmDecl>(D);
5012     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5013     break;
5014   }
5015 
5016   case Decl::Import: {
5017     auto *Import = cast<ImportDecl>(D);
5018 
5019     // If we've already imported this module, we're done.
5020     if (!ImportedModules.insert(Import->getImportedModule()))
5021       break;
5022 
5023     // Emit debug information for direct imports.
5024     if (!Import->getImportedOwningModule()) {
5025       if (CGDebugInfo *DI = getModuleDebugInfo())
5026         DI->EmitImportDecl(*Import);
5027     }
5028 
5029     // Find all of the submodules and emit the module initializers.
5030     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5031     SmallVector<clang::Module *, 16> Stack;
5032     Visited.insert(Import->getImportedModule());
5033     Stack.push_back(Import->getImportedModule());
5034 
5035     while (!Stack.empty()) {
5036       clang::Module *Mod = Stack.pop_back_val();
5037       if (!EmittedModuleInitializers.insert(Mod).second)
5038         continue;
5039 
5040       for (auto *D : Context.getModuleInitializers(Mod))
5041         EmitTopLevelDecl(D);
5042 
5043       // Visit the submodules of this module.
5044       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5045                                              SubEnd = Mod->submodule_end();
5046            Sub != SubEnd; ++Sub) {
5047         // Skip explicit children; they need to be explicitly imported to emit
5048         // the initializers.
5049         if ((*Sub)->IsExplicit)
5050           continue;
5051 
5052         if (Visited.insert(*Sub).second)
5053           Stack.push_back(*Sub);
5054       }
5055     }
5056     break;
5057   }
5058 
5059   case Decl::Export:
5060     EmitDeclContext(cast<ExportDecl>(D));
5061     break;
5062 
5063   case Decl::OMPThreadPrivate:
5064     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5065     break;
5066 
5067   case Decl::OMPAllocate:
5068     break;
5069 
5070   case Decl::OMPDeclareReduction:
5071     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5072     break;
5073 
5074   case Decl::OMPDeclareMapper:
5075     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5076     break;
5077 
5078   case Decl::OMPRequires:
5079     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5080     break;
5081 
5082   default:
5083     // Make sure we handled everything we should, every other kind is a
5084     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5085     // function. Need to recode Decl::Kind to do that easily.
5086     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5087     break;
5088   }
5089 }
5090 
5091 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5092   // Do we need to generate coverage mapping?
5093   if (!CodeGenOpts.CoverageMapping)
5094     return;
5095   switch (D->getKind()) {
5096   case Decl::CXXConversion:
5097   case Decl::CXXMethod:
5098   case Decl::Function:
5099   case Decl::ObjCMethod:
5100   case Decl::CXXConstructor:
5101   case Decl::CXXDestructor: {
5102     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5103       return;
5104     SourceManager &SM = getContext().getSourceManager();
5105     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5106       return;
5107     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5108     if (I == DeferredEmptyCoverageMappingDecls.end())
5109       DeferredEmptyCoverageMappingDecls[D] = true;
5110     break;
5111   }
5112   default:
5113     break;
5114   };
5115 }
5116 
5117 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5118   // Do we need to generate coverage mapping?
5119   if (!CodeGenOpts.CoverageMapping)
5120     return;
5121   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5122     if (Fn->isTemplateInstantiation())
5123       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5124   }
5125   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5126   if (I == DeferredEmptyCoverageMappingDecls.end())
5127     DeferredEmptyCoverageMappingDecls[D] = false;
5128   else
5129     I->second = false;
5130 }
5131 
5132 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5133   // We call takeVector() here to avoid use-after-free.
5134   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5135   // we deserialize function bodies to emit coverage info for them, and that
5136   // deserializes more declarations. How should we handle that case?
5137   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5138     if (!Entry.second)
5139       continue;
5140     const Decl *D = Entry.first;
5141     switch (D->getKind()) {
5142     case Decl::CXXConversion:
5143     case Decl::CXXMethod:
5144     case Decl::Function:
5145     case Decl::ObjCMethod: {
5146       CodeGenPGO PGO(*this);
5147       GlobalDecl GD(cast<FunctionDecl>(D));
5148       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5149                                   getFunctionLinkage(GD));
5150       break;
5151     }
5152     case Decl::CXXConstructor: {
5153       CodeGenPGO PGO(*this);
5154       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5155       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5156                                   getFunctionLinkage(GD));
5157       break;
5158     }
5159     case Decl::CXXDestructor: {
5160       CodeGenPGO PGO(*this);
5161       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5162       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5163                                   getFunctionLinkage(GD));
5164       break;
5165     }
5166     default:
5167       break;
5168     };
5169   }
5170 }
5171 
5172 /// Turns the given pointer into a constant.
5173 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5174                                           const void *Ptr) {
5175   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5176   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5177   return llvm::ConstantInt::get(i64, PtrInt);
5178 }
5179 
5180 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5181                                    llvm::NamedMDNode *&GlobalMetadata,
5182                                    GlobalDecl D,
5183                                    llvm::GlobalValue *Addr) {
5184   if (!GlobalMetadata)
5185     GlobalMetadata =
5186       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5187 
5188   // TODO: should we report variant information for ctors/dtors?
5189   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5190                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5191                                CGM.getLLVMContext(), D.getDecl()))};
5192   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5193 }
5194 
5195 /// For each function which is declared within an extern "C" region and marked
5196 /// as 'used', but has internal linkage, create an alias from the unmangled
5197 /// name to the mangled name if possible. People expect to be able to refer
5198 /// to such functions with an unmangled name from inline assembly within the
5199 /// same translation unit.
5200 void CodeGenModule::EmitStaticExternCAliases() {
5201   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5202     return;
5203   for (auto &I : StaticExternCValues) {
5204     IdentifierInfo *Name = I.first;
5205     llvm::GlobalValue *Val = I.second;
5206     if (Val && !getModule().getNamedValue(Name->getName()))
5207       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5208   }
5209 }
5210 
5211 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5212                                              GlobalDecl &Result) const {
5213   auto Res = Manglings.find(MangledName);
5214   if (Res == Manglings.end())
5215     return false;
5216   Result = Res->getValue();
5217   return true;
5218 }
5219 
5220 /// Emits metadata nodes associating all the global values in the
5221 /// current module with the Decls they came from.  This is useful for
5222 /// projects using IR gen as a subroutine.
5223 ///
5224 /// Since there's currently no way to associate an MDNode directly
5225 /// with an llvm::GlobalValue, we create a global named metadata
5226 /// with the name 'clang.global.decl.ptrs'.
5227 void CodeGenModule::EmitDeclMetadata() {
5228   llvm::NamedMDNode *GlobalMetadata = nullptr;
5229 
5230   for (auto &I : MangledDeclNames) {
5231     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5232     // Some mangled names don't necessarily have an associated GlobalValue
5233     // in this module, e.g. if we mangled it for DebugInfo.
5234     if (Addr)
5235       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5236   }
5237 }
5238 
5239 /// Emits metadata nodes for all the local variables in the current
5240 /// function.
5241 void CodeGenFunction::EmitDeclMetadata() {
5242   if (LocalDeclMap.empty()) return;
5243 
5244   llvm::LLVMContext &Context = getLLVMContext();
5245 
5246   // Find the unique metadata ID for this name.
5247   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5248 
5249   llvm::NamedMDNode *GlobalMetadata = nullptr;
5250 
5251   for (auto &I : LocalDeclMap) {
5252     const Decl *D = I.first;
5253     llvm::Value *Addr = I.second.getPointer();
5254     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5255       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5256       Alloca->setMetadata(
5257           DeclPtrKind, llvm::MDNode::get(
5258                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5259     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5260       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5261       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5262     }
5263   }
5264 }
5265 
5266 void CodeGenModule::EmitVersionIdentMetadata() {
5267   llvm::NamedMDNode *IdentMetadata =
5268     TheModule.getOrInsertNamedMetadata("llvm.ident");
5269   std::string Version = getClangFullVersion();
5270   llvm::LLVMContext &Ctx = TheModule.getContext();
5271 
5272   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5273   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5274 }
5275 
5276 void CodeGenModule::EmitCommandLineMetadata() {
5277   llvm::NamedMDNode *CommandLineMetadata =
5278     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5279   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5280   llvm::LLVMContext &Ctx = TheModule.getContext();
5281 
5282   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5283   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5284 }
5285 
5286 void CodeGenModule::EmitTargetMetadata() {
5287   // Warning, new MangledDeclNames may be appended within this loop.
5288   // We rely on MapVector insertions adding new elements to the end
5289   // of the container.
5290   // FIXME: Move this loop into the one target that needs it, and only
5291   // loop over those declarations for which we couldn't emit the target
5292   // metadata when we emitted the declaration.
5293   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5294     auto Val = *(MangledDeclNames.begin() + I);
5295     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5296     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5297     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5298   }
5299 }
5300 
5301 void CodeGenModule::EmitCoverageFile() {
5302   if (getCodeGenOpts().CoverageDataFile.empty() &&
5303       getCodeGenOpts().CoverageNotesFile.empty())
5304     return;
5305 
5306   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5307   if (!CUNode)
5308     return;
5309 
5310   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5311   llvm::LLVMContext &Ctx = TheModule.getContext();
5312   auto *CoverageDataFile =
5313       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5314   auto *CoverageNotesFile =
5315       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5316   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5317     llvm::MDNode *CU = CUNode->getOperand(i);
5318     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5319     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5320   }
5321 }
5322 
5323 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5324   // Sema has checked that all uuid strings are of the form
5325   // "12345678-1234-1234-1234-1234567890ab".
5326   assert(Uuid.size() == 36);
5327   for (unsigned i = 0; i < 36; ++i) {
5328     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5329     else                                         assert(isHexDigit(Uuid[i]));
5330   }
5331 
5332   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5333   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5334 
5335   llvm::Constant *Field3[8];
5336   for (unsigned Idx = 0; Idx < 8; ++Idx)
5337     Field3[Idx] = llvm::ConstantInt::get(
5338         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5339 
5340   llvm::Constant *Fields[4] = {
5341     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5342     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5343     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5344     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5345   };
5346 
5347   return llvm::ConstantStruct::getAnon(Fields);
5348 }
5349 
5350 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5351                                                        bool ForEH) {
5352   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5353   // FIXME: should we even be calling this method if RTTI is disabled
5354   // and it's not for EH?
5355   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5356     return llvm::Constant::getNullValue(Int8PtrTy);
5357 
5358   if (ForEH && Ty->isObjCObjectPointerType() &&
5359       LangOpts.ObjCRuntime.isGNUFamily())
5360     return ObjCRuntime->GetEHType(Ty);
5361 
5362   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5363 }
5364 
5365 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5366   // Do not emit threadprivates in simd-only mode.
5367   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5368     return;
5369   for (auto RefExpr : D->varlists()) {
5370     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5371     bool PerformInit =
5372         VD->getAnyInitializer() &&
5373         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5374                                                         /*ForRef=*/false);
5375 
5376     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5377     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5378             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5379       CXXGlobalInits.push_back(InitFunction);
5380   }
5381 }
5382 
5383 llvm::Metadata *
5384 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5385                                             StringRef Suffix) {
5386   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5387   if (InternalId)
5388     return InternalId;
5389 
5390   if (isExternallyVisible(T->getLinkage())) {
5391     std::string OutName;
5392     llvm::raw_string_ostream Out(OutName);
5393     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5394     Out << Suffix;
5395 
5396     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5397   } else {
5398     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5399                                            llvm::ArrayRef<llvm::Metadata *>());
5400   }
5401 
5402   return InternalId;
5403 }
5404 
5405 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5406   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5407 }
5408 
5409 llvm::Metadata *
5410 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5411   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5412 }
5413 
5414 // Generalize pointer types to a void pointer with the qualifiers of the
5415 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5416 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5417 // 'void *'.
5418 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5419   if (!Ty->isPointerType())
5420     return Ty;
5421 
5422   return Ctx.getPointerType(
5423       QualType(Ctx.VoidTy).withCVRQualifiers(
5424           Ty->getPointeeType().getCVRQualifiers()));
5425 }
5426 
5427 // Apply type generalization to a FunctionType's return and argument types
5428 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5429   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5430     SmallVector<QualType, 8> GeneralizedParams;
5431     for (auto &Param : FnType->param_types())
5432       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5433 
5434     return Ctx.getFunctionType(
5435         GeneralizeType(Ctx, FnType->getReturnType()),
5436         GeneralizedParams, FnType->getExtProtoInfo());
5437   }
5438 
5439   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5440     return Ctx.getFunctionNoProtoType(
5441         GeneralizeType(Ctx, FnType->getReturnType()));
5442 
5443   llvm_unreachable("Encountered unknown FunctionType");
5444 }
5445 
5446 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5447   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5448                                       GeneralizedMetadataIdMap, ".generalized");
5449 }
5450 
5451 /// Returns whether this module needs the "all-vtables" type identifier.
5452 bool CodeGenModule::NeedAllVtablesTypeId() const {
5453   // Returns true if at least one of vtable-based CFI checkers is enabled and
5454   // is not in the trapping mode.
5455   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5456            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5457           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5458            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5459           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5460            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5461           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5462            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5463 }
5464 
5465 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5466                                           CharUnits Offset,
5467                                           const CXXRecordDecl *RD) {
5468   llvm::Metadata *MD =
5469       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5470   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5471 
5472   if (CodeGenOpts.SanitizeCfiCrossDso)
5473     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5474       VTable->addTypeMetadata(Offset.getQuantity(),
5475                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5476 
5477   if (NeedAllVtablesTypeId()) {
5478     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5479     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5480   }
5481 }
5482 
5483 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5484   assert(TD != nullptr);
5485   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5486 
5487   ParsedAttr.Features.erase(
5488       llvm::remove_if(ParsedAttr.Features,
5489                       [&](const std::string &Feat) {
5490                         return !Target.isValidFeatureName(
5491                             StringRef{Feat}.substr(1));
5492                       }),
5493       ParsedAttr.Features.end());
5494   return ParsedAttr;
5495 }
5496 
5497 
5498 // Fills in the supplied string map with the set of target features for the
5499 // passed in function.
5500 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5501                                           GlobalDecl GD) {
5502   StringRef TargetCPU = Target.getTargetOpts().CPU;
5503   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5504   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5505     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5506 
5507     // Make a copy of the features as passed on the command line into the
5508     // beginning of the additional features from the function to override.
5509     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5510                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5511                             Target.getTargetOpts().FeaturesAsWritten.end());
5512 
5513     if (ParsedAttr.Architecture != "" &&
5514         Target.isValidCPUName(ParsedAttr.Architecture))
5515       TargetCPU = ParsedAttr.Architecture;
5516 
5517     // Now populate the feature map, first with the TargetCPU which is either
5518     // the default or a new one from the target attribute string. Then we'll use
5519     // the passed in features (FeaturesAsWritten) along with the new ones from
5520     // the attribute.
5521     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5522                           ParsedAttr.Features);
5523   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5524     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5525     Target.getCPUSpecificCPUDispatchFeatures(
5526         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5527     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5528     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5529   } else {
5530     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5531                           Target.getTargetOpts().Features);
5532   }
5533 }
5534 
5535 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5536   if (!SanStats)
5537     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5538 
5539   return *SanStats;
5540 }
5541 llvm::Value *
5542 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5543                                                   CodeGenFunction &CGF) {
5544   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5545   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5546   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5547   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5548                                 "__translate_sampler_initializer"),
5549                                 {C});
5550 }
5551