xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9ffe5a352559434c6abb04639cea57f504767293)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "ConstantBuilder.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecordLayout.h"
37 #include "clang/AST/RecursiveASTVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114 
115   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
116   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
117 
118   if (LangOpts.ObjC1)
119     createObjCRuntime();
120   if (LangOpts.OpenCL)
121     createOpenCLRuntime();
122   if (LangOpts.OpenMP)
123     createOpenMPRuntime();
124   if (LangOpts.CUDA)
125     createCUDARuntime();
126 
127   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
128   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
129       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
130     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
131                                getCXXABI().getMangleContext()));
132 
133   // If debug info or coverage generation is enabled, create the CGDebugInfo
134   // object.
135   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
136       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
137     DebugInfo.reset(new CGDebugInfo(*this));
138 
139   Block.GlobalUniqueCount = 0;
140 
141   if (C.getLangOpts().ObjC1)
142     ObjCData.reset(new ObjCEntrypoints());
143 
144   if (CodeGenOpts.hasProfileClangUse()) {
145     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
146         CodeGenOpts.ProfileInstrumentUsePath);
147     if (auto E = ReaderOrErr.takeError()) {
148       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
149                                               "Could not read profile %0: %1");
150       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
151         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
152                                   << EI.message();
153       });
154     } else
155       PGOReader = std::move(ReaderOrErr.get());
156   }
157 
158   // If coverage mapping generation is enabled, create the
159   // CoverageMappingModuleGen object.
160   if (CodeGenOpts.CoverageMapping)
161     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
162 }
163 
164 CodeGenModule::~CodeGenModule() {}
165 
166 void CodeGenModule::createObjCRuntime() {
167   // This is just isGNUFamily(), but we want to force implementors of
168   // new ABIs to decide how best to do this.
169   switch (LangOpts.ObjCRuntime.getKind()) {
170   case ObjCRuntime::GNUstep:
171   case ObjCRuntime::GCC:
172   case ObjCRuntime::ObjFW:
173     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
174     return;
175 
176   case ObjCRuntime::FragileMacOSX:
177   case ObjCRuntime::MacOSX:
178   case ObjCRuntime::iOS:
179   case ObjCRuntime::WatchOS:
180     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
181     return;
182   }
183   llvm_unreachable("bad runtime kind");
184 }
185 
186 void CodeGenModule::createOpenCLRuntime() {
187   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
188 }
189 
190 void CodeGenModule::createOpenMPRuntime() {
191   // Select a specialized code generation class based on the target, if any.
192   // If it does not exist use the default implementation.
193   switch (getTriple().getArch()) {
194   case llvm::Triple::nvptx:
195   case llvm::Triple::nvptx64:
196     assert(getLangOpts().OpenMPIsDevice &&
197            "OpenMP NVPTX is only prepared to deal with device code.");
198     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
199     break;
200   default:
201     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
202     break;
203   }
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime.reset(CreateNVCUDARuntime(*this));
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
239                                                        NewF);
240     }
241     OldF->eraseFromParent();
242   }
243 }
244 
245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
246   GlobalValReplacements.push_back(std::make_pair(GV, C));
247 }
248 
249 void CodeGenModule::applyGlobalValReplacements() {
250   for (auto &I : GlobalValReplacements) {
251     llvm::GlobalValue *GV = I.first;
252     llvm::Constant *C = I.second;
253 
254     GV->replaceAllUsesWith(C);
255     GV->eraseFromParent();
256   }
257 }
258 
259 // This is only used in aliases that we created and we know they have a
260 // linear structure.
261 static const llvm::GlobalObject *getAliasedGlobal(
262     const llvm::GlobalIndirectSymbol &GIS) {
263   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
264   const llvm::Constant *C = &GIS;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
271     if (!GIS2)
272       return nullptr;
273     if (!Visited.insert(GIS2).second)
274       return nullptr;
275     C = GIS2->getIndirectSymbol();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     SourceLocation Location;
288     bool IsIFunc = D->hasAttr<IFuncAttr>();
289     if (const Attr *A = D->getDefiningAttr())
290       Location = A->getLocation();
291     else
292       llvm_unreachable("Not an alias or ifunc?");
293     StringRef MangledName = getMangledName(GD);
294     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
295     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
296     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
297     if (!GV) {
298       Error = true;
299       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
300     } else if (GV->isDeclaration()) {
301       Error = true;
302       Diags.Report(Location, diag::err_alias_to_undefined)
303           << IsIFunc << IsIFunc;
304     } else if (IsIFunc) {
305       // Check resolver function type.
306       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
307           GV->getType()->getPointerElementType());
308       assert(FTy);
309       if (!FTy->getReturnType()->isPointerTy())
310         Diags.Report(Location, diag::err_ifunc_resolver_return);
311       if (FTy->getNumParams())
312         Diags.Report(Location, diag::err_ifunc_resolver_params);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection << IsIFunc << IsIFunc;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
335       if (GA->isInterposable()) {
336         Diags.Report(Location, diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName() << IsIFunc;
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getIndirectSymbol(), Alias->getType());
340         Alias->setIndirectSymbol(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
399     if (PGOStats.hasDiagnostics())
400       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
401   }
402   EmitCtorList(GlobalCtors, "llvm.global_ctors");
403   EmitCtorList(GlobalDtors, "llvm.global_dtors");
404   EmitGlobalAnnotations();
405   EmitStaticExternCAliases();
406   EmitDeferredUnusedCoverageMappings();
407   if (CoverageMapping)
408     CoverageMapping->emit();
409   if (CodeGenOpts.SanitizeCfiCrossDso)
410     CodeGenFunction(*this).EmitCfiCheckFail();
411   emitLLVMUsed();
412   if (SanStats)
413     SanStats->finish();
414 
415   if (CodeGenOpts.Autolink &&
416       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
417     EmitModuleLinkOptions();
418   }
419   if (CodeGenOpts.DwarfVersion) {
420     // We actually want the latest version when there are conflicts.
421     // We can change from Warning to Latest if such mode is supported.
422     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
423                               CodeGenOpts.DwarfVersion);
424   }
425   if (CodeGenOpts.EmitCodeView) {
426     // Indicate that we want CodeView in the metadata.
427     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
428   }
429   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
430     // We don't support LTO with 2 with different StrictVTablePointers
431     // FIXME: we could support it by stripping all the information introduced
432     // by StrictVTablePointers.
433 
434     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
435 
436     llvm::Metadata *Ops[2] = {
437               llvm::MDString::get(VMContext, "StrictVTablePointers"),
438               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
439                   llvm::Type::getInt32Ty(VMContext), 1))};
440 
441     getModule().addModuleFlag(llvm::Module::Require,
442                               "StrictVTablePointersRequirement",
443                               llvm::MDNode::get(VMContext, Ops));
444   }
445   if (DebugInfo)
446     // We support a single version in the linked module. The LLVM
447     // parser will drop debug info with a different version number
448     // (and warn about it, too).
449     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
450                               llvm::DEBUG_METADATA_VERSION);
451 
452   // We need to record the widths of enums and wchar_t, so that we can generate
453   // the correct build attributes in the ARM backend.
454   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
455   if (   Arch == llvm::Triple::arm
456       || Arch == llvm::Triple::armeb
457       || Arch == llvm::Triple::thumb
458       || Arch == llvm::Triple::thumbeb) {
459     // Width of wchar_t in bytes
460     uint64_t WCharWidth =
461         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
462     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
463 
464     // The minimum width of an enum in bytes
465     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
466     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
467   }
468 
469   if (CodeGenOpts.SanitizeCfiCrossDso) {
470     // Indicate that we want cross-DSO control flow integrity checks.
471     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
472   }
473 
474   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
475     // Indicate whether __nvvm_reflect should be configured to flush denormal
476     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
477     // property.)
478     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
479                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
480   }
481 
482   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
483     assert(PLevel < 3 && "Invalid PIC Level");
484     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
485     if (Context.getLangOpts().PIE)
486       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
487   }
488 
489   SimplifyPersonality();
490 
491   if (getCodeGenOpts().EmitDeclMetadata)
492     EmitDeclMetadata();
493 
494   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
495     EmitCoverageFile();
496 
497   if (DebugInfo)
498     DebugInfo->finalize();
499 
500   EmitVersionIdentMetadata();
501 
502   EmitTargetMetadata();
503 }
504 
505 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
506   // Make sure that this type is translated.
507   Types.UpdateCompletedType(TD);
508 }
509 
510 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
511   // Make sure that this type is translated.
512   Types.RefreshTypeCacheForClass(RD);
513 }
514 
515 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
516   if (!TBAA)
517     return nullptr;
518   return TBAA->getTBAAInfo(QTy);
519 }
520 
521 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
522   if (!TBAA)
523     return nullptr;
524   return TBAA->getTBAAInfoForVTablePtr();
525 }
526 
527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
528   if (!TBAA)
529     return nullptr;
530   return TBAA->getTBAAStructInfo(QTy);
531 }
532 
533 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
534                                                   llvm::MDNode *AccessN,
535                                                   uint64_t O) {
536   if (!TBAA)
537     return nullptr;
538   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
539 }
540 
541 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
542 /// and struct-path aware TBAA, the tag has the same format:
543 /// base type, access type and offset.
544 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
545 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
546                                                 llvm::MDNode *TBAAInfo,
547                                                 bool ConvertTypeToTag) {
548   if (ConvertTypeToTag && TBAA)
549     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
550                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
551   else
552     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
553 }
554 
555 void CodeGenModule::DecorateInstructionWithInvariantGroup(
556     llvm::Instruction *I, const CXXRecordDecl *RD) {
557   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
558   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
559   // Check if we have to wrap MDString in MDNode.
560   if (!MetaDataNode)
561     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
562   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
563 }
564 
565 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
566   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
567   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
568 }
569 
570 /// ErrorUnsupported - Print out an error that codegen doesn't support the
571 /// specified stmt yet.
572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
573   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
574                                                "cannot compile this %0 yet");
575   std::string Msg = Type;
576   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
577     << Msg << S->getSourceRange();
578 }
579 
580 /// ErrorUnsupported - Print out an error that codegen doesn't support the
581 /// specified decl yet.
582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
583   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
584                                                "cannot compile this %0 yet");
585   std::string Msg = Type;
586   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
587 }
588 
589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
590   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
591 }
592 
593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
594                                         const NamedDecl *D) const {
595   // Internal definitions always have default visibility.
596   if (GV->hasLocalLinkage()) {
597     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
598     return;
599   }
600 
601   // Set visibility for definitions.
602   LinkageInfo LV = D->getLinkageAndVisibility();
603   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
604     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
605 }
606 
607 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
608   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
609       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
610       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
611       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
612       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
613 }
614 
615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
616     CodeGenOptions::TLSModel M) {
617   switch (M) {
618   case CodeGenOptions::GeneralDynamicTLSModel:
619     return llvm::GlobalVariable::GeneralDynamicTLSModel;
620   case CodeGenOptions::LocalDynamicTLSModel:
621     return llvm::GlobalVariable::LocalDynamicTLSModel;
622   case CodeGenOptions::InitialExecTLSModel:
623     return llvm::GlobalVariable::InitialExecTLSModel;
624   case CodeGenOptions::LocalExecTLSModel:
625     return llvm::GlobalVariable::LocalExecTLSModel;
626   }
627   llvm_unreachable("Invalid TLS model!");
628 }
629 
630 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
631   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
632 
633   llvm::GlobalValue::ThreadLocalMode TLM;
634   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
635 
636   // Override the TLS model if it is explicitly specified.
637   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
638     TLM = GetLLVMTLSModel(Attr->getModel());
639   }
640 
641   GV->setThreadLocalMode(TLM);
642 }
643 
644 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
645   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
646 
647   // Some ABIs don't have constructor variants.  Make sure that base and
648   // complete constructors get mangled the same.
649   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
650     if (!getTarget().getCXXABI().hasConstructorVariants()) {
651       CXXCtorType OrigCtorType = GD.getCtorType();
652       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
653       if (OrigCtorType == Ctor_Base)
654         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
655     }
656   }
657 
658   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
659   if (!FoundStr.empty())
660     return FoundStr;
661 
662   const auto *ND = cast<NamedDecl>(GD.getDecl());
663   SmallString<256> Buffer;
664   StringRef Str;
665   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
666     llvm::raw_svector_ostream Out(Buffer);
667     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
668       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
669     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
670       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
671     else
672       getCXXABI().getMangleContext().mangleName(ND, Out);
673     Str = Out.str();
674   } else {
675     IdentifierInfo *II = ND->getIdentifier();
676     assert(II && "Attempt to mangle unnamed decl.");
677     const auto *FD = dyn_cast<FunctionDecl>(ND);
678 
679     if (FD &&
680         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
681       llvm::raw_svector_ostream Out(Buffer);
682       Out << "__regcall3__" << II->getName();
683       Str = Out.str();
684     } else {
685       Str = II->getName();
686     }
687   }
688 
689   // Keep the first result in the case of a mangling collision.
690   auto Result = Manglings.insert(std::make_pair(Str, GD));
691   return FoundStr = Result.first->first();
692 }
693 
694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
695                                              const BlockDecl *BD) {
696   MangleContext &MangleCtx = getCXXABI().getMangleContext();
697   const Decl *D = GD.getDecl();
698 
699   SmallString<256> Buffer;
700   llvm::raw_svector_ostream Out(Buffer);
701   if (!D)
702     MangleCtx.mangleGlobalBlock(BD,
703       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
704   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
705     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
706   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
707     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
708   else
709     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
710 
711   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
712   return Result.first->first();
713 }
714 
715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
716   return getModule().getNamedValue(Name);
717 }
718 
719 /// AddGlobalCtor - Add a function to the list that will be called before
720 /// main() runs.
721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
722                                   llvm::Constant *AssociatedData) {
723   // FIXME: Type coercion of void()* types.
724   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
725 }
726 
727 /// AddGlobalDtor - Add a function to the list that will be called
728 /// when the module is unloaded.
729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
730   // FIXME: Type coercion of void()* types.
731   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
732 }
733 
734 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
735   if (Fns.empty()) return;
736 
737   // Ctor function type is void()*.
738   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
739   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
740 
741   // Get the type of a ctor entry, { i32, void ()*, i8* }.
742   llvm::StructType *CtorStructTy = llvm::StructType::get(
743       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
744 
745   // Construct the constructor and destructor arrays.
746   ConstantInitBuilder builder(*this);
747   auto ctors = builder.beginArray(CtorStructTy);
748   for (const auto &I : Fns) {
749     auto ctor = ctors.beginStruct(CtorStructTy);
750     ctor.addInt(Int32Ty, I.Priority);
751     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
752     if (I.AssociatedData)
753       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
754     else
755       ctor.addNullPointer(VoidPtrTy);
756     ctor.finishAndAddTo(ctors);
757   }
758 
759   auto list =
760     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
761                                 /*constant*/ false,
762                                 llvm::GlobalValue::AppendingLinkage);
763 
764   // The LTO linker doesn't seem to like it when we set an alignment
765   // on appending variables.  Take it off as a workaround.
766   list->setAlignment(0);
767 
768   Fns.clear();
769 }
770 
771 llvm::GlobalValue::LinkageTypes
772 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
773   const auto *D = cast<FunctionDecl>(GD.getDecl());
774 
775   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
776 
777   if (isa<CXXDestructorDecl>(D) &&
778       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
779                                          GD.getDtorType())) {
780     // Destructor variants in the Microsoft C++ ABI are always internal or
781     // linkonce_odr thunks emitted on an as-needed basis.
782     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
783                                    : llvm::GlobalValue::LinkOnceODRLinkage;
784   }
785 
786   if (isa<CXXConstructorDecl>(D) &&
787       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
788       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
789     // Our approach to inheriting constructors is fundamentally different from
790     // that used by the MS ABI, so keep our inheriting constructor thunks
791     // internal rather than trying to pick an unambiguous mangling for them.
792     return llvm::GlobalValue::InternalLinkage;
793   }
794 
795   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
796 }
797 
798 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
799   const auto *FD = cast<FunctionDecl>(GD.getDecl());
800 
801   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
802     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
803       // Don't dllexport/import destructor thunks.
804       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
805       return;
806     }
807   }
808 
809   if (FD->hasAttr<DLLImportAttr>())
810     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
811   else if (FD->hasAttr<DLLExportAttr>())
812     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
813   else
814     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
815 }
816 
817 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
818   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
819   if (!MDS) return nullptr;
820 
821   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
822 }
823 
824 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
825                                                     llvm::Function *F) {
826   setNonAliasAttributes(D, F);
827 }
828 
829 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
830                                               const CGFunctionInfo &Info,
831                                               llvm::Function *F) {
832   unsigned CallingConv;
833   AttributeListType AttributeList;
834   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
835                          false);
836   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
837   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
838 }
839 
840 /// Determines whether the language options require us to model
841 /// unwind exceptions.  We treat -fexceptions as mandating this
842 /// except under the fragile ObjC ABI with only ObjC exceptions
843 /// enabled.  This means, for example, that C with -fexceptions
844 /// enables this.
845 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
846   // If exceptions are completely disabled, obviously this is false.
847   if (!LangOpts.Exceptions) return false;
848 
849   // If C++ exceptions are enabled, this is true.
850   if (LangOpts.CXXExceptions) return true;
851 
852   // If ObjC exceptions are enabled, this depends on the ABI.
853   if (LangOpts.ObjCExceptions) {
854     return LangOpts.ObjCRuntime.hasUnwindExceptions();
855   }
856 
857   return true;
858 }
859 
860 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
861                                                            llvm::Function *F) {
862   llvm::AttrBuilder B;
863 
864   if (CodeGenOpts.UnwindTables)
865     B.addAttribute(llvm::Attribute::UWTable);
866 
867   if (!hasUnwindExceptions(LangOpts))
868     B.addAttribute(llvm::Attribute::NoUnwind);
869 
870   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
871     B.addAttribute(llvm::Attribute::StackProtect);
872   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
873     B.addAttribute(llvm::Attribute::StackProtectStrong);
874   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
875     B.addAttribute(llvm::Attribute::StackProtectReq);
876 
877   if (!D) {
878     // If we don't have a declaration to control inlining, the function isn't
879     // explicitly marked as alwaysinline for semantic reasons, and inlining is
880     // disabled, mark the function as noinline.
881     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
882         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
883       B.addAttribute(llvm::Attribute::NoInline);
884 
885     F->addAttributes(llvm::AttributeSet::FunctionIndex,
886                      llvm::AttributeSet::get(
887                          F->getContext(),
888                          llvm::AttributeSet::FunctionIndex, B));
889     return;
890   }
891 
892   if (D->hasAttr<OptimizeNoneAttr>()) {
893     B.addAttribute(llvm::Attribute::OptimizeNone);
894 
895     // OptimizeNone implies noinline; we should not be inlining such functions.
896     B.addAttribute(llvm::Attribute::NoInline);
897     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
898            "OptimizeNone and AlwaysInline on same function!");
899 
900     // We still need to handle naked functions even though optnone subsumes
901     // much of their semantics.
902     if (D->hasAttr<NakedAttr>())
903       B.addAttribute(llvm::Attribute::Naked);
904 
905     // OptimizeNone wins over OptimizeForSize and MinSize.
906     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
907     F->removeFnAttr(llvm::Attribute::MinSize);
908   } else if (D->hasAttr<NakedAttr>()) {
909     // Naked implies noinline: we should not be inlining such functions.
910     B.addAttribute(llvm::Attribute::Naked);
911     B.addAttribute(llvm::Attribute::NoInline);
912   } else if (D->hasAttr<NoDuplicateAttr>()) {
913     B.addAttribute(llvm::Attribute::NoDuplicate);
914   } else if (D->hasAttr<NoInlineAttr>()) {
915     B.addAttribute(llvm::Attribute::NoInline);
916   } else if (D->hasAttr<AlwaysInlineAttr>() &&
917              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
918     // (noinline wins over always_inline, and we can't specify both in IR)
919     B.addAttribute(llvm::Attribute::AlwaysInline);
920   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
921     // If we're not inlining, then force everything that isn't always_inline to
922     // carry an explicit noinline attribute.
923     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
924       B.addAttribute(llvm::Attribute::NoInline);
925   } else {
926     // Otherwise, propagate the inline hint attribute and potentially use its
927     // absence to mark things as noinline.
928     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
929       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
930             return Redecl->isInlineSpecified();
931           })) {
932         B.addAttribute(llvm::Attribute::InlineHint);
933       } else if (CodeGenOpts.getInlining() ==
934                      CodeGenOptions::OnlyHintInlining &&
935                  !FD->isInlined() &&
936                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
937         B.addAttribute(llvm::Attribute::NoInline);
938       }
939     }
940   }
941 
942   // Add other optimization related attributes if we are optimizing this
943   // function.
944   if (!D->hasAttr<OptimizeNoneAttr>()) {
945     if (D->hasAttr<ColdAttr>()) {
946       B.addAttribute(llvm::Attribute::OptimizeForSize);
947       B.addAttribute(llvm::Attribute::Cold);
948     }
949 
950     if (D->hasAttr<MinSizeAttr>())
951       B.addAttribute(llvm::Attribute::MinSize);
952   }
953 
954   F->addAttributes(llvm::AttributeSet::FunctionIndex,
955                    llvm::AttributeSet::get(
956                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
957 
958   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
959   if (alignment)
960     F->setAlignment(alignment);
961 
962   // Some C++ ABIs require 2-byte alignment for member functions, in order to
963   // reserve a bit for differentiating between virtual and non-virtual member
964   // functions. If the current target's C++ ABI requires this and this is a
965   // member function, set its alignment accordingly.
966   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
967     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
968       F->setAlignment(2);
969   }
970 
971   // In the cross-dso CFI mode, we want !type attributes on definitions only.
972   if (CodeGenOpts.SanitizeCfiCrossDso)
973     if (auto *FD = dyn_cast<FunctionDecl>(D))
974       CreateFunctionTypeMetadata(FD, F);
975 }
976 
977 void CodeGenModule::SetCommonAttributes(const Decl *D,
978                                         llvm::GlobalValue *GV) {
979   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
980     setGlobalVisibility(GV, ND);
981   else
982     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
983 
984   if (D && D->hasAttr<UsedAttr>())
985     addUsedGlobal(GV);
986 }
987 
988 void CodeGenModule::setAliasAttributes(const Decl *D,
989                                        llvm::GlobalValue *GV) {
990   SetCommonAttributes(D, GV);
991 
992   // Process the dllexport attribute based on whether the original definition
993   // (not necessarily the aliasee) was exported.
994   if (D->hasAttr<DLLExportAttr>())
995     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
996 }
997 
998 void CodeGenModule::setNonAliasAttributes(const Decl *D,
999                                           llvm::GlobalObject *GO) {
1000   SetCommonAttributes(D, GO);
1001 
1002   if (D)
1003     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1004       GO->setSection(SA->getName());
1005 
1006   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1007 }
1008 
1009 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1010                                                   llvm::Function *F,
1011                                                   const CGFunctionInfo &FI) {
1012   SetLLVMFunctionAttributes(D, FI, F);
1013   SetLLVMFunctionAttributesForDefinition(D, F);
1014 
1015   F->setLinkage(llvm::Function::InternalLinkage);
1016 
1017   setNonAliasAttributes(D, F);
1018 }
1019 
1020 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1021                                          const NamedDecl *ND) {
1022   // Set linkage and visibility in case we never see a definition.
1023   LinkageInfo LV = ND->getLinkageAndVisibility();
1024   if (LV.getLinkage() != ExternalLinkage) {
1025     // Don't set internal linkage on declarations.
1026   } else {
1027     if (ND->hasAttr<DLLImportAttr>()) {
1028       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1029       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1030     } else if (ND->hasAttr<DLLExportAttr>()) {
1031       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1032       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1033     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1034       // "extern_weak" is overloaded in LLVM; we probably should have
1035       // separate linkage types for this.
1036       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1037     }
1038 
1039     // Set visibility on a declaration only if it's explicit.
1040     if (LV.isVisibilityExplicit())
1041       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1042   }
1043 }
1044 
1045 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1046                                                llvm::Function *F) {
1047   // Only if we are checking indirect calls.
1048   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1049     return;
1050 
1051   // Non-static class methods are handled via vtable pointer checks elsewhere.
1052   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1053     return;
1054 
1055   // Additionally, if building with cross-DSO support...
1056   if (CodeGenOpts.SanitizeCfiCrossDso) {
1057     // Skip available_externally functions. They won't be codegen'ed in the
1058     // current module anyway.
1059     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1060       return;
1061   }
1062 
1063   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1064   F->addTypeMetadata(0, MD);
1065 
1066   // Emit a hash-based bit set entry for cross-DSO calls.
1067   if (CodeGenOpts.SanitizeCfiCrossDso)
1068     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1069       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1070 }
1071 
1072 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1073                                           bool IsIncompleteFunction,
1074                                           bool IsThunk) {
1075   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1076     // If this is an intrinsic function, set the function's attributes
1077     // to the intrinsic's attributes.
1078     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1079     return;
1080   }
1081 
1082   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1083 
1084   if (!IsIncompleteFunction)
1085     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1086 
1087   // Add the Returned attribute for "this", except for iOS 5 and earlier
1088   // where substantial code, including the libstdc++ dylib, was compiled with
1089   // GCC and does not actually return "this".
1090   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1091       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1092     assert(!F->arg_empty() &&
1093            F->arg_begin()->getType()
1094              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1095            "unexpected this return");
1096     F->addAttribute(1, llvm::Attribute::Returned);
1097   }
1098 
1099   // Only a few attributes are set on declarations; these may later be
1100   // overridden by a definition.
1101 
1102   setLinkageAndVisibilityForGV(F, FD);
1103 
1104   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1105     F->setSection(SA->getName());
1106 
1107   if (FD->isReplaceableGlobalAllocationFunction()) {
1108     // A replaceable global allocation function does not act like a builtin by
1109     // default, only if it is invoked by a new-expression or delete-expression.
1110     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1111                     llvm::Attribute::NoBuiltin);
1112 
1113     // A sane operator new returns a non-aliasing pointer.
1114     // FIXME: Also add NonNull attribute to the return value
1115     // for the non-nothrow forms?
1116     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1117     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1118         (Kind == OO_New || Kind == OO_Array_New))
1119       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1120                       llvm::Attribute::NoAlias);
1121   }
1122 
1123   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1124     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1125   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1126     if (MD->isVirtual())
1127       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1128 
1129   // Don't emit entries for function declarations in the cross-DSO mode. This
1130   // is handled with better precision by the receiving DSO.
1131   if (!CodeGenOpts.SanitizeCfiCrossDso)
1132     CreateFunctionTypeMetadata(FD, F);
1133 }
1134 
1135 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1136   assert(!GV->isDeclaration() &&
1137          "Only globals with definition can force usage.");
1138   LLVMUsed.emplace_back(GV);
1139 }
1140 
1141 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1142   assert(!GV->isDeclaration() &&
1143          "Only globals with definition can force usage.");
1144   LLVMCompilerUsed.emplace_back(GV);
1145 }
1146 
1147 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1148                      std::vector<llvm::WeakVH> &List) {
1149   // Don't create llvm.used if there is no need.
1150   if (List.empty())
1151     return;
1152 
1153   // Convert List to what ConstantArray needs.
1154   SmallVector<llvm::Constant*, 8> UsedArray;
1155   UsedArray.resize(List.size());
1156   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1157     UsedArray[i] =
1158         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1159             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1160   }
1161 
1162   if (UsedArray.empty())
1163     return;
1164   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1165 
1166   auto *GV = new llvm::GlobalVariable(
1167       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1168       llvm::ConstantArray::get(ATy, UsedArray), Name);
1169 
1170   GV->setSection("llvm.metadata");
1171 }
1172 
1173 void CodeGenModule::emitLLVMUsed() {
1174   emitUsed(*this, "llvm.used", LLVMUsed);
1175   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1176 }
1177 
1178 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1179   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1180   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1181 }
1182 
1183 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1184   llvm::SmallString<32> Opt;
1185   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1186   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1187   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1188 }
1189 
1190 void CodeGenModule::AddDependentLib(StringRef Lib) {
1191   llvm::SmallString<24> Opt;
1192   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1193   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1194   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1195 }
1196 
1197 /// \brief Add link options implied by the given module, including modules
1198 /// it depends on, using a postorder walk.
1199 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1200                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1201                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1202   // Import this module's parent.
1203   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1204     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1205   }
1206 
1207   // Import this module's dependencies.
1208   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1209     if (Visited.insert(Mod->Imports[I - 1]).second)
1210       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1211   }
1212 
1213   // Add linker options to link against the libraries/frameworks
1214   // described by this module.
1215   llvm::LLVMContext &Context = CGM.getLLVMContext();
1216   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1217     // Link against a framework.  Frameworks are currently Darwin only, so we
1218     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1219     if (Mod->LinkLibraries[I-1].IsFramework) {
1220       llvm::Metadata *Args[2] = {
1221           llvm::MDString::get(Context, "-framework"),
1222           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1223 
1224       Metadata.push_back(llvm::MDNode::get(Context, Args));
1225       continue;
1226     }
1227 
1228     // Link against a library.
1229     llvm::SmallString<24> Opt;
1230     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1231       Mod->LinkLibraries[I-1].Library, Opt);
1232     auto *OptString = llvm::MDString::get(Context, Opt);
1233     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1234   }
1235 }
1236 
1237 void CodeGenModule::EmitModuleLinkOptions() {
1238   // Collect the set of all of the modules we want to visit to emit link
1239   // options, which is essentially the imported modules and all of their
1240   // non-explicit child modules.
1241   llvm::SetVector<clang::Module *> LinkModules;
1242   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1243   SmallVector<clang::Module *, 16> Stack;
1244 
1245   // Seed the stack with imported modules.
1246   for (Module *M : ImportedModules) {
1247     // Do not add any link flags when an implementation TU of a module imports
1248     // a header of that same module.
1249     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1250         !getLangOpts().isCompilingModule())
1251       continue;
1252     if (Visited.insert(M).second)
1253       Stack.push_back(M);
1254   }
1255 
1256   // Find all of the modules to import, making a little effort to prune
1257   // non-leaf modules.
1258   while (!Stack.empty()) {
1259     clang::Module *Mod = Stack.pop_back_val();
1260 
1261     bool AnyChildren = false;
1262 
1263     // Visit the submodules of this module.
1264     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1265                                         SubEnd = Mod->submodule_end();
1266          Sub != SubEnd; ++Sub) {
1267       // Skip explicit children; they need to be explicitly imported to be
1268       // linked against.
1269       if ((*Sub)->IsExplicit)
1270         continue;
1271 
1272       if (Visited.insert(*Sub).second) {
1273         Stack.push_back(*Sub);
1274         AnyChildren = true;
1275       }
1276     }
1277 
1278     // We didn't find any children, so add this module to the list of
1279     // modules to link against.
1280     if (!AnyChildren) {
1281       LinkModules.insert(Mod);
1282     }
1283   }
1284 
1285   // Add link options for all of the imported modules in reverse topological
1286   // order.  We don't do anything to try to order import link flags with respect
1287   // to linker options inserted by things like #pragma comment().
1288   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1289   Visited.clear();
1290   for (Module *M : LinkModules)
1291     if (Visited.insert(M).second)
1292       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1293   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1294   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1295 
1296   // Add the linker options metadata flag.
1297   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1298                             llvm::MDNode::get(getLLVMContext(),
1299                                               LinkerOptionsMetadata));
1300 }
1301 
1302 void CodeGenModule::EmitDeferred() {
1303   // Emit code for any potentially referenced deferred decls.  Since a
1304   // previously unused static decl may become used during the generation of code
1305   // for a static function, iterate until no changes are made.
1306 
1307   if (!DeferredVTables.empty()) {
1308     EmitDeferredVTables();
1309 
1310     // Emitting a vtable doesn't directly cause more vtables to
1311     // become deferred, although it can cause functions to be
1312     // emitted that then need those vtables.
1313     assert(DeferredVTables.empty());
1314   }
1315 
1316   // Stop if we're out of both deferred vtables and deferred declarations.
1317   if (DeferredDeclsToEmit.empty())
1318     return;
1319 
1320   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1321   // work, it will not interfere with this.
1322   std::vector<DeferredGlobal> CurDeclsToEmit;
1323   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1324 
1325   for (DeferredGlobal &G : CurDeclsToEmit) {
1326     GlobalDecl D = G.GD;
1327     G.GV = nullptr;
1328 
1329     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1330     // to get GlobalValue with exactly the type we need, not something that
1331     // might had been created for another decl with the same mangled name but
1332     // different type.
1333     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1334         GetAddrOfGlobal(D, ForDefinition));
1335 
1336     // In case of different address spaces, we may still get a cast, even with
1337     // IsForDefinition equal to true. Query mangled names table to get
1338     // GlobalValue.
1339     if (!GV)
1340       GV = GetGlobalValue(getMangledName(D));
1341 
1342     // Make sure GetGlobalValue returned non-null.
1343     assert(GV);
1344 
1345     // Check to see if we've already emitted this.  This is necessary
1346     // for a couple of reasons: first, decls can end up in the
1347     // deferred-decls queue multiple times, and second, decls can end
1348     // up with definitions in unusual ways (e.g. by an extern inline
1349     // function acquiring a strong function redefinition).  Just
1350     // ignore these cases.
1351     if (!GV->isDeclaration())
1352       continue;
1353 
1354     // Otherwise, emit the definition and move on to the next one.
1355     EmitGlobalDefinition(D, GV);
1356 
1357     // If we found out that we need to emit more decls, do that recursively.
1358     // This has the advantage that the decls are emitted in a DFS and related
1359     // ones are close together, which is convenient for testing.
1360     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1361       EmitDeferred();
1362       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1363     }
1364   }
1365 }
1366 
1367 void CodeGenModule::EmitGlobalAnnotations() {
1368   if (Annotations.empty())
1369     return;
1370 
1371   // Create a new global variable for the ConstantStruct in the Module.
1372   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1373     Annotations[0]->getType(), Annotations.size()), Annotations);
1374   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1375                                       llvm::GlobalValue::AppendingLinkage,
1376                                       Array, "llvm.global.annotations");
1377   gv->setSection(AnnotationSection);
1378 }
1379 
1380 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1381   llvm::Constant *&AStr = AnnotationStrings[Str];
1382   if (AStr)
1383     return AStr;
1384 
1385   // Not found yet, create a new global.
1386   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1387   auto *gv =
1388       new llvm::GlobalVariable(getModule(), s->getType(), true,
1389                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1390   gv->setSection(AnnotationSection);
1391   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1392   AStr = gv;
1393   return gv;
1394 }
1395 
1396 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1397   SourceManager &SM = getContext().getSourceManager();
1398   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1399   if (PLoc.isValid())
1400     return EmitAnnotationString(PLoc.getFilename());
1401   return EmitAnnotationString(SM.getBufferName(Loc));
1402 }
1403 
1404 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1405   SourceManager &SM = getContext().getSourceManager();
1406   PresumedLoc PLoc = SM.getPresumedLoc(L);
1407   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1408     SM.getExpansionLineNumber(L);
1409   return llvm::ConstantInt::get(Int32Ty, LineNo);
1410 }
1411 
1412 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1413                                                 const AnnotateAttr *AA,
1414                                                 SourceLocation L) {
1415   // Get the globals for file name, annotation, and the line number.
1416   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1417                  *UnitGV = EmitAnnotationUnit(L),
1418                  *LineNoCst = EmitAnnotationLineNo(L);
1419 
1420   // Create the ConstantStruct for the global annotation.
1421   llvm::Constant *Fields[4] = {
1422     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1423     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1424     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1425     LineNoCst
1426   };
1427   return llvm::ConstantStruct::getAnon(Fields);
1428 }
1429 
1430 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1431                                          llvm::GlobalValue *GV) {
1432   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1433   // Get the struct elements for these annotations.
1434   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1435     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1436 }
1437 
1438 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1439                                            SourceLocation Loc) const {
1440   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1441   // Blacklist by function name.
1442   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1443     return true;
1444   // Blacklist by location.
1445   if (Loc.isValid())
1446     return SanitizerBL.isBlacklistedLocation(Loc);
1447   // If location is unknown, this may be a compiler-generated function. Assume
1448   // it's located in the main file.
1449   auto &SM = Context.getSourceManager();
1450   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1451     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1452   }
1453   return false;
1454 }
1455 
1456 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1457                                            SourceLocation Loc, QualType Ty,
1458                                            StringRef Category) const {
1459   // For now globals can be blacklisted only in ASan and KASan.
1460   if (!LangOpts.Sanitize.hasOneOf(
1461           SanitizerKind::Address | SanitizerKind::KernelAddress))
1462     return false;
1463   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1464   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1465     return true;
1466   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1467     return true;
1468   // Check global type.
1469   if (!Ty.isNull()) {
1470     // Drill down the array types: if global variable of a fixed type is
1471     // blacklisted, we also don't instrument arrays of them.
1472     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1473       Ty = AT->getElementType();
1474     Ty = Ty.getCanonicalType().getUnqualifiedType();
1475     // We allow to blacklist only record types (classes, structs etc.)
1476     if (Ty->isRecordType()) {
1477       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1478       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1479         return true;
1480     }
1481   }
1482   return false;
1483 }
1484 
1485 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1486   // Never defer when EmitAllDecls is specified.
1487   if (LangOpts.EmitAllDecls)
1488     return true;
1489 
1490   return getContext().DeclMustBeEmitted(Global);
1491 }
1492 
1493 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1494   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1495     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1496       // Implicit template instantiations may change linkage if they are later
1497       // explicitly instantiated, so they should not be emitted eagerly.
1498       return false;
1499   if (const auto *VD = dyn_cast<VarDecl>(Global))
1500     if (Context.getInlineVariableDefinitionKind(VD) ==
1501         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1502       // A definition of an inline constexpr static data member may change
1503       // linkage later if it's redeclared outside the class.
1504       return false;
1505   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1506   // codegen for global variables, because they may be marked as threadprivate.
1507   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1508       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1509     return false;
1510 
1511   return true;
1512 }
1513 
1514 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1515     const CXXUuidofExpr* E) {
1516   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1517   // well-formed.
1518   StringRef Uuid = E->getUuidStr();
1519   std::string Name = "_GUID_" + Uuid.lower();
1520   std::replace(Name.begin(), Name.end(), '-', '_');
1521 
1522   // The UUID descriptor should be pointer aligned.
1523   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1524 
1525   // Look for an existing global.
1526   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1527     return ConstantAddress(GV, Alignment);
1528 
1529   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1530   assert(Init && "failed to initialize as constant");
1531 
1532   auto *GV = new llvm::GlobalVariable(
1533       getModule(), Init->getType(),
1534       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1535   if (supportsCOMDAT())
1536     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1537   return ConstantAddress(GV, Alignment);
1538 }
1539 
1540 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1541   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1542   assert(AA && "No alias?");
1543 
1544   CharUnits Alignment = getContext().getDeclAlign(VD);
1545   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1546 
1547   // See if there is already something with the target's name in the module.
1548   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1549   if (Entry) {
1550     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1551     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1552     return ConstantAddress(Ptr, Alignment);
1553   }
1554 
1555   llvm::Constant *Aliasee;
1556   if (isa<llvm::FunctionType>(DeclTy))
1557     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1558                                       GlobalDecl(cast<FunctionDecl>(VD)),
1559                                       /*ForVTable=*/false);
1560   else
1561     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1562                                     llvm::PointerType::getUnqual(DeclTy),
1563                                     nullptr);
1564 
1565   auto *F = cast<llvm::GlobalValue>(Aliasee);
1566   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1567   WeakRefReferences.insert(F);
1568 
1569   return ConstantAddress(Aliasee, Alignment);
1570 }
1571 
1572 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1573   const auto *Global = cast<ValueDecl>(GD.getDecl());
1574 
1575   // Weak references don't produce any output by themselves.
1576   if (Global->hasAttr<WeakRefAttr>())
1577     return;
1578 
1579   // If this is an alias definition (which otherwise looks like a declaration)
1580   // emit it now.
1581   if (Global->hasAttr<AliasAttr>())
1582     return EmitAliasDefinition(GD);
1583 
1584   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1585   if (Global->hasAttr<IFuncAttr>())
1586     return emitIFuncDefinition(GD);
1587 
1588   // If this is CUDA, be selective about which declarations we emit.
1589   if (LangOpts.CUDA) {
1590     if (LangOpts.CUDAIsDevice) {
1591       if (!Global->hasAttr<CUDADeviceAttr>() &&
1592           !Global->hasAttr<CUDAGlobalAttr>() &&
1593           !Global->hasAttr<CUDAConstantAttr>() &&
1594           !Global->hasAttr<CUDASharedAttr>())
1595         return;
1596     } else {
1597       // We need to emit host-side 'shadows' for all global
1598       // device-side variables because the CUDA runtime needs their
1599       // size and host-side address in order to provide access to
1600       // their device-side incarnations.
1601 
1602       // So device-only functions are the only things we skip.
1603       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1604           Global->hasAttr<CUDADeviceAttr>())
1605         return;
1606 
1607       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1608              "Expected Variable or Function");
1609     }
1610   }
1611 
1612   if (LangOpts.OpenMP) {
1613     // If this is OpenMP device, check if it is legal to emit this global
1614     // normally.
1615     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1616       return;
1617     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1618       if (MustBeEmitted(Global))
1619         EmitOMPDeclareReduction(DRD);
1620       return;
1621     }
1622   }
1623 
1624   // Ignore declarations, they will be emitted on their first use.
1625   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1626     // Forward declarations are emitted lazily on first use.
1627     if (!FD->doesThisDeclarationHaveABody()) {
1628       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1629         return;
1630 
1631       StringRef MangledName = getMangledName(GD);
1632 
1633       // Compute the function info and LLVM type.
1634       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1635       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1636 
1637       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1638                               /*DontDefer=*/false);
1639       return;
1640     }
1641   } else {
1642     const auto *VD = cast<VarDecl>(Global);
1643     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1644     // We need to emit device-side global CUDA variables even if a
1645     // variable does not have a definition -- we still need to define
1646     // host-side shadow for it.
1647     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1648                            !VD->hasDefinition() &&
1649                            (VD->hasAttr<CUDAConstantAttr>() ||
1650                             VD->hasAttr<CUDADeviceAttr>());
1651     if (!MustEmitForCuda &&
1652         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1653         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1654       // If this declaration may have caused an inline variable definition to
1655       // change linkage, make sure that it's emitted.
1656       if (Context.getInlineVariableDefinitionKind(VD) ==
1657           ASTContext::InlineVariableDefinitionKind::Strong)
1658         GetAddrOfGlobalVar(VD);
1659       return;
1660     }
1661   }
1662 
1663   // Defer code generation to first use when possible, e.g. if this is an inline
1664   // function. If the global must always be emitted, do it eagerly if possible
1665   // to benefit from cache locality.
1666   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1667     // Emit the definition if it can't be deferred.
1668     EmitGlobalDefinition(GD);
1669     return;
1670   }
1671 
1672   // If we're deferring emission of a C++ variable with an
1673   // initializer, remember the order in which it appeared in the file.
1674   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1675       cast<VarDecl>(Global)->hasInit()) {
1676     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1677     CXXGlobalInits.push_back(nullptr);
1678   }
1679 
1680   StringRef MangledName = getMangledName(GD);
1681   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1682     // The value has already been used and should therefore be emitted.
1683     addDeferredDeclToEmit(GV, GD);
1684   } else if (MustBeEmitted(Global)) {
1685     // The value must be emitted, but cannot be emitted eagerly.
1686     assert(!MayBeEmittedEagerly(Global));
1687     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1688   } else {
1689     // Otherwise, remember that we saw a deferred decl with this name.  The
1690     // first use of the mangled name will cause it to move into
1691     // DeferredDeclsToEmit.
1692     DeferredDecls[MangledName] = GD;
1693   }
1694 }
1695 
1696 namespace {
1697   struct FunctionIsDirectlyRecursive :
1698     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1699     const StringRef Name;
1700     const Builtin::Context &BI;
1701     bool Result;
1702     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1703       Name(N), BI(C), Result(false) {
1704     }
1705     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1706 
1707     bool TraverseCallExpr(CallExpr *E) {
1708       const FunctionDecl *FD = E->getDirectCallee();
1709       if (!FD)
1710         return true;
1711       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1712       if (Attr && Name == Attr->getLabel()) {
1713         Result = true;
1714         return false;
1715       }
1716       unsigned BuiltinID = FD->getBuiltinID();
1717       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1718         return true;
1719       StringRef BuiltinName = BI.getName(BuiltinID);
1720       if (BuiltinName.startswith("__builtin_") &&
1721           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1722         Result = true;
1723         return false;
1724       }
1725       return true;
1726     }
1727   };
1728 
1729   struct DLLImportFunctionVisitor
1730       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1731     bool SafeToInline = true;
1732 
1733     bool shouldVisitImplicitCode() const { return true; }
1734 
1735     bool VisitVarDecl(VarDecl *VD) {
1736       // A thread-local variable cannot be imported.
1737       SafeToInline = !VD->getTLSKind();
1738       return SafeToInline;
1739     }
1740 
1741     // Make sure we're not referencing non-imported vars or functions.
1742     bool VisitDeclRefExpr(DeclRefExpr *E) {
1743       ValueDecl *VD = E->getDecl();
1744       if (isa<FunctionDecl>(VD))
1745         SafeToInline = VD->hasAttr<DLLImportAttr>();
1746       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1747         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1748       return SafeToInline;
1749     }
1750     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1751       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1752       return SafeToInline;
1753     }
1754     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1755       CXXMethodDecl *M = E->getMethodDecl();
1756       if (!M) {
1757         // Call through a pointer to member function. This is safe to inline.
1758         SafeToInline = true;
1759       } else {
1760         SafeToInline = M->hasAttr<DLLImportAttr>();
1761       }
1762       return SafeToInline;
1763     }
1764     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1765       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1766       return SafeToInline;
1767     }
1768     bool VisitCXXNewExpr(CXXNewExpr *E) {
1769       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1770       return SafeToInline;
1771     }
1772   };
1773 }
1774 
1775 // isTriviallyRecursive - Check if this function calls another
1776 // decl that, because of the asm attribute or the other decl being a builtin,
1777 // ends up pointing to itself.
1778 bool
1779 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1780   StringRef Name;
1781   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1782     // asm labels are a special kind of mangling we have to support.
1783     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1784     if (!Attr)
1785       return false;
1786     Name = Attr->getLabel();
1787   } else {
1788     Name = FD->getName();
1789   }
1790 
1791   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1792   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1793   return Walker.Result;
1794 }
1795 
1796 // Check if T is a class type with a destructor that's not dllimport.
1797 static bool HasNonDllImportDtor(QualType T) {
1798   if (const RecordType *RT = dyn_cast<RecordType>(T))
1799     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1800       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1801         return true;
1802 
1803   return false;
1804 }
1805 
1806 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1807   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1808     return true;
1809   const auto *F = cast<FunctionDecl>(GD.getDecl());
1810   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1811     return false;
1812 
1813   if (F->hasAttr<DLLImportAttr>()) {
1814     // Check whether it would be safe to inline this dllimport function.
1815     DLLImportFunctionVisitor Visitor;
1816     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1817     if (!Visitor.SafeToInline)
1818       return false;
1819 
1820     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1821       // Implicit destructor invocations aren't captured in the AST, so the
1822       // check above can't see them. Check for them manually here.
1823       for (const Decl *Member : Dtor->getParent()->decls())
1824         if (isa<FieldDecl>(Member))
1825           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1826             return false;
1827       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1828         if (HasNonDllImportDtor(B.getType()))
1829           return false;
1830     }
1831   }
1832 
1833   // PR9614. Avoid cases where the source code is lying to us. An available
1834   // externally function should have an equivalent function somewhere else,
1835   // but a function that calls itself is clearly not equivalent to the real
1836   // implementation.
1837   // This happens in glibc's btowc and in some configure checks.
1838   return !isTriviallyRecursive(F);
1839 }
1840 
1841 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1842   const auto *D = cast<ValueDecl>(GD.getDecl());
1843 
1844   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1845                                  Context.getSourceManager(),
1846                                  "Generating code for declaration");
1847 
1848   if (isa<FunctionDecl>(D)) {
1849     // At -O0, don't generate IR for functions with available_externally
1850     // linkage.
1851     if (!shouldEmitFunction(GD))
1852       return;
1853 
1854     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1855       // Make sure to emit the definition(s) before we emit the thunks.
1856       // This is necessary for the generation of certain thunks.
1857       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1858         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1859       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1860         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1861       else
1862         EmitGlobalFunctionDefinition(GD, GV);
1863 
1864       if (Method->isVirtual())
1865         getVTables().EmitThunks(GD);
1866 
1867       return;
1868     }
1869 
1870     return EmitGlobalFunctionDefinition(GD, GV);
1871   }
1872 
1873   if (const auto *VD = dyn_cast<VarDecl>(D))
1874     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1875 
1876   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1877 }
1878 
1879 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1880                                                       llvm::Function *NewFn);
1881 
1882 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1883 /// module, create and return an llvm Function with the specified type. If there
1884 /// is something in the module with the specified name, return it potentially
1885 /// bitcasted to the right type.
1886 ///
1887 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1888 /// to set the attributes on the function when it is first created.
1889 llvm::Constant *
1890 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1891                                        llvm::Type *Ty,
1892                                        GlobalDecl GD, bool ForVTable,
1893                                        bool DontDefer, bool IsThunk,
1894                                        llvm::AttributeSet ExtraAttrs,
1895                                        ForDefinition_t IsForDefinition) {
1896   const Decl *D = GD.getDecl();
1897 
1898   // Lookup the entry, lazily creating it if necessary.
1899   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1900   if (Entry) {
1901     if (WeakRefReferences.erase(Entry)) {
1902       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1903       if (FD && !FD->hasAttr<WeakAttr>())
1904         Entry->setLinkage(llvm::Function::ExternalLinkage);
1905     }
1906 
1907     // Handle dropped DLL attributes.
1908     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1909       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1910 
1911     // If there are two attempts to define the same mangled name, issue an
1912     // error.
1913     if (IsForDefinition && !Entry->isDeclaration()) {
1914       GlobalDecl OtherGD;
1915       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1916       // to make sure that we issue an error only once.
1917       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1918           (GD.getCanonicalDecl().getDecl() !=
1919            OtherGD.getCanonicalDecl().getDecl()) &&
1920           DiagnosedConflictingDefinitions.insert(GD).second) {
1921         getDiags().Report(D->getLocation(),
1922                           diag::err_duplicate_mangled_name);
1923         getDiags().Report(OtherGD.getDecl()->getLocation(),
1924                           diag::note_previous_definition);
1925       }
1926     }
1927 
1928     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1929         (Entry->getType()->getElementType() == Ty)) {
1930       return Entry;
1931     }
1932 
1933     // Make sure the result is of the correct type.
1934     // (If function is requested for a definition, we always need to create a new
1935     // function, not just return a bitcast.)
1936     if (!IsForDefinition)
1937       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1938   }
1939 
1940   // This function doesn't have a complete type (for example, the return
1941   // type is an incomplete struct). Use a fake type instead, and make
1942   // sure not to try to set attributes.
1943   bool IsIncompleteFunction = false;
1944 
1945   llvm::FunctionType *FTy;
1946   if (isa<llvm::FunctionType>(Ty)) {
1947     FTy = cast<llvm::FunctionType>(Ty);
1948   } else {
1949     FTy = llvm::FunctionType::get(VoidTy, false);
1950     IsIncompleteFunction = true;
1951   }
1952 
1953   llvm::Function *F =
1954       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1955                              Entry ? StringRef() : MangledName, &getModule());
1956 
1957   // If we already created a function with the same mangled name (but different
1958   // type) before, take its name and add it to the list of functions to be
1959   // replaced with F at the end of CodeGen.
1960   //
1961   // This happens if there is a prototype for a function (e.g. "int f()") and
1962   // then a definition of a different type (e.g. "int f(int x)").
1963   if (Entry) {
1964     F->takeName(Entry);
1965 
1966     // This might be an implementation of a function without a prototype, in
1967     // which case, try to do special replacement of calls which match the new
1968     // prototype.  The really key thing here is that we also potentially drop
1969     // arguments from the call site so as to make a direct call, which makes the
1970     // inliner happier and suppresses a number of optimizer warnings (!) about
1971     // dropping arguments.
1972     if (!Entry->use_empty()) {
1973       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1974       Entry->removeDeadConstantUsers();
1975     }
1976 
1977     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1978         F, Entry->getType()->getElementType()->getPointerTo());
1979     addGlobalValReplacement(Entry, BC);
1980   }
1981 
1982   assert(F->getName() == MangledName && "name was uniqued!");
1983   if (D)
1984     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1985   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1986     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1987     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1988                      llvm::AttributeSet::get(VMContext,
1989                                              llvm::AttributeSet::FunctionIndex,
1990                                              B));
1991   }
1992 
1993   if (!DontDefer) {
1994     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1995     // each other bottoming out with the base dtor.  Therefore we emit non-base
1996     // dtors on usage, even if there is no dtor definition in the TU.
1997     if (D && isa<CXXDestructorDecl>(D) &&
1998         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1999                                            GD.getDtorType()))
2000       addDeferredDeclToEmit(F, GD);
2001 
2002     // This is the first use or definition of a mangled name.  If there is a
2003     // deferred decl with this name, remember that we need to emit it at the end
2004     // of the file.
2005     auto DDI = DeferredDecls.find(MangledName);
2006     if (DDI != DeferredDecls.end()) {
2007       // Move the potentially referenced deferred decl to the
2008       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2009       // don't need it anymore).
2010       addDeferredDeclToEmit(F, DDI->second);
2011       DeferredDecls.erase(DDI);
2012 
2013       // Otherwise, there are cases we have to worry about where we're
2014       // using a declaration for which we must emit a definition but where
2015       // we might not find a top-level definition:
2016       //   - member functions defined inline in their classes
2017       //   - friend functions defined inline in some class
2018       //   - special member functions with implicit definitions
2019       // If we ever change our AST traversal to walk into class methods,
2020       // this will be unnecessary.
2021       //
2022       // We also don't emit a definition for a function if it's going to be an
2023       // entry in a vtable, unless it's already marked as used.
2024     } else if (getLangOpts().CPlusPlus && D) {
2025       // Look for a declaration that's lexically in a record.
2026       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2027            FD = FD->getPreviousDecl()) {
2028         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2029           if (FD->doesThisDeclarationHaveABody()) {
2030             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
2031             break;
2032           }
2033         }
2034       }
2035     }
2036   }
2037 
2038   // Make sure the result is of the requested type.
2039   if (!IsIncompleteFunction) {
2040     assert(F->getType()->getElementType() == Ty);
2041     return F;
2042   }
2043 
2044   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2045   return llvm::ConstantExpr::getBitCast(F, PTy);
2046 }
2047 
2048 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2049 /// non-null, then this function will use the specified type if it has to
2050 /// create it (this occurs when we see a definition of the function).
2051 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2052                                                  llvm::Type *Ty,
2053                                                  bool ForVTable,
2054                                                  bool DontDefer,
2055                                               ForDefinition_t IsForDefinition) {
2056   // If there was no specific requested type, just convert it now.
2057   if (!Ty) {
2058     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2059     auto CanonTy = Context.getCanonicalType(FD->getType());
2060     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2061   }
2062 
2063   StringRef MangledName = getMangledName(GD);
2064   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2065                                  /*IsThunk=*/false, llvm::AttributeSet(),
2066                                  IsForDefinition);
2067 }
2068 
2069 static const FunctionDecl *
2070 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2071   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2072   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2073 
2074   IdentifierInfo &CII = C.Idents.get(Name);
2075   for (const auto &Result : DC->lookup(&CII))
2076     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2077       return FD;
2078 
2079   if (!C.getLangOpts().CPlusPlus)
2080     return nullptr;
2081 
2082   // Demangle the premangled name from getTerminateFn()
2083   IdentifierInfo &CXXII =
2084       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2085           ? C.Idents.get("terminate")
2086           : C.Idents.get(Name);
2087 
2088   for (const auto &N : {"__cxxabiv1", "std"}) {
2089     IdentifierInfo &NS = C.Idents.get(N);
2090     for (const auto &Result : DC->lookup(&NS)) {
2091       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2092       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2093         for (const auto &Result : LSD->lookup(&NS))
2094           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2095             break;
2096 
2097       if (ND)
2098         for (const auto &Result : ND->lookup(&CXXII))
2099           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2100             return FD;
2101     }
2102   }
2103 
2104   return nullptr;
2105 }
2106 
2107 /// CreateRuntimeFunction - Create a new runtime function with the specified
2108 /// type and name.
2109 llvm::Constant *
2110 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2111                                      llvm::AttributeSet ExtraAttrs,
2112                                      bool Local) {
2113   llvm::Constant *C =
2114       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2115                               /*DontDefer=*/false, /*IsThunk=*/false,
2116                               ExtraAttrs);
2117 
2118   if (auto *F = dyn_cast<llvm::Function>(C)) {
2119     if (F->empty()) {
2120       F->setCallingConv(getRuntimeCC());
2121 
2122       if (!Local && getTriple().isOSBinFormatCOFF() &&
2123           !getCodeGenOpts().LTOVisibilityPublicStd) {
2124         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2125         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2126           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2127           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2128         }
2129       }
2130     }
2131   }
2132 
2133   return C;
2134 }
2135 
2136 /// CreateBuiltinFunction - Create a new builtin function with the specified
2137 /// type and name.
2138 llvm::Constant *
2139 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2140                                      StringRef Name,
2141                                      llvm::AttributeSet ExtraAttrs) {
2142   llvm::Constant *C =
2143       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2144                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2145   if (auto *F = dyn_cast<llvm::Function>(C))
2146     if (F->empty())
2147       F->setCallingConv(getBuiltinCC());
2148   return C;
2149 }
2150 
2151 /// isTypeConstant - Determine whether an object of this type can be emitted
2152 /// as a constant.
2153 ///
2154 /// If ExcludeCtor is true, the duration when the object's constructor runs
2155 /// will not be considered. The caller will need to verify that the object is
2156 /// not written to during its construction.
2157 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2158   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2159     return false;
2160 
2161   if (Context.getLangOpts().CPlusPlus) {
2162     if (const CXXRecordDecl *Record
2163           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2164       return ExcludeCtor && !Record->hasMutableFields() &&
2165              Record->hasTrivialDestructor();
2166   }
2167 
2168   return true;
2169 }
2170 
2171 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2172 /// create and return an llvm GlobalVariable with the specified type.  If there
2173 /// is something in the module with the specified name, return it potentially
2174 /// bitcasted to the right type.
2175 ///
2176 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2177 /// to set the attributes on the global when it is first created.
2178 ///
2179 /// If IsForDefinition is true, it is guranteed that an actual global with
2180 /// type Ty will be returned, not conversion of a variable with the same
2181 /// mangled name but some other type.
2182 llvm::Constant *
2183 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2184                                      llvm::PointerType *Ty,
2185                                      const VarDecl *D,
2186                                      ForDefinition_t IsForDefinition) {
2187   // Lookup the entry, lazily creating it if necessary.
2188   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2189   if (Entry) {
2190     if (WeakRefReferences.erase(Entry)) {
2191       if (D && !D->hasAttr<WeakAttr>())
2192         Entry->setLinkage(llvm::Function::ExternalLinkage);
2193     }
2194 
2195     // Handle dropped DLL attributes.
2196     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2197       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2198 
2199     if (Entry->getType() == Ty)
2200       return Entry;
2201 
2202     // If there are two attempts to define the same mangled name, issue an
2203     // error.
2204     if (IsForDefinition && !Entry->isDeclaration()) {
2205       GlobalDecl OtherGD;
2206       const VarDecl *OtherD;
2207 
2208       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2209       // to make sure that we issue an error only once.
2210       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2211           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2212           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2213           OtherD->hasInit() &&
2214           DiagnosedConflictingDefinitions.insert(D).second) {
2215         getDiags().Report(D->getLocation(),
2216                           diag::err_duplicate_mangled_name);
2217         getDiags().Report(OtherGD.getDecl()->getLocation(),
2218                           diag::note_previous_definition);
2219       }
2220     }
2221 
2222     // Make sure the result is of the correct type.
2223     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2224       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2225 
2226     // (If global is requested for a definition, we always need to create a new
2227     // global, not just return a bitcast.)
2228     if (!IsForDefinition)
2229       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2230   }
2231 
2232   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2233   auto *GV = new llvm::GlobalVariable(
2234       getModule(), Ty->getElementType(), false,
2235       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2236       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2237 
2238   // If we already created a global with the same mangled name (but different
2239   // type) before, take its name and remove it from its parent.
2240   if (Entry) {
2241     GV->takeName(Entry);
2242 
2243     if (!Entry->use_empty()) {
2244       llvm::Constant *NewPtrForOldDecl =
2245           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2246       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2247     }
2248 
2249     Entry->eraseFromParent();
2250   }
2251 
2252   // This is the first use or definition of a mangled name.  If there is a
2253   // deferred decl with this name, remember that we need to emit it at the end
2254   // of the file.
2255   auto DDI = DeferredDecls.find(MangledName);
2256   if (DDI != DeferredDecls.end()) {
2257     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2258     // list, and remove it from DeferredDecls (since we don't need it anymore).
2259     addDeferredDeclToEmit(GV, DDI->second);
2260     DeferredDecls.erase(DDI);
2261   }
2262 
2263   // Handle things which are present even on external declarations.
2264   if (D) {
2265     // FIXME: This code is overly simple and should be merged with other global
2266     // handling.
2267     GV->setConstant(isTypeConstant(D->getType(), false));
2268 
2269     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2270 
2271     setLinkageAndVisibilityForGV(GV, D);
2272 
2273     if (D->getTLSKind()) {
2274       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2275         CXXThreadLocals.push_back(D);
2276       setTLSMode(GV, *D);
2277     }
2278 
2279     // If required by the ABI, treat declarations of static data members with
2280     // inline initializers as definitions.
2281     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2282       EmitGlobalVarDefinition(D);
2283     }
2284 
2285     // Handle XCore specific ABI requirements.
2286     if (getTriple().getArch() == llvm::Triple::xcore &&
2287         D->getLanguageLinkage() == CLanguageLinkage &&
2288         D->getType().isConstant(Context) &&
2289         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2290       GV->setSection(".cp.rodata");
2291   }
2292 
2293   if (AddrSpace != Ty->getAddressSpace())
2294     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2295 
2296   return GV;
2297 }
2298 
2299 llvm::Constant *
2300 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2301                                ForDefinition_t IsForDefinition) {
2302   const Decl *D = GD.getDecl();
2303   if (isa<CXXConstructorDecl>(D))
2304     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2305                                 getFromCtorType(GD.getCtorType()),
2306                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2307                                 /*DontDefer=*/false, IsForDefinition);
2308   else if (isa<CXXDestructorDecl>(D))
2309     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2310                                 getFromDtorType(GD.getDtorType()),
2311                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2312                                 /*DontDefer=*/false, IsForDefinition);
2313   else if (isa<CXXMethodDecl>(D)) {
2314     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2315         cast<CXXMethodDecl>(D));
2316     auto Ty = getTypes().GetFunctionType(*FInfo);
2317     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2318                              IsForDefinition);
2319   } else if (isa<FunctionDecl>(D)) {
2320     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2321     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2322     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2323                              IsForDefinition);
2324   } else
2325     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2326                               IsForDefinition);
2327 }
2328 
2329 llvm::GlobalVariable *
2330 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2331                                       llvm::Type *Ty,
2332                                       llvm::GlobalValue::LinkageTypes Linkage) {
2333   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2334   llvm::GlobalVariable *OldGV = nullptr;
2335 
2336   if (GV) {
2337     // Check if the variable has the right type.
2338     if (GV->getType()->getElementType() == Ty)
2339       return GV;
2340 
2341     // Because C++ name mangling, the only way we can end up with an already
2342     // existing global with the same name is if it has been declared extern "C".
2343     assert(GV->isDeclaration() && "Declaration has wrong type!");
2344     OldGV = GV;
2345   }
2346 
2347   // Create a new variable.
2348   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2349                                 Linkage, nullptr, Name);
2350 
2351   if (OldGV) {
2352     // Replace occurrences of the old variable if needed.
2353     GV->takeName(OldGV);
2354 
2355     if (!OldGV->use_empty()) {
2356       llvm::Constant *NewPtrForOldDecl =
2357       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2358       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2359     }
2360 
2361     OldGV->eraseFromParent();
2362   }
2363 
2364   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2365       !GV->hasAvailableExternallyLinkage())
2366     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2367 
2368   return GV;
2369 }
2370 
2371 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2372 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2373 /// then it will be created with the specified type instead of whatever the
2374 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2375 /// that an actual global with type Ty will be returned, not conversion of a
2376 /// variable with the same mangled name but some other type.
2377 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2378                                                   llvm::Type *Ty,
2379                                            ForDefinition_t IsForDefinition) {
2380   assert(D->hasGlobalStorage() && "Not a global variable");
2381   QualType ASTTy = D->getType();
2382   if (!Ty)
2383     Ty = getTypes().ConvertTypeForMem(ASTTy);
2384 
2385   llvm::PointerType *PTy =
2386     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2387 
2388   StringRef MangledName = getMangledName(D);
2389   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2390 }
2391 
2392 /// CreateRuntimeVariable - Create a new runtime global variable with the
2393 /// specified type and name.
2394 llvm::Constant *
2395 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2396                                      StringRef Name) {
2397   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2398 }
2399 
2400 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2401   assert(!D->getInit() && "Cannot emit definite definitions here!");
2402 
2403   StringRef MangledName = getMangledName(D);
2404   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2405 
2406   // We already have a definition, not declaration, with the same mangled name.
2407   // Emitting of declaration is not required (and actually overwrites emitted
2408   // definition).
2409   if (GV && !GV->isDeclaration())
2410     return;
2411 
2412   // If we have not seen a reference to this variable yet, place it into the
2413   // deferred declarations table to be emitted if needed later.
2414   if (!MustBeEmitted(D) && !GV) {
2415       DeferredDecls[MangledName] = D;
2416       return;
2417   }
2418 
2419   // The tentative definition is the only definition.
2420   EmitGlobalVarDefinition(D);
2421 }
2422 
2423 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2424   return Context.toCharUnitsFromBits(
2425       getDataLayout().getTypeStoreSizeInBits(Ty));
2426 }
2427 
2428 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2429                                                  unsigned AddrSpace) {
2430   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2431     if (D->hasAttr<CUDAConstantAttr>())
2432       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2433     else if (D->hasAttr<CUDASharedAttr>())
2434       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2435     else
2436       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2437   }
2438 
2439   return AddrSpace;
2440 }
2441 
2442 template<typename SomeDecl>
2443 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2444                                                llvm::GlobalValue *GV) {
2445   if (!getLangOpts().CPlusPlus)
2446     return;
2447 
2448   // Must have 'used' attribute, or else inline assembly can't rely on
2449   // the name existing.
2450   if (!D->template hasAttr<UsedAttr>())
2451     return;
2452 
2453   // Must have internal linkage and an ordinary name.
2454   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2455     return;
2456 
2457   // Must be in an extern "C" context. Entities declared directly within
2458   // a record are not extern "C" even if the record is in such a context.
2459   const SomeDecl *First = D->getFirstDecl();
2460   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2461     return;
2462 
2463   // OK, this is an internal linkage entity inside an extern "C" linkage
2464   // specification. Make a note of that so we can give it the "expected"
2465   // mangled name if nothing else is using that name.
2466   std::pair<StaticExternCMap::iterator, bool> R =
2467       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2468 
2469   // If we have multiple internal linkage entities with the same name
2470   // in extern "C" regions, none of them gets that name.
2471   if (!R.second)
2472     R.first->second = nullptr;
2473 }
2474 
2475 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2476   if (!CGM.supportsCOMDAT())
2477     return false;
2478 
2479   if (D.hasAttr<SelectAnyAttr>())
2480     return true;
2481 
2482   GVALinkage Linkage;
2483   if (auto *VD = dyn_cast<VarDecl>(&D))
2484     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2485   else
2486     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2487 
2488   switch (Linkage) {
2489   case GVA_Internal:
2490   case GVA_AvailableExternally:
2491   case GVA_StrongExternal:
2492     return false;
2493   case GVA_DiscardableODR:
2494   case GVA_StrongODR:
2495     return true;
2496   }
2497   llvm_unreachable("No such linkage");
2498 }
2499 
2500 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2501                                           llvm::GlobalObject &GO) {
2502   if (!shouldBeInCOMDAT(*this, D))
2503     return;
2504   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2505 }
2506 
2507 /// Pass IsTentative as true if you want to create a tentative definition.
2508 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2509                                             bool IsTentative) {
2510   // OpenCL global variables of sampler type are translated to function calls,
2511   // therefore no need to be translated.
2512   QualType ASTTy = D->getType();
2513   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2514     return;
2515 
2516   llvm::Constant *Init = nullptr;
2517   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2518   bool NeedsGlobalCtor = false;
2519   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2520 
2521   const VarDecl *InitDecl;
2522   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2523 
2524   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2525   // as part of their declaration."  Sema has already checked for
2526   // error cases, so we just need to set Init to UndefValue.
2527   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2528       D->hasAttr<CUDASharedAttr>())
2529     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2530   else if (!InitExpr) {
2531     // This is a tentative definition; tentative definitions are
2532     // implicitly initialized with { 0 }.
2533     //
2534     // Note that tentative definitions are only emitted at the end of
2535     // a translation unit, so they should never have incomplete
2536     // type. In addition, EmitTentativeDefinition makes sure that we
2537     // never attempt to emit a tentative definition if a real one
2538     // exists. A use may still exists, however, so we still may need
2539     // to do a RAUW.
2540     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2541     Init = EmitNullConstant(D->getType());
2542   } else {
2543     initializedGlobalDecl = GlobalDecl(D);
2544     Init = EmitConstantInit(*InitDecl);
2545 
2546     if (!Init) {
2547       QualType T = InitExpr->getType();
2548       if (D->getType()->isReferenceType())
2549         T = D->getType();
2550 
2551       if (getLangOpts().CPlusPlus) {
2552         Init = EmitNullConstant(T);
2553         NeedsGlobalCtor = true;
2554       } else {
2555         ErrorUnsupported(D, "static initializer");
2556         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2557       }
2558     } else {
2559       // We don't need an initializer, so remove the entry for the delayed
2560       // initializer position (just in case this entry was delayed) if we
2561       // also don't need to register a destructor.
2562       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2563         DelayedCXXInitPosition.erase(D);
2564     }
2565   }
2566 
2567   llvm::Type* InitType = Init->getType();
2568   llvm::Constant *Entry =
2569       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2570 
2571   // Strip off a bitcast if we got one back.
2572   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2573     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2574            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2575            // All zero index gep.
2576            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2577     Entry = CE->getOperand(0);
2578   }
2579 
2580   // Entry is now either a Function or GlobalVariable.
2581   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2582 
2583   // We have a definition after a declaration with the wrong type.
2584   // We must make a new GlobalVariable* and update everything that used OldGV
2585   // (a declaration or tentative definition) with the new GlobalVariable*
2586   // (which will be a definition).
2587   //
2588   // This happens if there is a prototype for a global (e.g.
2589   // "extern int x[];") and then a definition of a different type (e.g.
2590   // "int x[10];"). This also happens when an initializer has a different type
2591   // from the type of the global (this happens with unions).
2592   if (!GV ||
2593       GV->getType()->getElementType() != InitType ||
2594       GV->getType()->getAddressSpace() !=
2595        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2596 
2597     // Move the old entry aside so that we'll create a new one.
2598     Entry->setName(StringRef());
2599 
2600     // Make a new global with the correct type, this is now guaranteed to work.
2601     GV = cast<llvm::GlobalVariable>(
2602         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2603 
2604     // Replace all uses of the old global with the new global
2605     llvm::Constant *NewPtrForOldDecl =
2606         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2607     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2608 
2609     // Erase the old global, since it is no longer used.
2610     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2611   }
2612 
2613   MaybeHandleStaticInExternC(D, GV);
2614 
2615   if (D->hasAttr<AnnotateAttr>())
2616     AddGlobalAnnotations(D, GV);
2617 
2618   // Set the llvm linkage type as appropriate.
2619   llvm::GlobalValue::LinkageTypes Linkage =
2620       getLLVMLinkageVarDefinition(D, GV->isConstant());
2621 
2622   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2623   // the device. [...]"
2624   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2625   // __device__, declares a variable that: [...]
2626   // Is accessible from all the threads within the grid and from the host
2627   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2628   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2629   if (GV && LangOpts.CUDA) {
2630     if (LangOpts.CUDAIsDevice) {
2631       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2632         GV->setExternallyInitialized(true);
2633     } else {
2634       // Host-side shadows of external declarations of device-side
2635       // global variables become internal definitions. These have to
2636       // be internal in order to prevent name conflicts with global
2637       // host variables with the same name in a different TUs.
2638       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2639         Linkage = llvm::GlobalValue::InternalLinkage;
2640 
2641         // Shadow variables and their properties must be registered
2642         // with CUDA runtime.
2643         unsigned Flags = 0;
2644         if (!D->hasDefinition())
2645           Flags |= CGCUDARuntime::ExternDeviceVar;
2646         if (D->hasAttr<CUDAConstantAttr>())
2647           Flags |= CGCUDARuntime::ConstantDeviceVar;
2648         getCUDARuntime().registerDeviceVar(*GV, Flags);
2649       } else if (D->hasAttr<CUDASharedAttr>())
2650         // __shared__ variables are odd. Shadows do get created, but
2651         // they are not registered with the CUDA runtime, so they
2652         // can't really be used to access their device-side
2653         // counterparts. It's not clear yet whether it's nvcc's bug or
2654         // a feature, but we've got to do the same for compatibility.
2655         Linkage = llvm::GlobalValue::InternalLinkage;
2656     }
2657   }
2658   GV->setInitializer(Init);
2659 
2660   // If it is safe to mark the global 'constant', do so now.
2661   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2662                   isTypeConstant(D->getType(), true));
2663 
2664   // If it is in a read-only section, mark it 'constant'.
2665   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2666     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2667     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2668       GV->setConstant(true);
2669   }
2670 
2671   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2672 
2673 
2674   // On Darwin, if the normal linkage of a C++ thread_local variable is
2675   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2676   // copies within a linkage unit; otherwise, the backing variable has
2677   // internal linkage and all accesses should just be calls to the
2678   // Itanium-specified entry point, which has the normal linkage of the
2679   // variable. This is to preserve the ability to change the implementation
2680   // behind the scenes.
2681   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2682       Context.getTargetInfo().getTriple().isOSDarwin() &&
2683       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2684       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2685     Linkage = llvm::GlobalValue::InternalLinkage;
2686 
2687   GV->setLinkage(Linkage);
2688   if (D->hasAttr<DLLImportAttr>())
2689     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2690   else if (D->hasAttr<DLLExportAttr>())
2691     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2692   else
2693     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2694 
2695   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2696     // common vars aren't constant even if declared const.
2697     GV->setConstant(false);
2698     // Tentative definition of global variables may be initialized with
2699     // non-zero null pointers. In this case they should have weak linkage
2700     // since common linkage must have zero initializer and must not have
2701     // explicit section therefore cannot have non-zero initial value.
2702     if (!GV->getInitializer()->isNullValue())
2703       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2704   }
2705 
2706   setNonAliasAttributes(D, GV);
2707 
2708   if (D->getTLSKind() && !GV->isThreadLocal()) {
2709     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2710       CXXThreadLocals.push_back(D);
2711     setTLSMode(GV, *D);
2712   }
2713 
2714   maybeSetTrivialComdat(*D, *GV);
2715 
2716   // Emit the initializer function if necessary.
2717   if (NeedsGlobalCtor || NeedsGlobalDtor)
2718     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2719 
2720   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2721 
2722   // Emit global variable debug information.
2723   if (CGDebugInfo *DI = getModuleDebugInfo())
2724     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2725       DI->EmitGlobalVariable(GV, D);
2726 }
2727 
2728 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2729                                       CodeGenModule &CGM, const VarDecl *D,
2730                                       bool NoCommon) {
2731   // Don't give variables common linkage if -fno-common was specified unless it
2732   // was overridden by a NoCommon attribute.
2733   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2734     return true;
2735 
2736   // C11 6.9.2/2:
2737   //   A declaration of an identifier for an object that has file scope without
2738   //   an initializer, and without a storage-class specifier or with the
2739   //   storage-class specifier static, constitutes a tentative definition.
2740   if (D->getInit() || D->hasExternalStorage())
2741     return true;
2742 
2743   // A variable cannot be both common and exist in a section.
2744   if (D->hasAttr<SectionAttr>())
2745     return true;
2746 
2747   // Thread local vars aren't considered common linkage.
2748   if (D->getTLSKind())
2749     return true;
2750 
2751   // Tentative definitions marked with WeakImportAttr are true definitions.
2752   if (D->hasAttr<WeakImportAttr>())
2753     return true;
2754 
2755   // A variable cannot be both common and exist in a comdat.
2756   if (shouldBeInCOMDAT(CGM, *D))
2757     return true;
2758 
2759   // Declarations with a required alignment do not have common linkage in MSVC
2760   // mode.
2761   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2762     if (D->hasAttr<AlignedAttr>())
2763       return true;
2764     QualType VarType = D->getType();
2765     if (Context.isAlignmentRequired(VarType))
2766       return true;
2767 
2768     if (const auto *RT = VarType->getAs<RecordType>()) {
2769       const RecordDecl *RD = RT->getDecl();
2770       for (const FieldDecl *FD : RD->fields()) {
2771         if (FD->isBitField())
2772           continue;
2773         if (FD->hasAttr<AlignedAttr>())
2774           return true;
2775         if (Context.isAlignmentRequired(FD->getType()))
2776           return true;
2777       }
2778     }
2779   }
2780 
2781   return false;
2782 }
2783 
2784 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2785     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2786   if (Linkage == GVA_Internal)
2787     return llvm::Function::InternalLinkage;
2788 
2789   if (D->hasAttr<WeakAttr>()) {
2790     if (IsConstantVariable)
2791       return llvm::GlobalVariable::WeakODRLinkage;
2792     else
2793       return llvm::GlobalVariable::WeakAnyLinkage;
2794   }
2795 
2796   // We are guaranteed to have a strong definition somewhere else,
2797   // so we can use available_externally linkage.
2798   if (Linkage == GVA_AvailableExternally)
2799     return llvm::GlobalValue::AvailableExternallyLinkage;
2800 
2801   // Note that Apple's kernel linker doesn't support symbol
2802   // coalescing, so we need to avoid linkonce and weak linkages there.
2803   // Normally, this means we just map to internal, but for explicit
2804   // instantiations we'll map to external.
2805 
2806   // In C++, the compiler has to emit a definition in every translation unit
2807   // that references the function.  We should use linkonce_odr because
2808   // a) if all references in this translation unit are optimized away, we
2809   // don't need to codegen it.  b) if the function persists, it needs to be
2810   // merged with other definitions. c) C++ has the ODR, so we know the
2811   // definition is dependable.
2812   if (Linkage == GVA_DiscardableODR)
2813     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2814                                             : llvm::Function::InternalLinkage;
2815 
2816   // An explicit instantiation of a template has weak linkage, since
2817   // explicit instantiations can occur in multiple translation units
2818   // and must all be equivalent. However, we are not allowed to
2819   // throw away these explicit instantiations.
2820   //
2821   // We don't currently support CUDA device code spread out across multiple TUs,
2822   // so say that CUDA templates are either external (for kernels) or internal.
2823   // This lets llvm perform aggressive inter-procedural optimizations.
2824   if (Linkage == GVA_StrongODR) {
2825     if (Context.getLangOpts().AppleKext)
2826       return llvm::Function::ExternalLinkage;
2827     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2828       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2829                                           : llvm::Function::InternalLinkage;
2830     return llvm::Function::WeakODRLinkage;
2831   }
2832 
2833   // C++ doesn't have tentative definitions and thus cannot have common
2834   // linkage.
2835   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2836       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2837                                  CodeGenOpts.NoCommon))
2838     return llvm::GlobalVariable::CommonLinkage;
2839 
2840   // selectany symbols are externally visible, so use weak instead of
2841   // linkonce.  MSVC optimizes away references to const selectany globals, so
2842   // all definitions should be the same and ODR linkage should be used.
2843   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2844   if (D->hasAttr<SelectAnyAttr>())
2845     return llvm::GlobalVariable::WeakODRLinkage;
2846 
2847   // Otherwise, we have strong external linkage.
2848   assert(Linkage == GVA_StrongExternal);
2849   return llvm::GlobalVariable::ExternalLinkage;
2850 }
2851 
2852 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2853     const VarDecl *VD, bool IsConstant) {
2854   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2855   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2856 }
2857 
2858 /// Replace the uses of a function that was declared with a non-proto type.
2859 /// We want to silently drop extra arguments from call sites
2860 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2861                                           llvm::Function *newFn) {
2862   // Fast path.
2863   if (old->use_empty()) return;
2864 
2865   llvm::Type *newRetTy = newFn->getReturnType();
2866   SmallVector<llvm::Value*, 4> newArgs;
2867   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2868 
2869   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2870          ui != ue; ) {
2871     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2872     llvm::User *user = use->getUser();
2873 
2874     // Recognize and replace uses of bitcasts.  Most calls to
2875     // unprototyped functions will use bitcasts.
2876     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2877       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2878         replaceUsesOfNonProtoConstant(bitcast, newFn);
2879       continue;
2880     }
2881 
2882     // Recognize calls to the function.
2883     llvm::CallSite callSite(user);
2884     if (!callSite) continue;
2885     if (!callSite.isCallee(&*use)) continue;
2886 
2887     // If the return types don't match exactly, then we can't
2888     // transform this call unless it's dead.
2889     if (callSite->getType() != newRetTy && !callSite->use_empty())
2890       continue;
2891 
2892     // Get the call site's attribute list.
2893     SmallVector<llvm::AttributeSet, 8> newAttrs;
2894     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2895 
2896     // Collect any return attributes from the call.
2897     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2898       newAttrs.push_back(
2899         llvm::AttributeSet::get(newFn->getContext(),
2900                                 oldAttrs.getRetAttributes()));
2901 
2902     // If the function was passed too few arguments, don't transform.
2903     unsigned newNumArgs = newFn->arg_size();
2904     if (callSite.arg_size() < newNumArgs) continue;
2905 
2906     // If extra arguments were passed, we silently drop them.
2907     // If any of the types mismatch, we don't transform.
2908     unsigned argNo = 0;
2909     bool dontTransform = false;
2910     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2911            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2912       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2913         dontTransform = true;
2914         break;
2915       }
2916 
2917       // Add any parameter attributes.
2918       if (oldAttrs.hasAttributes(argNo + 1))
2919         newAttrs.
2920           push_back(llvm::
2921                     AttributeSet::get(newFn->getContext(),
2922                                       oldAttrs.getParamAttributes(argNo + 1)));
2923     }
2924     if (dontTransform)
2925       continue;
2926 
2927     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2928       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2929                                                  oldAttrs.getFnAttributes()));
2930 
2931     // Okay, we can transform this.  Create the new call instruction and copy
2932     // over the required information.
2933     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2934 
2935     // Copy over any operand bundles.
2936     callSite.getOperandBundlesAsDefs(newBundles);
2937 
2938     llvm::CallSite newCall;
2939     if (callSite.isCall()) {
2940       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2941                                        callSite.getInstruction());
2942     } else {
2943       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2944       newCall = llvm::InvokeInst::Create(newFn,
2945                                          oldInvoke->getNormalDest(),
2946                                          oldInvoke->getUnwindDest(),
2947                                          newArgs, newBundles, "",
2948                                          callSite.getInstruction());
2949     }
2950     newArgs.clear(); // for the next iteration
2951 
2952     if (!newCall->getType()->isVoidTy())
2953       newCall->takeName(callSite.getInstruction());
2954     newCall.setAttributes(
2955                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2956     newCall.setCallingConv(callSite.getCallingConv());
2957 
2958     // Finally, remove the old call, replacing any uses with the new one.
2959     if (!callSite->use_empty())
2960       callSite->replaceAllUsesWith(newCall.getInstruction());
2961 
2962     // Copy debug location attached to CI.
2963     if (callSite->getDebugLoc())
2964       newCall->setDebugLoc(callSite->getDebugLoc());
2965 
2966     callSite->eraseFromParent();
2967   }
2968 }
2969 
2970 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2971 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2972 /// existing call uses of the old function in the module, this adjusts them to
2973 /// call the new function directly.
2974 ///
2975 /// This is not just a cleanup: the always_inline pass requires direct calls to
2976 /// functions to be able to inline them.  If there is a bitcast in the way, it
2977 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2978 /// run at -O0.
2979 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2980                                                       llvm::Function *NewFn) {
2981   // If we're redefining a global as a function, don't transform it.
2982   if (!isa<llvm::Function>(Old)) return;
2983 
2984   replaceUsesOfNonProtoConstant(Old, NewFn);
2985 }
2986 
2987 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2988   auto DK = VD->isThisDeclarationADefinition();
2989   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2990     return;
2991 
2992   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2993   // If we have a definition, this might be a deferred decl. If the
2994   // instantiation is explicit, make sure we emit it at the end.
2995   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2996     GetAddrOfGlobalVar(VD);
2997 
2998   EmitTopLevelDecl(VD);
2999 }
3000 
3001 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3002                                                  llvm::GlobalValue *GV) {
3003   const auto *D = cast<FunctionDecl>(GD.getDecl());
3004 
3005   // Compute the function info and LLVM type.
3006   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3007   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3008 
3009   // Get or create the prototype for the function.
3010   if (!GV || (GV->getType()->getElementType() != Ty))
3011     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3012                                                    /*DontDefer=*/true,
3013                                                    ForDefinition));
3014 
3015   // Already emitted.
3016   if (!GV->isDeclaration())
3017     return;
3018 
3019   // We need to set linkage and visibility on the function before
3020   // generating code for it because various parts of IR generation
3021   // want to propagate this information down (e.g. to local static
3022   // declarations).
3023   auto *Fn = cast<llvm::Function>(GV);
3024   setFunctionLinkage(GD, Fn);
3025   setFunctionDLLStorageClass(GD, Fn);
3026 
3027   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3028   setGlobalVisibility(Fn, D);
3029 
3030   MaybeHandleStaticInExternC(D, Fn);
3031 
3032   maybeSetTrivialComdat(*D, *Fn);
3033 
3034   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3035 
3036   setFunctionDefinitionAttributes(D, Fn);
3037   SetLLVMFunctionAttributesForDefinition(D, Fn);
3038 
3039   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3040     AddGlobalCtor(Fn, CA->getPriority());
3041   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3042     AddGlobalDtor(Fn, DA->getPriority());
3043   if (D->hasAttr<AnnotateAttr>())
3044     AddGlobalAnnotations(D, Fn);
3045 }
3046 
3047 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3048   const auto *D = cast<ValueDecl>(GD.getDecl());
3049   const AliasAttr *AA = D->getAttr<AliasAttr>();
3050   assert(AA && "Not an alias?");
3051 
3052   StringRef MangledName = getMangledName(GD);
3053 
3054   if (AA->getAliasee() == MangledName) {
3055     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3056     return;
3057   }
3058 
3059   // If there is a definition in the module, then it wins over the alias.
3060   // This is dubious, but allow it to be safe.  Just ignore the alias.
3061   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3062   if (Entry && !Entry->isDeclaration())
3063     return;
3064 
3065   Aliases.push_back(GD);
3066 
3067   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3068 
3069   // Create a reference to the named value.  This ensures that it is emitted
3070   // if a deferred decl.
3071   llvm::Constant *Aliasee;
3072   if (isa<llvm::FunctionType>(DeclTy))
3073     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3074                                       /*ForVTable=*/false);
3075   else
3076     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3077                                     llvm::PointerType::getUnqual(DeclTy),
3078                                     /*D=*/nullptr);
3079 
3080   // Create the new alias itself, but don't set a name yet.
3081   auto *GA = llvm::GlobalAlias::create(
3082       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3083 
3084   if (Entry) {
3085     if (GA->getAliasee() == Entry) {
3086       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3087       return;
3088     }
3089 
3090     assert(Entry->isDeclaration());
3091 
3092     // If there is a declaration in the module, then we had an extern followed
3093     // by the alias, as in:
3094     //   extern int test6();
3095     //   ...
3096     //   int test6() __attribute__((alias("test7")));
3097     //
3098     // Remove it and replace uses of it with the alias.
3099     GA->takeName(Entry);
3100 
3101     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3102                                                           Entry->getType()));
3103     Entry->eraseFromParent();
3104   } else {
3105     GA->setName(MangledName);
3106   }
3107 
3108   // Set attributes which are particular to an alias; this is a
3109   // specialization of the attributes which may be set on a global
3110   // variable/function.
3111   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3112       D->isWeakImported()) {
3113     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3114   }
3115 
3116   if (const auto *VD = dyn_cast<VarDecl>(D))
3117     if (VD->getTLSKind())
3118       setTLSMode(GA, *VD);
3119 
3120   setAliasAttributes(D, GA);
3121 }
3122 
3123 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3124   const auto *D = cast<ValueDecl>(GD.getDecl());
3125   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3126   assert(IFA && "Not an ifunc?");
3127 
3128   StringRef MangledName = getMangledName(GD);
3129 
3130   if (IFA->getResolver() == MangledName) {
3131     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3132     return;
3133   }
3134 
3135   // Report an error if some definition overrides ifunc.
3136   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3137   if (Entry && !Entry->isDeclaration()) {
3138     GlobalDecl OtherGD;
3139     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3140         DiagnosedConflictingDefinitions.insert(GD).second) {
3141       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3142       Diags.Report(OtherGD.getDecl()->getLocation(),
3143                    diag::note_previous_definition);
3144     }
3145     return;
3146   }
3147 
3148   Aliases.push_back(GD);
3149 
3150   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3151   llvm::Constant *Resolver =
3152       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3153                               /*ForVTable=*/false);
3154   llvm::GlobalIFunc *GIF =
3155       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3156                                 "", Resolver, &getModule());
3157   if (Entry) {
3158     if (GIF->getResolver() == Entry) {
3159       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3160       return;
3161     }
3162     assert(Entry->isDeclaration());
3163 
3164     // If there is a declaration in the module, then we had an extern followed
3165     // by the ifunc, as in:
3166     //   extern int test();
3167     //   ...
3168     //   int test() __attribute__((ifunc("resolver")));
3169     //
3170     // Remove it and replace uses of it with the ifunc.
3171     GIF->takeName(Entry);
3172 
3173     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3174                                                           Entry->getType()));
3175     Entry->eraseFromParent();
3176   } else
3177     GIF->setName(MangledName);
3178 
3179   SetCommonAttributes(D, GIF);
3180 }
3181 
3182 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3183                                             ArrayRef<llvm::Type*> Tys) {
3184   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3185                                          Tys);
3186 }
3187 
3188 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3189 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3190                          const StringLiteral *Literal, bool TargetIsLSB,
3191                          bool &IsUTF16, unsigned &StringLength) {
3192   StringRef String = Literal->getString();
3193   unsigned NumBytes = String.size();
3194 
3195   // Check for simple case.
3196   if (!Literal->containsNonAsciiOrNull()) {
3197     StringLength = NumBytes;
3198     return *Map.insert(std::make_pair(String, nullptr)).first;
3199   }
3200 
3201   // Otherwise, convert the UTF8 literals into a string of shorts.
3202   IsUTF16 = true;
3203 
3204   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3205   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3206   llvm::UTF16 *ToPtr = &ToBuf[0];
3207 
3208   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3209                                  ToPtr + NumBytes, llvm::strictConversion);
3210 
3211   // ConvertUTF8toUTF16 returns the length in ToPtr.
3212   StringLength = ToPtr - &ToBuf[0];
3213 
3214   // Add an explicit null.
3215   *ToPtr = 0;
3216   return *Map.insert(std::make_pair(
3217                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3218                                    (StringLength + 1) * 2),
3219                          nullptr)).first;
3220 }
3221 
3222 ConstantAddress
3223 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3224   unsigned StringLength = 0;
3225   bool isUTF16 = false;
3226   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3227       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3228                                getDataLayout().isLittleEndian(), isUTF16,
3229                                StringLength);
3230 
3231   if (auto *C = Entry.second)
3232     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3233 
3234   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3235   llvm::Constant *Zeros[] = { Zero, Zero };
3236 
3237   // If we don't already have it, get __CFConstantStringClassReference.
3238   if (!CFConstantStringClassRef) {
3239     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3240     Ty = llvm::ArrayType::get(Ty, 0);
3241     llvm::Constant *GV =
3242         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3243 
3244     if (getTriple().isOSBinFormatCOFF()) {
3245       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3246       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3247       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3248       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3249 
3250       const VarDecl *VD = nullptr;
3251       for (const auto &Result : DC->lookup(&II))
3252         if ((VD = dyn_cast<VarDecl>(Result)))
3253           break;
3254 
3255       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3256         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3257         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3258       } else {
3259         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3260         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3261       }
3262     }
3263 
3264     // Decay array -> ptr
3265     CFConstantStringClassRef =
3266         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3267   }
3268 
3269   QualType CFTy = getContext().getCFConstantStringType();
3270 
3271   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3272 
3273   ConstantInitBuilder Builder(*this);
3274   auto Fields = Builder.beginStruct(STy);
3275 
3276   // Class pointer.
3277   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3278 
3279   // Flags.
3280   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3281 
3282   // String pointer.
3283   llvm::Constant *C = nullptr;
3284   if (isUTF16) {
3285     auto Arr = llvm::makeArrayRef(
3286         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3287         Entry.first().size() / 2);
3288     C = llvm::ConstantDataArray::get(VMContext, Arr);
3289   } else {
3290     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3291   }
3292 
3293   // Note: -fwritable-strings doesn't make the backing store strings of
3294   // CFStrings writable. (See <rdar://problem/10657500>)
3295   auto *GV =
3296       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3297                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3298   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3299   // Don't enforce the target's minimum global alignment, since the only use
3300   // of the string is via this class initializer.
3301   CharUnits Align = isUTF16
3302                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3303                         : getContext().getTypeAlignInChars(getContext().CharTy);
3304   GV->setAlignment(Align.getQuantity());
3305 
3306   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3307   // Without it LLVM can merge the string with a non unnamed_addr one during
3308   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3309   if (getTriple().isOSBinFormatMachO())
3310     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3311                            : "__TEXT,__cstring,cstring_literals");
3312 
3313   // String.
3314   llvm::Constant *Str =
3315       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3316 
3317   if (isUTF16)
3318     // Cast the UTF16 string to the correct type.
3319     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3320   Fields.add(Str);
3321 
3322   // String length.
3323   auto Ty = getTypes().ConvertType(getContext().LongTy);
3324   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3325 
3326   CharUnits Alignment = getPointerAlign();
3327 
3328   // The struct.
3329   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3330                                     /*isConstant=*/false,
3331                                     llvm::GlobalVariable::PrivateLinkage);
3332   switch (getTriple().getObjectFormat()) {
3333   case llvm::Triple::UnknownObjectFormat:
3334     llvm_unreachable("unknown file format");
3335   case llvm::Triple::COFF:
3336   case llvm::Triple::ELF:
3337   case llvm::Triple::Wasm:
3338     GV->setSection("cfstring");
3339     break;
3340   case llvm::Triple::MachO:
3341     GV->setSection("__DATA,__cfstring");
3342     break;
3343   }
3344   Entry.second = GV;
3345 
3346   return ConstantAddress(GV, Alignment);
3347 }
3348 
3349 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3350   if (ObjCFastEnumerationStateType.isNull()) {
3351     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3352     D->startDefinition();
3353 
3354     QualType FieldTypes[] = {
3355       Context.UnsignedLongTy,
3356       Context.getPointerType(Context.getObjCIdType()),
3357       Context.getPointerType(Context.UnsignedLongTy),
3358       Context.getConstantArrayType(Context.UnsignedLongTy,
3359                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3360     };
3361 
3362     for (size_t i = 0; i < 4; ++i) {
3363       FieldDecl *Field = FieldDecl::Create(Context,
3364                                            D,
3365                                            SourceLocation(),
3366                                            SourceLocation(), nullptr,
3367                                            FieldTypes[i], /*TInfo=*/nullptr,
3368                                            /*BitWidth=*/nullptr,
3369                                            /*Mutable=*/false,
3370                                            ICIS_NoInit);
3371       Field->setAccess(AS_public);
3372       D->addDecl(Field);
3373     }
3374 
3375     D->completeDefinition();
3376     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3377   }
3378 
3379   return ObjCFastEnumerationStateType;
3380 }
3381 
3382 llvm::Constant *
3383 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3384   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3385 
3386   // Don't emit it as the address of the string, emit the string data itself
3387   // as an inline array.
3388   if (E->getCharByteWidth() == 1) {
3389     SmallString<64> Str(E->getString());
3390 
3391     // Resize the string to the right size, which is indicated by its type.
3392     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3393     Str.resize(CAT->getSize().getZExtValue());
3394     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3395   }
3396 
3397   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3398   llvm::Type *ElemTy = AType->getElementType();
3399   unsigned NumElements = AType->getNumElements();
3400 
3401   // Wide strings have either 2-byte or 4-byte elements.
3402   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3403     SmallVector<uint16_t, 32> Elements;
3404     Elements.reserve(NumElements);
3405 
3406     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3407       Elements.push_back(E->getCodeUnit(i));
3408     Elements.resize(NumElements);
3409     return llvm::ConstantDataArray::get(VMContext, Elements);
3410   }
3411 
3412   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3413   SmallVector<uint32_t, 32> Elements;
3414   Elements.reserve(NumElements);
3415 
3416   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3417     Elements.push_back(E->getCodeUnit(i));
3418   Elements.resize(NumElements);
3419   return llvm::ConstantDataArray::get(VMContext, Elements);
3420 }
3421 
3422 static llvm::GlobalVariable *
3423 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3424                       CodeGenModule &CGM, StringRef GlobalName,
3425                       CharUnits Alignment) {
3426   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3427   unsigned AddrSpace = 0;
3428   if (CGM.getLangOpts().OpenCL)
3429     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3430 
3431   llvm::Module &M = CGM.getModule();
3432   // Create a global variable for this string
3433   auto *GV = new llvm::GlobalVariable(
3434       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3435       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3436   GV->setAlignment(Alignment.getQuantity());
3437   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3438   if (GV->isWeakForLinker()) {
3439     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3440     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3441   }
3442 
3443   return GV;
3444 }
3445 
3446 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3447 /// constant array for the given string literal.
3448 ConstantAddress
3449 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3450                                                   StringRef Name) {
3451   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3452 
3453   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3454   llvm::GlobalVariable **Entry = nullptr;
3455   if (!LangOpts.WritableStrings) {
3456     Entry = &ConstantStringMap[C];
3457     if (auto GV = *Entry) {
3458       if (Alignment.getQuantity() > GV->getAlignment())
3459         GV->setAlignment(Alignment.getQuantity());
3460       return ConstantAddress(GV, Alignment);
3461     }
3462   }
3463 
3464   SmallString<256> MangledNameBuffer;
3465   StringRef GlobalVariableName;
3466   llvm::GlobalValue::LinkageTypes LT;
3467 
3468   // Mangle the string literal if the ABI allows for it.  However, we cannot
3469   // do this if  we are compiling with ASan or -fwritable-strings because they
3470   // rely on strings having normal linkage.
3471   if (!LangOpts.WritableStrings &&
3472       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3473       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3474     llvm::raw_svector_ostream Out(MangledNameBuffer);
3475     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3476 
3477     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3478     GlobalVariableName = MangledNameBuffer;
3479   } else {
3480     LT = llvm::GlobalValue::PrivateLinkage;
3481     GlobalVariableName = Name;
3482   }
3483 
3484   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3485   if (Entry)
3486     *Entry = GV;
3487 
3488   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3489                                   QualType());
3490   return ConstantAddress(GV, Alignment);
3491 }
3492 
3493 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3494 /// array for the given ObjCEncodeExpr node.
3495 ConstantAddress
3496 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3497   std::string Str;
3498   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3499 
3500   return GetAddrOfConstantCString(Str);
3501 }
3502 
3503 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3504 /// the literal and a terminating '\0' character.
3505 /// The result has pointer to array type.
3506 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3507     const std::string &Str, const char *GlobalName) {
3508   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3509   CharUnits Alignment =
3510     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3511 
3512   llvm::Constant *C =
3513       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3514 
3515   // Don't share any string literals if strings aren't constant.
3516   llvm::GlobalVariable **Entry = nullptr;
3517   if (!LangOpts.WritableStrings) {
3518     Entry = &ConstantStringMap[C];
3519     if (auto GV = *Entry) {
3520       if (Alignment.getQuantity() > GV->getAlignment())
3521         GV->setAlignment(Alignment.getQuantity());
3522       return ConstantAddress(GV, Alignment);
3523     }
3524   }
3525 
3526   // Get the default prefix if a name wasn't specified.
3527   if (!GlobalName)
3528     GlobalName = ".str";
3529   // Create a global variable for this.
3530   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3531                                   GlobalName, Alignment);
3532   if (Entry)
3533     *Entry = GV;
3534   return ConstantAddress(GV, Alignment);
3535 }
3536 
3537 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3538     const MaterializeTemporaryExpr *E, const Expr *Init) {
3539   assert((E->getStorageDuration() == SD_Static ||
3540           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3541   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3542 
3543   // If we're not materializing a subobject of the temporary, keep the
3544   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3545   QualType MaterializedType = Init->getType();
3546   if (Init == E->GetTemporaryExpr())
3547     MaterializedType = E->getType();
3548 
3549   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3550 
3551   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3552     return ConstantAddress(Slot, Align);
3553 
3554   // FIXME: If an externally-visible declaration extends multiple temporaries,
3555   // we need to give each temporary the same name in every translation unit (and
3556   // we also need to make the temporaries externally-visible).
3557   SmallString<256> Name;
3558   llvm::raw_svector_ostream Out(Name);
3559   getCXXABI().getMangleContext().mangleReferenceTemporary(
3560       VD, E->getManglingNumber(), Out);
3561 
3562   APValue *Value = nullptr;
3563   if (E->getStorageDuration() == SD_Static) {
3564     // We might have a cached constant initializer for this temporary. Note
3565     // that this might have a different value from the value computed by
3566     // evaluating the initializer if the surrounding constant expression
3567     // modifies the temporary.
3568     Value = getContext().getMaterializedTemporaryValue(E, false);
3569     if (Value && Value->isUninit())
3570       Value = nullptr;
3571   }
3572 
3573   // Try evaluating it now, it might have a constant initializer.
3574   Expr::EvalResult EvalResult;
3575   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3576       !EvalResult.hasSideEffects())
3577     Value = &EvalResult.Val;
3578 
3579   llvm::Constant *InitialValue = nullptr;
3580   bool Constant = false;
3581   llvm::Type *Type;
3582   if (Value) {
3583     // The temporary has a constant initializer, use it.
3584     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3585     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3586     Type = InitialValue->getType();
3587   } else {
3588     // No initializer, the initialization will be provided when we
3589     // initialize the declaration which performed lifetime extension.
3590     Type = getTypes().ConvertTypeForMem(MaterializedType);
3591   }
3592 
3593   // Create a global variable for this lifetime-extended temporary.
3594   llvm::GlobalValue::LinkageTypes Linkage =
3595       getLLVMLinkageVarDefinition(VD, Constant);
3596   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3597     const VarDecl *InitVD;
3598     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3599         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3600       // Temporaries defined inside a class get linkonce_odr linkage because the
3601       // class can be defined in multipe translation units.
3602       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3603     } else {
3604       // There is no need for this temporary to have external linkage if the
3605       // VarDecl has external linkage.
3606       Linkage = llvm::GlobalVariable::InternalLinkage;
3607     }
3608   }
3609   unsigned AddrSpace = GetGlobalVarAddressSpace(
3610       VD, getContext().getTargetAddressSpace(MaterializedType));
3611   auto *GV = new llvm::GlobalVariable(
3612       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3613       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3614       AddrSpace);
3615   setGlobalVisibility(GV, VD);
3616   GV->setAlignment(Align.getQuantity());
3617   if (supportsCOMDAT() && GV->isWeakForLinker())
3618     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3619   if (VD->getTLSKind())
3620     setTLSMode(GV, *VD);
3621   MaterializedGlobalTemporaryMap[E] = GV;
3622   return ConstantAddress(GV, Align);
3623 }
3624 
3625 /// EmitObjCPropertyImplementations - Emit information for synthesized
3626 /// properties for an implementation.
3627 void CodeGenModule::EmitObjCPropertyImplementations(const
3628                                                     ObjCImplementationDecl *D) {
3629   for (const auto *PID : D->property_impls()) {
3630     // Dynamic is just for type-checking.
3631     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3632       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3633 
3634       // Determine which methods need to be implemented, some may have
3635       // been overridden. Note that ::isPropertyAccessor is not the method
3636       // we want, that just indicates if the decl came from a
3637       // property. What we want to know is if the method is defined in
3638       // this implementation.
3639       if (!D->getInstanceMethod(PD->getGetterName()))
3640         CodeGenFunction(*this).GenerateObjCGetter(
3641                                  const_cast<ObjCImplementationDecl *>(D), PID);
3642       if (!PD->isReadOnly() &&
3643           !D->getInstanceMethod(PD->getSetterName()))
3644         CodeGenFunction(*this).GenerateObjCSetter(
3645                                  const_cast<ObjCImplementationDecl *>(D), PID);
3646     }
3647   }
3648 }
3649 
3650 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3651   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3652   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3653        ivar; ivar = ivar->getNextIvar())
3654     if (ivar->getType().isDestructedType())
3655       return true;
3656 
3657   return false;
3658 }
3659 
3660 static bool AllTrivialInitializers(CodeGenModule &CGM,
3661                                    ObjCImplementationDecl *D) {
3662   CodeGenFunction CGF(CGM);
3663   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3664        E = D->init_end(); B != E; ++B) {
3665     CXXCtorInitializer *CtorInitExp = *B;
3666     Expr *Init = CtorInitExp->getInit();
3667     if (!CGF.isTrivialInitializer(Init))
3668       return false;
3669   }
3670   return true;
3671 }
3672 
3673 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3674 /// for an implementation.
3675 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3676   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3677   if (needsDestructMethod(D)) {
3678     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3679     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3680     ObjCMethodDecl *DTORMethod =
3681       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3682                              cxxSelector, getContext().VoidTy, nullptr, D,
3683                              /*isInstance=*/true, /*isVariadic=*/false,
3684                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3685                              /*isDefined=*/false, ObjCMethodDecl::Required);
3686     D->addInstanceMethod(DTORMethod);
3687     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3688     D->setHasDestructors(true);
3689   }
3690 
3691   // If the implementation doesn't have any ivar initializers, we don't need
3692   // a .cxx_construct.
3693   if (D->getNumIvarInitializers() == 0 ||
3694       AllTrivialInitializers(*this, D))
3695     return;
3696 
3697   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3698   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3699   // The constructor returns 'self'.
3700   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3701                                                 D->getLocation(),
3702                                                 D->getLocation(),
3703                                                 cxxSelector,
3704                                                 getContext().getObjCIdType(),
3705                                                 nullptr, D, /*isInstance=*/true,
3706                                                 /*isVariadic=*/false,
3707                                                 /*isPropertyAccessor=*/true,
3708                                                 /*isImplicitlyDeclared=*/true,
3709                                                 /*isDefined=*/false,
3710                                                 ObjCMethodDecl::Required);
3711   D->addInstanceMethod(CTORMethod);
3712   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3713   D->setHasNonZeroConstructors(true);
3714 }
3715 
3716 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3717 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3718   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3719       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3720     ErrorUnsupported(LSD, "linkage spec");
3721     return;
3722   }
3723 
3724   EmitDeclContext(LSD);
3725 }
3726 
3727 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3728   for (auto *I : DC->decls()) {
3729     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3730     // are themselves considered "top-level", so EmitTopLevelDecl on an
3731     // ObjCImplDecl does not recursively visit them. We need to do that in
3732     // case they're nested inside another construct (LinkageSpecDecl /
3733     // ExportDecl) that does stop them from being considered "top-level".
3734     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3735       for (auto *M : OID->methods())
3736         EmitTopLevelDecl(M);
3737     }
3738 
3739     EmitTopLevelDecl(I);
3740   }
3741 }
3742 
3743 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3744 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3745   // Ignore dependent declarations.
3746   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3747     return;
3748 
3749   switch (D->getKind()) {
3750   case Decl::CXXConversion:
3751   case Decl::CXXMethod:
3752   case Decl::Function:
3753     // Skip function templates
3754     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3755         cast<FunctionDecl>(D)->isLateTemplateParsed())
3756       return;
3757 
3758     EmitGlobal(cast<FunctionDecl>(D));
3759     // Always provide some coverage mapping
3760     // even for the functions that aren't emitted.
3761     AddDeferredUnusedCoverageMapping(D);
3762     break;
3763 
3764   case Decl::Var:
3765   case Decl::Decomposition:
3766     // Skip variable templates
3767     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3768       return;
3769   case Decl::VarTemplateSpecialization:
3770     EmitGlobal(cast<VarDecl>(D));
3771     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3772       for (auto *B : DD->bindings())
3773         if (auto *HD = B->getHoldingVar())
3774           EmitGlobal(HD);
3775     break;
3776 
3777   // Indirect fields from global anonymous structs and unions can be
3778   // ignored; only the actual variable requires IR gen support.
3779   case Decl::IndirectField:
3780     break;
3781 
3782   // C++ Decls
3783   case Decl::Namespace:
3784     EmitDeclContext(cast<NamespaceDecl>(D));
3785     break;
3786   case Decl::CXXRecord:
3787     // Emit any static data members, they may be definitions.
3788     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3789       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3790         EmitTopLevelDecl(I);
3791     break;
3792     // No code generation needed.
3793   case Decl::UsingShadow:
3794   case Decl::ClassTemplate:
3795   case Decl::VarTemplate:
3796   case Decl::VarTemplatePartialSpecialization:
3797   case Decl::FunctionTemplate:
3798   case Decl::TypeAliasTemplate:
3799   case Decl::Block:
3800   case Decl::Empty:
3801     break;
3802   case Decl::Using:          // using X; [C++]
3803     if (CGDebugInfo *DI = getModuleDebugInfo())
3804         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3805     return;
3806   case Decl::NamespaceAlias:
3807     if (CGDebugInfo *DI = getModuleDebugInfo())
3808         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3809     return;
3810   case Decl::UsingDirective: // using namespace X; [C++]
3811     if (CGDebugInfo *DI = getModuleDebugInfo())
3812       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3813     return;
3814   case Decl::CXXConstructor:
3815     // Skip function templates
3816     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3817         cast<FunctionDecl>(D)->isLateTemplateParsed())
3818       return;
3819 
3820     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3821     break;
3822   case Decl::CXXDestructor:
3823     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3824       return;
3825     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3826     break;
3827 
3828   case Decl::StaticAssert:
3829     // Nothing to do.
3830     break;
3831 
3832   // Objective-C Decls
3833 
3834   // Forward declarations, no (immediate) code generation.
3835   case Decl::ObjCInterface:
3836   case Decl::ObjCCategory:
3837     break;
3838 
3839   case Decl::ObjCProtocol: {
3840     auto *Proto = cast<ObjCProtocolDecl>(D);
3841     if (Proto->isThisDeclarationADefinition())
3842       ObjCRuntime->GenerateProtocol(Proto);
3843     break;
3844   }
3845 
3846   case Decl::ObjCCategoryImpl:
3847     // Categories have properties but don't support synthesize so we
3848     // can ignore them here.
3849     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3850     break;
3851 
3852   case Decl::ObjCImplementation: {
3853     auto *OMD = cast<ObjCImplementationDecl>(D);
3854     EmitObjCPropertyImplementations(OMD);
3855     EmitObjCIvarInitializations(OMD);
3856     ObjCRuntime->GenerateClass(OMD);
3857     // Emit global variable debug information.
3858     if (CGDebugInfo *DI = getModuleDebugInfo())
3859       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3860         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3861             OMD->getClassInterface()), OMD->getLocation());
3862     break;
3863   }
3864   case Decl::ObjCMethod: {
3865     auto *OMD = cast<ObjCMethodDecl>(D);
3866     // If this is not a prototype, emit the body.
3867     if (OMD->getBody())
3868       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3869     break;
3870   }
3871   case Decl::ObjCCompatibleAlias:
3872     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3873     break;
3874 
3875   case Decl::PragmaComment: {
3876     const auto *PCD = cast<PragmaCommentDecl>(D);
3877     switch (PCD->getCommentKind()) {
3878     case PCK_Unknown:
3879       llvm_unreachable("unexpected pragma comment kind");
3880     case PCK_Linker:
3881       AppendLinkerOptions(PCD->getArg());
3882       break;
3883     case PCK_Lib:
3884       AddDependentLib(PCD->getArg());
3885       break;
3886     case PCK_Compiler:
3887     case PCK_ExeStr:
3888     case PCK_User:
3889       break; // We ignore all of these.
3890     }
3891     break;
3892   }
3893 
3894   case Decl::PragmaDetectMismatch: {
3895     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3896     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3897     break;
3898   }
3899 
3900   case Decl::LinkageSpec:
3901     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3902     break;
3903 
3904   case Decl::FileScopeAsm: {
3905     // File-scope asm is ignored during device-side CUDA compilation.
3906     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3907       break;
3908     // File-scope asm is ignored during device-side OpenMP compilation.
3909     if (LangOpts.OpenMPIsDevice)
3910       break;
3911     auto *AD = cast<FileScopeAsmDecl>(D);
3912     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3913     break;
3914   }
3915 
3916   case Decl::Import: {
3917     auto *Import = cast<ImportDecl>(D);
3918 
3919     // If we've already imported this module, we're done.
3920     if (!ImportedModules.insert(Import->getImportedModule()))
3921       break;
3922 
3923     // Emit debug information for direct imports.
3924     if (!Import->getImportedOwningModule()) {
3925       if (CGDebugInfo *DI = getModuleDebugInfo())
3926         DI->EmitImportDecl(*Import);
3927     }
3928 
3929     // Find all of the submodules and emit the module initializers.
3930     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3931     SmallVector<clang::Module *, 16> Stack;
3932     Visited.insert(Import->getImportedModule());
3933     Stack.push_back(Import->getImportedModule());
3934 
3935     while (!Stack.empty()) {
3936       clang::Module *Mod = Stack.pop_back_val();
3937       if (!EmittedModuleInitializers.insert(Mod).second)
3938         continue;
3939 
3940       for (auto *D : Context.getModuleInitializers(Mod))
3941         EmitTopLevelDecl(D);
3942 
3943       // Visit the submodules of this module.
3944       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3945                                              SubEnd = Mod->submodule_end();
3946            Sub != SubEnd; ++Sub) {
3947         // Skip explicit children; they need to be explicitly imported to emit
3948         // the initializers.
3949         if ((*Sub)->IsExplicit)
3950           continue;
3951 
3952         if (Visited.insert(*Sub).second)
3953           Stack.push_back(*Sub);
3954       }
3955     }
3956     break;
3957   }
3958 
3959   case Decl::Export:
3960     EmitDeclContext(cast<ExportDecl>(D));
3961     break;
3962 
3963   case Decl::OMPThreadPrivate:
3964     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3965     break;
3966 
3967   case Decl::ClassTemplateSpecialization: {
3968     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3969     if (DebugInfo &&
3970         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3971         Spec->hasDefinition())
3972       DebugInfo->completeTemplateDefinition(*Spec);
3973     break;
3974   }
3975 
3976   case Decl::OMPDeclareReduction:
3977     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3978     break;
3979 
3980   default:
3981     // Make sure we handled everything we should, every other kind is a
3982     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3983     // function. Need to recode Decl::Kind to do that easily.
3984     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3985     break;
3986   }
3987 }
3988 
3989 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3990   // Do we need to generate coverage mapping?
3991   if (!CodeGenOpts.CoverageMapping)
3992     return;
3993   switch (D->getKind()) {
3994   case Decl::CXXConversion:
3995   case Decl::CXXMethod:
3996   case Decl::Function:
3997   case Decl::ObjCMethod:
3998   case Decl::CXXConstructor:
3999   case Decl::CXXDestructor: {
4000     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4001       return;
4002     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4003     if (I == DeferredEmptyCoverageMappingDecls.end())
4004       DeferredEmptyCoverageMappingDecls[D] = true;
4005     break;
4006   }
4007   default:
4008     break;
4009   };
4010 }
4011 
4012 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4013   // Do we need to generate coverage mapping?
4014   if (!CodeGenOpts.CoverageMapping)
4015     return;
4016   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4017     if (Fn->isTemplateInstantiation())
4018       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4019   }
4020   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4021   if (I == DeferredEmptyCoverageMappingDecls.end())
4022     DeferredEmptyCoverageMappingDecls[D] = false;
4023   else
4024     I->second = false;
4025 }
4026 
4027 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4028   std::vector<const Decl *> DeferredDecls;
4029   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4030     if (!I.second)
4031       continue;
4032     DeferredDecls.push_back(I.first);
4033   }
4034   // Sort the declarations by their location to make sure that the tests get a
4035   // predictable order for the coverage mapping for the unused declarations.
4036   if (CodeGenOpts.DumpCoverageMapping)
4037     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4038               [] (const Decl *LHS, const Decl *RHS) {
4039       return LHS->getLocStart() < RHS->getLocStart();
4040     });
4041   for (const auto *D : DeferredDecls) {
4042     switch (D->getKind()) {
4043     case Decl::CXXConversion:
4044     case Decl::CXXMethod:
4045     case Decl::Function:
4046     case Decl::ObjCMethod: {
4047       CodeGenPGO PGO(*this);
4048       GlobalDecl GD(cast<FunctionDecl>(D));
4049       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4050                                   getFunctionLinkage(GD));
4051       break;
4052     }
4053     case Decl::CXXConstructor: {
4054       CodeGenPGO PGO(*this);
4055       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4056       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4057                                   getFunctionLinkage(GD));
4058       break;
4059     }
4060     case Decl::CXXDestructor: {
4061       CodeGenPGO PGO(*this);
4062       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4063       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4064                                   getFunctionLinkage(GD));
4065       break;
4066     }
4067     default:
4068       break;
4069     };
4070   }
4071 }
4072 
4073 /// Turns the given pointer into a constant.
4074 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4075                                           const void *Ptr) {
4076   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4077   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4078   return llvm::ConstantInt::get(i64, PtrInt);
4079 }
4080 
4081 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4082                                    llvm::NamedMDNode *&GlobalMetadata,
4083                                    GlobalDecl D,
4084                                    llvm::GlobalValue *Addr) {
4085   if (!GlobalMetadata)
4086     GlobalMetadata =
4087       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4088 
4089   // TODO: should we report variant information for ctors/dtors?
4090   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4091                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4092                                CGM.getLLVMContext(), D.getDecl()))};
4093   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4094 }
4095 
4096 /// For each function which is declared within an extern "C" region and marked
4097 /// as 'used', but has internal linkage, create an alias from the unmangled
4098 /// name to the mangled name if possible. People expect to be able to refer
4099 /// to such functions with an unmangled name from inline assembly within the
4100 /// same translation unit.
4101 void CodeGenModule::EmitStaticExternCAliases() {
4102   // Don't do anything if we're generating CUDA device code -- the NVPTX
4103   // assembly target doesn't support aliases.
4104   if (Context.getTargetInfo().getTriple().isNVPTX())
4105     return;
4106   for (auto &I : StaticExternCValues) {
4107     IdentifierInfo *Name = I.first;
4108     llvm::GlobalValue *Val = I.second;
4109     if (Val && !getModule().getNamedValue(Name->getName()))
4110       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4111   }
4112 }
4113 
4114 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4115                                              GlobalDecl &Result) const {
4116   auto Res = Manglings.find(MangledName);
4117   if (Res == Manglings.end())
4118     return false;
4119   Result = Res->getValue();
4120   return true;
4121 }
4122 
4123 /// Emits metadata nodes associating all the global values in the
4124 /// current module with the Decls they came from.  This is useful for
4125 /// projects using IR gen as a subroutine.
4126 ///
4127 /// Since there's currently no way to associate an MDNode directly
4128 /// with an llvm::GlobalValue, we create a global named metadata
4129 /// with the name 'clang.global.decl.ptrs'.
4130 void CodeGenModule::EmitDeclMetadata() {
4131   llvm::NamedMDNode *GlobalMetadata = nullptr;
4132 
4133   for (auto &I : MangledDeclNames) {
4134     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4135     // Some mangled names don't necessarily have an associated GlobalValue
4136     // in this module, e.g. if we mangled it for DebugInfo.
4137     if (Addr)
4138       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4139   }
4140 }
4141 
4142 /// Emits metadata nodes for all the local variables in the current
4143 /// function.
4144 void CodeGenFunction::EmitDeclMetadata() {
4145   if (LocalDeclMap.empty()) return;
4146 
4147   llvm::LLVMContext &Context = getLLVMContext();
4148 
4149   // Find the unique metadata ID for this name.
4150   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4151 
4152   llvm::NamedMDNode *GlobalMetadata = nullptr;
4153 
4154   for (auto &I : LocalDeclMap) {
4155     const Decl *D = I.first;
4156     llvm::Value *Addr = I.second.getPointer();
4157     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4158       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4159       Alloca->setMetadata(
4160           DeclPtrKind, llvm::MDNode::get(
4161                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4162     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4163       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4164       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4165     }
4166   }
4167 }
4168 
4169 void CodeGenModule::EmitVersionIdentMetadata() {
4170   llvm::NamedMDNode *IdentMetadata =
4171     TheModule.getOrInsertNamedMetadata("llvm.ident");
4172   std::string Version = getClangFullVersion();
4173   llvm::LLVMContext &Ctx = TheModule.getContext();
4174 
4175   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4176   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4177 }
4178 
4179 void CodeGenModule::EmitTargetMetadata() {
4180   // Warning, new MangledDeclNames may be appended within this loop.
4181   // We rely on MapVector insertions adding new elements to the end
4182   // of the container.
4183   // FIXME: Move this loop into the one target that needs it, and only
4184   // loop over those declarations for which we couldn't emit the target
4185   // metadata when we emitted the declaration.
4186   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4187     auto Val = *(MangledDeclNames.begin() + I);
4188     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4189     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4190     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4191   }
4192 }
4193 
4194 void CodeGenModule::EmitCoverageFile() {
4195   if (getCodeGenOpts().CoverageDataFile.empty() &&
4196       getCodeGenOpts().CoverageNotesFile.empty())
4197     return;
4198 
4199   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4200   if (!CUNode)
4201     return;
4202 
4203   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4204   llvm::LLVMContext &Ctx = TheModule.getContext();
4205   auto *CoverageDataFile =
4206       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4207   auto *CoverageNotesFile =
4208       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4209   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4210     llvm::MDNode *CU = CUNode->getOperand(i);
4211     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4212     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4213   }
4214 }
4215 
4216 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4217   // Sema has checked that all uuid strings are of the form
4218   // "12345678-1234-1234-1234-1234567890ab".
4219   assert(Uuid.size() == 36);
4220   for (unsigned i = 0; i < 36; ++i) {
4221     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4222     else                                         assert(isHexDigit(Uuid[i]));
4223   }
4224 
4225   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4226   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4227 
4228   llvm::Constant *Field3[8];
4229   for (unsigned Idx = 0; Idx < 8; ++Idx)
4230     Field3[Idx] = llvm::ConstantInt::get(
4231         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4232 
4233   llvm::Constant *Fields[4] = {
4234     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4235     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4236     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4237     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4238   };
4239 
4240   return llvm::ConstantStruct::getAnon(Fields);
4241 }
4242 
4243 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4244                                                        bool ForEH) {
4245   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4246   // FIXME: should we even be calling this method if RTTI is disabled
4247   // and it's not for EH?
4248   if (!ForEH && !getLangOpts().RTTI)
4249     return llvm::Constant::getNullValue(Int8PtrTy);
4250 
4251   if (ForEH && Ty->isObjCObjectPointerType() &&
4252       LangOpts.ObjCRuntime.isGNUFamily())
4253     return ObjCRuntime->GetEHType(Ty);
4254 
4255   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4256 }
4257 
4258 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4259   for (auto RefExpr : D->varlists()) {
4260     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4261     bool PerformInit =
4262         VD->getAnyInitializer() &&
4263         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4264                                                         /*ForRef=*/false);
4265 
4266     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4267     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4268             VD, Addr, RefExpr->getLocStart(), PerformInit))
4269       CXXGlobalInits.push_back(InitFunction);
4270   }
4271 }
4272 
4273 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4274   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4275   if (InternalId)
4276     return InternalId;
4277 
4278   if (isExternallyVisible(T->getLinkage())) {
4279     std::string OutName;
4280     llvm::raw_string_ostream Out(OutName);
4281     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4282 
4283     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4284   } else {
4285     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4286                                            llvm::ArrayRef<llvm::Metadata *>());
4287   }
4288 
4289   return InternalId;
4290 }
4291 
4292 /// Returns whether this module needs the "all-vtables" type identifier.
4293 bool CodeGenModule::NeedAllVtablesTypeId() const {
4294   // Returns true if at least one of vtable-based CFI checkers is enabled and
4295   // is not in the trapping mode.
4296   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4297            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4298           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4299            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4300           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4301            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4302           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4303            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4304 }
4305 
4306 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4307                                           CharUnits Offset,
4308                                           const CXXRecordDecl *RD) {
4309   llvm::Metadata *MD =
4310       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4311   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4312 
4313   if (CodeGenOpts.SanitizeCfiCrossDso)
4314     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4315       VTable->addTypeMetadata(Offset.getQuantity(),
4316                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4317 
4318   if (NeedAllVtablesTypeId()) {
4319     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4320     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4321   }
4322 }
4323 
4324 // Fills in the supplied string map with the set of target features for the
4325 // passed in function.
4326 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4327                                           const FunctionDecl *FD) {
4328   StringRef TargetCPU = Target.getTargetOpts().CPU;
4329   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4330     // If we have a TargetAttr build up the feature map based on that.
4331     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4332 
4333     // Make a copy of the features as passed on the command line into the
4334     // beginning of the additional features from the function to override.
4335     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4336                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4337                             Target.getTargetOpts().FeaturesAsWritten.end());
4338 
4339     if (ParsedAttr.second != "")
4340       TargetCPU = ParsedAttr.second;
4341 
4342     // Now populate the feature map, first with the TargetCPU which is either
4343     // the default or a new one from the target attribute string. Then we'll use
4344     // the passed in features (FeaturesAsWritten) along with the new ones from
4345     // the attribute.
4346     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4347   } else {
4348     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4349                           Target.getTargetOpts().Features);
4350   }
4351 }
4352 
4353 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4354   if (!SanStats)
4355     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4356 
4357   return *SanStats;
4358 }
4359 llvm::Value *
4360 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4361                                                   CodeGenFunction &CGF) {
4362   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4363   auto SamplerT = getOpenCLRuntime().getSamplerType();
4364   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4365   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4366                                 "__translate_sampler_initializer"),
4367                                 {C});
4368 }
4369