1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), Types(*this), VTables(*this), 90 SanitizerMD(new SanitizerMetadata(*this)) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 SizeSizeInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 106 IntAlignInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 108 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 109 IntPtrTy = llvm::IntegerType::get(LLVMContext, 110 C.getTargetInfo().getMaxPointerWidth()); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext())); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 136 DebugInfo.reset(new CGDebugInfo(*this)); 137 138 Block.GlobalUniqueCount = 0; 139 140 if (C.getLangOpts().ObjC1) 141 ObjCData.reset(new ObjCEntrypoints()); 142 143 if (CodeGenOpts.hasProfileClangUse()) { 144 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.ProfileInstrumentUsePath); 146 if (auto E = ReaderOrErr.takeError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile %0: %1"); 149 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 150 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 151 << EI.message(); 152 }); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() {} 164 165 void CodeGenModule::createObjCRuntime() { 166 // This is just isGNUFamily(), but we want to force implementors of 167 // new ABIs to decide how best to do this. 168 switch (LangOpts.ObjCRuntime.getKind()) { 169 case ObjCRuntime::GNUstep: 170 case ObjCRuntime::GCC: 171 case ObjCRuntime::ObjFW: 172 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 173 return; 174 175 case ObjCRuntime::FragileMacOSX: 176 case ObjCRuntime::MacOSX: 177 case ObjCRuntime::iOS: 178 case ObjCRuntime::WatchOS: 179 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 180 return; 181 } 182 llvm_unreachable("bad runtime kind"); 183 } 184 185 void CodeGenModule::createOpenCLRuntime() { 186 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 187 } 188 189 void CodeGenModule::createOpenMPRuntime() { 190 // Select a specialized code generation class based on the target, if any. 191 // If it does not exist use the default implementation. 192 switch (getTriple().getArch()) { 193 case llvm::Triple::nvptx: 194 case llvm::Triple::nvptx64: 195 assert(getLangOpts().OpenMPIsDevice && 196 "OpenMP NVPTX is only prepared to deal with device code."); 197 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 198 break; 199 default: 200 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 201 break; 202 } 203 } 204 205 void CodeGenModule::createCUDARuntime() { 206 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 207 } 208 209 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 210 Replacements[Name] = C; 211 } 212 213 void CodeGenModule::applyReplacements() { 214 for (auto &I : Replacements) { 215 StringRef MangledName = I.first(); 216 llvm::Constant *Replacement = I.second; 217 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 218 if (!Entry) 219 continue; 220 auto *OldF = cast<llvm::Function>(Entry); 221 auto *NewF = dyn_cast<llvm::Function>(Replacement); 222 if (!NewF) { 223 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 224 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 225 } else { 226 auto *CE = cast<llvm::ConstantExpr>(Replacement); 227 assert(CE->getOpcode() == llvm::Instruction::BitCast || 228 CE->getOpcode() == llvm::Instruction::GetElementPtr); 229 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 230 } 231 } 232 233 // Replace old with new, but keep the old order. 234 OldF->replaceAllUsesWith(Replacement); 235 if (NewF) { 236 NewF->removeFromParent(); 237 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 238 NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal( 261 const llvm::GlobalIndirectSymbol &GIS) { 262 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 263 const llvm::Constant *C = &GIS; 264 for (;;) { 265 C = C->stripPointerCasts(); 266 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 267 return GO; 268 // stripPointerCasts will not walk over weak aliases. 269 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 270 if (!GIS2) 271 return nullptr; 272 if (!Visited.insert(GIS2).second) 273 return nullptr; 274 C = GIS2->getIndirectSymbol(); 275 } 276 } 277 278 void CodeGenModule::checkAliases() { 279 // Check if the constructed aliases are well formed. It is really unfortunate 280 // that we have to do this in CodeGen, but we only construct mangled names 281 // and aliases during codegen. 282 bool Error = false; 283 DiagnosticsEngine &Diags = getDiags(); 284 for (const GlobalDecl &GD : Aliases) { 285 const auto *D = cast<ValueDecl>(GD.getDecl()); 286 SourceLocation Location; 287 bool IsIFunc = D->hasAttr<IFuncAttr>(); 288 if (const Attr *A = D->getDefiningAttr()) 289 Location = A->getLocation(); 290 else 291 llvm_unreachable("Not an alias or ifunc?"); 292 StringRef MangledName = getMangledName(GD); 293 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 294 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 295 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 296 if (!GV) { 297 Error = true; 298 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 299 } else if (GV->isDeclaration()) { 300 Error = true; 301 Diags.Report(Location, diag::err_alias_to_undefined) 302 << IsIFunc << IsIFunc; 303 } else if (IsIFunc) { 304 // Check resolver function type. 305 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 306 GV->getType()->getPointerElementType()); 307 assert(FTy); 308 if (!FTy->getReturnType()->isPointerTy()) 309 Diags.Report(Location, diag::err_ifunc_resolver_return); 310 if (FTy->getNumParams()) 311 Diags.Report(Location, diag::err_ifunc_resolver_params); 312 } 313 314 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 315 llvm::GlobalValue *AliaseeGV; 316 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 317 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 318 else 319 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 320 321 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 322 StringRef AliasSection = SA->getName(); 323 if (AliasSection != AliaseeGV->getSection()) 324 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 325 << AliasSection << IsIFunc << IsIFunc; 326 } 327 328 // We have to handle alias to weak aliases in here. LLVM itself disallows 329 // this since the object semantics would not match the IL one. For 330 // compatibility with gcc we implement it by just pointing the alias 331 // to its aliasee's aliasee. We also warn, since the user is probably 332 // expecting the link to be weak. 333 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 334 if (GA->isInterposable()) { 335 Diags.Report(Location, diag::warn_alias_to_weak_alias) 336 << GV->getName() << GA->getName() << IsIFunc; 337 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 338 GA->getIndirectSymbol(), Alias->getType()); 339 Alias->setIndirectSymbol(Aliasee); 340 } 341 } 342 } 343 if (!Error) 344 return; 345 346 for (const GlobalDecl &GD : Aliases) { 347 StringRef MangledName = getMangledName(GD); 348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 349 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 350 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 351 Alias->eraseFromParent(); 352 } 353 } 354 355 void CodeGenModule::clear() { 356 DeferredDeclsToEmit.clear(); 357 if (OpenMPRuntime) 358 OpenMPRuntime->clear(); 359 } 360 361 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 362 StringRef MainFile) { 363 if (!hasDiagnostics()) 364 return; 365 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 366 if (MainFile.empty()) 367 MainFile = "<stdin>"; 368 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 369 } else 370 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 371 << Mismatched; 372 } 373 374 void CodeGenModule::Release() { 375 EmitDeferred(); 376 applyGlobalValReplacements(); 377 applyReplacements(); 378 checkAliases(); 379 EmitCXXGlobalInitFunc(); 380 EmitCXXGlobalDtorFunc(); 381 EmitCXXThreadLocalInitFunc(); 382 if (ObjCRuntime) 383 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 384 AddGlobalCtor(ObjCInitFunction); 385 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 386 CUDARuntime) { 387 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 388 AddGlobalCtor(CudaCtorFunction); 389 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 390 AddGlobalDtor(CudaDtorFunction); 391 } 392 if (OpenMPRuntime) 393 if (llvm::Function *OpenMPRegistrationFunction = 394 OpenMPRuntime->emitRegistrationFunction()) 395 AddGlobalCtor(OpenMPRegistrationFunction, 0); 396 if (PGOReader) { 397 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 398 if (PGOStats.hasDiagnostics()) 399 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 400 } 401 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 402 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 403 EmitGlobalAnnotations(); 404 EmitStaticExternCAliases(); 405 EmitDeferredUnusedCoverageMappings(); 406 if (CoverageMapping) 407 CoverageMapping->emit(); 408 if (CodeGenOpts.SanitizeCfiCrossDso) 409 CodeGenFunction(*this).EmitCfiCheckFail(); 410 emitLLVMUsed(); 411 if (SanStats) 412 SanStats->finish(); 413 414 if (CodeGenOpts.Autolink && 415 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 416 EmitModuleLinkOptions(); 417 } 418 if (CodeGenOpts.DwarfVersion) { 419 // We actually want the latest version when there are conflicts. 420 // We can change from Warning to Latest if such mode is supported. 421 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 422 CodeGenOpts.DwarfVersion); 423 } 424 if (CodeGenOpts.EmitCodeView) { 425 // Indicate that we want CodeView in the metadata. 426 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 427 } 428 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 429 // We don't support LTO with 2 with different StrictVTablePointers 430 // FIXME: we could support it by stripping all the information introduced 431 // by StrictVTablePointers. 432 433 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 434 435 llvm::Metadata *Ops[2] = { 436 llvm::MDString::get(VMContext, "StrictVTablePointers"), 437 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 438 llvm::Type::getInt32Ty(VMContext), 1))}; 439 440 getModule().addModuleFlag(llvm::Module::Require, 441 "StrictVTablePointersRequirement", 442 llvm::MDNode::get(VMContext, Ops)); 443 } 444 if (DebugInfo) 445 // We support a single version in the linked module. The LLVM 446 // parser will drop debug info with a different version number 447 // (and warn about it, too). 448 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 449 llvm::DEBUG_METADATA_VERSION); 450 451 // We need to record the widths of enums and wchar_t, so that we can generate 452 // the correct build attributes in the ARM backend. 453 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 454 if ( Arch == llvm::Triple::arm 455 || Arch == llvm::Triple::armeb 456 || Arch == llvm::Triple::thumb 457 || Arch == llvm::Triple::thumbeb) { 458 // Width of wchar_t in bytes 459 uint64_t WCharWidth = 460 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 461 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 462 463 // The minimum width of an enum in bytes 464 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 465 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 466 } 467 468 if (CodeGenOpts.SanitizeCfiCrossDso) { 469 // Indicate that we want cross-DSO control flow integrity checks. 470 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 471 } 472 473 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 474 // Indicate whether __nvvm_reflect should be configured to flush denormal 475 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 476 // property.) 477 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 478 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 479 } 480 481 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 482 assert(PLevel < 3 && "Invalid PIC Level"); 483 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 484 if (Context.getLangOpts().PIE) 485 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 486 } 487 488 SimplifyPersonality(); 489 490 if (getCodeGenOpts().EmitDeclMetadata) 491 EmitDeclMetadata(); 492 493 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 494 EmitCoverageFile(); 495 496 if (DebugInfo) 497 DebugInfo->finalize(); 498 499 EmitVersionIdentMetadata(); 500 501 EmitTargetMetadata(); 502 503 // Emit any deferred diagnostics gathered during codegen. We didn't emit them 504 // when we first discovered them because that would have halted codegen, 505 // preventing us from gathering other deferred diags. 506 for (const PartialDiagnosticAt &DiagAt : DeferredDiags) { 507 SourceLocation Loc = DiagAt.first; 508 const PartialDiagnostic &PD = DiagAt.second; 509 DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID())); 510 PD.Emit(Builder); 511 } 512 // Clear the deferred diags so they don't outlive the ASTContext's 513 // PartialDiagnostic allocator. 514 DeferredDiags.clear(); 515 } 516 517 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 518 // Make sure that this type is translated. 519 Types.UpdateCompletedType(TD); 520 } 521 522 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 523 // Make sure that this type is translated. 524 Types.RefreshTypeCacheForClass(RD); 525 } 526 527 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 528 if (!TBAA) 529 return nullptr; 530 return TBAA->getTBAAInfo(QTy); 531 } 532 533 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 534 if (!TBAA) 535 return nullptr; 536 return TBAA->getTBAAInfoForVTablePtr(); 537 } 538 539 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 540 if (!TBAA) 541 return nullptr; 542 return TBAA->getTBAAStructInfo(QTy); 543 } 544 545 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 546 llvm::MDNode *AccessN, 547 uint64_t O) { 548 if (!TBAA) 549 return nullptr; 550 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 551 } 552 553 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 554 /// and struct-path aware TBAA, the tag has the same format: 555 /// base type, access type and offset. 556 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 557 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 558 llvm::MDNode *TBAAInfo, 559 bool ConvertTypeToTag) { 560 if (ConvertTypeToTag && TBAA) 561 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 562 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 563 else 564 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 565 } 566 567 void CodeGenModule::DecorateInstructionWithInvariantGroup( 568 llvm::Instruction *I, const CXXRecordDecl *RD) { 569 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 570 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 571 // Check if we have to wrap MDString in MDNode. 572 if (!MetaDataNode) 573 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 574 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 575 } 576 577 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 578 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 579 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 580 } 581 582 /// ErrorUnsupported - Print out an error that codegen doesn't support the 583 /// specified stmt yet. 584 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 585 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 586 "cannot compile this %0 yet"); 587 std::string Msg = Type; 588 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 589 << Msg << S->getSourceRange(); 590 } 591 592 /// ErrorUnsupported - Print out an error that codegen doesn't support the 593 /// specified decl yet. 594 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 595 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 596 "cannot compile this %0 yet"); 597 std::string Msg = Type; 598 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 599 } 600 601 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 602 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 603 } 604 605 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 606 const NamedDecl *D) const { 607 // Internal definitions always have default visibility. 608 if (GV->hasLocalLinkage()) { 609 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 610 return; 611 } 612 613 // Set visibility for definitions. 614 LinkageInfo LV = D->getLinkageAndVisibility(); 615 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 616 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 617 } 618 619 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 620 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 621 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 622 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 623 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 624 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 625 } 626 627 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 628 CodeGenOptions::TLSModel M) { 629 switch (M) { 630 case CodeGenOptions::GeneralDynamicTLSModel: 631 return llvm::GlobalVariable::GeneralDynamicTLSModel; 632 case CodeGenOptions::LocalDynamicTLSModel: 633 return llvm::GlobalVariable::LocalDynamicTLSModel; 634 case CodeGenOptions::InitialExecTLSModel: 635 return llvm::GlobalVariable::InitialExecTLSModel; 636 case CodeGenOptions::LocalExecTLSModel: 637 return llvm::GlobalVariable::LocalExecTLSModel; 638 } 639 llvm_unreachable("Invalid TLS model!"); 640 } 641 642 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 643 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 644 645 llvm::GlobalValue::ThreadLocalMode TLM; 646 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 647 648 // Override the TLS model if it is explicitly specified. 649 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 650 TLM = GetLLVMTLSModel(Attr->getModel()); 651 } 652 653 GV->setThreadLocalMode(TLM); 654 } 655 656 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 657 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 658 659 // Some ABIs don't have constructor variants. Make sure that base and 660 // complete constructors get mangled the same. 661 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 662 if (!getTarget().getCXXABI().hasConstructorVariants()) { 663 CXXCtorType OrigCtorType = GD.getCtorType(); 664 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 665 if (OrigCtorType == Ctor_Base) 666 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 667 } 668 } 669 670 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 671 if (!FoundStr.empty()) 672 return FoundStr; 673 674 const auto *ND = cast<NamedDecl>(GD.getDecl()); 675 SmallString<256> Buffer; 676 StringRef Str; 677 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 678 llvm::raw_svector_ostream Out(Buffer); 679 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 680 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 681 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 682 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 683 else 684 getCXXABI().getMangleContext().mangleName(ND, Out); 685 Str = Out.str(); 686 } else { 687 IdentifierInfo *II = ND->getIdentifier(); 688 assert(II && "Attempt to mangle unnamed decl."); 689 Str = II->getName(); 690 } 691 692 // Keep the first result in the case of a mangling collision. 693 auto Result = Manglings.insert(std::make_pair(Str, GD)); 694 return FoundStr = Result.first->first(); 695 } 696 697 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 698 const BlockDecl *BD) { 699 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 700 const Decl *D = GD.getDecl(); 701 702 SmallString<256> Buffer; 703 llvm::raw_svector_ostream Out(Buffer); 704 if (!D) 705 MangleCtx.mangleGlobalBlock(BD, 706 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 707 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 708 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 709 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 710 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 711 else 712 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 713 714 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 715 return Result.first->first(); 716 } 717 718 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 719 return getModule().getNamedValue(Name); 720 } 721 722 /// AddGlobalCtor - Add a function to the list that will be called before 723 /// main() runs. 724 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 725 llvm::Constant *AssociatedData) { 726 // FIXME: Type coercion of void()* types. 727 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 728 } 729 730 /// AddGlobalDtor - Add a function to the list that will be called 731 /// when the module is unloaded. 732 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 733 // FIXME: Type coercion of void()* types. 734 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 735 } 736 737 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 738 // Ctor function type is void()*. 739 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 740 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 741 742 // Get the type of a ctor entry, { i32, void ()*, i8* }. 743 llvm::StructType *CtorStructTy = llvm::StructType::get( 744 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 745 746 // Construct the constructor and destructor arrays. 747 SmallVector<llvm::Constant *, 8> Ctors; 748 for (const auto &I : Fns) { 749 llvm::Constant *S[] = { 750 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 751 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 752 (I.AssociatedData 753 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 754 : llvm::Constant::getNullValue(VoidPtrTy))}; 755 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 756 } 757 758 if (!Ctors.empty()) { 759 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 760 new llvm::GlobalVariable(TheModule, AT, false, 761 llvm::GlobalValue::AppendingLinkage, 762 llvm::ConstantArray::get(AT, Ctors), 763 GlobalName); 764 } 765 } 766 767 llvm::GlobalValue::LinkageTypes 768 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 769 const auto *D = cast<FunctionDecl>(GD.getDecl()); 770 771 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 772 773 if (isa<CXXDestructorDecl>(D) && 774 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 775 GD.getDtorType())) { 776 // Destructor variants in the Microsoft C++ ABI are always internal or 777 // linkonce_odr thunks emitted on an as-needed basis. 778 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 779 : llvm::GlobalValue::LinkOnceODRLinkage; 780 } 781 782 if (isa<CXXConstructorDecl>(D) && 783 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 784 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 785 // Our approach to inheriting constructors is fundamentally different from 786 // that used by the MS ABI, so keep our inheriting constructor thunks 787 // internal rather than trying to pick an unambiguous mangling for them. 788 return llvm::GlobalValue::InternalLinkage; 789 } 790 791 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 792 } 793 794 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 795 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 796 797 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 798 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 799 // Don't dllexport/import destructor thunks. 800 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 801 return; 802 } 803 } 804 805 if (FD->hasAttr<DLLImportAttr>()) 806 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 807 else if (FD->hasAttr<DLLExportAttr>()) 808 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 809 else 810 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 811 } 812 813 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 814 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 815 if (!MDS) return nullptr; 816 817 llvm::MD5 md5; 818 llvm::MD5::MD5Result result; 819 md5.update(MDS->getString()); 820 md5.final(result); 821 uint64_t id = 0; 822 for (int i = 0; i < 8; ++i) 823 id |= static_cast<uint64_t>(result[i]) << (i * 8); 824 return llvm::ConstantInt::get(Int64Ty, id); 825 } 826 827 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 828 llvm::Function *F) { 829 setNonAliasAttributes(D, F); 830 } 831 832 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 833 const CGFunctionInfo &Info, 834 llvm::Function *F) { 835 unsigned CallingConv; 836 AttributeListType AttributeList; 837 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 838 false); 839 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 840 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 841 } 842 843 /// Determines whether the language options require us to model 844 /// unwind exceptions. We treat -fexceptions as mandating this 845 /// except under the fragile ObjC ABI with only ObjC exceptions 846 /// enabled. This means, for example, that C with -fexceptions 847 /// enables this. 848 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 849 // If exceptions are completely disabled, obviously this is false. 850 if (!LangOpts.Exceptions) return false; 851 852 // If C++ exceptions are enabled, this is true. 853 if (LangOpts.CXXExceptions) return true; 854 855 // If ObjC exceptions are enabled, this depends on the ABI. 856 if (LangOpts.ObjCExceptions) { 857 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 858 } 859 860 return true; 861 } 862 863 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 864 llvm::Function *F) { 865 llvm::AttrBuilder B; 866 867 if (CodeGenOpts.UnwindTables) 868 B.addAttribute(llvm::Attribute::UWTable); 869 870 if (!hasUnwindExceptions(LangOpts)) 871 B.addAttribute(llvm::Attribute::NoUnwind); 872 873 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 874 B.addAttribute(llvm::Attribute::StackProtect); 875 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 876 B.addAttribute(llvm::Attribute::StackProtectStrong); 877 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 878 B.addAttribute(llvm::Attribute::StackProtectReq); 879 880 if (!D) { 881 F->addAttributes(llvm::AttributeSet::FunctionIndex, 882 llvm::AttributeSet::get( 883 F->getContext(), 884 llvm::AttributeSet::FunctionIndex, B)); 885 return; 886 } 887 888 if (D->hasAttr<NakedAttr>()) { 889 // Naked implies noinline: we should not be inlining such functions. 890 B.addAttribute(llvm::Attribute::Naked); 891 B.addAttribute(llvm::Attribute::NoInline); 892 } else if (D->hasAttr<NoDuplicateAttr>()) { 893 B.addAttribute(llvm::Attribute::NoDuplicate); 894 } else if (D->hasAttr<NoInlineAttr>()) { 895 B.addAttribute(llvm::Attribute::NoInline); 896 } else if (D->hasAttr<AlwaysInlineAttr>() && 897 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 898 llvm::Attribute::NoInline)) { 899 // (noinline wins over always_inline, and we can't specify both in IR) 900 B.addAttribute(llvm::Attribute::AlwaysInline); 901 } 902 903 if (D->hasAttr<ColdAttr>()) { 904 if (!D->hasAttr<OptimizeNoneAttr>()) 905 B.addAttribute(llvm::Attribute::OptimizeForSize); 906 B.addAttribute(llvm::Attribute::Cold); 907 } 908 909 if (D->hasAttr<MinSizeAttr>()) 910 B.addAttribute(llvm::Attribute::MinSize); 911 912 F->addAttributes(llvm::AttributeSet::FunctionIndex, 913 llvm::AttributeSet::get( 914 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 915 916 if (D->hasAttr<OptimizeNoneAttr>()) { 917 // OptimizeNone implies noinline; we should not be inlining such functions. 918 F->addFnAttr(llvm::Attribute::OptimizeNone); 919 F->addFnAttr(llvm::Attribute::NoInline); 920 921 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 922 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 923 F->removeFnAttr(llvm::Attribute::MinSize); 924 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 925 "OptimizeNone and AlwaysInline on same function!"); 926 927 // Attribute 'inlinehint' has no effect on 'optnone' functions. 928 // Explicitly remove it from the set of function attributes. 929 F->removeFnAttr(llvm::Attribute::InlineHint); 930 } 931 932 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 933 if (alignment) 934 F->setAlignment(alignment); 935 936 // Some C++ ABIs require 2-byte alignment for member functions, in order to 937 // reserve a bit for differentiating between virtual and non-virtual member 938 // functions. If the current target's C++ ABI requires this and this is a 939 // member function, set its alignment accordingly. 940 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 941 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 942 F->setAlignment(2); 943 } 944 } 945 946 void CodeGenModule::SetCommonAttributes(const Decl *D, 947 llvm::GlobalValue *GV) { 948 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 949 setGlobalVisibility(GV, ND); 950 else 951 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 952 953 if (D && D->hasAttr<UsedAttr>()) 954 addUsedGlobal(GV); 955 } 956 957 void CodeGenModule::setAliasAttributes(const Decl *D, 958 llvm::GlobalValue *GV) { 959 SetCommonAttributes(D, GV); 960 961 // Process the dllexport attribute based on whether the original definition 962 // (not necessarily the aliasee) was exported. 963 if (D->hasAttr<DLLExportAttr>()) 964 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 965 } 966 967 void CodeGenModule::setNonAliasAttributes(const Decl *D, 968 llvm::GlobalObject *GO) { 969 SetCommonAttributes(D, GO); 970 971 if (D) 972 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 973 GO->setSection(SA->getName()); 974 975 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 976 } 977 978 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 979 llvm::Function *F, 980 const CGFunctionInfo &FI) { 981 SetLLVMFunctionAttributes(D, FI, F); 982 SetLLVMFunctionAttributesForDefinition(D, F); 983 984 F->setLinkage(llvm::Function::InternalLinkage); 985 986 setNonAliasAttributes(D, F); 987 } 988 989 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 990 const NamedDecl *ND) { 991 // Set linkage and visibility in case we never see a definition. 992 LinkageInfo LV = ND->getLinkageAndVisibility(); 993 if (LV.getLinkage() != ExternalLinkage) { 994 // Don't set internal linkage on declarations. 995 } else { 996 if (ND->hasAttr<DLLImportAttr>()) { 997 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 998 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 999 } else if (ND->hasAttr<DLLExportAttr>()) { 1000 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1001 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1002 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1003 // "extern_weak" is overloaded in LLVM; we probably should have 1004 // separate linkage types for this. 1005 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1006 } 1007 1008 // Set visibility on a declaration only if it's explicit. 1009 if (LV.isVisibilityExplicit()) 1010 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1011 } 1012 } 1013 1014 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1015 llvm::Function *F) { 1016 // Only if we are checking indirect calls. 1017 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1018 return; 1019 1020 // Non-static class methods are handled via vtable pointer checks elsewhere. 1021 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1022 return; 1023 1024 // Additionally, if building with cross-DSO support... 1025 if (CodeGenOpts.SanitizeCfiCrossDso) { 1026 // Don't emit entries for function declarations. In cross-DSO mode these are 1027 // handled with better precision at run time. 1028 if (!FD->hasBody()) 1029 return; 1030 // Skip available_externally functions. They won't be codegen'ed in the 1031 // current module anyway. 1032 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1033 return; 1034 } 1035 1036 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1037 F->addTypeMetadata(0, MD); 1038 1039 // Emit a hash-based bit set entry for cross-DSO calls. 1040 if (CodeGenOpts.SanitizeCfiCrossDso) 1041 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1042 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1043 } 1044 1045 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1046 bool IsIncompleteFunction, 1047 bool IsThunk) { 1048 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1049 // If this is an intrinsic function, set the function's attributes 1050 // to the intrinsic's attributes. 1051 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1052 return; 1053 } 1054 1055 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1056 1057 if (!IsIncompleteFunction) 1058 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1059 1060 // Add the Returned attribute for "this", except for iOS 5 and earlier 1061 // where substantial code, including the libstdc++ dylib, was compiled with 1062 // GCC and does not actually return "this". 1063 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1064 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1065 assert(!F->arg_empty() && 1066 F->arg_begin()->getType() 1067 ->canLosslesslyBitCastTo(F->getReturnType()) && 1068 "unexpected this return"); 1069 F->addAttribute(1, llvm::Attribute::Returned); 1070 } 1071 1072 // Only a few attributes are set on declarations; these may later be 1073 // overridden by a definition. 1074 1075 setLinkageAndVisibilityForGV(F, FD); 1076 1077 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1078 F->setSection(SA->getName()); 1079 1080 if (FD->isReplaceableGlobalAllocationFunction()) { 1081 // A replaceable global allocation function does not act like a builtin by 1082 // default, only if it is invoked by a new-expression or delete-expression. 1083 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1084 llvm::Attribute::NoBuiltin); 1085 1086 // A sane operator new returns a non-aliasing pointer. 1087 // FIXME: Also add NonNull attribute to the return value 1088 // for the non-nothrow forms? 1089 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1090 if (getCodeGenOpts().AssumeSaneOperatorNew && 1091 (Kind == OO_New || Kind == OO_Array_New)) 1092 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1093 llvm::Attribute::NoAlias); 1094 } 1095 1096 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1097 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1098 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1099 if (MD->isVirtual()) 1100 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1101 1102 CreateFunctionTypeMetadata(FD, F); 1103 } 1104 1105 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1106 assert(!GV->isDeclaration() && 1107 "Only globals with definition can force usage."); 1108 LLVMUsed.emplace_back(GV); 1109 } 1110 1111 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1112 assert(!GV->isDeclaration() && 1113 "Only globals with definition can force usage."); 1114 LLVMCompilerUsed.emplace_back(GV); 1115 } 1116 1117 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1118 std::vector<llvm::WeakVH> &List) { 1119 // Don't create llvm.used if there is no need. 1120 if (List.empty()) 1121 return; 1122 1123 // Convert List to what ConstantArray needs. 1124 SmallVector<llvm::Constant*, 8> UsedArray; 1125 UsedArray.resize(List.size()); 1126 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1127 UsedArray[i] = 1128 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1129 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1130 } 1131 1132 if (UsedArray.empty()) 1133 return; 1134 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1135 1136 auto *GV = new llvm::GlobalVariable( 1137 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1138 llvm::ConstantArray::get(ATy, UsedArray), Name); 1139 1140 GV->setSection("llvm.metadata"); 1141 } 1142 1143 void CodeGenModule::emitLLVMUsed() { 1144 emitUsed(*this, "llvm.used", LLVMUsed); 1145 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1146 } 1147 1148 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1149 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1150 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1151 } 1152 1153 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1154 llvm::SmallString<32> Opt; 1155 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1156 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1157 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1158 } 1159 1160 void CodeGenModule::AddDependentLib(StringRef Lib) { 1161 llvm::SmallString<24> Opt; 1162 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1163 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1164 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1165 } 1166 1167 /// \brief Add link options implied by the given module, including modules 1168 /// it depends on, using a postorder walk. 1169 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1170 SmallVectorImpl<llvm::Metadata *> &Metadata, 1171 llvm::SmallPtrSet<Module *, 16> &Visited) { 1172 // Import this module's parent. 1173 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1174 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1175 } 1176 1177 // Import this module's dependencies. 1178 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1179 if (Visited.insert(Mod->Imports[I - 1]).second) 1180 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1181 } 1182 1183 // Add linker options to link against the libraries/frameworks 1184 // described by this module. 1185 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1186 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1187 // Link against a framework. Frameworks are currently Darwin only, so we 1188 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1189 if (Mod->LinkLibraries[I-1].IsFramework) { 1190 llvm::Metadata *Args[2] = { 1191 llvm::MDString::get(Context, "-framework"), 1192 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1193 1194 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1195 continue; 1196 } 1197 1198 // Link against a library. 1199 llvm::SmallString<24> Opt; 1200 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1201 Mod->LinkLibraries[I-1].Library, Opt); 1202 auto *OptString = llvm::MDString::get(Context, Opt); 1203 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1204 } 1205 } 1206 1207 void CodeGenModule::EmitModuleLinkOptions() { 1208 // Collect the set of all of the modules we want to visit to emit link 1209 // options, which is essentially the imported modules and all of their 1210 // non-explicit child modules. 1211 llvm::SetVector<clang::Module *> LinkModules; 1212 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1213 SmallVector<clang::Module *, 16> Stack; 1214 1215 // Seed the stack with imported modules. 1216 for (Module *M : ImportedModules) 1217 if (Visited.insert(M).second) 1218 Stack.push_back(M); 1219 1220 // Find all of the modules to import, making a little effort to prune 1221 // non-leaf modules. 1222 while (!Stack.empty()) { 1223 clang::Module *Mod = Stack.pop_back_val(); 1224 1225 bool AnyChildren = false; 1226 1227 // Visit the submodules of this module. 1228 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1229 SubEnd = Mod->submodule_end(); 1230 Sub != SubEnd; ++Sub) { 1231 // Skip explicit children; they need to be explicitly imported to be 1232 // linked against. 1233 if ((*Sub)->IsExplicit) 1234 continue; 1235 1236 if (Visited.insert(*Sub).second) { 1237 Stack.push_back(*Sub); 1238 AnyChildren = true; 1239 } 1240 } 1241 1242 // We didn't find any children, so add this module to the list of 1243 // modules to link against. 1244 if (!AnyChildren) { 1245 LinkModules.insert(Mod); 1246 } 1247 } 1248 1249 // Add link options for all of the imported modules in reverse topological 1250 // order. We don't do anything to try to order import link flags with respect 1251 // to linker options inserted by things like #pragma comment(). 1252 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1253 Visited.clear(); 1254 for (Module *M : LinkModules) 1255 if (Visited.insert(M).second) 1256 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1257 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1258 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1259 1260 // Add the linker options metadata flag. 1261 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1262 llvm::MDNode::get(getLLVMContext(), 1263 LinkerOptionsMetadata)); 1264 } 1265 1266 void CodeGenModule::EmitDeferred() { 1267 // Emit code for any potentially referenced deferred decls. Since a 1268 // previously unused static decl may become used during the generation of code 1269 // for a static function, iterate until no changes are made. 1270 1271 if (!DeferredVTables.empty()) { 1272 EmitDeferredVTables(); 1273 1274 // Emitting a vtable doesn't directly cause more vtables to 1275 // become deferred, although it can cause functions to be 1276 // emitted that then need those vtables. 1277 assert(DeferredVTables.empty()); 1278 } 1279 1280 // Stop if we're out of both deferred vtables and deferred declarations. 1281 if (DeferredDeclsToEmit.empty()) 1282 return; 1283 1284 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1285 // work, it will not interfere with this. 1286 std::vector<DeferredGlobal> CurDeclsToEmit; 1287 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1288 1289 for (DeferredGlobal &G : CurDeclsToEmit) { 1290 GlobalDecl D = G.GD; 1291 G.GV = nullptr; 1292 1293 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1294 // to get GlobalValue with exactly the type we need, not something that 1295 // might had been created for another decl with the same mangled name but 1296 // different type. 1297 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1298 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1299 1300 // In case of different address spaces, we may still get a cast, even with 1301 // IsForDefinition equal to true. Query mangled names table to get 1302 // GlobalValue. 1303 if (!GV) 1304 GV = GetGlobalValue(getMangledName(D)); 1305 1306 // Make sure GetGlobalValue returned non-null. 1307 assert(GV); 1308 1309 // Check to see if we've already emitted this. This is necessary 1310 // for a couple of reasons: first, decls can end up in the 1311 // deferred-decls queue multiple times, and second, decls can end 1312 // up with definitions in unusual ways (e.g. by an extern inline 1313 // function acquiring a strong function redefinition). Just 1314 // ignore these cases. 1315 if (!GV->isDeclaration()) 1316 continue; 1317 1318 // Otherwise, emit the definition and move on to the next one. 1319 EmitGlobalDefinition(D, GV); 1320 1321 // If we found out that we need to emit more decls, do that recursively. 1322 // This has the advantage that the decls are emitted in a DFS and related 1323 // ones are close together, which is convenient for testing. 1324 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1325 EmitDeferred(); 1326 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1327 } 1328 } 1329 } 1330 1331 void CodeGenModule::EmitGlobalAnnotations() { 1332 if (Annotations.empty()) 1333 return; 1334 1335 // Create a new global variable for the ConstantStruct in the Module. 1336 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1337 Annotations[0]->getType(), Annotations.size()), Annotations); 1338 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1339 llvm::GlobalValue::AppendingLinkage, 1340 Array, "llvm.global.annotations"); 1341 gv->setSection(AnnotationSection); 1342 } 1343 1344 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1345 llvm::Constant *&AStr = AnnotationStrings[Str]; 1346 if (AStr) 1347 return AStr; 1348 1349 // Not found yet, create a new global. 1350 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1351 auto *gv = 1352 new llvm::GlobalVariable(getModule(), s->getType(), true, 1353 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1354 gv->setSection(AnnotationSection); 1355 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1356 AStr = gv; 1357 return gv; 1358 } 1359 1360 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1361 SourceManager &SM = getContext().getSourceManager(); 1362 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1363 if (PLoc.isValid()) 1364 return EmitAnnotationString(PLoc.getFilename()); 1365 return EmitAnnotationString(SM.getBufferName(Loc)); 1366 } 1367 1368 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1369 SourceManager &SM = getContext().getSourceManager(); 1370 PresumedLoc PLoc = SM.getPresumedLoc(L); 1371 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1372 SM.getExpansionLineNumber(L); 1373 return llvm::ConstantInt::get(Int32Ty, LineNo); 1374 } 1375 1376 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1377 const AnnotateAttr *AA, 1378 SourceLocation L) { 1379 // Get the globals for file name, annotation, and the line number. 1380 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1381 *UnitGV = EmitAnnotationUnit(L), 1382 *LineNoCst = EmitAnnotationLineNo(L); 1383 1384 // Create the ConstantStruct for the global annotation. 1385 llvm::Constant *Fields[4] = { 1386 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1387 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1388 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1389 LineNoCst 1390 }; 1391 return llvm::ConstantStruct::getAnon(Fields); 1392 } 1393 1394 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1395 llvm::GlobalValue *GV) { 1396 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1397 // Get the struct elements for these annotations. 1398 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1399 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1400 } 1401 1402 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1403 SourceLocation Loc) const { 1404 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1405 // Blacklist by function name. 1406 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1407 return true; 1408 // Blacklist by location. 1409 if (Loc.isValid()) 1410 return SanitizerBL.isBlacklistedLocation(Loc); 1411 // If location is unknown, this may be a compiler-generated function. Assume 1412 // it's located in the main file. 1413 auto &SM = Context.getSourceManager(); 1414 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1415 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1416 } 1417 return false; 1418 } 1419 1420 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1421 SourceLocation Loc, QualType Ty, 1422 StringRef Category) const { 1423 // For now globals can be blacklisted only in ASan and KASan. 1424 if (!LangOpts.Sanitize.hasOneOf( 1425 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1426 return false; 1427 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1428 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1429 return true; 1430 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1431 return true; 1432 // Check global type. 1433 if (!Ty.isNull()) { 1434 // Drill down the array types: if global variable of a fixed type is 1435 // blacklisted, we also don't instrument arrays of them. 1436 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1437 Ty = AT->getElementType(); 1438 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1439 // We allow to blacklist only record types (classes, structs etc.) 1440 if (Ty->isRecordType()) { 1441 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1442 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1443 return true; 1444 } 1445 } 1446 return false; 1447 } 1448 1449 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1450 // Never defer when EmitAllDecls is specified. 1451 if (LangOpts.EmitAllDecls) 1452 return true; 1453 1454 return getContext().DeclMustBeEmitted(Global); 1455 } 1456 1457 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1458 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1459 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1460 // Implicit template instantiations may change linkage if they are later 1461 // explicitly instantiated, so they should not be emitted eagerly. 1462 return false; 1463 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1464 if (Context.getInlineVariableDefinitionKind(VD) == 1465 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1466 // A definition of an inline constexpr static data member may change 1467 // linkage later if it's redeclared outside the class. 1468 return false; 1469 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1470 // codegen for global variables, because they may be marked as threadprivate. 1471 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1472 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1473 return false; 1474 1475 return true; 1476 } 1477 1478 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1479 const CXXUuidofExpr* E) { 1480 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1481 // well-formed. 1482 StringRef Uuid = E->getUuidStr(); 1483 std::string Name = "_GUID_" + Uuid.lower(); 1484 std::replace(Name.begin(), Name.end(), '-', '_'); 1485 1486 // The UUID descriptor should be pointer aligned. 1487 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1488 1489 // Look for an existing global. 1490 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1491 return ConstantAddress(GV, Alignment); 1492 1493 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1494 assert(Init && "failed to initialize as constant"); 1495 1496 auto *GV = new llvm::GlobalVariable( 1497 getModule(), Init->getType(), 1498 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1499 if (supportsCOMDAT()) 1500 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1501 return ConstantAddress(GV, Alignment); 1502 } 1503 1504 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1505 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1506 assert(AA && "No alias?"); 1507 1508 CharUnits Alignment = getContext().getDeclAlign(VD); 1509 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1510 1511 // See if there is already something with the target's name in the module. 1512 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1513 if (Entry) { 1514 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1515 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1516 return ConstantAddress(Ptr, Alignment); 1517 } 1518 1519 llvm::Constant *Aliasee; 1520 if (isa<llvm::FunctionType>(DeclTy)) 1521 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1522 GlobalDecl(cast<FunctionDecl>(VD)), 1523 /*ForVTable=*/false); 1524 else 1525 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1526 llvm::PointerType::getUnqual(DeclTy), 1527 nullptr); 1528 1529 auto *F = cast<llvm::GlobalValue>(Aliasee); 1530 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1531 WeakRefReferences.insert(F); 1532 1533 return ConstantAddress(Aliasee, Alignment); 1534 } 1535 1536 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1537 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1538 1539 // Weak references don't produce any output by themselves. 1540 if (Global->hasAttr<WeakRefAttr>()) 1541 return; 1542 1543 // If this is an alias definition (which otherwise looks like a declaration) 1544 // emit it now. 1545 if (Global->hasAttr<AliasAttr>()) 1546 return EmitAliasDefinition(GD); 1547 1548 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1549 if (Global->hasAttr<IFuncAttr>()) 1550 return emitIFuncDefinition(GD); 1551 1552 // If this is CUDA, be selective about which declarations we emit. 1553 if (LangOpts.CUDA) { 1554 if (LangOpts.CUDAIsDevice) { 1555 if (!Global->hasAttr<CUDADeviceAttr>() && 1556 !Global->hasAttr<CUDAGlobalAttr>() && 1557 !Global->hasAttr<CUDAConstantAttr>() && 1558 !Global->hasAttr<CUDASharedAttr>()) 1559 return; 1560 } else { 1561 // We need to emit host-side 'shadows' for all global 1562 // device-side variables because the CUDA runtime needs their 1563 // size and host-side address in order to provide access to 1564 // their device-side incarnations. 1565 1566 // So device-only functions are the only things we skip. 1567 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1568 Global->hasAttr<CUDADeviceAttr>()) 1569 return; 1570 1571 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1572 "Expected Variable or Function"); 1573 } 1574 } 1575 1576 if (LangOpts.OpenMP) { 1577 // If this is OpenMP device, check if it is legal to emit this global 1578 // normally. 1579 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1580 return; 1581 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1582 if (MustBeEmitted(Global)) 1583 EmitOMPDeclareReduction(DRD); 1584 return; 1585 } 1586 } 1587 1588 // Ignore declarations, they will be emitted on their first use. 1589 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1590 // Forward declarations are emitted lazily on first use. 1591 if (!FD->doesThisDeclarationHaveABody()) { 1592 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1593 return; 1594 1595 StringRef MangledName = getMangledName(GD); 1596 1597 // Compute the function info and LLVM type. 1598 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1599 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1600 1601 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1602 /*DontDefer=*/false); 1603 return; 1604 } 1605 } else { 1606 const auto *VD = cast<VarDecl>(Global); 1607 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1608 // We need to emit device-side global CUDA variables even if a 1609 // variable does not have a definition -- we still need to define 1610 // host-side shadow for it. 1611 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1612 !VD->hasDefinition() && 1613 (VD->hasAttr<CUDAConstantAttr>() || 1614 VD->hasAttr<CUDADeviceAttr>()); 1615 if (!MustEmitForCuda && 1616 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1617 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1618 // If this declaration may have caused an inline variable definition to 1619 // change linkage, make sure that it's emitted. 1620 if (Context.getInlineVariableDefinitionKind(VD) == 1621 ASTContext::InlineVariableDefinitionKind::Strong) 1622 GetAddrOfGlobalVar(VD); 1623 return; 1624 } 1625 } 1626 1627 // Defer code generation to first use when possible, e.g. if this is an inline 1628 // function. If the global must always be emitted, do it eagerly if possible 1629 // to benefit from cache locality. 1630 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1631 // Emit the definition if it can't be deferred. 1632 EmitGlobalDefinition(GD); 1633 return; 1634 } 1635 1636 // If we're deferring emission of a C++ variable with an 1637 // initializer, remember the order in which it appeared in the file. 1638 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1639 cast<VarDecl>(Global)->hasInit()) { 1640 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1641 CXXGlobalInits.push_back(nullptr); 1642 } 1643 1644 StringRef MangledName = getMangledName(GD); 1645 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1646 // The value has already been used and should therefore be emitted. 1647 addDeferredDeclToEmit(GV, GD); 1648 } else if (MustBeEmitted(Global)) { 1649 // The value must be emitted, but cannot be emitted eagerly. 1650 assert(!MayBeEmittedEagerly(Global)); 1651 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1652 } else { 1653 // Otherwise, remember that we saw a deferred decl with this name. The 1654 // first use of the mangled name will cause it to move into 1655 // DeferredDeclsToEmit. 1656 DeferredDecls[MangledName] = GD; 1657 } 1658 } 1659 1660 namespace { 1661 struct FunctionIsDirectlyRecursive : 1662 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1663 const StringRef Name; 1664 const Builtin::Context &BI; 1665 bool Result; 1666 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1667 Name(N), BI(C), Result(false) { 1668 } 1669 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1670 1671 bool TraverseCallExpr(CallExpr *E) { 1672 const FunctionDecl *FD = E->getDirectCallee(); 1673 if (!FD) 1674 return true; 1675 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1676 if (Attr && Name == Attr->getLabel()) { 1677 Result = true; 1678 return false; 1679 } 1680 unsigned BuiltinID = FD->getBuiltinID(); 1681 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1682 return true; 1683 StringRef BuiltinName = BI.getName(BuiltinID); 1684 if (BuiltinName.startswith("__builtin_") && 1685 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1686 Result = true; 1687 return false; 1688 } 1689 return true; 1690 } 1691 }; 1692 1693 struct DLLImportFunctionVisitor 1694 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1695 bool SafeToInline = true; 1696 1697 bool shouldVisitImplicitCode() const { return true; } 1698 1699 bool VisitVarDecl(VarDecl *VD) { 1700 // A thread-local variable cannot be imported. 1701 SafeToInline = !VD->getTLSKind(); 1702 return SafeToInline; 1703 } 1704 1705 // Make sure we're not referencing non-imported vars or functions. 1706 bool VisitDeclRefExpr(DeclRefExpr *E) { 1707 ValueDecl *VD = E->getDecl(); 1708 if (isa<FunctionDecl>(VD)) 1709 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1710 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1711 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1712 return SafeToInline; 1713 } 1714 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1715 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1716 return SafeToInline; 1717 } 1718 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1719 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1720 return SafeToInline; 1721 } 1722 bool VisitCXXNewExpr(CXXNewExpr *E) { 1723 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1724 return SafeToInline; 1725 } 1726 }; 1727 } 1728 1729 // isTriviallyRecursive - Check if this function calls another 1730 // decl that, because of the asm attribute or the other decl being a builtin, 1731 // ends up pointing to itself. 1732 bool 1733 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1734 StringRef Name; 1735 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1736 // asm labels are a special kind of mangling we have to support. 1737 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1738 if (!Attr) 1739 return false; 1740 Name = Attr->getLabel(); 1741 } else { 1742 Name = FD->getName(); 1743 } 1744 1745 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1746 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1747 return Walker.Result; 1748 } 1749 1750 // Check if T is a class type with a destructor that's not dllimport. 1751 static bool HasNonDllImportDtor(QualType T) { 1752 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1753 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1754 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1755 return true; 1756 1757 return false; 1758 } 1759 1760 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1761 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1762 return true; 1763 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1764 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1765 return false; 1766 1767 if (F->hasAttr<DLLImportAttr>()) { 1768 // Check whether it would be safe to inline this dllimport function. 1769 DLLImportFunctionVisitor Visitor; 1770 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1771 if (!Visitor.SafeToInline) 1772 return false; 1773 1774 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1775 // Implicit destructor invocations aren't captured in the AST, so the 1776 // check above can't see them. Check for them manually here. 1777 for (const Decl *Member : Dtor->getParent()->decls()) 1778 if (isa<FieldDecl>(Member)) 1779 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1780 return false; 1781 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1782 if (HasNonDllImportDtor(B.getType())) 1783 return false; 1784 } 1785 } 1786 1787 // PR9614. Avoid cases where the source code is lying to us. An available 1788 // externally function should have an equivalent function somewhere else, 1789 // but a function that calls itself is clearly not equivalent to the real 1790 // implementation. 1791 // This happens in glibc's btowc and in some configure checks. 1792 return !isTriviallyRecursive(F); 1793 } 1794 1795 /// If the type for the method's class was generated by 1796 /// CGDebugInfo::createContextChain(), the cache contains only a 1797 /// limited DIType without any declarations. Since EmitFunctionStart() 1798 /// needs to find the canonical declaration for each method, we need 1799 /// to construct the complete type prior to emitting the method. 1800 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1801 if (!D->isInstance()) 1802 return; 1803 1804 if (CGDebugInfo *DI = getModuleDebugInfo()) 1805 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1806 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1807 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1808 } 1809 } 1810 1811 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1812 const auto *D = cast<ValueDecl>(GD.getDecl()); 1813 1814 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1815 Context.getSourceManager(), 1816 "Generating code for declaration"); 1817 1818 if (isa<FunctionDecl>(D)) { 1819 // At -O0, don't generate IR for functions with available_externally 1820 // linkage. 1821 if (!shouldEmitFunction(GD)) 1822 return; 1823 1824 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1825 CompleteDIClassType(Method); 1826 // Make sure to emit the definition(s) before we emit the thunks. 1827 // This is necessary for the generation of certain thunks. 1828 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1829 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1830 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1831 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1832 else 1833 EmitGlobalFunctionDefinition(GD, GV); 1834 1835 if (Method->isVirtual()) 1836 getVTables().EmitThunks(GD); 1837 1838 return; 1839 } 1840 1841 return EmitGlobalFunctionDefinition(GD, GV); 1842 } 1843 1844 if (const auto *VD = dyn_cast<VarDecl>(D)) 1845 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1846 1847 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1848 } 1849 1850 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1851 llvm::Function *NewFn); 1852 1853 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1854 /// module, create and return an llvm Function with the specified type. If there 1855 /// is something in the module with the specified name, return it potentially 1856 /// bitcasted to the right type. 1857 /// 1858 /// If D is non-null, it specifies a decl that correspond to this. This is used 1859 /// to set the attributes on the function when it is first created. 1860 llvm::Constant * 1861 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1862 llvm::Type *Ty, 1863 GlobalDecl GD, bool ForVTable, 1864 bool DontDefer, bool IsThunk, 1865 llvm::AttributeSet ExtraAttrs, 1866 bool IsForDefinition) { 1867 const Decl *D = GD.getDecl(); 1868 1869 // Lookup the entry, lazily creating it if necessary. 1870 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1871 if (Entry) { 1872 if (WeakRefReferences.erase(Entry)) { 1873 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1874 if (FD && !FD->hasAttr<WeakAttr>()) 1875 Entry->setLinkage(llvm::Function::ExternalLinkage); 1876 } 1877 1878 // Handle dropped DLL attributes. 1879 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1880 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1881 1882 // If there are two attempts to define the same mangled name, issue an 1883 // error. 1884 if (IsForDefinition && !Entry->isDeclaration()) { 1885 GlobalDecl OtherGD; 1886 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1887 // to make sure that we issue an error only once. 1888 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1889 (GD.getCanonicalDecl().getDecl() != 1890 OtherGD.getCanonicalDecl().getDecl()) && 1891 DiagnosedConflictingDefinitions.insert(GD).second) { 1892 getDiags().Report(D->getLocation(), 1893 diag::err_duplicate_mangled_name); 1894 getDiags().Report(OtherGD.getDecl()->getLocation(), 1895 diag::note_previous_definition); 1896 } 1897 } 1898 1899 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1900 (Entry->getType()->getElementType() == Ty)) { 1901 return Entry; 1902 } 1903 1904 // Make sure the result is of the correct type. 1905 // (If function is requested for a definition, we always need to create a new 1906 // function, not just return a bitcast.) 1907 if (!IsForDefinition) 1908 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1909 } 1910 1911 // This function doesn't have a complete type (for example, the return 1912 // type is an incomplete struct). Use a fake type instead, and make 1913 // sure not to try to set attributes. 1914 bool IsIncompleteFunction = false; 1915 1916 llvm::FunctionType *FTy; 1917 if (isa<llvm::FunctionType>(Ty)) { 1918 FTy = cast<llvm::FunctionType>(Ty); 1919 } else { 1920 FTy = llvm::FunctionType::get(VoidTy, false); 1921 IsIncompleteFunction = true; 1922 } 1923 1924 llvm::Function *F = 1925 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1926 Entry ? StringRef() : MangledName, &getModule()); 1927 1928 // If we already created a function with the same mangled name (but different 1929 // type) before, take its name and add it to the list of functions to be 1930 // replaced with F at the end of CodeGen. 1931 // 1932 // This happens if there is a prototype for a function (e.g. "int f()") and 1933 // then a definition of a different type (e.g. "int f(int x)"). 1934 if (Entry) { 1935 F->takeName(Entry); 1936 1937 // This might be an implementation of a function without a prototype, in 1938 // which case, try to do special replacement of calls which match the new 1939 // prototype. The really key thing here is that we also potentially drop 1940 // arguments from the call site so as to make a direct call, which makes the 1941 // inliner happier and suppresses a number of optimizer warnings (!) about 1942 // dropping arguments. 1943 if (!Entry->use_empty()) { 1944 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1945 Entry->removeDeadConstantUsers(); 1946 } 1947 1948 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1949 F, Entry->getType()->getElementType()->getPointerTo()); 1950 addGlobalValReplacement(Entry, BC); 1951 } 1952 1953 assert(F->getName() == MangledName && "name was uniqued!"); 1954 if (D) 1955 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1956 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1957 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1958 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1959 llvm::AttributeSet::get(VMContext, 1960 llvm::AttributeSet::FunctionIndex, 1961 B)); 1962 } 1963 1964 if (!DontDefer) { 1965 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1966 // each other bottoming out with the base dtor. Therefore we emit non-base 1967 // dtors on usage, even if there is no dtor definition in the TU. 1968 if (D && isa<CXXDestructorDecl>(D) && 1969 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1970 GD.getDtorType())) 1971 addDeferredDeclToEmit(F, GD); 1972 1973 // This is the first use or definition of a mangled name. If there is a 1974 // deferred decl with this name, remember that we need to emit it at the end 1975 // of the file. 1976 auto DDI = DeferredDecls.find(MangledName); 1977 if (DDI != DeferredDecls.end()) { 1978 // Move the potentially referenced deferred decl to the 1979 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1980 // don't need it anymore). 1981 addDeferredDeclToEmit(F, DDI->second); 1982 DeferredDecls.erase(DDI); 1983 1984 // Otherwise, there are cases we have to worry about where we're 1985 // using a declaration for which we must emit a definition but where 1986 // we might not find a top-level definition: 1987 // - member functions defined inline in their classes 1988 // - friend functions defined inline in some class 1989 // - special member functions with implicit definitions 1990 // If we ever change our AST traversal to walk into class methods, 1991 // this will be unnecessary. 1992 // 1993 // We also don't emit a definition for a function if it's going to be an 1994 // entry in a vtable, unless it's already marked as used. 1995 } else if (getLangOpts().CPlusPlus && D) { 1996 // Look for a declaration that's lexically in a record. 1997 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1998 FD = FD->getPreviousDecl()) { 1999 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2000 if (FD->doesThisDeclarationHaveABody()) { 2001 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2002 break; 2003 } 2004 } 2005 } 2006 } 2007 } 2008 2009 // Make sure the result is of the requested type. 2010 if (!IsIncompleteFunction) { 2011 assert(F->getType()->getElementType() == Ty); 2012 return F; 2013 } 2014 2015 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2016 return llvm::ConstantExpr::getBitCast(F, PTy); 2017 } 2018 2019 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2020 /// non-null, then this function will use the specified type if it has to 2021 /// create it (this occurs when we see a definition of the function). 2022 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2023 llvm::Type *Ty, 2024 bool ForVTable, 2025 bool DontDefer, 2026 bool IsForDefinition) { 2027 // If there was no specific requested type, just convert it now. 2028 if (!Ty) { 2029 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2030 auto CanonTy = Context.getCanonicalType(FD->getType()); 2031 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2032 } 2033 2034 StringRef MangledName = getMangledName(GD); 2035 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2036 /*IsThunk=*/false, llvm::AttributeSet(), 2037 IsForDefinition); 2038 } 2039 2040 /// CreateRuntimeFunction - Create a new runtime function with the specified 2041 /// type and name. 2042 llvm::Constant * 2043 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2044 StringRef Name, 2045 llvm::AttributeSet ExtraAttrs) { 2046 llvm::Constant *C = 2047 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2048 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2049 if (auto *F = dyn_cast<llvm::Function>(C)) 2050 if (F->empty()) 2051 F->setCallingConv(getRuntimeCC()); 2052 return C; 2053 } 2054 2055 /// CreateBuiltinFunction - Create a new builtin function with the specified 2056 /// type and name. 2057 llvm::Constant * 2058 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2059 StringRef Name, 2060 llvm::AttributeSet ExtraAttrs) { 2061 llvm::Constant *C = 2062 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2063 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2064 if (auto *F = dyn_cast<llvm::Function>(C)) 2065 if (F->empty()) 2066 F->setCallingConv(getBuiltinCC()); 2067 return C; 2068 } 2069 2070 /// isTypeConstant - Determine whether an object of this type can be emitted 2071 /// as a constant. 2072 /// 2073 /// If ExcludeCtor is true, the duration when the object's constructor runs 2074 /// will not be considered. The caller will need to verify that the object is 2075 /// not written to during its construction. 2076 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2077 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2078 return false; 2079 2080 if (Context.getLangOpts().CPlusPlus) { 2081 if (const CXXRecordDecl *Record 2082 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2083 return ExcludeCtor && !Record->hasMutableFields() && 2084 Record->hasTrivialDestructor(); 2085 } 2086 2087 return true; 2088 } 2089 2090 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2091 /// create and return an llvm GlobalVariable with the specified type. If there 2092 /// is something in the module with the specified name, return it potentially 2093 /// bitcasted to the right type. 2094 /// 2095 /// If D is non-null, it specifies a decl that correspond to this. This is used 2096 /// to set the attributes on the global when it is first created. 2097 /// 2098 /// If IsForDefinition is true, it is guranteed that an actual global with 2099 /// type Ty will be returned, not conversion of a variable with the same 2100 /// mangled name but some other type. 2101 llvm::Constant * 2102 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2103 llvm::PointerType *Ty, 2104 const VarDecl *D, 2105 bool IsForDefinition) { 2106 // Lookup the entry, lazily creating it if necessary. 2107 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2108 if (Entry) { 2109 if (WeakRefReferences.erase(Entry)) { 2110 if (D && !D->hasAttr<WeakAttr>()) 2111 Entry->setLinkage(llvm::Function::ExternalLinkage); 2112 } 2113 2114 // Handle dropped DLL attributes. 2115 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2116 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2117 2118 if (Entry->getType() == Ty) 2119 return Entry; 2120 2121 // If there are two attempts to define the same mangled name, issue an 2122 // error. 2123 if (IsForDefinition && !Entry->isDeclaration()) { 2124 GlobalDecl OtherGD; 2125 const VarDecl *OtherD; 2126 2127 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2128 // to make sure that we issue an error only once. 2129 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2130 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2131 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2132 OtherD->hasInit() && 2133 DiagnosedConflictingDefinitions.insert(D).second) { 2134 getDiags().Report(D->getLocation(), 2135 diag::err_duplicate_mangled_name); 2136 getDiags().Report(OtherGD.getDecl()->getLocation(), 2137 diag::note_previous_definition); 2138 } 2139 } 2140 2141 // Make sure the result is of the correct type. 2142 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2143 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2144 2145 // (If global is requested for a definition, we always need to create a new 2146 // global, not just return a bitcast.) 2147 if (!IsForDefinition) 2148 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2149 } 2150 2151 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2152 auto *GV = new llvm::GlobalVariable( 2153 getModule(), Ty->getElementType(), false, 2154 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2155 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2156 2157 // If we already created a global with the same mangled name (but different 2158 // type) before, take its name and remove it from its parent. 2159 if (Entry) { 2160 GV->takeName(Entry); 2161 2162 if (!Entry->use_empty()) { 2163 llvm::Constant *NewPtrForOldDecl = 2164 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2165 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2166 } 2167 2168 Entry->eraseFromParent(); 2169 } 2170 2171 // This is the first use or definition of a mangled name. If there is a 2172 // deferred decl with this name, remember that we need to emit it at the end 2173 // of the file. 2174 auto DDI = DeferredDecls.find(MangledName); 2175 if (DDI != DeferredDecls.end()) { 2176 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2177 // list, and remove it from DeferredDecls (since we don't need it anymore). 2178 addDeferredDeclToEmit(GV, DDI->second); 2179 DeferredDecls.erase(DDI); 2180 } 2181 2182 // Handle things which are present even on external declarations. 2183 if (D) { 2184 // FIXME: This code is overly simple and should be merged with other global 2185 // handling. 2186 GV->setConstant(isTypeConstant(D->getType(), false)); 2187 2188 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2189 2190 setLinkageAndVisibilityForGV(GV, D); 2191 2192 if (D->getTLSKind()) { 2193 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2194 CXXThreadLocals.push_back(D); 2195 setTLSMode(GV, *D); 2196 } 2197 2198 // If required by the ABI, treat declarations of static data members with 2199 // inline initializers as definitions. 2200 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2201 EmitGlobalVarDefinition(D); 2202 } 2203 2204 // Handle XCore specific ABI requirements. 2205 if (getTriple().getArch() == llvm::Triple::xcore && 2206 D->getLanguageLinkage() == CLanguageLinkage && 2207 D->getType().isConstant(Context) && 2208 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2209 GV->setSection(".cp.rodata"); 2210 } 2211 2212 if (AddrSpace != Ty->getAddressSpace()) 2213 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2214 2215 return GV; 2216 } 2217 2218 llvm::Constant * 2219 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2220 bool IsForDefinition) { 2221 if (isa<CXXConstructorDecl>(GD.getDecl())) 2222 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2223 getFromCtorType(GD.getCtorType()), 2224 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2225 /*DontDefer=*/false, IsForDefinition); 2226 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2227 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2228 getFromDtorType(GD.getDtorType()), 2229 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2230 /*DontDefer=*/false, IsForDefinition); 2231 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2232 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2233 cast<CXXMethodDecl>(GD.getDecl())); 2234 auto Ty = getTypes().GetFunctionType(*FInfo); 2235 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2236 IsForDefinition); 2237 } else if (isa<FunctionDecl>(GD.getDecl())) { 2238 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2239 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2240 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2241 IsForDefinition); 2242 } else 2243 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2244 IsForDefinition); 2245 } 2246 2247 llvm::GlobalVariable * 2248 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2249 llvm::Type *Ty, 2250 llvm::GlobalValue::LinkageTypes Linkage) { 2251 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2252 llvm::GlobalVariable *OldGV = nullptr; 2253 2254 if (GV) { 2255 // Check if the variable has the right type. 2256 if (GV->getType()->getElementType() == Ty) 2257 return GV; 2258 2259 // Because C++ name mangling, the only way we can end up with an already 2260 // existing global with the same name is if it has been declared extern "C". 2261 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2262 OldGV = GV; 2263 } 2264 2265 // Create a new variable. 2266 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2267 Linkage, nullptr, Name); 2268 2269 if (OldGV) { 2270 // Replace occurrences of the old variable if needed. 2271 GV->takeName(OldGV); 2272 2273 if (!OldGV->use_empty()) { 2274 llvm::Constant *NewPtrForOldDecl = 2275 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2276 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2277 } 2278 2279 OldGV->eraseFromParent(); 2280 } 2281 2282 if (supportsCOMDAT() && GV->isWeakForLinker() && 2283 !GV->hasAvailableExternallyLinkage()) 2284 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2285 2286 return GV; 2287 } 2288 2289 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2290 /// given global variable. If Ty is non-null and if the global doesn't exist, 2291 /// then it will be created with the specified type instead of whatever the 2292 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2293 /// that an actual global with type Ty will be returned, not conversion of a 2294 /// variable with the same mangled name but some other type. 2295 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2296 llvm::Type *Ty, 2297 bool IsForDefinition) { 2298 assert(D->hasGlobalStorage() && "Not a global variable"); 2299 QualType ASTTy = D->getType(); 2300 if (!Ty) 2301 Ty = getTypes().ConvertTypeForMem(ASTTy); 2302 2303 llvm::PointerType *PTy = 2304 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2305 2306 StringRef MangledName = getMangledName(D); 2307 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2308 } 2309 2310 /// CreateRuntimeVariable - Create a new runtime global variable with the 2311 /// specified type and name. 2312 llvm::Constant * 2313 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2314 StringRef Name) { 2315 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2316 } 2317 2318 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2319 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2320 2321 StringRef MangledName = getMangledName(D); 2322 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2323 2324 // We already have a definition, not declaration, with the same mangled name. 2325 // Emitting of declaration is not required (and actually overwrites emitted 2326 // definition). 2327 if (GV && !GV->isDeclaration()) 2328 return; 2329 2330 // If we have not seen a reference to this variable yet, place it into the 2331 // deferred declarations table to be emitted if needed later. 2332 if (!MustBeEmitted(D) && !GV) { 2333 DeferredDecls[MangledName] = D; 2334 return; 2335 } 2336 2337 // The tentative definition is the only definition. 2338 EmitGlobalVarDefinition(D); 2339 } 2340 2341 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2342 return Context.toCharUnitsFromBits( 2343 getDataLayout().getTypeStoreSizeInBits(Ty)); 2344 } 2345 2346 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2347 unsigned AddrSpace) { 2348 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2349 if (D->hasAttr<CUDAConstantAttr>()) 2350 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2351 else if (D->hasAttr<CUDASharedAttr>()) 2352 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2353 else 2354 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2355 } 2356 2357 return AddrSpace; 2358 } 2359 2360 template<typename SomeDecl> 2361 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2362 llvm::GlobalValue *GV) { 2363 if (!getLangOpts().CPlusPlus) 2364 return; 2365 2366 // Must have 'used' attribute, or else inline assembly can't rely on 2367 // the name existing. 2368 if (!D->template hasAttr<UsedAttr>()) 2369 return; 2370 2371 // Must have internal linkage and an ordinary name. 2372 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2373 return; 2374 2375 // Must be in an extern "C" context. Entities declared directly within 2376 // a record are not extern "C" even if the record is in such a context. 2377 const SomeDecl *First = D->getFirstDecl(); 2378 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2379 return; 2380 2381 // OK, this is an internal linkage entity inside an extern "C" linkage 2382 // specification. Make a note of that so we can give it the "expected" 2383 // mangled name if nothing else is using that name. 2384 std::pair<StaticExternCMap::iterator, bool> R = 2385 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2386 2387 // If we have multiple internal linkage entities with the same name 2388 // in extern "C" regions, none of them gets that name. 2389 if (!R.second) 2390 R.first->second = nullptr; 2391 } 2392 2393 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2394 if (!CGM.supportsCOMDAT()) 2395 return false; 2396 2397 if (D.hasAttr<SelectAnyAttr>()) 2398 return true; 2399 2400 GVALinkage Linkage; 2401 if (auto *VD = dyn_cast<VarDecl>(&D)) 2402 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2403 else 2404 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2405 2406 switch (Linkage) { 2407 case GVA_Internal: 2408 case GVA_AvailableExternally: 2409 case GVA_StrongExternal: 2410 return false; 2411 case GVA_DiscardableODR: 2412 case GVA_StrongODR: 2413 return true; 2414 } 2415 llvm_unreachable("No such linkage"); 2416 } 2417 2418 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2419 llvm::GlobalObject &GO) { 2420 if (!shouldBeInCOMDAT(*this, D)) 2421 return; 2422 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2423 } 2424 2425 /// Pass IsTentative as true if you want to create a tentative definition. 2426 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2427 bool IsTentative) { 2428 // OpenCL global variables of sampler type are translated to function calls, 2429 // therefore no need to be translated. 2430 QualType ASTTy = D->getType(); 2431 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2432 return; 2433 2434 llvm::Constant *Init = nullptr; 2435 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2436 bool NeedsGlobalCtor = false; 2437 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2438 2439 const VarDecl *InitDecl; 2440 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2441 2442 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2443 // as part of their declaration." Sema has already checked for 2444 // error cases, so we just need to set Init to UndefValue. 2445 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2446 D->hasAttr<CUDASharedAttr>()) 2447 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2448 else if (!InitExpr) { 2449 // This is a tentative definition; tentative definitions are 2450 // implicitly initialized with { 0 }. 2451 // 2452 // Note that tentative definitions are only emitted at the end of 2453 // a translation unit, so they should never have incomplete 2454 // type. In addition, EmitTentativeDefinition makes sure that we 2455 // never attempt to emit a tentative definition if a real one 2456 // exists. A use may still exists, however, so we still may need 2457 // to do a RAUW. 2458 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2459 Init = EmitNullConstant(D->getType()); 2460 } else { 2461 initializedGlobalDecl = GlobalDecl(D); 2462 Init = EmitConstantInit(*InitDecl); 2463 2464 if (!Init) { 2465 QualType T = InitExpr->getType(); 2466 if (D->getType()->isReferenceType()) 2467 T = D->getType(); 2468 2469 if (getLangOpts().CPlusPlus) { 2470 Init = EmitNullConstant(T); 2471 NeedsGlobalCtor = true; 2472 } else { 2473 ErrorUnsupported(D, "static initializer"); 2474 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2475 } 2476 } else { 2477 // We don't need an initializer, so remove the entry for the delayed 2478 // initializer position (just in case this entry was delayed) if we 2479 // also don't need to register a destructor. 2480 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2481 DelayedCXXInitPosition.erase(D); 2482 } 2483 } 2484 2485 llvm::Type* InitType = Init->getType(); 2486 llvm::Constant *Entry = 2487 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2488 2489 // Strip off a bitcast if we got one back. 2490 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2491 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2492 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2493 // All zero index gep. 2494 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2495 Entry = CE->getOperand(0); 2496 } 2497 2498 // Entry is now either a Function or GlobalVariable. 2499 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2500 2501 // We have a definition after a declaration with the wrong type. 2502 // We must make a new GlobalVariable* and update everything that used OldGV 2503 // (a declaration or tentative definition) with the new GlobalVariable* 2504 // (which will be a definition). 2505 // 2506 // This happens if there is a prototype for a global (e.g. 2507 // "extern int x[];") and then a definition of a different type (e.g. 2508 // "int x[10];"). This also happens when an initializer has a different type 2509 // from the type of the global (this happens with unions). 2510 if (!GV || 2511 GV->getType()->getElementType() != InitType || 2512 GV->getType()->getAddressSpace() != 2513 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2514 2515 // Move the old entry aside so that we'll create a new one. 2516 Entry->setName(StringRef()); 2517 2518 // Make a new global with the correct type, this is now guaranteed to work. 2519 GV = cast<llvm::GlobalVariable>( 2520 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2521 2522 // Replace all uses of the old global with the new global 2523 llvm::Constant *NewPtrForOldDecl = 2524 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2525 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2526 2527 // Erase the old global, since it is no longer used. 2528 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2529 } 2530 2531 MaybeHandleStaticInExternC(D, GV); 2532 2533 if (D->hasAttr<AnnotateAttr>()) 2534 AddGlobalAnnotations(D, GV); 2535 2536 // Set the llvm linkage type as appropriate. 2537 llvm::GlobalValue::LinkageTypes Linkage = 2538 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2539 2540 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2541 // the device. [...]" 2542 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2543 // __device__, declares a variable that: [...] 2544 // Is accessible from all the threads within the grid and from the host 2545 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2546 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2547 if (GV && LangOpts.CUDA) { 2548 if (LangOpts.CUDAIsDevice) { 2549 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2550 GV->setExternallyInitialized(true); 2551 } else { 2552 // Host-side shadows of external declarations of device-side 2553 // global variables become internal definitions. These have to 2554 // be internal in order to prevent name conflicts with global 2555 // host variables with the same name in a different TUs. 2556 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2557 Linkage = llvm::GlobalValue::InternalLinkage; 2558 2559 // Shadow variables and their properties must be registered 2560 // with CUDA runtime. 2561 unsigned Flags = 0; 2562 if (!D->hasDefinition()) 2563 Flags |= CGCUDARuntime::ExternDeviceVar; 2564 if (D->hasAttr<CUDAConstantAttr>()) 2565 Flags |= CGCUDARuntime::ConstantDeviceVar; 2566 getCUDARuntime().registerDeviceVar(*GV, Flags); 2567 } else if (D->hasAttr<CUDASharedAttr>()) 2568 // __shared__ variables are odd. Shadows do get created, but 2569 // they are not registered with the CUDA runtime, so they 2570 // can't really be used to access their device-side 2571 // counterparts. It's not clear yet whether it's nvcc's bug or 2572 // a feature, but we've got to do the same for compatibility. 2573 Linkage = llvm::GlobalValue::InternalLinkage; 2574 } 2575 } 2576 GV->setInitializer(Init); 2577 2578 // If it is safe to mark the global 'constant', do so now. 2579 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2580 isTypeConstant(D->getType(), true)); 2581 2582 // If it is in a read-only section, mark it 'constant'. 2583 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2584 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2585 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2586 GV->setConstant(true); 2587 } 2588 2589 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2590 2591 2592 // On Darwin, if the normal linkage of a C++ thread_local variable is 2593 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2594 // copies within a linkage unit; otherwise, the backing variable has 2595 // internal linkage and all accesses should just be calls to the 2596 // Itanium-specified entry point, which has the normal linkage of the 2597 // variable. This is to preserve the ability to change the implementation 2598 // behind the scenes. 2599 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2600 Context.getTargetInfo().getTriple().isOSDarwin() && 2601 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2602 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2603 Linkage = llvm::GlobalValue::InternalLinkage; 2604 2605 GV->setLinkage(Linkage); 2606 if (D->hasAttr<DLLImportAttr>()) 2607 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2608 else if (D->hasAttr<DLLExportAttr>()) 2609 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2610 else 2611 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2612 2613 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2614 // common vars aren't constant even if declared const. 2615 GV->setConstant(false); 2616 2617 setNonAliasAttributes(D, GV); 2618 2619 if (D->getTLSKind() && !GV->isThreadLocal()) { 2620 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2621 CXXThreadLocals.push_back(D); 2622 setTLSMode(GV, *D); 2623 } 2624 2625 maybeSetTrivialComdat(*D, *GV); 2626 2627 // Emit the initializer function if necessary. 2628 if (NeedsGlobalCtor || NeedsGlobalDtor) 2629 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2630 2631 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2632 2633 // Emit global variable debug information. 2634 if (CGDebugInfo *DI = getModuleDebugInfo()) 2635 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2636 DI->EmitGlobalVariable(GV, D); 2637 } 2638 2639 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2640 CodeGenModule &CGM, const VarDecl *D, 2641 bool NoCommon) { 2642 // Don't give variables common linkage if -fno-common was specified unless it 2643 // was overridden by a NoCommon attribute. 2644 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2645 return true; 2646 2647 // C11 6.9.2/2: 2648 // A declaration of an identifier for an object that has file scope without 2649 // an initializer, and without a storage-class specifier or with the 2650 // storage-class specifier static, constitutes a tentative definition. 2651 if (D->getInit() || D->hasExternalStorage()) 2652 return true; 2653 2654 // A variable cannot be both common and exist in a section. 2655 if (D->hasAttr<SectionAttr>()) 2656 return true; 2657 2658 // Thread local vars aren't considered common linkage. 2659 if (D->getTLSKind()) 2660 return true; 2661 2662 // Tentative definitions marked with WeakImportAttr are true definitions. 2663 if (D->hasAttr<WeakImportAttr>()) 2664 return true; 2665 2666 // A variable cannot be both common and exist in a comdat. 2667 if (shouldBeInCOMDAT(CGM, *D)) 2668 return true; 2669 2670 // Declarations with a required alignment do not have common linkage in MSVC 2671 // mode. 2672 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2673 if (D->hasAttr<AlignedAttr>()) 2674 return true; 2675 QualType VarType = D->getType(); 2676 if (Context.isAlignmentRequired(VarType)) 2677 return true; 2678 2679 if (const auto *RT = VarType->getAs<RecordType>()) { 2680 const RecordDecl *RD = RT->getDecl(); 2681 for (const FieldDecl *FD : RD->fields()) { 2682 if (FD->isBitField()) 2683 continue; 2684 if (FD->hasAttr<AlignedAttr>()) 2685 return true; 2686 if (Context.isAlignmentRequired(FD->getType())) 2687 return true; 2688 } 2689 } 2690 } 2691 2692 return false; 2693 } 2694 2695 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2696 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2697 if (Linkage == GVA_Internal) 2698 return llvm::Function::InternalLinkage; 2699 2700 if (D->hasAttr<WeakAttr>()) { 2701 if (IsConstantVariable) 2702 return llvm::GlobalVariable::WeakODRLinkage; 2703 else 2704 return llvm::GlobalVariable::WeakAnyLinkage; 2705 } 2706 2707 // We are guaranteed to have a strong definition somewhere else, 2708 // so we can use available_externally linkage. 2709 if (Linkage == GVA_AvailableExternally) 2710 return llvm::Function::AvailableExternallyLinkage; 2711 2712 // Note that Apple's kernel linker doesn't support symbol 2713 // coalescing, so we need to avoid linkonce and weak linkages there. 2714 // Normally, this means we just map to internal, but for explicit 2715 // instantiations we'll map to external. 2716 2717 // In C++, the compiler has to emit a definition in every translation unit 2718 // that references the function. We should use linkonce_odr because 2719 // a) if all references in this translation unit are optimized away, we 2720 // don't need to codegen it. b) if the function persists, it needs to be 2721 // merged with other definitions. c) C++ has the ODR, so we know the 2722 // definition is dependable. 2723 if (Linkage == GVA_DiscardableODR) 2724 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2725 : llvm::Function::InternalLinkage; 2726 2727 // An explicit instantiation of a template has weak linkage, since 2728 // explicit instantiations can occur in multiple translation units 2729 // and must all be equivalent. However, we are not allowed to 2730 // throw away these explicit instantiations. 2731 // 2732 // We don't currently support CUDA device code spread out across multiple TUs, 2733 // so say that CUDA templates are either external (for kernels) or internal. 2734 // This lets llvm perform aggressive inter-procedural optimizations. 2735 if (Linkage == GVA_StrongODR) { 2736 if (Context.getLangOpts().AppleKext) 2737 return llvm::Function::ExternalLinkage; 2738 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2739 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2740 : llvm::Function::InternalLinkage; 2741 return llvm::Function::WeakODRLinkage; 2742 } 2743 2744 // C++ doesn't have tentative definitions and thus cannot have common 2745 // linkage. 2746 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2747 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2748 CodeGenOpts.NoCommon)) 2749 return llvm::GlobalVariable::CommonLinkage; 2750 2751 // selectany symbols are externally visible, so use weak instead of 2752 // linkonce. MSVC optimizes away references to const selectany globals, so 2753 // all definitions should be the same and ODR linkage should be used. 2754 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2755 if (D->hasAttr<SelectAnyAttr>()) 2756 return llvm::GlobalVariable::WeakODRLinkage; 2757 2758 // Otherwise, we have strong external linkage. 2759 assert(Linkage == GVA_StrongExternal); 2760 return llvm::GlobalVariable::ExternalLinkage; 2761 } 2762 2763 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2764 const VarDecl *VD, bool IsConstant) { 2765 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2766 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2767 } 2768 2769 /// Replace the uses of a function that was declared with a non-proto type. 2770 /// We want to silently drop extra arguments from call sites 2771 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2772 llvm::Function *newFn) { 2773 // Fast path. 2774 if (old->use_empty()) return; 2775 2776 llvm::Type *newRetTy = newFn->getReturnType(); 2777 SmallVector<llvm::Value*, 4> newArgs; 2778 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2779 2780 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2781 ui != ue; ) { 2782 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2783 llvm::User *user = use->getUser(); 2784 2785 // Recognize and replace uses of bitcasts. Most calls to 2786 // unprototyped functions will use bitcasts. 2787 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2788 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2789 replaceUsesOfNonProtoConstant(bitcast, newFn); 2790 continue; 2791 } 2792 2793 // Recognize calls to the function. 2794 llvm::CallSite callSite(user); 2795 if (!callSite) continue; 2796 if (!callSite.isCallee(&*use)) continue; 2797 2798 // If the return types don't match exactly, then we can't 2799 // transform this call unless it's dead. 2800 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2801 continue; 2802 2803 // Get the call site's attribute list. 2804 SmallVector<llvm::AttributeSet, 8> newAttrs; 2805 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2806 2807 // Collect any return attributes from the call. 2808 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2809 newAttrs.push_back( 2810 llvm::AttributeSet::get(newFn->getContext(), 2811 oldAttrs.getRetAttributes())); 2812 2813 // If the function was passed too few arguments, don't transform. 2814 unsigned newNumArgs = newFn->arg_size(); 2815 if (callSite.arg_size() < newNumArgs) continue; 2816 2817 // If extra arguments were passed, we silently drop them. 2818 // If any of the types mismatch, we don't transform. 2819 unsigned argNo = 0; 2820 bool dontTransform = false; 2821 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2822 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2823 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2824 dontTransform = true; 2825 break; 2826 } 2827 2828 // Add any parameter attributes. 2829 if (oldAttrs.hasAttributes(argNo + 1)) 2830 newAttrs. 2831 push_back(llvm:: 2832 AttributeSet::get(newFn->getContext(), 2833 oldAttrs.getParamAttributes(argNo + 1))); 2834 } 2835 if (dontTransform) 2836 continue; 2837 2838 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2839 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2840 oldAttrs.getFnAttributes())); 2841 2842 // Okay, we can transform this. Create the new call instruction and copy 2843 // over the required information. 2844 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2845 2846 // Copy over any operand bundles. 2847 callSite.getOperandBundlesAsDefs(newBundles); 2848 2849 llvm::CallSite newCall; 2850 if (callSite.isCall()) { 2851 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2852 callSite.getInstruction()); 2853 } else { 2854 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2855 newCall = llvm::InvokeInst::Create(newFn, 2856 oldInvoke->getNormalDest(), 2857 oldInvoke->getUnwindDest(), 2858 newArgs, newBundles, "", 2859 callSite.getInstruction()); 2860 } 2861 newArgs.clear(); // for the next iteration 2862 2863 if (!newCall->getType()->isVoidTy()) 2864 newCall->takeName(callSite.getInstruction()); 2865 newCall.setAttributes( 2866 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2867 newCall.setCallingConv(callSite.getCallingConv()); 2868 2869 // Finally, remove the old call, replacing any uses with the new one. 2870 if (!callSite->use_empty()) 2871 callSite->replaceAllUsesWith(newCall.getInstruction()); 2872 2873 // Copy debug location attached to CI. 2874 if (callSite->getDebugLoc()) 2875 newCall->setDebugLoc(callSite->getDebugLoc()); 2876 2877 callSite->eraseFromParent(); 2878 } 2879 } 2880 2881 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2882 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2883 /// existing call uses of the old function in the module, this adjusts them to 2884 /// call the new function directly. 2885 /// 2886 /// This is not just a cleanup: the always_inline pass requires direct calls to 2887 /// functions to be able to inline them. If there is a bitcast in the way, it 2888 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2889 /// run at -O0. 2890 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2891 llvm::Function *NewFn) { 2892 // If we're redefining a global as a function, don't transform it. 2893 if (!isa<llvm::Function>(Old)) return; 2894 2895 replaceUsesOfNonProtoConstant(Old, NewFn); 2896 } 2897 2898 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2899 auto DK = VD->isThisDeclarationADefinition(); 2900 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2901 return; 2902 2903 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2904 // If we have a definition, this might be a deferred decl. If the 2905 // instantiation is explicit, make sure we emit it at the end. 2906 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2907 GetAddrOfGlobalVar(VD); 2908 2909 EmitTopLevelDecl(VD); 2910 } 2911 2912 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2913 llvm::GlobalValue *GV) { 2914 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2915 2916 // Emit this function's deferred diagnostics, if none of them are errors. If 2917 // any of them are errors, don't codegen the function, but also don't emit any 2918 // of the diagnostics just yet. Emitting an error during codegen stops 2919 // further codegen, and we want to display as many deferred diags as possible. 2920 // We'll emit the now twice-deferred diags at the very end of codegen. 2921 // 2922 // (If a function has both error and non-error diags, we don't emit the 2923 // non-error diags here, because order can be significant, e.g. with notes 2924 // that follow errors.) 2925 auto Diags = D->takeDeferredDiags(); 2926 if (auto *Templ = D->getPrimaryTemplate()) { 2927 auto TemplDiags = Templ->getAsFunction()->takeDeferredDiags(); 2928 Diags.insert(Diags.end(), TemplDiags.begin(), TemplDiags.end()); 2929 } 2930 bool HasError = llvm::any_of(Diags, [this](const PartialDiagnosticAt &PDAt) { 2931 return getDiags().getDiagnosticLevel(PDAt.second.getDiagID(), PDAt.first) >= 2932 DiagnosticsEngine::Error; 2933 }); 2934 if (HasError) { 2935 DeferredDiags.insert(DeferredDiags.end(), 2936 std::make_move_iterator(Diags.begin()), 2937 std::make_move_iterator(Diags.end())); 2938 return; 2939 } 2940 for (PartialDiagnosticAt &PDAt : Diags) { 2941 const SourceLocation &Loc = PDAt.first; 2942 const PartialDiagnostic &PD = PDAt.second; 2943 DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID())); 2944 PD.Emit(Builder); 2945 } 2946 2947 // Compute the function info and LLVM type. 2948 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2949 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2950 2951 // Get or create the prototype for the function. 2952 if (!GV || (GV->getType()->getElementType() != Ty)) 2953 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2954 /*DontDefer=*/true, 2955 /*IsForDefinition=*/true)); 2956 2957 // Already emitted. 2958 if (!GV->isDeclaration()) 2959 return; 2960 2961 // We need to set linkage and visibility on the function before 2962 // generating code for it because various parts of IR generation 2963 // want to propagate this information down (e.g. to local static 2964 // declarations). 2965 auto *Fn = cast<llvm::Function>(GV); 2966 setFunctionLinkage(GD, Fn); 2967 setFunctionDLLStorageClass(GD, Fn); 2968 2969 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2970 setGlobalVisibility(Fn, D); 2971 2972 MaybeHandleStaticInExternC(D, Fn); 2973 2974 maybeSetTrivialComdat(*D, *Fn); 2975 2976 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2977 2978 setFunctionDefinitionAttributes(D, Fn); 2979 SetLLVMFunctionAttributesForDefinition(D, Fn); 2980 2981 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2982 AddGlobalCtor(Fn, CA->getPriority()); 2983 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2984 AddGlobalDtor(Fn, DA->getPriority()); 2985 if (D->hasAttr<AnnotateAttr>()) 2986 AddGlobalAnnotations(D, Fn); 2987 } 2988 2989 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2990 const auto *D = cast<ValueDecl>(GD.getDecl()); 2991 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2992 assert(AA && "Not an alias?"); 2993 2994 StringRef MangledName = getMangledName(GD); 2995 2996 if (AA->getAliasee() == MangledName) { 2997 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2998 return; 2999 } 3000 3001 // If there is a definition in the module, then it wins over the alias. 3002 // This is dubious, but allow it to be safe. Just ignore the alias. 3003 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3004 if (Entry && !Entry->isDeclaration()) 3005 return; 3006 3007 Aliases.push_back(GD); 3008 3009 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3010 3011 // Create a reference to the named value. This ensures that it is emitted 3012 // if a deferred decl. 3013 llvm::Constant *Aliasee; 3014 if (isa<llvm::FunctionType>(DeclTy)) 3015 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3016 /*ForVTable=*/false); 3017 else 3018 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3019 llvm::PointerType::getUnqual(DeclTy), 3020 /*D=*/nullptr); 3021 3022 // Create the new alias itself, but don't set a name yet. 3023 auto *GA = llvm::GlobalAlias::create( 3024 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3025 3026 if (Entry) { 3027 if (GA->getAliasee() == Entry) { 3028 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3029 return; 3030 } 3031 3032 assert(Entry->isDeclaration()); 3033 3034 // If there is a declaration in the module, then we had an extern followed 3035 // by the alias, as in: 3036 // extern int test6(); 3037 // ... 3038 // int test6() __attribute__((alias("test7"))); 3039 // 3040 // Remove it and replace uses of it with the alias. 3041 GA->takeName(Entry); 3042 3043 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3044 Entry->getType())); 3045 Entry->eraseFromParent(); 3046 } else { 3047 GA->setName(MangledName); 3048 } 3049 3050 // Set attributes which are particular to an alias; this is a 3051 // specialization of the attributes which may be set on a global 3052 // variable/function. 3053 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3054 D->isWeakImported()) { 3055 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3056 } 3057 3058 if (const auto *VD = dyn_cast<VarDecl>(D)) 3059 if (VD->getTLSKind()) 3060 setTLSMode(GA, *VD); 3061 3062 setAliasAttributes(D, GA); 3063 } 3064 3065 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3066 const auto *D = cast<ValueDecl>(GD.getDecl()); 3067 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3068 assert(IFA && "Not an ifunc?"); 3069 3070 StringRef MangledName = getMangledName(GD); 3071 3072 if (IFA->getResolver() == MangledName) { 3073 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3074 return; 3075 } 3076 3077 // Report an error if some definition overrides ifunc. 3078 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3079 if (Entry && !Entry->isDeclaration()) { 3080 GlobalDecl OtherGD; 3081 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3082 DiagnosedConflictingDefinitions.insert(GD).second) { 3083 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3084 Diags.Report(OtherGD.getDecl()->getLocation(), 3085 diag::note_previous_definition); 3086 } 3087 return; 3088 } 3089 3090 Aliases.push_back(GD); 3091 3092 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3093 llvm::Constant *Resolver = 3094 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3095 /*ForVTable=*/false); 3096 llvm::GlobalIFunc *GIF = 3097 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3098 "", Resolver, &getModule()); 3099 if (Entry) { 3100 if (GIF->getResolver() == Entry) { 3101 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3102 return; 3103 } 3104 assert(Entry->isDeclaration()); 3105 3106 // If there is a declaration in the module, then we had an extern followed 3107 // by the ifunc, as in: 3108 // extern int test(); 3109 // ... 3110 // int test() __attribute__((ifunc("resolver"))); 3111 // 3112 // Remove it and replace uses of it with the ifunc. 3113 GIF->takeName(Entry); 3114 3115 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3116 Entry->getType())); 3117 Entry->eraseFromParent(); 3118 } else 3119 GIF->setName(MangledName); 3120 3121 SetCommonAttributes(D, GIF); 3122 } 3123 3124 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3125 ArrayRef<llvm::Type*> Tys) { 3126 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3127 Tys); 3128 } 3129 3130 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3131 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3132 const StringLiteral *Literal, bool TargetIsLSB, 3133 bool &IsUTF16, unsigned &StringLength) { 3134 StringRef String = Literal->getString(); 3135 unsigned NumBytes = String.size(); 3136 3137 // Check for simple case. 3138 if (!Literal->containsNonAsciiOrNull()) { 3139 StringLength = NumBytes; 3140 return *Map.insert(std::make_pair(String, nullptr)).first; 3141 } 3142 3143 // Otherwise, convert the UTF8 literals into a string of shorts. 3144 IsUTF16 = true; 3145 3146 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3147 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3148 llvm::UTF16 *ToPtr = &ToBuf[0]; 3149 3150 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3151 ToPtr + NumBytes, llvm::strictConversion); 3152 3153 // ConvertUTF8toUTF16 returns the length in ToPtr. 3154 StringLength = ToPtr - &ToBuf[0]; 3155 3156 // Add an explicit null. 3157 *ToPtr = 0; 3158 return *Map.insert(std::make_pair( 3159 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3160 (StringLength + 1) * 2), 3161 nullptr)).first; 3162 } 3163 3164 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3165 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3166 const StringLiteral *Literal, unsigned &StringLength) { 3167 StringRef String = Literal->getString(); 3168 StringLength = String.size(); 3169 return *Map.insert(std::make_pair(String, nullptr)).first; 3170 } 3171 3172 ConstantAddress 3173 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3174 unsigned StringLength = 0; 3175 bool isUTF16 = false; 3176 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3177 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3178 getDataLayout().isLittleEndian(), isUTF16, 3179 StringLength); 3180 3181 if (auto *C = Entry.second) 3182 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3183 3184 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3185 llvm::Constant *Zeros[] = { Zero, Zero }; 3186 3187 // If we don't already have it, get __CFConstantStringClassReference. 3188 if (!CFConstantStringClassRef) { 3189 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3190 Ty = llvm::ArrayType::get(Ty, 0); 3191 llvm::Constant *GV = 3192 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3193 3194 if (getTriple().isOSBinFormatCOFF()) { 3195 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3196 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3197 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3198 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3199 3200 const VarDecl *VD = nullptr; 3201 for (const auto &Result : DC->lookup(&II)) 3202 if ((VD = dyn_cast<VarDecl>(Result))) 3203 break; 3204 3205 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3206 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3207 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3208 } else { 3209 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3210 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3211 } 3212 } 3213 3214 // Decay array -> ptr 3215 CFConstantStringClassRef = 3216 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3217 } 3218 3219 QualType CFTy = getContext().getCFConstantStringType(); 3220 3221 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3222 3223 llvm::Constant *Fields[4]; 3224 3225 // Class pointer. 3226 Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef); 3227 3228 // Flags. 3229 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3230 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 3231 : llvm::ConstantInt::get(Ty, 0x07C8); 3232 3233 // String pointer. 3234 llvm::Constant *C = nullptr; 3235 if (isUTF16) { 3236 auto Arr = llvm::makeArrayRef( 3237 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3238 Entry.first().size() / 2); 3239 C = llvm::ConstantDataArray::get(VMContext, Arr); 3240 } else { 3241 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3242 } 3243 3244 // Note: -fwritable-strings doesn't make the backing store strings of 3245 // CFStrings writable. (See <rdar://problem/10657500>) 3246 auto *GV = 3247 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3248 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3249 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3250 // Don't enforce the target's minimum global alignment, since the only use 3251 // of the string is via this class initializer. 3252 CharUnits Align = isUTF16 3253 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3254 : getContext().getTypeAlignInChars(getContext().CharTy); 3255 GV->setAlignment(Align.getQuantity()); 3256 3257 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3258 // Without it LLVM can merge the string with a non unnamed_addr one during 3259 // LTO. Doing that changes the section it ends in, which surprises ld64. 3260 if (getTriple().isOSBinFormatMachO()) 3261 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3262 : "__TEXT,__cstring,cstring_literals"); 3263 3264 // String. 3265 Fields[2] = 3266 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3267 3268 if (isUTF16) 3269 // Cast the UTF16 string to the correct type. 3270 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3271 3272 // String length. 3273 Ty = getTypes().ConvertType(getContext().LongTy); 3274 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3275 3276 CharUnits Alignment = getPointerAlign(); 3277 3278 // The struct. 3279 C = llvm::ConstantStruct::get(STy, Fields); 3280 GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false, 3281 llvm::GlobalVariable::PrivateLinkage, C, 3282 "_unnamed_cfstring_"); 3283 GV->setAlignment(Alignment.getQuantity()); 3284 switch (getTriple().getObjectFormat()) { 3285 case llvm::Triple::UnknownObjectFormat: 3286 llvm_unreachable("unknown file format"); 3287 case llvm::Triple::COFF: 3288 case llvm::Triple::ELF: 3289 GV->setSection("cfstring"); 3290 break; 3291 case llvm::Triple::MachO: 3292 GV->setSection("__DATA,__cfstring"); 3293 break; 3294 } 3295 Entry.second = GV; 3296 3297 return ConstantAddress(GV, Alignment); 3298 } 3299 3300 ConstantAddress 3301 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3302 unsigned StringLength = 0; 3303 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3304 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3305 3306 if (auto *C = Entry.second) 3307 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3308 3309 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3310 llvm::Constant *Zeros[] = { Zero, Zero }; 3311 llvm::Value *V; 3312 // If we don't already have it, get _NSConstantStringClassReference. 3313 if (!ConstantStringClassRef) { 3314 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3315 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3316 llvm::Constant *GV; 3317 if (LangOpts.ObjCRuntime.isNonFragile()) { 3318 std::string str = 3319 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3320 : "OBJC_CLASS_$_" + StringClass; 3321 GV = getObjCRuntime().GetClassGlobal(str); 3322 // Make sure the result is of the correct type. 3323 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3324 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3325 ConstantStringClassRef = V; 3326 } else { 3327 std::string str = 3328 StringClass.empty() ? "_NSConstantStringClassReference" 3329 : "_" + StringClass + "ClassReference"; 3330 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3331 GV = CreateRuntimeVariable(PTy, str); 3332 // Decay array -> ptr 3333 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3334 ConstantStringClassRef = V; 3335 } 3336 } else 3337 V = ConstantStringClassRef; 3338 3339 if (!NSConstantStringType) { 3340 // Construct the type for a constant NSString. 3341 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3342 D->startDefinition(); 3343 3344 QualType FieldTypes[3]; 3345 3346 // const int *isa; 3347 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3348 // const char *str; 3349 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3350 // unsigned int length; 3351 FieldTypes[2] = Context.UnsignedIntTy; 3352 3353 // Create fields 3354 for (unsigned i = 0; i < 3; ++i) { 3355 FieldDecl *Field = FieldDecl::Create(Context, D, 3356 SourceLocation(), 3357 SourceLocation(), nullptr, 3358 FieldTypes[i], /*TInfo=*/nullptr, 3359 /*BitWidth=*/nullptr, 3360 /*Mutable=*/false, 3361 ICIS_NoInit); 3362 Field->setAccess(AS_public); 3363 D->addDecl(Field); 3364 } 3365 3366 D->completeDefinition(); 3367 QualType NSTy = Context.getTagDeclType(D); 3368 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3369 } 3370 3371 llvm::Constant *Fields[3]; 3372 3373 // Class pointer. 3374 Fields[0] = cast<llvm::ConstantExpr>(V); 3375 3376 // String pointer. 3377 llvm::Constant *C = 3378 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3379 3380 llvm::GlobalValue::LinkageTypes Linkage; 3381 bool isConstant; 3382 Linkage = llvm::GlobalValue::PrivateLinkage; 3383 isConstant = !LangOpts.WritableStrings; 3384 3385 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3386 Linkage, C, ".str"); 3387 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3388 // Don't enforce the target's minimum global alignment, since the only use 3389 // of the string is via this class initializer. 3390 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3391 GV->setAlignment(Align.getQuantity()); 3392 Fields[1] = 3393 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3394 3395 // String length. 3396 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3397 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3398 3399 // The struct. 3400 CharUnits Alignment = getPointerAlign(); 3401 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3402 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3403 llvm::GlobalVariable::PrivateLinkage, C, 3404 "_unnamed_nsstring_"); 3405 GV->setAlignment(Alignment.getQuantity()); 3406 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3407 const char *NSStringNonFragileABISection = 3408 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3409 // FIXME. Fix section. 3410 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3411 ? NSStringNonFragileABISection 3412 : NSStringSection); 3413 Entry.second = GV; 3414 3415 return ConstantAddress(GV, Alignment); 3416 } 3417 3418 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3419 if (ObjCFastEnumerationStateType.isNull()) { 3420 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3421 D->startDefinition(); 3422 3423 QualType FieldTypes[] = { 3424 Context.UnsignedLongTy, 3425 Context.getPointerType(Context.getObjCIdType()), 3426 Context.getPointerType(Context.UnsignedLongTy), 3427 Context.getConstantArrayType(Context.UnsignedLongTy, 3428 llvm::APInt(32, 5), ArrayType::Normal, 0) 3429 }; 3430 3431 for (size_t i = 0; i < 4; ++i) { 3432 FieldDecl *Field = FieldDecl::Create(Context, 3433 D, 3434 SourceLocation(), 3435 SourceLocation(), nullptr, 3436 FieldTypes[i], /*TInfo=*/nullptr, 3437 /*BitWidth=*/nullptr, 3438 /*Mutable=*/false, 3439 ICIS_NoInit); 3440 Field->setAccess(AS_public); 3441 D->addDecl(Field); 3442 } 3443 3444 D->completeDefinition(); 3445 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3446 } 3447 3448 return ObjCFastEnumerationStateType; 3449 } 3450 3451 llvm::Constant * 3452 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3453 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3454 3455 // Don't emit it as the address of the string, emit the string data itself 3456 // as an inline array. 3457 if (E->getCharByteWidth() == 1) { 3458 SmallString<64> Str(E->getString()); 3459 3460 // Resize the string to the right size, which is indicated by its type. 3461 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3462 Str.resize(CAT->getSize().getZExtValue()); 3463 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3464 } 3465 3466 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3467 llvm::Type *ElemTy = AType->getElementType(); 3468 unsigned NumElements = AType->getNumElements(); 3469 3470 // Wide strings have either 2-byte or 4-byte elements. 3471 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3472 SmallVector<uint16_t, 32> Elements; 3473 Elements.reserve(NumElements); 3474 3475 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3476 Elements.push_back(E->getCodeUnit(i)); 3477 Elements.resize(NumElements); 3478 return llvm::ConstantDataArray::get(VMContext, Elements); 3479 } 3480 3481 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3482 SmallVector<uint32_t, 32> Elements; 3483 Elements.reserve(NumElements); 3484 3485 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3486 Elements.push_back(E->getCodeUnit(i)); 3487 Elements.resize(NumElements); 3488 return llvm::ConstantDataArray::get(VMContext, Elements); 3489 } 3490 3491 static llvm::GlobalVariable * 3492 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3493 CodeGenModule &CGM, StringRef GlobalName, 3494 CharUnits Alignment) { 3495 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3496 unsigned AddrSpace = 0; 3497 if (CGM.getLangOpts().OpenCL) 3498 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3499 3500 llvm::Module &M = CGM.getModule(); 3501 // Create a global variable for this string 3502 auto *GV = new llvm::GlobalVariable( 3503 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3504 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3505 GV->setAlignment(Alignment.getQuantity()); 3506 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3507 if (GV->isWeakForLinker()) { 3508 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3509 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3510 } 3511 3512 return GV; 3513 } 3514 3515 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3516 /// constant array for the given string literal. 3517 ConstantAddress 3518 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3519 StringRef Name) { 3520 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3521 3522 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3523 llvm::GlobalVariable **Entry = nullptr; 3524 if (!LangOpts.WritableStrings) { 3525 Entry = &ConstantStringMap[C]; 3526 if (auto GV = *Entry) { 3527 if (Alignment.getQuantity() > GV->getAlignment()) 3528 GV->setAlignment(Alignment.getQuantity()); 3529 return ConstantAddress(GV, Alignment); 3530 } 3531 } 3532 3533 SmallString<256> MangledNameBuffer; 3534 StringRef GlobalVariableName; 3535 llvm::GlobalValue::LinkageTypes LT; 3536 3537 // Mangle the string literal if the ABI allows for it. However, we cannot 3538 // do this if we are compiling with ASan or -fwritable-strings because they 3539 // rely on strings having normal linkage. 3540 if (!LangOpts.WritableStrings && 3541 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3542 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3543 llvm::raw_svector_ostream Out(MangledNameBuffer); 3544 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3545 3546 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3547 GlobalVariableName = MangledNameBuffer; 3548 } else { 3549 LT = llvm::GlobalValue::PrivateLinkage; 3550 GlobalVariableName = Name; 3551 } 3552 3553 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3554 if (Entry) 3555 *Entry = GV; 3556 3557 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3558 QualType()); 3559 return ConstantAddress(GV, Alignment); 3560 } 3561 3562 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3563 /// array for the given ObjCEncodeExpr node. 3564 ConstantAddress 3565 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3566 std::string Str; 3567 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3568 3569 return GetAddrOfConstantCString(Str); 3570 } 3571 3572 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3573 /// the literal and a terminating '\0' character. 3574 /// The result has pointer to array type. 3575 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3576 const std::string &Str, const char *GlobalName) { 3577 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3578 CharUnits Alignment = 3579 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3580 3581 llvm::Constant *C = 3582 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3583 3584 // Don't share any string literals if strings aren't constant. 3585 llvm::GlobalVariable **Entry = nullptr; 3586 if (!LangOpts.WritableStrings) { 3587 Entry = &ConstantStringMap[C]; 3588 if (auto GV = *Entry) { 3589 if (Alignment.getQuantity() > GV->getAlignment()) 3590 GV->setAlignment(Alignment.getQuantity()); 3591 return ConstantAddress(GV, Alignment); 3592 } 3593 } 3594 3595 // Get the default prefix if a name wasn't specified. 3596 if (!GlobalName) 3597 GlobalName = ".str"; 3598 // Create a global variable for this. 3599 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3600 GlobalName, Alignment); 3601 if (Entry) 3602 *Entry = GV; 3603 return ConstantAddress(GV, Alignment); 3604 } 3605 3606 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3607 const MaterializeTemporaryExpr *E, const Expr *Init) { 3608 assert((E->getStorageDuration() == SD_Static || 3609 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3610 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3611 3612 // If we're not materializing a subobject of the temporary, keep the 3613 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3614 QualType MaterializedType = Init->getType(); 3615 if (Init == E->GetTemporaryExpr()) 3616 MaterializedType = E->getType(); 3617 3618 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3619 3620 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3621 return ConstantAddress(Slot, Align); 3622 3623 // FIXME: If an externally-visible declaration extends multiple temporaries, 3624 // we need to give each temporary the same name in every translation unit (and 3625 // we also need to make the temporaries externally-visible). 3626 SmallString<256> Name; 3627 llvm::raw_svector_ostream Out(Name); 3628 getCXXABI().getMangleContext().mangleReferenceTemporary( 3629 VD, E->getManglingNumber(), Out); 3630 3631 APValue *Value = nullptr; 3632 if (E->getStorageDuration() == SD_Static) { 3633 // We might have a cached constant initializer for this temporary. Note 3634 // that this might have a different value from the value computed by 3635 // evaluating the initializer if the surrounding constant expression 3636 // modifies the temporary. 3637 Value = getContext().getMaterializedTemporaryValue(E, false); 3638 if (Value && Value->isUninit()) 3639 Value = nullptr; 3640 } 3641 3642 // Try evaluating it now, it might have a constant initializer. 3643 Expr::EvalResult EvalResult; 3644 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3645 !EvalResult.hasSideEffects()) 3646 Value = &EvalResult.Val; 3647 3648 llvm::Constant *InitialValue = nullptr; 3649 bool Constant = false; 3650 llvm::Type *Type; 3651 if (Value) { 3652 // The temporary has a constant initializer, use it. 3653 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3654 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3655 Type = InitialValue->getType(); 3656 } else { 3657 // No initializer, the initialization will be provided when we 3658 // initialize the declaration which performed lifetime extension. 3659 Type = getTypes().ConvertTypeForMem(MaterializedType); 3660 } 3661 3662 // Create a global variable for this lifetime-extended temporary. 3663 llvm::GlobalValue::LinkageTypes Linkage = 3664 getLLVMLinkageVarDefinition(VD, Constant); 3665 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3666 const VarDecl *InitVD; 3667 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3668 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3669 // Temporaries defined inside a class get linkonce_odr linkage because the 3670 // class can be defined in multipe translation units. 3671 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3672 } else { 3673 // There is no need for this temporary to have external linkage if the 3674 // VarDecl has external linkage. 3675 Linkage = llvm::GlobalVariable::InternalLinkage; 3676 } 3677 } 3678 unsigned AddrSpace = GetGlobalVarAddressSpace( 3679 VD, getContext().getTargetAddressSpace(MaterializedType)); 3680 auto *GV = new llvm::GlobalVariable( 3681 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3682 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3683 AddrSpace); 3684 setGlobalVisibility(GV, VD); 3685 GV->setAlignment(Align.getQuantity()); 3686 if (supportsCOMDAT() && GV->isWeakForLinker()) 3687 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3688 if (VD->getTLSKind()) 3689 setTLSMode(GV, *VD); 3690 MaterializedGlobalTemporaryMap[E] = GV; 3691 return ConstantAddress(GV, Align); 3692 } 3693 3694 /// EmitObjCPropertyImplementations - Emit information for synthesized 3695 /// properties for an implementation. 3696 void CodeGenModule::EmitObjCPropertyImplementations(const 3697 ObjCImplementationDecl *D) { 3698 for (const auto *PID : D->property_impls()) { 3699 // Dynamic is just for type-checking. 3700 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3701 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3702 3703 // Determine which methods need to be implemented, some may have 3704 // been overridden. Note that ::isPropertyAccessor is not the method 3705 // we want, that just indicates if the decl came from a 3706 // property. What we want to know is if the method is defined in 3707 // this implementation. 3708 if (!D->getInstanceMethod(PD->getGetterName())) 3709 CodeGenFunction(*this).GenerateObjCGetter( 3710 const_cast<ObjCImplementationDecl *>(D), PID); 3711 if (!PD->isReadOnly() && 3712 !D->getInstanceMethod(PD->getSetterName())) 3713 CodeGenFunction(*this).GenerateObjCSetter( 3714 const_cast<ObjCImplementationDecl *>(D), PID); 3715 } 3716 } 3717 } 3718 3719 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3720 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3721 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3722 ivar; ivar = ivar->getNextIvar()) 3723 if (ivar->getType().isDestructedType()) 3724 return true; 3725 3726 return false; 3727 } 3728 3729 static bool AllTrivialInitializers(CodeGenModule &CGM, 3730 ObjCImplementationDecl *D) { 3731 CodeGenFunction CGF(CGM); 3732 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3733 E = D->init_end(); B != E; ++B) { 3734 CXXCtorInitializer *CtorInitExp = *B; 3735 Expr *Init = CtorInitExp->getInit(); 3736 if (!CGF.isTrivialInitializer(Init)) 3737 return false; 3738 } 3739 return true; 3740 } 3741 3742 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3743 /// for an implementation. 3744 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3745 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3746 if (needsDestructMethod(D)) { 3747 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3748 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3749 ObjCMethodDecl *DTORMethod = 3750 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3751 cxxSelector, getContext().VoidTy, nullptr, D, 3752 /*isInstance=*/true, /*isVariadic=*/false, 3753 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3754 /*isDefined=*/false, ObjCMethodDecl::Required); 3755 D->addInstanceMethod(DTORMethod); 3756 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3757 D->setHasDestructors(true); 3758 } 3759 3760 // If the implementation doesn't have any ivar initializers, we don't need 3761 // a .cxx_construct. 3762 if (D->getNumIvarInitializers() == 0 || 3763 AllTrivialInitializers(*this, D)) 3764 return; 3765 3766 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3767 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3768 // The constructor returns 'self'. 3769 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3770 D->getLocation(), 3771 D->getLocation(), 3772 cxxSelector, 3773 getContext().getObjCIdType(), 3774 nullptr, D, /*isInstance=*/true, 3775 /*isVariadic=*/false, 3776 /*isPropertyAccessor=*/true, 3777 /*isImplicitlyDeclared=*/true, 3778 /*isDefined=*/false, 3779 ObjCMethodDecl::Required); 3780 D->addInstanceMethod(CTORMethod); 3781 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3782 D->setHasNonZeroConstructors(true); 3783 } 3784 3785 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3786 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3787 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3788 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3789 ErrorUnsupported(LSD, "linkage spec"); 3790 return; 3791 } 3792 3793 EmitDeclContext(LSD); 3794 } 3795 3796 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3797 for (auto *I : DC->decls()) { 3798 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3799 // are themselves considered "top-level", so EmitTopLevelDecl on an 3800 // ObjCImplDecl does not recursively visit them. We need to do that in 3801 // case they're nested inside another construct (LinkageSpecDecl / 3802 // ExportDecl) that does stop them from being considered "top-level". 3803 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3804 for (auto *M : OID->methods()) 3805 EmitTopLevelDecl(M); 3806 } 3807 3808 EmitTopLevelDecl(I); 3809 } 3810 } 3811 3812 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3813 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3814 // Ignore dependent declarations. 3815 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3816 return; 3817 3818 switch (D->getKind()) { 3819 case Decl::CXXConversion: 3820 case Decl::CXXMethod: 3821 case Decl::Function: 3822 // Skip function templates 3823 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3824 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3825 return; 3826 3827 EmitGlobal(cast<FunctionDecl>(D)); 3828 // Always provide some coverage mapping 3829 // even for the functions that aren't emitted. 3830 AddDeferredUnusedCoverageMapping(D); 3831 break; 3832 3833 case Decl::Var: 3834 case Decl::Decomposition: 3835 // Skip variable templates 3836 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3837 return; 3838 case Decl::VarTemplateSpecialization: 3839 EmitGlobal(cast<VarDecl>(D)); 3840 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3841 for (auto *B : DD->bindings()) 3842 if (auto *HD = B->getHoldingVar()) 3843 EmitGlobal(HD); 3844 break; 3845 3846 // Indirect fields from global anonymous structs and unions can be 3847 // ignored; only the actual variable requires IR gen support. 3848 case Decl::IndirectField: 3849 break; 3850 3851 // C++ Decls 3852 case Decl::Namespace: 3853 EmitDeclContext(cast<NamespaceDecl>(D)); 3854 break; 3855 case Decl::CXXRecord: 3856 // Emit any static data members, they may be definitions. 3857 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3858 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3859 EmitTopLevelDecl(I); 3860 break; 3861 // No code generation needed. 3862 case Decl::UsingShadow: 3863 case Decl::ClassTemplate: 3864 case Decl::VarTemplate: 3865 case Decl::VarTemplatePartialSpecialization: 3866 case Decl::FunctionTemplate: 3867 case Decl::TypeAliasTemplate: 3868 case Decl::Block: 3869 case Decl::Empty: 3870 break; 3871 case Decl::Using: // using X; [C++] 3872 if (CGDebugInfo *DI = getModuleDebugInfo()) 3873 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3874 return; 3875 case Decl::NamespaceAlias: 3876 if (CGDebugInfo *DI = getModuleDebugInfo()) 3877 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3878 return; 3879 case Decl::UsingDirective: // using namespace X; [C++] 3880 if (CGDebugInfo *DI = getModuleDebugInfo()) 3881 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3882 return; 3883 case Decl::CXXConstructor: 3884 // Skip function templates 3885 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3886 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3887 return; 3888 3889 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3890 break; 3891 case Decl::CXXDestructor: 3892 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3893 return; 3894 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3895 break; 3896 3897 case Decl::StaticAssert: 3898 // Nothing to do. 3899 break; 3900 3901 // Objective-C Decls 3902 3903 // Forward declarations, no (immediate) code generation. 3904 case Decl::ObjCInterface: 3905 case Decl::ObjCCategory: 3906 break; 3907 3908 case Decl::ObjCProtocol: { 3909 auto *Proto = cast<ObjCProtocolDecl>(D); 3910 if (Proto->isThisDeclarationADefinition()) 3911 ObjCRuntime->GenerateProtocol(Proto); 3912 break; 3913 } 3914 3915 case Decl::ObjCCategoryImpl: 3916 // Categories have properties but don't support synthesize so we 3917 // can ignore them here. 3918 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3919 break; 3920 3921 case Decl::ObjCImplementation: { 3922 auto *OMD = cast<ObjCImplementationDecl>(D); 3923 EmitObjCPropertyImplementations(OMD); 3924 EmitObjCIvarInitializations(OMD); 3925 ObjCRuntime->GenerateClass(OMD); 3926 // Emit global variable debug information. 3927 if (CGDebugInfo *DI = getModuleDebugInfo()) 3928 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3929 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3930 OMD->getClassInterface()), OMD->getLocation()); 3931 break; 3932 } 3933 case Decl::ObjCMethod: { 3934 auto *OMD = cast<ObjCMethodDecl>(D); 3935 // If this is not a prototype, emit the body. 3936 if (OMD->getBody()) 3937 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3938 break; 3939 } 3940 case Decl::ObjCCompatibleAlias: 3941 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3942 break; 3943 3944 case Decl::PragmaComment: { 3945 const auto *PCD = cast<PragmaCommentDecl>(D); 3946 switch (PCD->getCommentKind()) { 3947 case PCK_Unknown: 3948 llvm_unreachable("unexpected pragma comment kind"); 3949 case PCK_Linker: 3950 AppendLinkerOptions(PCD->getArg()); 3951 break; 3952 case PCK_Lib: 3953 AddDependentLib(PCD->getArg()); 3954 break; 3955 case PCK_Compiler: 3956 case PCK_ExeStr: 3957 case PCK_User: 3958 break; // We ignore all of these. 3959 } 3960 break; 3961 } 3962 3963 case Decl::PragmaDetectMismatch: { 3964 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3965 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3966 break; 3967 } 3968 3969 case Decl::LinkageSpec: 3970 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3971 break; 3972 3973 case Decl::FileScopeAsm: { 3974 // File-scope asm is ignored during device-side CUDA compilation. 3975 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3976 break; 3977 // File-scope asm is ignored during device-side OpenMP compilation. 3978 if (LangOpts.OpenMPIsDevice) 3979 break; 3980 auto *AD = cast<FileScopeAsmDecl>(D); 3981 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3982 break; 3983 } 3984 3985 case Decl::Import: { 3986 auto *Import = cast<ImportDecl>(D); 3987 3988 // If we've already imported this module, we're done. 3989 if (!ImportedModules.insert(Import->getImportedModule())) 3990 break; 3991 3992 // Emit debug information for direct imports. 3993 if (!Import->getImportedOwningModule()) { 3994 if (CGDebugInfo *DI = getModuleDebugInfo()) 3995 DI->EmitImportDecl(*Import); 3996 } 3997 3998 // Emit the module initializers. 3999 for (auto *D : Context.getModuleInitializers(Import->getImportedModule())) 4000 EmitTopLevelDecl(D); 4001 break; 4002 } 4003 4004 case Decl::Export: 4005 EmitDeclContext(cast<ExportDecl>(D)); 4006 break; 4007 4008 case Decl::OMPThreadPrivate: 4009 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4010 break; 4011 4012 case Decl::ClassTemplateSpecialization: { 4013 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4014 if (DebugInfo && 4015 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4016 Spec->hasDefinition()) 4017 DebugInfo->completeTemplateDefinition(*Spec); 4018 break; 4019 } 4020 4021 case Decl::OMPDeclareReduction: 4022 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4023 break; 4024 4025 default: 4026 // Make sure we handled everything we should, every other kind is a 4027 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4028 // function. Need to recode Decl::Kind to do that easily. 4029 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4030 break; 4031 } 4032 } 4033 4034 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4035 // Do we need to generate coverage mapping? 4036 if (!CodeGenOpts.CoverageMapping) 4037 return; 4038 switch (D->getKind()) { 4039 case Decl::CXXConversion: 4040 case Decl::CXXMethod: 4041 case Decl::Function: 4042 case Decl::ObjCMethod: 4043 case Decl::CXXConstructor: 4044 case Decl::CXXDestructor: { 4045 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4046 return; 4047 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4048 if (I == DeferredEmptyCoverageMappingDecls.end()) 4049 DeferredEmptyCoverageMappingDecls[D] = true; 4050 break; 4051 } 4052 default: 4053 break; 4054 }; 4055 } 4056 4057 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4058 // Do we need to generate coverage mapping? 4059 if (!CodeGenOpts.CoverageMapping) 4060 return; 4061 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4062 if (Fn->isTemplateInstantiation()) 4063 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4064 } 4065 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4066 if (I == DeferredEmptyCoverageMappingDecls.end()) 4067 DeferredEmptyCoverageMappingDecls[D] = false; 4068 else 4069 I->second = false; 4070 } 4071 4072 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4073 std::vector<const Decl *> DeferredDecls; 4074 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4075 if (!I.second) 4076 continue; 4077 DeferredDecls.push_back(I.first); 4078 } 4079 // Sort the declarations by their location to make sure that the tests get a 4080 // predictable order for the coverage mapping for the unused declarations. 4081 if (CodeGenOpts.DumpCoverageMapping) 4082 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4083 [] (const Decl *LHS, const Decl *RHS) { 4084 return LHS->getLocStart() < RHS->getLocStart(); 4085 }); 4086 for (const auto *D : DeferredDecls) { 4087 switch (D->getKind()) { 4088 case Decl::CXXConversion: 4089 case Decl::CXXMethod: 4090 case Decl::Function: 4091 case Decl::ObjCMethod: { 4092 CodeGenPGO PGO(*this); 4093 GlobalDecl GD(cast<FunctionDecl>(D)); 4094 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4095 getFunctionLinkage(GD)); 4096 break; 4097 } 4098 case Decl::CXXConstructor: { 4099 CodeGenPGO PGO(*this); 4100 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4101 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4102 getFunctionLinkage(GD)); 4103 break; 4104 } 4105 case Decl::CXXDestructor: { 4106 CodeGenPGO PGO(*this); 4107 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4108 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4109 getFunctionLinkage(GD)); 4110 break; 4111 } 4112 default: 4113 break; 4114 }; 4115 } 4116 } 4117 4118 /// Turns the given pointer into a constant. 4119 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4120 const void *Ptr) { 4121 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4122 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4123 return llvm::ConstantInt::get(i64, PtrInt); 4124 } 4125 4126 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4127 llvm::NamedMDNode *&GlobalMetadata, 4128 GlobalDecl D, 4129 llvm::GlobalValue *Addr) { 4130 if (!GlobalMetadata) 4131 GlobalMetadata = 4132 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4133 4134 // TODO: should we report variant information for ctors/dtors? 4135 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4136 llvm::ConstantAsMetadata::get(GetPointerConstant( 4137 CGM.getLLVMContext(), D.getDecl()))}; 4138 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4139 } 4140 4141 /// For each function which is declared within an extern "C" region and marked 4142 /// as 'used', but has internal linkage, create an alias from the unmangled 4143 /// name to the mangled name if possible. People expect to be able to refer 4144 /// to such functions with an unmangled name from inline assembly within the 4145 /// same translation unit. 4146 void CodeGenModule::EmitStaticExternCAliases() { 4147 // Don't do anything if we're generating CUDA device code -- the NVPTX 4148 // assembly target doesn't support aliases. 4149 if (Context.getTargetInfo().getTriple().isNVPTX()) 4150 return; 4151 for (auto &I : StaticExternCValues) { 4152 IdentifierInfo *Name = I.first; 4153 llvm::GlobalValue *Val = I.second; 4154 if (Val && !getModule().getNamedValue(Name->getName())) 4155 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4156 } 4157 } 4158 4159 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4160 GlobalDecl &Result) const { 4161 auto Res = Manglings.find(MangledName); 4162 if (Res == Manglings.end()) 4163 return false; 4164 Result = Res->getValue(); 4165 return true; 4166 } 4167 4168 /// Emits metadata nodes associating all the global values in the 4169 /// current module with the Decls they came from. This is useful for 4170 /// projects using IR gen as a subroutine. 4171 /// 4172 /// Since there's currently no way to associate an MDNode directly 4173 /// with an llvm::GlobalValue, we create a global named metadata 4174 /// with the name 'clang.global.decl.ptrs'. 4175 void CodeGenModule::EmitDeclMetadata() { 4176 llvm::NamedMDNode *GlobalMetadata = nullptr; 4177 4178 for (auto &I : MangledDeclNames) { 4179 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4180 // Some mangled names don't necessarily have an associated GlobalValue 4181 // in this module, e.g. if we mangled it for DebugInfo. 4182 if (Addr) 4183 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4184 } 4185 } 4186 4187 /// Emits metadata nodes for all the local variables in the current 4188 /// function. 4189 void CodeGenFunction::EmitDeclMetadata() { 4190 if (LocalDeclMap.empty()) return; 4191 4192 llvm::LLVMContext &Context = getLLVMContext(); 4193 4194 // Find the unique metadata ID for this name. 4195 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4196 4197 llvm::NamedMDNode *GlobalMetadata = nullptr; 4198 4199 for (auto &I : LocalDeclMap) { 4200 const Decl *D = I.first; 4201 llvm::Value *Addr = I.second.getPointer(); 4202 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4203 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4204 Alloca->setMetadata( 4205 DeclPtrKind, llvm::MDNode::get( 4206 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4207 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4208 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4209 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4210 } 4211 } 4212 } 4213 4214 void CodeGenModule::EmitVersionIdentMetadata() { 4215 llvm::NamedMDNode *IdentMetadata = 4216 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4217 std::string Version = getClangFullVersion(); 4218 llvm::LLVMContext &Ctx = TheModule.getContext(); 4219 4220 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4221 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4222 } 4223 4224 void CodeGenModule::EmitTargetMetadata() { 4225 // Warning, new MangledDeclNames may be appended within this loop. 4226 // We rely on MapVector insertions adding new elements to the end 4227 // of the container. 4228 // FIXME: Move this loop into the one target that needs it, and only 4229 // loop over those declarations for which we couldn't emit the target 4230 // metadata when we emitted the declaration. 4231 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4232 auto Val = *(MangledDeclNames.begin() + I); 4233 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4234 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4235 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4236 } 4237 } 4238 4239 void CodeGenModule::EmitCoverageFile() { 4240 if (getCodeGenOpts().CoverageDataFile.empty() && 4241 getCodeGenOpts().CoverageNotesFile.empty()) 4242 return; 4243 4244 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4245 if (!CUNode) 4246 return; 4247 4248 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4249 llvm::LLVMContext &Ctx = TheModule.getContext(); 4250 auto *CoverageDataFile = 4251 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4252 auto *CoverageNotesFile = 4253 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4254 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4255 llvm::MDNode *CU = CUNode->getOperand(i); 4256 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4257 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4258 } 4259 } 4260 4261 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4262 // Sema has checked that all uuid strings are of the form 4263 // "12345678-1234-1234-1234-1234567890ab". 4264 assert(Uuid.size() == 36); 4265 for (unsigned i = 0; i < 36; ++i) { 4266 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4267 else assert(isHexDigit(Uuid[i])); 4268 } 4269 4270 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4271 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4272 4273 llvm::Constant *Field3[8]; 4274 for (unsigned Idx = 0; Idx < 8; ++Idx) 4275 Field3[Idx] = llvm::ConstantInt::get( 4276 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4277 4278 llvm::Constant *Fields[4] = { 4279 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4280 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4281 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4282 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4283 }; 4284 4285 return llvm::ConstantStruct::getAnon(Fields); 4286 } 4287 4288 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4289 bool ForEH) { 4290 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4291 // FIXME: should we even be calling this method if RTTI is disabled 4292 // and it's not for EH? 4293 if (!ForEH && !getLangOpts().RTTI) 4294 return llvm::Constant::getNullValue(Int8PtrTy); 4295 4296 if (ForEH && Ty->isObjCObjectPointerType() && 4297 LangOpts.ObjCRuntime.isGNUFamily()) 4298 return ObjCRuntime->GetEHType(Ty); 4299 4300 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4301 } 4302 4303 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4304 for (auto RefExpr : D->varlists()) { 4305 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4306 bool PerformInit = 4307 VD->getAnyInitializer() && 4308 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4309 /*ForRef=*/false); 4310 4311 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4312 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4313 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4314 CXXGlobalInits.push_back(InitFunction); 4315 } 4316 } 4317 4318 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4319 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4320 if (InternalId) 4321 return InternalId; 4322 4323 if (isExternallyVisible(T->getLinkage())) { 4324 std::string OutName; 4325 llvm::raw_string_ostream Out(OutName); 4326 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4327 4328 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4329 } else { 4330 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4331 llvm::ArrayRef<llvm::Metadata *>()); 4332 } 4333 4334 return InternalId; 4335 } 4336 4337 /// Returns whether this module needs the "all-vtables" type identifier. 4338 bool CodeGenModule::NeedAllVtablesTypeId() const { 4339 // Returns true if at least one of vtable-based CFI checkers is enabled and 4340 // is not in the trapping mode. 4341 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4342 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4343 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4344 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4345 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4346 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4347 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4348 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4349 } 4350 4351 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4352 CharUnits Offset, 4353 const CXXRecordDecl *RD) { 4354 llvm::Metadata *MD = 4355 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4356 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4357 4358 if (CodeGenOpts.SanitizeCfiCrossDso) 4359 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4360 VTable->addTypeMetadata(Offset.getQuantity(), 4361 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4362 4363 if (NeedAllVtablesTypeId()) { 4364 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4365 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4366 } 4367 } 4368 4369 // Fills in the supplied string map with the set of target features for the 4370 // passed in function. 4371 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4372 const FunctionDecl *FD) { 4373 StringRef TargetCPU = Target.getTargetOpts().CPU; 4374 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4375 // If we have a TargetAttr build up the feature map based on that. 4376 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4377 4378 // Make a copy of the features as passed on the command line into the 4379 // beginning of the additional features from the function to override. 4380 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4381 Target.getTargetOpts().FeaturesAsWritten.begin(), 4382 Target.getTargetOpts().FeaturesAsWritten.end()); 4383 4384 if (ParsedAttr.second != "") 4385 TargetCPU = ParsedAttr.second; 4386 4387 // Now populate the feature map, first with the TargetCPU which is either 4388 // the default or a new one from the target attribute string. Then we'll use 4389 // the passed in features (FeaturesAsWritten) along with the new ones from 4390 // the attribute. 4391 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4392 } else { 4393 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4394 Target.getTargetOpts().Features); 4395 } 4396 } 4397 4398 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4399 if (!SanStats) 4400 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4401 4402 return *SanStats; 4403 } 4404 llvm::Value * 4405 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4406 CodeGenFunction &CGF) { 4407 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4408 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4409 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4410 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4411 "__translate_sampler_initializer"), 4412 {C}); 4413 } 4414