1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 168 const NamedDecl *D) const { 169 // Internal definitions always have default visibility. 170 if (GV->hasLocalLinkage()) { 171 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 return; 173 } 174 175 // Set visibility for definitions. 176 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 177 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 178 } 179 180 /// Set the symbol visibility of type information (vtable and RTTI) 181 /// associated with the given type. 182 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 183 const CXXRecordDecl *RD, 184 TypeVisibilityKind TVK) const { 185 setGlobalVisibility(GV, RD); 186 187 if (!CodeGenOpts.HiddenWeakVTables) 188 return; 189 190 // We never want to drop the visibility for RTTI names. 191 if (TVK == TVK_ForRTTIName) 192 return; 193 194 // We want to drop the visibility to hidden for weak type symbols. 195 // This isn't possible if there might be unresolved references 196 // elsewhere that rely on this symbol being visible. 197 198 // This should be kept roughly in sync with setThunkVisibility 199 // in CGVTables.cpp. 200 201 // Preconditions. 202 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 203 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 204 return; 205 206 // Don't override an explicit visibility attribute. 207 if (RD->hasAttr<VisibilityAttr>()) 208 return; 209 210 switch (RD->getTemplateSpecializationKind()) { 211 // We have to disable the optimization if this is an EI definition 212 // because there might be EI declarations in other shared objects. 213 case TSK_ExplicitInstantiationDefinition: 214 case TSK_ExplicitInstantiationDeclaration: 215 return; 216 217 // Every use of a non-template class's type information has to emit it. 218 case TSK_Undeclared: 219 break; 220 221 // In theory, implicit instantiations can ignore the possibility of 222 // an explicit instantiation declaration because there necessarily 223 // must be an EI definition somewhere with default visibility. In 224 // practice, it's possible to have an explicit instantiation for 225 // an arbitrary template class, and linkers aren't necessarily able 226 // to deal with mixed-visibility symbols. 227 case TSK_ExplicitSpecialization: 228 case TSK_ImplicitInstantiation: 229 if (!CodeGenOpts.HiddenWeakTemplateVTables) 230 return; 231 break; 232 } 233 234 // If there's a key function, there may be translation units 235 // that don't have the key function's definition. But ignore 236 // this if we're emitting RTTI under -fno-rtti. 237 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 238 if (Context.getKeyFunction(RD)) 239 return; 240 } 241 242 // Otherwise, drop the visibility to hidden. 243 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 244 GV->setUnnamedAddr(true); 245 } 246 247 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 248 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 249 250 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 251 if (!Str.empty()) 252 return Str; 253 254 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 255 IdentifierInfo *II = ND->getIdentifier(); 256 assert(II && "Attempt to mangle unnamed decl."); 257 258 Str = II->getName(); 259 return Str; 260 } 261 262 llvm::SmallString<256> Buffer; 263 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 264 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 265 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 266 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 267 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 268 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 269 else 270 getCXXABI().getMangleContext().mangleName(ND, Buffer); 271 272 // Allocate space for the mangled name. 273 size_t Length = Buffer.size(); 274 char *Name = MangledNamesAllocator.Allocate<char>(Length); 275 std::copy(Buffer.begin(), Buffer.end(), Name); 276 277 Str = llvm::StringRef(Name, Length); 278 279 return Str; 280 } 281 282 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 283 const BlockDecl *BD) { 284 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 285 const Decl *D = GD.getDecl(); 286 if (D == 0) 287 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 288 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 289 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 290 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 291 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 292 else 293 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 294 } 295 296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 297 return getModule().getNamedValue(Name); 298 } 299 300 /// AddGlobalCtor - Add a function to the list that will be called before 301 /// main() runs. 302 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 303 // FIXME: Type coercion of void()* types. 304 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 305 } 306 307 /// AddGlobalDtor - Add a function to the list that will be called 308 /// when the module is unloaded. 309 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 310 // FIXME: Type coercion of void()* types. 311 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 312 } 313 314 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 315 // Ctor function type is void()*. 316 llvm::FunctionType* CtorFTy = 317 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 318 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 319 320 // Get the type of a ctor entry, { i32, void ()* }. 321 llvm::StructType* CtorStructTy = 322 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 323 llvm::PointerType::getUnqual(CtorFTy), NULL); 324 325 // Construct the constructor and destructor arrays. 326 std::vector<llvm::Constant*> Ctors; 327 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 328 std::vector<llvm::Constant*> S; 329 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 330 I->second, false)); 331 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 332 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 333 } 334 335 if (!Ctors.empty()) { 336 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 337 new llvm::GlobalVariable(TheModule, AT, false, 338 llvm::GlobalValue::AppendingLinkage, 339 llvm::ConstantArray::get(AT, Ctors), 340 GlobalName); 341 } 342 } 343 344 void CodeGenModule::EmitAnnotations() { 345 if (Annotations.empty()) 346 return; 347 348 // Create a new global variable for the ConstantStruct in the Module. 349 llvm::Constant *Array = 350 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 351 Annotations.size()), 352 Annotations); 353 llvm::GlobalValue *gv = 354 new llvm::GlobalVariable(TheModule, Array->getType(), false, 355 llvm::GlobalValue::AppendingLinkage, Array, 356 "llvm.global.annotations"); 357 gv->setSection("llvm.metadata"); 358 } 359 360 llvm::GlobalValue::LinkageTypes 361 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 362 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 363 364 if (Linkage == GVA_Internal) 365 return llvm::Function::InternalLinkage; 366 367 if (D->hasAttr<DLLExportAttr>()) 368 return llvm::Function::DLLExportLinkage; 369 370 if (D->hasAttr<WeakAttr>()) 371 return llvm::Function::WeakAnyLinkage; 372 373 // In C99 mode, 'inline' functions are guaranteed to have a strong 374 // definition somewhere else, so we can use available_externally linkage. 375 if (Linkage == GVA_C99Inline) 376 return llvm::Function::AvailableExternallyLinkage; 377 378 // In C++, the compiler has to emit a definition in every translation unit 379 // that references the function. We should use linkonce_odr because 380 // a) if all references in this translation unit are optimized away, we 381 // don't need to codegen it. b) if the function persists, it needs to be 382 // merged with other definitions. c) C++ has the ODR, so we know the 383 // definition is dependable. 384 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 385 return llvm::Function::LinkOnceODRLinkage; 386 387 // An explicit instantiation of a template has weak linkage, since 388 // explicit instantiations can occur in multiple translation units 389 // and must all be equivalent. However, we are not allowed to 390 // throw away these explicit instantiations. 391 if (Linkage == GVA_ExplicitTemplateInstantiation) 392 return llvm::Function::WeakODRLinkage; 393 394 // Otherwise, we have strong external linkage. 395 assert(Linkage == GVA_StrongExternal); 396 return llvm::Function::ExternalLinkage; 397 } 398 399 400 /// SetFunctionDefinitionAttributes - Set attributes for a global. 401 /// 402 /// FIXME: This is currently only done for aliases and functions, but not for 403 /// variables (these details are set in EmitGlobalVarDefinition for variables). 404 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 405 llvm::GlobalValue *GV) { 406 SetCommonAttributes(D, GV); 407 } 408 409 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 410 const CGFunctionInfo &Info, 411 llvm::Function *F) { 412 unsigned CallingConv; 413 AttributeListType AttributeList; 414 ConstructAttributeList(Info, D, AttributeList, CallingConv); 415 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 416 AttributeList.size())); 417 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 418 } 419 420 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 421 llvm::Function *F) { 422 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 423 F->addFnAttr(llvm::Attribute::NoUnwind); 424 425 if (D->hasAttr<AlwaysInlineAttr>()) 426 F->addFnAttr(llvm::Attribute::AlwaysInline); 427 428 if (D->hasAttr<NakedAttr>()) 429 F->addFnAttr(llvm::Attribute::Naked); 430 431 if (D->hasAttr<NoInlineAttr>()) 432 F->addFnAttr(llvm::Attribute::NoInline); 433 434 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 435 F->setUnnamedAddr(true); 436 437 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 438 F->addFnAttr(llvm::Attribute::StackProtect); 439 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 440 F->addFnAttr(llvm::Attribute::StackProtectReq); 441 442 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 443 if (alignment) 444 F->setAlignment(alignment); 445 446 // C++ ABI requires 2-byte alignment for member functions. 447 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 448 F->setAlignment(2); 449 } 450 451 void CodeGenModule::SetCommonAttributes(const Decl *D, 452 llvm::GlobalValue *GV) { 453 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 454 setGlobalVisibility(GV, ND); 455 else 456 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 457 458 if (D->hasAttr<UsedAttr>()) 459 AddUsedGlobal(GV); 460 461 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 462 GV->setSection(SA->getName()); 463 464 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 465 } 466 467 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 468 llvm::Function *F, 469 const CGFunctionInfo &FI) { 470 SetLLVMFunctionAttributes(D, FI, F); 471 SetLLVMFunctionAttributesForDefinition(D, F); 472 473 F->setLinkage(llvm::Function::InternalLinkage); 474 475 SetCommonAttributes(D, F); 476 } 477 478 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 479 llvm::Function *F, 480 bool IsIncompleteFunction) { 481 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 482 483 if (!IsIncompleteFunction) 484 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 485 486 // Only a few attributes are set on declarations; these may later be 487 // overridden by a definition. 488 489 if (FD->hasAttr<DLLImportAttr>()) { 490 F->setLinkage(llvm::Function::DLLImportLinkage); 491 } else if (FD->hasAttr<WeakAttr>() || 492 FD->hasAttr<WeakImportAttr>()) { 493 // "extern_weak" is overloaded in LLVM; we probably should have 494 // separate linkage types for this. 495 F->setLinkage(llvm::Function::ExternalWeakLinkage); 496 } else { 497 F->setLinkage(llvm::Function::ExternalLinkage); 498 499 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 500 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 501 F->setVisibility(GetLLVMVisibility(LV.visibility())); 502 } 503 } 504 505 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 506 F->setSection(SA->getName()); 507 } 508 509 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 510 assert(!GV->isDeclaration() && 511 "Only globals with definition can force usage."); 512 LLVMUsed.push_back(GV); 513 } 514 515 void CodeGenModule::EmitLLVMUsed() { 516 // Don't create llvm.used if there is no need. 517 if (LLVMUsed.empty()) 518 return; 519 520 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 521 522 // Convert LLVMUsed to what ConstantArray needs. 523 std::vector<llvm::Constant*> UsedArray; 524 UsedArray.resize(LLVMUsed.size()); 525 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 526 UsedArray[i] = 527 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 528 i8PTy); 529 } 530 531 if (UsedArray.empty()) 532 return; 533 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 534 535 llvm::GlobalVariable *GV = 536 new llvm::GlobalVariable(getModule(), ATy, false, 537 llvm::GlobalValue::AppendingLinkage, 538 llvm::ConstantArray::get(ATy, UsedArray), 539 "llvm.used"); 540 541 GV->setSection("llvm.metadata"); 542 } 543 544 void CodeGenModule::EmitDeferred() { 545 // Emit code for any potentially referenced deferred decls. Since a 546 // previously unused static decl may become used during the generation of code 547 // for a static function, iterate until no changes are made. 548 549 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 550 if (!DeferredVTables.empty()) { 551 const CXXRecordDecl *RD = DeferredVTables.back(); 552 DeferredVTables.pop_back(); 553 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 554 continue; 555 } 556 557 GlobalDecl D = DeferredDeclsToEmit.back(); 558 DeferredDeclsToEmit.pop_back(); 559 560 // Check to see if we've already emitted this. This is necessary 561 // for a couple of reasons: first, decls can end up in the 562 // deferred-decls queue multiple times, and second, decls can end 563 // up with definitions in unusual ways (e.g. by an extern inline 564 // function acquiring a strong function redefinition). Just 565 // ignore these cases. 566 // 567 // TODO: That said, looking this up multiple times is very wasteful. 568 llvm::StringRef Name = getMangledName(D); 569 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 570 assert(CGRef && "Deferred decl wasn't referenced?"); 571 572 if (!CGRef->isDeclaration()) 573 continue; 574 575 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 576 // purposes an alias counts as a definition. 577 if (isa<llvm::GlobalAlias>(CGRef)) 578 continue; 579 580 // Otherwise, emit the definition and move on to the next one. 581 EmitGlobalDefinition(D); 582 } 583 } 584 585 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 586 /// annotation information for a given GlobalValue. The annotation struct is 587 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 588 /// GlobalValue being annotated. The second field is the constant string 589 /// created from the AnnotateAttr's annotation. The third field is a constant 590 /// string containing the name of the translation unit. The fourth field is 591 /// the line number in the file of the annotated value declaration. 592 /// 593 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 594 /// appears to. 595 /// 596 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 597 const AnnotateAttr *AA, 598 unsigned LineNo) { 599 llvm::Module *M = &getModule(); 600 601 // get [N x i8] constants for the annotation string, and the filename string 602 // which are the 2nd and 3rd elements of the global annotation structure. 603 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 604 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 605 AA->getAnnotation(), true); 606 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 607 M->getModuleIdentifier(), 608 true); 609 610 // Get the two global values corresponding to the ConstantArrays we just 611 // created to hold the bytes of the strings. 612 llvm::GlobalValue *annoGV = 613 new llvm::GlobalVariable(*M, anno->getType(), false, 614 llvm::GlobalValue::PrivateLinkage, anno, 615 GV->getName()); 616 // translation unit name string, emitted into the llvm.metadata section. 617 llvm::GlobalValue *unitGV = 618 new llvm::GlobalVariable(*M, unit->getType(), false, 619 llvm::GlobalValue::PrivateLinkage, unit, 620 ".str"); 621 unitGV->setUnnamedAddr(true); 622 623 // Create the ConstantStruct for the global annotation. 624 llvm::Constant *Fields[4] = { 625 llvm::ConstantExpr::getBitCast(GV, SBP), 626 llvm::ConstantExpr::getBitCast(annoGV, SBP), 627 llvm::ConstantExpr::getBitCast(unitGV, SBP), 628 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 629 }; 630 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 631 } 632 633 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 634 // Never defer when EmitAllDecls is specified. 635 if (Features.EmitAllDecls) 636 return false; 637 638 return !getContext().DeclMustBeEmitted(Global); 639 } 640 641 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 642 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 643 assert(AA && "No alias?"); 644 645 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 646 647 // See if there is already something with the target's name in the module. 648 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 649 650 llvm::Constant *Aliasee; 651 if (isa<llvm::FunctionType>(DeclTy)) 652 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 653 else 654 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 655 llvm::PointerType::getUnqual(DeclTy), 0); 656 if (!Entry) { 657 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 658 F->setLinkage(llvm::Function::ExternalWeakLinkage); 659 WeakRefReferences.insert(F); 660 } 661 662 return Aliasee; 663 } 664 665 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 666 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 667 668 // Weak references don't produce any output by themselves. 669 if (Global->hasAttr<WeakRefAttr>()) 670 return; 671 672 // If this is an alias definition (which otherwise looks like a declaration) 673 // emit it now. 674 if (Global->hasAttr<AliasAttr>()) 675 return EmitAliasDefinition(GD); 676 677 // Ignore declarations, they will be emitted on their first use. 678 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 679 if (FD->getIdentifier()) { 680 llvm::StringRef Name = FD->getName(); 681 if (Name == "_Block_object_assign") { 682 BlockObjectAssignDecl = FD; 683 } else if (Name == "_Block_object_dispose") { 684 BlockObjectDisposeDecl = FD; 685 } 686 } 687 688 // Forward declarations are emitted lazily on first use. 689 if (!FD->isThisDeclarationADefinition()) 690 return; 691 } else { 692 const VarDecl *VD = cast<VarDecl>(Global); 693 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 694 695 if (VD->getIdentifier()) { 696 llvm::StringRef Name = VD->getName(); 697 if (Name == "_NSConcreteGlobalBlock") { 698 NSConcreteGlobalBlockDecl = VD; 699 } else if (Name == "_NSConcreteStackBlock") { 700 NSConcreteStackBlockDecl = VD; 701 } 702 } 703 704 705 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 706 return; 707 } 708 709 // Defer code generation when possible if this is a static definition, inline 710 // function etc. These we only want to emit if they are used. 711 if (!MayDeferGeneration(Global)) { 712 // Emit the definition if it can't be deferred. 713 EmitGlobalDefinition(GD); 714 return; 715 } 716 717 // If we're deferring emission of a C++ variable with an 718 // initializer, remember the order in which it appeared in the file. 719 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 720 cast<VarDecl>(Global)->hasInit()) { 721 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 722 CXXGlobalInits.push_back(0); 723 } 724 725 // If the value has already been used, add it directly to the 726 // DeferredDeclsToEmit list. 727 llvm::StringRef MangledName = getMangledName(GD); 728 if (GetGlobalValue(MangledName)) 729 DeferredDeclsToEmit.push_back(GD); 730 else { 731 // Otherwise, remember that we saw a deferred decl with this name. The 732 // first use of the mangled name will cause it to move into 733 // DeferredDeclsToEmit. 734 DeferredDecls[MangledName] = GD; 735 } 736 } 737 738 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 739 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 740 741 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 742 Context.getSourceManager(), 743 "Generating code for declaration"); 744 745 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 746 // At -O0, don't generate IR for functions with available_externally 747 // linkage. 748 if (CodeGenOpts.OptimizationLevel == 0 && 749 !Function->hasAttr<AlwaysInlineAttr>() && 750 getFunctionLinkage(Function) 751 == llvm::Function::AvailableExternallyLinkage) 752 return; 753 754 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 755 if (Method->isVirtual()) 756 getVTables().EmitThunks(GD); 757 758 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 759 return EmitCXXConstructor(CD, GD.getCtorType()); 760 761 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 762 return EmitCXXDestructor(DD, GD.getDtorType()); 763 } 764 765 return EmitGlobalFunctionDefinition(GD); 766 } 767 768 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 769 return EmitGlobalVarDefinition(VD); 770 771 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 772 } 773 774 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 775 /// module, create and return an llvm Function with the specified type. If there 776 /// is something in the module with the specified name, return it potentially 777 /// bitcasted to the right type. 778 /// 779 /// If D is non-null, it specifies a decl that correspond to this. This is used 780 /// to set the attributes on the function when it is first created. 781 llvm::Constant * 782 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 783 const llvm::Type *Ty, 784 GlobalDecl D) { 785 // Lookup the entry, lazily creating it if necessary. 786 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 787 if (Entry) { 788 if (WeakRefReferences.count(Entry)) { 789 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 790 if (FD && !FD->hasAttr<WeakAttr>()) 791 Entry->setLinkage(llvm::Function::ExternalLinkage); 792 793 WeakRefReferences.erase(Entry); 794 } 795 796 if (Entry->getType()->getElementType() == Ty) 797 return Entry; 798 799 // Make sure the result is of the correct type. 800 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 801 return llvm::ConstantExpr::getBitCast(Entry, PTy); 802 } 803 804 // This function doesn't have a complete type (for example, the return 805 // type is an incomplete struct). Use a fake type instead, and make 806 // sure not to try to set attributes. 807 bool IsIncompleteFunction = false; 808 809 const llvm::FunctionType *FTy; 810 if (isa<llvm::FunctionType>(Ty)) { 811 FTy = cast<llvm::FunctionType>(Ty); 812 } else { 813 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 814 IsIncompleteFunction = true; 815 } 816 817 llvm::Function *F = llvm::Function::Create(FTy, 818 llvm::Function::ExternalLinkage, 819 MangledName, &getModule()); 820 assert(F->getName() == MangledName && "name was uniqued!"); 821 if (D.getDecl()) 822 SetFunctionAttributes(D, F, IsIncompleteFunction); 823 824 // This is the first use or definition of a mangled name. If there is a 825 // deferred decl with this name, remember that we need to emit it at the end 826 // of the file. 827 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 828 if (DDI != DeferredDecls.end()) { 829 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 830 // list, and remove it from DeferredDecls (since we don't need it anymore). 831 DeferredDeclsToEmit.push_back(DDI->second); 832 DeferredDecls.erase(DDI); 833 834 // Otherwise, there are cases we have to worry about where we're 835 // using a declaration for which we must emit a definition but where 836 // we might not find a top-level definition: 837 // - member functions defined inline in their classes 838 // - friend functions defined inline in some class 839 // - special member functions with implicit definitions 840 // If we ever change our AST traversal to walk into class methods, 841 // this will be unnecessary. 842 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 843 // Look for a declaration that's lexically in a record. 844 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 845 do { 846 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 847 if (FD->isImplicit()) { 848 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 849 DeferredDeclsToEmit.push_back(D); 850 break; 851 } else if (FD->isThisDeclarationADefinition()) { 852 DeferredDeclsToEmit.push_back(D); 853 break; 854 } 855 } 856 FD = FD->getPreviousDeclaration(); 857 } while (FD); 858 } 859 860 // Make sure the result is of the requested type. 861 if (!IsIncompleteFunction) { 862 assert(F->getType()->getElementType() == Ty); 863 return F; 864 } 865 866 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 867 return llvm::ConstantExpr::getBitCast(F, PTy); 868 } 869 870 /// GetAddrOfFunction - Return the address of the given function. If Ty is 871 /// non-null, then this function will use the specified type if it has to 872 /// create it (this occurs when we see a definition of the function). 873 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 874 const llvm::Type *Ty) { 875 // If there was no specific requested type, just convert it now. 876 if (!Ty) 877 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 878 879 llvm::StringRef MangledName = getMangledName(GD); 880 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 881 } 882 883 /// CreateRuntimeFunction - Create a new runtime function with the specified 884 /// type and name. 885 llvm::Constant * 886 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 887 llvm::StringRef Name) { 888 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 889 } 890 891 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 892 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 893 return false; 894 if (Context.getLangOptions().CPlusPlus && 895 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 896 // FIXME: We should do something fancier here! 897 return false; 898 } 899 return true; 900 } 901 902 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 903 /// create and return an llvm GlobalVariable with the specified type. If there 904 /// is something in the module with the specified name, return it potentially 905 /// bitcasted to the right type. 906 /// 907 /// If D is non-null, it specifies a decl that correspond to this. This is used 908 /// to set the attributes on the global when it is first created. 909 llvm::Constant * 910 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 911 const llvm::PointerType *Ty, 912 const VarDecl *D, 913 bool UnnamedAddr) { 914 // Lookup the entry, lazily creating it if necessary. 915 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 916 if (Entry) { 917 if (WeakRefReferences.count(Entry)) { 918 if (D && !D->hasAttr<WeakAttr>()) 919 Entry->setLinkage(llvm::Function::ExternalLinkage); 920 921 WeakRefReferences.erase(Entry); 922 } 923 924 if (UnnamedAddr) 925 Entry->setUnnamedAddr(true); 926 927 if (Entry->getType() == Ty) 928 return Entry; 929 930 // Make sure the result is of the correct type. 931 return llvm::ConstantExpr::getBitCast(Entry, Ty); 932 } 933 934 // This is the first use or definition of a mangled name. If there is a 935 // deferred decl with this name, remember that we need to emit it at the end 936 // of the file. 937 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 938 if (DDI != DeferredDecls.end()) { 939 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 940 // list, and remove it from DeferredDecls (since we don't need it anymore). 941 DeferredDeclsToEmit.push_back(DDI->second); 942 DeferredDecls.erase(DDI); 943 } 944 945 llvm::GlobalVariable *GV = 946 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 947 llvm::GlobalValue::ExternalLinkage, 948 0, MangledName, 0, 949 false, Ty->getAddressSpace()); 950 951 // Handle things which are present even on external declarations. 952 if (D) { 953 // FIXME: This code is overly simple and should be merged with other global 954 // handling. 955 GV->setConstant(DeclIsConstantGlobal(Context, D)); 956 957 // Set linkage and visibility in case we never see a definition. 958 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 959 if (LV.linkage() != ExternalLinkage) { 960 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 961 } else { 962 if (D->hasAttr<DLLImportAttr>()) 963 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 964 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 965 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 966 967 // Set visibility on a declaration only if it's explicit. 968 if (LV.visibilityExplicit()) 969 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 970 } 971 972 GV->setThreadLocal(D->isThreadSpecified()); 973 } 974 975 return GV; 976 } 977 978 979 llvm::GlobalVariable * 980 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 981 const llvm::Type *Ty, 982 llvm::GlobalValue::LinkageTypes Linkage) { 983 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 984 llvm::GlobalVariable *OldGV = 0; 985 986 987 if (GV) { 988 // Check if the variable has the right type. 989 if (GV->getType()->getElementType() == Ty) 990 return GV; 991 992 // Because C++ name mangling, the only way we can end up with an already 993 // existing global with the same name is if it has been declared extern "C". 994 assert(GV->isDeclaration() && "Declaration has wrong type!"); 995 OldGV = GV; 996 } 997 998 // Create a new variable. 999 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1000 Linkage, 0, Name); 1001 1002 if (OldGV) { 1003 // Replace occurrences of the old variable if needed. 1004 GV->takeName(OldGV); 1005 1006 if (!OldGV->use_empty()) { 1007 llvm::Constant *NewPtrForOldDecl = 1008 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1009 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1010 } 1011 1012 OldGV->eraseFromParent(); 1013 } 1014 1015 return GV; 1016 } 1017 1018 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1019 /// given global variable. If Ty is non-null and if the global doesn't exist, 1020 /// then it will be greated with the specified type instead of whatever the 1021 /// normal requested type would be. 1022 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1023 const llvm::Type *Ty) { 1024 assert(D->hasGlobalStorage() && "Not a global variable"); 1025 QualType ASTTy = D->getType(); 1026 if (Ty == 0) 1027 Ty = getTypes().ConvertTypeForMem(ASTTy); 1028 1029 const llvm::PointerType *PTy = 1030 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1031 1032 llvm::StringRef MangledName = getMangledName(D); 1033 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1034 } 1035 1036 /// CreateRuntimeVariable - Create a new runtime global variable with the 1037 /// specified type and name. 1038 llvm::Constant * 1039 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1040 llvm::StringRef Name) { 1041 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1042 true); 1043 } 1044 1045 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1046 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1047 1048 if (MayDeferGeneration(D)) { 1049 // If we have not seen a reference to this variable yet, place it 1050 // into the deferred declarations table to be emitted if needed 1051 // later. 1052 llvm::StringRef MangledName = getMangledName(D); 1053 if (!GetGlobalValue(MangledName)) { 1054 DeferredDecls[MangledName] = D; 1055 return; 1056 } 1057 } 1058 1059 // The tentative definition is the only definition. 1060 EmitGlobalVarDefinition(D); 1061 } 1062 1063 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1064 if (DefinitionRequired) 1065 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1066 } 1067 1068 llvm::GlobalVariable::LinkageTypes 1069 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1070 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1071 return llvm::GlobalVariable::InternalLinkage; 1072 1073 if (const CXXMethodDecl *KeyFunction 1074 = RD->getASTContext().getKeyFunction(RD)) { 1075 // If this class has a key function, use that to determine the linkage of 1076 // the vtable. 1077 const FunctionDecl *Def = 0; 1078 if (KeyFunction->hasBody(Def)) 1079 KeyFunction = cast<CXXMethodDecl>(Def); 1080 1081 switch (KeyFunction->getTemplateSpecializationKind()) { 1082 case TSK_Undeclared: 1083 case TSK_ExplicitSpecialization: 1084 // When compiling with optimizations turned on, we emit all vtables, 1085 // even if the key function is not defined in the current translation 1086 // unit. If this is the case, use available_externally linkage. 1087 if (!Def && CodeGenOpts.OptimizationLevel) 1088 return llvm::GlobalVariable::AvailableExternallyLinkage; 1089 1090 if (KeyFunction->isInlined()) 1091 return llvm::GlobalVariable::LinkOnceODRLinkage; 1092 1093 return llvm::GlobalVariable::ExternalLinkage; 1094 1095 case TSK_ImplicitInstantiation: 1096 return llvm::GlobalVariable::LinkOnceODRLinkage; 1097 1098 case TSK_ExplicitInstantiationDefinition: 1099 return llvm::GlobalVariable::WeakODRLinkage; 1100 1101 case TSK_ExplicitInstantiationDeclaration: 1102 // FIXME: Use available_externally linkage. However, this currently 1103 // breaks LLVM's build due to undefined symbols. 1104 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1105 return llvm::GlobalVariable::LinkOnceODRLinkage; 1106 } 1107 } 1108 1109 switch (RD->getTemplateSpecializationKind()) { 1110 case TSK_Undeclared: 1111 case TSK_ExplicitSpecialization: 1112 case TSK_ImplicitInstantiation: 1113 return llvm::GlobalVariable::LinkOnceODRLinkage; 1114 1115 case TSK_ExplicitInstantiationDefinition: 1116 return llvm::GlobalVariable::WeakODRLinkage; 1117 1118 case TSK_ExplicitInstantiationDeclaration: 1119 // FIXME: Use available_externally linkage. However, this currently 1120 // breaks LLVM's build due to undefined symbols. 1121 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1122 return llvm::GlobalVariable::LinkOnceODRLinkage; 1123 } 1124 1125 // Silence GCC warning. 1126 return llvm::GlobalVariable::LinkOnceODRLinkage; 1127 } 1128 1129 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1130 return Context.toCharUnitsFromBits( 1131 TheTargetData.getTypeStoreSizeInBits(Ty)); 1132 } 1133 1134 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1135 llvm::Constant *Init = 0; 1136 QualType ASTTy = D->getType(); 1137 bool NonConstInit = false; 1138 1139 const Expr *InitExpr = D->getAnyInitializer(); 1140 1141 if (!InitExpr) { 1142 // This is a tentative definition; tentative definitions are 1143 // implicitly initialized with { 0 }. 1144 // 1145 // Note that tentative definitions are only emitted at the end of 1146 // a translation unit, so they should never have incomplete 1147 // type. In addition, EmitTentativeDefinition makes sure that we 1148 // never attempt to emit a tentative definition if a real one 1149 // exists. A use may still exists, however, so we still may need 1150 // to do a RAUW. 1151 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1152 Init = EmitNullConstant(D->getType()); 1153 } else { 1154 Init = EmitConstantExpr(InitExpr, D->getType()); 1155 if (!Init) { 1156 QualType T = InitExpr->getType(); 1157 if (D->getType()->isReferenceType()) 1158 T = D->getType(); 1159 1160 if (getLangOptions().CPlusPlus) { 1161 Init = EmitNullConstant(T); 1162 NonConstInit = true; 1163 } else { 1164 ErrorUnsupported(D, "static initializer"); 1165 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1166 } 1167 } else { 1168 // We don't need an initializer, so remove the entry for the delayed 1169 // initializer position (just in case this entry was delayed). 1170 if (getLangOptions().CPlusPlus) 1171 DelayedCXXInitPosition.erase(D); 1172 } 1173 } 1174 1175 const llvm::Type* InitType = Init->getType(); 1176 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1177 1178 // Strip off a bitcast if we got one back. 1179 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1180 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1181 // all zero index gep. 1182 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1183 Entry = CE->getOperand(0); 1184 } 1185 1186 // Entry is now either a Function or GlobalVariable. 1187 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1188 1189 // We have a definition after a declaration with the wrong type. 1190 // We must make a new GlobalVariable* and update everything that used OldGV 1191 // (a declaration or tentative definition) with the new GlobalVariable* 1192 // (which will be a definition). 1193 // 1194 // This happens if there is a prototype for a global (e.g. 1195 // "extern int x[];") and then a definition of a different type (e.g. 1196 // "int x[10];"). This also happens when an initializer has a different type 1197 // from the type of the global (this happens with unions). 1198 if (GV == 0 || 1199 GV->getType()->getElementType() != InitType || 1200 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1201 1202 // Move the old entry aside so that we'll create a new one. 1203 Entry->setName(llvm::StringRef()); 1204 1205 // Make a new global with the correct type, this is now guaranteed to work. 1206 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1207 1208 // Replace all uses of the old global with the new global 1209 llvm::Constant *NewPtrForOldDecl = 1210 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1211 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1212 1213 // Erase the old global, since it is no longer used. 1214 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1215 } 1216 1217 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1218 SourceManager &SM = Context.getSourceManager(); 1219 AddAnnotation(EmitAnnotateAttr(GV, AA, 1220 SM.getInstantiationLineNumber(D->getLocation()))); 1221 } 1222 1223 GV->setInitializer(Init); 1224 1225 // If it is safe to mark the global 'constant', do so now. 1226 GV->setConstant(false); 1227 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1228 GV->setConstant(true); 1229 1230 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1231 1232 // Set the llvm linkage type as appropriate. 1233 llvm::GlobalValue::LinkageTypes Linkage = 1234 GetLLVMLinkageVarDefinition(D, GV); 1235 GV->setLinkage(Linkage); 1236 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1237 // common vars aren't constant even if declared const. 1238 GV->setConstant(false); 1239 1240 SetCommonAttributes(D, GV); 1241 1242 // Emit the initializer function if necessary. 1243 if (NonConstInit) 1244 EmitCXXGlobalVarDeclInitFunc(D, GV); 1245 1246 // Emit global variable debug information. 1247 if (CGDebugInfo *DI = getDebugInfo()) { 1248 DI->setLocation(D->getLocation()); 1249 DI->EmitGlobalVariable(GV, D); 1250 } 1251 } 1252 1253 llvm::GlobalValue::LinkageTypes 1254 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1255 llvm::GlobalVariable *GV) { 1256 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1257 if (Linkage == GVA_Internal) 1258 return llvm::Function::InternalLinkage; 1259 else if (D->hasAttr<DLLImportAttr>()) 1260 return llvm::Function::DLLImportLinkage; 1261 else if (D->hasAttr<DLLExportAttr>()) 1262 return llvm::Function::DLLExportLinkage; 1263 else if (D->hasAttr<WeakAttr>()) { 1264 if (GV->isConstant()) 1265 return llvm::GlobalVariable::WeakODRLinkage; 1266 else 1267 return llvm::GlobalVariable::WeakAnyLinkage; 1268 } else if (Linkage == GVA_TemplateInstantiation || 1269 Linkage == GVA_ExplicitTemplateInstantiation) 1270 // FIXME: It seems like we can provide more specific linkage here 1271 // (LinkOnceODR, WeakODR). 1272 return llvm::GlobalVariable::WeakAnyLinkage; 1273 else if (!getLangOptions().CPlusPlus && 1274 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1275 D->getAttr<CommonAttr>()) && 1276 !D->hasExternalStorage() && !D->getInit() && 1277 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1278 // Thread local vars aren't considered common linkage. 1279 return llvm::GlobalVariable::CommonLinkage; 1280 } 1281 return llvm::GlobalVariable::ExternalLinkage; 1282 } 1283 1284 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1285 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1286 /// existing call uses of the old function in the module, this adjusts them to 1287 /// call the new function directly. 1288 /// 1289 /// This is not just a cleanup: the always_inline pass requires direct calls to 1290 /// functions to be able to inline them. If there is a bitcast in the way, it 1291 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1292 /// run at -O0. 1293 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1294 llvm::Function *NewFn) { 1295 // If we're redefining a global as a function, don't transform it. 1296 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1297 if (OldFn == 0) return; 1298 1299 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1300 llvm::SmallVector<llvm::Value*, 4> ArgList; 1301 1302 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1303 UI != E; ) { 1304 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1305 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1306 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1307 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1308 llvm::CallSite CS(CI); 1309 if (!CI || !CS.isCallee(I)) continue; 1310 1311 // If the return types don't match exactly, and if the call isn't dead, then 1312 // we can't transform this call. 1313 if (CI->getType() != NewRetTy && !CI->use_empty()) 1314 continue; 1315 1316 // If the function was passed too few arguments, don't transform. If extra 1317 // arguments were passed, we silently drop them. If any of the types 1318 // mismatch, we don't transform. 1319 unsigned ArgNo = 0; 1320 bool DontTransform = false; 1321 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1322 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1323 if (CS.arg_size() == ArgNo || 1324 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1325 DontTransform = true; 1326 break; 1327 } 1328 } 1329 if (DontTransform) 1330 continue; 1331 1332 // Okay, we can transform this. Create the new call instruction and copy 1333 // over the required information. 1334 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1335 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1336 ArgList.end(), "", CI); 1337 ArgList.clear(); 1338 if (!NewCall->getType()->isVoidTy()) 1339 NewCall->takeName(CI); 1340 NewCall->setAttributes(CI->getAttributes()); 1341 NewCall->setCallingConv(CI->getCallingConv()); 1342 1343 // Finally, remove the old call, replacing any uses with the new one. 1344 if (!CI->use_empty()) 1345 CI->replaceAllUsesWith(NewCall); 1346 1347 // Copy debug location attached to CI. 1348 if (!CI->getDebugLoc().isUnknown()) 1349 NewCall->setDebugLoc(CI->getDebugLoc()); 1350 CI->eraseFromParent(); 1351 } 1352 } 1353 1354 1355 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1356 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1357 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1358 // Get or create the prototype for the function. 1359 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1360 1361 // Strip off a bitcast if we got one back. 1362 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1363 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1364 Entry = CE->getOperand(0); 1365 } 1366 1367 1368 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1369 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1370 1371 // If the types mismatch then we have to rewrite the definition. 1372 assert(OldFn->isDeclaration() && 1373 "Shouldn't replace non-declaration"); 1374 1375 // F is the Function* for the one with the wrong type, we must make a new 1376 // Function* and update everything that used F (a declaration) with the new 1377 // Function* (which will be a definition). 1378 // 1379 // This happens if there is a prototype for a function 1380 // (e.g. "int f()") and then a definition of a different type 1381 // (e.g. "int f(int x)"). Move the old function aside so that it 1382 // doesn't interfere with GetAddrOfFunction. 1383 OldFn->setName(llvm::StringRef()); 1384 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1385 1386 // If this is an implementation of a function without a prototype, try to 1387 // replace any existing uses of the function (which may be calls) with uses 1388 // of the new function 1389 if (D->getType()->isFunctionNoProtoType()) { 1390 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1391 OldFn->removeDeadConstantUsers(); 1392 } 1393 1394 // Replace uses of F with the Function we will endow with a body. 1395 if (!Entry->use_empty()) { 1396 llvm::Constant *NewPtrForOldDecl = 1397 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1398 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1399 } 1400 1401 // Ok, delete the old function now, which is dead. 1402 OldFn->eraseFromParent(); 1403 1404 Entry = NewFn; 1405 } 1406 1407 // We need to set linkage and visibility on the function before 1408 // generating code for it because various parts of IR generation 1409 // want to propagate this information down (e.g. to local static 1410 // declarations). 1411 llvm::Function *Fn = cast<llvm::Function>(Entry); 1412 setFunctionLinkage(D, Fn); 1413 1414 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1415 setGlobalVisibility(Fn, D); 1416 1417 CodeGenFunction(*this).GenerateCode(D, Fn); 1418 1419 SetFunctionDefinitionAttributes(D, Fn); 1420 SetLLVMFunctionAttributesForDefinition(D, Fn); 1421 1422 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1423 AddGlobalCtor(Fn, CA->getPriority()); 1424 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1425 AddGlobalDtor(Fn, DA->getPriority()); 1426 } 1427 1428 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1429 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1430 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1431 assert(AA && "Not an alias?"); 1432 1433 llvm::StringRef MangledName = getMangledName(GD); 1434 1435 // If there is a definition in the module, then it wins over the alias. 1436 // This is dubious, but allow it to be safe. Just ignore the alias. 1437 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1438 if (Entry && !Entry->isDeclaration()) 1439 return; 1440 1441 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1442 1443 // Create a reference to the named value. This ensures that it is emitted 1444 // if a deferred decl. 1445 llvm::Constant *Aliasee; 1446 if (isa<llvm::FunctionType>(DeclTy)) 1447 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1448 else 1449 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1450 llvm::PointerType::getUnqual(DeclTy), 0); 1451 1452 // Create the new alias itself, but don't set a name yet. 1453 llvm::GlobalValue *GA = 1454 new llvm::GlobalAlias(Aliasee->getType(), 1455 llvm::Function::ExternalLinkage, 1456 "", Aliasee, &getModule()); 1457 1458 if (Entry) { 1459 assert(Entry->isDeclaration()); 1460 1461 // If there is a declaration in the module, then we had an extern followed 1462 // by the alias, as in: 1463 // extern int test6(); 1464 // ... 1465 // int test6() __attribute__((alias("test7"))); 1466 // 1467 // Remove it and replace uses of it with the alias. 1468 GA->takeName(Entry); 1469 1470 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1471 Entry->getType())); 1472 Entry->eraseFromParent(); 1473 } else { 1474 GA->setName(MangledName); 1475 } 1476 1477 // Set attributes which are particular to an alias; this is a 1478 // specialization of the attributes which may be set on a global 1479 // variable/function. 1480 if (D->hasAttr<DLLExportAttr>()) { 1481 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1482 // The dllexport attribute is ignored for undefined symbols. 1483 if (FD->hasBody()) 1484 GA->setLinkage(llvm::Function::DLLExportLinkage); 1485 } else { 1486 GA->setLinkage(llvm::Function::DLLExportLinkage); 1487 } 1488 } else if (D->hasAttr<WeakAttr>() || 1489 D->hasAttr<WeakRefAttr>() || 1490 D->hasAttr<WeakImportAttr>()) { 1491 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1492 } 1493 1494 SetCommonAttributes(D, GA); 1495 } 1496 1497 /// getBuiltinLibFunction - Given a builtin id for a function like 1498 /// "__builtin_fabsf", return a Function* for "fabsf". 1499 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1500 unsigned BuiltinID) { 1501 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1502 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1503 "isn't a lib fn"); 1504 1505 // Get the name, skip over the __builtin_ prefix (if necessary). 1506 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1507 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1508 Name += 10; 1509 1510 const llvm::FunctionType *Ty = 1511 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1512 1513 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1514 } 1515 1516 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1517 unsigned NumTys) { 1518 return llvm::Intrinsic::getDeclaration(&getModule(), 1519 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1520 } 1521 1522 static llvm::StringMapEntry<llvm::Constant*> & 1523 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1524 const StringLiteral *Literal, 1525 bool TargetIsLSB, 1526 bool &IsUTF16, 1527 unsigned &StringLength) { 1528 llvm::StringRef String = Literal->getString(); 1529 unsigned NumBytes = String.size(); 1530 1531 // Check for simple case. 1532 if (!Literal->containsNonAsciiOrNull()) { 1533 StringLength = NumBytes; 1534 return Map.GetOrCreateValue(String); 1535 } 1536 1537 // Otherwise, convert the UTF8 literals into a byte string. 1538 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1539 const UTF8 *FromPtr = (UTF8 *)String.data(); 1540 UTF16 *ToPtr = &ToBuf[0]; 1541 1542 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1543 &ToPtr, ToPtr + NumBytes, 1544 strictConversion); 1545 1546 // ConvertUTF8toUTF16 returns the length in ToPtr. 1547 StringLength = ToPtr - &ToBuf[0]; 1548 1549 // Render the UTF-16 string into a byte array and convert to the target byte 1550 // order. 1551 // 1552 // FIXME: This isn't something we should need to do here. 1553 llvm::SmallString<128> AsBytes; 1554 AsBytes.reserve(StringLength * 2); 1555 for (unsigned i = 0; i != StringLength; ++i) { 1556 unsigned short Val = ToBuf[i]; 1557 if (TargetIsLSB) { 1558 AsBytes.push_back(Val & 0xFF); 1559 AsBytes.push_back(Val >> 8); 1560 } else { 1561 AsBytes.push_back(Val >> 8); 1562 AsBytes.push_back(Val & 0xFF); 1563 } 1564 } 1565 // Append one extra null character, the second is automatically added by our 1566 // caller. 1567 AsBytes.push_back(0); 1568 1569 IsUTF16 = true; 1570 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1571 } 1572 1573 llvm::Constant * 1574 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1575 unsigned StringLength = 0; 1576 bool isUTF16 = false; 1577 llvm::StringMapEntry<llvm::Constant*> &Entry = 1578 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1579 getTargetData().isLittleEndian(), 1580 isUTF16, StringLength); 1581 1582 if (llvm::Constant *C = Entry.getValue()) 1583 return C; 1584 1585 llvm::Constant *Zero = 1586 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1587 llvm::Constant *Zeros[] = { Zero, Zero }; 1588 1589 // If we don't already have it, get __CFConstantStringClassReference. 1590 if (!CFConstantStringClassRef) { 1591 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1592 Ty = llvm::ArrayType::get(Ty, 0); 1593 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1594 "__CFConstantStringClassReference"); 1595 // Decay array -> ptr 1596 CFConstantStringClassRef = 1597 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1598 } 1599 1600 QualType CFTy = getContext().getCFConstantStringType(); 1601 1602 const llvm::StructType *STy = 1603 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1604 1605 std::vector<llvm::Constant*> Fields(4); 1606 1607 // Class pointer. 1608 Fields[0] = CFConstantStringClassRef; 1609 1610 // Flags. 1611 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1612 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1613 llvm::ConstantInt::get(Ty, 0x07C8); 1614 1615 // String pointer. 1616 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1617 1618 llvm::GlobalValue::LinkageTypes Linkage; 1619 bool isConstant; 1620 if (isUTF16) { 1621 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1622 Linkage = llvm::GlobalValue::InternalLinkage; 1623 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1624 // does make plain ascii ones writable. 1625 isConstant = true; 1626 } else { 1627 Linkage = llvm::GlobalValue::PrivateLinkage; 1628 isConstant = !Features.WritableStrings; 1629 } 1630 1631 llvm::GlobalVariable *GV = 1632 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1633 ".str"); 1634 GV->setUnnamedAddr(true); 1635 if (isUTF16) { 1636 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1637 GV->setAlignment(Align.getQuantity()); 1638 } 1639 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1640 1641 // String length. 1642 Ty = getTypes().ConvertType(getContext().LongTy); 1643 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1644 1645 // The struct. 1646 C = llvm::ConstantStruct::get(STy, Fields); 1647 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1648 llvm::GlobalVariable::PrivateLinkage, C, 1649 "_unnamed_cfstring_"); 1650 if (const char *Sect = getContext().Target.getCFStringSection()) 1651 GV->setSection(Sect); 1652 Entry.setValue(GV); 1653 1654 return GV; 1655 } 1656 1657 llvm::Constant * 1658 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1659 unsigned StringLength = 0; 1660 bool isUTF16 = false; 1661 llvm::StringMapEntry<llvm::Constant*> &Entry = 1662 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1663 getTargetData().isLittleEndian(), 1664 isUTF16, StringLength); 1665 1666 if (llvm::Constant *C = Entry.getValue()) 1667 return C; 1668 1669 llvm::Constant *Zero = 1670 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1671 llvm::Constant *Zeros[] = { Zero, Zero }; 1672 1673 // If we don't already have it, get _NSConstantStringClassReference. 1674 if (!ConstantStringClassRef) { 1675 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1676 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1677 Ty = llvm::ArrayType::get(Ty, 0); 1678 llvm::Constant *GV; 1679 if (StringClass.empty()) 1680 GV = CreateRuntimeVariable(Ty, 1681 Features.ObjCNonFragileABI ? 1682 "OBJC_CLASS_$_NSConstantString" : 1683 "_NSConstantStringClassReference"); 1684 else { 1685 std::string str; 1686 if (Features.ObjCNonFragileABI) 1687 str = "OBJC_CLASS_$_" + StringClass; 1688 else 1689 str = "_" + StringClass + "ClassReference"; 1690 GV = CreateRuntimeVariable(Ty, str); 1691 } 1692 // Decay array -> ptr 1693 ConstantStringClassRef = 1694 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1695 } 1696 1697 QualType NSTy = getContext().getNSConstantStringType(); 1698 1699 const llvm::StructType *STy = 1700 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1701 1702 std::vector<llvm::Constant*> Fields(3); 1703 1704 // Class pointer. 1705 Fields[0] = ConstantStringClassRef; 1706 1707 // String pointer. 1708 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1709 1710 llvm::GlobalValue::LinkageTypes Linkage; 1711 bool isConstant; 1712 if (isUTF16) { 1713 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1714 Linkage = llvm::GlobalValue::InternalLinkage; 1715 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1716 // does make plain ascii ones writable. 1717 isConstant = true; 1718 } else { 1719 Linkage = llvm::GlobalValue::PrivateLinkage; 1720 isConstant = !Features.WritableStrings; 1721 } 1722 1723 llvm::GlobalVariable *GV = 1724 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1725 ".str"); 1726 GV->setUnnamedAddr(true); 1727 if (isUTF16) { 1728 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1729 GV->setAlignment(Align.getQuantity()); 1730 } 1731 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1732 1733 // String length. 1734 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1735 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1736 1737 // The struct. 1738 C = llvm::ConstantStruct::get(STy, Fields); 1739 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1740 llvm::GlobalVariable::PrivateLinkage, C, 1741 "_unnamed_nsstring_"); 1742 // FIXME. Fix section. 1743 if (const char *Sect = 1744 Features.ObjCNonFragileABI 1745 ? getContext().Target.getNSStringNonFragileABISection() 1746 : getContext().Target.getNSStringSection()) 1747 GV->setSection(Sect); 1748 Entry.setValue(GV); 1749 1750 return GV; 1751 } 1752 1753 /// GetStringForStringLiteral - Return the appropriate bytes for a 1754 /// string literal, properly padded to match the literal type. 1755 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1756 const ASTContext &Context = getContext(); 1757 const ConstantArrayType *CAT = 1758 Context.getAsConstantArrayType(E->getType()); 1759 assert(CAT && "String isn't pointer or array!"); 1760 1761 // Resize the string to the right size. 1762 uint64_t RealLen = CAT->getSize().getZExtValue(); 1763 1764 if (E->isWide()) 1765 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1766 1767 std::string Str = E->getString().str(); 1768 Str.resize(RealLen, '\0'); 1769 1770 return Str; 1771 } 1772 1773 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1774 /// constant array for the given string literal. 1775 llvm::Constant * 1776 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1777 // FIXME: This can be more efficient. 1778 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1779 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1780 if (S->isWide()) { 1781 llvm::Type *DestTy = 1782 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1783 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1784 } 1785 return C; 1786 } 1787 1788 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1789 /// array for the given ObjCEncodeExpr node. 1790 llvm::Constant * 1791 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1792 std::string Str; 1793 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1794 1795 return GetAddrOfConstantCString(Str); 1796 } 1797 1798 1799 /// GenerateWritableString -- Creates storage for a string literal. 1800 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1801 bool constant, 1802 CodeGenModule &CGM, 1803 const char *GlobalName) { 1804 // Create Constant for this string literal. Don't add a '\0'. 1805 llvm::Constant *C = 1806 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1807 1808 // Create a global variable for this string 1809 llvm::GlobalVariable *GV = 1810 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1811 llvm::GlobalValue::PrivateLinkage, 1812 C, GlobalName); 1813 GV->setUnnamedAddr(true); 1814 return GV; 1815 } 1816 1817 /// GetAddrOfConstantString - Returns a pointer to a character array 1818 /// containing the literal. This contents are exactly that of the 1819 /// given string, i.e. it will not be null terminated automatically; 1820 /// see GetAddrOfConstantCString. Note that whether the result is 1821 /// actually a pointer to an LLVM constant depends on 1822 /// Feature.WriteableStrings. 1823 /// 1824 /// The result has pointer to array type. 1825 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1826 const char *GlobalName) { 1827 bool IsConstant = !Features.WritableStrings; 1828 1829 // Get the default prefix if a name wasn't specified. 1830 if (!GlobalName) 1831 GlobalName = ".str"; 1832 1833 // Don't share any string literals if strings aren't constant. 1834 if (!IsConstant) 1835 return GenerateStringLiteral(str, false, *this, GlobalName); 1836 1837 llvm::StringMapEntry<llvm::Constant *> &Entry = 1838 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1839 1840 if (Entry.getValue()) 1841 return Entry.getValue(); 1842 1843 // Create a global variable for this. 1844 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1845 Entry.setValue(C); 1846 return C; 1847 } 1848 1849 /// GetAddrOfConstantCString - Returns a pointer to a character 1850 /// array containing the literal and a terminating '\-' 1851 /// character. The result has pointer to array type. 1852 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1853 const char *GlobalName){ 1854 return GetAddrOfConstantString(str + '\0', GlobalName); 1855 } 1856 1857 /// EmitObjCPropertyImplementations - Emit information for synthesized 1858 /// properties for an implementation. 1859 void CodeGenModule::EmitObjCPropertyImplementations(const 1860 ObjCImplementationDecl *D) { 1861 for (ObjCImplementationDecl::propimpl_iterator 1862 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1863 ObjCPropertyImplDecl *PID = *i; 1864 1865 // Dynamic is just for type-checking. 1866 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1867 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1868 1869 // Determine which methods need to be implemented, some may have 1870 // been overridden. Note that ::isSynthesized is not the method 1871 // we want, that just indicates if the decl came from a 1872 // property. What we want to know is if the method is defined in 1873 // this implementation. 1874 if (!D->getInstanceMethod(PD->getGetterName())) 1875 CodeGenFunction(*this).GenerateObjCGetter( 1876 const_cast<ObjCImplementationDecl *>(D), PID); 1877 if (!PD->isReadOnly() && 1878 !D->getInstanceMethod(PD->getSetterName())) 1879 CodeGenFunction(*this).GenerateObjCSetter( 1880 const_cast<ObjCImplementationDecl *>(D), PID); 1881 } 1882 } 1883 } 1884 1885 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1886 /// for an implementation. 1887 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1888 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1889 return; 1890 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1891 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1892 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1893 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1894 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1895 D->getLocation(), 1896 D->getLocation(), cxxSelector, 1897 getContext().VoidTy, 0, 1898 DC, true, false, true, false, 1899 ObjCMethodDecl::Required); 1900 D->addInstanceMethod(DTORMethod); 1901 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1902 1903 II = &getContext().Idents.get(".cxx_construct"); 1904 cxxSelector = getContext().Selectors.getSelector(0, &II); 1905 // The constructor returns 'self'. 1906 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1907 D->getLocation(), 1908 D->getLocation(), cxxSelector, 1909 getContext().getObjCIdType(), 0, 1910 DC, true, false, true, false, 1911 ObjCMethodDecl::Required); 1912 D->addInstanceMethod(CTORMethod); 1913 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1914 1915 1916 } 1917 1918 /// EmitNamespace - Emit all declarations in a namespace. 1919 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1920 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1921 I != E; ++I) 1922 EmitTopLevelDecl(*I); 1923 } 1924 1925 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1926 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1927 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1928 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1929 ErrorUnsupported(LSD, "linkage spec"); 1930 return; 1931 } 1932 1933 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1934 I != E; ++I) 1935 EmitTopLevelDecl(*I); 1936 } 1937 1938 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1939 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1940 // If an error has occurred, stop code generation, but continue 1941 // parsing and semantic analysis (to ensure all warnings and errors 1942 // are emitted). 1943 if (Diags.hasErrorOccurred()) 1944 return; 1945 1946 // Ignore dependent declarations. 1947 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1948 return; 1949 1950 switch (D->getKind()) { 1951 case Decl::CXXConversion: 1952 case Decl::CXXMethod: 1953 case Decl::Function: 1954 // Skip function templates 1955 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1956 return; 1957 1958 EmitGlobal(cast<FunctionDecl>(D)); 1959 break; 1960 1961 case Decl::Var: 1962 EmitGlobal(cast<VarDecl>(D)); 1963 break; 1964 1965 // C++ Decls 1966 case Decl::Namespace: 1967 EmitNamespace(cast<NamespaceDecl>(D)); 1968 break; 1969 // No code generation needed. 1970 case Decl::UsingShadow: 1971 case Decl::Using: 1972 case Decl::UsingDirective: 1973 case Decl::ClassTemplate: 1974 case Decl::FunctionTemplate: 1975 case Decl::NamespaceAlias: 1976 break; 1977 case Decl::CXXConstructor: 1978 // Skip function templates 1979 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1980 return; 1981 1982 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1983 break; 1984 case Decl::CXXDestructor: 1985 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1986 break; 1987 1988 case Decl::StaticAssert: 1989 // Nothing to do. 1990 break; 1991 1992 // Objective-C Decls 1993 1994 // Forward declarations, no (immediate) code generation. 1995 case Decl::ObjCClass: 1996 case Decl::ObjCForwardProtocol: 1997 case Decl::ObjCInterface: 1998 break; 1999 2000 case Decl::ObjCCategory: { 2001 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2002 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2003 Context.ResetObjCLayout(CD->getClassInterface()); 2004 break; 2005 } 2006 2007 2008 case Decl::ObjCProtocol: 2009 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2010 break; 2011 2012 case Decl::ObjCCategoryImpl: 2013 // Categories have properties but don't support synthesize so we 2014 // can ignore them here. 2015 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2016 break; 2017 2018 case Decl::ObjCImplementation: { 2019 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2020 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2021 Context.ResetObjCLayout(OMD->getClassInterface()); 2022 EmitObjCPropertyImplementations(OMD); 2023 EmitObjCIvarInitializations(OMD); 2024 Runtime->GenerateClass(OMD); 2025 break; 2026 } 2027 case Decl::ObjCMethod: { 2028 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2029 // If this is not a prototype, emit the body. 2030 if (OMD->getBody()) 2031 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2032 break; 2033 } 2034 case Decl::ObjCCompatibleAlias: 2035 // compatibility-alias is a directive and has no code gen. 2036 break; 2037 2038 case Decl::LinkageSpec: 2039 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2040 break; 2041 2042 case Decl::FileScopeAsm: { 2043 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2044 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2045 2046 const std::string &S = getModule().getModuleInlineAsm(); 2047 if (S.empty()) 2048 getModule().setModuleInlineAsm(AsmString); 2049 else 2050 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2051 break; 2052 } 2053 2054 default: 2055 // Make sure we handled everything we should, every other kind is a 2056 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2057 // function. Need to recode Decl::Kind to do that easily. 2058 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2059 } 2060 } 2061 2062 /// Turns the given pointer into a constant. 2063 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2064 const void *Ptr) { 2065 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2066 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2067 return llvm::ConstantInt::get(i64, PtrInt); 2068 } 2069 2070 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2071 llvm::NamedMDNode *&GlobalMetadata, 2072 GlobalDecl D, 2073 llvm::GlobalValue *Addr) { 2074 if (!GlobalMetadata) 2075 GlobalMetadata = 2076 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2077 2078 // TODO: should we report variant information for ctors/dtors? 2079 llvm::Value *Ops[] = { 2080 Addr, 2081 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2082 }; 2083 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2084 } 2085 2086 /// Emits metadata nodes associating all the global values in the 2087 /// current module with the Decls they came from. This is useful for 2088 /// projects using IR gen as a subroutine. 2089 /// 2090 /// Since there's currently no way to associate an MDNode directly 2091 /// with an llvm::GlobalValue, we create a global named metadata 2092 /// with the name 'clang.global.decl.ptrs'. 2093 void CodeGenModule::EmitDeclMetadata() { 2094 llvm::NamedMDNode *GlobalMetadata = 0; 2095 2096 // StaticLocalDeclMap 2097 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2098 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2099 I != E; ++I) { 2100 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2101 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2102 } 2103 } 2104 2105 /// Emits metadata nodes for all the local variables in the current 2106 /// function. 2107 void CodeGenFunction::EmitDeclMetadata() { 2108 if (LocalDeclMap.empty()) return; 2109 2110 llvm::LLVMContext &Context = getLLVMContext(); 2111 2112 // Find the unique metadata ID for this name. 2113 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2114 2115 llvm::NamedMDNode *GlobalMetadata = 0; 2116 2117 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2118 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2119 const Decl *D = I->first; 2120 llvm::Value *Addr = I->second; 2121 2122 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2123 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2124 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2125 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2126 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2127 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2128 } 2129 } 2130 } 2131 2132 ///@name Custom Runtime Function Interfaces 2133 ///@{ 2134 // 2135 // FIXME: These can be eliminated once we can have clients just get the required 2136 // AST nodes from the builtin tables. 2137 2138 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2139 if (BlockObjectDispose) 2140 return BlockObjectDispose; 2141 2142 // If we saw an explicit decl, use that. 2143 if (BlockObjectDisposeDecl) { 2144 return BlockObjectDispose = GetAddrOfFunction( 2145 BlockObjectDisposeDecl, 2146 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2147 } 2148 2149 // Otherwise construct the function by hand. 2150 const llvm::FunctionType *FTy; 2151 std::vector<const llvm::Type*> ArgTys; 2152 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2153 ArgTys.push_back(PtrToInt8Ty); 2154 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2155 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2156 return BlockObjectDispose = 2157 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2158 } 2159 2160 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2161 if (BlockObjectAssign) 2162 return BlockObjectAssign; 2163 2164 // If we saw an explicit decl, use that. 2165 if (BlockObjectAssignDecl) { 2166 return BlockObjectAssign = GetAddrOfFunction( 2167 BlockObjectAssignDecl, 2168 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2169 } 2170 2171 // Otherwise construct the function by hand. 2172 const llvm::FunctionType *FTy; 2173 std::vector<const llvm::Type*> ArgTys; 2174 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2175 ArgTys.push_back(PtrToInt8Ty); 2176 ArgTys.push_back(PtrToInt8Ty); 2177 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2178 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2179 return BlockObjectAssign = 2180 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2181 } 2182 2183 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2184 if (NSConcreteGlobalBlock) 2185 return NSConcreteGlobalBlock; 2186 2187 // If we saw an explicit decl, use that. 2188 if (NSConcreteGlobalBlockDecl) { 2189 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2190 NSConcreteGlobalBlockDecl, 2191 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2192 } 2193 2194 // Otherwise construct the variable by hand. 2195 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2196 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2197 } 2198 2199 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2200 if (NSConcreteStackBlock) 2201 return NSConcreteStackBlock; 2202 2203 // If we saw an explicit decl, use that. 2204 if (NSConcreteStackBlockDecl) { 2205 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2206 NSConcreteStackBlockDecl, 2207 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2208 } 2209 2210 // Otherwise construct the variable by hand. 2211 return NSConcreteStackBlock = CreateRuntimeVariable( 2212 PtrToInt8Ty, "_NSConcreteStackBlock"); 2213 } 2214 2215 ///@} 2216