1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 else if (Target.getABI() == "pauthtest") 151 Kind = AArch64ABIKind::PAuthTest; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::dxil: 302 return createDirectXTargetCodeGenInfo(CGM); 303 case llvm::Triple::ve: 304 return createVETargetCodeGenInfo(CGM); 305 case llvm::Triple::csky: { 306 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 307 bool hasFP64 = 308 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 309 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 310 : hasFP64 ? 64 311 : 32); 312 } 313 case llvm::Triple::bpfeb: 314 case llvm::Triple::bpfel: 315 return createBPFTargetCodeGenInfo(CGM); 316 case llvm::Triple::loongarch32: 317 case llvm::Triple::loongarch64: { 318 StringRef ABIStr = Target.getABI(); 319 unsigned ABIFRLen = 0; 320 if (ABIStr.ends_with("f")) 321 ABIFRLen = 32; 322 else if (ABIStr.ends_with("d")) 323 ABIFRLen = 64; 324 return createLoongArchTargetCodeGenInfo( 325 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 326 } 327 } 328 } 329 330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 331 if (!TheTargetCodeGenInfo) 332 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 333 return *TheTargetCodeGenInfo; 334 } 335 336 CodeGenModule::CodeGenModule(ASTContext &C, 337 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 338 const HeaderSearchOptions &HSO, 339 const PreprocessorOptions &PPO, 340 const CodeGenOptions &CGO, llvm::Module &M, 341 DiagnosticsEngine &diags, 342 CoverageSourceInfo *CoverageInfo) 343 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 344 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 345 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 346 VMContext(M.getContext()), VTables(*this), 347 SanitizerMD(new SanitizerMetadata(*this)) { 348 349 // Initialize the type cache. 350 Types.reset(new CodeGenTypes(*this)); 351 llvm::LLVMContext &LLVMContext = M.getContext(); 352 VoidTy = llvm::Type::getVoidTy(LLVMContext); 353 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 354 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 355 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 356 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 357 HalfTy = llvm::Type::getHalfTy(LLVMContext); 358 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 359 FloatTy = llvm::Type::getFloatTy(LLVMContext); 360 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 361 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 362 PointerAlignInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 364 .getQuantity(); 365 SizeSizeInBytes = 366 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 367 IntAlignInBytes = 368 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 369 CharTy = 370 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 371 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 372 IntPtrTy = llvm::IntegerType::get(LLVMContext, 373 C.getTargetInfo().getMaxPointerWidth()); 374 Int8PtrTy = llvm::PointerType::get(LLVMContext, 375 C.getTargetAddressSpace(LangAS::Default)); 376 const llvm::DataLayout &DL = M.getDataLayout(); 377 AllocaInt8PtrTy = 378 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 379 GlobalsInt8PtrTy = 380 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 381 ConstGlobalsPtrTy = llvm::PointerType::get( 382 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 383 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 384 385 // Build C++20 Module initializers. 386 // TODO: Add Microsoft here once we know the mangling required for the 387 // initializers. 388 CXX20ModuleInits = 389 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 390 ItaniumMangleContext::MK_Itanium; 391 392 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 393 394 if (LangOpts.ObjC) 395 createObjCRuntime(); 396 if (LangOpts.OpenCL) 397 createOpenCLRuntime(); 398 if (LangOpts.OpenMP) 399 createOpenMPRuntime(); 400 if (LangOpts.CUDA) 401 createCUDARuntime(); 402 if (LangOpts.HLSL) 403 createHLSLRuntime(); 404 405 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 406 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 407 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 408 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 409 getLangOpts())); 410 411 // If debug info or coverage generation is enabled, create the CGDebugInfo 412 // object. 413 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 414 CodeGenOpts.CoverageNotesFile.size() || 415 CodeGenOpts.CoverageDataFile.size()) 416 DebugInfo.reset(new CGDebugInfo(*this)); 417 418 Block.GlobalUniqueCount = 0; 419 420 if (C.getLangOpts().ObjC) 421 ObjCData.reset(new ObjCEntrypoints()); 422 423 if (CodeGenOpts.hasProfileClangUse()) { 424 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 425 CodeGenOpts.ProfileInstrumentUsePath, *FS, 426 CodeGenOpts.ProfileRemappingFile); 427 // We're checking for profile read errors in CompilerInvocation, so if 428 // there was an error it should've already been caught. If it hasn't been 429 // somehow, trip an assertion. 430 assert(ReaderOrErr); 431 PGOReader = std::move(ReaderOrErr.get()); 432 } 433 434 // If coverage mapping generation is enabled, create the 435 // CoverageMappingModuleGen object. 436 if (CodeGenOpts.CoverageMapping) 437 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 438 439 // Generate the module name hash here if needed. 440 if (CodeGenOpts.UniqueInternalLinkageNames && 441 !getModule().getSourceFileName().empty()) { 442 std::string Path = getModule().getSourceFileName(); 443 // Check if a path substitution is needed from the MacroPrefixMap. 444 for (const auto &Entry : LangOpts.MacroPrefixMap) 445 if (Path.rfind(Entry.first, 0) != std::string::npos) { 446 Path = Entry.second + Path.substr(Entry.first.size()); 447 break; 448 } 449 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 450 } 451 452 // Record mregparm value now so it is visible through all of codegen. 453 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 454 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 455 CodeGenOpts.NumRegisterParameters); 456 } 457 458 CodeGenModule::~CodeGenModule() {} 459 460 void CodeGenModule::createObjCRuntime() { 461 // This is just isGNUFamily(), but we want to force implementors of 462 // new ABIs to decide how best to do this. 463 switch (LangOpts.ObjCRuntime.getKind()) { 464 case ObjCRuntime::GNUstep: 465 case ObjCRuntime::GCC: 466 case ObjCRuntime::ObjFW: 467 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 468 return; 469 470 case ObjCRuntime::FragileMacOSX: 471 case ObjCRuntime::MacOSX: 472 case ObjCRuntime::iOS: 473 case ObjCRuntime::WatchOS: 474 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 475 return; 476 } 477 llvm_unreachable("bad runtime kind"); 478 } 479 480 void CodeGenModule::createOpenCLRuntime() { 481 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 482 } 483 484 void CodeGenModule::createOpenMPRuntime() { 485 // Select a specialized code generation class based on the target, if any. 486 // If it does not exist use the default implementation. 487 switch (getTriple().getArch()) { 488 case llvm::Triple::nvptx: 489 case llvm::Triple::nvptx64: 490 case llvm::Triple::amdgcn: 491 assert(getLangOpts().OpenMPIsTargetDevice && 492 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 493 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 494 break; 495 default: 496 if (LangOpts.OpenMPSimd) 497 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 498 else 499 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 500 break; 501 } 502 } 503 504 void CodeGenModule::createCUDARuntime() { 505 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 506 } 507 508 void CodeGenModule::createHLSLRuntime() { 509 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 510 } 511 512 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 513 Replacements[Name] = C; 514 } 515 516 void CodeGenModule::applyReplacements() { 517 for (auto &I : Replacements) { 518 StringRef MangledName = I.first; 519 llvm::Constant *Replacement = I.second; 520 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 521 if (!Entry) 522 continue; 523 auto *OldF = cast<llvm::Function>(Entry); 524 auto *NewF = dyn_cast<llvm::Function>(Replacement); 525 if (!NewF) { 526 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 527 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 528 } else { 529 auto *CE = cast<llvm::ConstantExpr>(Replacement); 530 assert(CE->getOpcode() == llvm::Instruction::BitCast || 531 CE->getOpcode() == llvm::Instruction::GetElementPtr); 532 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 533 } 534 } 535 536 // Replace old with new, but keep the old order. 537 OldF->replaceAllUsesWith(Replacement); 538 if (NewF) { 539 NewF->removeFromParent(); 540 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 541 NewF); 542 } 543 OldF->eraseFromParent(); 544 } 545 } 546 547 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 548 GlobalValReplacements.push_back(std::make_pair(GV, C)); 549 } 550 551 void CodeGenModule::applyGlobalValReplacements() { 552 for (auto &I : GlobalValReplacements) { 553 llvm::GlobalValue *GV = I.first; 554 llvm::Constant *C = I.second; 555 556 GV->replaceAllUsesWith(C); 557 GV->eraseFromParent(); 558 } 559 } 560 561 // This is only used in aliases that we created and we know they have a 562 // linear structure. 563 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 564 const llvm::Constant *C; 565 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 566 C = GA->getAliasee(); 567 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 568 C = GI->getResolver(); 569 else 570 return GV; 571 572 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 573 if (!AliaseeGV) 574 return nullptr; 575 576 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 577 if (FinalGV == GV) 578 return nullptr; 579 580 return FinalGV; 581 } 582 583 static bool checkAliasedGlobal( 584 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 585 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 586 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 587 SourceRange AliasRange) { 588 GV = getAliasedGlobal(Alias); 589 if (!GV) { 590 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 591 return false; 592 } 593 594 if (GV->hasCommonLinkage()) { 595 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 596 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 597 Diags.Report(Location, diag::err_alias_to_common); 598 return false; 599 } 600 } 601 602 if (GV->isDeclaration()) { 603 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 604 Diags.Report(Location, diag::note_alias_requires_mangled_name) 605 << IsIFunc << IsIFunc; 606 // Provide a note if the given function is not found and exists as a 607 // mangled name. 608 for (const auto &[Decl, Name] : MangledDeclNames) { 609 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 610 if (ND->getName() == GV->getName()) { 611 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 612 << Name 613 << FixItHint::CreateReplacement( 614 AliasRange, 615 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 616 .str()); 617 } 618 } 619 } 620 return false; 621 } 622 623 if (IsIFunc) { 624 // Check resolver function type. 625 const auto *F = dyn_cast<llvm::Function>(GV); 626 if (!F) { 627 Diags.Report(Location, diag::err_alias_to_undefined) 628 << IsIFunc << IsIFunc; 629 return false; 630 } 631 632 llvm::FunctionType *FTy = F->getFunctionType(); 633 if (!FTy->getReturnType()->isPointerTy()) { 634 Diags.Report(Location, diag::err_ifunc_resolver_return); 635 return false; 636 } 637 } 638 639 return true; 640 } 641 642 // Emit a warning if toc-data attribute is requested for global variables that 643 // have aliases and remove the toc-data attribute. 644 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 645 const CodeGenOptions &CodeGenOpts, 646 DiagnosticsEngine &Diags, 647 SourceLocation Location) { 648 if (GVar->hasAttribute("toc-data")) { 649 auto GVId = GVar->getName(); 650 // Is this a global variable specified by the user as local? 651 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 652 Diags.Report(Location, diag::warn_toc_unsupported_type) 653 << GVId << "the variable has an alias"; 654 } 655 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 656 llvm::AttributeSet NewAttributes = 657 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 658 GVar->setAttributes(NewAttributes); 659 } 660 } 661 662 void CodeGenModule::checkAliases() { 663 // Check if the constructed aliases are well formed. It is really unfortunate 664 // that we have to do this in CodeGen, but we only construct mangled names 665 // and aliases during codegen. 666 bool Error = false; 667 DiagnosticsEngine &Diags = getDiags(); 668 for (const GlobalDecl &GD : Aliases) { 669 const auto *D = cast<ValueDecl>(GD.getDecl()); 670 SourceLocation Location; 671 SourceRange Range; 672 bool IsIFunc = D->hasAttr<IFuncAttr>(); 673 if (const Attr *A = D->getDefiningAttr()) { 674 Location = A->getLocation(); 675 Range = A->getRange(); 676 } else 677 llvm_unreachable("Not an alias or ifunc?"); 678 679 StringRef MangledName = getMangledName(GD); 680 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 681 const llvm::GlobalValue *GV = nullptr; 682 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 683 MangledDeclNames, Range)) { 684 Error = true; 685 continue; 686 } 687 688 if (getContext().getTargetInfo().getTriple().isOSAIX()) 689 if (const llvm::GlobalVariable *GVar = 690 dyn_cast<const llvm::GlobalVariable>(GV)) 691 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 692 getCodeGenOpts(), Diags, Location); 693 694 llvm::Constant *Aliasee = 695 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 696 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 697 698 llvm::GlobalValue *AliaseeGV; 699 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 700 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 701 else 702 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 703 704 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 705 StringRef AliasSection = SA->getName(); 706 if (AliasSection != AliaseeGV->getSection()) 707 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 708 << AliasSection << IsIFunc << IsIFunc; 709 } 710 711 // We have to handle alias to weak aliases in here. LLVM itself disallows 712 // this since the object semantics would not match the IL one. For 713 // compatibility with gcc we implement it by just pointing the alias 714 // to its aliasee's aliasee. We also warn, since the user is probably 715 // expecting the link to be weak. 716 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 717 if (GA->isInterposable()) { 718 Diags.Report(Location, diag::warn_alias_to_weak_alias) 719 << GV->getName() << GA->getName() << IsIFunc; 720 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 721 GA->getAliasee(), Alias->getType()); 722 723 if (IsIFunc) 724 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 725 else 726 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 727 } 728 } 729 // ifunc resolvers are usually implemented to run before sanitizer 730 // initialization. Disable instrumentation to prevent the ordering issue. 731 if (IsIFunc) 732 cast<llvm::Function>(Aliasee)->addFnAttr( 733 llvm::Attribute::DisableSanitizerInstrumentation); 734 } 735 if (!Error) 736 return; 737 738 for (const GlobalDecl &GD : Aliases) { 739 StringRef MangledName = getMangledName(GD); 740 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 741 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 742 Alias->eraseFromParent(); 743 } 744 } 745 746 void CodeGenModule::clear() { 747 DeferredDeclsToEmit.clear(); 748 EmittedDeferredDecls.clear(); 749 DeferredAnnotations.clear(); 750 if (OpenMPRuntime) 751 OpenMPRuntime->clear(); 752 } 753 754 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 755 StringRef MainFile) { 756 if (!hasDiagnostics()) 757 return; 758 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 759 if (MainFile.empty()) 760 MainFile = "<stdin>"; 761 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 762 } else { 763 if (Mismatched > 0) 764 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 765 766 if (Missing > 0) 767 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 768 } 769 } 770 771 static std::optional<llvm::GlobalValue::VisibilityTypes> 772 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 773 // Map to LLVM visibility. 774 switch (K) { 775 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 776 return std::nullopt; 777 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 778 return llvm::GlobalValue::DefaultVisibility; 779 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 780 return llvm::GlobalValue::HiddenVisibility; 781 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 782 return llvm::GlobalValue::ProtectedVisibility; 783 } 784 llvm_unreachable("unknown option value!"); 785 } 786 787 static void 788 setLLVMVisibility(llvm::GlobalValue &GV, 789 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 790 if (!V) 791 return; 792 793 // Reset DSO locality before setting the visibility. This removes 794 // any effects that visibility options and annotations may have 795 // had on the DSO locality. Setting the visibility will implicitly set 796 // appropriate globals to DSO Local; however, this will be pessimistic 797 // w.r.t. to the normal compiler IRGen. 798 GV.setDSOLocal(false); 799 GV.setVisibility(*V); 800 } 801 802 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 803 llvm::Module &M) { 804 if (!LO.VisibilityFromDLLStorageClass) 805 return; 806 807 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 808 getLLVMVisibility(LO.getDLLExportVisibility()); 809 810 std::optional<llvm::GlobalValue::VisibilityTypes> 811 NoDLLStorageClassVisibility = 812 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 813 814 std::optional<llvm::GlobalValue::VisibilityTypes> 815 ExternDeclDLLImportVisibility = 816 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 817 818 std::optional<llvm::GlobalValue::VisibilityTypes> 819 ExternDeclNoDLLStorageClassVisibility = 820 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 821 822 for (llvm::GlobalValue &GV : M.global_values()) { 823 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 824 continue; 825 826 if (GV.isDeclarationForLinker()) 827 setLLVMVisibility(GV, GV.getDLLStorageClass() == 828 llvm::GlobalValue::DLLImportStorageClass 829 ? ExternDeclDLLImportVisibility 830 : ExternDeclNoDLLStorageClassVisibility); 831 else 832 setLLVMVisibility(GV, GV.getDLLStorageClass() == 833 llvm::GlobalValue::DLLExportStorageClass 834 ? DLLExportVisibility 835 : NoDLLStorageClassVisibility); 836 837 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 838 } 839 } 840 841 static bool isStackProtectorOn(const LangOptions &LangOpts, 842 const llvm::Triple &Triple, 843 clang::LangOptions::StackProtectorMode Mode) { 844 if (Triple.isAMDGPU() || Triple.isNVPTX()) 845 return false; 846 return LangOpts.getStackProtector() == Mode; 847 } 848 849 void CodeGenModule::Release() { 850 Module *Primary = getContext().getCurrentNamedModule(); 851 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 852 EmitModuleInitializers(Primary); 853 EmitDeferred(); 854 DeferredDecls.insert(EmittedDeferredDecls.begin(), 855 EmittedDeferredDecls.end()); 856 EmittedDeferredDecls.clear(); 857 EmitVTablesOpportunistically(); 858 applyGlobalValReplacements(); 859 applyReplacements(); 860 emitMultiVersionFunctions(); 861 862 if (Context.getLangOpts().IncrementalExtensions && 863 GlobalTopLevelStmtBlockInFlight.first) { 864 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 865 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 866 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 867 } 868 869 // Module implementations are initialized the same way as a regular TU that 870 // imports one or more modules. 871 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 872 EmitCXXModuleInitFunc(Primary); 873 else 874 EmitCXXGlobalInitFunc(); 875 EmitCXXGlobalCleanUpFunc(); 876 registerGlobalDtorsWithAtExit(); 877 EmitCXXThreadLocalInitFunc(); 878 if (ObjCRuntime) 879 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 880 AddGlobalCtor(ObjCInitFunction); 881 if (Context.getLangOpts().CUDA && CUDARuntime) { 882 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 883 AddGlobalCtor(CudaCtorFunction); 884 } 885 if (OpenMPRuntime) { 886 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 887 OpenMPRuntime->clear(); 888 } 889 if (PGOReader) { 890 getModule().setProfileSummary( 891 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 892 llvm::ProfileSummary::PSK_Instr); 893 if (PGOStats.hasDiagnostics()) 894 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 895 } 896 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 897 return L.LexOrder < R.LexOrder; 898 }); 899 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 900 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 901 EmitGlobalAnnotations(); 902 EmitStaticExternCAliases(); 903 checkAliases(); 904 EmitDeferredUnusedCoverageMappings(); 905 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 906 CodeGenPGO(*this).setProfileVersion(getModule()); 907 if (CoverageMapping) 908 CoverageMapping->emit(); 909 if (CodeGenOpts.SanitizeCfiCrossDso) { 910 CodeGenFunction(*this).EmitCfiCheckFail(); 911 CodeGenFunction(*this).EmitCfiCheckStub(); 912 } 913 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 914 finalizeKCFITypes(); 915 emitAtAvailableLinkGuard(); 916 if (Context.getTargetInfo().getTriple().isWasm()) 917 EmitMainVoidAlias(); 918 919 if (getTriple().isAMDGPU() || 920 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 921 // Emit amdhsa_code_object_version module flag, which is code object version 922 // times 100. 923 if (getTarget().getTargetOpts().CodeObjectVersion != 924 llvm::CodeObjectVersionKind::COV_None) { 925 getModule().addModuleFlag(llvm::Module::Error, 926 "amdhsa_code_object_version", 927 getTarget().getTargetOpts().CodeObjectVersion); 928 } 929 930 // Currently, "-mprintf-kind" option is only supported for HIP 931 if (LangOpts.HIP) { 932 auto *MDStr = llvm::MDString::get( 933 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 934 TargetOptions::AMDGPUPrintfKind::Hostcall) 935 ? "hostcall" 936 : "buffered"); 937 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 938 MDStr); 939 } 940 } 941 942 // Emit a global array containing all external kernels or device variables 943 // used by host functions and mark it as used for CUDA/HIP. This is necessary 944 // to get kernels or device variables in archives linked in even if these 945 // kernels or device variables are only used in host functions. 946 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 947 SmallVector<llvm::Constant *, 8> UsedArray; 948 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 949 GlobalDecl GD; 950 if (auto *FD = dyn_cast<FunctionDecl>(D)) 951 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 952 else 953 GD = GlobalDecl(D); 954 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 955 GetAddrOfGlobal(GD), Int8PtrTy)); 956 } 957 958 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 959 960 auto *GV = new llvm::GlobalVariable( 961 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 962 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 963 addCompilerUsedGlobal(GV); 964 } 965 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 966 // Emit a unique ID so that host and device binaries from the same 967 // compilation unit can be associated. 968 auto *GV = new llvm::GlobalVariable( 969 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 970 llvm::Constant::getNullValue(Int8Ty), 971 "__hip_cuid_" + getContext().getCUIDHash()); 972 addCompilerUsedGlobal(GV); 973 } 974 emitLLVMUsed(); 975 if (SanStats) 976 SanStats->finish(); 977 978 if (CodeGenOpts.Autolink && 979 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 980 EmitModuleLinkOptions(); 981 } 982 983 // On ELF we pass the dependent library specifiers directly to the linker 984 // without manipulating them. This is in contrast to other platforms where 985 // they are mapped to a specific linker option by the compiler. This 986 // difference is a result of the greater variety of ELF linkers and the fact 987 // that ELF linkers tend to handle libraries in a more complicated fashion 988 // than on other platforms. This forces us to defer handling the dependent 989 // libs to the linker. 990 // 991 // CUDA/HIP device and host libraries are different. Currently there is no 992 // way to differentiate dependent libraries for host or device. Existing 993 // usage of #pragma comment(lib, *) is intended for host libraries on 994 // Windows. Therefore emit llvm.dependent-libraries only for host. 995 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 996 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 997 for (auto *MD : ELFDependentLibraries) 998 NMD->addOperand(MD); 999 } 1000 1001 if (CodeGenOpts.DwarfVersion) { 1002 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 1003 CodeGenOpts.DwarfVersion); 1004 } 1005 1006 if (CodeGenOpts.Dwarf64) 1007 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1008 1009 if (Context.getLangOpts().SemanticInterposition) 1010 // Require various optimization to respect semantic interposition. 1011 getModule().setSemanticInterposition(true); 1012 1013 if (CodeGenOpts.EmitCodeView) { 1014 // Indicate that we want CodeView in the metadata. 1015 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1016 } 1017 if (CodeGenOpts.CodeViewGHash) { 1018 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1019 } 1020 if (CodeGenOpts.ControlFlowGuard) { 1021 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1022 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1023 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1024 // Function ID tables for Control Flow Guard (cfguard=1). 1025 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1026 } 1027 if (CodeGenOpts.EHContGuard) { 1028 // Function ID tables for EH Continuation Guard. 1029 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1030 } 1031 if (Context.getLangOpts().Kernel) { 1032 // Note if we are compiling with /kernel. 1033 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1034 } 1035 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1036 // We don't support LTO with 2 with different StrictVTablePointers 1037 // FIXME: we could support it by stripping all the information introduced 1038 // by StrictVTablePointers. 1039 1040 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1041 1042 llvm::Metadata *Ops[2] = { 1043 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1044 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1045 llvm::Type::getInt32Ty(VMContext), 1))}; 1046 1047 getModule().addModuleFlag(llvm::Module::Require, 1048 "StrictVTablePointersRequirement", 1049 llvm::MDNode::get(VMContext, Ops)); 1050 } 1051 if (getModuleDebugInfo()) 1052 // We support a single version in the linked module. The LLVM 1053 // parser will drop debug info with a different version number 1054 // (and warn about it, too). 1055 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1056 llvm::DEBUG_METADATA_VERSION); 1057 1058 // We need to record the widths of enums and wchar_t, so that we can generate 1059 // the correct build attributes in the ARM backend. wchar_size is also used by 1060 // TargetLibraryInfo. 1061 uint64_t WCharWidth = 1062 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1063 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1064 1065 if (getTriple().isOSzOS()) { 1066 getModule().addModuleFlag(llvm::Module::Warning, 1067 "zos_product_major_version", 1068 uint32_t(CLANG_VERSION_MAJOR)); 1069 getModule().addModuleFlag(llvm::Module::Warning, 1070 "zos_product_minor_version", 1071 uint32_t(CLANG_VERSION_MINOR)); 1072 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1073 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1074 std::string ProductId = getClangVendor() + "clang"; 1075 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1076 llvm::MDString::get(VMContext, ProductId)); 1077 1078 // Record the language because we need it for the PPA2. 1079 StringRef lang_str = languageToString( 1080 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1081 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1082 llvm::MDString::get(VMContext, lang_str)); 1083 1084 time_t TT = PreprocessorOpts.SourceDateEpoch 1085 ? *PreprocessorOpts.SourceDateEpoch 1086 : std::time(nullptr); 1087 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1088 static_cast<uint64_t>(TT)); 1089 1090 // Multiple modes will be supported here. 1091 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1092 llvm::MDString::get(VMContext, "ascii")); 1093 } 1094 1095 llvm::Triple T = Context.getTargetInfo().getTriple(); 1096 if (T.isARM() || T.isThumb()) { 1097 // The minimum width of an enum in bytes 1098 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1099 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1100 } 1101 1102 if (T.isRISCV()) { 1103 StringRef ABIStr = Target.getABI(); 1104 llvm::LLVMContext &Ctx = TheModule.getContext(); 1105 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1106 llvm::MDString::get(Ctx, ABIStr)); 1107 1108 // Add the canonical ISA string as metadata so the backend can set the ELF 1109 // attributes correctly. We use AppendUnique so LTO will keep all of the 1110 // unique ISA strings that were linked together. 1111 const std::vector<std::string> &Features = 1112 getTarget().getTargetOpts().Features; 1113 auto ParseResult = 1114 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1115 if (!errorToBool(ParseResult.takeError())) 1116 getModule().addModuleFlag( 1117 llvm::Module::AppendUnique, "riscv-isa", 1118 llvm::MDNode::get( 1119 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1120 } 1121 1122 if (CodeGenOpts.SanitizeCfiCrossDso) { 1123 // Indicate that we want cross-DSO control flow integrity checks. 1124 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1125 } 1126 1127 if (CodeGenOpts.WholeProgramVTables) { 1128 // Indicate whether VFE was enabled for this module, so that the 1129 // vcall_visibility metadata added under whole program vtables is handled 1130 // appropriately in the optimizer. 1131 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1132 CodeGenOpts.VirtualFunctionElimination); 1133 } 1134 1135 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1136 getModule().addModuleFlag(llvm::Module::Override, 1137 "CFI Canonical Jump Tables", 1138 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1139 } 1140 1141 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) { 1142 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers", 1143 1); 1144 } 1145 1146 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1147 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1148 // KCFI assumes patchable-function-prefix is the same for all indirectly 1149 // called functions. Store the expected offset for code generation. 1150 if (CodeGenOpts.PatchableFunctionEntryOffset) 1151 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1152 CodeGenOpts.PatchableFunctionEntryOffset); 1153 } 1154 1155 if (CodeGenOpts.CFProtectionReturn && 1156 Target.checkCFProtectionReturnSupported(getDiags())) { 1157 // Indicate that we want to instrument return control flow protection. 1158 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1159 1); 1160 } 1161 1162 if (CodeGenOpts.CFProtectionBranch && 1163 Target.checkCFProtectionBranchSupported(getDiags())) { 1164 // Indicate that we want to instrument branch control flow protection. 1165 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1166 1); 1167 1168 auto Scheme = CodeGenOpts.getCFBranchLabelScheme(); 1169 if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) { 1170 if (Scheme == CFBranchLabelSchemeKind::Default) 1171 Scheme = Target.getDefaultCFBranchLabelScheme(); 1172 getModule().addModuleFlag( 1173 llvm::Module::Error, "cf-branch-label-scheme", 1174 llvm::MDString::get(getLLVMContext(), 1175 getCFBranchLabelSchemeFlagVal(Scheme))); 1176 } 1177 } 1178 1179 if (CodeGenOpts.FunctionReturnThunks) 1180 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1181 1182 if (CodeGenOpts.IndirectBranchCSPrefix) 1183 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1184 1185 // Add module metadata for return address signing (ignoring 1186 // non-leaf/all) and stack tagging. These are actually turned on by function 1187 // attributes, but we use module metadata to emit build attributes. This is 1188 // needed for LTO, where the function attributes are inside bitcode 1189 // serialised into a global variable by the time build attributes are 1190 // emitted, so we can't access them. LTO objects could be compiled with 1191 // different flags therefore module flags are set to "Min" behavior to achieve 1192 // the same end result of the normal build where e.g BTI is off if any object 1193 // doesn't support it. 1194 if (Context.getTargetInfo().hasFeature("ptrauth") && 1195 LangOpts.getSignReturnAddressScope() != 1196 LangOptions::SignReturnAddressScopeKind::None) 1197 getModule().addModuleFlag(llvm::Module::Override, 1198 "sign-return-address-buildattr", 1); 1199 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1200 getModule().addModuleFlag(llvm::Module::Override, 1201 "tag-stack-memory-buildattr", 1); 1202 1203 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1204 if (LangOpts.BranchTargetEnforcement) 1205 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1206 1); 1207 if (LangOpts.BranchProtectionPAuthLR) 1208 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1209 1); 1210 if (LangOpts.GuardedControlStack) 1211 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1212 if (LangOpts.hasSignReturnAddress()) 1213 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1214 if (LangOpts.isSignReturnAddressScopeAll()) 1215 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1216 1); 1217 if (!LangOpts.isSignReturnAddressWithAKey()) 1218 getModule().addModuleFlag(llvm::Module::Min, 1219 "sign-return-address-with-bkey", 1); 1220 1221 if (getTriple().isOSLinux()) { 1222 assert(getTriple().isOSBinFormatELF()); 1223 using namespace llvm::ELF; 1224 uint64_t PAuthABIVersion = 1225 (LangOpts.PointerAuthIntrinsics 1226 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1227 (LangOpts.PointerAuthCalls 1228 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1229 (LangOpts.PointerAuthReturns 1230 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1231 (LangOpts.PointerAuthAuthTraps 1232 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1233 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1234 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1235 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1236 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1237 (LangOpts.PointerAuthInitFini 1238 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1239 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1240 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1241 (LangOpts.PointerAuthELFGOT 1242 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1243 (LangOpts.PointerAuthIndirectGotos 1244 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1245 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1246 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1247 (LangOpts.PointerAuthFunctionTypeDiscrimination 1248 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1249 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1250 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1251 "Update when new enum items are defined"); 1252 if (PAuthABIVersion != 0) { 1253 getModule().addModuleFlag(llvm::Module::Error, 1254 "aarch64-elf-pauthabi-platform", 1255 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1256 getModule().addModuleFlag(llvm::Module::Error, 1257 "aarch64-elf-pauthabi-version", 1258 PAuthABIVersion); 1259 } 1260 } 1261 } 1262 1263 if (CodeGenOpts.StackClashProtector) 1264 getModule().addModuleFlag( 1265 llvm::Module::Override, "probe-stack", 1266 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1267 1268 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1269 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1270 CodeGenOpts.StackProbeSize); 1271 1272 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1273 llvm::LLVMContext &Ctx = TheModule.getContext(); 1274 getModule().addModuleFlag( 1275 llvm::Module::Error, "MemProfProfileFilename", 1276 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1277 } 1278 1279 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1280 // Indicate whether __nvvm_reflect should be configured to flush denormal 1281 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1282 // property.) 1283 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1284 CodeGenOpts.FP32DenormalMode.Output != 1285 llvm::DenormalMode::IEEE); 1286 } 1287 1288 if (LangOpts.EHAsynch) 1289 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1290 1291 // Indicate whether this Module was compiled with -fopenmp 1292 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1293 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1294 if (getLangOpts().OpenMPIsTargetDevice) 1295 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1296 LangOpts.OpenMP); 1297 1298 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1299 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1300 EmitOpenCLMetadata(); 1301 // Emit SPIR version. 1302 if (getTriple().isSPIR()) { 1303 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1304 // opencl.spir.version named metadata. 1305 // C++ for OpenCL has a distinct mapping for version compatibility with 1306 // OpenCL. 1307 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1308 llvm::Metadata *SPIRVerElts[] = { 1309 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1310 Int32Ty, Version / 100)), 1311 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1312 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1313 llvm::NamedMDNode *SPIRVerMD = 1314 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1315 llvm::LLVMContext &Ctx = TheModule.getContext(); 1316 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1317 } 1318 } 1319 1320 // HLSL related end of code gen work items. 1321 if (LangOpts.HLSL) 1322 getHLSLRuntime().finishCodeGen(); 1323 1324 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1325 assert(PLevel < 3 && "Invalid PIC Level"); 1326 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1327 if (Context.getLangOpts().PIE) 1328 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1329 } 1330 1331 if (getCodeGenOpts().CodeModel.size() > 0) { 1332 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1333 .Case("tiny", llvm::CodeModel::Tiny) 1334 .Case("small", llvm::CodeModel::Small) 1335 .Case("kernel", llvm::CodeModel::Kernel) 1336 .Case("medium", llvm::CodeModel::Medium) 1337 .Case("large", llvm::CodeModel::Large) 1338 .Default(~0u); 1339 if (CM != ~0u) { 1340 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1341 getModule().setCodeModel(codeModel); 1342 1343 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1344 Context.getTargetInfo().getTriple().getArch() == 1345 llvm::Triple::x86_64) { 1346 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1347 } 1348 } 1349 } 1350 1351 if (CodeGenOpts.NoPLT) 1352 getModule().setRtLibUseGOT(); 1353 if (getTriple().isOSBinFormatELF() && 1354 CodeGenOpts.DirectAccessExternalData != 1355 getModule().getDirectAccessExternalData()) { 1356 getModule().setDirectAccessExternalData( 1357 CodeGenOpts.DirectAccessExternalData); 1358 } 1359 if (CodeGenOpts.UnwindTables) 1360 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1361 1362 switch (CodeGenOpts.getFramePointer()) { 1363 case CodeGenOptions::FramePointerKind::None: 1364 // 0 ("none") is the default. 1365 break; 1366 case CodeGenOptions::FramePointerKind::Reserved: 1367 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1368 break; 1369 case CodeGenOptions::FramePointerKind::NonLeaf: 1370 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1371 break; 1372 case CodeGenOptions::FramePointerKind::All: 1373 getModule().setFramePointer(llvm::FramePointerKind::All); 1374 break; 1375 } 1376 1377 SimplifyPersonality(); 1378 1379 if (getCodeGenOpts().EmitDeclMetadata) 1380 EmitDeclMetadata(); 1381 1382 if (getCodeGenOpts().CoverageNotesFile.size() || 1383 getCodeGenOpts().CoverageDataFile.size()) 1384 EmitCoverageFile(); 1385 1386 if (CGDebugInfo *DI = getModuleDebugInfo()) 1387 DI->finalize(); 1388 1389 if (getCodeGenOpts().EmitVersionIdentMetadata) 1390 EmitVersionIdentMetadata(); 1391 1392 if (!getCodeGenOpts().RecordCommandLine.empty()) 1393 EmitCommandLineMetadata(); 1394 1395 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1396 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1397 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1398 getModule().setStackProtectorGuardReg( 1399 getCodeGenOpts().StackProtectorGuardReg); 1400 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1401 getModule().setStackProtectorGuardSymbol( 1402 getCodeGenOpts().StackProtectorGuardSymbol); 1403 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1404 getModule().setStackProtectorGuardOffset( 1405 getCodeGenOpts().StackProtectorGuardOffset); 1406 if (getCodeGenOpts().StackAlignment) 1407 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1408 if (getCodeGenOpts().SkipRaxSetup) 1409 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1410 if (getLangOpts().RegCall4) 1411 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1412 1413 if (getContext().getTargetInfo().getMaxTLSAlign()) 1414 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1415 getContext().getTargetInfo().getMaxTLSAlign()); 1416 1417 getTargetCodeGenInfo().emitTargetGlobals(*this); 1418 1419 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1420 1421 EmitBackendOptionsMetadata(getCodeGenOpts()); 1422 1423 // If there is device offloading code embed it in the host now. 1424 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1425 1426 // Set visibility from DLL storage class 1427 // We do this at the end of LLVM IR generation; after any operation 1428 // that might affect the DLL storage class or the visibility, and 1429 // before anything that might act on these. 1430 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1431 1432 // Check the tail call symbols are truly undefined. 1433 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1434 for (auto &I : MustTailCallUndefinedGlobals) { 1435 if (!I.first->isDefined()) 1436 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1437 else { 1438 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1439 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1440 if (!Entry || Entry->isWeakForLinker() || 1441 Entry->isDeclarationForLinker()) 1442 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1443 } 1444 } 1445 } 1446 } 1447 1448 void CodeGenModule::EmitOpenCLMetadata() { 1449 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1450 // opencl.ocl.version named metadata node. 1451 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1452 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1453 1454 auto EmitVersion = [this](StringRef MDName, int Version) { 1455 llvm::Metadata *OCLVerElts[] = { 1456 llvm::ConstantAsMetadata::get( 1457 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1458 llvm::ConstantAsMetadata::get( 1459 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1460 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1461 llvm::LLVMContext &Ctx = TheModule.getContext(); 1462 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1463 }; 1464 1465 EmitVersion("opencl.ocl.version", CLVersion); 1466 if (LangOpts.OpenCLCPlusPlus) { 1467 // In addition to the OpenCL compatible version, emit the C++ version. 1468 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1469 } 1470 } 1471 1472 void CodeGenModule::EmitBackendOptionsMetadata( 1473 const CodeGenOptions &CodeGenOpts) { 1474 if (getTriple().isRISCV()) { 1475 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1476 CodeGenOpts.SmallDataLimit); 1477 } 1478 } 1479 1480 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1481 // Make sure that this type is translated. 1482 getTypes().UpdateCompletedType(TD); 1483 } 1484 1485 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1486 // Make sure that this type is translated. 1487 getTypes().RefreshTypeCacheForClass(RD); 1488 } 1489 1490 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1491 if (!TBAA) 1492 return nullptr; 1493 return TBAA->getTypeInfo(QTy); 1494 } 1495 1496 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1497 if (!TBAA) 1498 return TBAAAccessInfo(); 1499 if (getLangOpts().CUDAIsDevice) { 1500 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1501 // access info. 1502 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1503 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1504 nullptr) 1505 return TBAAAccessInfo(); 1506 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1507 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1508 nullptr) 1509 return TBAAAccessInfo(); 1510 } 1511 } 1512 return TBAA->getAccessInfo(AccessType); 1513 } 1514 1515 TBAAAccessInfo 1516 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1517 if (!TBAA) 1518 return TBAAAccessInfo(); 1519 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1520 } 1521 1522 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1523 if (!TBAA) 1524 return nullptr; 1525 return TBAA->getTBAAStructInfo(QTy); 1526 } 1527 1528 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1529 if (!TBAA) 1530 return nullptr; 1531 return TBAA->getBaseTypeInfo(QTy); 1532 } 1533 1534 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1535 if (!TBAA) 1536 return nullptr; 1537 return TBAA->getAccessTagInfo(Info); 1538 } 1539 1540 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1541 TBAAAccessInfo TargetInfo) { 1542 if (!TBAA) 1543 return TBAAAccessInfo(); 1544 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1545 } 1546 1547 TBAAAccessInfo 1548 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1549 TBAAAccessInfo InfoB) { 1550 if (!TBAA) 1551 return TBAAAccessInfo(); 1552 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1553 } 1554 1555 TBAAAccessInfo 1556 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1557 TBAAAccessInfo SrcInfo) { 1558 if (!TBAA) 1559 return TBAAAccessInfo(); 1560 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1561 } 1562 1563 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1564 TBAAAccessInfo TBAAInfo) { 1565 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1566 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1567 } 1568 1569 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1570 llvm::Instruction *I, const CXXRecordDecl *RD) { 1571 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1572 llvm::MDNode::get(getLLVMContext(), {})); 1573 } 1574 1575 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1576 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1577 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1578 } 1579 1580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1581 /// specified stmt yet. 1582 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1584 "cannot compile this %0 yet"); 1585 std::string Msg = Type; 1586 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1587 << Msg << S->getSourceRange(); 1588 } 1589 1590 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1591 /// specified decl yet. 1592 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1593 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1594 "cannot compile this %0 yet"); 1595 std::string Msg = Type; 1596 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1597 } 1598 1599 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1600 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1601 } 1602 1603 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1604 const NamedDecl *D) const { 1605 // Internal definitions always have default visibility. 1606 if (GV->hasLocalLinkage()) { 1607 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1608 return; 1609 } 1610 if (!D) 1611 return; 1612 1613 // Set visibility for definitions, and for declarations if requested globally 1614 // or set explicitly. 1615 LinkageInfo LV = D->getLinkageAndVisibility(); 1616 1617 // OpenMP declare target variables must be visible to the host so they can 1618 // be registered. We require protected visibility unless the variable has 1619 // the DT_nohost modifier and does not need to be registered. 1620 if (Context.getLangOpts().OpenMP && 1621 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1622 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1623 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1624 OMPDeclareTargetDeclAttr::DT_NoHost && 1625 LV.getVisibility() == HiddenVisibility) { 1626 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1627 return; 1628 } 1629 1630 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1631 // Reject incompatible dlllstorage and visibility annotations. 1632 if (!LV.isVisibilityExplicit()) 1633 return; 1634 if (GV->hasDLLExportStorageClass()) { 1635 if (LV.getVisibility() == HiddenVisibility) 1636 getDiags().Report(D->getLocation(), 1637 diag::err_hidden_visibility_dllexport); 1638 } else if (LV.getVisibility() != DefaultVisibility) { 1639 getDiags().Report(D->getLocation(), 1640 diag::err_non_default_visibility_dllimport); 1641 } 1642 return; 1643 } 1644 1645 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1646 !GV->isDeclarationForLinker()) 1647 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1648 } 1649 1650 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1651 llvm::GlobalValue *GV) { 1652 if (GV->hasLocalLinkage()) 1653 return true; 1654 1655 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1656 return true; 1657 1658 // DLLImport explicitly marks the GV as external. 1659 if (GV->hasDLLImportStorageClass()) 1660 return false; 1661 1662 const llvm::Triple &TT = CGM.getTriple(); 1663 const auto &CGOpts = CGM.getCodeGenOpts(); 1664 if (TT.isWindowsGNUEnvironment()) { 1665 // In MinGW, variables without DLLImport can still be automatically 1666 // imported from a DLL by the linker; don't mark variables that 1667 // potentially could come from another DLL as DSO local. 1668 1669 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1670 // (and this actually happens in the public interface of libstdc++), so 1671 // such variables can't be marked as DSO local. (Native TLS variables 1672 // can't be dllimported at all, though.) 1673 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1674 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1675 CGOpts.AutoImport) 1676 return false; 1677 } 1678 1679 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1680 // remain unresolved in the link, they can be resolved to zero, which is 1681 // outside the current DSO. 1682 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1683 return false; 1684 1685 // Every other GV is local on COFF. 1686 // Make an exception for windows OS in the triple: Some firmware builds use 1687 // *-win32-macho triples. This (accidentally?) produced windows relocations 1688 // without GOT tables in older clang versions; Keep this behaviour. 1689 // FIXME: even thread local variables? 1690 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1691 return true; 1692 1693 // Only handle COFF and ELF for now. 1694 if (!TT.isOSBinFormatELF()) 1695 return false; 1696 1697 // If this is not an executable, don't assume anything is local. 1698 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1699 const auto &LOpts = CGM.getLangOpts(); 1700 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1701 // On ELF, if -fno-semantic-interposition is specified and the target 1702 // supports local aliases, there will be neither CC1 1703 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1704 // dso_local on the function if using a local alias is preferable (can avoid 1705 // PLT indirection). 1706 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1707 return false; 1708 return !(CGM.getLangOpts().SemanticInterposition || 1709 CGM.getLangOpts().HalfNoSemanticInterposition); 1710 } 1711 1712 // A definition cannot be preempted from an executable. 1713 if (!GV->isDeclarationForLinker()) 1714 return true; 1715 1716 // Most PIC code sequences that assume that a symbol is local cannot produce a 1717 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1718 // depended, it seems worth it to handle it here. 1719 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1720 return false; 1721 1722 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1723 if (TT.isPPC64()) 1724 return false; 1725 1726 if (CGOpts.DirectAccessExternalData) { 1727 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1728 // for non-thread-local variables. If the symbol is not defined in the 1729 // executable, a copy relocation will be needed at link time. dso_local is 1730 // excluded for thread-local variables because they generally don't support 1731 // copy relocations. 1732 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1733 if (!Var->isThreadLocal()) 1734 return true; 1735 1736 // -fno-pic sets dso_local on a function declaration to allow direct 1737 // accesses when taking its address (similar to a data symbol). If the 1738 // function is not defined in the executable, a canonical PLT entry will be 1739 // needed at link time. -fno-direct-access-external-data can avoid the 1740 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1741 // it could just cause trouble without providing perceptible benefits. 1742 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1743 return true; 1744 } 1745 1746 // If we can use copy relocations we can assume it is local. 1747 1748 // Otherwise don't assume it is local. 1749 return false; 1750 } 1751 1752 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1753 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1754 } 1755 1756 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1757 GlobalDecl GD) const { 1758 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1759 // C++ destructors have a few C++ ABI specific special cases. 1760 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1761 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1762 return; 1763 } 1764 setDLLImportDLLExport(GV, D); 1765 } 1766 1767 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1768 const NamedDecl *D) const { 1769 if (D && D->isExternallyVisible()) { 1770 if (D->hasAttr<DLLImportAttr>()) 1771 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1772 else if ((D->hasAttr<DLLExportAttr>() || 1773 shouldMapVisibilityToDLLExport(D)) && 1774 !GV->isDeclarationForLinker()) 1775 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1776 } 1777 } 1778 1779 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1780 GlobalDecl GD) const { 1781 setDLLImportDLLExport(GV, GD); 1782 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1783 } 1784 1785 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1786 const NamedDecl *D) const { 1787 setDLLImportDLLExport(GV, D); 1788 setGVPropertiesAux(GV, D); 1789 } 1790 1791 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1792 const NamedDecl *D) const { 1793 setGlobalVisibility(GV, D); 1794 setDSOLocal(GV); 1795 GV->setPartition(CodeGenOpts.SymbolPartition); 1796 } 1797 1798 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1799 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1800 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1801 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1802 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1803 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1804 } 1805 1806 llvm::GlobalVariable::ThreadLocalMode 1807 CodeGenModule::GetDefaultLLVMTLSModel() const { 1808 switch (CodeGenOpts.getDefaultTLSModel()) { 1809 case CodeGenOptions::GeneralDynamicTLSModel: 1810 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1811 case CodeGenOptions::LocalDynamicTLSModel: 1812 return llvm::GlobalVariable::LocalDynamicTLSModel; 1813 case CodeGenOptions::InitialExecTLSModel: 1814 return llvm::GlobalVariable::InitialExecTLSModel; 1815 case CodeGenOptions::LocalExecTLSModel: 1816 return llvm::GlobalVariable::LocalExecTLSModel; 1817 } 1818 llvm_unreachable("Invalid TLS model!"); 1819 } 1820 1821 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1822 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1823 1824 llvm::GlobalValue::ThreadLocalMode TLM; 1825 TLM = GetDefaultLLVMTLSModel(); 1826 1827 // Override the TLS model if it is explicitly specified. 1828 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1829 TLM = GetLLVMTLSModel(Attr->getModel()); 1830 } 1831 1832 GV->setThreadLocalMode(TLM); 1833 } 1834 1835 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1836 StringRef Name) { 1837 const TargetInfo &Target = CGM.getTarget(); 1838 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1839 } 1840 1841 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1842 const CPUSpecificAttr *Attr, 1843 unsigned CPUIndex, 1844 raw_ostream &Out) { 1845 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1846 // supported. 1847 if (Attr) 1848 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1849 else if (CGM.getTarget().supportsIFunc()) 1850 Out << ".resolver"; 1851 } 1852 1853 // Returns true if GD is a function decl with internal linkage and 1854 // needs a unique suffix after the mangled name. 1855 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1856 CodeGenModule &CGM) { 1857 const Decl *D = GD.getDecl(); 1858 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1859 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1860 } 1861 1862 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1863 const NamedDecl *ND, 1864 bool OmitMultiVersionMangling = false) { 1865 SmallString<256> Buffer; 1866 llvm::raw_svector_ostream Out(Buffer); 1867 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1868 if (!CGM.getModuleNameHash().empty()) 1869 MC.needsUniqueInternalLinkageNames(); 1870 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1871 if (ShouldMangle) 1872 MC.mangleName(GD.getWithDecl(ND), Out); 1873 else { 1874 IdentifierInfo *II = ND->getIdentifier(); 1875 assert(II && "Attempt to mangle unnamed decl."); 1876 const auto *FD = dyn_cast<FunctionDecl>(ND); 1877 1878 if (FD && 1879 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1880 if (CGM.getLangOpts().RegCall4) 1881 Out << "__regcall4__" << II->getName(); 1882 else 1883 Out << "__regcall3__" << II->getName(); 1884 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1885 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1886 Out << "__device_stub__" << II->getName(); 1887 } else { 1888 Out << II->getName(); 1889 } 1890 } 1891 1892 // Check if the module name hash should be appended for internal linkage 1893 // symbols. This should come before multi-version target suffixes are 1894 // appended. This is to keep the name and module hash suffix of the 1895 // internal linkage function together. The unique suffix should only be 1896 // added when name mangling is done to make sure that the final name can 1897 // be properly demangled. For example, for C functions without prototypes, 1898 // name mangling is not done and the unique suffix should not be appeneded 1899 // then. 1900 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1901 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1902 "Hash computed when not explicitly requested"); 1903 Out << CGM.getModuleNameHash(); 1904 } 1905 1906 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1907 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1908 switch (FD->getMultiVersionKind()) { 1909 case MultiVersionKind::CPUDispatch: 1910 case MultiVersionKind::CPUSpecific: 1911 AppendCPUSpecificCPUDispatchMangling(CGM, 1912 FD->getAttr<CPUSpecificAttr>(), 1913 GD.getMultiVersionIndex(), Out); 1914 break; 1915 case MultiVersionKind::Target: { 1916 auto *Attr = FD->getAttr<TargetAttr>(); 1917 assert(Attr && "Expected TargetAttr to be present " 1918 "for attribute mangling"); 1919 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1920 Info.appendAttributeMangling(Attr, Out); 1921 break; 1922 } 1923 case MultiVersionKind::TargetVersion: { 1924 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1925 assert(Attr && "Expected TargetVersionAttr to be present " 1926 "for attribute mangling"); 1927 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1928 Info.appendAttributeMangling(Attr, Out); 1929 break; 1930 } 1931 case MultiVersionKind::TargetClones: { 1932 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1933 assert(Attr && "Expected TargetClonesAttr to be present " 1934 "for attribute mangling"); 1935 unsigned Index = GD.getMultiVersionIndex(); 1936 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1937 Info.appendAttributeMangling(Attr, Index, Out); 1938 break; 1939 } 1940 case MultiVersionKind::None: 1941 llvm_unreachable("None multiversion type isn't valid here"); 1942 } 1943 } 1944 1945 // Make unique name for device side static file-scope variable for HIP. 1946 if (CGM.getContext().shouldExternalize(ND) && 1947 CGM.getLangOpts().GPURelocatableDeviceCode && 1948 CGM.getLangOpts().CUDAIsDevice) 1949 CGM.printPostfixForExternalizedDecl(Out, ND); 1950 1951 return std::string(Out.str()); 1952 } 1953 1954 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1955 const FunctionDecl *FD, 1956 StringRef &CurName) { 1957 if (!FD->isMultiVersion()) 1958 return; 1959 1960 // Get the name of what this would be without the 'target' attribute. This 1961 // allows us to lookup the version that was emitted when this wasn't a 1962 // multiversion function. 1963 std::string NonTargetName = 1964 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1965 GlobalDecl OtherGD; 1966 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1967 assert(OtherGD.getCanonicalDecl() 1968 .getDecl() 1969 ->getAsFunction() 1970 ->isMultiVersion() && 1971 "Other GD should now be a multiversioned function"); 1972 // OtherFD is the version of this function that was mangled BEFORE 1973 // becoming a MultiVersion function. It potentially needs to be updated. 1974 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1975 .getDecl() 1976 ->getAsFunction() 1977 ->getMostRecentDecl(); 1978 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1979 // This is so that if the initial version was already the 'default' 1980 // version, we don't try to update it. 1981 if (OtherName != NonTargetName) { 1982 // Remove instead of erase, since others may have stored the StringRef 1983 // to this. 1984 const auto ExistingRecord = Manglings.find(NonTargetName); 1985 if (ExistingRecord != std::end(Manglings)) 1986 Manglings.remove(&(*ExistingRecord)); 1987 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1988 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1989 Result.first->first(); 1990 // If this is the current decl is being created, make sure we update the name. 1991 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1992 CurName = OtherNameRef; 1993 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1994 Entry->setName(OtherName); 1995 } 1996 } 1997 } 1998 1999 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 2000 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 2001 2002 // Some ABIs don't have constructor variants. Make sure that base and 2003 // complete constructors get mangled the same. 2004 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 2005 if (!getTarget().getCXXABI().hasConstructorVariants()) { 2006 CXXCtorType OrigCtorType = GD.getCtorType(); 2007 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 2008 if (OrigCtorType == Ctor_Base) 2009 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 2010 } 2011 } 2012 2013 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 2014 // static device variable depends on whether the variable is referenced by 2015 // a host or device host function. Therefore the mangled name cannot be 2016 // cached. 2017 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 2018 auto FoundName = MangledDeclNames.find(CanonicalGD); 2019 if (FoundName != MangledDeclNames.end()) 2020 return FoundName->second; 2021 } 2022 2023 // Keep the first result in the case of a mangling collision. 2024 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2025 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2026 2027 // Ensure either we have different ABIs between host and device compilations, 2028 // says host compilation following MSVC ABI but device compilation follows 2029 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2030 // mangling should be the same after name stubbing. The later checking is 2031 // very important as the device kernel name being mangled in host-compilation 2032 // is used to resolve the device binaries to be executed. Inconsistent naming 2033 // result in undefined behavior. Even though we cannot check that naming 2034 // directly between host- and device-compilations, the host- and 2035 // device-mangling in host compilation could help catching certain ones. 2036 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2037 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2038 (getContext().getAuxTargetInfo() && 2039 (getContext().getAuxTargetInfo()->getCXXABI() != 2040 getContext().getTargetInfo().getCXXABI())) || 2041 getCUDARuntime().getDeviceSideName(ND) == 2042 getMangledNameImpl( 2043 *this, 2044 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2045 ND)); 2046 2047 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2048 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2049 } 2050 2051 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2052 const BlockDecl *BD) { 2053 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2054 const Decl *D = GD.getDecl(); 2055 2056 SmallString<256> Buffer; 2057 llvm::raw_svector_ostream Out(Buffer); 2058 if (!D) 2059 MangleCtx.mangleGlobalBlock(BD, 2060 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2061 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2062 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2063 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2064 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2065 else 2066 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2067 2068 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2069 return Result.first->first(); 2070 } 2071 2072 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2073 auto it = MangledDeclNames.begin(); 2074 while (it != MangledDeclNames.end()) { 2075 if (it->second == Name) 2076 return it->first; 2077 it++; 2078 } 2079 return GlobalDecl(); 2080 } 2081 2082 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2083 return getModule().getNamedValue(Name); 2084 } 2085 2086 /// AddGlobalCtor - Add a function to the list that will be called before 2087 /// main() runs. 2088 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2089 unsigned LexOrder, 2090 llvm::Constant *AssociatedData) { 2091 // FIXME: Type coercion of void()* types. 2092 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2093 } 2094 2095 /// AddGlobalDtor - Add a function to the list that will be called 2096 /// when the module is unloaded. 2097 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2098 bool IsDtorAttrFunc) { 2099 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2100 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2101 DtorsUsingAtExit[Priority].push_back(Dtor); 2102 return; 2103 } 2104 2105 // FIXME: Type coercion of void()* types. 2106 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2107 } 2108 2109 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2110 if (Fns.empty()) return; 2111 2112 const PointerAuthSchema &InitFiniAuthSchema = 2113 getCodeGenOpts().PointerAuth.InitFiniPointers; 2114 2115 // Ctor function type is ptr. 2116 llvm::PointerType *PtrTy = llvm::PointerType::get( 2117 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2118 2119 // Get the type of a ctor entry, { i32, ptr, ptr }. 2120 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2121 2122 // Construct the constructor and destructor arrays. 2123 ConstantInitBuilder Builder(*this); 2124 auto Ctors = Builder.beginArray(CtorStructTy); 2125 for (const auto &I : Fns) { 2126 auto Ctor = Ctors.beginStruct(CtorStructTy); 2127 Ctor.addInt(Int32Ty, I.Priority); 2128 if (InitFiniAuthSchema) { 2129 llvm::Constant *StorageAddress = 2130 (InitFiniAuthSchema.isAddressDiscriminated() 2131 ? llvm::ConstantExpr::getIntToPtr( 2132 llvm::ConstantInt::get( 2133 IntPtrTy, 2134 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2135 PtrTy) 2136 : nullptr); 2137 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2138 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2139 llvm::ConstantInt::get( 2140 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2141 Ctor.add(SignedCtorPtr); 2142 } else { 2143 Ctor.add(I.Initializer); 2144 } 2145 if (I.AssociatedData) 2146 Ctor.add(I.AssociatedData); 2147 else 2148 Ctor.addNullPointer(PtrTy); 2149 Ctor.finishAndAddTo(Ctors); 2150 } 2151 2152 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2153 /*constant*/ false, 2154 llvm::GlobalValue::AppendingLinkage); 2155 2156 // The LTO linker doesn't seem to like it when we set an alignment 2157 // on appending variables. Take it off as a workaround. 2158 List->setAlignment(std::nullopt); 2159 2160 Fns.clear(); 2161 } 2162 2163 llvm::GlobalValue::LinkageTypes 2164 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2165 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2166 2167 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2168 2169 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2170 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2171 2172 return getLLVMLinkageForDeclarator(D, Linkage); 2173 } 2174 2175 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2176 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2177 if (!MDS) return nullptr; 2178 2179 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2180 } 2181 2182 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2183 if (auto *FnType = T->getAs<FunctionProtoType>()) 2184 T = getContext().getFunctionType( 2185 FnType->getReturnType(), FnType->getParamTypes(), 2186 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2187 2188 std::string OutName; 2189 llvm::raw_string_ostream Out(OutName); 2190 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2191 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2192 2193 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2194 Out << ".normalized"; 2195 2196 return llvm::ConstantInt::get(Int32Ty, 2197 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2198 } 2199 2200 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2201 const CGFunctionInfo &Info, 2202 llvm::Function *F, bool IsThunk) { 2203 unsigned CallingConv; 2204 llvm::AttributeList PAL; 2205 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2206 /*AttrOnCallSite=*/false, IsThunk); 2207 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2208 getTarget().getTriple().isWindowsArm64EC()) { 2209 SourceLocation Loc; 2210 if (const Decl *D = GD.getDecl()) 2211 Loc = D->getLocation(); 2212 2213 Error(Loc, "__vectorcall calling convention is not currently supported"); 2214 } 2215 F->setAttributes(PAL); 2216 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2217 } 2218 2219 static void removeImageAccessQualifier(std::string& TyName) { 2220 std::string ReadOnlyQual("__read_only"); 2221 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2222 if (ReadOnlyPos != std::string::npos) 2223 // "+ 1" for the space after access qualifier. 2224 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2225 else { 2226 std::string WriteOnlyQual("__write_only"); 2227 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2228 if (WriteOnlyPos != std::string::npos) 2229 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2230 else { 2231 std::string ReadWriteQual("__read_write"); 2232 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2233 if (ReadWritePos != std::string::npos) 2234 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2235 } 2236 } 2237 } 2238 2239 // Returns the address space id that should be produced to the 2240 // kernel_arg_addr_space metadata. This is always fixed to the ids 2241 // as specified in the SPIR 2.0 specification in order to differentiate 2242 // for example in clGetKernelArgInfo() implementation between the address 2243 // spaces with targets without unique mapping to the OpenCL address spaces 2244 // (basically all single AS CPUs). 2245 static unsigned ArgInfoAddressSpace(LangAS AS) { 2246 switch (AS) { 2247 case LangAS::opencl_global: 2248 return 1; 2249 case LangAS::opencl_constant: 2250 return 2; 2251 case LangAS::opencl_local: 2252 return 3; 2253 case LangAS::opencl_generic: 2254 return 4; // Not in SPIR 2.0 specs. 2255 case LangAS::opencl_global_device: 2256 return 5; 2257 case LangAS::opencl_global_host: 2258 return 6; 2259 default: 2260 return 0; // Assume private. 2261 } 2262 } 2263 2264 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2265 const FunctionDecl *FD, 2266 CodeGenFunction *CGF) { 2267 assert(((FD && CGF) || (!FD && !CGF)) && 2268 "Incorrect use - FD and CGF should either be both null or not!"); 2269 // Create MDNodes that represent the kernel arg metadata. 2270 // Each MDNode is a list in the form of "key", N number of values which is 2271 // the same number of values as their are kernel arguments. 2272 2273 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2274 2275 // MDNode for the kernel argument address space qualifiers. 2276 SmallVector<llvm::Metadata *, 8> addressQuals; 2277 2278 // MDNode for the kernel argument access qualifiers (images only). 2279 SmallVector<llvm::Metadata *, 8> accessQuals; 2280 2281 // MDNode for the kernel argument type names. 2282 SmallVector<llvm::Metadata *, 8> argTypeNames; 2283 2284 // MDNode for the kernel argument base type names. 2285 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2286 2287 // MDNode for the kernel argument type qualifiers. 2288 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2289 2290 // MDNode for the kernel argument names. 2291 SmallVector<llvm::Metadata *, 8> argNames; 2292 2293 if (FD && CGF) 2294 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2295 const ParmVarDecl *parm = FD->getParamDecl(i); 2296 // Get argument name. 2297 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2298 2299 if (!getLangOpts().OpenCL) 2300 continue; 2301 QualType ty = parm->getType(); 2302 std::string typeQuals; 2303 2304 // Get image and pipe access qualifier: 2305 if (ty->isImageType() || ty->isPipeType()) { 2306 const Decl *PDecl = parm; 2307 if (const auto *TD = ty->getAs<TypedefType>()) 2308 PDecl = TD->getDecl(); 2309 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2310 if (A && A->isWriteOnly()) 2311 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2312 else if (A && A->isReadWrite()) 2313 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2314 else 2315 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2316 } else 2317 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2318 2319 auto getTypeSpelling = [&](QualType Ty) { 2320 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2321 2322 if (Ty.isCanonical()) { 2323 StringRef typeNameRef = typeName; 2324 // Turn "unsigned type" to "utype" 2325 if (typeNameRef.consume_front("unsigned ")) 2326 return std::string("u") + typeNameRef.str(); 2327 if (typeNameRef.consume_front("signed ")) 2328 return typeNameRef.str(); 2329 } 2330 2331 return typeName; 2332 }; 2333 2334 if (ty->isPointerType()) { 2335 QualType pointeeTy = ty->getPointeeType(); 2336 2337 // Get address qualifier. 2338 addressQuals.push_back( 2339 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2340 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2341 2342 // Get argument type name. 2343 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2344 std::string baseTypeName = 2345 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2346 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2347 argBaseTypeNames.push_back( 2348 llvm::MDString::get(VMContext, baseTypeName)); 2349 2350 // Get argument type qualifiers: 2351 if (ty.isRestrictQualified()) 2352 typeQuals = "restrict"; 2353 if (pointeeTy.isConstQualified() || 2354 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2355 typeQuals += typeQuals.empty() ? "const" : " const"; 2356 if (pointeeTy.isVolatileQualified()) 2357 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2358 } else { 2359 uint32_t AddrSpc = 0; 2360 bool isPipe = ty->isPipeType(); 2361 if (ty->isImageType() || isPipe) 2362 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2363 2364 addressQuals.push_back( 2365 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2366 2367 // Get argument type name. 2368 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2369 std::string typeName = getTypeSpelling(ty); 2370 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2371 2372 // Remove access qualifiers on images 2373 // (as they are inseparable from type in clang implementation, 2374 // but OpenCL spec provides a special query to get access qualifier 2375 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2376 if (ty->isImageType()) { 2377 removeImageAccessQualifier(typeName); 2378 removeImageAccessQualifier(baseTypeName); 2379 } 2380 2381 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2382 argBaseTypeNames.push_back( 2383 llvm::MDString::get(VMContext, baseTypeName)); 2384 2385 if (isPipe) 2386 typeQuals = "pipe"; 2387 } 2388 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2389 } 2390 2391 if (getLangOpts().OpenCL) { 2392 Fn->setMetadata("kernel_arg_addr_space", 2393 llvm::MDNode::get(VMContext, addressQuals)); 2394 Fn->setMetadata("kernel_arg_access_qual", 2395 llvm::MDNode::get(VMContext, accessQuals)); 2396 Fn->setMetadata("kernel_arg_type", 2397 llvm::MDNode::get(VMContext, argTypeNames)); 2398 Fn->setMetadata("kernel_arg_base_type", 2399 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2400 Fn->setMetadata("kernel_arg_type_qual", 2401 llvm::MDNode::get(VMContext, argTypeQuals)); 2402 } 2403 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2404 getCodeGenOpts().HIPSaveKernelArgName) 2405 Fn->setMetadata("kernel_arg_name", 2406 llvm::MDNode::get(VMContext, argNames)); 2407 } 2408 2409 /// Determines whether the language options require us to model 2410 /// unwind exceptions. We treat -fexceptions as mandating this 2411 /// except under the fragile ObjC ABI with only ObjC exceptions 2412 /// enabled. This means, for example, that C with -fexceptions 2413 /// enables this. 2414 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2415 // If exceptions are completely disabled, obviously this is false. 2416 if (!LangOpts.Exceptions) return false; 2417 2418 // If C++ exceptions are enabled, this is true. 2419 if (LangOpts.CXXExceptions) return true; 2420 2421 // If ObjC exceptions are enabled, this depends on the ABI. 2422 if (LangOpts.ObjCExceptions) { 2423 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2424 } 2425 2426 return true; 2427 } 2428 2429 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2430 const CXXMethodDecl *MD) { 2431 // Check that the type metadata can ever actually be used by a call. 2432 if (!CGM.getCodeGenOpts().LTOUnit || 2433 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2434 return false; 2435 2436 // Only functions whose address can be taken with a member function pointer 2437 // need this sort of type metadata. 2438 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2439 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2440 } 2441 2442 SmallVector<const CXXRecordDecl *, 0> 2443 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2444 llvm::SetVector<const CXXRecordDecl *> MostBases; 2445 2446 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2447 CollectMostBases = [&](const CXXRecordDecl *RD) { 2448 if (RD->getNumBases() == 0) 2449 MostBases.insert(RD); 2450 for (const CXXBaseSpecifier &B : RD->bases()) 2451 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2452 }; 2453 CollectMostBases(RD); 2454 return MostBases.takeVector(); 2455 } 2456 2457 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2458 llvm::Function *F) { 2459 llvm::AttrBuilder B(F->getContext()); 2460 2461 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2462 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2463 2464 if (CodeGenOpts.StackClashProtector) 2465 B.addAttribute("probe-stack", "inline-asm"); 2466 2467 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2468 B.addAttribute("stack-probe-size", 2469 std::to_string(CodeGenOpts.StackProbeSize)); 2470 2471 if (!hasUnwindExceptions(LangOpts)) 2472 B.addAttribute(llvm::Attribute::NoUnwind); 2473 2474 if (D && D->hasAttr<NoStackProtectorAttr>()) 2475 ; // Do nothing. 2476 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2477 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2478 B.addAttribute(llvm::Attribute::StackProtectStrong); 2479 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2480 B.addAttribute(llvm::Attribute::StackProtect); 2481 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2482 B.addAttribute(llvm::Attribute::StackProtectStrong); 2483 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2484 B.addAttribute(llvm::Attribute::StackProtectReq); 2485 2486 if (!D) { 2487 // Non-entry HLSL functions must always be inlined. 2488 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline)) 2489 B.addAttribute(llvm::Attribute::AlwaysInline); 2490 // If we don't have a declaration to control inlining, the function isn't 2491 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2492 // disabled, mark the function as noinline. 2493 else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2494 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2495 B.addAttribute(llvm::Attribute::NoInline); 2496 2497 F->addFnAttrs(B); 2498 return; 2499 } 2500 2501 // Handle SME attributes that apply to function definitions, 2502 // rather than to function prototypes. 2503 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2504 B.addAttribute("aarch64_pstate_sm_body"); 2505 2506 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2507 if (Attr->isNewZA()) 2508 B.addAttribute("aarch64_new_za"); 2509 if (Attr->isNewZT0()) 2510 B.addAttribute("aarch64_new_zt0"); 2511 } 2512 2513 // Track whether we need to add the optnone LLVM attribute, 2514 // starting with the default for this optimization level. 2515 bool ShouldAddOptNone = 2516 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2517 // We can't add optnone in the following cases, it won't pass the verifier. 2518 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2519 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2520 2521 // Non-entry HLSL functions must always be inlined. 2522 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) && 2523 !D->hasAttr<NoInlineAttr>()) { 2524 B.addAttribute(llvm::Attribute::AlwaysInline); 2525 } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2526 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2527 // Add optnone, but do so only if the function isn't always_inline. 2528 B.addAttribute(llvm::Attribute::OptimizeNone); 2529 2530 // OptimizeNone implies noinline; we should not be inlining such functions. 2531 B.addAttribute(llvm::Attribute::NoInline); 2532 2533 // We still need to handle naked functions even though optnone subsumes 2534 // much of their semantics. 2535 if (D->hasAttr<NakedAttr>()) 2536 B.addAttribute(llvm::Attribute::Naked); 2537 2538 // OptimizeNone wins over OptimizeForSize and MinSize. 2539 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2540 F->removeFnAttr(llvm::Attribute::MinSize); 2541 } else if (D->hasAttr<NakedAttr>()) { 2542 // Naked implies noinline: we should not be inlining such functions. 2543 B.addAttribute(llvm::Attribute::Naked); 2544 B.addAttribute(llvm::Attribute::NoInline); 2545 } else if (D->hasAttr<NoDuplicateAttr>()) { 2546 B.addAttribute(llvm::Attribute::NoDuplicate); 2547 } else if (D->hasAttr<NoInlineAttr>() && 2548 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2549 // Add noinline if the function isn't always_inline. 2550 B.addAttribute(llvm::Attribute::NoInline); 2551 } else if (D->hasAttr<AlwaysInlineAttr>() && 2552 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2553 // (noinline wins over always_inline, and we can't specify both in IR) 2554 B.addAttribute(llvm::Attribute::AlwaysInline); 2555 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2556 // If we're not inlining, then force everything that isn't always_inline to 2557 // carry an explicit noinline attribute. 2558 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2559 B.addAttribute(llvm::Attribute::NoInline); 2560 } else { 2561 // Otherwise, propagate the inline hint attribute and potentially use its 2562 // absence to mark things as noinline. 2563 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2564 // Search function and template pattern redeclarations for inline. 2565 auto CheckForInline = [](const FunctionDecl *FD) { 2566 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2567 return Redecl->isInlineSpecified(); 2568 }; 2569 if (any_of(FD->redecls(), CheckRedeclForInline)) 2570 return true; 2571 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2572 if (!Pattern) 2573 return false; 2574 return any_of(Pattern->redecls(), CheckRedeclForInline); 2575 }; 2576 if (CheckForInline(FD)) { 2577 B.addAttribute(llvm::Attribute::InlineHint); 2578 } else if (CodeGenOpts.getInlining() == 2579 CodeGenOptions::OnlyHintInlining && 2580 !FD->isInlined() && 2581 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2582 B.addAttribute(llvm::Attribute::NoInline); 2583 } 2584 } 2585 } 2586 2587 // Add other optimization related attributes if we are optimizing this 2588 // function. 2589 if (!D->hasAttr<OptimizeNoneAttr>()) { 2590 if (D->hasAttr<ColdAttr>()) { 2591 if (!ShouldAddOptNone) 2592 B.addAttribute(llvm::Attribute::OptimizeForSize); 2593 B.addAttribute(llvm::Attribute::Cold); 2594 } 2595 if (D->hasAttr<HotAttr>()) 2596 B.addAttribute(llvm::Attribute::Hot); 2597 if (D->hasAttr<MinSizeAttr>()) 2598 B.addAttribute(llvm::Attribute::MinSize); 2599 } 2600 2601 F->addFnAttrs(B); 2602 2603 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2604 if (alignment) 2605 F->setAlignment(llvm::Align(alignment)); 2606 2607 if (!D->hasAttr<AlignedAttr>()) 2608 if (LangOpts.FunctionAlignment) 2609 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2610 2611 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2612 // reserve a bit for differentiating between virtual and non-virtual member 2613 // functions. If the current target's C++ ABI requires this and this is a 2614 // member function, set its alignment accordingly. 2615 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2616 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2617 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2618 } 2619 2620 // In the cross-dso CFI mode with canonical jump tables, we want !type 2621 // attributes on definitions only. 2622 if (CodeGenOpts.SanitizeCfiCrossDso && 2623 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2624 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2625 // Skip available_externally functions. They won't be codegen'ed in the 2626 // current module anyway. 2627 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2628 CreateFunctionTypeMetadataForIcall(FD, F); 2629 } 2630 } 2631 2632 // Emit type metadata on member functions for member function pointer checks. 2633 // These are only ever necessary on definitions; we're guaranteed that the 2634 // definition will be present in the LTO unit as a result of LTO visibility. 2635 auto *MD = dyn_cast<CXXMethodDecl>(D); 2636 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2637 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2638 llvm::Metadata *Id = 2639 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2640 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2641 F->addTypeMetadata(0, Id); 2642 } 2643 } 2644 } 2645 2646 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2647 const Decl *D = GD.getDecl(); 2648 if (isa_and_nonnull<NamedDecl>(D)) 2649 setGVProperties(GV, GD); 2650 else 2651 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2652 2653 if (D && D->hasAttr<UsedAttr>()) 2654 addUsedOrCompilerUsedGlobal(GV); 2655 2656 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2657 VD && 2658 ((CodeGenOpts.KeepPersistentStorageVariables && 2659 (VD->getStorageDuration() == SD_Static || 2660 VD->getStorageDuration() == SD_Thread)) || 2661 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2662 VD->getType().isConstQualified()))) 2663 addUsedOrCompilerUsedGlobal(GV); 2664 } 2665 2666 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2667 llvm::AttrBuilder &Attrs, 2668 bool SetTargetFeatures) { 2669 // Add target-cpu and target-features attributes to functions. If 2670 // we have a decl for the function and it has a target attribute then 2671 // parse that and add it to the feature set. 2672 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2673 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2674 std::vector<std::string> Features; 2675 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2676 FD = FD ? FD->getMostRecentDecl() : FD; 2677 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2678 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2679 assert((!TD || !TV) && "both target_version and target specified"); 2680 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2681 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2682 bool AddedAttr = false; 2683 if (TD || TV || SD || TC) { 2684 llvm::StringMap<bool> FeatureMap; 2685 getContext().getFunctionFeatureMap(FeatureMap, GD); 2686 2687 // Produce the canonical string for this set of features. 2688 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2689 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2690 2691 // Now add the target-cpu and target-features to the function. 2692 // While we populated the feature map above, we still need to 2693 // get and parse the target attribute so we can get the cpu for 2694 // the function. 2695 if (TD) { 2696 ParsedTargetAttr ParsedAttr = 2697 Target.parseTargetAttr(TD->getFeaturesStr()); 2698 if (!ParsedAttr.CPU.empty() && 2699 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2700 TargetCPU = ParsedAttr.CPU; 2701 TuneCPU = ""; // Clear the tune CPU. 2702 } 2703 if (!ParsedAttr.Tune.empty() && 2704 getTarget().isValidCPUName(ParsedAttr.Tune)) 2705 TuneCPU = ParsedAttr.Tune; 2706 } 2707 2708 if (SD) { 2709 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2710 // favor this processor. 2711 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2712 } 2713 } else { 2714 // Otherwise just add the existing target cpu and target features to the 2715 // function. 2716 Features = getTarget().getTargetOpts().Features; 2717 } 2718 2719 if (!TargetCPU.empty()) { 2720 Attrs.addAttribute("target-cpu", TargetCPU); 2721 AddedAttr = true; 2722 } 2723 if (!TuneCPU.empty()) { 2724 Attrs.addAttribute("tune-cpu", TuneCPU); 2725 AddedAttr = true; 2726 } 2727 if (!Features.empty() && SetTargetFeatures) { 2728 llvm::erase_if(Features, [&](const std::string& F) { 2729 return getTarget().isReadOnlyFeature(F.substr(1)); 2730 }); 2731 llvm::sort(Features); 2732 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2733 AddedAttr = true; 2734 } 2735 2736 return AddedAttr; 2737 } 2738 2739 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2740 llvm::GlobalObject *GO) { 2741 const Decl *D = GD.getDecl(); 2742 SetCommonAttributes(GD, GO); 2743 2744 if (D) { 2745 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2746 if (D->hasAttr<RetainAttr>()) 2747 addUsedGlobal(GV); 2748 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2749 GV->addAttribute("bss-section", SA->getName()); 2750 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2751 GV->addAttribute("data-section", SA->getName()); 2752 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2753 GV->addAttribute("rodata-section", SA->getName()); 2754 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2755 GV->addAttribute("relro-section", SA->getName()); 2756 } 2757 2758 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2759 if (D->hasAttr<RetainAttr>()) 2760 addUsedGlobal(F); 2761 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2762 if (!D->getAttr<SectionAttr>()) 2763 F->setSection(SA->getName()); 2764 2765 llvm::AttrBuilder Attrs(F->getContext()); 2766 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2767 // We know that GetCPUAndFeaturesAttributes will always have the 2768 // newest set, since it has the newest possible FunctionDecl, so the 2769 // new ones should replace the old. 2770 llvm::AttributeMask RemoveAttrs; 2771 RemoveAttrs.addAttribute("target-cpu"); 2772 RemoveAttrs.addAttribute("target-features"); 2773 RemoveAttrs.addAttribute("tune-cpu"); 2774 F->removeFnAttrs(RemoveAttrs); 2775 F->addFnAttrs(Attrs); 2776 } 2777 } 2778 2779 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2780 GO->setSection(CSA->getName()); 2781 else if (const auto *SA = D->getAttr<SectionAttr>()) 2782 GO->setSection(SA->getName()); 2783 } 2784 2785 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2786 } 2787 2788 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2789 llvm::Function *F, 2790 const CGFunctionInfo &FI) { 2791 const Decl *D = GD.getDecl(); 2792 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2793 SetLLVMFunctionAttributesForDefinition(D, F); 2794 2795 F->setLinkage(llvm::Function::InternalLinkage); 2796 2797 setNonAliasAttributes(GD, F); 2798 } 2799 2800 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2801 // Set linkage and visibility in case we never see a definition. 2802 LinkageInfo LV = ND->getLinkageAndVisibility(); 2803 // Don't set internal linkage on declarations. 2804 // "extern_weak" is overloaded in LLVM; we probably should have 2805 // separate linkage types for this. 2806 if (isExternallyVisible(LV.getLinkage()) && 2807 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2808 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2809 } 2810 2811 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2812 llvm::Function *F) { 2813 // Only if we are checking indirect calls. 2814 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2815 return; 2816 2817 // Non-static class methods are handled via vtable or member function pointer 2818 // checks elsewhere. 2819 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2820 return; 2821 2822 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2823 F->addTypeMetadata(0, MD); 2824 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2825 2826 // Emit a hash-based bit set entry for cross-DSO calls. 2827 if (CodeGenOpts.SanitizeCfiCrossDso) 2828 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2829 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2830 } 2831 2832 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2833 llvm::LLVMContext &Ctx = F->getContext(); 2834 llvm::MDBuilder MDB(Ctx); 2835 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2836 llvm::MDNode::get( 2837 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2838 } 2839 2840 static bool allowKCFIIdentifier(StringRef Name) { 2841 // KCFI type identifier constants are only necessary for external assembly 2842 // functions, which means it's safe to skip unusual names. Subset of 2843 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2844 return llvm::all_of(Name, [](const char &C) { 2845 return llvm::isAlnum(C) || C == '_' || C == '.'; 2846 }); 2847 } 2848 2849 void CodeGenModule::finalizeKCFITypes() { 2850 llvm::Module &M = getModule(); 2851 for (auto &F : M.functions()) { 2852 // Remove KCFI type metadata from non-address-taken local functions. 2853 bool AddressTaken = F.hasAddressTaken(); 2854 if (!AddressTaken && F.hasLocalLinkage()) 2855 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2856 2857 // Generate a constant with the expected KCFI type identifier for all 2858 // address-taken function declarations to support annotating indirectly 2859 // called assembly functions. 2860 if (!AddressTaken || !F.isDeclaration()) 2861 continue; 2862 2863 const llvm::ConstantInt *Type; 2864 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2865 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2866 else 2867 continue; 2868 2869 StringRef Name = F.getName(); 2870 if (!allowKCFIIdentifier(Name)) 2871 continue; 2872 2873 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2874 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2875 .str(); 2876 M.appendModuleInlineAsm(Asm); 2877 } 2878 } 2879 2880 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2881 bool IsIncompleteFunction, 2882 bool IsThunk) { 2883 2884 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2885 // If this is an intrinsic function, set the function's attributes 2886 // to the intrinsic's attributes. 2887 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2888 return; 2889 } 2890 2891 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2892 2893 if (!IsIncompleteFunction) 2894 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2895 IsThunk); 2896 2897 // Add the Returned attribute for "this", except for iOS 5 and earlier 2898 // where substantial code, including the libstdc++ dylib, was compiled with 2899 // GCC and does not actually return "this". 2900 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2901 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2902 assert(!F->arg_empty() && 2903 F->arg_begin()->getType() 2904 ->canLosslesslyBitCastTo(F->getReturnType()) && 2905 "unexpected this return"); 2906 F->addParamAttr(0, llvm::Attribute::Returned); 2907 } 2908 2909 // Only a few attributes are set on declarations; these may later be 2910 // overridden by a definition. 2911 2912 setLinkageForGV(F, FD); 2913 setGVProperties(F, FD); 2914 2915 // Setup target-specific attributes. 2916 if (!IsIncompleteFunction && F->isDeclaration()) 2917 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2918 2919 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2920 F->setSection(CSA->getName()); 2921 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2922 F->setSection(SA->getName()); 2923 2924 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2925 if (EA->isError()) 2926 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2927 else if (EA->isWarning()) 2928 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2929 } 2930 2931 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2932 if (FD->isInlineBuiltinDeclaration()) { 2933 const FunctionDecl *FDBody; 2934 bool HasBody = FD->hasBody(FDBody); 2935 (void)HasBody; 2936 assert(HasBody && "Inline builtin declarations should always have an " 2937 "available body!"); 2938 if (shouldEmitFunction(FDBody)) 2939 F->addFnAttr(llvm::Attribute::NoBuiltin); 2940 } 2941 2942 if (FD->isReplaceableGlobalAllocationFunction()) { 2943 // A replaceable global allocation function does not act like a builtin by 2944 // default, only if it is invoked by a new-expression or delete-expression. 2945 F->addFnAttr(llvm::Attribute::NoBuiltin); 2946 } 2947 2948 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2949 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2950 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2951 if (MD->isVirtual()) 2952 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2953 2954 // Don't emit entries for function declarations in the cross-DSO mode. This 2955 // is handled with better precision by the receiving DSO. But if jump tables 2956 // are non-canonical then we need type metadata in order to produce the local 2957 // jump table. 2958 if (!CodeGenOpts.SanitizeCfiCrossDso || 2959 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2960 CreateFunctionTypeMetadataForIcall(FD, F); 2961 2962 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2963 setKCFIType(FD, F); 2964 2965 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2966 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2967 2968 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2969 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2970 2971 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2972 // Annotate the callback behavior as metadata: 2973 // - The callback callee (as argument number). 2974 // - The callback payloads (as argument numbers). 2975 llvm::LLVMContext &Ctx = F->getContext(); 2976 llvm::MDBuilder MDB(Ctx); 2977 2978 // The payload indices are all but the first one in the encoding. The first 2979 // identifies the callback callee. 2980 int CalleeIdx = *CB->encoding_begin(); 2981 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2982 F->addMetadata(llvm::LLVMContext::MD_callback, 2983 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2984 CalleeIdx, PayloadIndices, 2985 /* VarArgsArePassed */ false)})); 2986 } 2987 } 2988 2989 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2990 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2991 "Only globals with definition can force usage."); 2992 LLVMUsed.emplace_back(GV); 2993 } 2994 2995 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2996 assert(!GV->isDeclaration() && 2997 "Only globals with definition can force usage."); 2998 LLVMCompilerUsed.emplace_back(GV); 2999 } 3000 3001 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 3002 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 3003 "Only globals with definition can force usage."); 3004 if (getTriple().isOSBinFormatELF()) 3005 LLVMCompilerUsed.emplace_back(GV); 3006 else 3007 LLVMUsed.emplace_back(GV); 3008 } 3009 3010 static void emitUsed(CodeGenModule &CGM, StringRef Name, 3011 std::vector<llvm::WeakTrackingVH> &List) { 3012 // Don't create llvm.used if there is no need. 3013 if (List.empty()) 3014 return; 3015 3016 // Convert List to what ConstantArray needs. 3017 SmallVector<llvm::Constant*, 8> UsedArray; 3018 UsedArray.resize(List.size()); 3019 for (unsigned i = 0, e = List.size(); i != e; ++i) { 3020 UsedArray[i] = 3021 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 3022 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 3023 } 3024 3025 if (UsedArray.empty()) 3026 return; 3027 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3028 3029 auto *GV = new llvm::GlobalVariable( 3030 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3031 llvm::ConstantArray::get(ATy, UsedArray), Name); 3032 3033 GV->setSection("llvm.metadata"); 3034 } 3035 3036 void CodeGenModule::emitLLVMUsed() { 3037 emitUsed(*this, "llvm.used", LLVMUsed); 3038 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3039 } 3040 3041 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3042 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3043 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3044 } 3045 3046 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3047 llvm::SmallString<32> Opt; 3048 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3049 if (Opt.empty()) 3050 return; 3051 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3052 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3053 } 3054 3055 void CodeGenModule::AddDependentLib(StringRef Lib) { 3056 auto &C = getLLVMContext(); 3057 if (getTarget().getTriple().isOSBinFormatELF()) { 3058 ELFDependentLibraries.push_back( 3059 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3060 return; 3061 } 3062 3063 llvm::SmallString<24> Opt; 3064 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3065 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3066 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3067 } 3068 3069 /// Add link options implied by the given module, including modules 3070 /// it depends on, using a postorder walk. 3071 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3072 SmallVectorImpl<llvm::MDNode *> &Metadata, 3073 llvm::SmallPtrSet<Module *, 16> &Visited) { 3074 // Import this module's parent. 3075 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3076 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3077 } 3078 3079 // Import this module's dependencies. 3080 for (Module *Import : llvm::reverse(Mod->Imports)) { 3081 if (Visited.insert(Import).second) 3082 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3083 } 3084 3085 // Add linker options to link against the libraries/frameworks 3086 // described by this module. 3087 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3088 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3089 3090 // For modules that use export_as for linking, use that module 3091 // name instead. 3092 if (Mod->UseExportAsModuleLinkName) 3093 return; 3094 3095 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3096 // Link against a framework. Frameworks are currently Darwin only, so we 3097 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3098 if (LL.IsFramework) { 3099 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3100 llvm::MDString::get(Context, LL.Library)}; 3101 3102 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3103 continue; 3104 } 3105 3106 // Link against a library. 3107 if (IsELF) { 3108 llvm::Metadata *Args[2] = { 3109 llvm::MDString::get(Context, "lib"), 3110 llvm::MDString::get(Context, LL.Library), 3111 }; 3112 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3113 } else { 3114 llvm::SmallString<24> Opt; 3115 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3116 auto *OptString = llvm::MDString::get(Context, Opt); 3117 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3118 } 3119 } 3120 } 3121 3122 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3123 assert(Primary->isNamedModuleUnit() && 3124 "We should only emit module initializers for named modules."); 3125 3126 // Emit the initializers in the order that sub-modules appear in the 3127 // source, first Global Module Fragments, if present. 3128 if (auto GMF = Primary->getGlobalModuleFragment()) { 3129 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3130 if (isa<ImportDecl>(D)) 3131 continue; 3132 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3133 EmitTopLevelDecl(D); 3134 } 3135 } 3136 // Second any associated with the module, itself. 3137 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3138 // Skip import decls, the inits for those are called explicitly. 3139 if (isa<ImportDecl>(D)) 3140 continue; 3141 EmitTopLevelDecl(D); 3142 } 3143 // Third any associated with the Privat eMOdule Fragment, if present. 3144 if (auto PMF = Primary->getPrivateModuleFragment()) { 3145 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3146 // Skip import decls, the inits for those are called explicitly. 3147 if (isa<ImportDecl>(D)) 3148 continue; 3149 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3150 EmitTopLevelDecl(D); 3151 } 3152 } 3153 } 3154 3155 void CodeGenModule::EmitModuleLinkOptions() { 3156 // Collect the set of all of the modules we want to visit to emit link 3157 // options, which is essentially the imported modules and all of their 3158 // non-explicit child modules. 3159 llvm::SetVector<clang::Module *> LinkModules; 3160 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3161 SmallVector<clang::Module *, 16> Stack; 3162 3163 // Seed the stack with imported modules. 3164 for (Module *M : ImportedModules) { 3165 // Do not add any link flags when an implementation TU of a module imports 3166 // a header of that same module. 3167 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3168 !getLangOpts().isCompilingModule()) 3169 continue; 3170 if (Visited.insert(M).second) 3171 Stack.push_back(M); 3172 } 3173 3174 // Find all of the modules to import, making a little effort to prune 3175 // non-leaf modules. 3176 while (!Stack.empty()) { 3177 clang::Module *Mod = Stack.pop_back_val(); 3178 3179 bool AnyChildren = false; 3180 3181 // Visit the submodules of this module. 3182 for (const auto &SM : Mod->submodules()) { 3183 // Skip explicit children; they need to be explicitly imported to be 3184 // linked against. 3185 if (SM->IsExplicit) 3186 continue; 3187 3188 if (Visited.insert(SM).second) { 3189 Stack.push_back(SM); 3190 AnyChildren = true; 3191 } 3192 } 3193 3194 // We didn't find any children, so add this module to the list of 3195 // modules to link against. 3196 if (!AnyChildren) { 3197 LinkModules.insert(Mod); 3198 } 3199 } 3200 3201 // Add link options for all of the imported modules in reverse topological 3202 // order. We don't do anything to try to order import link flags with respect 3203 // to linker options inserted by things like #pragma comment(). 3204 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3205 Visited.clear(); 3206 for (Module *M : LinkModules) 3207 if (Visited.insert(M).second) 3208 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3209 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3210 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3211 3212 // Add the linker options metadata flag. 3213 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3214 for (auto *MD : LinkerOptionsMetadata) 3215 NMD->addOperand(MD); 3216 } 3217 3218 void CodeGenModule::EmitDeferred() { 3219 // Emit deferred declare target declarations. 3220 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3221 getOpenMPRuntime().emitDeferredTargetDecls(); 3222 3223 // Emit code for any potentially referenced deferred decls. Since a 3224 // previously unused static decl may become used during the generation of code 3225 // for a static function, iterate until no changes are made. 3226 3227 if (!DeferredVTables.empty()) { 3228 EmitDeferredVTables(); 3229 3230 // Emitting a vtable doesn't directly cause more vtables to 3231 // become deferred, although it can cause functions to be 3232 // emitted that then need those vtables. 3233 assert(DeferredVTables.empty()); 3234 } 3235 3236 // Emit CUDA/HIP static device variables referenced by host code only. 3237 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3238 // needed for further handling. 3239 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3240 llvm::append_range(DeferredDeclsToEmit, 3241 getContext().CUDADeviceVarODRUsedByHost); 3242 3243 // Stop if we're out of both deferred vtables and deferred declarations. 3244 if (DeferredDeclsToEmit.empty()) 3245 return; 3246 3247 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3248 // work, it will not interfere with this. 3249 std::vector<GlobalDecl> CurDeclsToEmit; 3250 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3251 3252 for (GlobalDecl &D : CurDeclsToEmit) { 3253 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3254 // to get GlobalValue with exactly the type we need, not something that 3255 // might had been created for another decl with the same mangled name but 3256 // different type. 3257 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3258 GetAddrOfGlobal(D, ForDefinition)); 3259 3260 // In case of different address spaces, we may still get a cast, even with 3261 // IsForDefinition equal to true. Query mangled names table to get 3262 // GlobalValue. 3263 if (!GV) 3264 GV = GetGlobalValue(getMangledName(D)); 3265 3266 // Make sure GetGlobalValue returned non-null. 3267 assert(GV); 3268 3269 // Check to see if we've already emitted this. This is necessary 3270 // for a couple of reasons: first, decls can end up in the 3271 // deferred-decls queue multiple times, and second, decls can end 3272 // up with definitions in unusual ways (e.g. by an extern inline 3273 // function acquiring a strong function redefinition). Just 3274 // ignore these cases. 3275 if (!GV->isDeclaration()) 3276 continue; 3277 3278 // If this is OpenMP, check if it is legal to emit this global normally. 3279 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3280 continue; 3281 3282 // Otherwise, emit the definition and move on to the next one. 3283 EmitGlobalDefinition(D, GV); 3284 3285 // If we found out that we need to emit more decls, do that recursively. 3286 // This has the advantage that the decls are emitted in a DFS and related 3287 // ones are close together, which is convenient for testing. 3288 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3289 EmitDeferred(); 3290 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3291 } 3292 } 3293 } 3294 3295 void CodeGenModule::EmitVTablesOpportunistically() { 3296 // Try to emit external vtables as available_externally if they have emitted 3297 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3298 // is not allowed to create new references to things that need to be emitted 3299 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3300 3301 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3302 && "Only emit opportunistic vtables with optimizations"); 3303 3304 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3305 assert(getVTables().isVTableExternal(RD) && 3306 "This queue should only contain external vtables"); 3307 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3308 VTables.GenerateClassData(RD); 3309 } 3310 OpportunisticVTables.clear(); 3311 } 3312 3313 void CodeGenModule::EmitGlobalAnnotations() { 3314 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3315 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3316 if (GV) 3317 AddGlobalAnnotations(VD, GV); 3318 } 3319 DeferredAnnotations.clear(); 3320 3321 if (Annotations.empty()) 3322 return; 3323 3324 // Create a new global variable for the ConstantStruct in the Module. 3325 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3326 Annotations[0]->getType(), Annotations.size()), Annotations); 3327 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3328 llvm::GlobalValue::AppendingLinkage, 3329 Array, "llvm.global.annotations"); 3330 gv->setSection(AnnotationSection); 3331 } 3332 3333 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3334 llvm::Constant *&AStr = AnnotationStrings[Str]; 3335 if (AStr) 3336 return AStr; 3337 3338 // Not found yet, create a new global. 3339 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3340 auto *gv = new llvm::GlobalVariable( 3341 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3342 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3343 ConstGlobalsPtrTy->getAddressSpace()); 3344 gv->setSection(AnnotationSection); 3345 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3346 AStr = gv; 3347 return gv; 3348 } 3349 3350 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3351 SourceManager &SM = getContext().getSourceManager(); 3352 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3353 if (PLoc.isValid()) 3354 return EmitAnnotationString(PLoc.getFilename()); 3355 return EmitAnnotationString(SM.getBufferName(Loc)); 3356 } 3357 3358 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3359 SourceManager &SM = getContext().getSourceManager(); 3360 PresumedLoc PLoc = SM.getPresumedLoc(L); 3361 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3362 SM.getExpansionLineNumber(L); 3363 return llvm::ConstantInt::get(Int32Ty, LineNo); 3364 } 3365 3366 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3367 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3368 if (Exprs.empty()) 3369 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3370 3371 llvm::FoldingSetNodeID ID; 3372 for (Expr *E : Exprs) { 3373 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3374 } 3375 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3376 if (Lookup) 3377 return Lookup; 3378 3379 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3380 LLVMArgs.reserve(Exprs.size()); 3381 ConstantEmitter ConstEmiter(*this); 3382 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3383 const auto *CE = cast<clang::ConstantExpr>(E); 3384 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3385 CE->getType()); 3386 }); 3387 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3388 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3389 llvm::GlobalValue::PrivateLinkage, Struct, 3390 ".args"); 3391 GV->setSection(AnnotationSection); 3392 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3393 3394 Lookup = GV; 3395 return GV; 3396 } 3397 3398 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3399 const AnnotateAttr *AA, 3400 SourceLocation L) { 3401 // Get the globals for file name, annotation, and the line number. 3402 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3403 *UnitGV = EmitAnnotationUnit(L), 3404 *LineNoCst = EmitAnnotationLineNo(L), 3405 *Args = EmitAnnotationArgs(AA); 3406 3407 llvm::Constant *GVInGlobalsAS = GV; 3408 if (GV->getAddressSpace() != 3409 getDataLayout().getDefaultGlobalsAddressSpace()) { 3410 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3411 GV, 3412 llvm::PointerType::get( 3413 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3414 } 3415 3416 // Create the ConstantStruct for the global annotation. 3417 llvm::Constant *Fields[] = { 3418 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3419 }; 3420 return llvm::ConstantStruct::getAnon(Fields); 3421 } 3422 3423 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3424 llvm::GlobalValue *GV) { 3425 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3426 // Get the struct elements for these annotations. 3427 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3428 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3429 } 3430 3431 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3432 SourceLocation Loc) const { 3433 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3434 // NoSanitize by function name. 3435 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3436 return true; 3437 // NoSanitize by location. Check "mainfile" prefix. 3438 auto &SM = Context.getSourceManager(); 3439 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3440 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3441 return true; 3442 3443 // Check "src" prefix. 3444 if (Loc.isValid()) 3445 return NoSanitizeL.containsLocation(Kind, Loc); 3446 // If location is unknown, this may be a compiler-generated function. Assume 3447 // it's located in the main file. 3448 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3449 } 3450 3451 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3452 llvm::GlobalVariable *GV, 3453 SourceLocation Loc, QualType Ty, 3454 StringRef Category) const { 3455 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3456 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3457 return true; 3458 auto &SM = Context.getSourceManager(); 3459 if (NoSanitizeL.containsMainFile( 3460 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3461 Category)) 3462 return true; 3463 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3464 return true; 3465 3466 // Check global type. 3467 if (!Ty.isNull()) { 3468 // Drill down the array types: if global variable of a fixed type is 3469 // not sanitized, we also don't instrument arrays of them. 3470 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3471 Ty = AT->getElementType(); 3472 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3473 // Only record types (classes, structs etc.) are ignored. 3474 if (Ty->isRecordType()) { 3475 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3476 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3477 return true; 3478 } 3479 } 3480 return false; 3481 } 3482 3483 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3484 StringRef Category) const { 3485 const auto &XRayFilter = getContext().getXRayFilter(); 3486 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3487 auto Attr = ImbueAttr::NONE; 3488 if (Loc.isValid()) 3489 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3490 if (Attr == ImbueAttr::NONE) 3491 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3492 switch (Attr) { 3493 case ImbueAttr::NONE: 3494 return false; 3495 case ImbueAttr::ALWAYS: 3496 Fn->addFnAttr("function-instrument", "xray-always"); 3497 break; 3498 case ImbueAttr::ALWAYS_ARG1: 3499 Fn->addFnAttr("function-instrument", "xray-always"); 3500 Fn->addFnAttr("xray-log-args", "1"); 3501 break; 3502 case ImbueAttr::NEVER: 3503 Fn->addFnAttr("function-instrument", "xray-never"); 3504 break; 3505 } 3506 return true; 3507 } 3508 3509 ProfileList::ExclusionType 3510 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3511 SourceLocation Loc) const { 3512 const auto &ProfileList = getContext().getProfileList(); 3513 // If the profile list is empty, then instrument everything. 3514 if (ProfileList.isEmpty()) 3515 return ProfileList::Allow; 3516 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3517 // First, check the function name. 3518 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3519 return *V; 3520 // Next, check the source location. 3521 if (Loc.isValid()) 3522 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3523 return *V; 3524 // If location is unknown, this may be a compiler-generated function. Assume 3525 // it's located in the main file. 3526 auto &SM = Context.getSourceManager(); 3527 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3528 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3529 return *V; 3530 return ProfileList.getDefault(Kind); 3531 } 3532 3533 ProfileList::ExclusionType 3534 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3535 SourceLocation Loc) const { 3536 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3537 if (V != ProfileList::Allow) 3538 return V; 3539 3540 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3541 if (NumGroups > 1) { 3542 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3543 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3544 return ProfileList::Skip; 3545 } 3546 return ProfileList::Allow; 3547 } 3548 3549 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3550 // Never defer when EmitAllDecls is specified. 3551 if (LangOpts.EmitAllDecls) 3552 return true; 3553 3554 const auto *VD = dyn_cast<VarDecl>(Global); 3555 if (VD && 3556 ((CodeGenOpts.KeepPersistentStorageVariables && 3557 (VD->getStorageDuration() == SD_Static || 3558 VD->getStorageDuration() == SD_Thread)) || 3559 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3560 VD->getType().isConstQualified()))) 3561 return true; 3562 3563 return getContext().DeclMustBeEmitted(Global); 3564 } 3565 3566 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3567 // In OpenMP 5.0 variables and function may be marked as 3568 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3569 // that they must be emitted on the host/device. To be sure we need to have 3570 // seen a declare target with an explicit mentioning of the function, we know 3571 // we have if the level of the declare target attribute is -1. Note that we 3572 // check somewhere else if we should emit this at all. 3573 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3574 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3575 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3576 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3577 return false; 3578 } 3579 3580 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3581 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3582 // Implicit template instantiations may change linkage if they are later 3583 // explicitly instantiated, so they should not be emitted eagerly. 3584 return false; 3585 // Defer until all versions have been semantically checked. 3586 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3587 return false; 3588 } 3589 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3590 if (Context.getInlineVariableDefinitionKind(VD) == 3591 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3592 // A definition of an inline constexpr static data member may change 3593 // linkage later if it's redeclared outside the class. 3594 return false; 3595 if (CXX20ModuleInits && VD->getOwningModule() && 3596 !VD->getOwningModule()->isModuleMapModule()) { 3597 // For CXX20, module-owned initializers need to be deferred, since it is 3598 // not known at this point if they will be run for the current module or 3599 // as part of the initializer for an imported one. 3600 return false; 3601 } 3602 } 3603 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3604 // codegen for global variables, because they may be marked as threadprivate. 3605 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3606 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3607 !Global->getType().isConstantStorage(getContext(), false, false) && 3608 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3609 return false; 3610 3611 return true; 3612 } 3613 3614 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3615 StringRef Name = getMangledName(GD); 3616 3617 // The UUID descriptor should be pointer aligned. 3618 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3619 3620 // Look for an existing global. 3621 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3622 return ConstantAddress(GV, GV->getValueType(), Alignment); 3623 3624 ConstantEmitter Emitter(*this); 3625 llvm::Constant *Init; 3626 3627 APValue &V = GD->getAsAPValue(); 3628 if (!V.isAbsent()) { 3629 // If possible, emit the APValue version of the initializer. In particular, 3630 // this gets the type of the constant right. 3631 Init = Emitter.emitForInitializer( 3632 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3633 } else { 3634 // As a fallback, directly construct the constant. 3635 // FIXME: This may get padding wrong under esoteric struct layout rules. 3636 // MSVC appears to create a complete type 'struct __s_GUID' that it 3637 // presumably uses to represent these constants. 3638 MSGuidDecl::Parts Parts = GD->getParts(); 3639 llvm::Constant *Fields[4] = { 3640 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3641 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3642 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3643 llvm::ConstantDataArray::getRaw( 3644 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3645 Int8Ty)}; 3646 Init = llvm::ConstantStruct::getAnon(Fields); 3647 } 3648 3649 auto *GV = new llvm::GlobalVariable( 3650 getModule(), Init->getType(), 3651 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3652 if (supportsCOMDAT()) 3653 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3654 setDSOLocal(GV); 3655 3656 if (!V.isAbsent()) { 3657 Emitter.finalize(GV); 3658 return ConstantAddress(GV, GV->getValueType(), Alignment); 3659 } 3660 3661 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3662 return ConstantAddress(GV, Ty, Alignment); 3663 } 3664 3665 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3666 const UnnamedGlobalConstantDecl *GCD) { 3667 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3668 3669 llvm::GlobalVariable **Entry = nullptr; 3670 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3671 if (*Entry) 3672 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3673 3674 ConstantEmitter Emitter(*this); 3675 llvm::Constant *Init; 3676 3677 const APValue &V = GCD->getValue(); 3678 3679 assert(!V.isAbsent()); 3680 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3681 GCD->getType()); 3682 3683 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3684 /*isConstant=*/true, 3685 llvm::GlobalValue::PrivateLinkage, Init, 3686 ".constant"); 3687 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3688 GV->setAlignment(Alignment.getAsAlign()); 3689 3690 Emitter.finalize(GV); 3691 3692 *Entry = GV; 3693 return ConstantAddress(GV, GV->getValueType(), Alignment); 3694 } 3695 3696 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3697 const TemplateParamObjectDecl *TPO) { 3698 StringRef Name = getMangledName(TPO); 3699 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3700 3701 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3702 return ConstantAddress(GV, GV->getValueType(), Alignment); 3703 3704 ConstantEmitter Emitter(*this); 3705 llvm::Constant *Init = Emitter.emitForInitializer( 3706 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3707 3708 if (!Init) { 3709 ErrorUnsupported(TPO, "template parameter object"); 3710 return ConstantAddress::invalid(); 3711 } 3712 3713 llvm::GlobalValue::LinkageTypes Linkage = 3714 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3715 ? llvm::GlobalValue::LinkOnceODRLinkage 3716 : llvm::GlobalValue::InternalLinkage; 3717 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3718 /*isConstant=*/true, Linkage, Init, Name); 3719 setGVProperties(GV, TPO); 3720 if (supportsCOMDAT()) 3721 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3722 Emitter.finalize(GV); 3723 3724 return ConstantAddress(GV, GV->getValueType(), Alignment); 3725 } 3726 3727 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3728 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3729 assert(AA && "No alias?"); 3730 3731 CharUnits Alignment = getContext().getDeclAlign(VD); 3732 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3733 3734 // See if there is already something with the target's name in the module. 3735 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3736 if (Entry) 3737 return ConstantAddress(Entry, DeclTy, Alignment); 3738 3739 llvm::Constant *Aliasee; 3740 if (isa<llvm::FunctionType>(DeclTy)) 3741 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3742 GlobalDecl(cast<FunctionDecl>(VD)), 3743 /*ForVTable=*/false); 3744 else 3745 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3746 nullptr); 3747 3748 auto *F = cast<llvm::GlobalValue>(Aliasee); 3749 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3750 WeakRefReferences.insert(F); 3751 3752 return ConstantAddress(Aliasee, DeclTy, Alignment); 3753 } 3754 3755 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3756 if (!D) 3757 return false; 3758 if (auto *A = D->getAttr<AttrT>()) 3759 return A->isImplicit(); 3760 return D->isImplicit(); 3761 } 3762 3763 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3764 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3765 // We need to emit host-side 'shadows' for all global 3766 // device-side variables because the CUDA runtime needs their 3767 // size and host-side address in order to provide access to 3768 // their device-side incarnations. 3769 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3770 Global->hasAttr<CUDAConstantAttr>() || 3771 Global->hasAttr<CUDASharedAttr>() || 3772 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3773 Global->getType()->isCUDADeviceBuiltinTextureType(); 3774 } 3775 3776 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3777 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3778 3779 // Weak references don't produce any output by themselves. 3780 if (Global->hasAttr<WeakRefAttr>()) 3781 return; 3782 3783 // If this is an alias definition (which otherwise looks like a declaration) 3784 // emit it now. 3785 if (Global->hasAttr<AliasAttr>()) 3786 return EmitAliasDefinition(GD); 3787 3788 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3789 if (Global->hasAttr<IFuncAttr>()) 3790 return emitIFuncDefinition(GD); 3791 3792 // If this is a cpu_dispatch multiversion function, emit the resolver. 3793 if (Global->hasAttr<CPUDispatchAttr>()) 3794 return emitCPUDispatchDefinition(GD); 3795 3796 // If this is CUDA, be selective about which declarations we emit. 3797 // Non-constexpr non-lambda implicit host device functions are not emitted 3798 // unless they are used on device side. 3799 if (LangOpts.CUDA) { 3800 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3801 "Expected Variable or Function"); 3802 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3803 if (!shouldEmitCUDAGlobalVar(VD)) 3804 return; 3805 } else if (LangOpts.CUDAIsDevice) { 3806 const auto *FD = dyn_cast<FunctionDecl>(Global); 3807 if ((!Global->hasAttr<CUDADeviceAttr>() || 3808 (LangOpts.OffloadImplicitHostDeviceTemplates && 3809 hasImplicitAttr<CUDAHostAttr>(FD) && 3810 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3811 !isLambdaCallOperator(FD) && 3812 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3813 !Global->hasAttr<CUDAGlobalAttr>() && 3814 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3815 !Global->hasAttr<CUDAHostAttr>())) 3816 return; 3817 // Device-only functions are the only things we skip. 3818 } else if (!Global->hasAttr<CUDAHostAttr>() && 3819 Global->hasAttr<CUDADeviceAttr>()) 3820 return; 3821 } 3822 3823 if (LangOpts.OpenMP) { 3824 // If this is OpenMP, check if it is legal to emit this global normally. 3825 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3826 return; 3827 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3828 if (MustBeEmitted(Global)) 3829 EmitOMPDeclareReduction(DRD); 3830 return; 3831 } 3832 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3833 if (MustBeEmitted(Global)) 3834 EmitOMPDeclareMapper(DMD); 3835 return; 3836 } 3837 } 3838 3839 // Ignore declarations, they will be emitted on their first use. 3840 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3841 // Update deferred annotations with the latest declaration if the function 3842 // function was already used or defined. 3843 if (FD->hasAttr<AnnotateAttr>()) { 3844 StringRef MangledName = getMangledName(GD); 3845 if (GetGlobalValue(MangledName)) 3846 DeferredAnnotations[MangledName] = FD; 3847 } 3848 3849 // Forward declarations are emitted lazily on first use. 3850 if (!FD->doesThisDeclarationHaveABody()) { 3851 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3852 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3853 return; 3854 3855 StringRef MangledName = getMangledName(GD); 3856 3857 // Compute the function info and LLVM type. 3858 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3859 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3860 3861 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3862 /*DontDefer=*/false); 3863 return; 3864 } 3865 } else { 3866 const auto *VD = cast<VarDecl>(Global); 3867 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3868 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3869 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3870 if (LangOpts.OpenMP) { 3871 // Emit declaration of the must-be-emitted declare target variable. 3872 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3873 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3874 3875 // If this variable has external storage and doesn't require special 3876 // link handling we defer to its canonical definition. 3877 if (VD->hasExternalStorage() && 3878 Res != OMPDeclareTargetDeclAttr::MT_Link) 3879 return; 3880 3881 bool UnifiedMemoryEnabled = 3882 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3883 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3884 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3885 !UnifiedMemoryEnabled) { 3886 (void)GetAddrOfGlobalVar(VD); 3887 } else { 3888 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3889 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3890 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3891 UnifiedMemoryEnabled)) && 3892 "Link clause or to clause with unified memory expected."); 3893 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3894 } 3895 3896 return; 3897 } 3898 } 3899 // If this declaration may have caused an inline variable definition to 3900 // change linkage, make sure that it's emitted. 3901 if (Context.getInlineVariableDefinitionKind(VD) == 3902 ASTContext::InlineVariableDefinitionKind::Strong) 3903 GetAddrOfGlobalVar(VD); 3904 return; 3905 } 3906 } 3907 3908 // Defer code generation to first use when possible, e.g. if this is an inline 3909 // function. If the global must always be emitted, do it eagerly if possible 3910 // to benefit from cache locality. 3911 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3912 // Emit the definition if it can't be deferred. 3913 EmitGlobalDefinition(GD); 3914 addEmittedDeferredDecl(GD); 3915 return; 3916 } 3917 3918 // If we're deferring emission of a C++ variable with an 3919 // initializer, remember the order in which it appeared in the file. 3920 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3921 cast<VarDecl>(Global)->hasInit()) { 3922 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3923 CXXGlobalInits.push_back(nullptr); 3924 } 3925 3926 StringRef MangledName = getMangledName(GD); 3927 if (GetGlobalValue(MangledName) != nullptr) { 3928 // The value has already been used and should therefore be emitted. 3929 addDeferredDeclToEmit(GD); 3930 } else if (MustBeEmitted(Global)) { 3931 // The value must be emitted, but cannot be emitted eagerly. 3932 assert(!MayBeEmittedEagerly(Global)); 3933 addDeferredDeclToEmit(GD); 3934 } else { 3935 // Otherwise, remember that we saw a deferred decl with this name. The 3936 // first use of the mangled name will cause it to move into 3937 // DeferredDeclsToEmit. 3938 DeferredDecls[MangledName] = GD; 3939 } 3940 } 3941 3942 // Check if T is a class type with a destructor that's not dllimport. 3943 static bool HasNonDllImportDtor(QualType T) { 3944 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3945 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3946 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3947 return true; 3948 3949 return false; 3950 } 3951 3952 namespace { 3953 struct FunctionIsDirectlyRecursive 3954 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3955 const StringRef Name; 3956 const Builtin::Context &BI; 3957 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3958 : Name(N), BI(C) {} 3959 3960 bool VisitCallExpr(const CallExpr *E) { 3961 const FunctionDecl *FD = E->getDirectCallee(); 3962 if (!FD) 3963 return false; 3964 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3965 if (Attr && Name == Attr->getLabel()) 3966 return true; 3967 unsigned BuiltinID = FD->getBuiltinID(); 3968 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3969 return false; 3970 StringRef BuiltinName = BI.getName(BuiltinID); 3971 if (BuiltinName.starts_with("__builtin_") && 3972 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3973 return true; 3974 } 3975 return false; 3976 } 3977 3978 bool VisitStmt(const Stmt *S) { 3979 for (const Stmt *Child : S->children()) 3980 if (Child && this->Visit(Child)) 3981 return true; 3982 return false; 3983 } 3984 }; 3985 3986 // Make sure we're not referencing non-imported vars or functions. 3987 struct DLLImportFunctionVisitor 3988 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3989 bool SafeToInline = true; 3990 3991 bool shouldVisitImplicitCode() const { return true; } 3992 3993 bool VisitVarDecl(VarDecl *VD) { 3994 if (VD->getTLSKind()) { 3995 // A thread-local variable cannot be imported. 3996 SafeToInline = false; 3997 return SafeToInline; 3998 } 3999 4000 // A variable definition might imply a destructor call. 4001 if (VD->isThisDeclarationADefinition()) 4002 SafeToInline = !HasNonDllImportDtor(VD->getType()); 4003 4004 return SafeToInline; 4005 } 4006 4007 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 4008 if (const auto *D = E->getTemporary()->getDestructor()) 4009 SafeToInline = D->hasAttr<DLLImportAttr>(); 4010 return SafeToInline; 4011 } 4012 4013 bool VisitDeclRefExpr(DeclRefExpr *E) { 4014 ValueDecl *VD = E->getDecl(); 4015 if (isa<FunctionDecl>(VD)) 4016 SafeToInline = VD->hasAttr<DLLImportAttr>(); 4017 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 4018 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 4019 return SafeToInline; 4020 } 4021 4022 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 4023 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 4024 return SafeToInline; 4025 } 4026 4027 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4028 CXXMethodDecl *M = E->getMethodDecl(); 4029 if (!M) { 4030 // Call through a pointer to member function. This is safe to inline. 4031 SafeToInline = true; 4032 } else { 4033 SafeToInline = M->hasAttr<DLLImportAttr>(); 4034 } 4035 return SafeToInline; 4036 } 4037 4038 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4039 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4040 return SafeToInline; 4041 } 4042 4043 bool VisitCXXNewExpr(CXXNewExpr *E) { 4044 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4045 return SafeToInline; 4046 } 4047 }; 4048 } 4049 4050 // isTriviallyRecursive - Check if this function calls another 4051 // decl that, because of the asm attribute or the other decl being a builtin, 4052 // ends up pointing to itself. 4053 bool 4054 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4055 StringRef Name; 4056 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4057 // asm labels are a special kind of mangling we have to support. 4058 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4059 if (!Attr) 4060 return false; 4061 Name = Attr->getLabel(); 4062 } else { 4063 Name = FD->getName(); 4064 } 4065 4066 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4067 const Stmt *Body = FD->getBody(); 4068 return Body ? Walker.Visit(Body) : false; 4069 } 4070 4071 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4072 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4073 return true; 4074 4075 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4076 // Inline builtins declaration must be emitted. They often are fortified 4077 // functions. 4078 if (F->isInlineBuiltinDeclaration()) 4079 return true; 4080 4081 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4082 return false; 4083 4084 // We don't import function bodies from other named module units since that 4085 // behavior may break ABI compatibility of the current unit. 4086 if (const Module *M = F->getOwningModule(); 4087 M && M->getTopLevelModule()->isNamedModule() && 4088 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4089 // There are practices to mark template member function as always-inline 4090 // and mark the template as extern explicit instantiation but not give 4091 // the definition for member function. So we have to emit the function 4092 // from explicitly instantiation with always-inline. 4093 // 4094 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4095 // 4096 // TODO: Maybe it is better to give it a warning if we call a non-inline 4097 // function from other module units which is marked as always-inline. 4098 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4099 return false; 4100 } 4101 } 4102 4103 if (F->hasAttr<NoInlineAttr>()) 4104 return false; 4105 4106 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4107 // Check whether it would be safe to inline this dllimport function. 4108 DLLImportFunctionVisitor Visitor; 4109 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4110 if (!Visitor.SafeToInline) 4111 return false; 4112 4113 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4114 // Implicit destructor invocations aren't captured in the AST, so the 4115 // check above can't see them. Check for them manually here. 4116 for (const Decl *Member : Dtor->getParent()->decls()) 4117 if (isa<FieldDecl>(Member)) 4118 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4119 return false; 4120 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4121 if (HasNonDllImportDtor(B.getType())) 4122 return false; 4123 } 4124 } 4125 4126 // PR9614. Avoid cases where the source code is lying to us. An available 4127 // externally function should have an equivalent function somewhere else, 4128 // but a function that calls itself through asm label/`__builtin_` trickery is 4129 // clearly not equivalent to the real implementation. 4130 // This happens in glibc's btowc and in some configure checks. 4131 return !isTriviallyRecursive(F); 4132 } 4133 4134 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4135 return CodeGenOpts.OptimizationLevel > 0; 4136 } 4137 4138 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4139 llvm::GlobalValue *GV) { 4140 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4141 4142 if (FD->isCPUSpecificMultiVersion()) { 4143 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4144 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4145 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4146 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4147 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4148 // AArch64 favors the default target version over the clone if any. 4149 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4150 TC->isFirstOfVersion(I)) 4151 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4152 // Ensure that the resolver function is also emitted. 4153 GetOrCreateMultiVersionResolver(GD); 4154 } else 4155 EmitGlobalFunctionDefinition(GD, GV); 4156 4157 // Defer the resolver emission until we can reason whether the TU 4158 // contains a default target version implementation. 4159 if (FD->isTargetVersionMultiVersion()) 4160 AddDeferredMultiVersionResolverToEmit(GD); 4161 } 4162 4163 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4164 const auto *D = cast<ValueDecl>(GD.getDecl()); 4165 4166 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4167 Context.getSourceManager(), 4168 "Generating code for declaration"); 4169 4170 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4171 // At -O0, don't generate IR for functions with available_externally 4172 // linkage. 4173 if (!shouldEmitFunction(GD)) 4174 return; 4175 4176 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4177 std::string Name; 4178 llvm::raw_string_ostream OS(Name); 4179 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4180 /*Qualified=*/true); 4181 return Name; 4182 }); 4183 4184 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4185 // Make sure to emit the definition(s) before we emit the thunks. 4186 // This is necessary for the generation of certain thunks. 4187 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4188 ABI->emitCXXStructor(GD); 4189 else if (FD->isMultiVersion()) 4190 EmitMultiVersionFunctionDefinition(GD, GV); 4191 else 4192 EmitGlobalFunctionDefinition(GD, GV); 4193 4194 if (Method->isVirtual()) 4195 getVTables().EmitThunks(GD); 4196 4197 return; 4198 } 4199 4200 if (FD->isMultiVersion()) 4201 return EmitMultiVersionFunctionDefinition(GD, GV); 4202 return EmitGlobalFunctionDefinition(GD, GV); 4203 } 4204 4205 if (const auto *VD = dyn_cast<VarDecl>(D)) 4206 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4207 4208 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4209 } 4210 4211 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4212 llvm::Function *NewFn); 4213 4214 static unsigned 4215 TargetMVPriority(const TargetInfo &TI, 4216 const CodeGenFunction::MultiVersionResolverOption &RO) { 4217 unsigned Priority = 0; 4218 unsigned NumFeatures = 0; 4219 for (StringRef Feat : RO.Conditions.Features) { 4220 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4221 NumFeatures++; 4222 } 4223 4224 if (!RO.Conditions.Architecture.empty()) 4225 Priority = std::max( 4226 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4227 4228 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4229 4230 return Priority; 4231 } 4232 4233 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4234 // TU can forward declare the function without causing problems. Particularly 4235 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4236 // work with internal linkage functions, so that the same function name can be 4237 // used with internal linkage in multiple TUs. 4238 static llvm::GlobalValue::LinkageTypes 4239 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) { 4240 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4241 if (FD->getFormalLinkage() == Linkage::Internal) 4242 return llvm::GlobalValue::InternalLinkage; 4243 return llvm::GlobalValue::WeakODRLinkage; 4244 } 4245 4246 void CodeGenModule::emitMultiVersionFunctions() { 4247 std::vector<GlobalDecl> MVFuncsToEmit; 4248 MultiVersionFuncs.swap(MVFuncsToEmit); 4249 for (GlobalDecl GD : MVFuncsToEmit) { 4250 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4251 assert(FD && "Expected a FunctionDecl"); 4252 4253 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4254 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4255 StringRef MangledName = getMangledName(CurGD); 4256 llvm::Constant *Func = GetGlobalValue(MangledName); 4257 if (!Func) { 4258 if (Decl->isDefined()) { 4259 EmitGlobalFunctionDefinition(CurGD, nullptr); 4260 Func = GetGlobalValue(MangledName); 4261 } else { 4262 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4263 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4264 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4265 /*DontDefer=*/false, ForDefinition); 4266 } 4267 assert(Func && "This should have just been created"); 4268 } 4269 return cast<llvm::Function>(Func); 4270 }; 4271 4272 // For AArch64, a resolver is only emitted if a function marked with 4273 // target_version("default")) or target_clones() is present and defined 4274 // in this TU. For other architectures it is always emitted. 4275 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4276 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4277 4278 getContext().forEachMultiversionedFunctionVersion( 4279 FD, [&](const FunctionDecl *CurFD) { 4280 llvm::SmallVector<StringRef, 8> Feats; 4281 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4282 4283 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4284 TA->getAddedFeatures(Feats); 4285 llvm::Function *Func = createFunction(CurFD); 4286 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4287 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4288 if (TVA->isDefaultVersion() && IsDefined) 4289 ShouldEmitResolver = true; 4290 TVA->getFeatures(Feats); 4291 llvm::Function *Func = createFunction(CurFD); 4292 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4293 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4294 if (IsDefined) 4295 ShouldEmitResolver = true; 4296 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4297 if (!TC->isFirstOfVersion(I)) 4298 continue; 4299 4300 llvm::Function *Func = createFunction(CurFD, I); 4301 StringRef Architecture; 4302 Feats.clear(); 4303 if (getTarget().getTriple().isAArch64()) 4304 TC->getFeatures(Feats, I); 4305 else if (getTarget().getTriple().isRISCV()) { 4306 StringRef Version = TC->getFeatureStr(I); 4307 Feats.push_back(Version); 4308 } else { 4309 StringRef Version = TC->getFeatureStr(I); 4310 if (Version.starts_with("arch=")) 4311 Architecture = Version.drop_front(sizeof("arch=") - 1); 4312 else if (Version != "default") 4313 Feats.push_back(Version); 4314 } 4315 Options.emplace_back(Func, Architecture, Feats); 4316 } 4317 } else 4318 llvm_unreachable("unexpected MultiVersionKind"); 4319 }); 4320 4321 if (!ShouldEmitResolver) 4322 continue; 4323 4324 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4325 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4326 ResolverConstant = IFunc->getResolver(); 4327 if (FD->isTargetClonesMultiVersion() && 4328 !getTarget().getTriple().isAArch64()) { 4329 std::string MangledName = getMangledNameImpl( 4330 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4331 if (!GetGlobalValue(MangledName + ".ifunc")) { 4332 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4333 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4334 // In prior versions of Clang, the mangling for ifuncs incorrectly 4335 // included an .ifunc suffix. This alias is generated for backward 4336 // compatibility. It is deprecated, and may be removed in the future. 4337 auto *Alias = llvm::GlobalAlias::create( 4338 DeclTy, 0, getMultiversionLinkage(*this, GD), 4339 MangledName + ".ifunc", IFunc, &getModule()); 4340 SetCommonAttributes(FD, Alias); 4341 } 4342 } 4343 } 4344 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4345 4346 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4347 4348 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4349 ResolverFunc->setComdat( 4350 getModule().getOrInsertComdat(ResolverFunc->getName())); 4351 4352 const TargetInfo &TI = getTarget(); 4353 llvm::stable_sort( 4354 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4355 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4356 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4357 }); 4358 CodeGenFunction CGF(*this); 4359 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4360 } 4361 4362 // Ensure that any additions to the deferred decls list caused by emitting a 4363 // variant are emitted. This can happen when the variant itself is inline and 4364 // calls a function without linkage. 4365 if (!MVFuncsToEmit.empty()) 4366 EmitDeferred(); 4367 4368 // Ensure that any additions to the multiversion funcs list from either the 4369 // deferred decls or the multiversion functions themselves are emitted. 4370 if (!MultiVersionFuncs.empty()) 4371 emitMultiVersionFunctions(); 4372 } 4373 4374 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4375 llvm::Constant *New) { 4376 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4377 New->takeName(Old); 4378 Old->replaceAllUsesWith(New); 4379 Old->eraseFromParent(); 4380 } 4381 4382 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4383 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4384 assert(FD && "Not a FunctionDecl?"); 4385 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4386 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4387 assert(DD && "Not a cpu_dispatch Function?"); 4388 4389 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4390 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4391 4392 StringRef ResolverName = getMangledName(GD); 4393 UpdateMultiVersionNames(GD, FD, ResolverName); 4394 4395 llvm::Type *ResolverType; 4396 GlobalDecl ResolverGD; 4397 if (getTarget().supportsIFunc()) { 4398 ResolverType = llvm::FunctionType::get( 4399 llvm::PointerType::get(DeclTy, 4400 getTypes().getTargetAddressSpace(FD->getType())), 4401 false); 4402 } 4403 else { 4404 ResolverType = DeclTy; 4405 ResolverGD = GD; 4406 } 4407 4408 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4409 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4410 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4411 if (supportsCOMDAT()) 4412 ResolverFunc->setComdat( 4413 getModule().getOrInsertComdat(ResolverFunc->getName())); 4414 4415 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4416 const TargetInfo &Target = getTarget(); 4417 unsigned Index = 0; 4418 for (const IdentifierInfo *II : DD->cpus()) { 4419 // Get the name of the target function so we can look it up/create it. 4420 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4421 getCPUSpecificMangling(*this, II->getName()); 4422 4423 llvm::Constant *Func = GetGlobalValue(MangledName); 4424 4425 if (!Func) { 4426 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4427 if (ExistingDecl.getDecl() && 4428 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4429 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4430 Func = GetGlobalValue(MangledName); 4431 } else { 4432 if (!ExistingDecl.getDecl()) 4433 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4434 4435 Func = GetOrCreateLLVMFunction( 4436 MangledName, DeclTy, ExistingDecl, 4437 /*ForVTable=*/false, /*DontDefer=*/true, 4438 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4439 } 4440 } 4441 4442 llvm::SmallVector<StringRef, 32> Features; 4443 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4444 llvm::transform(Features, Features.begin(), 4445 [](StringRef Str) { return Str.substr(1); }); 4446 llvm::erase_if(Features, [&Target](StringRef Feat) { 4447 return !Target.validateCpuSupports(Feat); 4448 }); 4449 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4450 ++Index; 4451 } 4452 4453 llvm::stable_sort( 4454 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4455 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4456 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4457 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4458 }); 4459 4460 // If the list contains multiple 'default' versions, such as when it contains 4461 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4462 // always run on at least a 'pentium'). We do this by deleting the 'least 4463 // advanced' (read, lowest mangling letter). 4464 while (Options.size() > 1 && 4465 llvm::all_of(llvm::X86::getCpuSupportsMask( 4466 (Options.end() - 2)->Conditions.Features), 4467 [](auto X) { return X == 0; })) { 4468 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4469 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4470 if (LHSName.compare(RHSName) < 0) 4471 Options.erase(Options.end() - 2); 4472 else 4473 Options.erase(Options.end() - 1); 4474 } 4475 4476 CodeGenFunction CGF(*this); 4477 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4478 4479 if (getTarget().supportsIFunc()) { 4480 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4481 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4482 unsigned AS = IFunc->getType()->getPointerAddressSpace(); 4483 4484 // Fix up function declarations that were created for cpu_specific before 4485 // cpu_dispatch was known 4486 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4487 auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "", 4488 ResolverFunc, &getModule()); 4489 replaceDeclarationWith(IFunc, GI); 4490 IFunc = GI; 4491 } 4492 4493 std::string AliasName = getMangledNameImpl( 4494 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4495 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4496 if (!AliasFunc) { 4497 auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName, 4498 IFunc, &getModule()); 4499 SetCommonAttributes(GD, GA); 4500 } 4501 } 4502 } 4503 4504 /// Adds a declaration to the list of multi version functions if not present. 4505 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4506 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4507 assert(FD && "Not a FunctionDecl?"); 4508 4509 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4510 std::string MangledName = 4511 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4512 if (!DeferredResolversToEmit.insert(MangledName).second) 4513 return; 4514 } 4515 MultiVersionFuncs.push_back(GD); 4516 } 4517 4518 /// If a dispatcher for the specified mangled name is not in the module, create 4519 /// and return it. The dispatcher is either an llvm Function with the specified 4520 /// type, or a global ifunc. 4521 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4522 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4523 assert(FD && "Not a FunctionDecl?"); 4524 4525 std::string MangledName = 4526 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4527 4528 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4529 // a separate resolver). 4530 std::string ResolverName = MangledName; 4531 if (getTarget().supportsIFunc()) { 4532 switch (FD->getMultiVersionKind()) { 4533 case MultiVersionKind::None: 4534 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4535 case MultiVersionKind::Target: 4536 case MultiVersionKind::CPUSpecific: 4537 case MultiVersionKind::CPUDispatch: 4538 ResolverName += ".ifunc"; 4539 break; 4540 case MultiVersionKind::TargetClones: 4541 case MultiVersionKind::TargetVersion: 4542 break; 4543 } 4544 } else if (FD->isTargetMultiVersion()) { 4545 ResolverName += ".resolver"; 4546 } 4547 4548 // If the resolver has already been created, just return it. This lookup may 4549 // yield a function declaration instead of a resolver on AArch64. That is 4550 // because we didn't know whether a resolver will be generated when we first 4551 // encountered a use of the symbol named after this resolver. Therefore, 4552 // targets which support ifuncs should not return here unless we actually 4553 // found an ifunc. 4554 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4555 if (ResolverGV && 4556 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4557 return ResolverGV; 4558 4559 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4560 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4561 4562 // The resolver needs to be created. For target and target_clones, defer 4563 // creation until the end of the TU. 4564 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4565 AddDeferredMultiVersionResolverToEmit(GD); 4566 4567 // For cpu_specific, don't create an ifunc yet because we don't know if the 4568 // cpu_dispatch will be emitted in this translation unit. 4569 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4570 unsigned AS = getTypes().getTargetAddressSpace(FD->getType()); 4571 llvm::Type *ResolverType = 4572 llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false); 4573 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4574 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4575 /*ForVTable=*/false); 4576 llvm::GlobalIFunc *GIF = 4577 llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD), 4578 "", Resolver, &getModule()); 4579 GIF->setName(ResolverName); 4580 SetCommonAttributes(FD, GIF); 4581 if (ResolverGV) 4582 replaceDeclarationWith(ResolverGV, GIF); 4583 return GIF; 4584 } 4585 4586 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4587 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4588 assert(isa<llvm::GlobalValue>(Resolver) && 4589 "Resolver should be created for the first time"); 4590 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4591 if (ResolverGV) 4592 replaceDeclarationWith(ResolverGV, Resolver); 4593 return Resolver; 4594 } 4595 4596 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4597 const llvm::GlobalValue *GV) const { 4598 auto SC = GV->getDLLStorageClass(); 4599 if (SC == llvm::GlobalValue::DefaultStorageClass) 4600 return false; 4601 const Decl *MRD = D->getMostRecentDecl(); 4602 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4603 !MRD->hasAttr<DLLImportAttr>()) || 4604 (SC == llvm::GlobalValue::DLLExportStorageClass && 4605 !MRD->hasAttr<DLLExportAttr>())) && 4606 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4607 } 4608 4609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4610 /// module, create and return an llvm Function with the specified type. If there 4611 /// is something in the module with the specified name, return it potentially 4612 /// bitcasted to the right type. 4613 /// 4614 /// If D is non-null, it specifies a decl that correspond to this. This is used 4615 /// to set the attributes on the function when it is first created. 4616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4617 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4618 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4619 ForDefinition_t IsForDefinition) { 4620 const Decl *D = GD.getDecl(); 4621 4622 std::string NameWithoutMultiVersionMangling; 4623 // Any attempts to use a MultiVersion function should result in retrieving 4624 // the iFunc instead. Name Mangling will handle the rest of the changes. 4625 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4626 // For the device mark the function as one that should be emitted. 4627 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4628 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4629 !DontDefer && !IsForDefinition) { 4630 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4631 GlobalDecl GDDef; 4632 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4633 GDDef = GlobalDecl(CD, GD.getCtorType()); 4634 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4635 GDDef = GlobalDecl(DD, GD.getDtorType()); 4636 else 4637 GDDef = GlobalDecl(FDDef); 4638 EmitGlobal(GDDef); 4639 } 4640 } 4641 4642 if (FD->isMultiVersion()) { 4643 UpdateMultiVersionNames(GD, FD, MangledName); 4644 if (!IsForDefinition) { 4645 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4646 // function is used. Instead we defer the emission until we see a 4647 // default definition. In the meantime we just reference the symbol 4648 // without FMV mangling (it may or may not be replaced later). 4649 if (getTarget().getTriple().isAArch64()) { 4650 AddDeferredMultiVersionResolverToEmit(GD); 4651 NameWithoutMultiVersionMangling = getMangledNameImpl( 4652 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4653 } else 4654 return GetOrCreateMultiVersionResolver(GD); 4655 } 4656 } 4657 } 4658 4659 if (!NameWithoutMultiVersionMangling.empty()) 4660 MangledName = NameWithoutMultiVersionMangling; 4661 4662 // Lookup the entry, lazily creating it if necessary. 4663 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4664 if (Entry) { 4665 if (WeakRefReferences.erase(Entry)) { 4666 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4667 if (FD && !FD->hasAttr<WeakAttr>()) 4668 Entry->setLinkage(llvm::Function::ExternalLinkage); 4669 } 4670 4671 // Handle dropped DLL attributes. 4672 if (D && shouldDropDLLAttribute(D, Entry)) { 4673 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4674 setDSOLocal(Entry); 4675 } 4676 4677 // If there are two attempts to define the same mangled name, issue an 4678 // error. 4679 if (IsForDefinition && !Entry->isDeclaration()) { 4680 GlobalDecl OtherGD; 4681 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4682 // to make sure that we issue an error only once. 4683 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4684 (GD.getCanonicalDecl().getDecl() != 4685 OtherGD.getCanonicalDecl().getDecl()) && 4686 DiagnosedConflictingDefinitions.insert(GD).second) { 4687 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4688 << MangledName; 4689 getDiags().Report(OtherGD.getDecl()->getLocation(), 4690 diag::note_previous_definition); 4691 } 4692 } 4693 4694 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4695 (Entry->getValueType() == Ty)) { 4696 return Entry; 4697 } 4698 4699 // Make sure the result is of the correct type. 4700 // (If function is requested for a definition, we always need to create a new 4701 // function, not just return a bitcast.) 4702 if (!IsForDefinition) 4703 return Entry; 4704 } 4705 4706 // This function doesn't have a complete type (for example, the return 4707 // type is an incomplete struct). Use a fake type instead, and make 4708 // sure not to try to set attributes. 4709 bool IsIncompleteFunction = false; 4710 4711 llvm::FunctionType *FTy; 4712 if (isa<llvm::FunctionType>(Ty)) { 4713 FTy = cast<llvm::FunctionType>(Ty); 4714 } else { 4715 FTy = llvm::FunctionType::get(VoidTy, false); 4716 IsIncompleteFunction = true; 4717 } 4718 4719 llvm::Function *F = 4720 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4721 Entry ? StringRef() : MangledName, &getModule()); 4722 4723 // Store the declaration associated with this function so it is potentially 4724 // updated by further declarations or definitions and emitted at the end. 4725 if (D && D->hasAttr<AnnotateAttr>()) 4726 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4727 4728 // If we already created a function with the same mangled name (but different 4729 // type) before, take its name and add it to the list of functions to be 4730 // replaced with F at the end of CodeGen. 4731 // 4732 // This happens if there is a prototype for a function (e.g. "int f()") and 4733 // then a definition of a different type (e.g. "int f(int x)"). 4734 if (Entry) { 4735 F->takeName(Entry); 4736 4737 // This might be an implementation of a function without a prototype, in 4738 // which case, try to do special replacement of calls which match the new 4739 // prototype. The really key thing here is that we also potentially drop 4740 // arguments from the call site so as to make a direct call, which makes the 4741 // inliner happier and suppresses a number of optimizer warnings (!) about 4742 // dropping arguments. 4743 if (!Entry->use_empty()) { 4744 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4745 Entry->removeDeadConstantUsers(); 4746 } 4747 4748 addGlobalValReplacement(Entry, F); 4749 } 4750 4751 assert(F->getName() == MangledName && "name was uniqued!"); 4752 if (D) 4753 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4754 if (ExtraAttrs.hasFnAttrs()) { 4755 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4756 F->addFnAttrs(B); 4757 } 4758 4759 if (!DontDefer) { 4760 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4761 // each other bottoming out with the base dtor. Therefore we emit non-base 4762 // dtors on usage, even if there is no dtor definition in the TU. 4763 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4764 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4765 GD.getDtorType())) 4766 addDeferredDeclToEmit(GD); 4767 4768 // This is the first use or definition of a mangled name. If there is a 4769 // deferred decl with this name, remember that we need to emit it at the end 4770 // of the file. 4771 auto DDI = DeferredDecls.find(MangledName); 4772 if (DDI != DeferredDecls.end()) { 4773 // Move the potentially referenced deferred decl to the 4774 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4775 // don't need it anymore). 4776 addDeferredDeclToEmit(DDI->second); 4777 DeferredDecls.erase(DDI); 4778 4779 // Otherwise, there are cases we have to worry about where we're 4780 // using a declaration for which we must emit a definition but where 4781 // we might not find a top-level definition: 4782 // - member functions defined inline in their classes 4783 // - friend functions defined inline in some class 4784 // - special member functions with implicit definitions 4785 // If we ever change our AST traversal to walk into class methods, 4786 // this will be unnecessary. 4787 // 4788 // We also don't emit a definition for a function if it's going to be an 4789 // entry in a vtable, unless it's already marked as used. 4790 } else if (getLangOpts().CPlusPlus && D) { 4791 // Look for a declaration that's lexically in a record. 4792 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4793 FD = FD->getPreviousDecl()) { 4794 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4795 if (FD->doesThisDeclarationHaveABody()) { 4796 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4797 break; 4798 } 4799 } 4800 } 4801 } 4802 } 4803 4804 // Make sure the result is of the requested type. 4805 if (!IsIncompleteFunction) { 4806 assert(F->getFunctionType() == Ty); 4807 return F; 4808 } 4809 4810 return F; 4811 } 4812 4813 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4814 /// non-null, then this function will use the specified type if it has to 4815 /// create it (this occurs when we see a definition of the function). 4816 llvm::Constant * 4817 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4818 bool DontDefer, 4819 ForDefinition_t IsForDefinition) { 4820 // If there was no specific requested type, just convert it now. 4821 if (!Ty) { 4822 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4823 Ty = getTypes().ConvertType(FD->getType()); 4824 } 4825 4826 // Devirtualized destructor calls may come through here instead of via 4827 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4828 // of the complete destructor when necessary. 4829 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4830 if (getTarget().getCXXABI().isMicrosoft() && 4831 GD.getDtorType() == Dtor_Complete && 4832 DD->getParent()->getNumVBases() == 0) 4833 GD = GlobalDecl(DD, Dtor_Base); 4834 } 4835 4836 StringRef MangledName = getMangledName(GD); 4837 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4838 /*IsThunk=*/false, llvm::AttributeList(), 4839 IsForDefinition); 4840 // Returns kernel handle for HIP kernel stub function. 4841 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4842 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4843 auto *Handle = getCUDARuntime().getKernelHandle( 4844 cast<llvm::Function>(F->stripPointerCasts()), GD); 4845 if (IsForDefinition) 4846 return F; 4847 return Handle; 4848 } 4849 return F; 4850 } 4851 4852 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4853 llvm::GlobalValue *F = 4854 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4855 4856 return llvm::NoCFIValue::get(F); 4857 } 4858 4859 static const FunctionDecl * 4860 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4861 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4862 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4863 4864 IdentifierInfo &CII = C.Idents.get(Name); 4865 for (const auto *Result : DC->lookup(&CII)) 4866 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4867 return FD; 4868 4869 if (!C.getLangOpts().CPlusPlus) 4870 return nullptr; 4871 4872 // Demangle the premangled name from getTerminateFn() 4873 IdentifierInfo &CXXII = 4874 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4875 ? C.Idents.get("terminate") 4876 : C.Idents.get(Name); 4877 4878 for (const auto &N : {"__cxxabiv1", "std"}) { 4879 IdentifierInfo &NS = C.Idents.get(N); 4880 for (const auto *Result : DC->lookup(&NS)) { 4881 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4882 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4883 for (const auto *Result : LSD->lookup(&NS)) 4884 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4885 break; 4886 4887 if (ND) 4888 for (const auto *Result : ND->lookup(&CXXII)) 4889 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4890 return FD; 4891 } 4892 } 4893 4894 return nullptr; 4895 } 4896 4897 /// CreateRuntimeFunction - Create a new runtime function with the specified 4898 /// type and name. 4899 llvm::FunctionCallee 4900 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4901 llvm::AttributeList ExtraAttrs, bool Local, 4902 bool AssumeConvergent) { 4903 if (AssumeConvergent) { 4904 ExtraAttrs = 4905 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4906 } 4907 4908 llvm::Constant *C = 4909 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4910 /*DontDefer=*/false, /*IsThunk=*/false, 4911 ExtraAttrs); 4912 4913 if (auto *F = dyn_cast<llvm::Function>(C)) { 4914 if (F->empty()) { 4915 F->setCallingConv(getRuntimeCC()); 4916 4917 // In Windows Itanium environments, try to mark runtime functions 4918 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4919 // will link their standard library statically or dynamically. Marking 4920 // functions imported when they are not imported can cause linker errors 4921 // and warnings. 4922 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4923 !getCodeGenOpts().LTOVisibilityPublicStd) { 4924 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4925 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4926 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4927 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4928 } 4929 } 4930 setDSOLocal(F); 4931 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4932 // of trying to approximate the attributes using the LLVM function 4933 // signature. This requires revising the API of CreateRuntimeFunction(). 4934 markRegisterParameterAttributes(F); 4935 } 4936 } 4937 4938 return {FTy, C}; 4939 } 4940 4941 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4942 /// create and return an llvm GlobalVariable with the specified type and address 4943 /// space. If there is something in the module with the specified name, return 4944 /// it potentially bitcasted to the right type. 4945 /// 4946 /// If D is non-null, it specifies a decl that correspond to this. This is used 4947 /// to set the attributes on the global when it is first created. 4948 /// 4949 /// If IsForDefinition is true, it is guaranteed that an actual global with 4950 /// type Ty will be returned, not conversion of a variable with the same 4951 /// mangled name but some other type. 4952 llvm::Constant * 4953 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4954 LangAS AddrSpace, const VarDecl *D, 4955 ForDefinition_t IsForDefinition) { 4956 // Lookup the entry, lazily creating it if necessary. 4957 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4958 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4959 if (Entry) { 4960 if (WeakRefReferences.erase(Entry)) { 4961 if (D && !D->hasAttr<WeakAttr>()) 4962 Entry->setLinkage(llvm::Function::ExternalLinkage); 4963 } 4964 4965 // Handle dropped DLL attributes. 4966 if (D && shouldDropDLLAttribute(D, Entry)) 4967 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4968 4969 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4970 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4971 4972 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4973 return Entry; 4974 4975 // If there are two attempts to define the same mangled name, issue an 4976 // error. 4977 if (IsForDefinition && !Entry->isDeclaration()) { 4978 GlobalDecl OtherGD; 4979 const VarDecl *OtherD; 4980 4981 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4982 // to make sure that we issue an error only once. 4983 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4984 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4985 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4986 OtherD->hasInit() && 4987 DiagnosedConflictingDefinitions.insert(D).second) { 4988 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4989 << MangledName; 4990 getDiags().Report(OtherGD.getDecl()->getLocation(), 4991 diag::note_previous_definition); 4992 } 4993 } 4994 4995 // Make sure the result is of the correct type. 4996 if (Entry->getType()->getAddressSpace() != TargetAS) 4997 return llvm::ConstantExpr::getAddrSpaceCast( 4998 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4999 5000 // (If global is requested for a definition, we always need to create a new 5001 // global, not just return a bitcast.) 5002 if (!IsForDefinition) 5003 return Entry; 5004 } 5005 5006 auto DAddrSpace = GetGlobalVarAddressSpace(D); 5007 5008 auto *GV = new llvm::GlobalVariable( 5009 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 5010 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 5011 getContext().getTargetAddressSpace(DAddrSpace)); 5012 5013 // If we already created a global with the same mangled name (but different 5014 // type) before, take its name and remove it from its parent. 5015 if (Entry) { 5016 GV->takeName(Entry); 5017 5018 if (!Entry->use_empty()) { 5019 Entry->replaceAllUsesWith(GV); 5020 } 5021 5022 Entry->eraseFromParent(); 5023 } 5024 5025 // This is the first use or definition of a mangled name. If there is a 5026 // deferred decl with this name, remember that we need to emit it at the end 5027 // of the file. 5028 auto DDI = DeferredDecls.find(MangledName); 5029 if (DDI != DeferredDecls.end()) { 5030 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5031 // list, and remove it from DeferredDecls (since we don't need it anymore). 5032 addDeferredDeclToEmit(DDI->second); 5033 DeferredDecls.erase(DDI); 5034 } 5035 5036 // Handle things which are present even on external declarations. 5037 if (D) { 5038 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5039 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5040 5041 // FIXME: This code is overly simple and should be merged with other global 5042 // handling. 5043 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5044 5045 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5046 5047 setLinkageForGV(GV, D); 5048 5049 if (D->getTLSKind()) { 5050 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5051 CXXThreadLocals.push_back(D); 5052 setTLSMode(GV, *D); 5053 } 5054 5055 setGVProperties(GV, D); 5056 5057 // If required by the ABI, treat declarations of static data members with 5058 // inline initializers as definitions. 5059 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5060 EmitGlobalVarDefinition(D); 5061 } 5062 5063 // Emit section information for extern variables. 5064 if (D->hasExternalStorage()) { 5065 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5066 GV->setSection(SA->getName()); 5067 } 5068 5069 // Handle XCore specific ABI requirements. 5070 if (getTriple().getArch() == llvm::Triple::xcore && 5071 D->getLanguageLinkage() == CLanguageLinkage && 5072 D->getType().isConstant(Context) && 5073 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5074 GV->setSection(".cp.rodata"); 5075 5076 // Handle code model attribute 5077 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5078 GV->setCodeModel(CMA->getModel()); 5079 5080 // Check if we a have a const declaration with an initializer, we may be 5081 // able to emit it as available_externally to expose it's value to the 5082 // optimizer. 5083 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5084 D->getType().isConstQualified() && !GV->hasInitializer() && 5085 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5086 const auto *Record = 5087 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5088 bool HasMutableFields = Record && Record->hasMutableFields(); 5089 if (!HasMutableFields) { 5090 const VarDecl *InitDecl; 5091 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5092 if (InitExpr) { 5093 ConstantEmitter emitter(*this); 5094 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5095 if (Init) { 5096 auto *InitType = Init->getType(); 5097 if (GV->getValueType() != InitType) { 5098 // The type of the initializer does not match the definition. 5099 // This happens when an initializer has a different type from 5100 // the type of the global (because of padding at the end of a 5101 // structure for instance). 5102 GV->setName(StringRef()); 5103 // Make a new global with the correct type, this is now guaranteed 5104 // to work. 5105 auto *NewGV = cast<llvm::GlobalVariable>( 5106 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5107 ->stripPointerCasts()); 5108 5109 // Erase the old global, since it is no longer used. 5110 GV->eraseFromParent(); 5111 GV = NewGV; 5112 } else { 5113 GV->setInitializer(Init); 5114 GV->setConstant(true); 5115 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5116 } 5117 emitter.finalize(GV); 5118 } 5119 } 5120 } 5121 } 5122 } 5123 5124 if (D && 5125 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5126 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5127 // External HIP managed variables needed to be recorded for transformation 5128 // in both device and host compilations. 5129 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5130 D->hasExternalStorage()) 5131 getCUDARuntime().handleVarRegistration(D, *GV); 5132 } 5133 5134 if (D) 5135 SanitizerMD->reportGlobal(GV, *D); 5136 5137 LangAS ExpectedAS = 5138 D ? D->getType().getAddressSpace() 5139 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5140 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5141 if (DAddrSpace != ExpectedAS) { 5142 return getTargetCodeGenInfo().performAddrSpaceCast( 5143 *this, GV, DAddrSpace, ExpectedAS, 5144 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5145 } 5146 5147 return GV; 5148 } 5149 5150 llvm::Constant * 5151 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5152 const Decl *D = GD.getDecl(); 5153 5154 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5155 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5156 /*DontDefer=*/false, IsForDefinition); 5157 5158 if (isa<CXXMethodDecl>(D)) { 5159 auto FInfo = 5160 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5161 auto Ty = getTypes().GetFunctionType(*FInfo); 5162 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5163 IsForDefinition); 5164 } 5165 5166 if (isa<FunctionDecl>(D)) { 5167 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5168 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5169 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5170 IsForDefinition); 5171 } 5172 5173 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5174 } 5175 5176 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5177 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5178 llvm::Align Alignment) { 5179 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5180 llvm::GlobalVariable *OldGV = nullptr; 5181 5182 if (GV) { 5183 // Check if the variable has the right type. 5184 if (GV->getValueType() == Ty) 5185 return GV; 5186 5187 // Because C++ name mangling, the only way we can end up with an already 5188 // existing global with the same name is if it has been declared extern "C". 5189 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5190 OldGV = GV; 5191 } 5192 5193 // Create a new variable. 5194 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5195 Linkage, nullptr, Name); 5196 5197 if (OldGV) { 5198 // Replace occurrences of the old variable if needed. 5199 GV->takeName(OldGV); 5200 5201 if (!OldGV->use_empty()) { 5202 OldGV->replaceAllUsesWith(GV); 5203 } 5204 5205 OldGV->eraseFromParent(); 5206 } 5207 5208 if (supportsCOMDAT() && GV->isWeakForLinker() && 5209 !GV->hasAvailableExternallyLinkage()) 5210 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5211 5212 GV->setAlignment(Alignment); 5213 5214 return GV; 5215 } 5216 5217 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5218 /// given global variable. If Ty is non-null and if the global doesn't exist, 5219 /// then it will be created with the specified type instead of whatever the 5220 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5221 /// that an actual global with type Ty will be returned, not conversion of a 5222 /// variable with the same mangled name but some other type. 5223 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5224 llvm::Type *Ty, 5225 ForDefinition_t IsForDefinition) { 5226 assert(D->hasGlobalStorage() && "Not a global variable"); 5227 QualType ASTTy = D->getType(); 5228 if (!Ty) 5229 Ty = getTypes().ConvertTypeForMem(ASTTy); 5230 5231 StringRef MangledName = getMangledName(D); 5232 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5233 IsForDefinition); 5234 } 5235 5236 /// CreateRuntimeVariable - Create a new runtime global variable with the 5237 /// specified type and name. 5238 llvm::Constant * 5239 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5240 StringRef Name) { 5241 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5242 : LangAS::Default; 5243 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5244 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5245 return Ret; 5246 } 5247 5248 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5249 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5250 5251 StringRef MangledName = getMangledName(D); 5252 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5253 5254 // We already have a definition, not declaration, with the same mangled name. 5255 // Emitting of declaration is not required (and actually overwrites emitted 5256 // definition). 5257 if (GV && !GV->isDeclaration()) 5258 return; 5259 5260 // If we have not seen a reference to this variable yet, place it into the 5261 // deferred declarations table to be emitted if needed later. 5262 if (!MustBeEmitted(D) && !GV) { 5263 DeferredDecls[MangledName] = D; 5264 return; 5265 } 5266 5267 // The tentative definition is the only definition. 5268 EmitGlobalVarDefinition(D); 5269 } 5270 5271 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5272 if (auto const *V = dyn_cast<const VarDecl>(D)) 5273 EmitExternalVarDeclaration(V); 5274 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5275 EmitExternalFunctionDeclaration(FD); 5276 } 5277 5278 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5279 return Context.toCharUnitsFromBits( 5280 getDataLayout().getTypeStoreSizeInBits(Ty)); 5281 } 5282 5283 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5284 if (LangOpts.OpenCL) { 5285 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5286 assert(AS == LangAS::opencl_global || 5287 AS == LangAS::opencl_global_device || 5288 AS == LangAS::opencl_global_host || 5289 AS == LangAS::opencl_constant || 5290 AS == LangAS::opencl_local || 5291 AS >= LangAS::FirstTargetAddressSpace); 5292 return AS; 5293 } 5294 5295 if (LangOpts.SYCLIsDevice && 5296 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5297 return LangAS::sycl_global; 5298 5299 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5300 if (D) { 5301 if (D->hasAttr<CUDAConstantAttr>()) 5302 return LangAS::cuda_constant; 5303 if (D->hasAttr<CUDASharedAttr>()) 5304 return LangAS::cuda_shared; 5305 if (D->hasAttr<CUDADeviceAttr>()) 5306 return LangAS::cuda_device; 5307 if (D->getType().isConstQualified()) 5308 return LangAS::cuda_constant; 5309 } 5310 return LangAS::cuda_device; 5311 } 5312 5313 if (LangOpts.OpenMP) { 5314 LangAS AS; 5315 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5316 return AS; 5317 } 5318 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5319 } 5320 5321 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5322 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5323 if (LangOpts.OpenCL) 5324 return LangAS::opencl_constant; 5325 if (LangOpts.SYCLIsDevice) 5326 return LangAS::sycl_global; 5327 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5328 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5329 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5330 // with OpVariable instructions with Generic storage class which is not 5331 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5332 // UniformConstant storage class is not viable as pointers to it may not be 5333 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5334 return LangAS::cuda_device; 5335 if (auto AS = getTarget().getConstantAddressSpace()) 5336 return *AS; 5337 return LangAS::Default; 5338 } 5339 5340 // In address space agnostic languages, string literals are in default address 5341 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5342 // emitted in constant address space in LLVM IR. To be consistent with other 5343 // parts of AST, string literal global variables in constant address space 5344 // need to be casted to default address space before being put into address 5345 // map and referenced by other part of CodeGen. 5346 // In OpenCL, string literals are in constant address space in AST, therefore 5347 // they should not be casted to default address space. 5348 static llvm::Constant * 5349 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5350 llvm::GlobalVariable *GV) { 5351 llvm::Constant *Cast = GV; 5352 if (!CGM.getLangOpts().OpenCL) { 5353 auto AS = CGM.GetGlobalConstantAddressSpace(); 5354 if (AS != LangAS::Default) 5355 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5356 CGM, GV, AS, LangAS::Default, 5357 llvm::PointerType::get( 5358 CGM.getLLVMContext(), 5359 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5360 } 5361 return Cast; 5362 } 5363 5364 template<typename SomeDecl> 5365 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5366 llvm::GlobalValue *GV) { 5367 if (!getLangOpts().CPlusPlus) 5368 return; 5369 5370 // Must have 'used' attribute, or else inline assembly can't rely on 5371 // the name existing. 5372 if (!D->template hasAttr<UsedAttr>()) 5373 return; 5374 5375 // Must have internal linkage and an ordinary name. 5376 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5377 return; 5378 5379 // Must be in an extern "C" context. Entities declared directly within 5380 // a record are not extern "C" even if the record is in such a context. 5381 const SomeDecl *First = D->getFirstDecl(); 5382 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5383 return; 5384 5385 // OK, this is an internal linkage entity inside an extern "C" linkage 5386 // specification. Make a note of that so we can give it the "expected" 5387 // mangled name if nothing else is using that name. 5388 std::pair<StaticExternCMap::iterator, bool> R = 5389 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5390 5391 // If we have multiple internal linkage entities with the same name 5392 // in extern "C" regions, none of them gets that name. 5393 if (!R.second) 5394 R.first->second = nullptr; 5395 } 5396 5397 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5398 if (!CGM.supportsCOMDAT()) 5399 return false; 5400 5401 if (D.hasAttr<SelectAnyAttr>()) 5402 return true; 5403 5404 GVALinkage Linkage; 5405 if (auto *VD = dyn_cast<VarDecl>(&D)) 5406 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5407 else 5408 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5409 5410 switch (Linkage) { 5411 case GVA_Internal: 5412 case GVA_AvailableExternally: 5413 case GVA_StrongExternal: 5414 return false; 5415 case GVA_DiscardableODR: 5416 case GVA_StrongODR: 5417 return true; 5418 } 5419 llvm_unreachable("No such linkage"); 5420 } 5421 5422 bool CodeGenModule::supportsCOMDAT() const { 5423 return getTriple().supportsCOMDAT(); 5424 } 5425 5426 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5427 llvm::GlobalObject &GO) { 5428 if (!shouldBeInCOMDAT(*this, D)) 5429 return; 5430 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5431 } 5432 5433 const ABIInfo &CodeGenModule::getABIInfo() { 5434 return getTargetCodeGenInfo().getABIInfo(); 5435 } 5436 5437 /// Pass IsTentative as true if you want to create a tentative definition. 5438 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5439 bool IsTentative) { 5440 // OpenCL global variables of sampler type are translated to function calls, 5441 // therefore no need to be translated. 5442 QualType ASTTy = D->getType(); 5443 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5444 return; 5445 5446 // If this is OpenMP device, check if it is legal to emit this global 5447 // normally. 5448 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5449 OpenMPRuntime->emitTargetGlobalVariable(D)) 5450 return; 5451 5452 llvm::TrackingVH<llvm::Constant> Init; 5453 bool NeedsGlobalCtor = false; 5454 // Whether the definition of the variable is available externally. 5455 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5456 // since this is the job for its original source. 5457 bool IsDefinitionAvailableExternally = 5458 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5459 bool NeedsGlobalDtor = 5460 !IsDefinitionAvailableExternally && 5461 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5462 5463 // It is helpless to emit the definition for an available_externally variable 5464 // which can't be marked as const. 5465 // We don't need to check if it needs global ctor or dtor. See the above 5466 // comment for ideas. 5467 if (IsDefinitionAvailableExternally && 5468 (!D->hasConstantInitialization() || 5469 // TODO: Update this when we have interface to check constexpr 5470 // destructor. 5471 D->needsDestruction(getContext()) || 5472 !D->getType().isConstantStorage(getContext(), true, true))) 5473 return; 5474 5475 const VarDecl *InitDecl; 5476 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5477 5478 std::optional<ConstantEmitter> emitter; 5479 5480 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5481 // as part of their declaration." Sema has already checked for 5482 // error cases, so we just need to set Init to UndefValue. 5483 bool IsCUDASharedVar = 5484 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5485 // Shadows of initialized device-side global variables are also left 5486 // undefined. 5487 // Managed Variables should be initialized on both host side and device side. 5488 bool IsCUDAShadowVar = 5489 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5490 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5491 D->hasAttr<CUDASharedAttr>()); 5492 bool IsCUDADeviceShadowVar = 5493 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5494 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5495 D->getType()->isCUDADeviceBuiltinTextureType()); 5496 if (getLangOpts().CUDA && 5497 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5498 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5499 else if (D->hasAttr<LoaderUninitializedAttr>()) 5500 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5501 else if (!InitExpr) { 5502 // This is a tentative definition; tentative definitions are 5503 // implicitly initialized with { 0 }. 5504 // 5505 // Note that tentative definitions are only emitted at the end of 5506 // a translation unit, so they should never have incomplete 5507 // type. In addition, EmitTentativeDefinition makes sure that we 5508 // never attempt to emit a tentative definition if a real one 5509 // exists. A use may still exists, however, so we still may need 5510 // to do a RAUW. 5511 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5512 Init = EmitNullConstant(D->getType()); 5513 } else { 5514 initializedGlobalDecl = GlobalDecl(D); 5515 emitter.emplace(*this); 5516 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5517 if (!Initializer) { 5518 QualType T = InitExpr->getType(); 5519 if (D->getType()->isReferenceType()) 5520 T = D->getType(); 5521 5522 if (getLangOpts().CPlusPlus) { 5523 if (InitDecl->hasFlexibleArrayInit(getContext())) 5524 ErrorUnsupported(D, "flexible array initializer"); 5525 Init = EmitNullConstant(T); 5526 5527 if (!IsDefinitionAvailableExternally) 5528 NeedsGlobalCtor = true; 5529 } else { 5530 ErrorUnsupported(D, "static initializer"); 5531 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5532 } 5533 } else { 5534 Init = Initializer; 5535 // We don't need an initializer, so remove the entry for the delayed 5536 // initializer position (just in case this entry was delayed) if we 5537 // also don't need to register a destructor. 5538 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5539 DelayedCXXInitPosition.erase(D); 5540 5541 #ifndef NDEBUG 5542 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5543 InitDecl->getFlexibleArrayInitChars(getContext()); 5544 CharUnits CstSize = CharUnits::fromQuantity( 5545 getDataLayout().getTypeAllocSize(Init->getType())); 5546 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5547 #endif 5548 } 5549 } 5550 5551 llvm::Type* InitType = Init->getType(); 5552 llvm::Constant *Entry = 5553 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5554 5555 // Strip off pointer casts if we got them. 5556 Entry = Entry->stripPointerCasts(); 5557 5558 // Entry is now either a Function or GlobalVariable. 5559 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5560 5561 // We have a definition after a declaration with the wrong type. 5562 // We must make a new GlobalVariable* and update everything that used OldGV 5563 // (a declaration or tentative definition) with the new GlobalVariable* 5564 // (which will be a definition). 5565 // 5566 // This happens if there is a prototype for a global (e.g. 5567 // "extern int x[];") and then a definition of a different type (e.g. 5568 // "int x[10];"). This also happens when an initializer has a different type 5569 // from the type of the global (this happens with unions). 5570 if (!GV || GV->getValueType() != InitType || 5571 GV->getType()->getAddressSpace() != 5572 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5573 5574 // Move the old entry aside so that we'll create a new one. 5575 Entry->setName(StringRef()); 5576 5577 // Make a new global with the correct type, this is now guaranteed to work. 5578 GV = cast<llvm::GlobalVariable>( 5579 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5580 ->stripPointerCasts()); 5581 5582 // Replace all uses of the old global with the new global 5583 llvm::Constant *NewPtrForOldDecl = 5584 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5585 Entry->getType()); 5586 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5587 5588 // Erase the old global, since it is no longer used. 5589 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5590 } 5591 5592 MaybeHandleStaticInExternC(D, GV); 5593 5594 if (D->hasAttr<AnnotateAttr>()) 5595 AddGlobalAnnotations(D, GV); 5596 5597 // Set the llvm linkage type as appropriate. 5598 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5599 5600 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5601 // the device. [...]" 5602 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5603 // __device__, declares a variable that: [...] 5604 // Is accessible from all the threads within the grid and from the host 5605 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5606 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5607 if (LangOpts.CUDA) { 5608 if (LangOpts.CUDAIsDevice) { 5609 if (Linkage != llvm::GlobalValue::InternalLinkage && 5610 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5611 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5612 D->getType()->isCUDADeviceBuiltinTextureType())) 5613 GV->setExternallyInitialized(true); 5614 } else { 5615 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5616 } 5617 getCUDARuntime().handleVarRegistration(D, *GV); 5618 } 5619 5620 GV->setInitializer(Init); 5621 if (emitter) 5622 emitter->finalize(GV); 5623 5624 // If it is safe to mark the global 'constant', do so now. 5625 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5626 D->getType().isConstantStorage(getContext(), true, true)); 5627 5628 // If it is in a read-only section, mark it 'constant'. 5629 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5630 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5631 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5632 GV->setConstant(true); 5633 } 5634 5635 CharUnits AlignVal = getContext().getDeclAlign(D); 5636 // Check for alignment specifed in an 'omp allocate' directive. 5637 if (std::optional<CharUnits> AlignValFromAllocate = 5638 getOMPAllocateAlignment(D)) 5639 AlignVal = *AlignValFromAllocate; 5640 GV->setAlignment(AlignVal.getAsAlign()); 5641 5642 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5643 // function is only defined alongside the variable, not also alongside 5644 // callers. Normally, all accesses to a thread_local go through the 5645 // thread-wrapper in order to ensure initialization has occurred, underlying 5646 // variable will never be used other than the thread-wrapper, so it can be 5647 // converted to internal linkage. 5648 // 5649 // However, if the variable has the 'constinit' attribute, it _can_ be 5650 // referenced directly, without calling the thread-wrapper, so the linkage 5651 // must not be changed. 5652 // 5653 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5654 // weak or linkonce, the de-duplication semantics are important to preserve, 5655 // so we don't change the linkage. 5656 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5657 Linkage == llvm::GlobalValue::ExternalLinkage && 5658 Context.getTargetInfo().getTriple().isOSDarwin() && 5659 !D->hasAttr<ConstInitAttr>()) 5660 Linkage = llvm::GlobalValue::InternalLinkage; 5661 5662 GV->setLinkage(Linkage); 5663 if (D->hasAttr<DLLImportAttr>()) 5664 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5665 else if (D->hasAttr<DLLExportAttr>()) 5666 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5667 else 5668 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5669 5670 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5671 // common vars aren't constant even if declared const. 5672 GV->setConstant(false); 5673 // Tentative definition of global variables may be initialized with 5674 // non-zero null pointers. In this case they should have weak linkage 5675 // since common linkage must have zero initializer and must not have 5676 // explicit section therefore cannot have non-zero initial value. 5677 if (!GV->getInitializer()->isNullValue()) 5678 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5679 } 5680 5681 setNonAliasAttributes(D, GV); 5682 5683 if (D->getTLSKind() && !GV->isThreadLocal()) { 5684 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5685 CXXThreadLocals.push_back(D); 5686 setTLSMode(GV, *D); 5687 } 5688 5689 maybeSetTrivialComdat(*D, *GV); 5690 5691 // Emit the initializer function if necessary. 5692 if (NeedsGlobalCtor || NeedsGlobalDtor) 5693 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5694 5695 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5696 5697 // Emit global variable debug information. 5698 if (CGDebugInfo *DI = getModuleDebugInfo()) 5699 if (getCodeGenOpts().hasReducedDebugInfo()) 5700 DI->EmitGlobalVariable(GV, D); 5701 } 5702 5703 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5704 if (CGDebugInfo *DI = getModuleDebugInfo()) 5705 if (getCodeGenOpts().hasReducedDebugInfo()) { 5706 QualType ASTTy = D->getType(); 5707 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5708 llvm::Constant *GV = 5709 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5710 DI->EmitExternalVariable( 5711 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5712 } 5713 } 5714 5715 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5716 if (CGDebugInfo *DI = getModuleDebugInfo()) 5717 if (getCodeGenOpts().hasReducedDebugInfo()) { 5718 auto *Ty = getTypes().ConvertType(FD->getType()); 5719 StringRef MangledName = getMangledName(FD); 5720 auto *Fn = cast<llvm::Function>( 5721 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5722 if (!Fn->getSubprogram()) 5723 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5724 } 5725 } 5726 5727 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5728 CodeGenModule &CGM, const VarDecl *D, 5729 bool NoCommon) { 5730 // Don't give variables common linkage if -fno-common was specified unless it 5731 // was overridden by a NoCommon attribute. 5732 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5733 return true; 5734 5735 // C11 6.9.2/2: 5736 // A declaration of an identifier for an object that has file scope without 5737 // an initializer, and without a storage-class specifier or with the 5738 // storage-class specifier static, constitutes a tentative definition. 5739 if (D->getInit() || D->hasExternalStorage()) 5740 return true; 5741 5742 // A variable cannot be both common and exist in a section. 5743 if (D->hasAttr<SectionAttr>()) 5744 return true; 5745 5746 // A variable cannot be both common and exist in a section. 5747 // We don't try to determine which is the right section in the front-end. 5748 // If no specialized section name is applicable, it will resort to default. 5749 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5750 D->hasAttr<PragmaClangDataSectionAttr>() || 5751 D->hasAttr<PragmaClangRelroSectionAttr>() || 5752 D->hasAttr<PragmaClangRodataSectionAttr>()) 5753 return true; 5754 5755 // Thread local vars aren't considered common linkage. 5756 if (D->getTLSKind()) 5757 return true; 5758 5759 // Tentative definitions marked with WeakImportAttr are true definitions. 5760 if (D->hasAttr<WeakImportAttr>()) 5761 return true; 5762 5763 // A variable cannot be both common and exist in a comdat. 5764 if (shouldBeInCOMDAT(CGM, *D)) 5765 return true; 5766 5767 // Declarations with a required alignment do not have common linkage in MSVC 5768 // mode. 5769 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5770 if (D->hasAttr<AlignedAttr>()) 5771 return true; 5772 QualType VarType = D->getType(); 5773 if (Context.isAlignmentRequired(VarType)) 5774 return true; 5775 5776 if (const auto *RT = VarType->getAs<RecordType>()) { 5777 const RecordDecl *RD = RT->getDecl(); 5778 for (const FieldDecl *FD : RD->fields()) { 5779 if (FD->isBitField()) 5780 continue; 5781 if (FD->hasAttr<AlignedAttr>()) 5782 return true; 5783 if (Context.isAlignmentRequired(FD->getType())) 5784 return true; 5785 } 5786 } 5787 } 5788 5789 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5790 // common symbols, so symbols with greater alignment requirements cannot be 5791 // common. 5792 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5793 // alignments for common symbols via the aligncomm directive, so this 5794 // restriction only applies to MSVC environments. 5795 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5796 Context.getTypeAlignIfKnown(D->getType()) > 5797 Context.toBits(CharUnits::fromQuantity(32))) 5798 return true; 5799 5800 return false; 5801 } 5802 5803 llvm::GlobalValue::LinkageTypes 5804 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5805 GVALinkage Linkage) { 5806 if (Linkage == GVA_Internal) 5807 return llvm::Function::InternalLinkage; 5808 5809 if (D->hasAttr<WeakAttr>()) 5810 return llvm::GlobalVariable::WeakAnyLinkage; 5811 5812 if (const auto *FD = D->getAsFunction()) 5813 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5814 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5815 5816 // We are guaranteed to have a strong definition somewhere else, 5817 // so we can use available_externally linkage. 5818 if (Linkage == GVA_AvailableExternally) 5819 return llvm::GlobalValue::AvailableExternallyLinkage; 5820 5821 // Note that Apple's kernel linker doesn't support symbol 5822 // coalescing, so we need to avoid linkonce and weak linkages there. 5823 // Normally, this means we just map to internal, but for explicit 5824 // instantiations we'll map to external. 5825 5826 // In C++, the compiler has to emit a definition in every translation unit 5827 // that references the function. We should use linkonce_odr because 5828 // a) if all references in this translation unit are optimized away, we 5829 // don't need to codegen it. b) if the function persists, it needs to be 5830 // merged with other definitions. c) C++ has the ODR, so we know the 5831 // definition is dependable. 5832 if (Linkage == GVA_DiscardableODR) 5833 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5834 : llvm::Function::InternalLinkage; 5835 5836 // An explicit instantiation of a template has weak linkage, since 5837 // explicit instantiations can occur in multiple translation units 5838 // and must all be equivalent. However, we are not allowed to 5839 // throw away these explicit instantiations. 5840 // 5841 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5842 // so say that CUDA templates are either external (for kernels) or internal. 5843 // This lets llvm perform aggressive inter-procedural optimizations. For 5844 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5845 // therefore we need to follow the normal linkage paradigm. 5846 if (Linkage == GVA_StrongODR) { 5847 if (getLangOpts().AppleKext) 5848 return llvm::Function::ExternalLinkage; 5849 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5850 !getLangOpts().GPURelocatableDeviceCode) 5851 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5852 : llvm::Function::InternalLinkage; 5853 return llvm::Function::WeakODRLinkage; 5854 } 5855 5856 // C++ doesn't have tentative definitions and thus cannot have common 5857 // linkage. 5858 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5859 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5860 CodeGenOpts.NoCommon)) 5861 return llvm::GlobalVariable::CommonLinkage; 5862 5863 // selectany symbols are externally visible, so use weak instead of 5864 // linkonce. MSVC optimizes away references to const selectany globals, so 5865 // all definitions should be the same and ODR linkage should be used. 5866 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5867 if (D->hasAttr<SelectAnyAttr>()) 5868 return llvm::GlobalVariable::WeakODRLinkage; 5869 5870 // Otherwise, we have strong external linkage. 5871 assert(Linkage == GVA_StrongExternal); 5872 return llvm::GlobalVariable::ExternalLinkage; 5873 } 5874 5875 llvm::GlobalValue::LinkageTypes 5876 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5877 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5878 return getLLVMLinkageForDeclarator(VD, Linkage); 5879 } 5880 5881 /// Replace the uses of a function that was declared with a non-proto type. 5882 /// We want to silently drop extra arguments from call sites 5883 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5884 llvm::Function *newFn) { 5885 // Fast path. 5886 if (old->use_empty()) 5887 return; 5888 5889 llvm::Type *newRetTy = newFn->getReturnType(); 5890 SmallVector<llvm::Value *, 4> newArgs; 5891 5892 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5893 5894 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5895 ui != ue; ui++) { 5896 llvm::User *user = ui->getUser(); 5897 5898 // Recognize and replace uses of bitcasts. Most calls to 5899 // unprototyped functions will use bitcasts. 5900 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5901 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5902 replaceUsesOfNonProtoConstant(bitcast, newFn); 5903 continue; 5904 } 5905 5906 // Recognize calls to the function. 5907 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5908 if (!callSite) 5909 continue; 5910 if (!callSite->isCallee(&*ui)) 5911 continue; 5912 5913 // If the return types don't match exactly, then we can't 5914 // transform this call unless it's dead. 5915 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5916 continue; 5917 5918 // Get the call site's attribute list. 5919 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5920 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5921 5922 // If the function was passed too few arguments, don't transform. 5923 unsigned newNumArgs = newFn->arg_size(); 5924 if (callSite->arg_size() < newNumArgs) 5925 continue; 5926 5927 // If extra arguments were passed, we silently drop them. 5928 // If any of the types mismatch, we don't transform. 5929 unsigned argNo = 0; 5930 bool dontTransform = false; 5931 for (llvm::Argument &A : newFn->args()) { 5932 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5933 dontTransform = true; 5934 break; 5935 } 5936 5937 // Add any parameter attributes. 5938 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5939 argNo++; 5940 } 5941 if (dontTransform) 5942 continue; 5943 5944 // Okay, we can transform this. Create the new call instruction and copy 5945 // over the required information. 5946 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5947 5948 // Copy over any operand bundles. 5949 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5950 callSite->getOperandBundlesAsDefs(newBundles); 5951 5952 llvm::CallBase *newCall; 5953 if (isa<llvm::CallInst>(callSite)) { 5954 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 5955 callSite->getIterator()); 5956 } else { 5957 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5958 newCall = llvm::InvokeInst::Create( 5959 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 5960 newArgs, newBundles, "", callSite->getIterator()); 5961 } 5962 newArgs.clear(); // for the next iteration 5963 5964 if (!newCall->getType()->isVoidTy()) 5965 newCall->takeName(callSite); 5966 newCall->setAttributes( 5967 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5968 oldAttrs.getRetAttrs(), newArgAttrs)); 5969 newCall->setCallingConv(callSite->getCallingConv()); 5970 5971 // Finally, remove the old call, replacing any uses with the new one. 5972 if (!callSite->use_empty()) 5973 callSite->replaceAllUsesWith(newCall); 5974 5975 // Copy debug location attached to CI. 5976 if (callSite->getDebugLoc()) 5977 newCall->setDebugLoc(callSite->getDebugLoc()); 5978 5979 callSitesToBeRemovedFromParent.push_back(callSite); 5980 } 5981 5982 for (auto *callSite : callSitesToBeRemovedFromParent) { 5983 callSite->eraseFromParent(); 5984 } 5985 } 5986 5987 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5988 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5989 /// existing call uses of the old function in the module, this adjusts them to 5990 /// call the new function directly. 5991 /// 5992 /// This is not just a cleanup: the always_inline pass requires direct calls to 5993 /// functions to be able to inline them. If there is a bitcast in the way, it 5994 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5995 /// run at -O0. 5996 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5997 llvm::Function *NewFn) { 5998 // If we're redefining a global as a function, don't transform it. 5999 if (!isa<llvm::Function>(Old)) return; 6000 6001 replaceUsesOfNonProtoConstant(Old, NewFn); 6002 } 6003 6004 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 6005 auto DK = VD->isThisDeclarationADefinition(); 6006 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 6007 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 6008 return; 6009 6010 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 6011 // If we have a definition, this might be a deferred decl. If the 6012 // instantiation is explicit, make sure we emit it at the end. 6013 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 6014 GetAddrOfGlobalVar(VD); 6015 6016 EmitTopLevelDecl(VD); 6017 } 6018 6019 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 6020 llvm::GlobalValue *GV) { 6021 const auto *D = cast<FunctionDecl>(GD.getDecl()); 6022 6023 // Compute the function info and LLVM type. 6024 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 6025 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 6026 6027 // Get or create the prototype for the function. 6028 if (!GV || (GV->getValueType() != Ty)) 6029 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 6030 /*DontDefer=*/true, 6031 ForDefinition)); 6032 6033 // Already emitted. 6034 if (!GV->isDeclaration()) 6035 return; 6036 6037 // We need to set linkage and visibility on the function before 6038 // generating code for it because various parts of IR generation 6039 // want to propagate this information down (e.g. to local static 6040 // declarations). 6041 auto *Fn = cast<llvm::Function>(GV); 6042 setFunctionLinkage(GD, Fn); 6043 6044 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6045 setGVProperties(Fn, GD); 6046 6047 MaybeHandleStaticInExternC(D, Fn); 6048 6049 maybeSetTrivialComdat(*D, *Fn); 6050 6051 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6052 6053 setNonAliasAttributes(GD, Fn); 6054 SetLLVMFunctionAttributesForDefinition(D, Fn); 6055 6056 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6057 AddGlobalCtor(Fn, CA->getPriority()); 6058 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6059 AddGlobalDtor(Fn, DA->getPriority(), true); 6060 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6061 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6062 } 6063 6064 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6065 const auto *D = cast<ValueDecl>(GD.getDecl()); 6066 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6067 assert(AA && "Not an alias?"); 6068 6069 StringRef MangledName = getMangledName(GD); 6070 6071 if (AA->getAliasee() == MangledName) { 6072 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6073 return; 6074 } 6075 6076 // If there is a definition in the module, then it wins over the alias. 6077 // This is dubious, but allow it to be safe. Just ignore the alias. 6078 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6079 if (Entry && !Entry->isDeclaration()) 6080 return; 6081 6082 Aliases.push_back(GD); 6083 6084 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6085 6086 // Create a reference to the named value. This ensures that it is emitted 6087 // if a deferred decl. 6088 llvm::Constant *Aliasee; 6089 llvm::GlobalValue::LinkageTypes LT; 6090 if (isa<llvm::FunctionType>(DeclTy)) { 6091 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6092 /*ForVTable=*/false); 6093 LT = getFunctionLinkage(GD); 6094 } else { 6095 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6096 /*D=*/nullptr); 6097 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6098 LT = getLLVMLinkageVarDefinition(VD); 6099 else 6100 LT = getFunctionLinkage(GD); 6101 } 6102 6103 // Create the new alias itself, but don't set a name yet. 6104 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6105 auto *GA = 6106 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6107 6108 if (Entry) { 6109 if (GA->getAliasee() == Entry) { 6110 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6111 return; 6112 } 6113 6114 assert(Entry->isDeclaration()); 6115 6116 // If there is a declaration in the module, then we had an extern followed 6117 // by the alias, as in: 6118 // extern int test6(); 6119 // ... 6120 // int test6() __attribute__((alias("test7"))); 6121 // 6122 // Remove it and replace uses of it with the alias. 6123 GA->takeName(Entry); 6124 6125 Entry->replaceAllUsesWith(GA); 6126 Entry->eraseFromParent(); 6127 } else { 6128 GA->setName(MangledName); 6129 } 6130 6131 // Set attributes which are particular to an alias; this is a 6132 // specialization of the attributes which may be set on a global 6133 // variable/function. 6134 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6135 D->isWeakImported()) { 6136 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6137 } 6138 6139 if (const auto *VD = dyn_cast<VarDecl>(D)) 6140 if (VD->getTLSKind()) 6141 setTLSMode(GA, *VD); 6142 6143 SetCommonAttributes(GD, GA); 6144 6145 // Emit global alias debug information. 6146 if (isa<VarDecl>(D)) 6147 if (CGDebugInfo *DI = getModuleDebugInfo()) 6148 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6149 } 6150 6151 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6152 const auto *D = cast<ValueDecl>(GD.getDecl()); 6153 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6154 assert(IFA && "Not an ifunc?"); 6155 6156 StringRef MangledName = getMangledName(GD); 6157 6158 if (IFA->getResolver() == MangledName) { 6159 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6160 return; 6161 } 6162 6163 // Report an error if some definition overrides ifunc. 6164 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6165 if (Entry && !Entry->isDeclaration()) { 6166 GlobalDecl OtherGD; 6167 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6168 DiagnosedConflictingDefinitions.insert(GD).second) { 6169 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6170 << MangledName; 6171 Diags.Report(OtherGD.getDecl()->getLocation(), 6172 diag::note_previous_definition); 6173 } 6174 return; 6175 } 6176 6177 Aliases.push_back(GD); 6178 6179 // The resolver might not be visited yet. Specify a dummy non-function type to 6180 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6181 // was emitted) or the whole function will be replaced (if the resolver has 6182 // not been emitted). 6183 llvm::Constant *Resolver = 6184 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6185 /*ForVTable=*/false); 6186 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6187 unsigned AS = getTypes().getTargetAddressSpace(D->getType()); 6188 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 6189 DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 6190 if (Entry) { 6191 if (GIF->getResolver() == Entry) { 6192 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6193 return; 6194 } 6195 assert(Entry->isDeclaration()); 6196 6197 // If there is a declaration in the module, then we had an extern followed 6198 // by the ifunc, as in: 6199 // extern int test(); 6200 // ... 6201 // int test() __attribute__((ifunc("resolver"))); 6202 // 6203 // Remove it and replace uses of it with the ifunc. 6204 GIF->takeName(Entry); 6205 6206 Entry->replaceAllUsesWith(GIF); 6207 Entry->eraseFromParent(); 6208 } else 6209 GIF->setName(MangledName); 6210 SetCommonAttributes(GD, GIF); 6211 } 6212 6213 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6214 ArrayRef<llvm::Type*> Tys) { 6215 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6216 Tys); 6217 } 6218 6219 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6220 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6221 const StringLiteral *Literal, bool TargetIsLSB, 6222 bool &IsUTF16, unsigned &StringLength) { 6223 StringRef String = Literal->getString(); 6224 unsigned NumBytes = String.size(); 6225 6226 // Check for simple case. 6227 if (!Literal->containsNonAsciiOrNull()) { 6228 StringLength = NumBytes; 6229 return *Map.insert(std::make_pair(String, nullptr)).first; 6230 } 6231 6232 // Otherwise, convert the UTF8 literals into a string of shorts. 6233 IsUTF16 = true; 6234 6235 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6236 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6237 llvm::UTF16 *ToPtr = &ToBuf[0]; 6238 6239 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6240 ToPtr + NumBytes, llvm::strictConversion); 6241 6242 // ConvertUTF8toUTF16 returns the length in ToPtr. 6243 StringLength = ToPtr - &ToBuf[0]; 6244 6245 // Add an explicit null. 6246 *ToPtr = 0; 6247 return *Map.insert(std::make_pair( 6248 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6249 (StringLength + 1) * 2), 6250 nullptr)).first; 6251 } 6252 6253 ConstantAddress 6254 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6255 unsigned StringLength = 0; 6256 bool isUTF16 = false; 6257 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6258 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6259 getDataLayout().isLittleEndian(), isUTF16, 6260 StringLength); 6261 6262 if (auto *C = Entry.second) 6263 return ConstantAddress( 6264 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6265 6266 const ASTContext &Context = getContext(); 6267 const llvm::Triple &Triple = getTriple(); 6268 6269 const auto CFRuntime = getLangOpts().CFRuntime; 6270 const bool IsSwiftABI = 6271 static_cast<unsigned>(CFRuntime) >= 6272 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6273 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6274 6275 // If we don't already have it, get __CFConstantStringClassReference. 6276 if (!CFConstantStringClassRef) { 6277 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6278 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6279 Ty = llvm::ArrayType::get(Ty, 0); 6280 6281 switch (CFRuntime) { 6282 default: break; 6283 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6284 case LangOptions::CoreFoundationABI::Swift5_0: 6285 CFConstantStringClassName = 6286 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6287 : "$s10Foundation19_NSCFConstantStringCN"; 6288 Ty = IntPtrTy; 6289 break; 6290 case LangOptions::CoreFoundationABI::Swift4_2: 6291 CFConstantStringClassName = 6292 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6293 : "$S10Foundation19_NSCFConstantStringCN"; 6294 Ty = IntPtrTy; 6295 break; 6296 case LangOptions::CoreFoundationABI::Swift4_1: 6297 CFConstantStringClassName = 6298 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6299 : "__T010Foundation19_NSCFConstantStringCN"; 6300 Ty = IntPtrTy; 6301 break; 6302 } 6303 6304 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6305 6306 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6307 llvm::GlobalValue *GV = nullptr; 6308 6309 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6310 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6311 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6312 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6313 6314 const VarDecl *VD = nullptr; 6315 for (const auto *Result : DC->lookup(&II)) 6316 if ((VD = dyn_cast<VarDecl>(Result))) 6317 break; 6318 6319 if (Triple.isOSBinFormatELF()) { 6320 if (!VD) 6321 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6322 } else { 6323 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6324 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6325 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6326 else 6327 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6328 } 6329 6330 setDSOLocal(GV); 6331 } 6332 } 6333 6334 // Decay array -> ptr 6335 CFConstantStringClassRef = 6336 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6337 } 6338 6339 QualType CFTy = Context.getCFConstantStringType(); 6340 6341 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6342 6343 ConstantInitBuilder Builder(*this); 6344 auto Fields = Builder.beginStruct(STy); 6345 6346 // Class pointer. 6347 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6348 6349 // Flags. 6350 if (IsSwiftABI) { 6351 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6352 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6353 } else { 6354 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6355 } 6356 6357 // String pointer. 6358 llvm::Constant *C = nullptr; 6359 if (isUTF16) { 6360 auto Arr = llvm::ArrayRef( 6361 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6362 Entry.first().size() / 2); 6363 C = llvm::ConstantDataArray::get(VMContext, Arr); 6364 } else { 6365 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6366 } 6367 6368 // Note: -fwritable-strings doesn't make the backing store strings of 6369 // CFStrings writable. 6370 auto *GV = 6371 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6372 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6373 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6374 // Don't enforce the target's minimum global alignment, since the only use 6375 // of the string is via this class initializer. 6376 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6377 : Context.getTypeAlignInChars(Context.CharTy); 6378 GV->setAlignment(Align.getAsAlign()); 6379 6380 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6381 // Without it LLVM can merge the string with a non unnamed_addr one during 6382 // LTO. Doing that changes the section it ends in, which surprises ld64. 6383 if (Triple.isOSBinFormatMachO()) 6384 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6385 : "__TEXT,__cstring,cstring_literals"); 6386 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6387 // the static linker to adjust permissions to read-only later on. 6388 else if (Triple.isOSBinFormatELF()) 6389 GV->setSection(".rodata"); 6390 6391 // String. 6392 Fields.add(GV); 6393 6394 // String length. 6395 llvm::IntegerType *LengthTy = 6396 llvm::IntegerType::get(getModule().getContext(), 6397 Context.getTargetInfo().getLongWidth()); 6398 if (IsSwiftABI) { 6399 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6400 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6401 LengthTy = Int32Ty; 6402 else 6403 LengthTy = IntPtrTy; 6404 } 6405 Fields.addInt(LengthTy, StringLength); 6406 6407 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6408 // properly aligned on 32-bit platforms. 6409 CharUnits Alignment = 6410 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6411 6412 // The struct. 6413 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6414 /*isConstant=*/false, 6415 llvm::GlobalVariable::PrivateLinkage); 6416 GV->addAttribute("objc_arc_inert"); 6417 switch (Triple.getObjectFormat()) { 6418 case llvm::Triple::UnknownObjectFormat: 6419 llvm_unreachable("unknown file format"); 6420 case llvm::Triple::DXContainer: 6421 case llvm::Triple::GOFF: 6422 case llvm::Triple::SPIRV: 6423 case llvm::Triple::XCOFF: 6424 llvm_unreachable("unimplemented"); 6425 case llvm::Triple::COFF: 6426 case llvm::Triple::ELF: 6427 case llvm::Triple::Wasm: 6428 GV->setSection("cfstring"); 6429 break; 6430 case llvm::Triple::MachO: 6431 GV->setSection("__DATA,__cfstring"); 6432 break; 6433 } 6434 Entry.second = GV; 6435 6436 return ConstantAddress(GV, GV->getValueType(), Alignment); 6437 } 6438 6439 bool CodeGenModule::getExpressionLocationsEnabled() const { 6440 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6441 } 6442 6443 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6444 if (ObjCFastEnumerationStateType.isNull()) { 6445 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6446 D->startDefinition(); 6447 6448 QualType FieldTypes[] = { 6449 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6450 Context.getPointerType(Context.UnsignedLongTy), 6451 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6452 nullptr, ArraySizeModifier::Normal, 0)}; 6453 6454 for (size_t i = 0; i < 4; ++i) { 6455 FieldDecl *Field = FieldDecl::Create(Context, 6456 D, 6457 SourceLocation(), 6458 SourceLocation(), nullptr, 6459 FieldTypes[i], /*TInfo=*/nullptr, 6460 /*BitWidth=*/nullptr, 6461 /*Mutable=*/false, 6462 ICIS_NoInit); 6463 Field->setAccess(AS_public); 6464 D->addDecl(Field); 6465 } 6466 6467 D->completeDefinition(); 6468 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6469 } 6470 6471 return ObjCFastEnumerationStateType; 6472 } 6473 6474 llvm::Constant * 6475 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6476 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6477 6478 // Don't emit it as the address of the string, emit the string data itself 6479 // as an inline array. 6480 if (E->getCharByteWidth() == 1) { 6481 SmallString<64> Str(E->getString()); 6482 6483 // Resize the string to the right size, which is indicated by its type. 6484 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6485 assert(CAT && "String literal not of constant array type!"); 6486 Str.resize(CAT->getZExtSize()); 6487 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6488 } 6489 6490 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6491 llvm::Type *ElemTy = AType->getElementType(); 6492 unsigned NumElements = AType->getNumElements(); 6493 6494 // Wide strings have either 2-byte or 4-byte elements. 6495 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6496 SmallVector<uint16_t, 32> Elements; 6497 Elements.reserve(NumElements); 6498 6499 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6500 Elements.push_back(E->getCodeUnit(i)); 6501 Elements.resize(NumElements); 6502 return llvm::ConstantDataArray::get(VMContext, Elements); 6503 } 6504 6505 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6506 SmallVector<uint32_t, 32> Elements; 6507 Elements.reserve(NumElements); 6508 6509 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6510 Elements.push_back(E->getCodeUnit(i)); 6511 Elements.resize(NumElements); 6512 return llvm::ConstantDataArray::get(VMContext, Elements); 6513 } 6514 6515 static llvm::GlobalVariable * 6516 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6517 CodeGenModule &CGM, StringRef GlobalName, 6518 CharUnits Alignment) { 6519 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6520 CGM.GetGlobalConstantAddressSpace()); 6521 6522 llvm::Module &M = CGM.getModule(); 6523 // Create a global variable for this string 6524 auto *GV = new llvm::GlobalVariable( 6525 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6526 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6527 GV->setAlignment(Alignment.getAsAlign()); 6528 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6529 if (GV->isWeakForLinker()) { 6530 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6531 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6532 } 6533 CGM.setDSOLocal(GV); 6534 6535 return GV; 6536 } 6537 6538 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6539 /// constant array for the given string literal. 6540 ConstantAddress 6541 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6542 StringRef Name) { 6543 CharUnits Alignment = 6544 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6545 6546 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6547 llvm::GlobalVariable **Entry = nullptr; 6548 if (!LangOpts.WritableStrings) { 6549 Entry = &ConstantStringMap[C]; 6550 if (auto GV = *Entry) { 6551 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6552 GV->setAlignment(Alignment.getAsAlign()); 6553 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6554 GV->getValueType(), Alignment); 6555 } 6556 } 6557 6558 SmallString<256> MangledNameBuffer; 6559 StringRef GlobalVariableName; 6560 llvm::GlobalValue::LinkageTypes LT; 6561 6562 // Mangle the string literal if that's how the ABI merges duplicate strings. 6563 // Don't do it if they are writable, since we don't want writes in one TU to 6564 // affect strings in another. 6565 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6566 !LangOpts.WritableStrings) { 6567 llvm::raw_svector_ostream Out(MangledNameBuffer); 6568 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6569 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6570 GlobalVariableName = MangledNameBuffer; 6571 } else { 6572 LT = llvm::GlobalValue::PrivateLinkage; 6573 GlobalVariableName = Name; 6574 } 6575 6576 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6577 6578 CGDebugInfo *DI = getModuleDebugInfo(); 6579 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6580 DI->AddStringLiteralDebugInfo(GV, S); 6581 6582 if (Entry) 6583 *Entry = GV; 6584 6585 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6586 6587 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6588 GV->getValueType(), Alignment); 6589 } 6590 6591 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6592 /// array for the given ObjCEncodeExpr node. 6593 ConstantAddress 6594 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6595 std::string Str; 6596 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6597 6598 return GetAddrOfConstantCString(Str); 6599 } 6600 6601 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6602 /// the literal and a terminating '\0' character. 6603 /// The result has pointer to array type. 6604 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6605 const std::string &Str, const char *GlobalName) { 6606 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6607 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6608 getContext().CharTy, /*VD=*/nullptr); 6609 6610 llvm::Constant *C = 6611 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6612 6613 // Don't share any string literals if strings aren't constant. 6614 llvm::GlobalVariable **Entry = nullptr; 6615 if (!LangOpts.WritableStrings) { 6616 Entry = &ConstantStringMap[C]; 6617 if (auto GV = *Entry) { 6618 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6619 GV->setAlignment(Alignment.getAsAlign()); 6620 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6621 GV->getValueType(), Alignment); 6622 } 6623 } 6624 6625 // Get the default prefix if a name wasn't specified. 6626 if (!GlobalName) 6627 GlobalName = ".str"; 6628 // Create a global variable for this. 6629 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6630 GlobalName, Alignment); 6631 if (Entry) 6632 *Entry = GV; 6633 6634 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6635 GV->getValueType(), Alignment); 6636 } 6637 6638 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6639 const MaterializeTemporaryExpr *E, const Expr *Init) { 6640 assert((E->getStorageDuration() == SD_Static || 6641 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6642 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6643 6644 // If we're not materializing a subobject of the temporary, keep the 6645 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6646 QualType MaterializedType = Init->getType(); 6647 if (Init == E->getSubExpr()) 6648 MaterializedType = E->getType(); 6649 6650 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6651 6652 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6653 if (!InsertResult.second) { 6654 // We've seen this before: either we already created it or we're in the 6655 // process of doing so. 6656 if (!InsertResult.first->second) { 6657 // We recursively re-entered this function, probably during emission of 6658 // the initializer. Create a placeholder. We'll clean this up in the 6659 // outer call, at the end of this function. 6660 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6661 InsertResult.first->second = new llvm::GlobalVariable( 6662 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6663 nullptr); 6664 } 6665 return ConstantAddress(InsertResult.first->second, 6666 llvm::cast<llvm::GlobalVariable>( 6667 InsertResult.first->second->stripPointerCasts()) 6668 ->getValueType(), 6669 Align); 6670 } 6671 6672 // FIXME: If an externally-visible declaration extends multiple temporaries, 6673 // we need to give each temporary the same name in every translation unit (and 6674 // we also need to make the temporaries externally-visible). 6675 SmallString<256> Name; 6676 llvm::raw_svector_ostream Out(Name); 6677 getCXXABI().getMangleContext().mangleReferenceTemporary( 6678 VD, E->getManglingNumber(), Out); 6679 6680 APValue *Value = nullptr; 6681 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6682 // If the initializer of the extending declaration is a constant 6683 // initializer, we should have a cached constant initializer for this 6684 // temporary. Note that this might have a different value from the value 6685 // computed by evaluating the initializer if the surrounding constant 6686 // expression modifies the temporary. 6687 Value = E->getOrCreateValue(false); 6688 } 6689 6690 // Try evaluating it now, it might have a constant initializer. 6691 Expr::EvalResult EvalResult; 6692 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6693 !EvalResult.hasSideEffects()) 6694 Value = &EvalResult.Val; 6695 6696 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6697 6698 std::optional<ConstantEmitter> emitter; 6699 llvm::Constant *InitialValue = nullptr; 6700 bool Constant = false; 6701 llvm::Type *Type; 6702 if (Value) { 6703 // The temporary has a constant initializer, use it. 6704 emitter.emplace(*this); 6705 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6706 MaterializedType); 6707 Constant = 6708 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6709 /*ExcludeDtor*/ false); 6710 Type = InitialValue->getType(); 6711 } else { 6712 // No initializer, the initialization will be provided when we 6713 // initialize the declaration which performed lifetime extension. 6714 Type = getTypes().ConvertTypeForMem(MaterializedType); 6715 } 6716 6717 // Create a global variable for this lifetime-extended temporary. 6718 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6719 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6720 const VarDecl *InitVD; 6721 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6722 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6723 // Temporaries defined inside a class get linkonce_odr linkage because the 6724 // class can be defined in multiple translation units. 6725 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6726 } else { 6727 // There is no need for this temporary to have external linkage if the 6728 // VarDecl has external linkage. 6729 Linkage = llvm::GlobalVariable::InternalLinkage; 6730 } 6731 } 6732 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6733 auto *GV = new llvm::GlobalVariable( 6734 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6735 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6736 if (emitter) emitter->finalize(GV); 6737 // Don't assign dllimport or dllexport to local linkage globals. 6738 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6739 setGVProperties(GV, VD); 6740 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6741 // The reference temporary should never be dllexport. 6742 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6743 } 6744 GV->setAlignment(Align.getAsAlign()); 6745 if (supportsCOMDAT() && GV->isWeakForLinker()) 6746 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6747 if (VD->getTLSKind()) 6748 setTLSMode(GV, *VD); 6749 llvm::Constant *CV = GV; 6750 if (AddrSpace != LangAS::Default) 6751 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6752 *this, GV, AddrSpace, LangAS::Default, 6753 llvm::PointerType::get( 6754 getLLVMContext(), 6755 getContext().getTargetAddressSpace(LangAS::Default))); 6756 6757 // Update the map with the new temporary. If we created a placeholder above, 6758 // replace it with the new global now. 6759 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6760 if (Entry) { 6761 Entry->replaceAllUsesWith(CV); 6762 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6763 } 6764 Entry = CV; 6765 6766 return ConstantAddress(CV, Type, Align); 6767 } 6768 6769 /// EmitObjCPropertyImplementations - Emit information for synthesized 6770 /// properties for an implementation. 6771 void CodeGenModule::EmitObjCPropertyImplementations(const 6772 ObjCImplementationDecl *D) { 6773 for (const auto *PID : D->property_impls()) { 6774 // Dynamic is just for type-checking. 6775 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6776 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6777 6778 // Determine which methods need to be implemented, some may have 6779 // been overridden. Note that ::isPropertyAccessor is not the method 6780 // we want, that just indicates if the decl came from a 6781 // property. What we want to know is if the method is defined in 6782 // this implementation. 6783 auto *Getter = PID->getGetterMethodDecl(); 6784 if (!Getter || Getter->isSynthesizedAccessorStub()) 6785 CodeGenFunction(*this).GenerateObjCGetter( 6786 const_cast<ObjCImplementationDecl *>(D), PID); 6787 auto *Setter = PID->getSetterMethodDecl(); 6788 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6789 CodeGenFunction(*this).GenerateObjCSetter( 6790 const_cast<ObjCImplementationDecl *>(D), PID); 6791 } 6792 } 6793 } 6794 6795 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6796 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6797 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6798 ivar; ivar = ivar->getNextIvar()) 6799 if (ivar->getType().isDestructedType()) 6800 return true; 6801 6802 return false; 6803 } 6804 6805 static bool AllTrivialInitializers(CodeGenModule &CGM, 6806 ObjCImplementationDecl *D) { 6807 CodeGenFunction CGF(CGM); 6808 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6809 E = D->init_end(); B != E; ++B) { 6810 CXXCtorInitializer *CtorInitExp = *B; 6811 Expr *Init = CtorInitExp->getInit(); 6812 if (!CGF.isTrivialInitializer(Init)) 6813 return false; 6814 } 6815 return true; 6816 } 6817 6818 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6819 /// for an implementation. 6820 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6821 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6822 if (needsDestructMethod(D)) { 6823 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6824 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6825 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6826 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6827 getContext().VoidTy, nullptr, D, 6828 /*isInstance=*/true, /*isVariadic=*/false, 6829 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6830 /*isImplicitlyDeclared=*/true, 6831 /*isDefined=*/false, ObjCImplementationControl::Required); 6832 D->addInstanceMethod(DTORMethod); 6833 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6834 D->setHasDestructors(true); 6835 } 6836 6837 // If the implementation doesn't have any ivar initializers, we don't need 6838 // a .cxx_construct. 6839 if (D->getNumIvarInitializers() == 0 || 6840 AllTrivialInitializers(*this, D)) 6841 return; 6842 6843 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6844 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6845 // The constructor returns 'self'. 6846 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6847 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6848 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6849 /*isVariadic=*/false, 6850 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6851 /*isImplicitlyDeclared=*/true, 6852 /*isDefined=*/false, ObjCImplementationControl::Required); 6853 D->addInstanceMethod(CTORMethod); 6854 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6855 D->setHasNonZeroConstructors(true); 6856 } 6857 6858 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6859 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6860 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6861 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6862 ErrorUnsupported(LSD, "linkage spec"); 6863 return; 6864 } 6865 6866 EmitDeclContext(LSD); 6867 } 6868 6869 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6870 // Device code should not be at top level. 6871 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6872 return; 6873 6874 std::unique_ptr<CodeGenFunction> &CurCGF = 6875 GlobalTopLevelStmtBlockInFlight.first; 6876 6877 // We emitted a top-level stmt but after it there is initialization. 6878 // Stop squashing the top-level stmts into a single function. 6879 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6880 CurCGF->FinishFunction(D->getEndLoc()); 6881 CurCGF = nullptr; 6882 } 6883 6884 if (!CurCGF) { 6885 // void __stmts__N(void) 6886 // FIXME: Ask the ABI name mangler to pick a name. 6887 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6888 FunctionArgList Args; 6889 QualType RetTy = getContext().VoidTy; 6890 const CGFunctionInfo &FnInfo = 6891 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6892 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6893 llvm::Function *Fn = llvm::Function::Create( 6894 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6895 6896 CurCGF.reset(new CodeGenFunction(*this)); 6897 GlobalTopLevelStmtBlockInFlight.second = D; 6898 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6899 D->getBeginLoc(), D->getBeginLoc()); 6900 CXXGlobalInits.push_back(Fn); 6901 } 6902 6903 CurCGF->EmitStmt(D->getStmt()); 6904 } 6905 6906 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6907 for (auto *I : DC->decls()) { 6908 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6909 // are themselves considered "top-level", so EmitTopLevelDecl on an 6910 // ObjCImplDecl does not recursively visit them. We need to do that in 6911 // case they're nested inside another construct (LinkageSpecDecl / 6912 // ExportDecl) that does stop them from being considered "top-level". 6913 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6914 for (auto *M : OID->methods()) 6915 EmitTopLevelDecl(M); 6916 } 6917 6918 EmitTopLevelDecl(I); 6919 } 6920 } 6921 6922 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6923 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6924 // Ignore dependent declarations. 6925 if (D->isTemplated()) 6926 return; 6927 6928 // Consteval function shouldn't be emitted. 6929 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6930 return; 6931 6932 switch (D->getKind()) { 6933 case Decl::CXXConversion: 6934 case Decl::CXXMethod: 6935 case Decl::Function: 6936 EmitGlobal(cast<FunctionDecl>(D)); 6937 // Always provide some coverage mapping 6938 // even for the functions that aren't emitted. 6939 AddDeferredUnusedCoverageMapping(D); 6940 break; 6941 6942 case Decl::CXXDeductionGuide: 6943 // Function-like, but does not result in code emission. 6944 break; 6945 6946 case Decl::Var: 6947 case Decl::Decomposition: 6948 case Decl::VarTemplateSpecialization: 6949 EmitGlobal(cast<VarDecl>(D)); 6950 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6951 for (auto *B : DD->bindings()) 6952 if (auto *HD = B->getHoldingVar()) 6953 EmitGlobal(HD); 6954 break; 6955 6956 // Indirect fields from global anonymous structs and unions can be 6957 // ignored; only the actual variable requires IR gen support. 6958 case Decl::IndirectField: 6959 break; 6960 6961 // C++ Decls 6962 case Decl::Namespace: 6963 EmitDeclContext(cast<NamespaceDecl>(D)); 6964 break; 6965 case Decl::ClassTemplateSpecialization: { 6966 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6967 if (CGDebugInfo *DI = getModuleDebugInfo()) 6968 if (Spec->getSpecializationKind() == 6969 TSK_ExplicitInstantiationDefinition && 6970 Spec->hasDefinition()) 6971 DI->completeTemplateDefinition(*Spec); 6972 } [[fallthrough]]; 6973 case Decl::CXXRecord: { 6974 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6975 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6976 if (CRD->hasDefinition()) 6977 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6978 if (auto *ES = D->getASTContext().getExternalSource()) 6979 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6980 DI->completeUnusedClass(*CRD); 6981 } 6982 // Emit any static data members, they may be definitions. 6983 for (auto *I : CRD->decls()) 6984 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6985 EmitTopLevelDecl(I); 6986 break; 6987 } 6988 // No code generation needed. 6989 case Decl::UsingShadow: 6990 case Decl::ClassTemplate: 6991 case Decl::VarTemplate: 6992 case Decl::Concept: 6993 case Decl::VarTemplatePartialSpecialization: 6994 case Decl::FunctionTemplate: 6995 case Decl::TypeAliasTemplate: 6996 case Decl::Block: 6997 case Decl::Empty: 6998 case Decl::Binding: 6999 break; 7000 case Decl::Using: // using X; [C++] 7001 if (CGDebugInfo *DI = getModuleDebugInfo()) 7002 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 7003 break; 7004 case Decl::UsingEnum: // using enum X; [C++] 7005 if (CGDebugInfo *DI = getModuleDebugInfo()) 7006 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 7007 break; 7008 case Decl::NamespaceAlias: 7009 if (CGDebugInfo *DI = getModuleDebugInfo()) 7010 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 7011 break; 7012 case Decl::UsingDirective: // using namespace X; [C++] 7013 if (CGDebugInfo *DI = getModuleDebugInfo()) 7014 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 7015 break; 7016 case Decl::CXXConstructor: 7017 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 7018 break; 7019 case Decl::CXXDestructor: 7020 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 7021 break; 7022 7023 case Decl::StaticAssert: 7024 // Nothing to do. 7025 break; 7026 7027 // Objective-C Decls 7028 7029 // Forward declarations, no (immediate) code generation. 7030 case Decl::ObjCInterface: 7031 case Decl::ObjCCategory: 7032 break; 7033 7034 case Decl::ObjCProtocol: { 7035 auto *Proto = cast<ObjCProtocolDecl>(D); 7036 if (Proto->isThisDeclarationADefinition()) 7037 ObjCRuntime->GenerateProtocol(Proto); 7038 break; 7039 } 7040 7041 case Decl::ObjCCategoryImpl: 7042 // Categories have properties but don't support synthesize so we 7043 // can ignore them here. 7044 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7045 break; 7046 7047 case Decl::ObjCImplementation: { 7048 auto *OMD = cast<ObjCImplementationDecl>(D); 7049 EmitObjCPropertyImplementations(OMD); 7050 EmitObjCIvarInitializations(OMD); 7051 ObjCRuntime->GenerateClass(OMD); 7052 // Emit global variable debug information. 7053 if (CGDebugInfo *DI = getModuleDebugInfo()) 7054 if (getCodeGenOpts().hasReducedDebugInfo()) 7055 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7056 OMD->getClassInterface()), OMD->getLocation()); 7057 break; 7058 } 7059 case Decl::ObjCMethod: { 7060 auto *OMD = cast<ObjCMethodDecl>(D); 7061 // If this is not a prototype, emit the body. 7062 if (OMD->getBody()) 7063 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7064 break; 7065 } 7066 case Decl::ObjCCompatibleAlias: 7067 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7068 break; 7069 7070 case Decl::PragmaComment: { 7071 const auto *PCD = cast<PragmaCommentDecl>(D); 7072 switch (PCD->getCommentKind()) { 7073 case PCK_Unknown: 7074 llvm_unreachable("unexpected pragma comment kind"); 7075 case PCK_Linker: 7076 AppendLinkerOptions(PCD->getArg()); 7077 break; 7078 case PCK_Lib: 7079 AddDependentLib(PCD->getArg()); 7080 break; 7081 case PCK_Compiler: 7082 case PCK_ExeStr: 7083 case PCK_User: 7084 break; // We ignore all of these. 7085 } 7086 break; 7087 } 7088 7089 case Decl::PragmaDetectMismatch: { 7090 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7091 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7092 break; 7093 } 7094 7095 case Decl::LinkageSpec: 7096 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7097 break; 7098 7099 case Decl::FileScopeAsm: { 7100 // File-scope asm is ignored during device-side CUDA compilation. 7101 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7102 break; 7103 // File-scope asm is ignored during device-side OpenMP compilation. 7104 if (LangOpts.OpenMPIsTargetDevice) 7105 break; 7106 // File-scope asm is ignored during device-side SYCL compilation. 7107 if (LangOpts.SYCLIsDevice) 7108 break; 7109 auto *AD = cast<FileScopeAsmDecl>(D); 7110 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7111 break; 7112 } 7113 7114 case Decl::TopLevelStmt: 7115 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7116 break; 7117 7118 case Decl::Import: { 7119 auto *Import = cast<ImportDecl>(D); 7120 7121 // If we've already imported this module, we're done. 7122 if (!ImportedModules.insert(Import->getImportedModule())) 7123 break; 7124 7125 // Emit debug information for direct imports. 7126 if (!Import->getImportedOwningModule()) { 7127 if (CGDebugInfo *DI = getModuleDebugInfo()) 7128 DI->EmitImportDecl(*Import); 7129 } 7130 7131 // For C++ standard modules we are done - we will call the module 7132 // initializer for imported modules, and that will likewise call those for 7133 // any imports it has. 7134 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7135 !Import->getImportedOwningModule()->isModuleMapModule()) 7136 break; 7137 7138 // For clang C++ module map modules the initializers for sub-modules are 7139 // emitted here. 7140 7141 // Find all of the submodules and emit the module initializers. 7142 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7143 SmallVector<clang::Module *, 16> Stack; 7144 Visited.insert(Import->getImportedModule()); 7145 Stack.push_back(Import->getImportedModule()); 7146 7147 while (!Stack.empty()) { 7148 clang::Module *Mod = Stack.pop_back_val(); 7149 if (!EmittedModuleInitializers.insert(Mod).second) 7150 continue; 7151 7152 for (auto *D : Context.getModuleInitializers(Mod)) 7153 EmitTopLevelDecl(D); 7154 7155 // Visit the submodules of this module. 7156 for (auto *Submodule : Mod->submodules()) { 7157 // Skip explicit children; they need to be explicitly imported to emit 7158 // the initializers. 7159 if (Submodule->IsExplicit) 7160 continue; 7161 7162 if (Visited.insert(Submodule).second) 7163 Stack.push_back(Submodule); 7164 } 7165 } 7166 break; 7167 } 7168 7169 case Decl::Export: 7170 EmitDeclContext(cast<ExportDecl>(D)); 7171 break; 7172 7173 case Decl::OMPThreadPrivate: 7174 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7175 break; 7176 7177 case Decl::OMPAllocate: 7178 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7179 break; 7180 7181 case Decl::OMPDeclareReduction: 7182 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7183 break; 7184 7185 case Decl::OMPDeclareMapper: 7186 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7187 break; 7188 7189 case Decl::OMPRequires: 7190 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7191 break; 7192 7193 case Decl::Typedef: 7194 case Decl::TypeAlias: // using foo = bar; [C++11] 7195 if (CGDebugInfo *DI = getModuleDebugInfo()) 7196 DI->EmitAndRetainType( 7197 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7198 break; 7199 7200 case Decl::Record: 7201 if (CGDebugInfo *DI = getModuleDebugInfo()) 7202 if (cast<RecordDecl>(D)->getDefinition()) 7203 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7204 break; 7205 7206 case Decl::Enum: 7207 if (CGDebugInfo *DI = getModuleDebugInfo()) 7208 if (cast<EnumDecl>(D)->getDefinition()) 7209 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7210 break; 7211 7212 case Decl::HLSLBuffer: 7213 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7214 break; 7215 7216 default: 7217 // Make sure we handled everything we should, every other kind is a 7218 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7219 // function. Need to recode Decl::Kind to do that easily. 7220 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7221 break; 7222 } 7223 } 7224 7225 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7226 // Do we need to generate coverage mapping? 7227 if (!CodeGenOpts.CoverageMapping) 7228 return; 7229 switch (D->getKind()) { 7230 case Decl::CXXConversion: 7231 case Decl::CXXMethod: 7232 case Decl::Function: 7233 case Decl::ObjCMethod: 7234 case Decl::CXXConstructor: 7235 case Decl::CXXDestructor: { 7236 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7237 break; 7238 SourceManager &SM = getContext().getSourceManager(); 7239 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7240 break; 7241 if (!llvm::coverage::SystemHeadersCoverage && 7242 SM.isInSystemHeader(D->getBeginLoc())) 7243 break; 7244 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7245 break; 7246 } 7247 default: 7248 break; 7249 }; 7250 } 7251 7252 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7253 // Do we need to generate coverage mapping? 7254 if (!CodeGenOpts.CoverageMapping) 7255 return; 7256 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7257 if (Fn->isTemplateInstantiation()) 7258 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7259 } 7260 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7261 } 7262 7263 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7264 // We call takeVector() here to avoid use-after-free. 7265 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7266 // we deserialize function bodies to emit coverage info for them, and that 7267 // deserializes more declarations. How should we handle that case? 7268 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7269 if (!Entry.second) 7270 continue; 7271 const Decl *D = Entry.first; 7272 switch (D->getKind()) { 7273 case Decl::CXXConversion: 7274 case Decl::CXXMethod: 7275 case Decl::Function: 7276 case Decl::ObjCMethod: { 7277 CodeGenPGO PGO(*this); 7278 GlobalDecl GD(cast<FunctionDecl>(D)); 7279 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7280 getFunctionLinkage(GD)); 7281 break; 7282 } 7283 case Decl::CXXConstructor: { 7284 CodeGenPGO PGO(*this); 7285 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7286 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7287 getFunctionLinkage(GD)); 7288 break; 7289 } 7290 case Decl::CXXDestructor: { 7291 CodeGenPGO PGO(*this); 7292 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7293 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7294 getFunctionLinkage(GD)); 7295 break; 7296 } 7297 default: 7298 break; 7299 }; 7300 } 7301 } 7302 7303 void CodeGenModule::EmitMainVoidAlias() { 7304 // In order to transition away from "__original_main" gracefully, emit an 7305 // alias for "main" in the no-argument case so that libc can detect when 7306 // new-style no-argument main is in used. 7307 if (llvm::Function *F = getModule().getFunction("main")) { 7308 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7309 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7310 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7311 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7312 } 7313 } 7314 } 7315 7316 /// Turns the given pointer into a constant. 7317 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7318 const void *Ptr) { 7319 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7320 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7321 return llvm::ConstantInt::get(i64, PtrInt); 7322 } 7323 7324 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7325 llvm::NamedMDNode *&GlobalMetadata, 7326 GlobalDecl D, 7327 llvm::GlobalValue *Addr) { 7328 if (!GlobalMetadata) 7329 GlobalMetadata = 7330 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7331 7332 // TODO: should we report variant information for ctors/dtors? 7333 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7334 llvm::ConstantAsMetadata::get(GetPointerConstant( 7335 CGM.getLLVMContext(), D.getDecl()))}; 7336 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7337 } 7338 7339 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7340 llvm::GlobalValue *CppFunc) { 7341 // Store the list of ifuncs we need to replace uses in. 7342 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7343 // List of ConstantExprs that we should be able to delete when we're done 7344 // here. 7345 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7346 7347 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7348 if (Elem == CppFunc) 7349 return false; 7350 7351 // First make sure that all users of this are ifuncs (or ifuncs via a 7352 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7353 // later. 7354 for (llvm::User *User : Elem->users()) { 7355 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7356 // ifunc directly. In any other case, just give up, as we don't know what we 7357 // could break by changing those. 7358 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7359 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7360 return false; 7361 7362 for (llvm::User *CEUser : ConstExpr->users()) { 7363 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7364 IFuncs.push_back(IFunc); 7365 } else { 7366 return false; 7367 } 7368 } 7369 CEs.push_back(ConstExpr); 7370 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7371 IFuncs.push_back(IFunc); 7372 } else { 7373 // This user is one we don't know how to handle, so fail redirection. This 7374 // will result in an ifunc retaining a resolver name that will ultimately 7375 // fail to be resolved to a defined function. 7376 return false; 7377 } 7378 } 7379 7380 // Now we know this is a valid case where we can do this alias replacement, we 7381 // need to remove all of the references to Elem (and the bitcasts!) so we can 7382 // delete it. 7383 for (llvm::GlobalIFunc *IFunc : IFuncs) 7384 IFunc->setResolver(nullptr); 7385 for (llvm::ConstantExpr *ConstExpr : CEs) 7386 ConstExpr->destroyConstant(); 7387 7388 // We should now be out of uses for the 'old' version of this function, so we 7389 // can erase it as well. 7390 Elem->eraseFromParent(); 7391 7392 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7393 // The type of the resolver is always just a function-type that returns the 7394 // type of the IFunc, so create that here. If the type of the actual 7395 // resolver doesn't match, it just gets bitcast to the right thing. 7396 auto *ResolverTy = 7397 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7398 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7399 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7400 IFunc->setResolver(Resolver); 7401 } 7402 return true; 7403 } 7404 7405 /// For each function which is declared within an extern "C" region and marked 7406 /// as 'used', but has internal linkage, create an alias from the unmangled 7407 /// name to the mangled name if possible. People expect to be able to refer 7408 /// to such functions with an unmangled name from inline assembly within the 7409 /// same translation unit. 7410 void CodeGenModule::EmitStaticExternCAliases() { 7411 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7412 return; 7413 for (auto &I : StaticExternCValues) { 7414 const IdentifierInfo *Name = I.first; 7415 llvm::GlobalValue *Val = I.second; 7416 7417 // If Val is null, that implies there were multiple declarations that each 7418 // had a claim to the unmangled name. In this case, generation of the alias 7419 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7420 if (!Val) 7421 break; 7422 7423 llvm::GlobalValue *ExistingElem = 7424 getModule().getNamedValue(Name->getName()); 7425 7426 // If there is either not something already by this name, or we were able to 7427 // replace all uses from IFuncs, create the alias. 7428 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7429 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7430 } 7431 } 7432 7433 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7434 GlobalDecl &Result) const { 7435 auto Res = Manglings.find(MangledName); 7436 if (Res == Manglings.end()) 7437 return false; 7438 Result = Res->getValue(); 7439 return true; 7440 } 7441 7442 /// Emits metadata nodes associating all the global values in the 7443 /// current module with the Decls they came from. This is useful for 7444 /// projects using IR gen as a subroutine. 7445 /// 7446 /// Since there's currently no way to associate an MDNode directly 7447 /// with an llvm::GlobalValue, we create a global named metadata 7448 /// with the name 'clang.global.decl.ptrs'. 7449 void CodeGenModule::EmitDeclMetadata() { 7450 llvm::NamedMDNode *GlobalMetadata = nullptr; 7451 7452 for (auto &I : MangledDeclNames) { 7453 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7454 // Some mangled names don't necessarily have an associated GlobalValue 7455 // in this module, e.g. if we mangled it for DebugInfo. 7456 if (Addr) 7457 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7458 } 7459 } 7460 7461 /// Emits metadata nodes for all the local variables in the current 7462 /// function. 7463 void CodeGenFunction::EmitDeclMetadata() { 7464 if (LocalDeclMap.empty()) return; 7465 7466 llvm::LLVMContext &Context = getLLVMContext(); 7467 7468 // Find the unique metadata ID for this name. 7469 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7470 7471 llvm::NamedMDNode *GlobalMetadata = nullptr; 7472 7473 for (auto &I : LocalDeclMap) { 7474 const Decl *D = I.first; 7475 llvm::Value *Addr = I.second.emitRawPointer(*this); 7476 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7477 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7478 Alloca->setMetadata( 7479 DeclPtrKind, llvm::MDNode::get( 7480 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7481 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7482 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7483 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7484 } 7485 } 7486 } 7487 7488 void CodeGenModule::EmitVersionIdentMetadata() { 7489 llvm::NamedMDNode *IdentMetadata = 7490 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7491 std::string Version = getClangFullVersion(); 7492 llvm::LLVMContext &Ctx = TheModule.getContext(); 7493 7494 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7495 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7496 } 7497 7498 void CodeGenModule::EmitCommandLineMetadata() { 7499 llvm::NamedMDNode *CommandLineMetadata = 7500 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7501 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7502 llvm::LLVMContext &Ctx = TheModule.getContext(); 7503 7504 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7505 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7506 } 7507 7508 void CodeGenModule::EmitCoverageFile() { 7509 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7510 if (!CUNode) 7511 return; 7512 7513 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7514 llvm::LLVMContext &Ctx = TheModule.getContext(); 7515 auto *CoverageDataFile = 7516 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7517 auto *CoverageNotesFile = 7518 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7519 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7520 llvm::MDNode *CU = CUNode->getOperand(i); 7521 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7522 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7523 } 7524 } 7525 7526 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7527 bool ForEH) { 7528 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7529 // FIXME: should we even be calling this method if RTTI is disabled 7530 // and it's not for EH? 7531 if (!shouldEmitRTTI(ForEH)) 7532 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7533 7534 if (ForEH && Ty->isObjCObjectPointerType() && 7535 LangOpts.ObjCRuntime.isGNUFamily()) 7536 return ObjCRuntime->GetEHType(Ty); 7537 7538 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7539 } 7540 7541 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7542 // Do not emit threadprivates in simd-only mode. 7543 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7544 return; 7545 for (auto RefExpr : D->varlist()) { 7546 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7547 bool PerformInit = 7548 VD->getAnyInitializer() && 7549 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7550 /*ForRef=*/false); 7551 7552 Address Addr(GetAddrOfGlobalVar(VD), 7553 getTypes().ConvertTypeForMem(VD->getType()), 7554 getContext().getDeclAlign(VD)); 7555 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7556 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7557 CXXGlobalInits.push_back(InitFunction); 7558 } 7559 } 7560 7561 llvm::Metadata * 7562 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7563 StringRef Suffix) { 7564 if (auto *FnType = T->getAs<FunctionProtoType>()) 7565 T = getContext().getFunctionType( 7566 FnType->getReturnType(), FnType->getParamTypes(), 7567 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7568 7569 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7570 if (InternalId) 7571 return InternalId; 7572 7573 if (isExternallyVisible(T->getLinkage())) { 7574 std::string OutName; 7575 llvm::raw_string_ostream Out(OutName); 7576 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7577 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7578 7579 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7580 Out << ".normalized"; 7581 7582 Out << Suffix; 7583 7584 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7585 } else { 7586 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7587 llvm::ArrayRef<llvm::Metadata *>()); 7588 } 7589 7590 return InternalId; 7591 } 7592 7593 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7594 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7595 } 7596 7597 llvm::Metadata * 7598 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7599 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7600 } 7601 7602 // Generalize pointer types to a void pointer with the qualifiers of the 7603 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7604 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7605 // 'void *'. 7606 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7607 if (!Ty->isPointerType()) 7608 return Ty; 7609 7610 return Ctx.getPointerType( 7611 QualType(Ctx.VoidTy).withCVRQualifiers( 7612 Ty->getPointeeType().getCVRQualifiers())); 7613 } 7614 7615 // Apply type generalization to a FunctionType's return and argument types 7616 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7617 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7618 SmallVector<QualType, 8> GeneralizedParams; 7619 for (auto &Param : FnType->param_types()) 7620 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7621 7622 return Ctx.getFunctionType( 7623 GeneralizeType(Ctx, FnType->getReturnType()), 7624 GeneralizedParams, FnType->getExtProtoInfo()); 7625 } 7626 7627 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7628 return Ctx.getFunctionNoProtoType( 7629 GeneralizeType(Ctx, FnType->getReturnType())); 7630 7631 llvm_unreachable("Encountered unknown FunctionType"); 7632 } 7633 7634 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7635 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7636 GeneralizedMetadataIdMap, ".generalized"); 7637 } 7638 7639 /// Returns whether this module needs the "all-vtables" type identifier. 7640 bool CodeGenModule::NeedAllVtablesTypeId() const { 7641 // Returns true if at least one of vtable-based CFI checkers is enabled and 7642 // is not in the trapping mode. 7643 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7644 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7645 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7646 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7647 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7648 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7649 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7650 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7651 } 7652 7653 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7654 CharUnits Offset, 7655 const CXXRecordDecl *RD) { 7656 llvm::Metadata *MD = 7657 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7658 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7659 7660 if (CodeGenOpts.SanitizeCfiCrossDso) 7661 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7662 VTable->addTypeMetadata(Offset.getQuantity(), 7663 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7664 7665 if (NeedAllVtablesTypeId()) { 7666 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7667 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7668 } 7669 } 7670 7671 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7672 if (!SanStats) 7673 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7674 7675 return *SanStats; 7676 } 7677 7678 llvm::Value * 7679 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7680 CodeGenFunction &CGF) { 7681 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7682 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7683 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7684 auto *Call = CGF.EmitRuntimeCall( 7685 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7686 return Call; 7687 } 7688 7689 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7690 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7691 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7692 /* forPointeeType= */ true); 7693 } 7694 7695 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7696 LValueBaseInfo *BaseInfo, 7697 TBAAAccessInfo *TBAAInfo, 7698 bool forPointeeType) { 7699 if (TBAAInfo) 7700 *TBAAInfo = getTBAAAccessInfo(T); 7701 7702 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7703 // that doesn't return the information we need to compute BaseInfo. 7704 7705 // Honor alignment typedef attributes even on incomplete types. 7706 // We also honor them straight for C++ class types, even as pointees; 7707 // there's an expressivity gap here. 7708 if (auto TT = T->getAs<TypedefType>()) { 7709 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7710 if (BaseInfo) 7711 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7712 return getContext().toCharUnitsFromBits(Align); 7713 } 7714 } 7715 7716 bool AlignForArray = T->isArrayType(); 7717 7718 // Analyze the base element type, so we don't get confused by incomplete 7719 // array types. 7720 T = getContext().getBaseElementType(T); 7721 7722 if (T->isIncompleteType()) { 7723 // We could try to replicate the logic from 7724 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7725 // type is incomplete, so it's impossible to test. We could try to reuse 7726 // getTypeAlignIfKnown, but that doesn't return the information we need 7727 // to set BaseInfo. So just ignore the possibility that the alignment is 7728 // greater than one. 7729 if (BaseInfo) 7730 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7731 return CharUnits::One(); 7732 } 7733 7734 if (BaseInfo) 7735 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7736 7737 CharUnits Alignment; 7738 const CXXRecordDecl *RD; 7739 if (T.getQualifiers().hasUnaligned()) { 7740 Alignment = CharUnits::One(); 7741 } else if (forPointeeType && !AlignForArray && 7742 (RD = T->getAsCXXRecordDecl())) { 7743 // For C++ class pointees, we don't know whether we're pointing at a 7744 // base or a complete object, so we generally need to use the 7745 // non-virtual alignment. 7746 Alignment = getClassPointerAlignment(RD); 7747 } else { 7748 Alignment = getContext().getTypeAlignInChars(T); 7749 } 7750 7751 // Cap to the global maximum type alignment unless the alignment 7752 // was somehow explicit on the type. 7753 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7754 if (Alignment.getQuantity() > MaxAlign && 7755 !getContext().isAlignmentRequired(T)) 7756 Alignment = CharUnits::fromQuantity(MaxAlign); 7757 } 7758 return Alignment; 7759 } 7760 7761 bool CodeGenModule::stopAutoInit() { 7762 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7763 if (StopAfter) { 7764 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7765 // used 7766 if (NumAutoVarInit >= StopAfter) { 7767 return true; 7768 } 7769 if (!NumAutoVarInit) { 7770 unsigned DiagID = getDiags().getCustomDiagID( 7771 DiagnosticsEngine::Warning, 7772 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7773 "number of times ftrivial-auto-var-init=%1 gets applied."); 7774 getDiags().Report(DiagID) 7775 << StopAfter 7776 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7777 LangOptions::TrivialAutoVarInitKind::Zero 7778 ? "zero" 7779 : "pattern"); 7780 } 7781 ++NumAutoVarInit; 7782 } 7783 return false; 7784 } 7785 7786 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7787 const Decl *D) const { 7788 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7789 // postfix beginning with '.' since the symbol name can be demangled. 7790 if (LangOpts.HIP) 7791 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7792 else 7793 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7794 7795 // If the CUID is not specified we try to generate a unique postfix. 7796 if (getLangOpts().CUID.empty()) { 7797 SourceManager &SM = getContext().getSourceManager(); 7798 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7799 assert(PLoc.isValid() && "Source location is expected to be valid."); 7800 7801 // Get the hash of the user defined macros. 7802 llvm::MD5 Hash; 7803 llvm::MD5::MD5Result Result; 7804 for (const auto &Arg : PreprocessorOpts.Macros) 7805 Hash.update(Arg.first); 7806 Hash.final(Result); 7807 7808 // Get the UniqueID for the file containing the decl. 7809 llvm::sys::fs::UniqueID ID; 7810 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7811 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7812 assert(PLoc.isValid() && "Source location is expected to be valid."); 7813 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7814 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7815 << PLoc.getFilename() << EC.message(); 7816 } 7817 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7818 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7819 } else { 7820 OS << getContext().getCUIDHash(); 7821 } 7822 } 7823 7824 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7825 assert(DeferredDeclsToEmit.empty() && 7826 "Should have emitted all decls deferred to emit."); 7827 assert(NewBuilder->DeferredDecls.empty() && 7828 "Newly created module should not have deferred decls"); 7829 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7830 assert(EmittedDeferredDecls.empty() && 7831 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7832 7833 assert(NewBuilder->DeferredVTables.empty() && 7834 "Newly created module should not have deferred vtables"); 7835 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7836 7837 assert(NewBuilder->MangledDeclNames.empty() && 7838 "Newly created module should not have mangled decl names"); 7839 assert(NewBuilder->Manglings.empty() && 7840 "Newly created module should not have manglings"); 7841 NewBuilder->Manglings = std::move(Manglings); 7842 7843 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7844 7845 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7846 } 7847