1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (getCodeGenOpts().CodeModel.size() > 0) { 560 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 561 .Case("tiny", llvm::CodeModel::Tiny) 562 .Case("small", llvm::CodeModel::Small) 563 .Case("kernel", llvm::CodeModel::Kernel) 564 .Case("medium", llvm::CodeModel::Medium) 565 .Case("large", llvm::CodeModel::Large) 566 .Default(~0u); 567 if (CM != ~0u) { 568 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 569 getModule().setCodeModel(codeModel); 570 } 571 } 572 573 if (CodeGenOpts.NoPLT) 574 getModule().setRtLibUseGOT(); 575 576 SimplifyPersonality(); 577 578 if (getCodeGenOpts().EmitDeclMetadata) 579 EmitDeclMetadata(); 580 581 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 582 EmitCoverageFile(); 583 584 if (DebugInfo) 585 DebugInfo->finalize(); 586 587 if (getCodeGenOpts().EmitVersionIdentMetadata) 588 EmitVersionIdentMetadata(); 589 590 EmitTargetMetadata(); 591 } 592 593 void CodeGenModule::EmitOpenCLMetadata() { 594 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 595 // opencl.ocl.version named metadata node. 596 llvm::Metadata *OCLVerElts[] = { 597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 598 Int32Ty, LangOpts.OpenCLVersion / 100)), 599 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 600 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 601 llvm::NamedMDNode *OCLVerMD = 602 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 603 llvm::LLVMContext &Ctx = TheModule.getContext(); 604 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 605 } 606 607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 608 // Make sure that this type is translated. 609 Types.UpdateCompletedType(TD); 610 } 611 612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 613 // Make sure that this type is translated. 614 Types.RefreshTypeCacheForClass(RD); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTypeInfo(QTy); 621 } 622 623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 624 if (!TBAA) 625 return TBAAAccessInfo(); 626 return TBAA->getAccessInfo(AccessType); 627 } 628 629 TBAAAccessInfo 630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 631 if (!TBAA) 632 return TBAAAccessInfo(); 633 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 634 } 635 636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 637 if (!TBAA) 638 return nullptr; 639 return TBAA->getTBAAStructInfo(QTy); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getBaseTypeInfo(QTy); 646 } 647 648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 649 if (!TBAA) 650 return nullptr; 651 return TBAA->getAccessTagInfo(Info); 652 } 653 654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 655 TBAAAccessInfo TargetInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 659 } 660 661 TBAAAccessInfo 662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 663 TBAAAccessInfo InfoB) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 671 TBAAAccessInfo SrcInfo) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 675 } 676 677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 678 TBAAAccessInfo TBAAInfo) { 679 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 680 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 681 } 682 683 void CodeGenModule::DecorateInstructionWithInvariantGroup( 684 llvm::Instruction *I, const CXXRecordDecl *RD) { 685 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 686 llvm::MDNode::get(getLLVMContext(), {})); 687 } 688 689 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 690 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 691 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 692 } 693 694 /// ErrorUnsupported - Print out an error that codegen doesn't support the 695 /// specified stmt yet. 696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 697 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 698 "cannot compile this %0 yet"); 699 std::string Msg = Type; 700 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 701 << Msg << S->getSourceRange(); 702 } 703 704 /// ErrorUnsupported - Print out an error that codegen doesn't support the 705 /// specified decl yet. 706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 707 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 708 "cannot compile this %0 yet"); 709 std::string Msg = Type; 710 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 711 } 712 713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 714 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 715 } 716 717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 718 const NamedDecl *D) const { 719 if (GV->hasDLLImportStorageClass()) 720 return; 721 // Internal definitions always have default visibility. 722 if (GV->hasLocalLinkage()) { 723 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 724 return; 725 } 726 if (!D) 727 return; 728 // Set visibility for definitions. 729 LinkageInfo LV = D->getLinkageAndVisibility(); 730 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 731 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 732 } 733 734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 735 llvm::GlobalValue *GV) { 736 if (GV->hasLocalLinkage()) 737 return true; 738 739 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 740 return true; 741 742 // DLLImport explicitly marks the GV as external. 743 if (GV->hasDLLImportStorageClass()) 744 return false; 745 746 const llvm::Triple &TT = CGM.getTriple(); 747 if (TT.isWindowsGNUEnvironment()) { 748 // In MinGW, variables without DLLImport can still be automatically 749 // imported from a DLL by the linker; don't mark variables that 750 // potentially could come from another DLL as DSO local. 751 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 752 !GV->isThreadLocal()) 753 return false; 754 } 755 // Every other GV is local on COFF. 756 // Make an exception for windows OS in the triple: Some firmware builds use 757 // *-win32-macho triples. This (accidentally?) produced windows relocations 758 // without GOT tables in older clang versions; Keep this behaviour. 759 // FIXME: even thread local variables? 760 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 761 return true; 762 763 // Only handle COFF and ELF for now. 764 if (!TT.isOSBinFormatELF()) 765 return false; 766 767 // If this is not an executable, don't assume anything is local. 768 const auto &CGOpts = CGM.getCodeGenOpts(); 769 llvm::Reloc::Model RM = CGOpts.RelocationModel; 770 const auto &LOpts = CGM.getLangOpts(); 771 if (RM != llvm::Reloc::Static && !LOpts.PIE) 772 return false; 773 774 // A definition cannot be preempted from an executable. 775 if (!GV->isDeclarationForLinker()) 776 return true; 777 778 // Most PIC code sequences that assume that a symbol is local cannot produce a 779 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 780 // depended, it seems worth it to handle it here. 781 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 782 return false; 783 784 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 785 llvm::Triple::ArchType Arch = TT.getArch(); 786 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 787 Arch == llvm::Triple::ppc64le) 788 return false; 789 790 // If we can use copy relocations we can assume it is local. 791 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 792 if (!Var->isThreadLocal() && 793 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 794 return true; 795 796 // If we can use a plt entry as the symbol address we can assume it 797 // is local. 798 // FIXME: This should work for PIE, but the gold linker doesn't support it. 799 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 800 return true; 801 802 // Otherwise don't assue it is local. 803 return false; 804 } 805 806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 807 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 808 } 809 810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 813 // C++ destructors have a few C++ ABI specific special cases. 814 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 815 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 816 return; 817 } 818 setDLLImportDLLExport(GV, D); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 if (D && D->isExternallyVisible()) { 824 if (D->hasAttr<DLLImportAttr>()) 825 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 826 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 828 } 829 } 830 831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 832 GlobalDecl GD) const { 833 setDLLImportDLLExport(GV, GD); 834 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 835 } 836 837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 838 const NamedDecl *D) const { 839 setDLLImportDLLExport(GV, D); 840 setGlobalVisibilityAndLocal(GV, D); 841 } 842 843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 844 const NamedDecl *D) const { 845 setGlobalVisibility(GV, D); 846 setDSOLocal(GV); 847 } 848 849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 850 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 851 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 852 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 853 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 854 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 855 } 856 857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 858 CodeGenOptions::TLSModel M) { 859 switch (M) { 860 case CodeGenOptions::GeneralDynamicTLSModel: 861 return llvm::GlobalVariable::GeneralDynamicTLSModel; 862 case CodeGenOptions::LocalDynamicTLSModel: 863 return llvm::GlobalVariable::LocalDynamicTLSModel; 864 case CodeGenOptions::InitialExecTLSModel: 865 return llvm::GlobalVariable::InitialExecTLSModel; 866 case CodeGenOptions::LocalExecTLSModel: 867 return llvm::GlobalVariable::LocalExecTLSModel; 868 } 869 llvm_unreachable("Invalid TLS model!"); 870 } 871 872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 873 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 874 875 llvm::GlobalValue::ThreadLocalMode TLM; 876 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 877 878 // Override the TLS model if it is explicitly specified. 879 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 880 TLM = GetLLVMTLSModel(Attr->getModel()); 881 } 882 883 GV->setThreadLocalMode(TLM); 884 } 885 886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 887 StringRef Name) { 888 const TargetInfo &Target = CGM.getTarget(); 889 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 890 } 891 892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 893 const CPUSpecificAttr *Attr, 894 raw_ostream &Out) { 895 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 896 // supported. 897 if (Attr) 898 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 899 else if (CGM.getTarget().supportsIFunc()) 900 Out << ".resolver"; 901 } 902 903 static void AppendTargetMangling(const CodeGenModule &CGM, 904 const TargetAttr *Attr, raw_ostream &Out) { 905 if (Attr->isDefaultVersion()) 906 return; 907 908 Out << '.'; 909 const TargetInfo &Target = CGM.getTarget(); 910 TargetAttr::ParsedTargetAttr Info = 911 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 912 // Multiversioning doesn't allow "no-${feature}", so we can 913 // only have "+" prefixes here. 914 assert(LHS.startswith("+") && RHS.startswith("+") && 915 "Features should always have a prefix."); 916 return Target.multiVersionSortPriority(LHS.substr(1)) > 917 Target.multiVersionSortPriority(RHS.substr(1)); 918 }); 919 920 bool IsFirst = true; 921 922 if (!Info.Architecture.empty()) { 923 IsFirst = false; 924 Out << "arch_" << Info.Architecture; 925 } 926 927 for (StringRef Feat : Info.Features) { 928 if (!IsFirst) 929 Out << '_'; 930 IsFirst = false; 931 Out << Feat.substr(1); 932 } 933 } 934 935 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 936 const NamedDecl *ND, 937 bool OmitMultiVersionMangling = false) { 938 SmallString<256> Buffer; 939 llvm::raw_svector_ostream Out(Buffer); 940 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 941 if (MC.shouldMangleDeclName(ND)) { 942 llvm::raw_svector_ostream Out(Buffer); 943 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 944 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 945 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 946 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 947 else 948 MC.mangleName(ND, Out); 949 } else { 950 IdentifierInfo *II = ND->getIdentifier(); 951 assert(II && "Attempt to mangle unnamed decl."); 952 const auto *FD = dyn_cast<FunctionDecl>(ND); 953 954 if (FD && 955 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 956 llvm::raw_svector_ostream Out(Buffer); 957 Out << "__regcall3__" << II->getName(); 958 } else { 959 Out << II->getName(); 960 } 961 } 962 963 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 964 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 965 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 966 AppendCPUSpecificCPUDispatchMangling( 967 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 968 else 969 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 970 } 971 972 return Out.str(); 973 } 974 975 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 976 const FunctionDecl *FD) { 977 if (!FD->isMultiVersion()) 978 return; 979 980 // Get the name of what this would be without the 'target' attribute. This 981 // allows us to lookup the version that was emitted when this wasn't a 982 // multiversion function. 983 std::string NonTargetName = 984 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 985 GlobalDecl OtherGD; 986 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 987 assert(OtherGD.getCanonicalDecl() 988 .getDecl() 989 ->getAsFunction() 990 ->isMultiVersion() && 991 "Other GD should now be a multiversioned function"); 992 // OtherFD is the version of this function that was mangled BEFORE 993 // becoming a MultiVersion function. It potentially needs to be updated. 994 const FunctionDecl *OtherFD = 995 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 996 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 997 // This is so that if the initial version was already the 'default' 998 // version, we don't try to update it. 999 if (OtherName != NonTargetName) { 1000 // Remove instead of erase, since others may have stored the StringRef 1001 // to this. 1002 const auto ExistingRecord = Manglings.find(NonTargetName); 1003 if (ExistingRecord != std::end(Manglings)) 1004 Manglings.remove(&(*ExistingRecord)); 1005 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1006 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1007 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1008 Entry->setName(OtherName); 1009 } 1010 } 1011 } 1012 1013 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1014 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1015 1016 // Some ABIs don't have constructor variants. Make sure that base and 1017 // complete constructors get mangled the same. 1018 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1019 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1020 CXXCtorType OrigCtorType = GD.getCtorType(); 1021 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1022 if (OrigCtorType == Ctor_Base) 1023 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1024 } 1025 } 1026 1027 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1028 // Since CPUSpecific can require multiple emits per decl, store the manglings 1029 // separately. 1030 if (FD && 1031 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1032 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1033 1034 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1035 CanonicalGD, 1036 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1037 1038 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1039 if (FoundName != CPUSpecificMangledDeclNames.end()) 1040 return FoundName->second; 1041 1042 auto Result = CPUSpecificManglings.insert( 1043 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1044 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1045 } 1046 1047 auto FoundName = MangledDeclNames.find(CanonicalGD); 1048 if (FoundName != MangledDeclNames.end()) 1049 return FoundName->second; 1050 1051 // Keep the first result in the case of a mangling collision. 1052 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1053 auto Result = 1054 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1055 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1056 } 1057 1058 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1059 const BlockDecl *BD) { 1060 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1061 const Decl *D = GD.getDecl(); 1062 1063 SmallString<256> Buffer; 1064 llvm::raw_svector_ostream Out(Buffer); 1065 if (!D) 1066 MangleCtx.mangleGlobalBlock(BD, 1067 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1068 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1069 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1070 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1071 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1072 else 1073 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1074 1075 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1076 return Result.first->first(); 1077 } 1078 1079 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1080 return getModule().getNamedValue(Name); 1081 } 1082 1083 /// AddGlobalCtor - Add a function to the list that will be called before 1084 /// main() runs. 1085 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1086 llvm::Constant *AssociatedData) { 1087 // FIXME: Type coercion of void()* types. 1088 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1089 } 1090 1091 /// AddGlobalDtor - Add a function to the list that will be called 1092 /// when the module is unloaded. 1093 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1094 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1095 DtorsUsingAtExit[Priority].push_back(Dtor); 1096 return; 1097 } 1098 1099 // FIXME: Type coercion of void()* types. 1100 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1101 } 1102 1103 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1104 if (Fns.empty()) return; 1105 1106 // Ctor function type is void()*. 1107 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1108 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1109 1110 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1111 llvm::StructType *CtorStructTy = llvm::StructType::get( 1112 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1113 1114 // Construct the constructor and destructor arrays. 1115 ConstantInitBuilder builder(*this); 1116 auto ctors = builder.beginArray(CtorStructTy); 1117 for (const auto &I : Fns) { 1118 auto ctor = ctors.beginStruct(CtorStructTy); 1119 ctor.addInt(Int32Ty, I.Priority); 1120 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1121 if (I.AssociatedData) 1122 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1123 else 1124 ctor.addNullPointer(VoidPtrTy); 1125 ctor.finishAndAddTo(ctors); 1126 } 1127 1128 auto list = 1129 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1130 /*constant*/ false, 1131 llvm::GlobalValue::AppendingLinkage); 1132 1133 // The LTO linker doesn't seem to like it when we set an alignment 1134 // on appending variables. Take it off as a workaround. 1135 list->setAlignment(0); 1136 1137 Fns.clear(); 1138 } 1139 1140 llvm::GlobalValue::LinkageTypes 1141 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1142 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1143 1144 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1145 1146 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1147 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1148 1149 if (isa<CXXConstructorDecl>(D) && 1150 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1151 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1152 // Our approach to inheriting constructors is fundamentally different from 1153 // that used by the MS ABI, so keep our inheriting constructor thunks 1154 // internal rather than trying to pick an unambiguous mangling for them. 1155 return llvm::GlobalValue::InternalLinkage; 1156 } 1157 1158 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1159 } 1160 1161 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1162 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1163 if (!MDS) return nullptr; 1164 1165 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1166 } 1167 1168 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1169 const CGFunctionInfo &Info, 1170 llvm::Function *F) { 1171 unsigned CallingConv; 1172 llvm::AttributeList PAL; 1173 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1174 F->setAttributes(PAL); 1175 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1176 } 1177 1178 /// Determines whether the language options require us to model 1179 /// unwind exceptions. We treat -fexceptions as mandating this 1180 /// except under the fragile ObjC ABI with only ObjC exceptions 1181 /// enabled. This means, for example, that C with -fexceptions 1182 /// enables this. 1183 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1184 // If exceptions are completely disabled, obviously this is false. 1185 if (!LangOpts.Exceptions) return false; 1186 1187 // If C++ exceptions are enabled, this is true. 1188 if (LangOpts.CXXExceptions) return true; 1189 1190 // If ObjC exceptions are enabled, this depends on the ABI. 1191 if (LangOpts.ObjCExceptions) { 1192 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1193 } 1194 1195 return true; 1196 } 1197 1198 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1199 const CXXMethodDecl *MD) { 1200 // Check that the type metadata can ever actually be used by a call. 1201 if (!CGM.getCodeGenOpts().LTOUnit || 1202 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1203 return false; 1204 1205 // Only functions whose address can be taken with a member function pointer 1206 // need this sort of type metadata. 1207 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1208 !isa<CXXDestructorDecl>(MD); 1209 } 1210 1211 std::vector<const CXXRecordDecl *> 1212 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1213 llvm::SetVector<const CXXRecordDecl *> MostBases; 1214 1215 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1216 CollectMostBases = [&](const CXXRecordDecl *RD) { 1217 if (RD->getNumBases() == 0) 1218 MostBases.insert(RD); 1219 for (const CXXBaseSpecifier &B : RD->bases()) 1220 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1221 }; 1222 CollectMostBases(RD); 1223 return MostBases.takeVector(); 1224 } 1225 1226 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1227 llvm::Function *F) { 1228 llvm::AttrBuilder B; 1229 1230 if (CodeGenOpts.UnwindTables) 1231 B.addAttribute(llvm::Attribute::UWTable); 1232 1233 if (!hasUnwindExceptions(LangOpts)) 1234 B.addAttribute(llvm::Attribute::NoUnwind); 1235 1236 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1237 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1238 B.addAttribute(llvm::Attribute::StackProtect); 1239 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1240 B.addAttribute(llvm::Attribute::StackProtectStrong); 1241 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1242 B.addAttribute(llvm::Attribute::StackProtectReq); 1243 } 1244 1245 if (!D) { 1246 // If we don't have a declaration to control inlining, the function isn't 1247 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1248 // disabled, mark the function as noinline. 1249 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1250 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1251 B.addAttribute(llvm::Attribute::NoInline); 1252 1253 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1254 return; 1255 } 1256 1257 // Track whether we need to add the optnone LLVM attribute, 1258 // starting with the default for this optimization level. 1259 bool ShouldAddOptNone = 1260 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1261 // We can't add optnone in the following cases, it won't pass the verifier. 1262 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1263 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1264 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1265 1266 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1267 B.addAttribute(llvm::Attribute::OptimizeNone); 1268 1269 // OptimizeNone implies noinline; we should not be inlining such functions. 1270 B.addAttribute(llvm::Attribute::NoInline); 1271 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1272 "OptimizeNone and AlwaysInline on same function!"); 1273 1274 // We still need to handle naked functions even though optnone subsumes 1275 // much of their semantics. 1276 if (D->hasAttr<NakedAttr>()) 1277 B.addAttribute(llvm::Attribute::Naked); 1278 1279 // OptimizeNone wins over OptimizeForSize and MinSize. 1280 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1281 F->removeFnAttr(llvm::Attribute::MinSize); 1282 } else if (D->hasAttr<NakedAttr>()) { 1283 // Naked implies noinline: we should not be inlining such functions. 1284 B.addAttribute(llvm::Attribute::Naked); 1285 B.addAttribute(llvm::Attribute::NoInline); 1286 } else if (D->hasAttr<NoDuplicateAttr>()) { 1287 B.addAttribute(llvm::Attribute::NoDuplicate); 1288 } else if (D->hasAttr<NoInlineAttr>()) { 1289 B.addAttribute(llvm::Attribute::NoInline); 1290 } else if (D->hasAttr<AlwaysInlineAttr>() && 1291 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1292 // (noinline wins over always_inline, and we can't specify both in IR) 1293 B.addAttribute(llvm::Attribute::AlwaysInline); 1294 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1295 // If we're not inlining, then force everything that isn't always_inline to 1296 // carry an explicit noinline attribute. 1297 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1298 B.addAttribute(llvm::Attribute::NoInline); 1299 } else { 1300 // Otherwise, propagate the inline hint attribute and potentially use its 1301 // absence to mark things as noinline. 1302 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1303 // Search function and template pattern redeclarations for inline. 1304 auto CheckForInline = [](const FunctionDecl *FD) { 1305 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1306 return Redecl->isInlineSpecified(); 1307 }; 1308 if (any_of(FD->redecls(), CheckRedeclForInline)) 1309 return true; 1310 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1311 if (!Pattern) 1312 return false; 1313 return any_of(Pattern->redecls(), CheckRedeclForInline); 1314 }; 1315 if (CheckForInline(FD)) { 1316 B.addAttribute(llvm::Attribute::InlineHint); 1317 } else if (CodeGenOpts.getInlining() == 1318 CodeGenOptions::OnlyHintInlining && 1319 !FD->isInlined() && 1320 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1321 B.addAttribute(llvm::Attribute::NoInline); 1322 } 1323 } 1324 } 1325 1326 // Add other optimization related attributes if we are optimizing this 1327 // function. 1328 if (!D->hasAttr<OptimizeNoneAttr>()) { 1329 if (D->hasAttr<ColdAttr>()) { 1330 if (!ShouldAddOptNone) 1331 B.addAttribute(llvm::Attribute::OptimizeForSize); 1332 B.addAttribute(llvm::Attribute::Cold); 1333 } 1334 1335 if (D->hasAttr<MinSizeAttr>()) 1336 B.addAttribute(llvm::Attribute::MinSize); 1337 } 1338 1339 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1340 1341 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1342 if (alignment) 1343 F->setAlignment(alignment); 1344 1345 if (!D->hasAttr<AlignedAttr>()) 1346 if (LangOpts.FunctionAlignment) 1347 F->setAlignment(1 << LangOpts.FunctionAlignment); 1348 1349 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1350 // reserve a bit for differentiating between virtual and non-virtual member 1351 // functions. If the current target's C++ ABI requires this and this is a 1352 // member function, set its alignment accordingly. 1353 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1354 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1355 F->setAlignment(2); 1356 } 1357 1358 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1359 if (CodeGenOpts.SanitizeCfiCrossDso) 1360 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1361 CreateFunctionTypeMetadataForIcall(FD, F); 1362 1363 // Emit type metadata on member functions for member function pointer checks. 1364 // These are only ever necessary on definitions; we're guaranteed that the 1365 // definition will be present in the LTO unit as a result of LTO visibility. 1366 auto *MD = dyn_cast<CXXMethodDecl>(D); 1367 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1368 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1369 llvm::Metadata *Id = 1370 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1371 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1372 F->addTypeMetadata(0, Id); 1373 } 1374 } 1375 } 1376 1377 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1378 const Decl *D = GD.getDecl(); 1379 if (dyn_cast_or_null<NamedDecl>(D)) 1380 setGVProperties(GV, GD); 1381 else 1382 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1383 1384 if (D && D->hasAttr<UsedAttr>()) 1385 addUsedGlobal(GV); 1386 1387 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1388 const auto *VD = cast<VarDecl>(D); 1389 if (VD->getType().isConstQualified() && 1390 VD->getStorageDuration() == SD_Static) 1391 addUsedGlobal(GV); 1392 } 1393 } 1394 1395 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1396 llvm::AttrBuilder &Attrs) { 1397 // Add target-cpu and target-features attributes to functions. If 1398 // we have a decl for the function and it has a target attribute then 1399 // parse that and add it to the feature set. 1400 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1401 std::vector<std::string> Features; 1402 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1403 FD = FD ? FD->getMostRecentDecl() : FD; 1404 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1405 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1406 bool AddedAttr = false; 1407 if (TD || SD) { 1408 llvm::StringMap<bool> FeatureMap; 1409 getFunctionFeatureMap(FeatureMap, FD); 1410 1411 // Produce the canonical string for this set of features. 1412 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1413 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1414 1415 // Now add the target-cpu and target-features to the function. 1416 // While we populated the feature map above, we still need to 1417 // get and parse the target attribute so we can get the cpu for 1418 // the function. 1419 if (TD) { 1420 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1421 if (ParsedAttr.Architecture != "" && 1422 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1423 TargetCPU = ParsedAttr.Architecture; 1424 } 1425 } else { 1426 // Otherwise just add the existing target cpu and target features to the 1427 // function. 1428 Features = getTarget().getTargetOpts().Features; 1429 } 1430 1431 if (TargetCPU != "") { 1432 Attrs.addAttribute("target-cpu", TargetCPU); 1433 AddedAttr = true; 1434 } 1435 if (!Features.empty()) { 1436 llvm::sort(Features); 1437 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1438 AddedAttr = true; 1439 } 1440 1441 return AddedAttr; 1442 } 1443 1444 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1445 llvm::GlobalObject *GO) { 1446 const Decl *D = GD.getDecl(); 1447 SetCommonAttributes(GD, GO); 1448 1449 if (D) { 1450 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1451 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1452 GV->addAttribute("bss-section", SA->getName()); 1453 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1454 GV->addAttribute("data-section", SA->getName()); 1455 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1456 GV->addAttribute("rodata-section", SA->getName()); 1457 } 1458 1459 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1460 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1461 if (!D->getAttr<SectionAttr>()) 1462 F->addFnAttr("implicit-section-name", SA->getName()); 1463 1464 llvm::AttrBuilder Attrs; 1465 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1466 // We know that GetCPUAndFeaturesAttributes will always have the 1467 // newest set, since it has the newest possible FunctionDecl, so the 1468 // new ones should replace the old. 1469 F->removeFnAttr("target-cpu"); 1470 F->removeFnAttr("target-features"); 1471 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1472 } 1473 } 1474 1475 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1476 GO->setSection(CSA->getName()); 1477 else if (const auto *SA = D->getAttr<SectionAttr>()) 1478 GO->setSection(SA->getName()); 1479 } 1480 1481 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1482 } 1483 1484 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1485 llvm::Function *F, 1486 const CGFunctionInfo &FI) { 1487 const Decl *D = GD.getDecl(); 1488 SetLLVMFunctionAttributes(D, FI, F); 1489 SetLLVMFunctionAttributesForDefinition(D, F); 1490 1491 F->setLinkage(llvm::Function::InternalLinkage); 1492 1493 setNonAliasAttributes(GD, F); 1494 } 1495 1496 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1497 // Set linkage and visibility in case we never see a definition. 1498 LinkageInfo LV = ND->getLinkageAndVisibility(); 1499 // Don't set internal linkage on declarations. 1500 // "extern_weak" is overloaded in LLVM; we probably should have 1501 // separate linkage types for this. 1502 if (isExternallyVisible(LV.getLinkage()) && 1503 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1504 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1505 } 1506 1507 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1508 llvm::Function *F) { 1509 // Only if we are checking indirect calls. 1510 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1511 return; 1512 1513 // Non-static class methods are handled via vtable or member function pointer 1514 // checks elsewhere. 1515 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1516 return; 1517 1518 // Additionally, if building with cross-DSO support... 1519 if (CodeGenOpts.SanitizeCfiCrossDso) { 1520 // Skip available_externally functions. They won't be codegen'ed in the 1521 // current module anyway. 1522 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1523 return; 1524 } 1525 1526 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1527 F->addTypeMetadata(0, MD); 1528 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1529 1530 // Emit a hash-based bit set entry for cross-DSO calls. 1531 if (CodeGenOpts.SanitizeCfiCrossDso) 1532 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1533 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1534 } 1535 1536 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1537 bool IsIncompleteFunction, 1538 bool IsThunk) { 1539 1540 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1541 // If this is an intrinsic function, set the function's attributes 1542 // to the intrinsic's attributes. 1543 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1544 return; 1545 } 1546 1547 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1548 1549 if (!IsIncompleteFunction) { 1550 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1551 // Setup target-specific attributes. 1552 if (F->isDeclaration()) 1553 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1554 } 1555 1556 // Add the Returned attribute for "this", except for iOS 5 and earlier 1557 // where substantial code, including the libstdc++ dylib, was compiled with 1558 // GCC and does not actually return "this". 1559 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1560 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1561 assert(!F->arg_empty() && 1562 F->arg_begin()->getType() 1563 ->canLosslesslyBitCastTo(F->getReturnType()) && 1564 "unexpected this return"); 1565 F->addAttribute(1, llvm::Attribute::Returned); 1566 } 1567 1568 // Only a few attributes are set on declarations; these may later be 1569 // overridden by a definition. 1570 1571 setLinkageForGV(F, FD); 1572 setGVProperties(F, FD); 1573 1574 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1575 F->setSection(CSA->getName()); 1576 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1577 F->setSection(SA->getName()); 1578 1579 if (FD->isReplaceableGlobalAllocationFunction()) { 1580 // A replaceable global allocation function does not act like a builtin by 1581 // default, only if it is invoked by a new-expression or delete-expression. 1582 F->addAttribute(llvm::AttributeList::FunctionIndex, 1583 llvm::Attribute::NoBuiltin); 1584 1585 // A sane operator new returns a non-aliasing pointer. 1586 // FIXME: Also add NonNull attribute to the return value 1587 // for the non-nothrow forms? 1588 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1589 if (getCodeGenOpts().AssumeSaneOperatorNew && 1590 (Kind == OO_New || Kind == OO_Array_New)) 1591 F->addAttribute(llvm::AttributeList::ReturnIndex, 1592 llvm::Attribute::NoAlias); 1593 } 1594 1595 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1596 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1597 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1598 if (MD->isVirtual()) 1599 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1600 1601 // Don't emit entries for function declarations in the cross-DSO mode. This 1602 // is handled with better precision by the receiving DSO. 1603 if (!CodeGenOpts.SanitizeCfiCrossDso) 1604 CreateFunctionTypeMetadataForIcall(FD, F); 1605 1606 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1607 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1608 } 1609 1610 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1611 assert(!GV->isDeclaration() && 1612 "Only globals with definition can force usage."); 1613 LLVMUsed.emplace_back(GV); 1614 } 1615 1616 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1617 assert(!GV->isDeclaration() && 1618 "Only globals with definition can force usage."); 1619 LLVMCompilerUsed.emplace_back(GV); 1620 } 1621 1622 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1623 std::vector<llvm::WeakTrackingVH> &List) { 1624 // Don't create llvm.used if there is no need. 1625 if (List.empty()) 1626 return; 1627 1628 // Convert List to what ConstantArray needs. 1629 SmallVector<llvm::Constant*, 8> UsedArray; 1630 UsedArray.resize(List.size()); 1631 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1632 UsedArray[i] = 1633 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1634 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1635 } 1636 1637 if (UsedArray.empty()) 1638 return; 1639 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1640 1641 auto *GV = new llvm::GlobalVariable( 1642 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1643 llvm::ConstantArray::get(ATy, UsedArray), Name); 1644 1645 GV->setSection("llvm.metadata"); 1646 } 1647 1648 void CodeGenModule::emitLLVMUsed() { 1649 emitUsed(*this, "llvm.used", LLVMUsed); 1650 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1651 } 1652 1653 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1654 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1655 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1656 } 1657 1658 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1659 llvm::SmallString<32> Opt; 1660 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1661 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1662 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1663 } 1664 1665 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1666 auto &C = getLLVMContext(); 1667 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1668 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1669 } 1670 1671 void CodeGenModule::AddDependentLib(StringRef Lib) { 1672 llvm::SmallString<24> Opt; 1673 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1674 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1675 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1676 } 1677 1678 /// Add link options implied by the given module, including modules 1679 /// it depends on, using a postorder walk. 1680 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1681 SmallVectorImpl<llvm::MDNode *> &Metadata, 1682 llvm::SmallPtrSet<Module *, 16> &Visited) { 1683 // Import this module's parent. 1684 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1685 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1686 } 1687 1688 // Import this module's dependencies. 1689 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1690 if (Visited.insert(Mod->Imports[I - 1]).second) 1691 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1692 } 1693 1694 // Add linker options to link against the libraries/frameworks 1695 // described by this module. 1696 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1697 1698 // For modules that use export_as for linking, use that module 1699 // name instead. 1700 if (Mod->UseExportAsModuleLinkName) 1701 return; 1702 1703 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1704 // Link against a framework. Frameworks are currently Darwin only, so we 1705 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1706 if (Mod->LinkLibraries[I-1].IsFramework) { 1707 llvm::Metadata *Args[2] = { 1708 llvm::MDString::get(Context, "-framework"), 1709 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1710 1711 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1712 continue; 1713 } 1714 1715 // Link against a library. 1716 llvm::SmallString<24> Opt; 1717 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1718 Mod->LinkLibraries[I-1].Library, Opt); 1719 auto *OptString = llvm::MDString::get(Context, Opt); 1720 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1721 } 1722 } 1723 1724 void CodeGenModule::EmitModuleLinkOptions() { 1725 // Collect the set of all of the modules we want to visit to emit link 1726 // options, which is essentially the imported modules and all of their 1727 // non-explicit child modules. 1728 llvm::SetVector<clang::Module *> LinkModules; 1729 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1730 SmallVector<clang::Module *, 16> Stack; 1731 1732 // Seed the stack with imported modules. 1733 for (Module *M : ImportedModules) { 1734 // Do not add any link flags when an implementation TU of a module imports 1735 // a header of that same module. 1736 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1737 !getLangOpts().isCompilingModule()) 1738 continue; 1739 if (Visited.insert(M).second) 1740 Stack.push_back(M); 1741 } 1742 1743 // Find all of the modules to import, making a little effort to prune 1744 // non-leaf modules. 1745 while (!Stack.empty()) { 1746 clang::Module *Mod = Stack.pop_back_val(); 1747 1748 bool AnyChildren = false; 1749 1750 // Visit the submodules of this module. 1751 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1752 SubEnd = Mod->submodule_end(); 1753 Sub != SubEnd; ++Sub) { 1754 // Skip explicit children; they need to be explicitly imported to be 1755 // linked against. 1756 if ((*Sub)->IsExplicit) 1757 continue; 1758 1759 if (Visited.insert(*Sub).second) { 1760 Stack.push_back(*Sub); 1761 AnyChildren = true; 1762 } 1763 } 1764 1765 // We didn't find any children, so add this module to the list of 1766 // modules to link against. 1767 if (!AnyChildren) { 1768 LinkModules.insert(Mod); 1769 } 1770 } 1771 1772 // Add link options for all of the imported modules in reverse topological 1773 // order. We don't do anything to try to order import link flags with respect 1774 // to linker options inserted by things like #pragma comment(). 1775 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1776 Visited.clear(); 1777 for (Module *M : LinkModules) 1778 if (Visited.insert(M).second) 1779 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1780 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1781 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1782 1783 // Add the linker options metadata flag. 1784 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1785 for (auto *MD : LinkerOptionsMetadata) 1786 NMD->addOperand(MD); 1787 } 1788 1789 void CodeGenModule::EmitDeferred() { 1790 // Emit deferred declare target declarations. 1791 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1792 getOpenMPRuntime().emitDeferredTargetDecls(); 1793 1794 // Emit code for any potentially referenced deferred decls. Since a 1795 // previously unused static decl may become used during the generation of code 1796 // for a static function, iterate until no changes are made. 1797 1798 if (!DeferredVTables.empty()) { 1799 EmitDeferredVTables(); 1800 1801 // Emitting a vtable doesn't directly cause more vtables to 1802 // become deferred, although it can cause functions to be 1803 // emitted that then need those vtables. 1804 assert(DeferredVTables.empty()); 1805 } 1806 1807 // Stop if we're out of both deferred vtables and deferred declarations. 1808 if (DeferredDeclsToEmit.empty()) 1809 return; 1810 1811 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1812 // work, it will not interfere with this. 1813 std::vector<GlobalDecl> CurDeclsToEmit; 1814 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1815 1816 for (GlobalDecl &D : CurDeclsToEmit) { 1817 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1818 // to get GlobalValue with exactly the type we need, not something that 1819 // might had been created for another decl with the same mangled name but 1820 // different type. 1821 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1822 GetAddrOfGlobal(D, ForDefinition)); 1823 1824 // In case of different address spaces, we may still get a cast, even with 1825 // IsForDefinition equal to true. Query mangled names table to get 1826 // GlobalValue. 1827 if (!GV) 1828 GV = GetGlobalValue(getMangledName(D)); 1829 1830 // Make sure GetGlobalValue returned non-null. 1831 assert(GV); 1832 1833 // Check to see if we've already emitted this. This is necessary 1834 // for a couple of reasons: first, decls can end up in the 1835 // deferred-decls queue multiple times, and second, decls can end 1836 // up with definitions in unusual ways (e.g. by an extern inline 1837 // function acquiring a strong function redefinition). Just 1838 // ignore these cases. 1839 if (!GV->isDeclaration()) 1840 continue; 1841 1842 // Otherwise, emit the definition and move on to the next one. 1843 EmitGlobalDefinition(D, GV); 1844 1845 // If we found out that we need to emit more decls, do that recursively. 1846 // This has the advantage that the decls are emitted in a DFS and related 1847 // ones are close together, which is convenient for testing. 1848 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1849 EmitDeferred(); 1850 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1851 } 1852 } 1853 } 1854 1855 void CodeGenModule::EmitVTablesOpportunistically() { 1856 // Try to emit external vtables as available_externally if they have emitted 1857 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1858 // is not allowed to create new references to things that need to be emitted 1859 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1860 1861 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1862 && "Only emit opportunistic vtables with optimizations"); 1863 1864 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1865 assert(getVTables().isVTableExternal(RD) && 1866 "This queue should only contain external vtables"); 1867 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1868 VTables.GenerateClassData(RD); 1869 } 1870 OpportunisticVTables.clear(); 1871 } 1872 1873 void CodeGenModule::EmitGlobalAnnotations() { 1874 if (Annotations.empty()) 1875 return; 1876 1877 // Create a new global variable for the ConstantStruct in the Module. 1878 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1879 Annotations[0]->getType(), Annotations.size()), Annotations); 1880 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1881 llvm::GlobalValue::AppendingLinkage, 1882 Array, "llvm.global.annotations"); 1883 gv->setSection(AnnotationSection); 1884 } 1885 1886 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1887 llvm::Constant *&AStr = AnnotationStrings[Str]; 1888 if (AStr) 1889 return AStr; 1890 1891 // Not found yet, create a new global. 1892 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1893 auto *gv = 1894 new llvm::GlobalVariable(getModule(), s->getType(), true, 1895 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1896 gv->setSection(AnnotationSection); 1897 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1898 AStr = gv; 1899 return gv; 1900 } 1901 1902 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1903 SourceManager &SM = getContext().getSourceManager(); 1904 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1905 if (PLoc.isValid()) 1906 return EmitAnnotationString(PLoc.getFilename()); 1907 return EmitAnnotationString(SM.getBufferName(Loc)); 1908 } 1909 1910 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1911 SourceManager &SM = getContext().getSourceManager(); 1912 PresumedLoc PLoc = SM.getPresumedLoc(L); 1913 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1914 SM.getExpansionLineNumber(L); 1915 return llvm::ConstantInt::get(Int32Ty, LineNo); 1916 } 1917 1918 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1919 const AnnotateAttr *AA, 1920 SourceLocation L) { 1921 // Get the globals for file name, annotation, and the line number. 1922 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1923 *UnitGV = EmitAnnotationUnit(L), 1924 *LineNoCst = EmitAnnotationLineNo(L); 1925 1926 // Create the ConstantStruct for the global annotation. 1927 llvm::Constant *Fields[4] = { 1928 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1929 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1930 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1931 LineNoCst 1932 }; 1933 return llvm::ConstantStruct::getAnon(Fields); 1934 } 1935 1936 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1937 llvm::GlobalValue *GV) { 1938 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1939 // Get the struct elements for these annotations. 1940 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1941 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1942 } 1943 1944 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1945 llvm::Function *Fn, 1946 SourceLocation Loc) const { 1947 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1948 // Blacklist by function name. 1949 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1950 return true; 1951 // Blacklist by location. 1952 if (Loc.isValid()) 1953 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1954 // If location is unknown, this may be a compiler-generated function. Assume 1955 // it's located in the main file. 1956 auto &SM = Context.getSourceManager(); 1957 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1958 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1959 } 1960 return false; 1961 } 1962 1963 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1964 SourceLocation Loc, QualType Ty, 1965 StringRef Category) const { 1966 // For now globals can be blacklisted only in ASan and KASan. 1967 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1968 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1969 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1970 if (!EnabledAsanMask) 1971 return false; 1972 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1973 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1974 return true; 1975 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1976 return true; 1977 // Check global type. 1978 if (!Ty.isNull()) { 1979 // Drill down the array types: if global variable of a fixed type is 1980 // blacklisted, we also don't instrument arrays of them. 1981 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1982 Ty = AT->getElementType(); 1983 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1984 // We allow to blacklist only record types (classes, structs etc.) 1985 if (Ty->isRecordType()) { 1986 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1987 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1988 return true; 1989 } 1990 } 1991 return false; 1992 } 1993 1994 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1995 StringRef Category) const { 1996 const auto &XRayFilter = getContext().getXRayFilter(); 1997 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1998 auto Attr = ImbueAttr::NONE; 1999 if (Loc.isValid()) 2000 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2001 if (Attr == ImbueAttr::NONE) 2002 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2003 switch (Attr) { 2004 case ImbueAttr::NONE: 2005 return false; 2006 case ImbueAttr::ALWAYS: 2007 Fn->addFnAttr("function-instrument", "xray-always"); 2008 break; 2009 case ImbueAttr::ALWAYS_ARG1: 2010 Fn->addFnAttr("function-instrument", "xray-always"); 2011 Fn->addFnAttr("xray-log-args", "1"); 2012 break; 2013 case ImbueAttr::NEVER: 2014 Fn->addFnAttr("function-instrument", "xray-never"); 2015 break; 2016 } 2017 return true; 2018 } 2019 2020 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2021 // Never defer when EmitAllDecls is specified. 2022 if (LangOpts.EmitAllDecls) 2023 return true; 2024 2025 if (CodeGenOpts.KeepStaticConsts) { 2026 const auto *VD = dyn_cast<VarDecl>(Global); 2027 if (VD && VD->getType().isConstQualified() && 2028 VD->getStorageDuration() == SD_Static) 2029 return true; 2030 } 2031 2032 return getContext().DeclMustBeEmitted(Global); 2033 } 2034 2035 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2036 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2037 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2038 // Implicit template instantiations may change linkage if they are later 2039 // explicitly instantiated, so they should not be emitted eagerly. 2040 return false; 2041 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2042 if (Context.getInlineVariableDefinitionKind(VD) == 2043 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2044 // A definition of an inline constexpr static data member may change 2045 // linkage later if it's redeclared outside the class. 2046 return false; 2047 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2048 // codegen for global variables, because they may be marked as threadprivate. 2049 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2050 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2051 !isTypeConstant(Global->getType(), false) && 2052 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2053 return false; 2054 2055 return true; 2056 } 2057 2058 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2059 const CXXUuidofExpr* E) { 2060 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2061 // well-formed. 2062 StringRef Uuid = E->getUuidStr(); 2063 std::string Name = "_GUID_" + Uuid.lower(); 2064 std::replace(Name.begin(), Name.end(), '-', '_'); 2065 2066 // The UUID descriptor should be pointer aligned. 2067 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2068 2069 // Look for an existing global. 2070 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2071 return ConstantAddress(GV, Alignment); 2072 2073 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2074 assert(Init && "failed to initialize as constant"); 2075 2076 auto *GV = new llvm::GlobalVariable( 2077 getModule(), Init->getType(), 2078 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2079 if (supportsCOMDAT()) 2080 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2081 setDSOLocal(GV); 2082 return ConstantAddress(GV, Alignment); 2083 } 2084 2085 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2086 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2087 assert(AA && "No alias?"); 2088 2089 CharUnits Alignment = getContext().getDeclAlign(VD); 2090 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2091 2092 // See if there is already something with the target's name in the module. 2093 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2094 if (Entry) { 2095 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2096 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2097 return ConstantAddress(Ptr, Alignment); 2098 } 2099 2100 llvm::Constant *Aliasee; 2101 if (isa<llvm::FunctionType>(DeclTy)) 2102 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2103 GlobalDecl(cast<FunctionDecl>(VD)), 2104 /*ForVTable=*/false); 2105 else 2106 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2107 llvm::PointerType::getUnqual(DeclTy), 2108 nullptr); 2109 2110 auto *F = cast<llvm::GlobalValue>(Aliasee); 2111 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2112 WeakRefReferences.insert(F); 2113 2114 return ConstantAddress(Aliasee, Alignment); 2115 } 2116 2117 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2118 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2119 2120 // Weak references don't produce any output by themselves. 2121 if (Global->hasAttr<WeakRefAttr>()) 2122 return; 2123 2124 // If this is an alias definition (which otherwise looks like a declaration) 2125 // emit it now. 2126 if (Global->hasAttr<AliasAttr>()) 2127 return EmitAliasDefinition(GD); 2128 2129 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2130 if (Global->hasAttr<IFuncAttr>()) 2131 return emitIFuncDefinition(GD); 2132 2133 // If this is a cpu_dispatch multiversion function, emit the resolver. 2134 if (Global->hasAttr<CPUDispatchAttr>()) 2135 return emitCPUDispatchDefinition(GD); 2136 2137 // If this is CUDA, be selective about which declarations we emit. 2138 if (LangOpts.CUDA) { 2139 if (LangOpts.CUDAIsDevice) { 2140 if (!Global->hasAttr<CUDADeviceAttr>() && 2141 !Global->hasAttr<CUDAGlobalAttr>() && 2142 !Global->hasAttr<CUDAConstantAttr>() && 2143 !Global->hasAttr<CUDASharedAttr>()) 2144 return; 2145 } else { 2146 // We need to emit host-side 'shadows' for all global 2147 // device-side variables because the CUDA runtime needs their 2148 // size and host-side address in order to provide access to 2149 // their device-side incarnations. 2150 2151 // So device-only functions are the only things we skip. 2152 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2153 Global->hasAttr<CUDADeviceAttr>()) 2154 return; 2155 2156 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2157 "Expected Variable or Function"); 2158 } 2159 } 2160 2161 if (LangOpts.OpenMP) { 2162 // If this is OpenMP device, check if it is legal to emit this global 2163 // normally. 2164 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2165 return; 2166 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2167 if (MustBeEmitted(Global)) 2168 EmitOMPDeclareReduction(DRD); 2169 return; 2170 } 2171 } 2172 2173 // Ignore declarations, they will be emitted on their first use. 2174 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2175 // Forward declarations are emitted lazily on first use. 2176 if (!FD->doesThisDeclarationHaveABody()) { 2177 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2178 return; 2179 2180 StringRef MangledName = getMangledName(GD); 2181 2182 // Compute the function info and LLVM type. 2183 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2184 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2185 2186 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2187 /*DontDefer=*/false); 2188 return; 2189 } 2190 } else { 2191 const auto *VD = cast<VarDecl>(Global); 2192 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2193 // We need to emit device-side global CUDA variables even if a 2194 // variable does not have a definition -- we still need to define 2195 // host-side shadow for it. 2196 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2197 !VD->hasDefinition() && 2198 (VD->hasAttr<CUDAConstantAttr>() || 2199 VD->hasAttr<CUDADeviceAttr>()); 2200 if (!MustEmitForCuda && 2201 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2202 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2203 if (LangOpts.OpenMP) { 2204 // Emit declaration of the must-be-emitted declare target variable. 2205 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2206 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2207 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2208 (void)GetAddrOfGlobalVar(VD); 2209 } else { 2210 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2211 "link claue expected."); 2212 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2213 } 2214 return; 2215 } 2216 } 2217 // If this declaration may have caused an inline variable definition to 2218 // change linkage, make sure that it's emitted. 2219 if (Context.getInlineVariableDefinitionKind(VD) == 2220 ASTContext::InlineVariableDefinitionKind::Strong) 2221 GetAddrOfGlobalVar(VD); 2222 return; 2223 } 2224 } 2225 2226 // Defer code generation to first use when possible, e.g. if this is an inline 2227 // function. If the global must always be emitted, do it eagerly if possible 2228 // to benefit from cache locality. 2229 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2230 // Emit the definition if it can't be deferred. 2231 EmitGlobalDefinition(GD); 2232 return; 2233 } 2234 2235 // If we're deferring emission of a C++ variable with an 2236 // initializer, remember the order in which it appeared in the file. 2237 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2238 cast<VarDecl>(Global)->hasInit()) { 2239 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2240 CXXGlobalInits.push_back(nullptr); 2241 } 2242 2243 StringRef MangledName = getMangledName(GD); 2244 if (GetGlobalValue(MangledName) != nullptr) { 2245 // The value has already been used and should therefore be emitted. 2246 addDeferredDeclToEmit(GD); 2247 } else if (MustBeEmitted(Global)) { 2248 // The value must be emitted, but cannot be emitted eagerly. 2249 assert(!MayBeEmittedEagerly(Global)); 2250 addDeferredDeclToEmit(GD); 2251 } else { 2252 // Otherwise, remember that we saw a deferred decl with this name. The 2253 // first use of the mangled name will cause it to move into 2254 // DeferredDeclsToEmit. 2255 DeferredDecls[MangledName] = GD; 2256 } 2257 } 2258 2259 // Check if T is a class type with a destructor that's not dllimport. 2260 static bool HasNonDllImportDtor(QualType T) { 2261 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2262 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2263 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2264 return true; 2265 2266 return false; 2267 } 2268 2269 namespace { 2270 struct FunctionIsDirectlyRecursive : 2271 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2272 const StringRef Name; 2273 const Builtin::Context &BI; 2274 bool Result; 2275 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2276 Name(N), BI(C), Result(false) { 2277 } 2278 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2279 2280 bool TraverseCallExpr(CallExpr *E) { 2281 const FunctionDecl *FD = E->getDirectCallee(); 2282 if (!FD) 2283 return true; 2284 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2285 if (Attr && Name == Attr->getLabel()) { 2286 Result = true; 2287 return false; 2288 } 2289 unsigned BuiltinID = FD->getBuiltinID(); 2290 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2291 return true; 2292 StringRef BuiltinName = BI.getName(BuiltinID); 2293 if (BuiltinName.startswith("__builtin_") && 2294 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2295 Result = true; 2296 return false; 2297 } 2298 return true; 2299 } 2300 }; 2301 2302 // Make sure we're not referencing non-imported vars or functions. 2303 struct DLLImportFunctionVisitor 2304 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2305 bool SafeToInline = true; 2306 2307 bool shouldVisitImplicitCode() const { return true; } 2308 2309 bool VisitVarDecl(VarDecl *VD) { 2310 if (VD->getTLSKind()) { 2311 // A thread-local variable cannot be imported. 2312 SafeToInline = false; 2313 return SafeToInline; 2314 } 2315 2316 // A variable definition might imply a destructor call. 2317 if (VD->isThisDeclarationADefinition()) 2318 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2319 2320 return SafeToInline; 2321 } 2322 2323 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2324 if (const auto *D = E->getTemporary()->getDestructor()) 2325 SafeToInline = D->hasAttr<DLLImportAttr>(); 2326 return SafeToInline; 2327 } 2328 2329 bool VisitDeclRefExpr(DeclRefExpr *E) { 2330 ValueDecl *VD = E->getDecl(); 2331 if (isa<FunctionDecl>(VD)) 2332 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2333 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2334 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2335 return SafeToInline; 2336 } 2337 2338 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2339 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2340 return SafeToInline; 2341 } 2342 2343 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2344 CXXMethodDecl *M = E->getMethodDecl(); 2345 if (!M) { 2346 // Call through a pointer to member function. This is safe to inline. 2347 SafeToInline = true; 2348 } else { 2349 SafeToInline = M->hasAttr<DLLImportAttr>(); 2350 } 2351 return SafeToInline; 2352 } 2353 2354 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2355 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2356 return SafeToInline; 2357 } 2358 2359 bool VisitCXXNewExpr(CXXNewExpr *E) { 2360 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2361 return SafeToInline; 2362 } 2363 }; 2364 } 2365 2366 // isTriviallyRecursive - Check if this function calls another 2367 // decl that, because of the asm attribute or the other decl being a builtin, 2368 // ends up pointing to itself. 2369 bool 2370 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2371 StringRef Name; 2372 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2373 // asm labels are a special kind of mangling we have to support. 2374 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2375 if (!Attr) 2376 return false; 2377 Name = Attr->getLabel(); 2378 } else { 2379 Name = FD->getName(); 2380 } 2381 2382 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2383 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2384 return Walker.Result; 2385 } 2386 2387 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2388 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2389 return true; 2390 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2391 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2392 return false; 2393 2394 if (F->hasAttr<DLLImportAttr>()) { 2395 // Check whether it would be safe to inline this dllimport function. 2396 DLLImportFunctionVisitor Visitor; 2397 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2398 if (!Visitor.SafeToInline) 2399 return false; 2400 2401 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2402 // Implicit destructor invocations aren't captured in the AST, so the 2403 // check above can't see them. Check for them manually here. 2404 for (const Decl *Member : Dtor->getParent()->decls()) 2405 if (isa<FieldDecl>(Member)) 2406 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2407 return false; 2408 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2409 if (HasNonDllImportDtor(B.getType())) 2410 return false; 2411 } 2412 } 2413 2414 // PR9614. Avoid cases where the source code is lying to us. An available 2415 // externally function should have an equivalent function somewhere else, 2416 // but a function that calls itself is clearly not equivalent to the real 2417 // implementation. 2418 // This happens in glibc's btowc and in some configure checks. 2419 return !isTriviallyRecursive(F); 2420 } 2421 2422 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2423 return CodeGenOpts.OptimizationLevel > 0; 2424 } 2425 2426 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2427 const auto *D = cast<ValueDecl>(GD.getDecl()); 2428 2429 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2430 Context.getSourceManager(), 2431 "Generating code for declaration"); 2432 2433 if (isa<FunctionDecl>(D)) { 2434 // At -O0, don't generate IR for functions with available_externally 2435 // linkage. 2436 if (!shouldEmitFunction(GD)) 2437 return; 2438 2439 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2440 // Make sure to emit the definition(s) before we emit the thunks. 2441 // This is necessary for the generation of certain thunks. 2442 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2443 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2444 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2445 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2446 else 2447 EmitGlobalFunctionDefinition(GD, GV); 2448 2449 if (Method->isVirtual()) 2450 getVTables().EmitThunks(GD); 2451 2452 return; 2453 } 2454 2455 return EmitGlobalFunctionDefinition(GD, GV); 2456 } 2457 2458 if (const auto *VD = dyn_cast<VarDecl>(D)) 2459 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2460 2461 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2462 } 2463 2464 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2465 llvm::Function *NewFn); 2466 2467 static unsigned 2468 TargetMVPriority(const TargetInfo &TI, 2469 const CodeGenFunction::MultiVersionResolverOption &RO) { 2470 unsigned Priority = 0; 2471 for (StringRef Feat : RO.Conditions.Features) 2472 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2473 2474 if (!RO.Conditions.Architecture.empty()) 2475 Priority = std::max( 2476 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2477 return Priority; 2478 } 2479 2480 void CodeGenModule::emitMultiVersionFunctions() { 2481 for (GlobalDecl GD : MultiVersionFuncs) { 2482 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2483 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2484 getContext().forEachMultiversionedFunctionVersion( 2485 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2486 GlobalDecl CurGD{ 2487 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2488 StringRef MangledName = getMangledName(CurGD); 2489 llvm::Constant *Func = GetGlobalValue(MangledName); 2490 if (!Func) { 2491 if (CurFD->isDefined()) { 2492 EmitGlobalFunctionDefinition(CurGD, nullptr); 2493 Func = GetGlobalValue(MangledName); 2494 } else { 2495 const CGFunctionInfo &FI = 2496 getTypes().arrangeGlobalDeclaration(GD); 2497 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2498 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2499 /*DontDefer=*/false, ForDefinition); 2500 } 2501 assert(Func && "This should have just been created"); 2502 } 2503 2504 const auto *TA = CurFD->getAttr<TargetAttr>(); 2505 llvm::SmallVector<StringRef, 8> Feats; 2506 TA->getAddedFeatures(Feats); 2507 2508 Options.emplace_back(cast<llvm::Function>(Func), 2509 TA->getArchitecture(), Feats); 2510 }); 2511 2512 llvm::Function *ResolverFunc; 2513 const TargetInfo &TI = getTarget(); 2514 2515 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2516 ResolverFunc = cast<llvm::Function>( 2517 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2518 else 2519 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2520 2521 if (supportsCOMDAT()) 2522 ResolverFunc->setComdat( 2523 getModule().getOrInsertComdat(ResolverFunc->getName())); 2524 2525 std::stable_sort( 2526 Options.begin(), Options.end(), 2527 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2528 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2529 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2530 }); 2531 CodeGenFunction CGF(*this); 2532 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2533 } 2534 } 2535 2536 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2537 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2538 assert(FD && "Not a FunctionDecl?"); 2539 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2540 assert(DD && "Not a cpu_dispatch Function?"); 2541 QualType CanonTy = Context.getCanonicalType(FD->getType()); 2542 llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD); 2543 2544 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2545 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2546 DeclTy = getTypes().GetFunctionType(FInfo); 2547 } 2548 2549 StringRef ResolverName = getMangledName(GD); 2550 2551 llvm::Type *ResolverType; 2552 GlobalDecl ResolverGD; 2553 if (getTarget().supportsIFunc()) 2554 ResolverType = llvm::FunctionType::get( 2555 llvm::PointerType::get(DeclTy, 2556 Context.getTargetAddressSpace(FD->getType())), 2557 false); 2558 else { 2559 ResolverType = DeclTy; 2560 ResolverGD = GD; 2561 } 2562 2563 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2564 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2565 2566 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2567 const TargetInfo &Target = getTarget(); 2568 for (const IdentifierInfo *II : DD->cpus()) { 2569 // Get the name of the target function so we can look it up/create it. 2570 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2571 getCPUSpecificMangling(*this, II->getName()); 2572 llvm::Constant *Func = GetOrCreateLLVMFunction( 2573 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 2574 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2575 llvm::SmallVector<StringRef, 32> Features; 2576 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2577 llvm::transform(Features, Features.begin(), 2578 [](StringRef Str) { return Str.substr(1); }); 2579 Features.erase(std::remove_if( 2580 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2581 return !Target.validateCpuSupports(Feat); 2582 }), Features.end()); 2583 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2584 } 2585 2586 llvm::sort( 2587 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2588 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2589 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2590 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2591 }); 2592 2593 // If the list contains multiple 'default' versions, such as when it contains 2594 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2595 // always run on at least a 'pentium'). We do this by deleting the 'least 2596 // advanced' (read, lowest mangling letter). 2597 while (Options.size() > 1 && 2598 CodeGenFunction::GetX86CpuSupportsMask( 2599 (Options.end() - 2)->Conditions.Features) == 0) { 2600 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2601 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2602 if (LHSName.compare(RHSName) < 0) 2603 Options.erase(Options.end() - 2); 2604 else 2605 Options.erase(Options.end() - 1); 2606 } 2607 2608 CodeGenFunction CGF(*this); 2609 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2610 } 2611 2612 /// If a dispatcher for the specified mangled name is not in the module, create 2613 /// and return an llvm Function with the specified type. 2614 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2615 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2616 std::string MangledName = 2617 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2618 2619 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2620 // a separate resolver). 2621 std::string ResolverName = MangledName; 2622 if (getTarget().supportsIFunc()) 2623 ResolverName += ".ifunc"; 2624 else if (FD->isTargetMultiVersion()) 2625 ResolverName += ".resolver"; 2626 2627 // If this already exists, just return that one. 2628 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2629 return ResolverGV; 2630 2631 // Since this is the first time we've created this IFunc, make sure 2632 // that we put this multiversioned function into the list to be 2633 // replaced later if necessary (target multiversioning only). 2634 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2635 MultiVersionFuncs.push_back(GD); 2636 2637 if (getTarget().supportsIFunc()) { 2638 llvm::Type *ResolverType = llvm::FunctionType::get( 2639 llvm::PointerType::get( 2640 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2641 false); 2642 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2643 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2644 /*ForVTable=*/false); 2645 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2646 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2647 GIF->setName(ResolverName); 2648 SetCommonAttributes(FD, GIF); 2649 2650 return GIF; 2651 } 2652 2653 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2654 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2655 assert(isa<llvm::GlobalValue>(Resolver) && 2656 "Resolver should be created for the first time"); 2657 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2658 return Resolver; 2659 } 2660 2661 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2662 /// module, create and return an llvm Function with the specified type. If there 2663 /// is something in the module with the specified name, return it potentially 2664 /// bitcasted to the right type. 2665 /// 2666 /// If D is non-null, it specifies a decl that correspond to this. This is used 2667 /// to set the attributes on the function when it is first created. 2668 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2669 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2670 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2671 ForDefinition_t IsForDefinition) { 2672 const Decl *D = GD.getDecl(); 2673 2674 // Any attempts to use a MultiVersion function should result in retrieving 2675 // the iFunc instead. Name Mangling will handle the rest of the changes. 2676 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2677 // For the device mark the function as one that should be emitted. 2678 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2679 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2680 !DontDefer && !IsForDefinition) { 2681 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2682 GlobalDecl GDDef; 2683 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2684 GDDef = GlobalDecl(CD, GD.getCtorType()); 2685 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2686 GDDef = GlobalDecl(DD, GD.getDtorType()); 2687 else 2688 GDDef = GlobalDecl(FDDef); 2689 EmitGlobal(GDDef); 2690 } 2691 } 2692 2693 if (FD->isMultiVersion()) { 2694 const auto *TA = FD->getAttr<TargetAttr>(); 2695 if (TA && TA->isDefaultVersion()) 2696 UpdateMultiVersionNames(GD, FD); 2697 if (!IsForDefinition) 2698 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2699 } 2700 } 2701 2702 // Lookup the entry, lazily creating it if necessary. 2703 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2704 if (Entry) { 2705 if (WeakRefReferences.erase(Entry)) { 2706 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2707 if (FD && !FD->hasAttr<WeakAttr>()) 2708 Entry->setLinkage(llvm::Function::ExternalLinkage); 2709 } 2710 2711 // Handle dropped DLL attributes. 2712 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2713 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2714 setDSOLocal(Entry); 2715 } 2716 2717 // If there are two attempts to define the same mangled name, issue an 2718 // error. 2719 if (IsForDefinition && !Entry->isDeclaration()) { 2720 GlobalDecl OtherGD; 2721 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2722 // to make sure that we issue an error only once. 2723 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2724 (GD.getCanonicalDecl().getDecl() != 2725 OtherGD.getCanonicalDecl().getDecl()) && 2726 DiagnosedConflictingDefinitions.insert(GD).second) { 2727 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2728 << MangledName; 2729 getDiags().Report(OtherGD.getDecl()->getLocation(), 2730 diag::note_previous_definition); 2731 } 2732 } 2733 2734 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2735 (Entry->getType()->getElementType() == Ty)) { 2736 return Entry; 2737 } 2738 2739 // Make sure the result is of the correct type. 2740 // (If function is requested for a definition, we always need to create a new 2741 // function, not just return a bitcast.) 2742 if (!IsForDefinition) 2743 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2744 } 2745 2746 // This function doesn't have a complete type (for example, the return 2747 // type is an incomplete struct). Use a fake type instead, and make 2748 // sure not to try to set attributes. 2749 bool IsIncompleteFunction = false; 2750 2751 llvm::FunctionType *FTy; 2752 if (isa<llvm::FunctionType>(Ty)) { 2753 FTy = cast<llvm::FunctionType>(Ty); 2754 } else { 2755 FTy = llvm::FunctionType::get(VoidTy, false); 2756 IsIncompleteFunction = true; 2757 } 2758 2759 llvm::Function *F = 2760 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2761 Entry ? StringRef() : MangledName, &getModule()); 2762 2763 // If we already created a function with the same mangled name (but different 2764 // type) before, take its name and add it to the list of functions to be 2765 // replaced with F at the end of CodeGen. 2766 // 2767 // This happens if there is a prototype for a function (e.g. "int f()") and 2768 // then a definition of a different type (e.g. "int f(int x)"). 2769 if (Entry) { 2770 F->takeName(Entry); 2771 2772 // This might be an implementation of a function without a prototype, in 2773 // which case, try to do special replacement of calls which match the new 2774 // prototype. The really key thing here is that we also potentially drop 2775 // arguments from the call site so as to make a direct call, which makes the 2776 // inliner happier and suppresses a number of optimizer warnings (!) about 2777 // dropping arguments. 2778 if (!Entry->use_empty()) { 2779 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2780 Entry->removeDeadConstantUsers(); 2781 } 2782 2783 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2784 F, Entry->getType()->getElementType()->getPointerTo()); 2785 addGlobalValReplacement(Entry, BC); 2786 } 2787 2788 assert(F->getName() == MangledName && "name was uniqued!"); 2789 if (D) 2790 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2791 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2792 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2793 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2794 } 2795 2796 if (!DontDefer) { 2797 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2798 // each other bottoming out with the base dtor. Therefore we emit non-base 2799 // dtors on usage, even if there is no dtor definition in the TU. 2800 if (D && isa<CXXDestructorDecl>(D) && 2801 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2802 GD.getDtorType())) 2803 addDeferredDeclToEmit(GD); 2804 2805 // This is the first use or definition of a mangled name. If there is a 2806 // deferred decl with this name, remember that we need to emit it at the end 2807 // of the file. 2808 auto DDI = DeferredDecls.find(MangledName); 2809 if (DDI != DeferredDecls.end()) { 2810 // Move the potentially referenced deferred decl to the 2811 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2812 // don't need it anymore). 2813 addDeferredDeclToEmit(DDI->second); 2814 DeferredDecls.erase(DDI); 2815 2816 // Otherwise, there are cases we have to worry about where we're 2817 // using a declaration for which we must emit a definition but where 2818 // we might not find a top-level definition: 2819 // - member functions defined inline in their classes 2820 // - friend functions defined inline in some class 2821 // - special member functions with implicit definitions 2822 // If we ever change our AST traversal to walk into class methods, 2823 // this will be unnecessary. 2824 // 2825 // We also don't emit a definition for a function if it's going to be an 2826 // entry in a vtable, unless it's already marked as used. 2827 } else if (getLangOpts().CPlusPlus && D) { 2828 // Look for a declaration that's lexically in a record. 2829 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2830 FD = FD->getPreviousDecl()) { 2831 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2832 if (FD->doesThisDeclarationHaveABody()) { 2833 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2834 break; 2835 } 2836 } 2837 } 2838 } 2839 } 2840 2841 // Make sure the result is of the requested type. 2842 if (!IsIncompleteFunction) { 2843 assert(F->getType()->getElementType() == Ty); 2844 return F; 2845 } 2846 2847 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2848 return llvm::ConstantExpr::getBitCast(F, PTy); 2849 } 2850 2851 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2852 /// non-null, then this function will use the specified type if it has to 2853 /// create it (this occurs when we see a definition of the function). 2854 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2855 llvm::Type *Ty, 2856 bool ForVTable, 2857 bool DontDefer, 2858 ForDefinition_t IsForDefinition) { 2859 // If there was no specific requested type, just convert it now. 2860 if (!Ty) { 2861 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2862 auto CanonTy = Context.getCanonicalType(FD->getType()); 2863 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2864 } 2865 2866 // Devirtualized destructor calls may come through here instead of via 2867 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2868 // of the complete destructor when necessary. 2869 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2870 if (getTarget().getCXXABI().isMicrosoft() && 2871 GD.getDtorType() == Dtor_Complete && 2872 DD->getParent()->getNumVBases() == 0) 2873 GD = GlobalDecl(DD, Dtor_Base); 2874 } 2875 2876 StringRef MangledName = getMangledName(GD); 2877 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2878 /*IsThunk=*/false, llvm::AttributeList(), 2879 IsForDefinition); 2880 } 2881 2882 static const FunctionDecl * 2883 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2884 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2885 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2886 2887 IdentifierInfo &CII = C.Idents.get(Name); 2888 for (const auto &Result : DC->lookup(&CII)) 2889 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2890 return FD; 2891 2892 if (!C.getLangOpts().CPlusPlus) 2893 return nullptr; 2894 2895 // Demangle the premangled name from getTerminateFn() 2896 IdentifierInfo &CXXII = 2897 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2898 ? C.Idents.get("terminate") 2899 : C.Idents.get(Name); 2900 2901 for (const auto &N : {"__cxxabiv1", "std"}) { 2902 IdentifierInfo &NS = C.Idents.get(N); 2903 for (const auto &Result : DC->lookup(&NS)) { 2904 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2905 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2906 for (const auto &Result : LSD->lookup(&NS)) 2907 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2908 break; 2909 2910 if (ND) 2911 for (const auto &Result : ND->lookup(&CXXII)) 2912 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2913 return FD; 2914 } 2915 } 2916 2917 return nullptr; 2918 } 2919 2920 /// CreateRuntimeFunction - Create a new runtime function with the specified 2921 /// type and name. 2922 llvm::Constant * 2923 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2924 llvm::AttributeList ExtraAttrs, 2925 bool Local) { 2926 llvm::Constant *C = 2927 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2928 /*DontDefer=*/false, /*IsThunk=*/false, 2929 ExtraAttrs); 2930 2931 if (auto *F = dyn_cast<llvm::Function>(C)) { 2932 if (F->empty()) { 2933 F->setCallingConv(getRuntimeCC()); 2934 2935 if (!Local && getTriple().isOSBinFormatCOFF() && 2936 !getCodeGenOpts().LTOVisibilityPublicStd && 2937 !getTriple().isWindowsGNUEnvironment()) { 2938 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2939 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2940 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2941 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2942 } 2943 } 2944 setDSOLocal(F); 2945 } 2946 } 2947 2948 return C; 2949 } 2950 2951 /// CreateBuiltinFunction - Create a new builtin function with the specified 2952 /// type and name. 2953 llvm::Constant * 2954 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2955 llvm::AttributeList ExtraAttrs) { 2956 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2957 } 2958 2959 /// isTypeConstant - Determine whether an object of this type can be emitted 2960 /// as a constant. 2961 /// 2962 /// If ExcludeCtor is true, the duration when the object's constructor runs 2963 /// will not be considered. The caller will need to verify that the object is 2964 /// not written to during its construction. 2965 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2966 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2967 return false; 2968 2969 if (Context.getLangOpts().CPlusPlus) { 2970 if (const CXXRecordDecl *Record 2971 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2972 return ExcludeCtor && !Record->hasMutableFields() && 2973 Record->hasTrivialDestructor(); 2974 } 2975 2976 return true; 2977 } 2978 2979 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2980 /// create and return an llvm GlobalVariable with the specified type. If there 2981 /// is something in the module with the specified name, return it potentially 2982 /// bitcasted to the right type. 2983 /// 2984 /// If D is non-null, it specifies a decl that correspond to this. This is used 2985 /// to set the attributes on the global when it is first created. 2986 /// 2987 /// If IsForDefinition is true, it is guaranteed that an actual global with 2988 /// type Ty will be returned, not conversion of a variable with the same 2989 /// mangled name but some other type. 2990 llvm::Constant * 2991 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2992 llvm::PointerType *Ty, 2993 const VarDecl *D, 2994 ForDefinition_t IsForDefinition) { 2995 // Lookup the entry, lazily creating it if necessary. 2996 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2997 if (Entry) { 2998 if (WeakRefReferences.erase(Entry)) { 2999 if (D && !D->hasAttr<WeakAttr>()) 3000 Entry->setLinkage(llvm::Function::ExternalLinkage); 3001 } 3002 3003 // Handle dropped DLL attributes. 3004 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3005 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3006 3007 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3008 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3009 3010 if (Entry->getType() == Ty) 3011 return Entry; 3012 3013 // If there are two attempts to define the same mangled name, issue an 3014 // error. 3015 if (IsForDefinition && !Entry->isDeclaration()) { 3016 GlobalDecl OtherGD; 3017 const VarDecl *OtherD; 3018 3019 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3020 // to make sure that we issue an error only once. 3021 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3022 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3023 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3024 OtherD->hasInit() && 3025 DiagnosedConflictingDefinitions.insert(D).second) { 3026 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3027 << MangledName; 3028 getDiags().Report(OtherGD.getDecl()->getLocation(), 3029 diag::note_previous_definition); 3030 } 3031 } 3032 3033 // Make sure the result is of the correct type. 3034 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3035 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3036 3037 // (If global is requested for a definition, we always need to create a new 3038 // global, not just return a bitcast.) 3039 if (!IsForDefinition) 3040 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3041 } 3042 3043 auto AddrSpace = GetGlobalVarAddressSpace(D); 3044 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3045 3046 auto *GV = new llvm::GlobalVariable( 3047 getModule(), Ty->getElementType(), false, 3048 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3049 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3050 3051 // If we already created a global with the same mangled name (but different 3052 // type) before, take its name and remove it from its parent. 3053 if (Entry) { 3054 GV->takeName(Entry); 3055 3056 if (!Entry->use_empty()) { 3057 llvm::Constant *NewPtrForOldDecl = 3058 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3059 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3060 } 3061 3062 Entry->eraseFromParent(); 3063 } 3064 3065 // This is the first use or definition of a mangled name. If there is a 3066 // deferred decl with this name, remember that we need to emit it at the end 3067 // of the file. 3068 auto DDI = DeferredDecls.find(MangledName); 3069 if (DDI != DeferredDecls.end()) { 3070 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3071 // list, and remove it from DeferredDecls (since we don't need it anymore). 3072 addDeferredDeclToEmit(DDI->second); 3073 DeferredDecls.erase(DDI); 3074 } 3075 3076 // Handle things which are present even on external declarations. 3077 if (D) { 3078 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3079 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3080 3081 // FIXME: This code is overly simple and should be merged with other global 3082 // handling. 3083 GV->setConstant(isTypeConstant(D->getType(), false)); 3084 3085 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3086 3087 setLinkageForGV(GV, D); 3088 3089 if (D->getTLSKind()) { 3090 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3091 CXXThreadLocals.push_back(D); 3092 setTLSMode(GV, *D); 3093 } 3094 3095 setGVProperties(GV, D); 3096 3097 // If required by the ABI, treat declarations of static data members with 3098 // inline initializers as definitions. 3099 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3100 EmitGlobalVarDefinition(D); 3101 } 3102 3103 // Emit section information for extern variables. 3104 if (D->hasExternalStorage()) { 3105 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3106 GV->setSection(SA->getName()); 3107 } 3108 3109 // Handle XCore specific ABI requirements. 3110 if (getTriple().getArch() == llvm::Triple::xcore && 3111 D->getLanguageLinkage() == CLanguageLinkage && 3112 D->getType().isConstant(Context) && 3113 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3114 GV->setSection(".cp.rodata"); 3115 3116 // Check if we a have a const declaration with an initializer, we may be 3117 // able to emit it as available_externally to expose it's value to the 3118 // optimizer. 3119 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3120 D->getType().isConstQualified() && !GV->hasInitializer() && 3121 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3122 const auto *Record = 3123 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3124 bool HasMutableFields = Record && Record->hasMutableFields(); 3125 if (!HasMutableFields) { 3126 const VarDecl *InitDecl; 3127 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3128 if (InitExpr) { 3129 ConstantEmitter emitter(*this); 3130 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3131 if (Init) { 3132 auto *InitType = Init->getType(); 3133 if (GV->getType()->getElementType() != InitType) { 3134 // The type of the initializer does not match the definition. 3135 // This happens when an initializer has a different type from 3136 // the type of the global (because of padding at the end of a 3137 // structure for instance). 3138 GV->setName(StringRef()); 3139 // Make a new global with the correct type, this is now guaranteed 3140 // to work. 3141 auto *NewGV = cast<llvm::GlobalVariable>( 3142 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3143 3144 // Erase the old global, since it is no longer used. 3145 GV->eraseFromParent(); 3146 GV = NewGV; 3147 } else { 3148 GV->setInitializer(Init); 3149 GV->setConstant(true); 3150 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3151 } 3152 emitter.finalize(GV); 3153 } 3154 } 3155 } 3156 } 3157 } 3158 3159 LangAS ExpectedAS = 3160 D ? D->getType().getAddressSpace() 3161 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3162 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3163 Ty->getPointerAddressSpace()); 3164 if (AddrSpace != ExpectedAS) 3165 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3166 ExpectedAS, Ty); 3167 3168 return GV; 3169 } 3170 3171 llvm::Constant * 3172 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3173 ForDefinition_t IsForDefinition) { 3174 const Decl *D = GD.getDecl(); 3175 if (isa<CXXConstructorDecl>(D)) 3176 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3177 getFromCtorType(GD.getCtorType()), 3178 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3179 /*DontDefer=*/false, IsForDefinition); 3180 else if (isa<CXXDestructorDecl>(D)) 3181 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3182 getFromDtorType(GD.getDtorType()), 3183 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3184 /*DontDefer=*/false, IsForDefinition); 3185 else if (isa<CXXMethodDecl>(D)) { 3186 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3187 cast<CXXMethodDecl>(D)); 3188 auto Ty = getTypes().GetFunctionType(*FInfo); 3189 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3190 IsForDefinition); 3191 } else if (isa<FunctionDecl>(D)) { 3192 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3193 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3194 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3195 IsForDefinition); 3196 } else 3197 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3198 IsForDefinition); 3199 } 3200 3201 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3202 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3203 unsigned Alignment) { 3204 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3205 llvm::GlobalVariable *OldGV = nullptr; 3206 3207 if (GV) { 3208 // Check if the variable has the right type. 3209 if (GV->getType()->getElementType() == Ty) 3210 return GV; 3211 3212 // Because C++ name mangling, the only way we can end up with an already 3213 // existing global with the same name is if it has been declared extern "C". 3214 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3215 OldGV = GV; 3216 } 3217 3218 // Create a new variable. 3219 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3220 Linkage, nullptr, Name); 3221 3222 if (OldGV) { 3223 // Replace occurrences of the old variable if needed. 3224 GV->takeName(OldGV); 3225 3226 if (!OldGV->use_empty()) { 3227 llvm::Constant *NewPtrForOldDecl = 3228 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3229 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3230 } 3231 3232 OldGV->eraseFromParent(); 3233 } 3234 3235 if (supportsCOMDAT() && GV->isWeakForLinker() && 3236 !GV->hasAvailableExternallyLinkage()) 3237 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3238 3239 GV->setAlignment(Alignment); 3240 3241 return GV; 3242 } 3243 3244 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3245 /// given global variable. If Ty is non-null and if the global doesn't exist, 3246 /// then it will be created with the specified type instead of whatever the 3247 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3248 /// that an actual global with type Ty will be returned, not conversion of a 3249 /// variable with the same mangled name but some other type. 3250 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3251 llvm::Type *Ty, 3252 ForDefinition_t IsForDefinition) { 3253 assert(D->hasGlobalStorage() && "Not a global variable"); 3254 QualType ASTTy = D->getType(); 3255 if (!Ty) 3256 Ty = getTypes().ConvertTypeForMem(ASTTy); 3257 3258 llvm::PointerType *PTy = 3259 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3260 3261 StringRef MangledName = getMangledName(D); 3262 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3263 } 3264 3265 /// CreateRuntimeVariable - Create a new runtime global variable with the 3266 /// specified type and name. 3267 llvm::Constant * 3268 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3269 StringRef Name) { 3270 auto *Ret = 3271 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3272 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3273 return Ret; 3274 } 3275 3276 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3277 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3278 3279 StringRef MangledName = getMangledName(D); 3280 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3281 3282 // We already have a definition, not declaration, with the same mangled name. 3283 // Emitting of declaration is not required (and actually overwrites emitted 3284 // definition). 3285 if (GV && !GV->isDeclaration()) 3286 return; 3287 3288 // If we have not seen a reference to this variable yet, place it into the 3289 // deferred declarations table to be emitted if needed later. 3290 if (!MustBeEmitted(D) && !GV) { 3291 DeferredDecls[MangledName] = D; 3292 return; 3293 } 3294 3295 // The tentative definition is the only definition. 3296 EmitGlobalVarDefinition(D); 3297 } 3298 3299 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3300 return Context.toCharUnitsFromBits( 3301 getDataLayout().getTypeStoreSizeInBits(Ty)); 3302 } 3303 3304 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3305 LangAS AddrSpace = LangAS::Default; 3306 if (LangOpts.OpenCL) { 3307 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3308 assert(AddrSpace == LangAS::opencl_global || 3309 AddrSpace == LangAS::opencl_constant || 3310 AddrSpace == LangAS::opencl_local || 3311 AddrSpace >= LangAS::FirstTargetAddressSpace); 3312 return AddrSpace; 3313 } 3314 3315 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3316 if (D && D->hasAttr<CUDAConstantAttr>()) 3317 return LangAS::cuda_constant; 3318 else if (D && D->hasAttr<CUDASharedAttr>()) 3319 return LangAS::cuda_shared; 3320 else if (D && D->hasAttr<CUDADeviceAttr>()) 3321 return LangAS::cuda_device; 3322 else if (D && D->getType().isConstQualified()) 3323 return LangAS::cuda_constant; 3324 else 3325 return LangAS::cuda_device; 3326 } 3327 3328 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3329 } 3330 3331 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3332 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3333 if (LangOpts.OpenCL) 3334 return LangAS::opencl_constant; 3335 if (auto AS = getTarget().getConstantAddressSpace()) 3336 return AS.getValue(); 3337 return LangAS::Default; 3338 } 3339 3340 // In address space agnostic languages, string literals are in default address 3341 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3342 // emitted in constant address space in LLVM IR. To be consistent with other 3343 // parts of AST, string literal global variables in constant address space 3344 // need to be casted to default address space before being put into address 3345 // map and referenced by other part of CodeGen. 3346 // In OpenCL, string literals are in constant address space in AST, therefore 3347 // they should not be casted to default address space. 3348 static llvm::Constant * 3349 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3350 llvm::GlobalVariable *GV) { 3351 llvm::Constant *Cast = GV; 3352 if (!CGM.getLangOpts().OpenCL) { 3353 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3354 if (AS != LangAS::Default) 3355 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3356 CGM, GV, AS.getValue(), LangAS::Default, 3357 GV->getValueType()->getPointerTo( 3358 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3359 } 3360 } 3361 return Cast; 3362 } 3363 3364 template<typename SomeDecl> 3365 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3366 llvm::GlobalValue *GV) { 3367 if (!getLangOpts().CPlusPlus) 3368 return; 3369 3370 // Must have 'used' attribute, or else inline assembly can't rely on 3371 // the name existing. 3372 if (!D->template hasAttr<UsedAttr>()) 3373 return; 3374 3375 // Must have internal linkage and an ordinary name. 3376 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3377 return; 3378 3379 // Must be in an extern "C" context. Entities declared directly within 3380 // a record are not extern "C" even if the record is in such a context. 3381 const SomeDecl *First = D->getFirstDecl(); 3382 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3383 return; 3384 3385 // OK, this is an internal linkage entity inside an extern "C" linkage 3386 // specification. Make a note of that so we can give it the "expected" 3387 // mangled name if nothing else is using that name. 3388 std::pair<StaticExternCMap::iterator, bool> R = 3389 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3390 3391 // If we have multiple internal linkage entities with the same name 3392 // in extern "C" regions, none of them gets that name. 3393 if (!R.second) 3394 R.first->second = nullptr; 3395 } 3396 3397 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3398 if (!CGM.supportsCOMDAT()) 3399 return false; 3400 3401 if (D.hasAttr<SelectAnyAttr>()) 3402 return true; 3403 3404 GVALinkage Linkage; 3405 if (auto *VD = dyn_cast<VarDecl>(&D)) 3406 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3407 else 3408 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3409 3410 switch (Linkage) { 3411 case GVA_Internal: 3412 case GVA_AvailableExternally: 3413 case GVA_StrongExternal: 3414 return false; 3415 case GVA_DiscardableODR: 3416 case GVA_StrongODR: 3417 return true; 3418 } 3419 llvm_unreachable("No such linkage"); 3420 } 3421 3422 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3423 llvm::GlobalObject &GO) { 3424 if (!shouldBeInCOMDAT(*this, D)) 3425 return; 3426 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3427 } 3428 3429 /// Pass IsTentative as true if you want to create a tentative definition. 3430 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3431 bool IsTentative) { 3432 // OpenCL global variables of sampler type are translated to function calls, 3433 // therefore no need to be translated. 3434 QualType ASTTy = D->getType(); 3435 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3436 return; 3437 3438 // If this is OpenMP device, check if it is legal to emit this global 3439 // normally. 3440 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3441 OpenMPRuntime->emitTargetGlobalVariable(D)) 3442 return; 3443 3444 llvm::Constant *Init = nullptr; 3445 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3446 bool NeedsGlobalCtor = false; 3447 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3448 3449 const VarDecl *InitDecl; 3450 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3451 3452 Optional<ConstantEmitter> emitter; 3453 3454 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3455 // as part of their declaration." Sema has already checked for 3456 // error cases, so we just need to set Init to UndefValue. 3457 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3458 D->hasAttr<CUDASharedAttr>()) 3459 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3460 else if (!InitExpr) { 3461 // This is a tentative definition; tentative definitions are 3462 // implicitly initialized with { 0 }. 3463 // 3464 // Note that tentative definitions are only emitted at the end of 3465 // a translation unit, so they should never have incomplete 3466 // type. In addition, EmitTentativeDefinition makes sure that we 3467 // never attempt to emit a tentative definition if a real one 3468 // exists. A use may still exists, however, so we still may need 3469 // to do a RAUW. 3470 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3471 Init = EmitNullConstant(D->getType()); 3472 } else { 3473 initializedGlobalDecl = GlobalDecl(D); 3474 emitter.emplace(*this); 3475 Init = emitter->tryEmitForInitializer(*InitDecl); 3476 3477 if (!Init) { 3478 QualType T = InitExpr->getType(); 3479 if (D->getType()->isReferenceType()) 3480 T = D->getType(); 3481 3482 if (getLangOpts().CPlusPlus) { 3483 Init = EmitNullConstant(T); 3484 NeedsGlobalCtor = true; 3485 } else { 3486 ErrorUnsupported(D, "static initializer"); 3487 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3488 } 3489 } else { 3490 // We don't need an initializer, so remove the entry for the delayed 3491 // initializer position (just in case this entry was delayed) if we 3492 // also don't need to register a destructor. 3493 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3494 DelayedCXXInitPosition.erase(D); 3495 } 3496 } 3497 3498 llvm::Type* InitType = Init->getType(); 3499 llvm::Constant *Entry = 3500 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3501 3502 // Strip off a bitcast if we got one back. 3503 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3504 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3505 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3506 // All zero index gep. 3507 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3508 Entry = CE->getOperand(0); 3509 } 3510 3511 // Entry is now either a Function or GlobalVariable. 3512 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3513 3514 // We have a definition after a declaration with the wrong type. 3515 // We must make a new GlobalVariable* and update everything that used OldGV 3516 // (a declaration or tentative definition) with the new GlobalVariable* 3517 // (which will be a definition). 3518 // 3519 // This happens if there is a prototype for a global (e.g. 3520 // "extern int x[];") and then a definition of a different type (e.g. 3521 // "int x[10];"). This also happens when an initializer has a different type 3522 // from the type of the global (this happens with unions). 3523 if (!GV || GV->getType()->getElementType() != InitType || 3524 GV->getType()->getAddressSpace() != 3525 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3526 3527 // Move the old entry aside so that we'll create a new one. 3528 Entry->setName(StringRef()); 3529 3530 // Make a new global with the correct type, this is now guaranteed to work. 3531 GV = cast<llvm::GlobalVariable>( 3532 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3533 3534 // Replace all uses of the old global with the new global 3535 llvm::Constant *NewPtrForOldDecl = 3536 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3537 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3538 3539 // Erase the old global, since it is no longer used. 3540 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3541 } 3542 3543 MaybeHandleStaticInExternC(D, GV); 3544 3545 if (D->hasAttr<AnnotateAttr>()) 3546 AddGlobalAnnotations(D, GV); 3547 3548 // Set the llvm linkage type as appropriate. 3549 llvm::GlobalValue::LinkageTypes Linkage = 3550 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3551 3552 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3553 // the device. [...]" 3554 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3555 // __device__, declares a variable that: [...] 3556 // Is accessible from all the threads within the grid and from the host 3557 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3558 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3559 if (GV && LangOpts.CUDA) { 3560 if (LangOpts.CUDAIsDevice) { 3561 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3562 GV->setExternallyInitialized(true); 3563 } else { 3564 // Host-side shadows of external declarations of device-side 3565 // global variables become internal definitions. These have to 3566 // be internal in order to prevent name conflicts with global 3567 // host variables with the same name in a different TUs. 3568 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3569 Linkage = llvm::GlobalValue::InternalLinkage; 3570 3571 // Shadow variables and their properties must be registered 3572 // with CUDA runtime. 3573 unsigned Flags = 0; 3574 if (!D->hasDefinition()) 3575 Flags |= CGCUDARuntime::ExternDeviceVar; 3576 if (D->hasAttr<CUDAConstantAttr>()) 3577 Flags |= CGCUDARuntime::ConstantDeviceVar; 3578 getCUDARuntime().registerDeviceVar(*GV, Flags); 3579 } else if (D->hasAttr<CUDASharedAttr>()) 3580 // __shared__ variables are odd. Shadows do get created, but 3581 // they are not registered with the CUDA runtime, so they 3582 // can't really be used to access their device-side 3583 // counterparts. It's not clear yet whether it's nvcc's bug or 3584 // a feature, but we've got to do the same for compatibility. 3585 Linkage = llvm::GlobalValue::InternalLinkage; 3586 } 3587 } 3588 3589 GV->setInitializer(Init); 3590 if (emitter) emitter->finalize(GV); 3591 3592 // If it is safe to mark the global 'constant', do so now. 3593 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3594 isTypeConstant(D->getType(), true)); 3595 3596 // If it is in a read-only section, mark it 'constant'. 3597 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3598 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3599 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3600 GV->setConstant(true); 3601 } 3602 3603 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3604 3605 3606 // On Darwin, if the normal linkage of a C++ thread_local variable is 3607 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3608 // copies within a linkage unit; otherwise, the backing variable has 3609 // internal linkage and all accesses should just be calls to the 3610 // Itanium-specified entry point, which has the normal linkage of the 3611 // variable. This is to preserve the ability to change the implementation 3612 // behind the scenes. 3613 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3614 Context.getTargetInfo().getTriple().isOSDarwin() && 3615 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3616 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3617 Linkage = llvm::GlobalValue::InternalLinkage; 3618 3619 GV->setLinkage(Linkage); 3620 if (D->hasAttr<DLLImportAttr>()) 3621 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3622 else if (D->hasAttr<DLLExportAttr>()) 3623 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3624 else 3625 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3626 3627 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3628 // common vars aren't constant even if declared const. 3629 GV->setConstant(false); 3630 // Tentative definition of global variables may be initialized with 3631 // non-zero null pointers. In this case they should have weak linkage 3632 // since common linkage must have zero initializer and must not have 3633 // explicit section therefore cannot have non-zero initial value. 3634 if (!GV->getInitializer()->isNullValue()) 3635 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3636 } 3637 3638 setNonAliasAttributes(D, GV); 3639 3640 if (D->getTLSKind() && !GV->isThreadLocal()) { 3641 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3642 CXXThreadLocals.push_back(D); 3643 setTLSMode(GV, *D); 3644 } 3645 3646 maybeSetTrivialComdat(*D, *GV); 3647 3648 // Emit the initializer function if necessary. 3649 if (NeedsGlobalCtor || NeedsGlobalDtor) 3650 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3651 3652 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3653 3654 // Emit global variable debug information. 3655 if (CGDebugInfo *DI = getModuleDebugInfo()) 3656 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3657 DI->EmitGlobalVariable(GV, D); 3658 } 3659 3660 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3661 CodeGenModule &CGM, const VarDecl *D, 3662 bool NoCommon) { 3663 // Don't give variables common linkage if -fno-common was specified unless it 3664 // was overridden by a NoCommon attribute. 3665 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3666 return true; 3667 3668 // C11 6.9.2/2: 3669 // A declaration of an identifier for an object that has file scope without 3670 // an initializer, and without a storage-class specifier or with the 3671 // storage-class specifier static, constitutes a tentative definition. 3672 if (D->getInit() || D->hasExternalStorage()) 3673 return true; 3674 3675 // A variable cannot be both common and exist in a section. 3676 if (D->hasAttr<SectionAttr>()) 3677 return true; 3678 3679 // A variable cannot be both common and exist in a section. 3680 // We don't try to determine which is the right section in the front-end. 3681 // If no specialized section name is applicable, it will resort to default. 3682 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3683 D->hasAttr<PragmaClangDataSectionAttr>() || 3684 D->hasAttr<PragmaClangRodataSectionAttr>()) 3685 return true; 3686 3687 // Thread local vars aren't considered common linkage. 3688 if (D->getTLSKind()) 3689 return true; 3690 3691 // Tentative definitions marked with WeakImportAttr are true definitions. 3692 if (D->hasAttr<WeakImportAttr>()) 3693 return true; 3694 3695 // A variable cannot be both common and exist in a comdat. 3696 if (shouldBeInCOMDAT(CGM, *D)) 3697 return true; 3698 3699 // Declarations with a required alignment do not have common linkage in MSVC 3700 // mode. 3701 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3702 if (D->hasAttr<AlignedAttr>()) 3703 return true; 3704 QualType VarType = D->getType(); 3705 if (Context.isAlignmentRequired(VarType)) 3706 return true; 3707 3708 if (const auto *RT = VarType->getAs<RecordType>()) { 3709 const RecordDecl *RD = RT->getDecl(); 3710 for (const FieldDecl *FD : RD->fields()) { 3711 if (FD->isBitField()) 3712 continue; 3713 if (FD->hasAttr<AlignedAttr>()) 3714 return true; 3715 if (Context.isAlignmentRequired(FD->getType())) 3716 return true; 3717 } 3718 } 3719 } 3720 3721 return false; 3722 } 3723 3724 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3725 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3726 if (Linkage == GVA_Internal) 3727 return llvm::Function::InternalLinkage; 3728 3729 if (D->hasAttr<WeakAttr>()) { 3730 if (IsConstantVariable) 3731 return llvm::GlobalVariable::WeakODRLinkage; 3732 else 3733 return llvm::GlobalVariable::WeakAnyLinkage; 3734 } 3735 3736 if (const auto *FD = D->getAsFunction()) 3737 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3738 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3739 3740 // We are guaranteed to have a strong definition somewhere else, 3741 // so we can use available_externally linkage. 3742 if (Linkage == GVA_AvailableExternally) 3743 return llvm::GlobalValue::AvailableExternallyLinkage; 3744 3745 // Note that Apple's kernel linker doesn't support symbol 3746 // coalescing, so we need to avoid linkonce and weak linkages there. 3747 // Normally, this means we just map to internal, but for explicit 3748 // instantiations we'll map to external. 3749 3750 // In C++, the compiler has to emit a definition in every translation unit 3751 // that references the function. We should use linkonce_odr because 3752 // a) if all references in this translation unit are optimized away, we 3753 // don't need to codegen it. b) if the function persists, it needs to be 3754 // merged with other definitions. c) C++ has the ODR, so we know the 3755 // definition is dependable. 3756 if (Linkage == GVA_DiscardableODR) 3757 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3758 : llvm::Function::InternalLinkage; 3759 3760 // An explicit instantiation of a template has weak linkage, since 3761 // explicit instantiations can occur in multiple translation units 3762 // and must all be equivalent. However, we are not allowed to 3763 // throw away these explicit instantiations. 3764 // 3765 // We don't currently support CUDA device code spread out across multiple TUs, 3766 // so say that CUDA templates are either external (for kernels) or internal. 3767 // This lets llvm perform aggressive inter-procedural optimizations. 3768 if (Linkage == GVA_StrongODR) { 3769 if (Context.getLangOpts().AppleKext) 3770 return llvm::Function::ExternalLinkage; 3771 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3772 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3773 : llvm::Function::InternalLinkage; 3774 return llvm::Function::WeakODRLinkage; 3775 } 3776 3777 // C++ doesn't have tentative definitions and thus cannot have common 3778 // linkage. 3779 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3780 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3781 CodeGenOpts.NoCommon)) 3782 return llvm::GlobalVariable::CommonLinkage; 3783 3784 // selectany symbols are externally visible, so use weak instead of 3785 // linkonce. MSVC optimizes away references to const selectany globals, so 3786 // all definitions should be the same and ODR linkage should be used. 3787 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3788 if (D->hasAttr<SelectAnyAttr>()) 3789 return llvm::GlobalVariable::WeakODRLinkage; 3790 3791 // Otherwise, we have strong external linkage. 3792 assert(Linkage == GVA_StrongExternal); 3793 return llvm::GlobalVariable::ExternalLinkage; 3794 } 3795 3796 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3797 const VarDecl *VD, bool IsConstant) { 3798 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3799 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3800 } 3801 3802 /// Replace the uses of a function that was declared with a non-proto type. 3803 /// We want to silently drop extra arguments from call sites 3804 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3805 llvm::Function *newFn) { 3806 // Fast path. 3807 if (old->use_empty()) return; 3808 3809 llvm::Type *newRetTy = newFn->getReturnType(); 3810 SmallVector<llvm::Value*, 4> newArgs; 3811 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3812 3813 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3814 ui != ue; ) { 3815 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3816 llvm::User *user = use->getUser(); 3817 3818 // Recognize and replace uses of bitcasts. Most calls to 3819 // unprototyped functions will use bitcasts. 3820 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3821 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3822 replaceUsesOfNonProtoConstant(bitcast, newFn); 3823 continue; 3824 } 3825 3826 // Recognize calls to the function. 3827 llvm::CallSite callSite(user); 3828 if (!callSite) continue; 3829 if (!callSite.isCallee(&*use)) continue; 3830 3831 // If the return types don't match exactly, then we can't 3832 // transform this call unless it's dead. 3833 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3834 continue; 3835 3836 // Get the call site's attribute list. 3837 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3838 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3839 3840 // If the function was passed too few arguments, don't transform. 3841 unsigned newNumArgs = newFn->arg_size(); 3842 if (callSite.arg_size() < newNumArgs) continue; 3843 3844 // If extra arguments were passed, we silently drop them. 3845 // If any of the types mismatch, we don't transform. 3846 unsigned argNo = 0; 3847 bool dontTransform = false; 3848 for (llvm::Argument &A : newFn->args()) { 3849 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3850 dontTransform = true; 3851 break; 3852 } 3853 3854 // Add any parameter attributes. 3855 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3856 argNo++; 3857 } 3858 if (dontTransform) 3859 continue; 3860 3861 // Okay, we can transform this. Create the new call instruction and copy 3862 // over the required information. 3863 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3864 3865 // Copy over any operand bundles. 3866 callSite.getOperandBundlesAsDefs(newBundles); 3867 3868 llvm::CallSite newCall; 3869 if (callSite.isCall()) { 3870 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3871 callSite.getInstruction()); 3872 } else { 3873 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3874 newCall = llvm::InvokeInst::Create(newFn, 3875 oldInvoke->getNormalDest(), 3876 oldInvoke->getUnwindDest(), 3877 newArgs, newBundles, "", 3878 callSite.getInstruction()); 3879 } 3880 newArgs.clear(); // for the next iteration 3881 3882 if (!newCall->getType()->isVoidTy()) 3883 newCall->takeName(callSite.getInstruction()); 3884 newCall.setAttributes(llvm::AttributeList::get( 3885 newFn->getContext(), oldAttrs.getFnAttributes(), 3886 oldAttrs.getRetAttributes(), newArgAttrs)); 3887 newCall.setCallingConv(callSite.getCallingConv()); 3888 3889 // Finally, remove the old call, replacing any uses with the new one. 3890 if (!callSite->use_empty()) 3891 callSite->replaceAllUsesWith(newCall.getInstruction()); 3892 3893 // Copy debug location attached to CI. 3894 if (callSite->getDebugLoc()) 3895 newCall->setDebugLoc(callSite->getDebugLoc()); 3896 3897 callSite->eraseFromParent(); 3898 } 3899 } 3900 3901 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3902 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3903 /// existing call uses of the old function in the module, this adjusts them to 3904 /// call the new function directly. 3905 /// 3906 /// This is not just a cleanup: the always_inline pass requires direct calls to 3907 /// functions to be able to inline them. If there is a bitcast in the way, it 3908 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3909 /// run at -O0. 3910 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3911 llvm::Function *NewFn) { 3912 // If we're redefining a global as a function, don't transform it. 3913 if (!isa<llvm::Function>(Old)) return; 3914 3915 replaceUsesOfNonProtoConstant(Old, NewFn); 3916 } 3917 3918 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3919 auto DK = VD->isThisDeclarationADefinition(); 3920 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3921 return; 3922 3923 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3924 // If we have a definition, this might be a deferred decl. If the 3925 // instantiation is explicit, make sure we emit it at the end. 3926 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3927 GetAddrOfGlobalVar(VD); 3928 3929 EmitTopLevelDecl(VD); 3930 } 3931 3932 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3933 llvm::GlobalValue *GV) { 3934 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3935 3936 // Compute the function info and LLVM type. 3937 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3938 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3939 3940 // Get or create the prototype for the function. 3941 if (!GV || (GV->getType()->getElementType() != Ty)) 3942 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3943 /*DontDefer=*/true, 3944 ForDefinition)); 3945 3946 // Already emitted. 3947 if (!GV->isDeclaration()) 3948 return; 3949 3950 // We need to set linkage and visibility on the function before 3951 // generating code for it because various parts of IR generation 3952 // want to propagate this information down (e.g. to local static 3953 // declarations). 3954 auto *Fn = cast<llvm::Function>(GV); 3955 setFunctionLinkage(GD, Fn); 3956 3957 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3958 setGVProperties(Fn, GD); 3959 3960 MaybeHandleStaticInExternC(D, Fn); 3961 3962 3963 maybeSetTrivialComdat(*D, *Fn); 3964 3965 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3966 3967 setNonAliasAttributes(GD, Fn); 3968 SetLLVMFunctionAttributesForDefinition(D, Fn); 3969 3970 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3971 AddGlobalCtor(Fn, CA->getPriority()); 3972 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3973 AddGlobalDtor(Fn, DA->getPriority()); 3974 if (D->hasAttr<AnnotateAttr>()) 3975 AddGlobalAnnotations(D, Fn); 3976 3977 if (D->isCPUSpecificMultiVersion()) { 3978 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3979 // If there is another specific version we need to emit, do so here. 3980 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3981 ++Spec->ActiveArgIndex; 3982 EmitGlobalFunctionDefinition(GD, nullptr); 3983 } 3984 } 3985 } 3986 3987 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3988 const auto *D = cast<ValueDecl>(GD.getDecl()); 3989 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3990 assert(AA && "Not an alias?"); 3991 3992 StringRef MangledName = getMangledName(GD); 3993 3994 if (AA->getAliasee() == MangledName) { 3995 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3996 return; 3997 } 3998 3999 // If there is a definition in the module, then it wins over the alias. 4000 // This is dubious, but allow it to be safe. Just ignore the alias. 4001 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4002 if (Entry && !Entry->isDeclaration()) 4003 return; 4004 4005 Aliases.push_back(GD); 4006 4007 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4008 4009 // Create a reference to the named value. This ensures that it is emitted 4010 // if a deferred decl. 4011 llvm::Constant *Aliasee; 4012 if (isa<llvm::FunctionType>(DeclTy)) 4013 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4014 /*ForVTable=*/false); 4015 else 4016 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4017 llvm::PointerType::getUnqual(DeclTy), 4018 /*D=*/nullptr); 4019 4020 // Create the new alias itself, but don't set a name yet. 4021 auto *GA = llvm::GlobalAlias::create( 4022 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4023 4024 if (Entry) { 4025 if (GA->getAliasee() == Entry) { 4026 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4027 return; 4028 } 4029 4030 assert(Entry->isDeclaration()); 4031 4032 // If there is a declaration in the module, then we had an extern followed 4033 // by the alias, as in: 4034 // extern int test6(); 4035 // ... 4036 // int test6() __attribute__((alias("test7"))); 4037 // 4038 // Remove it and replace uses of it with the alias. 4039 GA->takeName(Entry); 4040 4041 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4042 Entry->getType())); 4043 Entry->eraseFromParent(); 4044 } else { 4045 GA->setName(MangledName); 4046 } 4047 4048 // Set attributes which are particular to an alias; this is a 4049 // specialization of the attributes which may be set on a global 4050 // variable/function. 4051 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4052 D->isWeakImported()) { 4053 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4054 } 4055 4056 if (const auto *VD = dyn_cast<VarDecl>(D)) 4057 if (VD->getTLSKind()) 4058 setTLSMode(GA, *VD); 4059 4060 SetCommonAttributes(GD, GA); 4061 } 4062 4063 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4064 const auto *D = cast<ValueDecl>(GD.getDecl()); 4065 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4066 assert(IFA && "Not an ifunc?"); 4067 4068 StringRef MangledName = getMangledName(GD); 4069 4070 if (IFA->getResolver() == MangledName) { 4071 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4072 return; 4073 } 4074 4075 // Report an error if some definition overrides ifunc. 4076 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4077 if (Entry && !Entry->isDeclaration()) { 4078 GlobalDecl OtherGD; 4079 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4080 DiagnosedConflictingDefinitions.insert(GD).second) { 4081 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4082 << MangledName; 4083 Diags.Report(OtherGD.getDecl()->getLocation(), 4084 diag::note_previous_definition); 4085 } 4086 return; 4087 } 4088 4089 Aliases.push_back(GD); 4090 4091 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4092 llvm::Constant *Resolver = 4093 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4094 /*ForVTable=*/false); 4095 llvm::GlobalIFunc *GIF = 4096 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4097 "", Resolver, &getModule()); 4098 if (Entry) { 4099 if (GIF->getResolver() == Entry) { 4100 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4101 return; 4102 } 4103 assert(Entry->isDeclaration()); 4104 4105 // If there is a declaration in the module, then we had an extern followed 4106 // by the ifunc, as in: 4107 // extern int test(); 4108 // ... 4109 // int test() __attribute__((ifunc("resolver"))); 4110 // 4111 // Remove it and replace uses of it with the ifunc. 4112 GIF->takeName(Entry); 4113 4114 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4115 Entry->getType())); 4116 Entry->eraseFromParent(); 4117 } else 4118 GIF->setName(MangledName); 4119 4120 SetCommonAttributes(GD, GIF); 4121 } 4122 4123 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4124 ArrayRef<llvm::Type*> Tys) { 4125 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4126 Tys); 4127 } 4128 4129 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4130 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4131 const StringLiteral *Literal, bool TargetIsLSB, 4132 bool &IsUTF16, unsigned &StringLength) { 4133 StringRef String = Literal->getString(); 4134 unsigned NumBytes = String.size(); 4135 4136 // Check for simple case. 4137 if (!Literal->containsNonAsciiOrNull()) { 4138 StringLength = NumBytes; 4139 return *Map.insert(std::make_pair(String, nullptr)).first; 4140 } 4141 4142 // Otherwise, convert the UTF8 literals into a string of shorts. 4143 IsUTF16 = true; 4144 4145 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4146 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4147 llvm::UTF16 *ToPtr = &ToBuf[0]; 4148 4149 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4150 ToPtr + NumBytes, llvm::strictConversion); 4151 4152 // ConvertUTF8toUTF16 returns the length in ToPtr. 4153 StringLength = ToPtr - &ToBuf[0]; 4154 4155 // Add an explicit null. 4156 *ToPtr = 0; 4157 return *Map.insert(std::make_pair( 4158 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4159 (StringLength + 1) * 2), 4160 nullptr)).first; 4161 } 4162 4163 ConstantAddress 4164 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4165 unsigned StringLength = 0; 4166 bool isUTF16 = false; 4167 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4168 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4169 getDataLayout().isLittleEndian(), isUTF16, 4170 StringLength); 4171 4172 if (auto *C = Entry.second) 4173 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4174 4175 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4176 llvm::Constant *Zeros[] = { Zero, Zero }; 4177 4178 const ASTContext &Context = getContext(); 4179 const llvm::Triple &Triple = getTriple(); 4180 4181 const auto CFRuntime = getLangOpts().CFRuntime; 4182 const bool IsSwiftABI = 4183 static_cast<unsigned>(CFRuntime) >= 4184 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4185 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4186 4187 // If we don't already have it, get __CFConstantStringClassReference. 4188 if (!CFConstantStringClassRef) { 4189 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4190 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4191 Ty = llvm::ArrayType::get(Ty, 0); 4192 4193 switch (CFRuntime) { 4194 default: break; 4195 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4196 case LangOptions::CoreFoundationABI::Swift5_0: 4197 CFConstantStringClassName = 4198 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4199 : "$s10Foundation19_NSCFConstantStringCN"; 4200 Ty = IntPtrTy; 4201 break; 4202 case LangOptions::CoreFoundationABI::Swift4_2: 4203 CFConstantStringClassName = 4204 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4205 : "$S10Foundation19_NSCFConstantStringCN"; 4206 Ty = IntPtrTy; 4207 break; 4208 case LangOptions::CoreFoundationABI::Swift4_1: 4209 CFConstantStringClassName = 4210 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4211 : "__T010Foundation19_NSCFConstantStringCN"; 4212 Ty = IntPtrTy; 4213 break; 4214 } 4215 4216 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4217 4218 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4219 llvm::GlobalValue *GV = nullptr; 4220 4221 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4222 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4223 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4224 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4225 4226 const VarDecl *VD = nullptr; 4227 for (const auto &Result : DC->lookup(&II)) 4228 if ((VD = dyn_cast<VarDecl>(Result))) 4229 break; 4230 4231 if (Triple.isOSBinFormatELF()) { 4232 if (!VD) 4233 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4234 } else { 4235 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4236 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4237 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4238 else 4239 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4240 } 4241 4242 setDSOLocal(GV); 4243 } 4244 } 4245 4246 // Decay array -> ptr 4247 CFConstantStringClassRef = 4248 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4249 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4250 } 4251 4252 QualType CFTy = Context.getCFConstantStringType(); 4253 4254 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4255 4256 ConstantInitBuilder Builder(*this); 4257 auto Fields = Builder.beginStruct(STy); 4258 4259 // Class pointer. 4260 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4261 4262 // Flags. 4263 if (IsSwiftABI) { 4264 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4265 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4266 } else { 4267 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4268 } 4269 4270 // String pointer. 4271 llvm::Constant *C = nullptr; 4272 if (isUTF16) { 4273 auto Arr = llvm::makeArrayRef( 4274 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4275 Entry.first().size() / 2); 4276 C = llvm::ConstantDataArray::get(VMContext, Arr); 4277 } else { 4278 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4279 } 4280 4281 // Note: -fwritable-strings doesn't make the backing store strings of 4282 // CFStrings writable. (See <rdar://problem/10657500>) 4283 auto *GV = 4284 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4285 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4286 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4287 // Don't enforce the target's minimum global alignment, since the only use 4288 // of the string is via this class initializer. 4289 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4290 : Context.getTypeAlignInChars(Context.CharTy); 4291 GV->setAlignment(Align.getQuantity()); 4292 4293 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4294 // Without it LLVM can merge the string with a non unnamed_addr one during 4295 // LTO. Doing that changes the section it ends in, which surprises ld64. 4296 if (Triple.isOSBinFormatMachO()) 4297 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4298 : "__TEXT,__cstring,cstring_literals"); 4299 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4300 // the static linker to adjust permissions to read-only later on. 4301 else if (Triple.isOSBinFormatELF()) 4302 GV->setSection(".rodata"); 4303 4304 // String. 4305 llvm::Constant *Str = 4306 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4307 4308 if (isUTF16) 4309 // Cast the UTF16 string to the correct type. 4310 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4311 Fields.add(Str); 4312 4313 // String length. 4314 llvm::IntegerType *LengthTy = 4315 llvm::IntegerType::get(getModule().getContext(), 4316 Context.getTargetInfo().getLongWidth()); 4317 if (IsSwiftABI) { 4318 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4319 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4320 LengthTy = Int32Ty; 4321 else 4322 LengthTy = IntPtrTy; 4323 } 4324 Fields.addInt(LengthTy, StringLength); 4325 4326 CharUnits Alignment = getPointerAlign(); 4327 4328 // The struct. 4329 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4330 /*isConstant=*/false, 4331 llvm::GlobalVariable::PrivateLinkage); 4332 switch (Triple.getObjectFormat()) { 4333 case llvm::Triple::UnknownObjectFormat: 4334 llvm_unreachable("unknown file format"); 4335 case llvm::Triple::COFF: 4336 case llvm::Triple::ELF: 4337 case llvm::Triple::Wasm: 4338 GV->setSection("cfstring"); 4339 break; 4340 case llvm::Triple::MachO: 4341 GV->setSection("__DATA,__cfstring"); 4342 break; 4343 } 4344 Entry.second = GV; 4345 4346 return ConstantAddress(GV, Alignment); 4347 } 4348 4349 bool CodeGenModule::getExpressionLocationsEnabled() const { 4350 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4351 } 4352 4353 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4354 if (ObjCFastEnumerationStateType.isNull()) { 4355 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4356 D->startDefinition(); 4357 4358 QualType FieldTypes[] = { 4359 Context.UnsignedLongTy, 4360 Context.getPointerType(Context.getObjCIdType()), 4361 Context.getPointerType(Context.UnsignedLongTy), 4362 Context.getConstantArrayType(Context.UnsignedLongTy, 4363 llvm::APInt(32, 5), ArrayType::Normal, 0) 4364 }; 4365 4366 for (size_t i = 0; i < 4; ++i) { 4367 FieldDecl *Field = FieldDecl::Create(Context, 4368 D, 4369 SourceLocation(), 4370 SourceLocation(), nullptr, 4371 FieldTypes[i], /*TInfo=*/nullptr, 4372 /*BitWidth=*/nullptr, 4373 /*Mutable=*/false, 4374 ICIS_NoInit); 4375 Field->setAccess(AS_public); 4376 D->addDecl(Field); 4377 } 4378 4379 D->completeDefinition(); 4380 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4381 } 4382 4383 return ObjCFastEnumerationStateType; 4384 } 4385 4386 llvm::Constant * 4387 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4388 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4389 4390 // Don't emit it as the address of the string, emit the string data itself 4391 // as an inline array. 4392 if (E->getCharByteWidth() == 1) { 4393 SmallString<64> Str(E->getString()); 4394 4395 // Resize the string to the right size, which is indicated by its type. 4396 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4397 Str.resize(CAT->getSize().getZExtValue()); 4398 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4399 } 4400 4401 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4402 llvm::Type *ElemTy = AType->getElementType(); 4403 unsigned NumElements = AType->getNumElements(); 4404 4405 // Wide strings have either 2-byte or 4-byte elements. 4406 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4407 SmallVector<uint16_t, 32> Elements; 4408 Elements.reserve(NumElements); 4409 4410 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4411 Elements.push_back(E->getCodeUnit(i)); 4412 Elements.resize(NumElements); 4413 return llvm::ConstantDataArray::get(VMContext, Elements); 4414 } 4415 4416 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4417 SmallVector<uint32_t, 32> Elements; 4418 Elements.reserve(NumElements); 4419 4420 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4421 Elements.push_back(E->getCodeUnit(i)); 4422 Elements.resize(NumElements); 4423 return llvm::ConstantDataArray::get(VMContext, Elements); 4424 } 4425 4426 static llvm::GlobalVariable * 4427 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4428 CodeGenModule &CGM, StringRef GlobalName, 4429 CharUnits Alignment) { 4430 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4431 CGM.getStringLiteralAddressSpace()); 4432 4433 llvm::Module &M = CGM.getModule(); 4434 // Create a global variable for this string 4435 auto *GV = new llvm::GlobalVariable( 4436 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4437 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4438 GV->setAlignment(Alignment.getQuantity()); 4439 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4440 if (GV->isWeakForLinker()) { 4441 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4442 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4443 } 4444 CGM.setDSOLocal(GV); 4445 4446 return GV; 4447 } 4448 4449 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4450 /// constant array for the given string literal. 4451 ConstantAddress 4452 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4453 StringRef Name) { 4454 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4455 4456 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4457 llvm::GlobalVariable **Entry = nullptr; 4458 if (!LangOpts.WritableStrings) { 4459 Entry = &ConstantStringMap[C]; 4460 if (auto GV = *Entry) { 4461 if (Alignment.getQuantity() > GV->getAlignment()) 4462 GV->setAlignment(Alignment.getQuantity()); 4463 return ConstantAddress(GV, Alignment); 4464 } 4465 } 4466 4467 SmallString<256> MangledNameBuffer; 4468 StringRef GlobalVariableName; 4469 llvm::GlobalValue::LinkageTypes LT; 4470 4471 // Mangle the string literal if that's how the ABI merges duplicate strings. 4472 // Don't do it if they are writable, since we don't want writes in one TU to 4473 // affect strings in another. 4474 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4475 !LangOpts.WritableStrings) { 4476 llvm::raw_svector_ostream Out(MangledNameBuffer); 4477 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4478 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4479 GlobalVariableName = MangledNameBuffer; 4480 } else { 4481 LT = llvm::GlobalValue::PrivateLinkage; 4482 GlobalVariableName = Name; 4483 } 4484 4485 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4486 if (Entry) 4487 *Entry = GV; 4488 4489 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4490 QualType()); 4491 4492 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4493 Alignment); 4494 } 4495 4496 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4497 /// array for the given ObjCEncodeExpr node. 4498 ConstantAddress 4499 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4500 std::string Str; 4501 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4502 4503 return GetAddrOfConstantCString(Str); 4504 } 4505 4506 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4507 /// the literal and a terminating '\0' character. 4508 /// The result has pointer to array type. 4509 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4510 const std::string &Str, const char *GlobalName) { 4511 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4512 CharUnits Alignment = 4513 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4514 4515 llvm::Constant *C = 4516 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4517 4518 // Don't share any string literals if strings aren't constant. 4519 llvm::GlobalVariable **Entry = nullptr; 4520 if (!LangOpts.WritableStrings) { 4521 Entry = &ConstantStringMap[C]; 4522 if (auto GV = *Entry) { 4523 if (Alignment.getQuantity() > GV->getAlignment()) 4524 GV->setAlignment(Alignment.getQuantity()); 4525 return ConstantAddress(GV, Alignment); 4526 } 4527 } 4528 4529 // Get the default prefix if a name wasn't specified. 4530 if (!GlobalName) 4531 GlobalName = ".str"; 4532 // Create a global variable for this. 4533 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4534 GlobalName, Alignment); 4535 if (Entry) 4536 *Entry = GV; 4537 4538 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4539 Alignment); 4540 } 4541 4542 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4543 const MaterializeTemporaryExpr *E, const Expr *Init) { 4544 assert((E->getStorageDuration() == SD_Static || 4545 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4546 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4547 4548 // If we're not materializing a subobject of the temporary, keep the 4549 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4550 QualType MaterializedType = Init->getType(); 4551 if (Init == E->GetTemporaryExpr()) 4552 MaterializedType = E->getType(); 4553 4554 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4555 4556 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4557 return ConstantAddress(Slot, Align); 4558 4559 // FIXME: If an externally-visible declaration extends multiple temporaries, 4560 // we need to give each temporary the same name in every translation unit (and 4561 // we also need to make the temporaries externally-visible). 4562 SmallString<256> Name; 4563 llvm::raw_svector_ostream Out(Name); 4564 getCXXABI().getMangleContext().mangleReferenceTemporary( 4565 VD, E->getManglingNumber(), Out); 4566 4567 APValue *Value = nullptr; 4568 if (E->getStorageDuration() == SD_Static) { 4569 // We might have a cached constant initializer for this temporary. Note 4570 // that this might have a different value from the value computed by 4571 // evaluating the initializer if the surrounding constant expression 4572 // modifies the temporary. 4573 Value = getContext().getMaterializedTemporaryValue(E, false); 4574 if (Value && Value->isUninit()) 4575 Value = nullptr; 4576 } 4577 4578 // Try evaluating it now, it might have a constant initializer. 4579 Expr::EvalResult EvalResult; 4580 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4581 !EvalResult.hasSideEffects()) 4582 Value = &EvalResult.Val; 4583 4584 LangAS AddrSpace = 4585 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4586 4587 Optional<ConstantEmitter> emitter; 4588 llvm::Constant *InitialValue = nullptr; 4589 bool Constant = false; 4590 llvm::Type *Type; 4591 if (Value) { 4592 // The temporary has a constant initializer, use it. 4593 emitter.emplace(*this); 4594 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4595 MaterializedType); 4596 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4597 Type = InitialValue->getType(); 4598 } else { 4599 // No initializer, the initialization will be provided when we 4600 // initialize the declaration which performed lifetime extension. 4601 Type = getTypes().ConvertTypeForMem(MaterializedType); 4602 } 4603 4604 // Create a global variable for this lifetime-extended temporary. 4605 llvm::GlobalValue::LinkageTypes Linkage = 4606 getLLVMLinkageVarDefinition(VD, Constant); 4607 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4608 const VarDecl *InitVD; 4609 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4610 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4611 // Temporaries defined inside a class get linkonce_odr linkage because the 4612 // class can be defined in multiple translation units. 4613 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4614 } else { 4615 // There is no need for this temporary to have external linkage if the 4616 // VarDecl has external linkage. 4617 Linkage = llvm::GlobalVariable::InternalLinkage; 4618 } 4619 } 4620 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4621 auto *GV = new llvm::GlobalVariable( 4622 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4623 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4624 if (emitter) emitter->finalize(GV); 4625 setGVProperties(GV, VD); 4626 GV->setAlignment(Align.getQuantity()); 4627 if (supportsCOMDAT() && GV->isWeakForLinker()) 4628 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4629 if (VD->getTLSKind()) 4630 setTLSMode(GV, *VD); 4631 llvm::Constant *CV = GV; 4632 if (AddrSpace != LangAS::Default) 4633 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4634 *this, GV, AddrSpace, LangAS::Default, 4635 Type->getPointerTo( 4636 getContext().getTargetAddressSpace(LangAS::Default))); 4637 MaterializedGlobalTemporaryMap[E] = CV; 4638 return ConstantAddress(CV, Align); 4639 } 4640 4641 /// EmitObjCPropertyImplementations - Emit information for synthesized 4642 /// properties for an implementation. 4643 void CodeGenModule::EmitObjCPropertyImplementations(const 4644 ObjCImplementationDecl *D) { 4645 for (const auto *PID : D->property_impls()) { 4646 // Dynamic is just for type-checking. 4647 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4648 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4649 4650 // Determine which methods need to be implemented, some may have 4651 // been overridden. Note that ::isPropertyAccessor is not the method 4652 // we want, that just indicates if the decl came from a 4653 // property. What we want to know is if the method is defined in 4654 // this implementation. 4655 if (!D->getInstanceMethod(PD->getGetterName())) 4656 CodeGenFunction(*this).GenerateObjCGetter( 4657 const_cast<ObjCImplementationDecl *>(D), PID); 4658 if (!PD->isReadOnly() && 4659 !D->getInstanceMethod(PD->getSetterName())) 4660 CodeGenFunction(*this).GenerateObjCSetter( 4661 const_cast<ObjCImplementationDecl *>(D), PID); 4662 } 4663 } 4664 } 4665 4666 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4667 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4668 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4669 ivar; ivar = ivar->getNextIvar()) 4670 if (ivar->getType().isDestructedType()) 4671 return true; 4672 4673 return false; 4674 } 4675 4676 static bool AllTrivialInitializers(CodeGenModule &CGM, 4677 ObjCImplementationDecl *D) { 4678 CodeGenFunction CGF(CGM); 4679 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4680 E = D->init_end(); B != E; ++B) { 4681 CXXCtorInitializer *CtorInitExp = *B; 4682 Expr *Init = CtorInitExp->getInit(); 4683 if (!CGF.isTrivialInitializer(Init)) 4684 return false; 4685 } 4686 return true; 4687 } 4688 4689 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4690 /// for an implementation. 4691 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4692 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4693 if (needsDestructMethod(D)) { 4694 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4695 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4696 ObjCMethodDecl *DTORMethod = 4697 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4698 cxxSelector, getContext().VoidTy, nullptr, D, 4699 /*isInstance=*/true, /*isVariadic=*/false, 4700 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4701 /*isDefined=*/false, ObjCMethodDecl::Required); 4702 D->addInstanceMethod(DTORMethod); 4703 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4704 D->setHasDestructors(true); 4705 } 4706 4707 // If the implementation doesn't have any ivar initializers, we don't need 4708 // a .cxx_construct. 4709 if (D->getNumIvarInitializers() == 0 || 4710 AllTrivialInitializers(*this, D)) 4711 return; 4712 4713 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4714 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4715 // The constructor returns 'self'. 4716 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4717 D->getLocation(), 4718 D->getLocation(), 4719 cxxSelector, 4720 getContext().getObjCIdType(), 4721 nullptr, D, /*isInstance=*/true, 4722 /*isVariadic=*/false, 4723 /*isPropertyAccessor=*/true, 4724 /*isImplicitlyDeclared=*/true, 4725 /*isDefined=*/false, 4726 ObjCMethodDecl::Required); 4727 D->addInstanceMethod(CTORMethod); 4728 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4729 D->setHasNonZeroConstructors(true); 4730 } 4731 4732 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4733 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4734 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4735 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4736 ErrorUnsupported(LSD, "linkage spec"); 4737 return; 4738 } 4739 4740 EmitDeclContext(LSD); 4741 } 4742 4743 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4744 for (auto *I : DC->decls()) { 4745 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4746 // are themselves considered "top-level", so EmitTopLevelDecl on an 4747 // ObjCImplDecl does not recursively visit them. We need to do that in 4748 // case they're nested inside another construct (LinkageSpecDecl / 4749 // ExportDecl) that does stop them from being considered "top-level". 4750 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4751 for (auto *M : OID->methods()) 4752 EmitTopLevelDecl(M); 4753 } 4754 4755 EmitTopLevelDecl(I); 4756 } 4757 } 4758 4759 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4760 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4761 // Ignore dependent declarations. 4762 if (D->isTemplated()) 4763 return; 4764 4765 switch (D->getKind()) { 4766 case Decl::CXXConversion: 4767 case Decl::CXXMethod: 4768 case Decl::Function: 4769 EmitGlobal(cast<FunctionDecl>(D)); 4770 // Always provide some coverage mapping 4771 // even for the functions that aren't emitted. 4772 AddDeferredUnusedCoverageMapping(D); 4773 break; 4774 4775 case Decl::CXXDeductionGuide: 4776 // Function-like, but does not result in code emission. 4777 break; 4778 4779 case Decl::Var: 4780 case Decl::Decomposition: 4781 case Decl::VarTemplateSpecialization: 4782 EmitGlobal(cast<VarDecl>(D)); 4783 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4784 for (auto *B : DD->bindings()) 4785 if (auto *HD = B->getHoldingVar()) 4786 EmitGlobal(HD); 4787 break; 4788 4789 // Indirect fields from global anonymous structs and unions can be 4790 // ignored; only the actual variable requires IR gen support. 4791 case Decl::IndirectField: 4792 break; 4793 4794 // C++ Decls 4795 case Decl::Namespace: 4796 EmitDeclContext(cast<NamespaceDecl>(D)); 4797 break; 4798 case Decl::ClassTemplateSpecialization: { 4799 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4800 if (DebugInfo && 4801 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4802 Spec->hasDefinition()) 4803 DebugInfo->completeTemplateDefinition(*Spec); 4804 } LLVM_FALLTHROUGH; 4805 case Decl::CXXRecord: 4806 if (DebugInfo) { 4807 if (auto *ES = D->getASTContext().getExternalSource()) 4808 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4809 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4810 } 4811 // Emit any static data members, they may be definitions. 4812 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4813 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4814 EmitTopLevelDecl(I); 4815 break; 4816 // No code generation needed. 4817 case Decl::UsingShadow: 4818 case Decl::ClassTemplate: 4819 case Decl::VarTemplate: 4820 case Decl::VarTemplatePartialSpecialization: 4821 case Decl::FunctionTemplate: 4822 case Decl::TypeAliasTemplate: 4823 case Decl::Block: 4824 case Decl::Empty: 4825 case Decl::Binding: 4826 break; 4827 case Decl::Using: // using X; [C++] 4828 if (CGDebugInfo *DI = getModuleDebugInfo()) 4829 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4830 return; 4831 case Decl::NamespaceAlias: 4832 if (CGDebugInfo *DI = getModuleDebugInfo()) 4833 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4834 return; 4835 case Decl::UsingDirective: // using namespace X; [C++] 4836 if (CGDebugInfo *DI = getModuleDebugInfo()) 4837 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4838 return; 4839 case Decl::CXXConstructor: 4840 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4841 break; 4842 case Decl::CXXDestructor: 4843 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4844 break; 4845 4846 case Decl::StaticAssert: 4847 // Nothing to do. 4848 break; 4849 4850 // Objective-C Decls 4851 4852 // Forward declarations, no (immediate) code generation. 4853 case Decl::ObjCInterface: 4854 case Decl::ObjCCategory: 4855 break; 4856 4857 case Decl::ObjCProtocol: { 4858 auto *Proto = cast<ObjCProtocolDecl>(D); 4859 if (Proto->isThisDeclarationADefinition()) 4860 ObjCRuntime->GenerateProtocol(Proto); 4861 break; 4862 } 4863 4864 case Decl::ObjCCategoryImpl: 4865 // Categories have properties but don't support synthesize so we 4866 // can ignore them here. 4867 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4868 break; 4869 4870 case Decl::ObjCImplementation: { 4871 auto *OMD = cast<ObjCImplementationDecl>(D); 4872 EmitObjCPropertyImplementations(OMD); 4873 EmitObjCIvarInitializations(OMD); 4874 ObjCRuntime->GenerateClass(OMD); 4875 // Emit global variable debug information. 4876 if (CGDebugInfo *DI = getModuleDebugInfo()) 4877 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4878 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4879 OMD->getClassInterface()), OMD->getLocation()); 4880 break; 4881 } 4882 case Decl::ObjCMethod: { 4883 auto *OMD = cast<ObjCMethodDecl>(D); 4884 // If this is not a prototype, emit the body. 4885 if (OMD->getBody()) 4886 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4887 break; 4888 } 4889 case Decl::ObjCCompatibleAlias: 4890 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4891 break; 4892 4893 case Decl::PragmaComment: { 4894 const auto *PCD = cast<PragmaCommentDecl>(D); 4895 switch (PCD->getCommentKind()) { 4896 case PCK_Unknown: 4897 llvm_unreachable("unexpected pragma comment kind"); 4898 case PCK_Linker: 4899 AppendLinkerOptions(PCD->getArg()); 4900 break; 4901 case PCK_Lib: 4902 if (getTarget().getTriple().isOSBinFormatELF() && 4903 !getTarget().getTriple().isPS4()) 4904 AddELFLibDirective(PCD->getArg()); 4905 else 4906 AddDependentLib(PCD->getArg()); 4907 break; 4908 case PCK_Compiler: 4909 case PCK_ExeStr: 4910 case PCK_User: 4911 break; // We ignore all of these. 4912 } 4913 break; 4914 } 4915 4916 case Decl::PragmaDetectMismatch: { 4917 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4918 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4919 break; 4920 } 4921 4922 case Decl::LinkageSpec: 4923 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4924 break; 4925 4926 case Decl::FileScopeAsm: { 4927 // File-scope asm is ignored during device-side CUDA compilation. 4928 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4929 break; 4930 // File-scope asm is ignored during device-side OpenMP compilation. 4931 if (LangOpts.OpenMPIsDevice) 4932 break; 4933 auto *AD = cast<FileScopeAsmDecl>(D); 4934 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4935 break; 4936 } 4937 4938 case Decl::Import: { 4939 auto *Import = cast<ImportDecl>(D); 4940 4941 // If we've already imported this module, we're done. 4942 if (!ImportedModules.insert(Import->getImportedModule())) 4943 break; 4944 4945 // Emit debug information for direct imports. 4946 if (!Import->getImportedOwningModule()) { 4947 if (CGDebugInfo *DI = getModuleDebugInfo()) 4948 DI->EmitImportDecl(*Import); 4949 } 4950 4951 // Find all of the submodules and emit the module initializers. 4952 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4953 SmallVector<clang::Module *, 16> Stack; 4954 Visited.insert(Import->getImportedModule()); 4955 Stack.push_back(Import->getImportedModule()); 4956 4957 while (!Stack.empty()) { 4958 clang::Module *Mod = Stack.pop_back_val(); 4959 if (!EmittedModuleInitializers.insert(Mod).second) 4960 continue; 4961 4962 for (auto *D : Context.getModuleInitializers(Mod)) 4963 EmitTopLevelDecl(D); 4964 4965 // Visit the submodules of this module. 4966 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4967 SubEnd = Mod->submodule_end(); 4968 Sub != SubEnd; ++Sub) { 4969 // Skip explicit children; they need to be explicitly imported to emit 4970 // the initializers. 4971 if ((*Sub)->IsExplicit) 4972 continue; 4973 4974 if (Visited.insert(*Sub).second) 4975 Stack.push_back(*Sub); 4976 } 4977 } 4978 break; 4979 } 4980 4981 case Decl::Export: 4982 EmitDeclContext(cast<ExportDecl>(D)); 4983 break; 4984 4985 case Decl::OMPThreadPrivate: 4986 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4987 break; 4988 4989 case Decl::OMPDeclareReduction: 4990 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4991 break; 4992 4993 case Decl::OMPRequires: 4994 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4995 break; 4996 4997 default: 4998 // Make sure we handled everything we should, every other kind is a 4999 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5000 // function. Need to recode Decl::Kind to do that easily. 5001 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5002 break; 5003 } 5004 } 5005 5006 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5007 // Do we need to generate coverage mapping? 5008 if (!CodeGenOpts.CoverageMapping) 5009 return; 5010 switch (D->getKind()) { 5011 case Decl::CXXConversion: 5012 case Decl::CXXMethod: 5013 case Decl::Function: 5014 case Decl::ObjCMethod: 5015 case Decl::CXXConstructor: 5016 case Decl::CXXDestructor: { 5017 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5018 return; 5019 SourceManager &SM = getContext().getSourceManager(); 5020 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5021 return; 5022 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5023 if (I == DeferredEmptyCoverageMappingDecls.end()) 5024 DeferredEmptyCoverageMappingDecls[D] = true; 5025 break; 5026 } 5027 default: 5028 break; 5029 }; 5030 } 5031 5032 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5033 // Do we need to generate coverage mapping? 5034 if (!CodeGenOpts.CoverageMapping) 5035 return; 5036 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5037 if (Fn->isTemplateInstantiation()) 5038 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5039 } 5040 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5041 if (I == DeferredEmptyCoverageMappingDecls.end()) 5042 DeferredEmptyCoverageMappingDecls[D] = false; 5043 else 5044 I->second = false; 5045 } 5046 5047 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5048 // We call takeVector() here to avoid use-after-free. 5049 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5050 // we deserialize function bodies to emit coverage info for them, and that 5051 // deserializes more declarations. How should we handle that case? 5052 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5053 if (!Entry.second) 5054 continue; 5055 const Decl *D = Entry.first; 5056 switch (D->getKind()) { 5057 case Decl::CXXConversion: 5058 case Decl::CXXMethod: 5059 case Decl::Function: 5060 case Decl::ObjCMethod: { 5061 CodeGenPGO PGO(*this); 5062 GlobalDecl GD(cast<FunctionDecl>(D)); 5063 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5064 getFunctionLinkage(GD)); 5065 break; 5066 } 5067 case Decl::CXXConstructor: { 5068 CodeGenPGO PGO(*this); 5069 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5070 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5071 getFunctionLinkage(GD)); 5072 break; 5073 } 5074 case Decl::CXXDestructor: { 5075 CodeGenPGO PGO(*this); 5076 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5077 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5078 getFunctionLinkage(GD)); 5079 break; 5080 } 5081 default: 5082 break; 5083 }; 5084 } 5085 } 5086 5087 /// Turns the given pointer into a constant. 5088 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5089 const void *Ptr) { 5090 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5091 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5092 return llvm::ConstantInt::get(i64, PtrInt); 5093 } 5094 5095 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5096 llvm::NamedMDNode *&GlobalMetadata, 5097 GlobalDecl D, 5098 llvm::GlobalValue *Addr) { 5099 if (!GlobalMetadata) 5100 GlobalMetadata = 5101 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5102 5103 // TODO: should we report variant information for ctors/dtors? 5104 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5105 llvm::ConstantAsMetadata::get(GetPointerConstant( 5106 CGM.getLLVMContext(), D.getDecl()))}; 5107 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5108 } 5109 5110 /// For each function which is declared within an extern "C" region and marked 5111 /// as 'used', but has internal linkage, create an alias from the unmangled 5112 /// name to the mangled name if possible. People expect to be able to refer 5113 /// to such functions with an unmangled name from inline assembly within the 5114 /// same translation unit. 5115 void CodeGenModule::EmitStaticExternCAliases() { 5116 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5117 return; 5118 for (auto &I : StaticExternCValues) { 5119 IdentifierInfo *Name = I.first; 5120 llvm::GlobalValue *Val = I.second; 5121 if (Val && !getModule().getNamedValue(Name->getName())) 5122 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5123 } 5124 } 5125 5126 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5127 GlobalDecl &Result) const { 5128 auto Res = Manglings.find(MangledName); 5129 if (Res == Manglings.end()) 5130 return false; 5131 Result = Res->getValue(); 5132 return true; 5133 } 5134 5135 /// Emits metadata nodes associating all the global values in the 5136 /// current module with the Decls they came from. This is useful for 5137 /// projects using IR gen as a subroutine. 5138 /// 5139 /// Since there's currently no way to associate an MDNode directly 5140 /// with an llvm::GlobalValue, we create a global named metadata 5141 /// with the name 'clang.global.decl.ptrs'. 5142 void CodeGenModule::EmitDeclMetadata() { 5143 llvm::NamedMDNode *GlobalMetadata = nullptr; 5144 5145 for (auto &I : MangledDeclNames) { 5146 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5147 // Some mangled names don't necessarily have an associated GlobalValue 5148 // in this module, e.g. if we mangled it for DebugInfo. 5149 if (Addr) 5150 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5151 } 5152 } 5153 5154 /// Emits metadata nodes for all the local variables in the current 5155 /// function. 5156 void CodeGenFunction::EmitDeclMetadata() { 5157 if (LocalDeclMap.empty()) return; 5158 5159 llvm::LLVMContext &Context = getLLVMContext(); 5160 5161 // Find the unique metadata ID for this name. 5162 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5163 5164 llvm::NamedMDNode *GlobalMetadata = nullptr; 5165 5166 for (auto &I : LocalDeclMap) { 5167 const Decl *D = I.first; 5168 llvm::Value *Addr = I.second.getPointer(); 5169 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5170 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5171 Alloca->setMetadata( 5172 DeclPtrKind, llvm::MDNode::get( 5173 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5174 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5175 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5176 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5177 } 5178 } 5179 } 5180 5181 void CodeGenModule::EmitVersionIdentMetadata() { 5182 llvm::NamedMDNode *IdentMetadata = 5183 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5184 std::string Version = getClangFullVersion(); 5185 llvm::LLVMContext &Ctx = TheModule.getContext(); 5186 5187 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5188 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5189 } 5190 5191 void CodeGenModule::EmitTargetMetadata() { 5192 // Warning, new MangledDeclNames may be appended within this loop. 5193 // We rely on MapVector insertions adding new elements to the end 5194 // of the container. 5195 // FIXME: Move this loop into the one target that needs it, and only 5196 // loop over those declarations for which we couldn't emit the target 5197 // metadata when we emitted the declaration. 5198 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5199 auto Val = *(MangledDeclNames.begin() + I); 5200 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5201 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5202 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5203 } 5204 } 5205 5206 void CodeGenModule::EmitCoverageFile() { 5207 if (getCodeGenOpts().CoverageDataFile.empty() && 5208 getCodeGenOpts().CoverageNotesFile.empty()) 5209 return; 5210 5211 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5212 if (!CUNode) 5213 return; 5214 5215 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5216 llvm::LLVMContext &Ctx = TheModule.getContext(); 5217 auto *CoverageDataFile = 5218 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5219 auto *CoverageNotesFile = 5220 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5221 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5222 llvm::MDNode *CU = CUNode->getOperand(i); 5223 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5224 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5225 } 5226 } 5227 5228 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5229 // Sema has checked that all uuid strings are of the form 5230 // "12345678-1234-1234-1234-1234567890ab". 5231 assert(Uuid.size() == 36); 5232 for (unsigned i = 0; i < 36; ++i) { 5233 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5234 else assert(isHexDigit(Uuid[i])); 5235 } 5236 5237 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5238 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5239 5240 llvm::Constant *Field3[8]; 5241 for (unsigned Idx = 0; Idx < 8; ++Idx) 5242 Field3[Idx] = llvm::ConstantInt::get( 5243 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5244 5245 llvm::Constant *Fields[4] = { 5246 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5247 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5248 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5249 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5250 }; 5251 5252 return llvm::ConstantStruct::getAnon(Fields); 5253 } 5254 5255 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5256 bool ForEH) { 5257 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5258 // FIXME: should we even be calling this method if RTTI is disabled 5259 // and it's not for EH? 5260 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5261 return llvm::Constant::getNullValue(Int8PtrTy); 5262 5263 if (ForEH && Ty->isObjCObjectPointerType() && 5264 LangOpts.ObjCRuntime.isGNUFamily()) 5265 return ObjCRuntime->GetEHType(Ty); 5266 5267 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5268 } 5269 5270 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5271 // Do not emit threadprivates in simd-only mode. 5272 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5273 return; 5274 for (auto RefExpr : D->varlists()) { 5275 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5276 bool PerformInit = 5277 VD->getAnyInitializer() && 5278 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5279 /*ForRef=*/false); 5280 5281 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5282 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5283 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5284 CXXGlobalInits.push_back(InitFunction); 5285 } 5286 } 5287 5288 llvm::Metadata * 5289 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5290 StringRef Suffix) { 5291 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5292 if (InternalId) 5293 return InternalId; 5294 5295 if (isExternallyVisible(T->getLinkage())) { 5296 std::string OutName; 5297 llvm::raw_string_ostream Out(OutName); 5298 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5299 Out << Suffix; 5300 5301 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5302 } else { 5303 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5304 llvm::ArrayRef<llvm::Metadata *>()); 5305 } 5306 5307 return InternalId; 5308 } 5309 5310 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5311 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5312 } 5313 5314 llvm::Metadata * 5315 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5316 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5317 } 5318 5319 // Generalize pointer types to a void pointer with the qualifiers of the 5320 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5321 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5322 // 'void *'. 5323 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5324 if (!Ty->isPointerType()) 5325 return Ty; 5326 5327 return Ctx.getPointerType( 5328 QualType(Ctx.VoidTy).withCVRQualifiers( 5329 Ty->getPointeeType().getCVRQualifiers())); 5330 } 5331 5332 // Apply type generalization to a FunctionType's return and argument types 5333 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5334 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5335 SmallVector<QualType, 8> GeneralizedParams; 5336 for (auto &Param : FnType->param_types()) 5337 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5338 5339 return Ctx.getFunctionType( 5340 GeneralizeType(Ctx, FnType->getReturnType()), 5341 GeneralizedParams, FnType->getExtProtoInfo()); 5342 } 5343 5344 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5345 return Ctx.getFunctionNoProtoType( 5346 GeneralizeType(Ctx, FnType->getReturnType())); 5347 5348 llvm_unreachable("Encountered unknown FunctionType"); 5349 } 5350 5351 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5352 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5353 GeneralizedMetadataIdMap, ".generalized"); 5354 } 5355 5356 /// Returns whether this module needs the "all-vtables" type identifier. 5357 bool CodeGenModule::NeedAllVtablesTypeId() const { 5358 // Returns true if at least one of vtable-based CFI checkers is enabled and 5359 // is not in the trapping mode. 5360 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5361 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5362 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5363 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5364 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5365 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5366 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5367 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5368 } 5369 5370 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5371 CharUnits Offset, 5372 const CXXRecordDecl *RD) { 5373 llvm::Metadata *MD = 5374 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5375 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5376 5377 if (CodeGenOpts.SanitizeCfiCrossDso) 5378 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5379 VTable->addTypeMetadata(Offset.getQuantity(), 5380 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5381 5382 if (NeedAllVtablesTypeId()) { 5383 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5384 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5385 } 5386 } 5387 5388 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5389 assert(TD != nullptr); 5390 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5391 5392 ParsedAttr.Features.erase( 5393 llvm::remove_if(ParsedAttr.Features, 5394 [&](const std::string &Feat) { 5395 return !Target.isValidFeatureName( 5396 StringRef{Feat}.substr(1)); 5397 }), 5398 ParsedAttr.Features.end()); 5399 return ParsedAttr; 5400 } 5401 5402 5403 // Fills in the supplied string map with the set of target features for the 5404 // passed in function. 5405 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5406 const FunctionDecl *FD) { 5407 StringRef TargetCPU = Target.getTargetOpts().CPU; 5408 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5409 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5410 5411 // Make a copy of the features as passed on the command line into the 5412 // beginning of the additional features from the function to override. 5413 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5414 Target.getTargetOpts().FeaturesAsWritten.begin(), 5415 Target.getTargetOpts().FeaturesAsWritten.end()); 5416 5417 if (ParsedAttr.Architecture != "" && 5418 Target.isValidCPUName(ParsedAttr.Architecture)) 5419 TargetCPU = ParsedAttr.Architecture; 5420 5421 // Now populate the feature map, first with the TargetCPU which is either 5422 // the default or a new one from the target attribute string. Then we'll use 5423 // the passed in features (FeaturesAsWritten) along with the new ones from 5424 // the attribute. 5425 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5426 ParsedAttr.Features); 5427 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5428 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5429 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5430 FeaturesTmp); 5431 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5432 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5433 } else { 5434 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5435 Target.getTargetOpts().Features); 5436 } 5437 } 5438 5439 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5440 if (!SanStats) 5441 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5442 5443 return *SanStats; 5444 } 5445 llvm::Value * 5446 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5447 CodeGenFunction &CGF) { 5448 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5449 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5450 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5451 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5452 "__translate_sampler_initializer"), 5453 {C}); 5454 } 5455