xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9dd2e0872e045bc7fe3c664a81bb537569059623)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/DataLayout.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::DataLayout &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   // This is just isGNUFamily(), but we want to force implementors of
139   // new ABIs to decide how best to do this.
140   switch (LangOpts.ObjCRuntime.getKind()) {
141   case ObjCRuntime::GNUstep:
142   case ObjCRuntime::GCC:
143   case ObjCRuntime::ObjFW:
144     ObjCRuntime = CreateGNUObjCRuntime(*this);
145     return;
146 
147   case ObjCRuntime::FragileMacOSX:
148   case ObjCRuntime::MacOSX:
149   case ObjCRuntime::iOS:
150     ObjCRuntime = CreateMacObjCRuntime(*this);
151     return;
152   }
153   llvm_unreachable("bad runtime kind");
154 }
155 
156 void CodeGenModule::createOpenCLRuntime() {
157   OpenCLRuntime = new CGOpenCLRuntime(*this);
158 }
159 
160 void CodeGenModule::createCUDARuntime() {
161   CUDARuntime = CreateNVCUDARuntime(*this);
162 }
163 
164 void CodeGenModule::Release() {
165   EmitDeferred();
166   EmitCXXGlobalInitFunc();
167   EmitCXXGlobalDtorFunc();
168   if (ObjCRuntime)
169     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170       AddGlobalCtor(ObjCInitFunction);
171   EmitCtorList(GlobalCtors, "llvm.global_ctors");
172   EmitCtorList(GlobalDtors, "llvm.global_dtors");
173   EmitGlobalAnnotations();
174   EmitLLVMUsed();
175 
176   SimplifyPersonality();
177 
178   if (getCodeGenOpts().EmitDeclMetadata)
179     EmitDeclMetadata();
180 
181   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182     EmitCoverageFile();
183 
184   if (DebugInfo)
185     DebugInfo->finalize();
186 }
187 
188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189   // Make sure that this type is translated.
190   Types.UpdateCompletedType(TD);
191 }
192 
193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194   if (!TBAA)
195     return 0;
196   return TBAA->getTBAAInfo(QTy);
197 }
198 
199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200   if (!TBAA)
201     return 0;
202   return TBAA->getTBAAInfoForVTablePtr();
203 }
204 
205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206   if (!TBAA)
207     return 0;
208   return TBAA->getTBAAStructInfo(QTy);
209 }
210 
211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                         llvm::MDNode *TBAAInfo) {
213   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214 }
215 
216 bool CodeGenModule::isTargetDarwin() const {
217   return getContext().getTargetInfo().getTriple().isOSDarwin();
218 }
219 
220 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222   getDiags().Report(Context.getFullLoc(loc), diagID);
223 }
224 
225 /// ErrorUnsupported - Print out an error that codegen doesn't support the
226 /// specified stmt yet.
227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                      bool OmitOnError) {
229   if (OmitOnError && getDiags().hasErrorOccurred())
230     return;
231   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                                "cannot compile this %0 yet");
233   std::string Msg = Type;
234   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235     << Msg << S->getSourceRange();
236 }
237 
238 /// ErrorUnsupported - Print out an error that codegen doesn't support the
239 /// specified decl yet.
240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                      bool OmitOnError) {
242   if (OmitOnError && getDiags().hasErrorOccurred())
243     return;
244   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                                "cannot compile this %0 yet");
246   std::string Msg = Type;
247   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248 }
249 
250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252 }
253 
254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                         const NamedDecl *D) const {
256   // Internal definitions always have default visibility.
257   if (GV->hasLocalLinkage()) {
258     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259     return;
260   }
261 
262   // Set visibility for definitions.
263   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266 }
267 
268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274 }
275 
276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277     CodeGenOptions::TLSModel M) {
278   switch (M) {
279   case CodeGenOptions::GeneralDynamicTLSModel:
280     return llvm::GlobalVariable::GeneralDynamicTLSModel;
281   case CodeGenOptions::LocalDynamicTLSModel:
282     return llvm::GlobalVariable::LocalDynamicTLSModel;
283   case CodeGenOptions::InitialExecTLSModel:
284     return llvm::GlobalVariable::InitialExecTLSModel;
285   case CodeGenOptions::LocalExecTLSModel:
286     return llvm::GlobalVariable::LocalExecTLSModel;
287   }
288   llvm_unreachable("Invalid TLS model!");
289 }
290 
291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                                const VarDecl &D) const {
293   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294 
295   llvm::GlobalVariable::ThreadLocalMode TLM;
296   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
297 
298   // Override the TLS model if it is explicitly specified.
299   if (D.hasAttr<TLSModelAttr>()) {
300     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301     TLM = GetLLVMTLSModel(Attr->getModel());
302   }
303 
304   GV->setThreadLocalMode(TLM);
305 }
306 
307 /// Set the symbol visibility of type information (vtable and RTTI)
308 /// associated with the given type.
309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                       const CXXRecordDecl *RD,
311                                       TypeVisibilityKind TVK) const {
312   setGlobalVisibility(GV, RD);
313 
314   if (!CodeGenOpts.HiddenWeakVTables)
315     return;
316 
317   // We never want to drop the visibility for RTTI names.
318   if (TVK == TVK_ForRTTIName)
319     return;
320 
321   // We want to drop the visibility to hidden for weak type symbols.
322   // This isn't possible if there might be unresolved references
323   // elsewhere that rely on this symbol being visible.
324 
325   // This should be kept roughly in sync with setThunkVisibility
326   // in CGVTables.cpp.
327 
328   // Preconditions.
329   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331     return;
332 
333   // Don't override an explicit visibility attribute.
334   if (RD->getExplicitVisibility())
335     return;
336 
337   switch (RD->getTemplateSpecializationKind()) {
338   // We have to disable the optimization if this is an EI definition
339   // because there might be EI declarations in other shared objects.
340   case TSK_ExplicitInstantiationDefinition:
341   case TSK_ExplicitInstantiationDeclaration:
342     return;
343 
344   // Every use of a non-template class's type information has to emit it.
345   case TSK_Undeclared:
346     break;
347 
348   // In theory, implicit instantiations can ignore the possibility of
349   // an explicit instantiation declaration because there necessarily
350   // must be an EI definition somewhere with default visibility.  In
351   // practice, it's possible to have an explicit instantiation for
352   // an arbitrary template class, and linkers aren't necessarily able
353   // to deal with mixed-visibility symbols.
354   case TSK_ExplicitSpecialization:
355   case TSK_ImplicitInstantiation:
356     return;
357   }
358 
359   // If there's a key function, there may be translation units
360   // that don't have the key function's definition.  But ignore
361   // this if we're emitting RTTI under -fno-rtti.
362   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
363     if (Context.getKeyFunction(RD))
364       return;
365   }
366 
367   // Otherwise, drop the visibility to hidden.
368   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
369   GV->setUnnamedAddr(true);
370 }
371 
372 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
373   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
374 
375   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
376   if (!Str.empty())
377     return Str;
378 
379   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
380     IdentifierInfo *II = ND->getIdentifier();
381     assert(II && "Attempt to mangle unnamed decl.");
382 
383     Str = II->getName();
384     return Str;
385   }
386 
387   SmallString<256> Buffer;
388   llvm::raw_svector_ostream Out(Buffer);
389   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
390     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
391   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
392     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
393   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
394     getCXXABI().getMangleContext().mangleBlock(BD, Out,
395       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
396   else
397     getCXXABI().getMangleContext().mangleName(ND, Out);
398 
399   // Allocate space for the mangled name.
400   Out.flush();
401   size_t Length = Buffer.size();
402   char *Name = MangledNamesAllocator.Allocate<char>(Length);
403   std::copy(Buffer.begin(), Buffer.end(), Name);
404 
405   Str = StringRef(Name, Length);
406 
407   return Str;
408 }
409 
410 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
411                                         const BlockDecl *BD) {
412   MangleContext &MangleCtx = getCXXABI().getMangleContext();
413   const Decl *D = GD.getDecl();
414   llvm::raw_svector_ostream Out(Buffer.getBuffer());
415   if (D == 0)
416     MangleCtx.mangleGlobalBlock(BD,
417       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
418   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
419     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
420   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
421     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
422   else
423     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
424 }
425 
426 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
427   return getModule().getNamedValue(Name);
428 }
429 
430 /// AddGlobalCtor - Add a function to the list that will be called before
431 /// main() runs.
432 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
433   // FIXME: Type coercion of void()* types.
434   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
435 }
436 
437 /// AddGlobalDtor - Add a function to the list that will be called
438 /// when the module is unloaded.
439 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
440   // FIXME: Type coercion of void()* types.
441   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
442 }
443 
444 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
445   // Ctor function type is void()*.
446   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
447   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
448 
449   // Get the type of a ctor entry, { i32, void ()* }.
450   llvm::StructType *CtorStructTy =
451     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
452 
453   // Construct the constructor and destructor arrays.
454   SmallVector<llvm::Constant*, 8> Ctors;
455   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
456     llvm::Constant *S[] = {
457       llvm::ConstantInt::get(Int32Ty, I->second, false),
458       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
459     };
460     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
461   }
462 
463   if (!Ctors.empty()) {
464     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
465     new llvm::GlobalVariable(TheModule, AT, false,
466                              llvm::GlobalValue::AppendingLinkage,
467                              llvm::ConstantArray::get(AT, Ctors),
468                              GlobalName);
469   }
470 }
471 
472 llvm::GlobalValue::LinkageTypes
473 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
474   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
475 
476   if (Linkage == GVA_Internal)
477     return llvm::Function::InternalLinkage;
478 
479   if (D->hasAttr<DLLExportAttr>())
480     return llvm::Function::DLLExportLinkage;
481 
482   if (D->hasAttr<WeakAttr>())
483     return llvm::Function::WeakAnyLinkage;
484 
485   // In C99 mode, 'inline' functions are guaranteed to have a strong
486   // definition somewhere else, so we can use available_externally linkage.
487   if (Linkage == GVA_C99Inline)
488     return llvm::Function::AvailableExternallyLinkage;
489 
490   // Note that Apple's kernel linker doesn't support symbol
491   // coalescing, so we need to avoid linkonce and weak linkages there.
492   // Normally, this means we just map to internal, but for explicit
493   // instantiations we'll map to external.
494 
495   // In C++, the compiler has to emit a definition in every translation unit
496   // that references the function.  We should use linkonce_odr because
497   // a) if all references in this translation unit are optimized away, we
498   // don't need to codegen it.  b) if the function persists, it needs to be
499   // merged with other definitions. c) C++ has the ODR, so we know the
500   // definition is dependable.
501   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
502     return !Context.getLangOpts().AppleKext
503              ? llvm::Function::LinkOnceODRLinkage
504              : llvm::Function::InternalLinkage;
505 
506   // An explicit instantiation of a template has weak linkage, since
507   // explicit instantiations can occur in multiple translation units
508   // and must all be equivalent. However, we are not allowed to
509   // throw away these explicit instantiations.
510   if (Linkage == GVA_ExplicitTemplateInstantiation)
511     return !Context.getLangOpts().AppleKext
512              ? llvm::Function::WeakODRLinkage
513              : llvm::Function::ExternalLinkage;
514 
515   // Otherwise, we have strong external linkage.
516   assert(Linkage == GVA_StrongExternal);
517   return llvm::Function::ExternalLinkage;
518 }
519 
520 
521 /// SetFunctionDefinitionAttributes - Set attributes for a global.
522 ///
523 /// FIXME: This is currently only done for aliases and functions, but not for
524 /// variables (these details are set in EmitGlobalVarDefinition for variables).
525 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
526                                                     llvm::GlobalValue *GV) {
527   SetCommonAttributes(D, GV);
528 }
529 
530 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
531                                               const CGFunctionInfo &Info,
532                                               llvm::Function *F) {
533   unsigned CallingConv;
534   AttributeListType AttributeList;
535   ConstructAttributeList(Info, D, AttributeList, CallingConv);
536   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
537   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
538 }
539 
540 /// Determines whether the language options require us to model
541 /// unwind exceptions.  We treat -fexceptions as mandating this
542 /// except under the fragile ObjC ABI with only ObjC exceptions
543 /// enabled.  This means, for example, that C with -fexceptions
544 /// enables this.
545 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
546   // If exceptions are completely disabled, obviously this is false.
547   if (!LangOpts.Exceptions) return false;
548 
549   // If C++ exceptions are enabled, this is true.
550   if (LangOpts.CXXExceptions) return true;
551 
552   // If ObjC exceptions are enabled, this depends on the ABI.
553   if (LangOpts.ObjCExceptions) {
554     return LangOpts.ObjCRuntime.hasUnwindExceptions();
555   }
556 
557   return true;
558 }
559 
560 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
561                                                            llvm::Function *F) {
562   if (CodeGenOpts.UnwindTables)
563     F->setHasUWTable();
564 
565   if (!hasUnwindExceptions(LangOpts))
566     F->addFnAttr(llvm::Attributes::NoUnwind);
567 
568   if (D->hasAttr<NakedAttr>()) {
569     // Naked implies noinline: we should not be inlining such functions.
570     F->addFnAttr(llvm::Attributes::Naked);
571     F->addFnAttr(llvm::Attributes::NoInline);
572   }
573 
574   if (D->hasAttr<NoInlineAttr>())
575     F->addFnAttr(llvm::Attributes::NoInline);
576 
577   // (noinline wins over always_inline, and we can't specify both in IR)
578   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
579       !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline))
580     F->addFnAttr(llvm::Attributes::AlwaysInline);
581 
582   // FIXME: Communicate hot and cold attributes to LLVM more directly.
583   if (D->hasAttr<ColdAttr>())
584     F->addFnAttr(llvm::Attributes::OptimizeForSize);
585 
586   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
587     F->setUnnamedAddr(true);
588 
589   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
590     if (MD->isVirtual())
591       F->setUnnamedAddr(true);
592 
593   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
594     F->addFnAttr(llvm::Attributes::StackProtect);
595   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
596     F->addFnAttr(llvm::Attributes::StackProtectReq);
597 
598   if (LangOpts.AddressSanitizer) {
599     // When AddressSanitizer is enabled, set AddressSafety attribute
600     // unless __attribute__((no_address_safety_analysis)) is used.
601     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
602       F->addFnAttr(llvm::Attributes::AddressSafety);
603   }
604 
605   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
606   if (alignment)
607     F->setAlignment(alignment);
608 
609   // C++ ABI requires 2-byte alignment for member functions.
610   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
611     F->setAlignment(2);
612 }
613 
614 void CodeGenModule::SetCommonAttributes(const Decl *D,
615                                         llvm::GlobalValue *GV) {
616   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
617     setGlobalVisibility(GV, ND);
618   else
619     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
620 
621   if (D->hasAttr<UsedAttr>())
622     AddUsedGlobal(GV);
623 
624   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
625     GV->setSection(SA->getName());
626 
627   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
628 }
629 
630 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
631                                                   llvm::Function *F,
632                                                   const CGFunctionInfo &FI) {
633   SetLLVMFunctionAttributes(D, FI, F);
634   SetLLVMFunctionAttributesForDefinition(D, F);
635 
636   F->setLinkage(llvm::Function::InternalLinkage);
637 
638   SetCommonAttributes(D, F);
639 }
640 
641 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
642                                           llvm::Function *F,
643                                           bool IsIncompleteFunction) {
644   if (unsigned IID = F->getIntrinsicID()) {
645     // If this is an intrinsic function, set the function's attributes
646     // to the intrinsic's attributes.
647     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
648                                                     (llvm::Intrinsic::ID)IID));
649     return;
650   }
651 
652   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
653 
654   if (!IsIncompleteFunction)
655     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
656 
657   // Only a few attributes are set on declarations; these may later be
658   // overridden by a definition.
659 
660   if (FD->hasAttr<DLLImportAttr>()) {
661     F->setLinkage(llvm::Function::DLLImportLinkage);
662   } else if (FD->hasAttr<WeakAttr>() ||
663              FD->isWeakImported()) {
664     // "extern_weak" is overloaded in LLVM; we probably should have
665     // separate linkage types for this.
666     F->setLinkage(llvm::Function::ExternalWeakLinkage);
667   } else {
668     F->setLinkage(llvm::Function::ExternalLinkage);
669 
670     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
671     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
672       F->setVisibility(GetLLVMVisibility(LV.visibility()));
673     }
674   }
675 
676   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
677     F->setSection(SA->getName());
678 }
679 
680 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
681   assert(!GV->isDeclaration() &&
682          "Only globals with definition can force usage.");
683   LLVMUsed.push_back(GV);
684 }
685 
686 void CodeGenModule::EmitLLVMUsed() {
687   // Don't create llvm.used if there is no need.
688   if (LLVMUsed.empty())
689     return;
690 
691   // Convert LLVMUsed to what ConstantArray needs.
692   SmallVector<llvm::Constant*, 8> UsedArray;
693   UsedArray.resize(LLVMUsed.size());
694   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
695     UsedArray[i] =
696      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
697                                     Int8PtrTy);
698   }
699 
700   if (UsedArray.empty())
701     return;
702   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
703 
704   llvm::GlobalVariable *GV =
705     new llvm::GlobalVariable(getModule(), ATy, false,
706                              llvm::GlobalValue::AppendingLinkage,
707                              llvm::ConstantArray::get(ATy, UsedArray),
708                              "llvm.used");
709 
710   GV->setSection("llvm.metadata");
711 }
712 
713 void CodeGenModule::EmitDeferred() {
714   // Emit code for any potentially referenced deferred decls.  Since a
715   // previously unused static decl may become used during the generation of code
716   // for a static function, iterate until no changes are made.
717 
718   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
719     if (!DeferredVTables.empty()) {
720       const CXXRecordDecl *RD = DeferredVTables.back();
721       DeferredVTables.pop_back();
722       getCXXABI().EmitVTables(RD);
723       continue;
724     }
725 
726     GlobalDecl D = DeferredDeclsToEmit.back();
727     DeferredDeclsToEmit.pop_back();
728 
729     // Check to see if we've already emitted this.  This is necessary
730     // for a couple of reasons: first, decls can end up in the
731     // deferred-decls queue multiple times, and second, decls can end
732     // up with definitions in unusual ways (e.g. by an extern inline
733     // function acquiring a strong function redefinition).  Just
734     // ignore these cases.
735     //
736     // TODO: That said, looking this up multiple times is very wasteful.
737     StringRef Name = getMangledName(D);
738     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
739     assert(CGRef && "Deferred decl wasn't referenced?");
740 
741     if (!CGRef->isDeclaration())
742       continue;
743 
744     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
745     // purposes an alias counts as a definition.
746     if (isa<llvm::GlobalAlias>(CGRef))
747       continue;
748 
749     // Otherwise, emit the definition and move on to the next one.
750     EmitGlobalDefinition(D);
751   }
752 }
753 
754 void CodeGenModule::EmitGlobalAnnotations() {
755   if (Annotations.empty())
756     return;
757 
758   // Create a new global variable for the ConstantStruct in the Module.
759   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
760     Annotations[0]->getType(), Annotations.size()), Annotations);
761   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
762     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
763     "llvm.global.annotations");
764   gv->setSection(AnnotationSection);
765 }
766 
767 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
768   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
769   if (i != AnnotationStrings.end())
770     return i->second;
771 
772   // Not found yet, create a new global.
773   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
774   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
775     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
776   gv->setSection(AnnotationSection);
777   gv->setUnnamedAddr(true);
778   AnnotationStrings[Str] = gv;
779   return gv;
780 }
781 
782 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
783   SourceManager &SM = getContext().getSourceManager();
784   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
785   if (PLoc.isValid())
786     return EmitAnnotationString(PLoc.getFilename());
787   return EmitAnnotationString(SM.getBufferName(Loc));
788 }
789 
790 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
791   SourceManager &SM = getContext().getSourceManager();
792   PresumedLoc PLoc = SM.getPresumedLoc(L);
793   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
794     SM.getExpansionLineNumber(L);
795   return llvm::ConstantInt::get(Int32Ty, LineNo);
796 }
797 
798 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
799                                                 const AnnotateAttr *AA,
800                                                 SourceLocation L) {
801   // Get the globals for file name, annotation, and the line number.
802   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
803                  *UnitGV = EmitAnnotationUnit(L),
804                  *LineNoCst = EmitAnnotationLineNo(L);
805 
806   // Create the ConstantStruct for the global annotation.
807   llvm::Constant *Fields[4] = {
808     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
809     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
810     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
811     LineNoCst
812   };
813   return llvm::ConstantStruct::getAnon(Fields);
814 }
815 
816 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
817                                          llvm::GlobalValue *GV) {
818   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
819   // Get the struct elements for these annotations.
820   for (specific_attr_iterator<AnnotateAttr>
821        ai = D->specific_attr_begin<AnnotateAttr>(),
822        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
823     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
824 }
825 
826 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
827   // Never defer when EmitAllDecls is specified.
828   if (LangOpts.EmitAllDecls)
829     return false;
830 
831   return !getContext().DeclMustBeEmitted(Global);
832 }
833 
834 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
835     const CXXUuidofExpr* E) {
836   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
837   // well-formed.
838   StringRef Uuid;
839   if (E->isTypeOperand())
840     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
841   else {
842     // Special case: __uuidof(0) means an all-zero GUID.
843     Expr *Op = E->getExprOperand();
844     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
845       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
846     else
847       Uuid = "00000000-0000-0000-0000-000000000000";
848   }
849   std::string Name = "__uuid_" + Uuid.str();
850 
851   // Look for an existing global.
852   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
853     return GV;
854 
855   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
856   assert(Init && "failed to initialize as constant");
857 
858   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
859   // first field is declared as "long", which for many targets is 8 bytes.
860   // Those architectures are not supported. (With the MS abi, long is always 4
861   // bytes.)
862   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
863   if (Init->getType() != GuidType) {
864     DiagnosticsEngine &Diags = getDiags();
865     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
866         "__uuidof codegen is not supported on this architecture");
867     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
868     Init = llvm::UndefValue::get(GuidType);
869   }
870 
871   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
872       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
873   GV->setUnnamedAddr(true);
874   return GV;
875 }
876 
877 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
878   const AliasAttr *AA = VD->getAttr<AliasAttr>();
879   assert(AA && "No alias?");
880 
881   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
882 
883   // See if there is already something with the target's name in the module.
884   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
885   if (Entry) {
886     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
887     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
888   }
889 
890   llvm::Constant *Aliasee;
891   if (isa<llvm::FunctionType>(DeclTy))
892     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
893                                       GlobalDecl(cast<FunctionDecl>(VD)),
894                                       /*ForVTable=*/false);
895   else
896     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
897                                     llvm::PointerType::getUnqual(DeclTy), 0);
898 
899   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
900   F->setLinkage(llvm::Function::ExternalWeakLinkage);
901   WeakRefReferences.insert(F);
902 
903   return Aliasee;
904 }
905 
906 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
907   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
908 
909   // Weak references don't produce any output by themselves.
910   if (Global->hasAttr<WeakRefAttr>())
911     return;
912 
913   // If this is an alias definition (which otherwise looks like a declaration)
914   // emit it now.
915   if (Global->hasAttr<AliasAttr>())
916     return EmitAliasDefinition(GD);
917 
918   // If this is CUDA, be selective about which declarations we emit.
919   if (LangOpts.CUDA) {
920     if (CodeGenOpts.CUDAIsDevice) {
921       if (!Global->hasAttr<CUDADeviceAttr>() &&
922           !Global->hasAttr<CUDAGlobalAttr>() &&
923           !Global->hasAttr<CUDAConstantAttr>() &&
924           !Global->hasAttr<CUDASharedAttr>())
925         return;
926     } else {
927       if (!Global->hasAttr<CUDAHostAttr>() && (
928             Global->hasAttr<CUDADeviceAttr>() ||
929             Global->hasAttr<CUDAConstantAttr>() ||
930             Global->hasAttr<CUDASharedAttr>()))
931         return;
932     }
933   }
934 
935   // Ignore declarations, they will be emitted on their first use.
936   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
937     // Forward declarations are emitted lazily on first use.
938     if (!FD->doesThisDeclarationHaveABody()) {
939       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
940         return;
941 
942       const FunctionDecl *InlineDefinition = 0;
943       FD->getBody(InlineDefinition);
944 
945       StringRef MangledName = getMangledName(GD);
946       DeferredDecls.erase(MangledName);
947       EmitGlobalDefinition(InlineDefinition);
948       return;
949     }
950   } else {
951     const VarDecl *VD = cast<VarDecl>(Global);
952     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
953 
954     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
955       return;
956   }
957 
958   // Defer code generation when possible if this is a static definition, inline
959   // function etc.  These we only want to emit if they are used.
960   if (!MayDeferGeneration(Global)) {
961     // Emit the definition if it can't be deferred.
962     EmitGlobalDefinition(GD);
963     return;
964   }
965 
966   // If we're deferring emission of a C++ variable with an
967   // initializer, remember the order in which it appeared in the file.
968   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
969       cast<VarDecl>(Global)->hasInit()) {
970     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
971     CXXGlobalInits.push_back(0);
972   }
973 
974   // If the value has already been used, add it directly to the
975   // DeferredDeclsToEmit list.
976   StringRef MangledName = getMangledName(GD);
977   if (GetGlobalValue(MangledName))
978     DeferredDeclsToEmit.push_back(GD);
979   else {
980     // Otherwise, remember that we saw a deferred decl with this name.  The
981     // first use of the mangled name will cause it to move into
982     // DeferredDeclsToEmit.
983     DeferredDecls[MangledName] = GD;
984   }
985 }
986 
987 namespace {
988   struct FunctionIsDirectlyRecursive :
989     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
990     const StringRef Name;
991     const Builtin::Context &BI;
992     bool Result;
993     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
994       Name(N), BI(C), Result(false) {
995     }
996     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
997 
998     bool TraverseCallExpr(CallExpr *E) {
999       const FunctionDecl *FD = E->getDirectCallee();
1000       if (!FD)
1001         return true;
1002       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1003       if (Attr && Name == Attr->getLabel()) {
1004         Result = true;
1005         return false;
1006       }
1007       unsigned BuiltinID = FD->getBuiltinID();
1008       if (!BuiltinID)
1009         return true;
1010       StringRef BuiltinName = BI.GetName(BuiltinID);
1011       if (BuiltinName.startswith("__builtin_") &&
1012           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1013         Result = true;
1014         return false;
1015       }
1016       return true;
1017     }
1018   };
1019 }
1020 
1021 // isTriviallyRecursive - Check if this function calls another
1022 // decl that, because of the asm attribute or the other decl being a builtin,
1023 // ends up pointing to itself.
1024 bool
1025 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1026   StringRef Name;
1027   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1028     // asm labels are a special kind of mangling we have to support.
1029     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1030     if (!Attr)
1031       return false;
1032     Name = Attr->getLabel();
1033   } else {
1034     Name = FD->getName();
1035   }
1036 
1037   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1038   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1039   return Walker.Result;
1040 }
1041 
1042 bool
1043 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1044   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1045     return true;
1046   if (CodeGenOpts.OptimizationLevel == 0 &&
1047       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1048     return false;
1049   // PR9614. Avoid cases where the source code is lying to us. An available
1050   // externally function should have an equivalent function somewhere else,
1051   // but a function that calls itself is clearly not equivalent to the real
1052   // implementation.
1053   // This happens in glibc's btowc and in some configure checks.
1054   return !isTriviallyRecursive(F);
1055 }
1056 
1057 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1058   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1059 
1060   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1061                                  Context.getSourceManager(),
1062                                  "Generating code for declaration");
1063 
1064   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1065     // At -O0, don't generate IR for functions with available_externally
1066     // linkage.
1067     if (!shouldEmitFunction(Function))
1068       return;
1069 
1070     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1071       // Make sure to emit the definition(s) before we emit the thunks.
1072       // This is necessary for the generation of certain thunks.
1073       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1074         EmitCXXConstructor(CD, GD.getCtorType());
1075       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1076         EmitCXXDestructor(DD, GD.getDtorType());
1077       else
1078         EmitGlobalFunctionDefinition(GD);
1079 
1080       if (Method->isVirtual())
1081         getVTables().EmitThunks(GD);
1082 
1083       return;
1084     }
1085 
1086     return EmitGlobalFunctionDefinition(GD);
1087   }
1088 
1089   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1090     return EmitGlobalVarDefinition(VD);
1091 
1092   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1093 }
1094 
1095 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1096 /// module, create and return an llvm Function with the specified type. If there
1097 /// is something in the module with the specified name, return it potentially
1098 /// bitcasted to the right type.
1099 ///
1100 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1101 /// to set the attributes on the function when it is first created.
1102 llvm::Constant *
1103 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1104                                        llvm::Type *Ty,
1105                                        GlobalDecl D, bool ForVTable,
1106                                        llvm::Attributes ExtraAttrs) {
1107   // Lookup the entry, lazily creating it if necessary.
1108   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1109   if (Entry) {
1110     if (WeakRefReferences.erase(Entry)) {
1111       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1112       if (FD && !FD->hasAttr<WeakAttr>())
1113         Entry->setLinkage(llvm::Function::ExternalLinkage);
1114     }
1115 
1116     if (Entry->getType()->getElementType() == Ty)
1117       return Entry;
1118 
1119     // Make sure the result is of the correct type.
1120     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1121   }
1122 
1123   // This function doesn't have a complete type (for example, the return
1124   // type is an incomplete struct). Use a fake type instead, and make
1125   // sure not to try to set attributes.
1126   bool IsIncompleteFunction = false;
1127 
1128   llvm::FunctionType *FTy;
1129   if (isa<llvm::FunctionType>(Ty)) {
1130     FTy = cast<llvm::FunctionType>(Ty);
1131   } else {
1132     FTy = llvm::FunctionType::get(VoidTy, false);
1133     IsIncompleteFunction = true;
1134   }
1135 
1136   llvm::Function *F = llvm::Function::Create(FTy,
1137                                              llvm::Function::ExternalLinkage,
1138                                              MangledName, &getModule());
1139   assert(F->getName() == MangledName && "name was uniqued!");
1140   if (D.getDecl())
1141     SetFunctionAttributes(D, F, IsIncompleteFunction);
1142   if (ExtraAttrs.hasAttributes())
1143     F->addAttribute(llvm::AttrListPtr::FunctionIndex, ExtraAttrs);
1144 
1145   // This is the first use or definition of a mangled name.  If there is a
1146   // deferred decl with this name, remember that we need to emit it at the end
1147   // of the file.
1148   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1149   if (DDI != DeferredDecls.end()) {
1150     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1151     // list, and remove it from DeferredDecls (since we don't need it anymore).
1152     DeferredDeclsToEmit.push_back(DDI->second);
1153     DeferredDecls.erase(DDI);
1154 
1155   // Otherwise, there are cases we have to worry about where we're
1156   // using a declaration for which we must emit a definition but where
1157   // we might not find a top-level definition:
1158   //   - member functions defined inline in their classes
1159   //   - friend functions defined inline in some class
1160   //   - special member functions with implicit definitions
1161   // If we ever change our AST traversal to walk into class methods,
1162   // this will be unnecessary.
1163   //
1164   // We also don't emit a definition for a function if it's going to be an entry
1165   // in a vtable, unless it's already marked as used.
1166   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1167     // Look for a declaration that's lexically in a record.
1168     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1169     FD = FD->getMostRecentDecl();
1170     do {
1171       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1172         if (FD->isImplicit() && !ForVTable) {
1173           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1174           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1175           break;
1176         } else if (FD->doesThisDeclarationHaveABody()) {
1177           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1178           break;
1179         }
1180       }
1181       FD = FD->getPreviousDecl();
1182     } while (FD);
1183   }
1184 
1185   // Make sure the result is of the requested type.
1186   if (!IsIncompleteFunction) {
1187     assert(F->getType()->getElementType() == Ty);
1188     return F;
1189   }
1190 
1191   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1192   return llvm::ConstantExpr::getBitCast(F, PTy);
1193 }
1194 
1195 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1196 /// non-null, then this function will use the specified type if it has to
1197 /// create it (this occurs when we see a definition of the function).
1198 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1199                                                  llvm::Type *Ty,
1200                                                  bool ForVTable) {
1201   // If there was no specific requested type, just convert it now.
1202   if (!Ty)
1203     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1204 
1205   StringRef MangledName = getMangledName(GD);
1206   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1207 }
1208 
1209 /// CreateRuntimeFunction - Create a new runtime function with the specified
1210 /// type and name.
1211 llvm::Constant *
1212 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1213                                      StringRef Name,
1214                                      llvm::Attributes ExtraAttrs) {
1215   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1216                                  ExtraAttrs);
1217 }
1218 
1219 /// isTypeConstant - Determine whether an object of this type can be emitted
1220 /// as a constant.
1221 ///
1222 /// If ExcludeCtor is true, the duration when the object's constructor runs
1223 /// will not be considered. The caller will need to verify that the object is
1224 /// not written to during its construction.
1225 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1226   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1227     return false;
1228 
1229   if (Context.getLangOpts().CPlusPlus) {
1230     if (const CXXRecordDecl *Record
1231           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1232       return ExcludeCtor && !Record->hasMutableFields() &&
1233              Record->hasTrivialDestructor();
1234   }
1235 
1236   return true;
1237 }
1238 
1239 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1240 /// create and return an llvm GlobalVariable with the specified type.  If there
1241 /// is something in the module with the specified name, return it potentially
1242 /// bitcasted to the right type.
1243 ///
1244 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1245 /// to set the attributes on the global when it is first created.
1246 llvm::Constant *
1247 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1248                                      llvm::PointerType *Ty,
1249                                      const VarDecl *D,
1250                                      bool UnnamedAddr) {
1251   // Lookup the entry, lazily creating it if necessary.
1252   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1253   if (Entry) {
1254     if (WeakRefReferences.erase(Entry)) {
1255       if (D && !D->hasAttr<WeakAttr>())
1256         Entry->setLinkage(llvm::Function::ExternalLinkage);
1257     }
1258 
1259     if (UnnamedAddr)
1260       Entry->setUnnamedAddr(true);
1261 
1262     if (Entry->getType() == Ty)
1263       return Entry;
1264 
1265     // Make sure the result is of the correct type.
1266     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1267   }
1268 
1269   // This is the first use or definition of a mangled name.  If there is a
1270   // deferred decl with this name, remember that we need to emit it at the end
1271   // of the file.
1272   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1273   if (DDI != DeferredDecls.end()) {
1274     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1275     // list, and remove it from DeferredDecls (since we don't need it anymore).
1276     DeferredDeclsToEmit.push_back(DDI->second);
1277     DeferredDecls.erase(DDI);
1278   }
1279 
1280   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1281   llvm::GlobalVariable *GV =
1282     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1283                              llvm::GlobalValue::ExternalLinkage,
1284                              0, MangledName, 0,
1285                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1286 
1287   // Handle things which are present even on external declarations.
1288   if (D) {
1289     // FIXME: This code is overly simple and should be merged with other global
1290     // handling.
1291     GV->setConstant(isTypeConstant(D->getType(), false));
1292 
1293     // Set linkage and visibility in case we never see a definition.
1294     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1295     if (LV.linkage() != ExternalLinkage) {
1296       // Don't set internal linkage on declarations.
1297     } else {
1298       if (D->hasAttr<DLLImportAttr>())
1299         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1300       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1301         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1302 
1303       // Set visibility on a declaration only if it's explicit.
1304       if (LV.visibilityExplicit())
1305         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1306     }
1307 
1308     if (D->isThreadSpecified())
1309       setTLSMode(GV, *D);
1310   }
1311 
1312   if (AddrSpace != Ty->getAddressSpace())
1313     return llvm::ConstantExpr::getBitCast(GV, Ty);
1314   else
1315     return GV;
1316 }
1317 
1318 
1319 llvm::GlobalVariable *
1320 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1321                                       llvm::Type *Ty,
1322                                       llvm::GlobalValue::LinkageTypes Linkage) {
1323   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1324   llvm::GlobalVariable *OldGV = 0;
1325 
1326 
1327   if (GV) {
1328     // Check if the variable has the right type.
1329     if (GV->getType()->getElementType() == Ty)
1330       return GV;
1331 
1332     // Because C++ name mangling, the only way we can end up with an already
1333     // existing global with the same name is if it has been declared extern "C".
1334     assert(GV->isDeclaration() && "Declaration has wrong type!");
1335     OldGV = GV;
1336   }
1337 
1338   // Create a new variable.
1339   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1340                                 Linkage, 0, Name);
1341 
1342   if (OldGV) {
1343     // Replace occurrences of the old variable if needed.
1344     GV->takeName(OldGV);
1345 
1346     if (!OldGV->use_empty()) {
1347       llvm::Constant *NewPtrForOldDecl =
1348       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1349       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1350     }
1351 
1352     OldGV->eraseFromParent();
1353   }
1354 
1355   return GV;
1356 }
1357 
1358 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1359 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1360 /// then it will be created with the specified type instead of whatever the
1361 /// normal requested type would be.
1362 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1363                                                   llvm::Type *Ty) {
1364   assert(D->hasGlobalStorage() && "Not a global variable");
1365   QualType ASTTy = D->getType();
1366   if (Ty == 0)
1367     Ty = getTypes().ConvertTypeForMem(ASTTy);
1368 
1369   llvm::PointerType *PTy =
1370     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1371 
1372   StringRef MangledName = getMangledName(D);
1373   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1374 }
1375 
1376 /// CreateRuntimeVariable - Create a new runtime global variable with the
1377 /// specified type and name.
1378 llvm::Constant *
1379 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1380                                      StringRef Name) {
1381   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1382                                true);
1383 }
1384 
1385 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1386   assert(!D->getInit() && "Cannot emit definite definitions here!");
1387 
1388   if (MayDeferGeneration(D)) {
1389     // If we have not seen a reference to this variable yet, place it
1390     // into the deferred declarations table to be emitted if needed
1391     // later.
1392     StringRef MangledName = getMangledName(D);
1393     if (!GetGlobalValue(MangledName)) {
1394       DeferredDecls[MangledName] = D;
1395       return;
1396     }
1397   }
1398 
1399   // The tentative definition is the only definition.
1400   EmitGlobalVarDefinition(D);
1401 }
1402 
1403 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1404   if (DefinitionRequired)
1405     getCXXABI().EmitVTables(Class);
1406 }
1407 
1408 llvm::GlobalVariable::LinkageTypes
1409 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1410   if (RD->getLinkage() != ExternalLinkage)
1411     return llvm::GlobalVariable::InternalLinkage;
1412 
1413   if (const CXXMethodDecl *KeyFunction
1414                                     = RD->getASTContext().getKeyFunction(RD)) {
1415     // If this class has a key function, use that to determine the linkage of
1416     // the vtable.
1417     const FunctionDecl *Def = 0;
1418     if (KeyFunction->hasBody(Def))
1419       KeyFunction = cast<CXXMethodDecl>(Def);
1420 
1421     switch (KeyFunction->getTemplateSpecializationKind()) {
1422       case TSK_Undeclared:
1423       case TSK_ExplicitSpecialization:
1424         // When compiling with optimizations turned on, we emit all vtables,
1425         // even if the key function is not defined in the current translation
1426         // unit. If this is the case, use available_externally linkage.
1427         if (!Def && CodeGenOpts.OptimizationLevel)
1428           return llvm::GlobalVariable::AvailableExternallyLinkage;
1429 
1430         if (KeyFunction->isInlined())
1431           return !Context.getLangOpts().AppleKext ?
1432                    llvm::GlobalVariable::LinkOnceODRLinkage :
1433                    llvm::Function::InternalLinkage;
1434 
1435         return llvm::GlobalVariable::ExternalLinkage;
1436 
1437       case TSK_ImplicitInstantiation:
1438         return !Context.getLangOpts().AppleKext ?
1439                  llvm::GlobalVariable::LinkOnceODRLinkage :
1440                  llvm::Function::InternalLinkage;
1441 
1442       case TSK_ExplicitInstantiationDefinition:
1443         return !Context.getLangOpts().AppleKext ?
1444                  llvm::GlobalVariable::WeakODRLinkage :
1445                  llvm::Function::InternalLinkage;
1446 
1447       case TSK_ExplicitInstantiationDeclaration:
1448         // FIXME: Use available_externally linkage. However, this currently
1449         // breaks LLVM's build due to undefined symbols.
1450         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1451         return !Context.getLangOpts().AppleKext ?
1452                  llvm::GlobalVariable::LinkOnceODRLinkage :
1453                  llvm::Function::InternalLinkage;
1454     }
1455   }
1456 
1457   if (Context.getLangOpts().AppleKext)
1458     return llvm::Function::InternalLinkage;
1459 
1460   switch (RD->getTemplateSpecializationKind()) {
1461   case TSK_Undeclared:
1462   case TSK_ExplicitSpecialization:
1463   case TSK_ImplicitInstantiation:
1464     // FIXME: Use available_externally linkage. However, this currently
1465     // breaks LLVM's build due to undefined symbols.
1466     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1467   case TSK_ExplicitInstantiationDeclaration:
1468     return llvm::GlobalVariable::LinkOnceODRLinkage;
1469 
1470   case TSK_ExplicitInstantiationDefinition:
1471       return llvm::GlobalVariable::WeakODRLinkage;
1472   }
1473 
1474   llvm_unreachable("Invalid TemplateSpecializationKind!");
1475 }
1476 
1477 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1478     return Context.toCharUnitsFromBits(
1479       TheDataLayout.getTypeStoreSizeInBits(Ty));
1480 }
1481 
1482 llvm::Constant *
1483 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1484                                                        const Expr *rawInit) {
1485   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1486   if (const ExprWithCleanups *withCleanups =
1487           dyn_cast<ExprWithCleanups>(rawInit)) {
1488     cleanups = withCleanups->getObjects();
1489     rawInit = withCleanups->getSubExpr();
1490   }
1491 
1492   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1493   if (!init || !init->initializesStdInitializerList() ||
1494       init->getNumInits() == 0)
1495     return 0;
1496 
1497   ASTContext &ctx = getContext();
1498   unsigned numInits = init->getNumInits();
1499   // FIXME: This check is here because we would otherwise silently miscompile
1500   // nested global std::initializer_lists. Better would be to have a real
1501   // implementation.
1502   for (unsigned i = 0; i < numInits; ++i) {
1503     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1504     if (inner && inner->initializesStdInitializerList()) {
1505       ErrorUnsupported(inner, "nested global std::initializer_list");
1506       return 0;
1507     }
1508   }
1509 
1510   // Synthesize a fake VarDecl for the array and initialize that.
1511   QualType elementType = init->getInit(0)->getType();
1512   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1513   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1514                                                 ArrayType::Normal, 0);
1515 
1516   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1517   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1518                                               arrayType, D->getLocation());
1519   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1520                                                           D->getDeclContext()),
1521                                           D->getLocStart(), D->getLocation(),
1522                                           name, arrayType, sourceInfo,
1523                                           SC_Static, SC_Static);
1524 
1525   // Now clone the InitListExpr to initialize the array instead.
1526   // Incredible hack: we want to use the existing InitListExpr here, so we need
1527   // to tell it that it no longer initializes a std::initializer_list.
1528   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1529                         init->getNumInits());
1530   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1531                                            init->getRBraceLoc());
1532   arrayInit->setType(arrayType);
1533 
1534   if (!cleanups.empty())
1535     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1536 
1537   backingArray->setInit(arrayInit);
1538 
1539   // Emit the definition of the array.
1540   EmitGlobalVarDefinition(backingArray);
1541 
1542   // Inspect the initializer list to validate it and determine its type.
1543   // FIXME: doing this every time is probably inefficient; caching would be nice
1544   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1545   RecordDecl::field_iterator field = record->field_begin();
1546   if (field == record->field_end()) {
1547     ErrorUnsupported(D, "weird std::initializer_list");
1548     return 0;
1549   }
1550   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1551   // Start pointer.
1552   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1553     ErrorUnsupported(D, "weird std::initializer_list");
1554     return 0;
1555   }
1556   ++field;
1557   if (field == record->field_end()) {
1558     ErrorUnsupported(D, "weird std::initializer_list");
1559     return 0;
1560   }
1561   bool isStartEnd = false;
1562   if (ctx.hasSameType(field->getType(), elementPtr)) {
1563     // End pointer.
1564     isStartEnd = true;
1565   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1566     ErrorUnsupported(D, "weird std::initializer_list");
1567     return 0;
1568   }
1569 
1570   // Now build an APValue representing the std::initializer_list.
1571   APValue initListValue(APValue::UninitStruct(), 0, 2);
1572   APValue &startField = initListValue.getStructField(0);
1573   APValue::LValuePathEntry startOffsetPathEntry;
1574   startOffsetPathEntry.ArrayIndex = 0;
1575   startField = APValue(APValue::LValueBase(backingArray),
1576                        CharUnits::fromQuantity(0),
1577                        llvm::makeArrayRef(startOffsetPathEntry),
1578                        /*IsOnePastTheEnd=*/false, 0);
1579 
1580   if (isStartEnd) {
1581     APValue &endField = initListValue.getStructField(1);
1582     APValue::LValuePathEntry endOffsetPathEntry;
1583     endOffsetPathEntry.ArrayIndex = numInits;
1584     endField = APValue(APValue::LValueBase(backingArray),
1585                        ctx.getTypeSizeInChars(elementType) * numInits,
1586                        llvm::makeArrayRef(endOffsetPathEntry),
1587                        /*IsOnePastTheEnd=*/true, 0);
1588   } else {
1589     APValue &sizeField = initListValue.getStructField(1);
1590     sizeField = APValue(llvm::APSInt(numElements));
1591   }
1592 
1593   // Emit the constant for the initializer_list.
1594   llvm::Constant *llvmInit =
1595       EmitConstantValueForMemory(initListValue, D->getType());
1596   assert(llvmInit && "failed to initialize as constant");
1597   return llvmInit;
1598 }
1599 
1600 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1601                                                  unsigned AddrSpace) {
1602   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1603     if (D->hasAttr<CUDAConstantAttr>())
1604       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1605     else if (D->hasAttr<CUDASharedAttr>())
1606       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1607     else
1608       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1609   }
1610 
1611   return AddrSpace;
1612 }
1613 
1614 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1615   llvm::Constant *Init = 0;
1616   QualType ASTTy = D->getType();
1617   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1618   bool NeedsGlobalCtor = false;
1619   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1620 
1621   const VarDecl *InitDecl;
1622   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1623 
1624   if (!InitExpr) {
1625     // This is a tentative definition; tentative definitions are
1626     // implicitly initialized with { 0 }.
1627     //
1628     // Note that tentative definitions are only emitted at the end of
1629     // a translation unit, so they should never have incomplete
1630     // type. In addition, EmitTentativeDefinition makes sure that we
1631     // never attempt to emit a tentative definition if a real one
1632     // exists. A use may still exists, however, so we still may need
1633     // to do a RAUW.
1634     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1635     Init = EmitNullConstant(D->getType());
1636   } else {
1637     // If this is a std::initializer_list, emit the special initializer.
1638     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1639     // An empty init list will perform zero-initialization, which happens
1640     // to be exactly what we want.
1641     // FIXME: It does so in a global constructor, which is *not* what we
1642     // want.
1643 
1644     if (!Init) {
1645       initializedGlobalDecl = GlobalDecl(D);
1646       Init = EmitConstantInit(*InitDecl);
1647     }
1648     if (!Init) {
1649       QualType T = InitExpr->getType();
1650       if (D->getType()->isReferenceType())
1651         T = D->getType();
1652 
1653       if (getLangOpts().CPlusPlus) {
1654         Init = EmitNullConstant(T);
1655         NeedsGlobalCtor = true;
1656       } else {
1657         ErrorUnsupported(D, "static initializer");
1658         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1659       }
1660     } else {
1661       // We don't need an initializer, so remove the entry for the delayed
1662       // initializer position (just in case this entry was delayed) if we
1663       // also don't need to register a destructor.
1664       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1665         DelayedCXXInitPosition.erase(D);
1666     }
1667   }
1668 
1669   llvm::Type* InitType = Init->getType();
1670   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1671 
1672   // Strip off a bitcast if we got one back.
1673   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1674     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1675            // all zero index gep.
1676            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1677     Entry = CE->getOperand(0);
1678   }
1679 
1680   // Entry is now either a Function or GlobalVariable.
1681   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1682 
1683   // We have a definition after a declaration with the wrong type.
1684   // We must make a new GlobalVariable* and update everything that used OldGV
1685   // (a declaration or tentative definition) with the new GlobalVariable*
1686   // (which will be a definition).
1687   //
1688   // This happens if there is a prototype for a global (e.g.
1689   // "extern int x[];") and then a definition of a different type (e.g.
1690   // "int x[10];"). This also happens when an initializer has a different type
1691   // from the type of the global (this happens with unions).
1692   if (GV == 0 ||
1693       GV->getType()->getElementType() != InitType ||
1694       GV->getType()->getAddressSpace() !=
1695        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1696 
1697     // Move the old entry aside so that we'll create a new one.
1698     Entry->setName(StringRef());
1699 
1700     // Make a new global with the correct type, this is now guaranteed to work.
1701     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1702 
1703     // Replace all uses of the old global with the new global
1704     llvm::Constant *NewPtrForOldDecl =
1705         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1706     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1707 
1708     // Erase the old global, since it is no longer used.
1709     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1710   }
1711 
1712   if (D->hasAttr<AnnotateAttr>())
1713     AddGlobalAnnotations(D, GV);
1714 
1715   GV->setInitializer(Init);
1716 
1717   // If it is safe to mark the global 'constant', do so now.
1718   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1719                   isTypeConstant(D->getType(), true));
1720 
1721   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1722 
1723   // Set the llvm linkage type as appropriate.
1724   llvm::GlobalValue::LinkageTypes Linkage =
1725     GetLLVMLinkageVarDefinition(D, GV);
1726   GV->setLinkage(Linkage);
1727   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1728     // common vars aren't constant even if declared const.
1729     GV->setConstant(false);
1730 
1731   SetCommonAttributes(D, GV);
1732 
1733   // Emit the initializer function if necessary.
1734   if (NeedsGlobalCtor || NeedsGlobalDtor)
1735     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1736 
1737   // If we are compiling with ASan, add metadata indicating dynamically
1738   // initialized globals.
1739   if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1740     llvm::Module &M = getModule();
1741 
1742     llvm::NamedMDNode *DynamicInitializers =
1743         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1744     llvm::Value *GlobalToAdd[] = { GV };
1745     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1746     DynamicInitializers->addOperand(ThisGlobal);
1747   }
1748 
1749   // Emit global variable debug information.
1750   if (CGDebugInfo *DI = getModuleDebugInfo())
1751     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1752       DI->EmitGlobalVariable(GV, D);
1753 }
1754 
1755 llvm::GlobalValue::LinkageTypes
1756 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1757                                            llvm::GlobalVariable *GV) {
1758   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1759   if (Linkage == GVA_Internal)
1760     return llvm::Function::InternalLinkage;
1761   else if (D->hasAttr<DLLImportAttr>())
1762     return llvm::Function::DLLImportLinkage;
1763   else if (D->hasAttr<DLLExportAttr>())
1764     return llvm::Function::DLLExportLinkage;
1765   else if (D->hasAttr<WeakAttr>()) {
1766     if (GV->isConstant())
1767       return llvm::GlobalVariable::WeakODRLinkage;
1768     else
1769       return llvm::GlobalVariable::WeakAnyLinkage;
1770   } else if (Linkage == GVA_TemplateInstantiation ||
1771              Linkage == GVA_ExplicitTemplateInstantiation)
1772     return llvm::GlobalVariable::WeakODRLinkage;
1773   else if (!getLangOpts().CPlusPlus &&
1774            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1775              D->getAttr<CommonAttr>()) &&
1776            !D->hasExternalStorage() && !D->getInit() &&
1777            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1778            !D->getAttr<WeakImportAttr>()) {
1779     // Thread local vars aren't considered common linkage.
1780     return llvm::GlobalVariable::CommonLinkage;
1781   }
1782   return llvm::GlobalVariable::ExternalLinkage;
1783 }
1784 
1785 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1786 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1787 /// existing call uses of the old function in the module, this adjusts them to
1788 /// call the new function directly.
1789 ///
1790 /// This is not just a cleanup: the always_inline pass requires direct calls to
1791 /// functions to be able to inline them.  If there is a bitcast in the way, it
1792 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1793 /// run at -O0.
1794 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1795                                                       llvm::Function *NewFn) {
1796   // If we're redefining a global as a function, don't transform it.
1797   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1798   if (OldFn == 0) return;
1799 
1800   llvm::Type *NewRetTy = NewFn->getReturnType();
1801   SmallVector<llvm::Value*, 4> ArgList;
1802 
1803   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1804        UI != E; ) {
1805     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1806     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1807     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1808     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1809     llvm::CallSite CS(CI);
1810     if (!CI || !CS.isCallee(I)) continue;
1811 
1812     // If the return types don't match exactly, and if the call isn't dead, then
1813     // we can't transform this call.
1814     if (CI->getType() != NewRetTy && !CI->use_empty())
1815       continue;
1816 
1817     // Get the attribute list.
1818     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1819     llvm::AttrListPtr AttrList = CI->getAttributes();
1820 
1821     // Get any return attributes.
1822     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1823 
1824     // Add the return attributes.
1825     if (RAttrs.hasAttributes())
1826       AttrVec.push_back(llvm::
1827                         AttributeWithIndex::get(llvm::AttrListPtr::ReturnIndex,
1828                                                 RAttrs));
1829 
1830     // If the function was passed too few arguments, don't transform.  If extra
1831     // arguments were passed, we silently drop them.  If any of the types
1832     // mismatch, we don't transform.
1833     unsigned ArgNo = 0;
1834     bool DontTransform = false;
1835     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1836          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1837       if (CS.arg_size() == ArgNo ||
1838           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1839         DontTransform = true;
1840         break;
1841       }
1842 
1843       // Add any parameter attributes.
1844       llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1);
1845       if (PAttrs.hasAttributes())
1846         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1847     }
1848     if (DontTransform)
1849       continue;
1850 
1851     llvm::Attributes FnAttrs =  AttrList.getFnAttributes();
1852     if (FnAttrs.hasAttributes())
1853       AttrVec.push_back(llvm::
1854                        AttributeWithIndex::get(llvm::AttrListPtr::FunctionIndex,
1855                                                FnAttrs));
1856 
1857     // Okay, we can transform this.  Create the new call instruction and copy
1858     // over the required information.
1859     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1860     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1861     ArgList.clear();
1862     if (!NewCall->getType()->isVoidTy())
1863       NewCall->takeName(CI);
1864     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1865     NewCall->setCallingConv(CI->getCallingConv());
1866 
1867     // Finally, remove the old call, replacing any uses with the new one.
1868     if (!CI->use_empty())
1869       CI->replaceAllUsesWith(NewCall);
1870 
1871     // Copy debug location attached to CI.
1872     if (!CI->getDebugLoc().isUnknown())
1873       NewCall->setDebugLoc(CI->getDebugLoc());
1874     CI->eraseFromParent();
1875   }
1876 }
1877 
1878 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1879   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1880   // If we have a definition, this might be a deferred decl. If the
1881   // instantiation is explicit, make sure we emit it at the end.
1882   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1883     GetAddrOfGlobalVar(VD);
1884 }
1885 
1886 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1887   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1888 
1889   // Compute the function info and LLVM type.
1890   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1891   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1892 
1893   // Get or create the prototype for the function.
1894   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1895 
1896   // Strip off a bitcast if we got one back.
1897   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1898     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1899     Entry = CE->getOperand(0);
1900   }
1901 
1902 
1903   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1904     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1905 
1906     // If the types mismatch then we have to rewrite the definition.
1907     assert(OldFn->isDeclaration() &&
1908            "Shouldn't replace non-declaration");
1909 
1910     // F is the Function* for the one with the wrong type, we must make a new
1911     // Function* and update everything that used F (a declaration) with the new
1912     // Function* (which will be a definition).
1913     //
1914     // This happens if there is a prototype for a function
1915     // (e.g. "int f()") and then a definition of a different type
1916     // (e.g. "int f(int x)").  Move the old function aside so that it
1917     // doesn't interfere with GetAddrOfFunction.
1918     OldFn->setName(StringRef());
1919     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1920 
1921     // If this is an implementation of a function without a prototype, try to
1922     // replace any existing uses of the function (which may be calls) with uses
1923     // of the new function
1924     if (D->getType()->isFunctionNoProtoType()) {
1925       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1926       OldFn->removeDeadConstantUsers();
1927     }
1928 
1929     // Replace uses of F with the Function we will endow with a body.
1930     if (!Entry->use_empty()) {
1931       llvm::Constant *NewPtrForOldDecl =
1932         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1933       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1934     }
1935 
1936     // Ok, delete the old function now, which is dead.
1937     OldFn->eraseFromParent();
1938 
1939     Entry = NewFn;
1940   }
1941 
1942   // We need to set linkage and visibility on the function before
1943   // generating code for it because various parts of IR generation
1944   // want to propagate this information down (e.g. to local static
1945   // declarations).
1946   llvm::Function *Fn = cast<llvm::Function>(Entry);
1947   setFunctionLinkage(D, Fn);
1948 
1949   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1950   setGlobalVisibility(Fn, D);
1951 
1952   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1953 
1954   SetFunctionDefinitionAttributes(D, Fn);
1955   SetLLVMFunctionAttributesForDefinition(D, Fn);
1956 
1957   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1958     AddGlobalCtor(Fn, CA->getPriority());
1959   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1960     AddGlobalDtor(Fn, DA->getPriority());
1961   if (D->hasAttr<AnnotateAttr>())
1962     AddGlobalAnnotations(D, Fn);
1963 }
1964 
1965 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1966   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1967   const AliasAttr *AA = D->getAttr<AliasAttr>();
1968   assert(AA && "Not an alias?");
1969 
1970   StringRef MangledName = getMangledName(GD);
1971 
1972   // If there is a definition in the module, then it wins over the alias.
1973   // This is dubious, but allow it to be safe.  Just ignore the alias.
1974   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1975   if (Entry && !Entry->isDeclaration())
1976     return;
1977 
1978   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1979 
1980   // Create a reference to the named value.  This ensures that it is emitted
1981   // if a deferred decl.
1982   llvm::Constant *Aliasee;
1983   if (isa<llvm::FunctionType>(DeclTy))
1984     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1985                                       /*ForVTable=*/false);
1986   else
1987     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1988                                     llvm::PointerType::getUnqual(DeclTy), 0);
1989 
1990   // Create the new alias itself, but don't set a name yet.
1991   llvm::GlobalValue *GA =
1992     new llvm::GlobalAlias(Aliasee->getType(),
1993                           llvm::Function::ExternalLinkage,
1994                           "", Aliasee, &getModule());
1995 
1996   if (Entry) {
1997     assert(Entry->isDeclaration());
1998 
1999     // If there is a declaration in the module, then we had an extern followed
2000     // by the alias, as in:
2001     //   extern int test6();
2002     //   ...
2003     //   int test6() __attribute__((alias("test7")));
2004     //
2005     // Remove it and replace uses of it with the alias.
2006     GA->takeName(Entry);
2007 
2008     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2009                                                           Entry->getType()));
2010     Entry->eraseFromParent();
2011   } else {
2012     GA->setName(MangledName);
2013   }
2014 
2015   // Set attributes which are particular to an alias; this is a
2016   // specialization of the attributes which may be set on a global
2017   // variable/function.
2018   if (D->hasAttr<DLLExportAttr>()) {
2019     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2020       // The dllexport attribute is ignored for undefined symbols.
2021       if (FD->hasBody())
2022         GA->setLinkage(llvm::Function::DLLExportLinkage);
2023     } else {
2024       GA->setLinkage(llvm::Function::DLLExportLinkage);
2025     }
2026   } else if (D->hasAttr<WeakAttr>() ||
2027              D->hasAttr<WeakRefAttr>() ||
2028              D->isWeakImported()) {
2029     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2030   }
2031 
2032   SetCommonAttributes(D, GA);
2033 }
2034 
2035 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2036                                             ArrayRef<llvm::Type*> Tys) {
2037   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2038                                          Tys);
2039 }
2040 
2041 static llvm::StringMapEntry<llvm::Constant*> &
2042 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2043                          const StringLiteral *Literal,
2044                          bool TargetIsLSB,
2045                          bool &IsUTF16,
2046                          unsigned &StringLength) {
2047   StringRef String = Literal->getString();
2048   unsigned NumBytes = String.size();
2049 
2050   // Check for simple case.
2051   if (!Literal->containsNonAsciiOrNull()) {
2052     StringLength = NumBytes;
2053     return Map.GetOrCreateValue(String);
2054   }
2055 
2056   // Otherwise, convert the UTF8 literals into a string of shorts.
2057   IsUTF16 = true;
2058 
2059   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2060   const UTF8 *FromPtr = (const UTF8 *)String.data();
2061   UTF16 *ToPtr = &ToBuf[0];
2062 
2063   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2064                            &ToPtr, ToPtr + NumBytes,
2065                            strictConversion);
2066 
2067   // ConvertUTF8toUTF16 returns the length in ToPtr.
2068   StringLength = ToPtr - &ToBuf[0];
2069 
2070   // Add an explicit null.
2071   *ToPtr = 0;
2072   return Map.
2073     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2074                                (StringLength + 1) * 2));
2075 }
2076 
2077 static llvm::StringMapEntry<llvm::Constant*> &
2078 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2079                        const StringLiteral *Literal,
2080                        unsigned &StringLength) {
2081   StringRef String = Literal->getString();
2082   StringLength = String.size();
2083   return Map.GetOrCreateValue(String);
2084 }
2085 
2086 llvm::Constant *
2087 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2088   unsigned StringLength = 0;
2089   bool isUTF16 = false;
2090   llvm::StringMapEntry<llvm::Constant*> &Entry =
2091     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2092                              getDataLayout().isLittleEndian(),
2093                              isUTF16, StringLength);
2094 
2095   if (llvm::Constant *C = Entry.getValue())
2096     return C;
2097 
2098   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2099   llvm::Constant *Zeros[] = { Zero, Zero };
2100 
2101   // If we don't already have it, get __CFConstantStringClassReference.
2102   if (!CFConstantStringClassRef) {
2103     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2104     Ty = llvm::ArrayType::get(Ty, 0);
2105     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2106                                            "__CFConstantStringClassReference");
2107     // Decay array -> ptr
2108     CFConstantStringClassRef =
2109       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2110   }
2111 
2112   QualType CFTy = getContext().getCFConstantStringType();
2113 
2114   llvm::StructType *STy =
2115     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2116 
2117   llvm::Constant *Fields[4];
2118 
2119   // Class pointer.
2120   Fields[0] = CFConstantStringClassRef;
2121 
2122   // Flags.
2123   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2124   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2125     llvm::ConstantInt::get(Ty, 0x07C8);
2126 
2127   // String pointer.
2128   llvm::Constant *C = 0;
2129   if (isUTF16) {
2130     ArrayRef<uint16_t> Arr =
2131       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2132                                    Entry.getKey().size() / 2);
2133     C = llvm::ConstantDataArray::get(VMContext, Arr);
2134   } else {
2135     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2136   }
2137 
2138   llvm::GlobalValue::LinkageTypes Linkage;
2139   if (isUTF16)
2140     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2141     Linkage = llvm::GlobalValue::InternalLinkage;
2142   else
2143     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2144     // when using private linkage. It is not clear if this is a bug in ld
2145     // or a reasonable new restriction.
2146     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2147 
2148   // Note: -fwritable-strings doesn't make the backing store strings of
2149   // CFStrings writable. (See <rdar://problem/10657500>)
2150   llvm::GlobalVariable *GV =
2151     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2152                              Linkage, C, ".str");
2153   GV->setUnnamedAddr(true);
2154   if (isUTF16) {
2155     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2156     GV->setAlignment(Align.getQuantity());
2157   } else {
2158     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2159     GV->setAlignment(Align.getQuantity());
2160   }
2161 
2162   // String.
2163   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2164 
2165   if (isUTF16)
2166     // Cast the UTF16 string to the correct type.
2167     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2168 
2169   // String length.
2170   Ty = getTypes().ConvertType(getContext().LongTy);
2171   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2172 
2173   // The struct.
2174   C = llvm::ConstantStruct::get(STy, Fields);
2175   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2176                                 llvm::GlobalVariable::PrivateLinkage, C,
2177                                 "_unnamed_cfstring_");
2178   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2179     GV->setSection(Sect);
2180   Entry.setValue(GV);
2181 
2182   return GV;
2183 }
2184 
2185 static RecordDecl *
2186 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2187                  DeclContext *DC, IdentifierInfo *Id) {
2188   SourceLocation Loc;
2189   if (Ctx.getLangOpts().CPlusPlus)
2190     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2191   else
2192     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2193 }
2194 
2195 llvm::Constant *
2196 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2197   unsigned StringLength = 0;
2198   llvm::StringMapEntry<llvm::Constant*> &Entry =
2199     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2200 
2201   if (llvm::Constant *C = Entry.getValue())
2202     return C;
2203 
2204   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2205   llvm::Constant *Zeros[] = { Zero, Zero };
2206 
2207   // If we don't already have it, get _NSConstantStringClassReference.
2208   if (!ConstantStringClassRef) {
2209     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2210     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2211     llvm::Constant *GV;
2212     if (LangOpts.ObjCRuntime.isNonFragile()) {
2213       std::string str =
2214         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2215                             : "OBJC_CLASS_$_" + StringClass;
2216       GV = getObjCRuntime().GetClassGlobal(str);
2217       // Make sure the result is of the correct type.
2218       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2219       ConstantStringClassRef =
2220         llvm::ConstantExpr::getBitCast(GV, PTy);
2221     } else {
2222       std::string str =
2223         StringClass.empty() ? "_NSConstantStringClassReference"
2224                             : "_" + StringClass + "ClassReference";
2225       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2226       GV = CreateRuntimeVariable(PTy, str);
2227       // Decay array -> ptr
2228       ConstantStringClassRef =
2229         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2230     }
2231   }
2232 
2233   if (!NSConstantStringType) {
2234     // Construct the type for a constant NSString.
2235     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2236                                      Context.getTranslationUnitDecl(),
2237                                    &Context.Idents.get("__builtin_NSString"));
2238     D->startDefinition();
2239 
2240     QualType FieldTypes[3];
2241 
2242     // const int *isa;
2243     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2244     // const char *str;
2245     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2246     // unsigned int length;
2247     FieldTypes[2] = Context.UnsignedIntTy;
2248 
2249     // Create fields
2250     for (unsigned i = 0; i < 3; ++i) {
2251       FieldDecl *Field = FieldDecl::Create(Context, D,
2252                                            SourceLocation(),
2253                                            SourceLocation(), 0,
2254                                            FieldTypes[i], /*TInfo=*/0,
2255                                            /*BitWidth=*/0,
2256                                            /*Mutable=*/false,
2257                                            ICIS_NoInit);
2258       Field->setAccess(AS_public);
2259       D->addDecl(Field);
2260     }
2261 
2262     D->completeDefinition();
2263     QualType NSTy = Context.getTagDeclType(D);
2264     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2265   }
2266 
2267   llvm::Constant *Fields[3];
2268 
2269   // Class pointer.
2270   Fields[0] = ConstantStringClassRef;
2271 
2272   // String pointer.
2273   llvm::Constant *C =
2274     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2275 
2276   llvm::GlobalValue::LinkageTypes Linkage;
2277   bool isConstant;
2278   Linkage = llvm::GlobalValue::PrivateLinkage;
2279   isConstant = !LangOpts.WritableStrings;
2280 
2281   llvm::GlobalVariable *GV =
2282   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2283                            ".str");
2284   GV->setUnnamedAddr(true);
2285   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2286   GV->setAlignment(Align.getQuantity());
2287   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2288 
2289   // String length.
2290   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2291   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2292 
2293   // The struct.
2294   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2295   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2296                                 llvm::GlobalVariable::PrivateLinkage, C,
2297                                 "_unnamed_nsstring_");
2298   // FIXME. Fix section.
2299   if (const char *Sect =
2300         LangOpts.ObjCRuntime.isNonFragile()
2301           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2302           : getContext().getTargetInfo().getNSStringSection())
2303     GV->setSection(Sect);
2304   Entry.setValue(GV);
2305 
2306   return GV;
2307 }
2308 
2309 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2310   if (ObjCFastEnumerationStateType.isNull()) {
2311     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2312                                      Context.getTranslationUnitDecl(),
2313                       &Context.Idents.get("__objcFastEnumerationState"));
2314     D->startDefinition();
2315 
2316     QualType FieldTypes[] = {
2317       Context.UnsignedLongTy,
2318       Context.getPointerType(Context.getObjCIdType()),
2319       Context.getPointerType(Context.UnsignedLongTy),
2320       Context.getConstantArrayType(Context.UnsignedLongTy,
2321                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2322     };
2323 
2324     for (size_t i = 0; i < 4; ++i) {
2325       FieldDecl *Field = FieldDecl::Create(Context,
2326                                            D,
2327                                            SourceLocation(),
2328                                            SourceLocation(), 0,
2329                                            FieldTypes[i], /*TInfo=*/0,
2330                                            /*BitWidth=*/0,
2331                                            /*Mutable=*/false,
2332                                            ICIS_NoInit);
2333       Field->setAccess(AS_public);
2334       D->addDecl(Field);
2335     }
2336 
2337     D->completeDefinition();
2338     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2339   }
2340 
2341   return ObjCFastEnumerationStateType;
2342 }
2343 
2344 llvm::Constant *
2345 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2346   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2347 
2348   // Don't emit it as the address of the string, emit the string data itself
2349   // as an inline array.
2350   if (E->getCharByteWidth() == 1) {
2351     SmallString<64> Str(E->getString());
2352 
2353     // Resize the string to the right size, which is indicated by its type.
2354     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2355     Str.resize(CAT->getSize().getZExtValue());
2356     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2357   }
2358 
2359   llvm::ArrayType *AType =
2360     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2361   llvm::Type *ElemTy = AType->getElementType();
2362   unsigned NumElements = AType->getNumElements();
2363 
2364   // Wide strings have either 2-byte or 4-byte elements.
2365   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2366     SmallVector<uint16_t, 32> Elements;
2367     Elements.reserve(NumElements);
2368 
2369     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2370       Elements.push_back(E->getCodeUnit(i));
2371     Elements.resize(NumElements);
2372     return llvm::ConstantDataArray::get(VMContext, Elements);
2373   }
2374 
2375   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2376   SmallVector<uint32_t, 32> Elements;
2377   Elements.reserve(NumElements);
2378 
2379   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2380     Elements.push_back(E->getCodeUnit(i));
2381   Elements.resize(NumElements);
2382   return llvm::ConstantDataArray::get(VMContext, Elements);
2383 }
2384 
2385 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2386 /// constant array for the given string literal.
2387 llvm::Constant *
2388 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2389   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2390   if (S->isAscii() || S->isUTF8()) {
2391     SmallString<64> Str(S->getString());
2392 
2393     // Resize the string to the right size, which is indicated by its type.
2394     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2395     Str.resize(CAT->getSize().getZExtValue());
2396     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2397   }
2398 
2399   // FIXME: the following does not memoize wide strings.
2400   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2401   llvm::GlobalVariable *GV =
2402     new llvm::GlobalVariable(getModule(),C->getType(),
2403                              !LangOpts.WritableStrings,
2404                              llvm::GlobalValue::PrivateLinkage,
2405                              C,".str");
2406 
2407   GV->setAlignment(Align.getQuantity());
2408   GV->setUnnamedAddr(true);
2409   return GV;
2410 }
2411 
2412 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2413 /// array for the given ObjCEncodeExpr node.
2414 llvm::Constant *
2415 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2416   std::string Str;
2417   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2418 
2419   return GetAddrOfConstantCString(Str);
2420 }
2421 
2422 
2423 /// GenerateWritableString -- Creates storage for a string literal.
2424 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2425                                              bool constant,
2426                                              CodeGenModule &CGM,
2427                                              const char *GlobalName,
2428                                              unsigned Alignment) {
2429   // Create Constant for this string literal. Don't add a '\0'.
2430   llvm::Constant *C =
2431       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2432 
2433   // Create a global variable for this string
2434   llvm::GlobalVariable *GV =
2435     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2436                              llvm::GlobalValue::PrivateLinkage,
2437                              C, GlobalName);
2438   GV->setAlignment(Alignment);
2439   GV->setUnnamedAddr(true);
2440   return GV;
2441 }
2442 
2443 /// GetAddrOfConstantString - Returns a pointer to a character array
2444 /// containing the literal. This contents are exactly that of the
2445 /// given string, i.e. it will not be null terminated automatically;
2446 /// see GetAddrOfConstantCString. Note that whether the result is
2447 /// actually a pointer to an LLVM constant depends on
2448 /// Feature.WriteableStrings.
2449 ///
2450 /// The result has pointer to array type.
2451 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2452                                                        const char *GlobalName,
2453                                                        unsigned Alignment) {
2454   // Get the default prefix if a name wasn't specified.
2455   if (!GlobalName)
2456     GlobalName = ".str";
2457 
2458   // Don't share any string literals if strings aren't constant.
2459   if (LangOpts.WritableStrings)
2460     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2461 
2462   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2463     ConstantStringMap.GetOrCreateValue(Str);
2464 
2465   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2466     if (Alignment > GV->getAlignment()) {
2467       GV->setAlignment(Alignment);
2468     }
2469     return GV;
2470   }
2471 
2472   // Create a global variable for this.
2473   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2474                                                    Alignment);
2475   Entry.setValue(GV);
2476   return GV;
2477 }
2478 
2479 /// GetAddrOfConstantCString - Returns a pointer to a character
2480 /// array containing the literal and a terminating '\0'
2481 /// character. The result has pointer to array type.
2482 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2483                                                         const char *GlobalName,
2484                                                         unsigned Alignment) {
2485   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2486   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2487 }
2488 
2489 /// EmitObjCPropertyImplementations - Emit information for synthesized
2490 /// properties for an implementation.
2491 void CodeGenModule::EmitObjCPropertyImplementations(const
2492                                                     ObjCImplementationDecl *D) {
2493   for (ObjCImplementationDecl::propimpl_iterator
2494          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2495     ObjCPropertyImplDecl *PID = *i;
2496 
2497     // Dynamic is just for type-checking.
2498     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2499       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2500 
2501       // Determine which methods need to be implemented, some may have
2502       // been overridden. Note that ::isPropertyAccessor is not the method
2503       // we want, that just indicates if the decl came from a
2504       // property. What we want to know is if the method is defined in
2505       // this implementation.
2506       if (!D->getInstanceMethod(PD->getGetterName()))
2507         CodeGenFunction(*this).GenerateObjCGetter(
2508                                  const_cast<ObjCImplementationDecl *>(D), PID);
2509       if (!PD->isReadOnly() &&
2510           !D->getInstanceMethod(PD->getSetterName()))
2511         CodeGenFunction(*this).GenerateObjCSetter(
2512                                  const_cast<ObjCImplementationDecl *>(D), PID);
2513     }
2514   }
2515 }
2516 
2517 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2518   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2519   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2520        ivar; ivar = ivar->getNextIvar())
2521     if (ivar->getType().isDestructedType())
2522       return true;
2523 
2524   return false;
2525 }
2526 
2527 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2528 /// for an implementation.
2529 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2530   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2531   if (needsDestructMethod(D)) {
2532     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2533     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2534     ObjCMethodDecl *DTORMethod =
2535       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2536                              cxxSelector, getContext().VoidTy, 0, D,
2537                              /*isInstance=*/true, /*isVariadic=*/false,
2538                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2539                              /*isDefined=*/false, ObjCMethodDecl::Required);
2540     D->addInstanceMethod(DTORMethod);
2541     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2542     D->setHasDestructors(true);
2543   }
2544 
2545   // If the implementation doesn't have any ivar initializers, we don't need
2546   // a .cxx_construct.
2547   if (D->getNumIvarInitializers() == 0)
2548     return;
2549 
2550   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2551   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2552   // The constructor returns 'self'.
2553   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2554                                                 D->getLocation(),
2555                                                 D->getLocation(),
2556                                                 cxxSelector,
2557                                                 getContext().getObjCIdType(), 0,
2558                                                 D, /*isInstance=*/true,
2559                                                 /*isVariadic=*/false,
2560                                                 /*isPropertyAccessor=*/true,
2561                                                 /*isImplicitlyDeclared=*/true,
2562                                                 /*isDefined=*/false,
2563                                                 ObjCMethodDecl::Required);
2564   D->addInstanceMethod(CTORMethod);
2565   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2566   D->setHasNonZeroConstructors(true);
2567 }
2568 
2569 /// EmitNamespace - Emit all declarations in a namespace.
2570 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2571   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2572        I != E; ++I)
2573     EmitTopLevelDecl(*I);
2574 }
2575 
2576 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2577 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2578   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2579       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2580     ErrorUnsupported(LSD, "linkage spec");
2581     return;
2582   }
2583 
2584   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2585        I != E; ++I) {
2586     // Meta-data for ObjC class includes references to implemented methods.
2587     // Generate class's method definitions first.
2588     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2589       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2590            MEnd = OID->meth_end();
2591            M != MEnd; ++M)
2592         EmitTopLevelDecl(*M);
2593     }
2594     EmitTopLevelDecl(*I);
2595   }
2596 }
2597 
2598 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2599 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2600   // If an error has occurred, stop code generation, but continue
2601   // parsing and semantic analysis (to ensure all warnings and errors
2602   // are emitted).
2603   if (Diags.hasErrorOccurred())
2604     return;
2605 
2606   // Ignore dependent declarations.
2607   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2608     return;
2609 
2610   switch (D->getKind()) {
2611   case Decl::CXXConversion:
2612   case Decl::CXXMethod:
2613   case Decl::Function:
2614     // Skip function templates
2615     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2616         cast<FunctionDecl>(D)->isLateTemplateParsed())
2617       return;
2618 
2619     EmitGlobal(cast<FunctionDecl>(D));
2620     break;
2621 
2622   case Decl::Var:
2623     EmitGlobal(cast<VarDecl>(D));
2624     break;
2625 
2626   // Indirect fields from global anonymous structs and unions can be
2627   // ignored; only the actual variable requires IR gen support.
2628   case Decl::IndirectField:
2629     break;
2630 
2631   // C++ Decls
2632   case Decl::Namespace:
2633     EmitNamespace(cast<NamespaceDecl>(D));
2634     break;
2635     // No code generation needed.
2636   case Decl::UsingShadow:
2637   case Decl::Using:
2638   case Decl::UsingDirective:
2639   case Decl::ClassTemplate:
2640   case Decl::FunctionTemplate:
2641   case Decl::TypeAliasTemplate:
2642   case Decl::NamespaceAlias:
2643   case Decl::Block:
2644   case Decl::Import:
2645     break;
2646   case Decl::CXXConstructor:
2647     // Skip function templates
2648     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2649         cast<FunctionDecl>(D)->isLateTemplateParsed())
2650       return;
2651 
2652     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2653     break;
2654   case Decl::CXXDestructor:
2655     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2656       return;
2657     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2658     break;
2659 
2660   case Decl::StaticAssert:
2661     // Nothing to do.
2662     break;
2663 
2664   // Objective-C Decls
2665 
2666   // Forward declarations, no (immediate) code generation.
2667   case Decl::ObjCInterface:
2668   case Decl::ObjCCategory:
2669     break;
2670 
2671   case Decl::ObjCProtocol: {
2672     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2673     if (Proto->isThisDeclarationADefinition())
2674       ObjCRuntime->GenerateProtocol(Proto);
2675     break;
2676   }
2677 
2678   case Decl::ObjCCategoryImpl:
2679     // Categories have properties but don't support synthesize so we
2680     // can ignore them here.
2681     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2682     break;
2683 
2684   case Decl::ObjCImplementation: {
2685     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2686     EmitObjCPropertyImplementations(OMD);
2687     EmitObjCIvarInitializations(OMD);
2688     ObjCRuntime->GenerateClass(OMD);
2689     // Emit global variable debug information.
2690     if (CGDebugInfo *DI = getModuleDebugInfo())
2691       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2692 				   OMD->getLocation());
2693 
2694     break;
2695   }
2696   case Decl::ObjCMethod: {
2697     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2698     // If this is not a prototype, emit the body.
2699     if (OMD->getBody())
2700       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2701     break;
2702   }
2703   case Decl::ObjCCompatibleAlias:
2704     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2705     break;
2706 
2707   case Decl::LinkageSpec:
2708     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2709     break;
2710 
2711   case Decl::FileScopeAsm: {
2712     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2713     StringRef AsmString = AD->getAsmString()->getString();
2714 
2715     const std::string &S = getModule().getModuleInlineAsm();
2716     if (S.empty())
2717       getModule().setModuleInlineAsm(AsmString);
2718     else if (S.end()[-1] == '\n')
2719       getModule().setModuleInlineAsm(S + AsmString.str());
2720     else
2721       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2722     break;
2723   }
2724 
2725   default:
2726     // Make sure we handled everything we should, every other kind is a
2727     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2728     // function. Need to recode Decl::Kind to do that easily.
2729     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2730   }
2731 }
2732 
2733 /// Turns the given pointer into a constant.
2734 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2735                                           const void *Ptr) {
2736   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2737   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2738   return llvm::ConstantInt::get(i64, PtrInt);
2739 }
2740 
2741 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2742                                    llvm::NamedMDNode *&GlobalMetadata,
2743                                    GlobalDecl D,
2744                                    llvm::GlobalValue *Addr) {
2745   if (!GlobalMetadata)
2746     GlobalMetadata =
2747       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2748 
2749   // TODO: should we report variant information for ctors/dtors?
2750   llvm::Value *Ops[] = {
2751     Addr,
2752     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2753   };
2754   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2755 }
2756 
2757 /// Emits metadata nodes associating all the global values in the
2758 /// current module with the Decls they came from.  This is useful for
2759 /// projects using IR gen as a subroutine.
2760 ///
2761 /// Since there's currently no way to associate an MDNode directly
2762 /// with an llvm::GlobalValue, we create a global named metadata
2763 /// with the name 'clang.global.decl.ptrs'.
2764 void CodeGenModule::EmitDeclMetadata() {
2765   llvm::NamedMDNode *GlobalMetadata = 0;
2766 
2767   // StaticLocalDeclMap
2768   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2769          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2770        I != E; ++I) {
2771     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2772     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2773   }
2774 }
2775 
2776 /// Emits metadata nodes for all the local variables in the current
2777 /// function.
2778 void CodeGenFunction::EmitDeclMetadata() {
2779   if (LocalDeclMap.empty()) return;
2780 
2781   llvm::LLVMContext &Context = getLLVMContext();
2782 
2783   // Find the unique metadata ID for this name.
2784   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2785 
2786   llvm::NamedMDNode *GlobalMetadata = 0;
2787 
2788   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2789          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2790     const Decl *D = I->first;
2791     llvm::Value *Addr = I->second;
2792 
2793     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2794       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2795       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2796     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2797       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2798       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2799     }
2800   }
2801 }
2802 
2803 void CodeGenModule::EmitCoverageFile() {
2804   if (!getCodeGenOpts().CoverageFile.empty()) {
2805     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2806       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2807       llvm::LLVMContext &Ctx = TheModule.getContext();
2808       llvm::MDString *CoverageFile =
2809           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2810       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2811         llvm::MDNode *CU = CUNode->getOperand(i);
2812         llvm::Value *node[] = { CoverageFile, CU };
2813         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2814         GCov->addOperand(N);
2815       }
2816     }
2817   }
2818 }
2819 
2820 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2821                                                      QualType GuidType) {
2822   // Sema has checked that all uuid strings are of the form
2823   // "12345678-1234-1234-1234-1234567890ab".
2824   assert(Uuid.size() == 36);
2825   const char *Uuidstr = Uuid.data();
2826   for (int i = 0; i < 36; ++i) {
2827     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2828     else                                         assert(isxdigit(Uuidstr[i]));
2829   }
2830 
2831   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2832   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2833   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2834   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2835 
2836   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2837   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2838   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2839   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2840   APValue& Arr = InitStruct.getStructField(3);
2841   Arr = APValue(APValue::UninitArray(), 8, 8);
2842   for (int t = 0; t < 8; ++t)
2843     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2844           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2845 
2846   return EmitConstantValue(InitStruct, GuidType);
2847 }
2848