1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 184 // Generate the module name hash here if needed. 185 if (CodeGenOpts.UniqueInternalLinkageNames && 186 !getModule().getSourceFileName().empty()) { 187 std::string Path = getModule().getSourceFileName(); 188 // Check if a path substitution is needed from the MacroPrefixMap. 189 for (const auto &Entry : PPO.MacroPrefixMap) 190 if (Path.rfind(Entry.first, 0) != std::string::npos) { 191 Path = Entry.second + Path.substr(Entry.first.size()); 192 break; 193 } 194 llvm::MD5 Md5; 195 Md5.update(Path); 196 llvm::MD5::MD5Result R; 197 Md5.final(R); 198 SmallString<32> Str; 199 llvm::MD5::stringifyResult(R, Str); 200 // Convert MD5hash to Decimal. Demangler suffixes can either contain 201 // numbers or characters but not both. 202 llvm::APInt IntHash(128, Str.str(), 16); 203 // Prepend "__uniq" before the hash for tools like profilers to understand 204 // that this symbol is of internal linkage type. The "__uniq" is the 205 // pre-determined prefix that is used to tell tools that this symbol was 206 // created with -funique-internal-linakge-symbols and the tools can strip or 207 // keep the prefix as needed. 208 ModuleNameHash = (Twine(".__uniq.") + 209 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 210 } 211 } 212 213 CodeGenModule::~CodeGenModule() {} 214 215 void CodeGenModule::createObjCRuntime() { 216 // This is just isGNUFamily(), but we want to force implementors of 217 // new ABIs to decide how best to do this. 218 switch (LangOpts.ObjCRuntime.getKind()) { 219 case ObjCRuntime::GNUstep: 220 case ObjCRuntime::GCC: 221 case ObjCRuntime::ObjFW: 222 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 223 return; 224 225 case ObjCRuntime::FragileMacOSX: 226 case ObjCRuntime::MacOSX: 227 case ObjCRuntime::iOS: 228 case ObjCRuntime::WatchOS: 229 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 230 return; 231 } 232 llvm_unreachable("bad runtime kind"); 233 } 234 235 void CodeGenModule::createOpenCLRuntime() { 236 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 237 } 238 239 void CodeGenModule::createOpenMPRuntime() { 240 // Select a specialized code generation class based on the target, if any. 241 // If it does not exist use the default implementation. 242 switch (getTriple().getArch()) { 243 case llvm::Triple::nvptx: 244 case llvm::Triple::nvptx64: 245 assert(getLangOpts().OpenMPIsDevice && 246 "OpenMP NVPTX is only prepared to deal with device code."); 247 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 248 break; 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGCN is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 268 Replacements[Name] = C; 269 } 270 271 void CodeGenModule::applyReplacements() { 272 for (auto &I : Replacements) { 273 StringRef MangledName = I.first(); 274 llvm::Constant *Replacement = I.second; 275 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 276 if (!Entry) 277 continue; 278 auto *OldF = cast<llvm::Function>(Entry); 279 auto *NewF = dyn_cast<llvm::Function>(Replacement); 280 if (!NewF) { 281 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 282 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 283 } else { 284 auto *CE = cast<llvm::ConstantExpr>(Replacement); 285 assert(CE->getOpcode() == llvm::Instruction::BitCast || 286 CE->getOpcode() == llvm::Instruction::GetElementPtr); 287 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 288 } 289 } 290 291 // Replace old with new, but keep the old order. 292 OldF->replaceAllUsesWith(Replacement); 293 if (NewF) { 294 NewF->removeFromParent(); 295 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 296 NewF); 297 } 298 OldF->eraseFromParent(); 299 } 300 } 301 302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 303 GlobalValReplacements.push_back(std::make_pair(GV, C)); 304 } 305 306 void CodeGenModule::applyGlobalValReplacements() { 307 for (auto &I : GlobalValReplacements) { 308 llvm::GlobalValue *GV = I.first; 309 llvm::Constant *C = I.second; 310 311 GV->replaceAllUsesWith(C); 312 GV->eraseFromParent(); 313 } 314 } 315 316 // This is only used in aliases that we created and we know they have a 317 // linear structure. 318 static const llvm::GlobalObject *getAliasedGlobal( 319 const llvm::GlobalIndirectSymbol &GIS) { 320 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 321 const llvm::Constant *C = &GIS; 322 for (;;) { 323 C = C->stripPointerCasts(); 324 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 325 return GO; 326 // stripPointerCasts will not walk over weak aliases. 327 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 328 if (!GIS2) 329 return nullptr; 330 if (!Visited.insert(GIS2).second) 331 return nullptr; 332 C = GIS2->getIndirectSymbol(); 333 } 334 } 335 336 void CodeGenModule::checkAliases() { 337 // Check if the constructed aliases are well formed. It is really unfortunate 338 // that we have to do this in CodeGen, but we only construct mangled names 339 // and aliases during codegen. 340 bool Error = false; 341 DiagnosticsEngine &Diags = getDiags(); 342 for (const GlobalDecl &GD : Aliases) { 343 const auto *D = cast<ValueDecl>(GD.getDecl()); 344 SourceLocation Location; 345 bool IsIFunc = D->hasAttr<IFuncAttr>(); 346 if (const Attr *A = D->getDefiningAttr()) 347 Location = A->getLocation(); 348 else 349 llvm_unreachable("Not an alias or ifunc?"); 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 353 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 354 if (!GV) { 355 Error = true; 356 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 357 } else if (GV->isDeclaration()) { 358 Error = true; 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 } else if (IsIFunc) { 362 // Check resolver function type. 363 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 364 GV->getType()->getPointerElementType()); 365 assert(FTy); 366 if (!FTy->getReturnType()->isPointerTy()) 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 } 369 370 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 371 llvm::GlobalValue *AliaseeGV; 372 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 373 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 374 else 375 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 378 StringRef AliasSection = SA->getName(); 379 if (AliasSection != AliaseeGV->getSection()) 380 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 381 << AliasSection << IsIFunc << IsIFunc; 382 } 383 384 // We have to handle alias to weak aliases in here. LLVM itself disallows 385 // this since the object semantics would not match the IL one. For 386 // compatibility with gcc we implement it by just pointing the alias 387 // to its aliasee's aliasee. We also warn, since the user is probably 388 // expecting the link to be weak. 389 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 390 if (GA->isInterposable()) { 391 Diags.Report(Location, diag::warn_alias_to_weak_alias) 392 << GV->getName() << GA->getName() << IsIFunc; 393 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 394 GA->getIndirectSymbol(), Alias->getType()); 395 Alias->setIndirectSymbol(Aliasee); 396 } 397 } 398 } 399 if (!Error) 400 return; 401 402 for (const GlobalDecl &GD : Aliases) { 403 StringRef MangledName = getMangledName(GD); 404 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 405 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 406 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 407 Alias->eraseFromParent(); 408 } 409 } 410 411 void CodeGenModule::clear() { 412 DeferredDeclsToEmit.clear(); 413 if (OpenMPRuntime) 414 OpenMPRuntime->clear(); 415 } 416 417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 418 StringRef MainFile) { 419 if (!hasDiagnostics()) 420 return; 421 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 422 if (MainFile.empty()) 423 MainFile = "<stdin>"; 424 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 425 } else { 426 if (Mismatched > 0) 427 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 428 429 if (Missing > 0) 430 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 431 } 432 } 433 434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 435 llvm::Module &M) { 436 if (!LO.VisibilityFromDLLStorageClass) 437 return; 438 439 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 440 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 441 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 442 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 443 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 444 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 445 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 446 CodeGenModule::GetLLVMVisibility( 447 LO.getExternDeclNoDLLStorageClassVisibility()); 448 449 for (llvm::GlobalValue &GV : M.global_values()) { 450 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 451 continue; 452 453 // Reset DSO locality before setting the visibility. This removes 454 // any effects that visibility options and annotations may have 455 // had on the DSO locality. Setting the visibility will implicitly set 456 // appropriate globals to DSO Local; however, this will be pessimistic 457 // w.r.t. to the normal compiler IRGen. 458 GV.setDSOLocal(false); 459 460 if (GV.isDeclarationForLinker()) { 461 GV.setVisibility(GV.getDLLStorageClass() == 462 llvm::GlobalValue::DLLImportStorageClass 463 ? ExternDeclDLLImportVisibility 464 : ExternDeclNoDLLStorageClassVisibility); 465 } else { 466 GV.setVisibility(GV.getDLLStorageClass() == 467 llvm::GlobalValue::DLLExportStorageClass 468 ? DLLExportVisibility 469 : NoDLLStorageClassVisibility); 470 } 471 472 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 473 } 474 } 475 476 void CodeGenModule::Release() { 477 EmitDeferred(); 478 EmitVTablesOpportunistically(); 479 applyGlobalValReplacements(); 480 applyReplacements(); 481 checkAliases(); 482 emitMultiVersionFunctions(); 483 EmitCXXGlobalInitFunc(); 484 EmitCXXGlobalCleanUpFunc(); 485 registerGlobalDtorsWithAtExit(); 486 EmitCXXThreadLocalInitFunc(); 487 if (ObjCRuntime) 488 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 489 AddGlobalCtor(ObjCInitFunction); 490 if (Context.getLangOpts().CUDA && CUDARuntime) { 491 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 492 AddGlobalCtor(CudaCtorFunction); 493 } 494 if (OpenMPRuntime) { 495 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 496 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 497 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 498 } 499 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 500 OpenMPRuntime->clear(); 501 } 502 if (PGOReader) { 503 getModule().setProfileSummary( 504 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 505 llvm::ProfileSummary::PSK_Instr); 506 if (PGOStats.hasDiagnostics()) 507 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 508 } 509 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 510 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 511 EmitGlobalAnnotations(); 512 EmitStaticExternCAliases(); 513 EmitDeferredUnusedCoverageMappings(); 514 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 515 if (CoverageMapping) 516 CoverageMapping->emit(); 517 if (CodeGenOpts.SanitizeCfiCrossDso) { 518 CodeGenFunction(*this).EmitCfiCheckFail(); 519 CodeGenFunction(*this).EmitCfiCheckStub(); 520 } 521 emitAtAvailableLinkGuard(); 522 if (Context.getTargetInfo().getTriple().isWasm() && 523 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 524 EmitMainVoidAlias(); 525 } 526 emitLLVMUsed(); 527 if (SanStats) 528 SanStats->finish(); 529 530 if (CodeGenOpts.Autolink && 531 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 532 EmitModuleLinkOptions(); 533 } 534 535 // On ELF we pass the dependent library specifiers directly to the linker 536 // without manipulating them. This is in contrast to other platforms where 537 // they are mapped to a specific linker option by the compiler. This 538 // difference is a result of the greater variety of ELF linkers and the fact 539 // that ELF linkers tend to handle libraries in a more complicated fashion 540 // than on other platforms. This forces us to defer handling the dependent 541 // libs to the linker. 542 // 543 // CUDA/HIP device and host libraries are different. Currently there is no 544 // way to differentiate dependent libraries for host or device. Existing 545 // usage of #pragma comment(lib, *) is intended for host libraries on 546 // Windows. Therefore emit llvm.dependent-libraries only for host. 547 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 548 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 549 for (auto *MD : ELFDependentLibraries) 550 NMD->addOperand(MD); 551 } 552 553 // Record mregparm value now so it is visible through rest of codegen. 554 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 555 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 556 CodeGenOpts.NumRegisterParameters); 557 558 if (CodeGenOpts.DwarfVersion) { 559 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 560 CodeGenOpts.DwarfVersion); 561 } 562 563 if (CodeGenOpts.Dwarf64) 564 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 565 566 if (Context.getLangOpts().SemanticInterposition) 567 // Require various optimization to respect semantic interposition. 568 getModule().setSemanticInterposition(1); 569 570 if (CodeGenOpts.EmitCodeView) { 571 // Indicate that we want CodeView in the metadata. 572 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 573 } 574 if (CodeGenOpts.CodeViewGHash) { 575 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 576 } 577 if (CodeGenOpts.ControlFlowGuard) { 578 // Function ID tables and checks for Control Flow Guard (cfguard=2). 579 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 580 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 581 // Function ID tables for Control Flow Guard (cfguard=1). 582 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 583 } 584 if (CodeGenOpts.EHContGuard) { 585 // Function ID tables for EH Continuation Guard. 586 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 587 } 588 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 589 // We don't support LTO with 2 with different StrictVTablePointers 590 // FIXME: we could support it by stripping all the information introduced 591 // by StrictVTablePointers. 592 593 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 594 595 llvm::Metadata *Ops[2] = { 596 llvm::MDString::get(VMContext, "StrictVTablePointers"), 597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 598 llvm::Type::getInt32Ty(VMContext), 1))}; 599 600 getModule().addModuleFlag(llvm::Module::Require, 601 "StrictVTablePointersRequirement", 602 llvm::MDNode::get(VMContext, Ops)); 603 } 604 if (getModuleDebugInfo()) 605 // We support a single version in the linked module. The LLVM 606 // parser will drop debug info with a different version number 607 // (and warn about it, too). 608 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 609 llvm::DEBUG_METADATA_VERSION); 610 611 // We need to record the widths of enums and wchar_t, so that we can generate 612 // the correct build attributes in the ARM backend. wchar_size is also used by 613 // TargetLibraryInfo. 614 uint64_t WCharWidth = 615 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 616 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 617 618 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 619 if ( Arch == llvm::Triple::arm 620 || Arch == llvm::Triple::armeb 621 || Arch == llvm::Triple::thumb 622 || Arch == llvm::Triple::thumbeb) { 623 // The minimum width of an enum in bytes 624 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 625 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 626 } 627 628 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 629 StringRef ABIStr = Target.getABI(); 630 llvm::LLVMContext &Ctx = TheModule.getContext(); 631 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 632 llvm::MDString::get(Ctx, ABIStr)); 633 } 634 635 if (CodeGenOpts.SanitizeCfiCrossDso) { 636 // Indicate that we want cross-DSO control flow integrity checks. 637 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 638 } 639 640 if (CodeGenOpts.WholeProgramVTables) { 641 // Indicate whether VFE was enabled for this module, so that the 642 // vcall_visibility metadata added under whole program vtables is handled 643 // appropriately in the optimizer. 644 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 645 CodeGenOpts.VirtualFunctionElimination); 646 } 647 648 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 649 getModule().addModuleFlag(llvm::Module::Override, 650 "CFI Canonical Jump Tables", 651 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 652 } 653 654 if (CodeGenOpts.CFProtectionReturn && 655 Target.checkCFProtectionReturnSupported(getDiags())) { 656 // Indicate that we want to instrument return control flow protection. 657 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 658 1); 659 } 660 661 if (CodeGenOpts.CFProtectionBranch && 662 Target.checkCFProtectionBranchSupported(getDiags())) { 663 // Indicate that we want to instrument branch control flow protection. 664 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 665 1); 666 } 667 668 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 669 Arch == llvm::Triple::aarch64_be) { 670 getModule().addModuleFlag(llvm::Module::Error, 671 "branch-target-enforcement", 672 LangOpts.BranchTargetEnforcement); 673 674 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 675 LangOpts.hasSignReturnAddress()); 676 677 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 678 LangOpts.isSignReturnAddressScopeAll()); 679 680 getModule().addModuleFlag(llvm::Module::Error, 681 "sign-return-address-with-bkey", 682 !LangOpts.isSignReturnAddressWithAKey()); 683 } 684 685 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 686 llvm::LLVMContext &Ctx = TheModule.getContext(); 687 getModule().addModuleFlag( 688 llvm::Module::Error, "MemProfProfileFilename", 689 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 690 } 691 692 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 693 // Indicate whether __nvvm_reflect should be configured to flush denormal 694 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 695 // property.) 696 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 697 CodeGenOpts.FP32DenormalMode.Output != 698 llvm::DenormalMode::IEEE); 699 } 700 701 if (LangOpts.EHAsynch) 702 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 703 704 // Indicate whether this Module was compiled with -fopenmp 705 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 706 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 707 if (getLangOpts().OpenMPIsDevice) 708 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 709 LangOpts.OpenMP); 710 711 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 712 if (LangOpts.OpenCL) { 713 EmitOpenCLMetadata(); 714 // Emit SPIR version. 715 if (getTriple().isSPIR()) { 716 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 717 // opencl.spir.version named metadata. 718 // C++ is backwards compatible with OpenCL v2.0. 719 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 720 llvm::Metadata *SPIRVerElts[] = { 721 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 722 Int32Ty, Version / 100)), 723 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 724 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 725 llvm::NamedMDNode *SPIRVerMD = 726 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 727 llvm::LLVMContext &Ctx = TheModule.getContext(); 728 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 729 } 730 } 731 732 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 733 assert(PLevel < 3 && "Invalid PIC Level"); 734 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 735 if (Context.getLangOpts().PIE) 736 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 737 } 738 739 if (getCodeGenOpts().CodeModel.size() > 0) { 740 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 741 .Case("tiny", llvm::CodeModel::Tiny) 742 .Case("small", llvm::CodeModel::Small) 743 .Case("kernel", llvm::CodeModel::Kernel) 744 .Case("medium", llvm::CodeModel::Medium) 745 .Case("large", llvm::CodeModel::Large) 746 .Default(~0u); 747 if (CM != ~0u) { 748 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 749 getModule().setCodeModel(codeModel); 750 } 751 } 752 753 if (CodeGenOpts.NoPLT) 754 getModule().setRtLibUseGOT(); 755 if (CodeGenOpts.UnwindTables) 756 getModule().setUwtable(); 757 758 switch (CodeGenOpts.getFramePointer()) { 759 case CodeGenOptions::FramePointerKind::None: 760 // 0 ("none") is the default. 761 break; 762 case CodeGenOptions::FramePointerKind::NonLeaf: 763 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 764 break; 765 case CodeGenOptions::FramePointerKind::All: 766 getModule().setFramePointer(llvm::FramePointerKind::All); 767 break; 768 } 769 770 SimplifyPersonality(); 771 772 if (getCodeGenOpts().EmitDeclMetadata) 773 EmitDeclMetadata(); 774 775 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 776 EmitCoverageFile(); 777 778 if (CGDebugInfo *DI = getModuleDebugInfo()) 779 DI->finalize(); 780 781 if (getCodeGenOpts().EmitVersionIdentMetadata) 782 EmitVersionIdentMetadata(); 783 784 if (!getCodeGenOpts().RecordCommandLine.empty()) 785 EmitCommandLineMetadata(); 786 787 if (!getCodeGenOpts().StackProtectorGuard.empty()) 788 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 789 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 790 getModule().setStackProtectorGuardReg( 791 getCodeGenOpts().StackProtectorGuardReg); 792 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 793 getModule().setStackProtectorGuardOffset( 794 getCodeGenOpts().StackProtectorGuardOffset); 795 if (getCodeGenOpts().StackAlignment) 796 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 797 798 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 799 800 EmitBackendOptionsMetadata(getCodeGenOpts()); 801 802 // Set visibility from DLL storage class 803 // We do this at the end of LLVM IR generation; after any operation 804 // that might affect the DLL storage class or the visibility, and 805 // before anything that might act on these. 806 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 807 } 808 809 void CodeGenModule::EmitOpenCLMetadata() { 810 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 811 // opencl.ocl.version named metadata node. 812 // C++ is backwards compatible with OpenCL v2.0. 813 // FIXME: We might need to add CXX version at some point too? 814 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 815 llvm::Metadata *OCLVerElts[] = { 816 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 817 Int32Ty, Version / 100)), 818 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 819 Int32Ty, (Version % 100) / 10))}; 820 llvm::NamedMDNode *OCLVerMD = 821 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 822 llvm::LLVMContext &Ctx = TheModule.getContext(); 823 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 824 } 825 826 void CodeGenModule::EmitBackendOptionsMetadata( 827 const CodeGenOptions CodeGenOpts) { 828 switch (getTriple().getArch()) { 829 default: 830 break; 831 case llvm::Triple::riscv32: 832 case llvm::Triple::riscv64: 833 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 834 CodeGenOpts.SmallDataLimit); 835 break; 836 } 837 } 838 839 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 840 // Make sure that this type is translated. 841 Types.UpdateCompletedType(TD); 842 } 843 844 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 845 // Make sure that this type is translated. 846 Types.RefreshTypeCacheForClass(RD); 847 } 848 849 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 850 if (!TBAA) 851 return nullptr; 852 return TBAA->getTypeInfo(QTy); 853 } 854 855 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 856 if (!TBAA) 857 return TBAAAccessInfo(); 858 if (getLangOpts().CUDAIsDevice) { 859 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 860 // access info. 861 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 862 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 863 nullptr) 864 return TBAAAccessInfo(); 865 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 866 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 867 nullptr) 868 return TBAAAccessInfo(); 869 } 870 } 871 return TBAA->getAccessInfo(AccessType); 872 } 873 874 TBAAAccessInfo 875 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 876 if (!TBAA) 877 return TBAAAccessInfo(); 878 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 879 } 880 881 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 882 if (!TBAA) 883 return nullptr; 884 return TBAA->getTBAAStructInfo(QTy); 885 } 886 887 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 888 if (!TBAA) 889 return nullptr; 890 return TBAA->getBaseTypeInfo(QTy); 891 } 892 893 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 894 if (!TBAA) 895 return nullptr; 896 return TBAA->getAccessTagInfo(Info); 897 } 898 899 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 900 TBAAAccessInfo TargetInfo) { 901 if (!TBAA) 902 return TBAAAccessInfo(); 903 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 904 } 905 906 TBAAAccessInfo 907 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 908 TBAAAccessInfo InfoB) { 909 if (!TBAA) 910 return TBAAAccessInfo(); 911 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 912 } 913 914 TBAAAccessInfo 915 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 916 TBAAAccessInfo SrcInfo) { 917 if (!TBAA) 918 return TBAAAccessInfo(); 919 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 920 } 921 922 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 923 TBAAAccessInfo TBAAInfo) { 924 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 925 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 926 } 927 928 void CodeGenModule::DecorateInstructionWithInvariantGroup( 929 llvm::Instruction *I, const CXXRecordDecl *RD) { 930 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 931 llvm::MDNode::get(getLLVMContext(), {})); 932 } 933 934 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 935 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 936 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 937 } 938 939 /// ErrorUnsupported - Print out an error that codegen doesn't support the 940 /// specified stmt yet. 941 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 942 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 943 "cannot compile this %0 yet"); 944 std::string Msg = Type; 945 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 946 << Msg << S->getSourceRange(); 947 } 948 949 /// ErrorUnsupported - Print out an error that codegen doesn't support the 950 /// specified decl yet. 951 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 952 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 953 "cannot compile this %0 yet"); 954 std::string Msg = Type; 955 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 956 } 957 958 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 959 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 960 } 961 962 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 963 const NamedDecl *D) const { 964 if (GV->hasDLLImportStorageClass()) 965 return; 966 // Internal definitions always have default visibility. 967 if (GV->hasLocalLinkage()) { 968 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 969 return; 970 } 971 if (!D) 972 return; 973 // Set visibility for definitions, and for declarations if requested globally 974 // or set explicitly. 975 LinkageInfo LV = D->getLinkageAndVisibility(); 976 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 977 !GV->isDeclarationForLinker()) 978 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 979 } 980 981 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 982 llvm::GlobalValue *GV) { 983 if (GV->hasLocalLinkage()) 984 return true; 985 986 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 987 return true; 988 989 // DLLImport explicitly marks the GV as external. 990 if (GV->hasDLLImportStorageClass()) 991 return false; 992 993 const llvm::Triple &TT = CGM.getTriple(); 994 if (TT.isWindowsGNUEnvironment()) { 995 // In MinGW, variables without DLLImport can still be automatically 996 // imported from a DLL by the linker; don't mark variables that 997 // potentially could come from another DLL as DSO local. 998 999 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1000 // (and this actually happens in the public interface of libstdc++), so 1001 // such variables can't be marked as DSO local. (Native TLS variables 1002 // can't be dllimported at all, though.) 1003 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1004 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1005 return false; 1006 } 1007 1008 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1009 // remain unresolved in the link, they can be resolved to zero, which is 1010 // outside the current DSO. 1011 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1012 return false; 1013 1014 // Every other GV is local on COFF. 1015 // Make an exception for windows OS in the triple: Some firmware builds use 1016 // *-win32-macho triples. This (accidentally?) produced windows relocations 1017 // without GOT tables in older clang versions; Keep this behaviour. 1018 // FIXME: even thread local variables? 1019 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1020 return true; 1021 1022 // Only handle COFF and ELF for now. 1023 if (!TT.isOSBinFormatELF()) 1024 return false; 1025 1026 // If this is not an executable, don't assume anything is local. 1027 const auto &CGOpts = CGM.getCodeGenOpts(); 1028 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1029 const auto &LOpts = CGM.getLangOpts(); 1030 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1031 // On ELF, if -fno-semantic-interposition is specified and the target 1032 // supports local aliases, there will be neither CC1 1033 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1034 // dso_local on the function if using a local alias is preferable (can avoid 1035 // PLT indirection). 1036 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1037 return false; 1038 return !(CGM.getLangOpts().SemanticInterposition || 1039 CGM.getLangOpts().HalfNoSemanticInterposition); 1040 } 1041 1042 // A definition cannot be preempted from an executable. 1043 if (!GV->isDeclarationForLinker()) 1044 return true; 1045 1046 // Most PIC code sequences that assume that a symbol is local cannot produce a 1047 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1048 // depended, it seems worth it to handle it here. 1049 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1050 return false; 1051 1052 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1053 if (TT.isPPC64()) 1054 return false; 1055 1056 if (CGOpts.DirectAccessExternalData) { 1057 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1058 // for non-thread-local variables. If the symbol is not defined in the 1059 // executable, a copy relocation will be needed at link time. dso_local is 1060 // excluded for thread-local variables because they generally don't support 1061 // copy relocations. 1062 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1063 if (!Var->isThreadLocal()) 1064 return true; 1065 1066 // -fno-pic sets dso_local on a function declaration to allow direct 1067 // accesses when taking its address (similar to a data symbol). If the 1068 // function is not defined in the executable, a canonical PLT entry will be 1069 // needed at link time. -fno-direct-access-external-data can avoid the 1070 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1071 // it could just cause trouble without providing perceptible benefits. 1072 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1073 return true; 1074 } 1075 1076 // If we can use copy relocations we can assume it is local. 1077 1078 // Otherwise don't assume it is local. 1079 return false; 1080 } 1081 1082 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1083 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1084 } 1085 1086 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1087 GlobalDecl GD) const { 1088 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1089 // C++ destructors have a few C++ ABI specific special cases. 1090 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1091 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1092 return; 1093 } 1094 setDLLImportDLLExport(GV, D); 1095 } 1096 1097 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1098 const NamedDecl *D) const { 1099 if (D && D->isExternallyVisible()) { 1100 if (D->hasAttr<DLLImportAttr>()) 1101 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1102 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1103 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1104 } 1105 } 1106 1107 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1108 GlobalDecl GD) const { 1109 setDLLImportDLLExport(GV, GD); 1110 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1111 } 1112 1113 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1114 const NamedDecl *D) const { 1115 setDLLImportDLLExport(GV, D); 1116 setGVPropertiesAux(GV, D); 1117 } 1118 1119 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1120 const NamedDecl *D) const { 1121 setGlobalVisibility(GV, D); 1122 setDSOLocal(GV); 1123 GV->setPartition(CodeGenOpts.SymbolPartition); 1124 } 1125 1126 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1127 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1128 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1129 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1130 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1131 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1132 } 1133 1134 llvm::GlobalVariable::ThreadLocalMode 1135 CodeGenModule::GetDefaultLLVMTLSModel() const { 1136 switch (CodeGenOpts.getDefaultTLSModel()) { 1137 case CodeGenOptions::GeneralDynamicTLSModel: 1138 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1139 case CodeGenOptions::LocalDynamicTLSModel: 1140 return llvm::GlobalVariable::LocalDynamicTLSModel; 1141 case CodeGenOptions::InitialExecTLSModel: 1142 return llvm::GlobalVariable::InitialExecTLSModel; 1143 case CodeGenOptions::LocalExecTLSModel: 1144 return llvm::GlobalVariable::LocalExecTLSModel; 1145 } 1146 llvm_unreachable("Invalid TLS model!"); 1147 } 1148 1149 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1150 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1151 1152 llvm::GlobalValue::ThreadLocalMode TLM; 1153 TLM = GetDefaultLLVMTLSModel(); 1154 1155 // Override the TLS model if it is explicitly specified. 1156 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1157 TLM = GetLLVMTLSModel(Attr->getModel()); 1158 } 1159 1160 GV->setThreadLocalMode(TLM); 1161 } 1162 1163 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1164 StringRef Name) { 1165 const TargetInfo &Target = CGM.getTarget(); 1166 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1167 } 1168 1169 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1170 const CPUSpecificAttr *Attr, 1171 unsigned CPUIndex, 1172 raw_ostream &Out) { 1173 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1174 // supported. 1175 if (Attr) 1176 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1177 else if (CGM.getTarget().supportsIFunc()) 1178 Out << ".resolver"; 1179 } 1180 1181 static void AppendTargetMangling(const CodeGenModule &CGM, 1182 const TargetAttr *Attr, raw_ostream &Out) { 1183 if (Attr->isDefaultVersion()) 1184 return; 1185 1186 Out << '.'; 1187 const TargetInfo &Target = CGM.getTarget(); 1188 ParsedTargetAttr Info = 1189 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1190 // Multiversioning doesn't allow "no-${feature}", so we can 1191 // only have "+" prefixes here. 1192 assert(LHS.startswith("+") && RHS.startswith("+") && 1193 "Features should always have a prefix."); 1194 return Target.multiVersionSortPriority(LHS.substr(1)) > 1195 Target.multiVersionSortPriority(RHS.substr(1)); 1196 }); 1197 1198 bool IsFirst = true; 1199 1200 if (!Info.Architecture.empty()) { 1201 IsFirst = false; 1202 Out << "arch_" << Info.Architecture; 1203 } 1204 1205 for (StringRef Feat : Info.Features) { 1206 if (!IsFirst) 1207 Out << '_'; 1208 IsFirst = false; 1209 Out << Feat.substr(1); 1210 } 1211 } 1212 1213 // Returns true if GD is a function decl with internal linkage and 1214 // needs a unique suffix after the mangled name. 1215 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1216 CodeGenModule &CGM) { 1217 const Decl *D = GD.getDecl(); 1218 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1219 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1220 } 1221 1222 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1223 const NamedDecl *ND, 1224 bool OmitMultiVersionMangling = false) { 1225 SmallString<256> Buffer; 1226 llvm::raw_svector_ostream Out(Buffer); 1227 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1228 if (!CGM.getModuleNameHash().empty()) 1229 MC.needsUniqueInternalLinkageNames(); 1230 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1231 if (ShouldMangle) 1232 MC.mangleName(GD.getWithDecl(ND), Out); 1233 else { 1234 IdentifierInfo *II = ND->getIdentifier(); 1235 assert(II && "Attempt to mangle unnamed decl."); 1236 const auto *FD = dyn_cast<FunctionDecl>(ND); 1237 1238 if (FD && 1239 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1240 Out << "__regcall3__" << II->getName(); 1241 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1242 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1243 Out << "__device_stub__" << II->getName(); 1244 } else { 1245 Out << II->getName(); 1246 } 1247 } 1248 1249 // Check if the module name hash should be appended for internal linkage 1250 // symbols. This should come before multi-version target suffixes are 1251 // appended. This is to keep the name and module hash suffix of the 1252 // internal linkage function together. The unique suffix should only be 1253 // added when name mangling is done to make sure that the final name can 1254 // be properly demangled. For example, for C functions without prototypes, 1255 // name mangling is not done and the unique suffix should not be appeneded 1256 // then. 1257 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1258 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1259 "Hash computed when not explicitly requested"); 1260 Out << CGM.getModuleNameHash(); 1261 } 1262 1263 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1264 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1265 switch (FD->getMultiVersionKind()) { 1266 case MultiVersionKind::CPUDispatch: 1267 case MultiVersionKind::CPUSpecific: 1268 AppendCPUSpecificCPUDispatchMangling(CGM, 1269 FD->getAttr<CPUSpecificAttr>(), 1270 GD.getMultiVersionIndex(), Out); 1271 break; 1272 case MultiVersionKind::Target: 1273 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1274 break; 1275 case MultiVersionKind::None: 1276 llvm_unreachable("None multiversion type isn't valid here"); 1277 } 1278 } 1279 1280 // Make unique name for device side static file-scope variable for HIP. 1281 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1282 CGM.getLangOpts().GPURelocatableDeviceCode && 1283 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1284 CGM.printPostfixForExternalizedStaticVar(Out); 1285 return std::string(Out.str()); 1286 } 1287 1288 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1289 const FunctionDecl *FD) { 1290 if (!FD->isMultiVersion()) 1291 return; 1292 1293 // Get the name of what this would be without the 'target' attribute. This 1294 // allows us to lookup the version that was emitted when this wasn't a 1295 // multiversion function. 1296 std::string NonTargetName = 1297 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1298 GlobalDecl OtherGD; 1299 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1300 assert(OtherGD.getCanonicalDecl() 1301 .getDecl() 1302 ->getAsFunction() 1303 ->isMultiVersion() && 1304 "Other GD should now be a multiversioned function"); 1305 // OtherFD is the version of this function that was mangled BEFORE 1306 // becoming a MultiVersion function. It potentially needs to be updated. 1307 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1308 .getDecl() 1309 ->getAsFunction() 1310 ->getMostRecentDecl(); 1311 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1312 // This is so that if the initial version was already the 'default' 1313 // version, we don't try to update it. 1314 if (OtherName != NonTargetName) { 1315 // Remove instead of erase, since others may have stored the StringRef 1316 // to this. 1317 const auto ExistingRecord = Manglings.find(NonTargetName); 1318 if (ExistingRecord != std::end(Manglings)) 1319 Manglings.remove(&(*ExistingRecord)); 1320 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1321 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1322 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1323 Entry->setName(OtherName); 1324 } 1325 } 1326 } 1327 1328 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1329 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1330 1331 // Some ABIs don't have constructor variants. Make sure that base and 1332 // complete constructors get mangled the same. 1333 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1334 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1335 CXXCtorType OrigCtorType = GD.getCtorType(); 1336 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1337 if (OrigCtorType == Ctor_Base) 1338 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1339 } 1340 } 1341 1342 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1343 // static device variable depends on whether the variable is referenced by 1344 // a host or device host function. Therefore the mangled name cannot be 1345 // cached. 1346 if (!LangOpts.CUDAIsDevice || 1347 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1348 auto FoundName = MangledDeclNames.find(CanonicalGD); 1349 if (FoundName != MangledDeclNames.end()) 1350 return FoundName->second; 1351 } 1352 1353 // Keep the first result in the case of a mangling collision. 1354 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1355 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1356 1357 // Ensure either we have different ABIs between host and device compilations, 1358 // says host compilation following MSVC ABI but device compilation follows 1359 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1360 // mangling should be the same after name stubbing. The later checking is 1361 // very important as the device kernel name being mangled in host-compilation 1362 // is used to resolve the device binaries to be executed. Inconsistent naming 1363 // result in undefined behavior. Even though we cannot check that naming 1364 // directly between host- and device-compilations, the host- and 1365 // device-mangling in host compilation could help catching certain ones. 1366 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1367 getLangOpts().CUDAIsDevice || 1368 (getContext().getAuxTargetInfo() && 1369 (getContext().getAuxTargetInfo()->getCXXABI() != 1370 getContext().getTargetInfo().getCXXABI())) || 1371 getCUDARuntime().getDeviceSideName(ND) == 1372 getMangledNameImpl( 1373 *this, 1374 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1375 ND)); 1376 1377 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1378 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1379 } 1380 1381 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1382 const BlockDecl *BD) { 1383 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1384 const Decl *D = GD.getDecl(); 1385 1386 SmallString<256> Buffer; 1387 llvm::raw_svector_ostream Out(Buffer); 1388 if (!D) 1389 MangleCtx.mangleGlobalBlock(BD, 1390 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1391 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1392 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1393 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1394 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1395 else 1396 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1397 1398 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1399 return Result.first->first(); 1400 } 1401 1402 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1403 return getModule().getNamedValue(Name); 1404 } 1405 1406 /// AddGlobalCtor - Add a function to the list that will be called before 1407 /// main() runs. 1408 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1409 llvm::Constant *AssociatedData) { 1410 // FIXME: Type coercion of void()* types. 1411 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1412 } 1413 1414 /// AddGlobalDtor - Add a function to the list that will be called 1415 /// when the module is unloaded. 1416 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1417 bool IsDtorAttrFunc) { 1418 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1419 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1420 DtorsUsingAtExit[Priority].push_back(Dtor); 1421 return; 1422 } 1423 1424 // FIXME: Type coercion of void()* types. 1425 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1426 } 1427 1428 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1429 if (Fns.empty()) return; 1430 1431 // Ctor function type is void()*. 1432 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1433 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1434 TheModule.getDataLayout().getProgramAddressSpace()); 1435 1436 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1437 llvm::StructType *CtorStructTy = llvm::StructType::get( 1438 Int32Ty, CtorPFTy, VoidPtrTy); 1439 1440 // Construct the constructor and destructor arrays. 1441 ConstantInitBuilder builder(*this); 1442 auto ctors = builder.beginArray(CtorStructTy); 1443 for (const auto &I : Fns) { 1444 auto ctor = ctors.beginStruct(CtorStructTy); 1445 ctor.addInt(Int32Ty, I.Priority); 1446 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1447 if (I.AssociatedData) 1448 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1449 else 1450 ctor.addNullPointer(VoidPtrTy); 1451 ctor.finishAndAddTo(ctors); 1452 } 1453 1454 auto list = 1455 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1456 /*constant*/ false, 1457 llvm::GlobalValue::AppendingLinkage); 1458 1459 // The LTO linker doesn't seem to like it when we set an alignment 1460 // on appending variables. Take it off as a workaround. 1461 list->setAlignment(llvm::None); 1462 1463 Fns.clear(); 1464 } 1465 1466 llvm::GlobalValue::LinkageTypes 1467 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1468 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1469 1470 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1471 1472 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1473 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1474 1475 if (isa<CXXConstructorDecl>(D) && 1476 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1477 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1478 // Our approach to inheriting constructors is fundamentally different from 1479 // that used by the MS ABI, so keep our inheriting constructor thunks 1480 // internal rather than trying to pick an unambiguous mangling for them. 1481 return llvm::GlobalValue::InternalLinkage; 1482 } 1483 1484 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1485 } 1486 1487 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1488 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1489 if (!MDS) return nullptr; 1490 1491 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1492 } 1493 1494 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1495 const CGFunctionInfo &Info, 1496 llvm::Function *F, bool IsThunk) { 1497 unsigned CallingConv; 1498 llvm::AttributeList PAL; 1499 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1500 /*AttrOnCallSite=*/false, IsThunk); 1501 F->setAttributes(PAL); 1502 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1503 } 1504 1505 static void removeImageAccessQualifier(std::string& TyName) { 1506 std::string ReadOnlyQual("__read_only"); 1507 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1508 if (ReadOnlyPos != std::string::npos) 1509 // "+ 1" for the space after access qualifier. 1510 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1511 else { 1512 std::string WriteOnlyQual("__write_only"); 1513 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1514 if (WriteOnlyPos != std::string::npos) 1515 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1516 else { 1517 std::string ReadWriteQual("__read_write"); 1518 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1519 if (ReadWritePos != std::string::npos) 1520 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1521 } 1522 } 1523 } 1524 1525 // Returns the address space id that should be produced to the 1526 // kernel_arg_addr_space metadata. This is always fixed to the ids 1527 // as specified in the SPIR 2.0 specification in order to differentiate 1528 // for example in clGetKernelArgInfo() implementation between the address 1529 // spaces with targets without unique mapping to the OpenCL address spaces 1530 // (basically all single AS CPUs). 1531 static unsigned ArgInfoAddressSpace(LangAS AS) { 1532 switch (AS) { 1533 case LangAS::opencl_global: 1534 return 1; 1535 case LangAS::opencl_constant: 1536 return 2; 1537 case LangAS::opencl_local: 1538 return 3; 1539 case LangAS::opencl_generic: 1540 return 4; // Not in SPIR 2.0 specs. 1541 case LangAS::opencl_global_device: 1542 return 5; 1543 case LangAS::opencl_global_host: 1544 return 6; 1545 default: 1546 return 0; // Assume private. 1547 } 1548 } 1549 1550 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1551 const FunctionDecl *FD, 1552 CodeGenFunction *CGF) { 1553 assert(((FD && CGF) || (!FD && !CGF)) && 1554 "Incorrect use - FD and CGF should either be both null or not!"); 1555 // Create MDNodes that represent the kernel arg metadata. 1556 // Each MDNode is a list in the form of "key", N number of values which is 1557 // the same number of values as their are kernel arguments. 1558 1559 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1560 1561 // MDNode for the kernel argument address space qualifiers. 1562 SmallVector<llvm::Metadata *, 8> addressQuals; 1563 1564 // MDNode for the kernel argument access qualifiers (images only). 1565 SmallVector<llvm::Metadata *, 8> accessQuals; 1566 1567 // MDNode for the kernel argument type names. 1568 SmallVector<llvm::Metadata *, 8> argTypeNames; 1569 1570 // MDNode for the kernel argument base type names. 1571 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1572 1573 // MDNode for the kernel argument type qualifiers. 1574 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1575 1576 // MDNode for the kernel argument names. 1577 SmallVector<llvm::Metadata *, 8> argNames; 1578 1579 if (FD && CGF) 1580 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1581 const ParmVarDecl *parm = FD->getParamDecl(i); 1582 QualType ty = parm->getType(); 1583 std::string typeQuals; 1584 1585 // Get image and pipe access qualifier: 1586 if (ty->isImageType() || ty->isPipeType()) { 1587 const Decl *PDecl = parm; 1588 if (auto *TD = dyn_cast<TypedefType>(ty)) 1589 PDecl = TD->getDecl(); 1590 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1591 if (A && A->isWriteOnly()) 1592 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1593 else if (A && A->isReadWrite()) 1594 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1595 else 1596 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1597 } else 1598 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1599 1600 // Get argument name. 1601 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1602 1603 auto getTypeSpelling = [&](QualType Ty) { 1604 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1605 1606 if (Ty.isCanonical()) { 1607 StringRef typeNameRef = typeName; 1608 // Turn "unsigned type" to "utype" 1609 if (typeNameRef.consume_front("unsigned ")) 1610 return std::string("u") + typeNameRef.str(); 1611 if (typeNameRef.consume_front("signed ")) 1612 return typeNameRef.str(); 1613 } 1614 1615 return typeName; 1616 }; 1617 1618 if (ty->isPointerType()) { 1619 QualType pointeeTy = ty->getPointeeType(); 1620 1621 // Get address qualifier. 1622 addressQuals.push_back( 1623 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1624 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1625 1626 // Get argument type name. 1627 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1628 std::string baseTypeName = 1629 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1630 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1631 argBaseTypeNames.push_back( 1632 llvm::MDString::get(VMContext, baseTypeName)); 1633 1634 // Get argument type qualifiers: 1635 if (ty.isRestrictQualified()) 1636 typeQuals = "restrict"; 1637 if (pointeeTy.isConstQualified() || 1638 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1639 typeQuals += typeQuals.empty() ? "const" : " const"; 1640 if (pointeeTy.isVolatileQualified()) 1641 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1642 } else { 1643 uint32_t AddrSpc = 0; 1644 bool isPipe = ty->isPipeType(); 1645 if (ty->isImageType() || isPipe) 1646 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1647 1648 addressQuals.push_back( 1649 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1650 1651 // Get argument type name. 1652 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1653 std::string typeName = getTypeSpelling(ty); 1654 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1655 1656 // Remove access qualifiers on images 1657 // (as they are inseparable from type in clang implementation, 1658 // but OpenCL spec provides a special query to get access qualifier 1659 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1660 if (ty->isImageType()) { 1661 removeImageAccessQualifier(typeName); 1662 removeImageAccessQualifier(baseTypeName); 1663 } 1664 1665 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1666 argBaseTypeNames.push_back( 1667 llvm::MDString::get(VMContext, baseTypeName)); 1668 1669 if (isPipe) 1670 typeQuals = "pipe"; 1671 } 1672 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1673 } 1674 1675 Fn->setMetadata("kernel_arg_addr_space", 1676 llvm::MDNode::get(VMContext, addressQuals)); 1677 Fn->setMetadata("kernel_arg_access_qual", 1678 llvm::MDNode::get(VMContext, accessQuals)); 1679 Fn->setMetadata("kernel_arg_type", 1680 llvm::MDNode::get(VMContext, argTypeNames)); 1681 Fn->setMetadata("kernel_arg_base_type", 1682 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1683 Fn->setMetadata("kernel_arg_type_qual", 1684 llvm::MDNode::get(VMContext, argTypeQuals)); 1685 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1686 Fn->setMetadata("kernel_arg_name", 1687 llvm::MDNode::get(VMContext, argNames)); 1688 } 1689 1690 /// Determines whether the language options require us to model 1691 /// unwind exceptions. We treat -fexceptions as mandating this 1692 /// except under the fragile ObjC ABI with only ObjC exceptions 1693 /// enabled. This means, for example, that C with -fexceptions 1694 /// enables this. 1695 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1696 // If exceptions are completely disabled, obviously this is false. 1697 if (!LangOpts.Exceptions) return false; 1698 1699 // If C++ exceptions are enabled, this is true. 1700 if (LangOpts.CXXExceptions) return true; 1701 1702 // If ObjC exceptions are enabled, this depends on the ABI. 1703 if (LangOpts.ObjCExceptions) { 1704 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1705 } 1706 1707 return true; 1708 } 1709 1710 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1711 const CXXMethodDecl *MD) { 1712 // Check that the type metadata can ever actually be used by a call. 1713 if (!CGM.getCodeGenOpts().LTOUnit || 1714 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1715 return false; 1716 1717 // Only functions whose address can be taken with a member function pointer 1718 // need this sort of type metadata. 1719 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1720 !isa<CXXDestructorDecl>(MD); 1721 } 1722 1723 std::vector<const CXXRecordDecl *> 1724 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1725 llvm::SetVector<const CXXRecordDecl *> MostBases; 1726 1727 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1728 CollectMostBases = [&](const CXXRecordDecl *RD) { 1729 if (RD->getNumBases() == 0) 1730 MostBases.insert(RD); 1731 for (const CXXBaseSpecifier &B : RD->bases()) 1732 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1733 }; 1734 CollectMostBases(RD); 1735 return MostBases.takeVector(); 1736 } 1737 1738 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1739 llvm::Function *F) { 1740 llvm::AttrBuilder B; 1741 1742 if (CodeGenOpts.UnwindTables) 1743 B.addAttribute(llvm::Attribute::UWTable); 1744 1745 if (CodeGenOpts.StackClashProtector) 1746 B.addAttribute("probe-stack", "inline-asm"); 1747 1748 if (!hasUnwindExceptions(LangOpts)) 1749 B.addAttribute(llvm::Attribute::NoUnwind); 1750 1751 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1752 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1753 B.addAttribute(llvm::Attribute::StackProtect); 1754 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1755 B.addAttribute(llvm::Attribute::StackProtectStrong); 1756 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1757 B.addAttribute(llvm::Attribute::StackProtectReq); 1758 } 1759 1760 if (!D) { 1761 // If we don't have a declaration to control inlining, the function isn't 1762 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1763 // disabled, mark the function as noinline. 1764 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1765 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1766 B.addAttribute(llvm::Attribute::NoInline); 1767 1768 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1769 return; 1770 } 1771 1772 // Track whether we need to add the optnone LLVM attribute, 1773 // starting with the default for this optimization level. 1774 bool ShouldAddOptNone = 1775 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1776 // We can't add optnone in the following cases, it won't pass the verifier. 1777 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1778 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1779 1780 // Add optnone, but do so only if the function isn't always_inline. 1781 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1782 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1783 B.addAttribute(llvm::Attribute::OptimizeNone); 1784 1785 // OptimizeNone implies noinline; we should not be inlining such functions. 1786 B.addAttribute(llvm::Attribute::NoInline); 1787 1788 // We still need to handle naked functions even though optnone subsumes 1789 // much of their semantics. 1790 if (D->hasAttr<NakedAttr>()) 1791 B.addAttribute(llvm::Attribute::Naked); 1792 1793 // OptimizeNone wins over OptimizeForSize and MinSize. 1794 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1795 F->removeFnAttr(llvm::Attribute::MinSize); 1796 } else if (D->hasAttr<NakedAttr>()) { 1797 // Naked implies noinline: we should not be inlining such functions. 1798 B.addAttribute(llvm::Attribute::Naked); 1799 B.addAttribute(llvm::Attribute::NoInline); 1800 } else if (D->hasAttr<NoDuplicateAttr>()) { 1801 B.addAttribute(llvm::Attribute::NoDuplicate); 1802 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1803 // Add noinline if the function isn't always_inline. 1804 B.addAttribute(llvm::Attribute::NoInline); 1805 } else if (D->hasAttr<AlwaysInlineAttr>() && 1806 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1807 // (noinline wins over always_inline, and we can't specify both in IR) 1808 B.addAttribute(llvm::Attribute::AlwaysInline); 1809 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1810 // If we're not inlining, then force everything that isn't always_inline to 1811 // carry an explicit noinline attribute. 1812 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1813 B.addAttribute(llvm::Attribute::NoInline); 1814 } else { 1815 // Otherwise, propagate the inline hint attribute and potentially use its 1816 // absence to mark things as noinline. 1817 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1818 // Search function and template pattern redeclarations for inline. 1819 auto CheckForInline = [](const FunctionDecl *FD) { 1820 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1821 return Redecl->isInlineSpecified(); 1822 }; 1823 if (any_of(FD->redecls(), CheckRedeclForInline)) 1824 return true; 1825 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1826 if (!Pattern) 1827 return false; 1828 return any_of(Pattern->redecls(), CheckRedeclForInline); 1829 }; 1830 if (CheckForInline(FD)) { 1831 B.addAttribute(llvm::Attribute::InlineHint); 1832 } else if (CodeGenOpts.getInlining() == 1833 CodeGenOptions::OnlyHintInlining && 1834 !FD->isInlined() && 1835 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1836 B.addAttribute(llvm::Attribute::NoInline); 1837 } 1838 } 1839 } 1840 1841 // Add other optimization related attributes if we are optimizing this 1842 // function. 1843 if (!D->hasAttr<OptimizeNoneAttr>()) { 1844 if (D->hasAttr<ColdAttr>()) { 1845 if (!ShouldAddOptNone) 1846 B.addAttribute(llvm::Attribute::OptimizeForSize); 1847 B.addAttribute(llvm::Attribute::Cold); 1848 } 1849 if (D->hasAttr<HotAttr>()) 1850 B.addAttribute(llvm::Attribute::Hot); 1851 if (D->hasAttr<MinSizeAttr>()) 1852 B.addAttribute(llvm::Attribute::MinSize); 1853 } 1854 1855 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1856 1857 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1858 if (alignment) 1859 F->setAlignment(llvm::Align(alignment)); 1860 1861 if (!D->hasAttr<AlignedAttr>()) 1862 if (LangOpts.FunctionAlignment) 1863 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1864 1865 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1866 // reserve a bit for differentiating between virtual and non-virtual member 1867 // functions. If the current target's C++ ABI requires this and this is a 1868 // member function, set its alignment accordingly. 1869 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1870 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1871 F->setAlignment(llvm::Align(2)); 1872 } 1873 1874 // In the cross-dso CFI mode with canonical jump tables, we want !type 1875 // attributes on definitions only. 1876 if (CodeGenOpts.SanitizeCfiCrossDso && 1877 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1878 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1879 // Skip available_externally functions. They won't be codegen'ed in the 1880 // current module anyway. 1881 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1882 CreateFunctionTypeMetadataForIcall(FD, F); 1883 } 1884 } 1885 1886 // Emit type metadata on member functions for member function pointer checks. 1887 // These are only ever necessary on definitions; we're guaranteed that the 1888 // definition will be present in the LTO unit as a result of LTO visibility. 1889 auto *MD = dyn_cast<CXXMethodDecl>(D); 1890 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1891 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1892 llvm::Metadata *Id = 1893 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1894 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1895 F->addTypeMetadata(0, Id); 1896 } 1897 } 1898 } 1899 1900 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1901 llvm::Function *F) { 1902 if (D->hasAttr<StrictFPAttr>()) { 1903 llvm::AttrBuilder FuncAttrs; 1904 FuncAttrs.addAttribute("strictfp"); 1905 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1906 } 1907 } 1908 1909 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1910 const Decl *D = GD.getDecl(); 1911 if (dyn_cast_or_null<NamedDecl>(D)) 1912 setGVProperties(GV, GD); 1913 else 1914 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1915 1916 if (D && D->hasAttr<UsedAttr>()) 1917 addUsedOrCompilerUsedGlobal(GV); 1918 1919 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1920 const auto *VD = cast<VarDecl>(D); 1921 if (VD->getType().isConstQualified() && 1922 VD->getStorageDuration() == SD_Static) 1923 addUsedOrCompilerUsedGlobal(GV); 1924 } 1925 } 1926 1927 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1928 llvm::AttrBuilder &Attrs) { 1929 // Add target-cpu and target-features attributes to functions. If 1930 // we have a decl for the function and it has a target attribute then 1931 // parse that and add it to the feature set. 1932 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1933 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1934 std::vector<std::string> Features; 1935 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1936 FD = FD ? FD->getMostRecentDecl() : FD; 1937 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1938 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1939 bool AddedAttr = false; 1940 if (TD || SD) { 1941 llvm::StringMap<bool> FeatureMap; 1942 getContext().getFunctionFeatureMap(FeatureMap, GD); 1943 1944 // Produce the canonical string for this set of features. 1945 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1946 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1947 1948 // Now add the target-cpu and target-features to the function. 1949 // While we populated the feature map above, we still need to 1950 // get and parse the target attribute so we can get the cpu for 1951 // the function. 1952 if (TD) { 1953 ParsedTargetAttr ParsedAttr = TD->parse(); 1954 if (!ParsedAttr.Architecture.empty() && 1955 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1956 TargetCPU = ParsedAttr.Architecture; 1957 TuneCPU = ""; // Clear the tune CPU. 1958 } 1959 if (!ParsedAttr.Tune.empty() && 1960 getTarget().isValidCPUName(ParsedAttr.Tune)) 1961 TuneCPU = ParsedAttr.Tune; 1962 } 1963 } else { 1964 // Otherwise just add the existing target cpu and target features to the 1965 // function. 1966 Features = getTarget().getTargetOpts().Features; 1967 } 1968 1969 if (!TargetCPU.empty()) { 1970 Attrs.addAttribute("target-cpu", TargetCPU); 1971 AddedAttr = true; 1972 } 1973 if (!TuneCPU.empty()) { 1974 Attrs.addAttribute("tune-cpu", TuneCPU); 1975 AddedAttr = true; 1976 } 1977 if (!Features.empty()) { 1978 llvm::sort(Features); 1979 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1980 AddedAttr = true; 1981 } 1982 1983 return AddedAttr; 1984 } 1985 1986 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1987 llvm::GlobalObject *GO) { 1988 const Decl *D = GD.getDecl(); 1989 SetCommonAttributes(GD, GO); 1990 1991 if (D) { 1992 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1993 if (D->hasAttr<RetainAttr>()) 1994 addUsedGlobal(GV); 1995 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1996 GV->addAttribute("bss-section", SA->getName()); 1997 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1998 GV->addAttribute("data-section", SA->getName()); 1999 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2000 GV->addAttribute("rodata-section", SA->getName()); 2001 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2002 GV->addAttribute("relro-section", SA->getName()); 2003 } 2004 2005 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2006 if (D->hasAttr<RetainAttr>()) 2007 addUsedGlobal(F); 2008 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2009 if (!D->getAttr<SectionAttr>()) 2010 F->addFnAttr("implicit-section-name", SA->getName()); 2011 2012 llvm::AttrBuilder Attrs; 2013 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2014 // We know that GetCPUAndFeaturesAttributes will always have the 2015 // newest set, since it has the newest possible FunctionDecl, so the 2016 // new ones should replace the old. 2017 llvm::AttrBuilder RemoveAttrs; 2018 RemoveAttrs.addAttribute("target-cpu"); 2019 RemoveAttrs.addAttribute("target-features"); 2020 RemoveAttrs.addAttribute("tune-cpu"); 2021 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 2022 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 2023 } 2024 } 2025 2026 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2027 GO->setSection(CSA->getName()); 2028 else if (const auto *SA = D->getAttr<SectionAttr>()) 2029 GO->setSection(SA->getName()); 2030 } 2031 2032 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2033 } 2034 2035 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2036 llvm::Function *F, 2037 const CGFunctionInfo &FI) { 2038 const Decl *D = GD.getDecl(); 2039 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2040 SetLLVMFunctionAttributesForDefinition(D, F); 2041 2042 F->setLinkage(llvm::Function::InternalLinkage); 2043 2044 setNonAliasAttributes(GD, F); 2045 } 2046 2047 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2048 // Set linkage and visibility in case we never see a definition. 2049 LinkageInfo LV = ND->getLinkageAndVisibility(); 2050 // Don't set internal linkage on declarations. 2051 // "extern_weak" is overloaded in LLVM; we probably should have 2052 // separate linkage types for this. 2053 if (isExternallyVisible(LV.getLinkage()) && 2054 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2055 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2056 } 2057 2058 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2059 llvm::Function *F) { 2060 // Only if we are checking indirect calls. 2061 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2062 return; 2063 2064 // Non-static class methods are handled via vtable or member function pointer 2065 // checks elsewhere. 2066 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2067 return; 2068 2069 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2070 F->addTypeMetadata(0, MD); 2071 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2072 2073 // Emit a hash-based bit set entry for cross-DSO calls. 2074 if (CodeGenOpts.SanitizeCfiCrossDso) 2075 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2076 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2077 } 2078 2079 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2080 bool IsIncompleteFunction, 2081 bool IsThunk) { 2082 2083 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2084 // If this is an intrinsic function, set the function's attributes 2085 // to the intrinsic's attributes. 2086 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2087 return; 2088 } 2089 2090 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2091 2092 if (!IsIncompleteFunction) 2093 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2094 IsThunk); 2095 2096 // Add the Returned attribute for "this", except for iOS 5 and earlier 2097 // where substantial code, including the libstdc++ dylib, was compiled with 2098 // GCC and does not actually return "this". 2099 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2100 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2101 assert(!F->arg_empty() && 2102 F->arg_begin()->getType() 2103 ->canLosslesslyBitCastTo(F->getReturnType()) && 2104 "unexpected this return"); 2105 F->addAttribute(1, llvm::Attribute::Returned); 2106 } 2107 2108 // Only a few attributes are set on declarations; these may later be 2109 // overridden by a definition. 2110 2111 setLinkageForGV(F, FD); 2112 setGVProperties(F, FD); 2113 2114 // Setup target-specific attributes. 2115 if (!IsIncompleteFunction && F->isDeclaration()) 2116 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2117 2118 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2119 F->setSection(CSA->getName()); 2120 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2121 F->setSection(SA->getName()); 2122 2123 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2124 if (FD->isInlineBuiltinDeclaration()) { 2125 const FunctionDecl *FDBody; 2126 bool HasBody = FD->hasBody(FDBody); 2127 (void)HasBody; 2128 assert(HasBody && "Inline builtin declarations should always have an " 2129 "available body!"); 2130 if (shouldEmitFunction(FDBody)) 2131 F->addAttribute(llvm::AttributeList::FunctionIndex, 2132 llvm::Attribute::NoBuiltin); 2133 } 2134 2135 if (FD->isReplaceableGlobalAllocationFunction()) { 2136 // A replaceable global allocation function does not act like a builtin by 2137 // default, only if it is invoked by a new-expression or delete-expression. 2138 F->addAttribute(llvm::AttributeList::FunctionIndex, 2139 llvm::Attribute::NoBuiltin); 2140 } 2141 2142 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2143 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2144 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2145 if (MD->isVirtual()) 2146 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2147 2148 // Don't emit entries for function declarations in the cross-DSO mode. This 2149 // is handled with better precision by the receiving DSO. But if jump tables 2150 // are non-canonical then we need type metadata in order to produce the local 2151 // jump table. 2152 if (!CodeGenOpts.SanitizeCfiCrossDso || 2153 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2154 CreateFunctionTypeMetadataForIcall(FD, F); 2155 2156 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2157 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2158 2159 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2160 // Annotate the callback behavior as metadata: 2161 // - The callback callee (as argument number). 2162 // - The callback payloads (as argument numbers). 2163 llvm::LLVMContext &Ctx = F->getContext(); 2164 llvm::MDBuilder MDB(Ctx); 2165 2166 // The payload indices are all but the first one in the encoding. The first 2167 // identifies the callback callee. 2168 int CalleeIdx = *CB->encoding_begin(); 2169 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2170 F->addMetadata(llvm::LLVMContext::MD_callback, 2171 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2172 CalleeIdx, PayloadIndices, 2173 /* VarArgsArePassed */ false)})); 2174 } 2175 } 2176 2177 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2178 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2179 "Only globals with definition can force usage."); 2180 LLVMUsed.emplace_back(GV); 2181 } 2182 2183 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2184 assert(!GV->isDeclaration() && 2185 "Only globals with definition can force usage."); 2186 LLVMCompilerUsed.emplace_back(GV); 2187 } 2188 2189 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2190 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2191 "Only globals with definition can force usage."); 2192 if (getTriple().isOSBinFormatELF()) 2193 LLVMCompilerUsed.emplace_back(GV); 2194 else 2195 LLVMUsed.emplace_back(GV); 2196 } 2197 2198 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2199 std::vector<llvm::WeakTrackingVH> &List) { 2200 // Don't create llvm.used if there is no need. 2201 if (List.empty()) 2202 return; 2203 2204 // Convert List to what ConstantArray needs. 2205 SmallVector<llvm::Constant*, 8> UsedArray; 2206 UsedArray.resize(List.size()); 2207 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2208 UsedArray[i] = 2209 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2210 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2211 } 2212 2213 if (UsedArray.empty()) 2214 return; 2215 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2216 2217 auto *GV = new llvm::GlobalVariable( 2218 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2219 llvm::ConstantArray::get(ATy, UsedArray), Name); 2220 2221 GV->setSection("llvm.metadata"); 2222 } 2223 2224 void CodeGenModule::emitLLVMUsed() { 2225 emitUsed(*this, "llvm.used", LLVMUsed); 2226 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2227 } 2228 2229 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2230 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2231 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2232 } 2233 2234 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2235 llvm::SmallString<32> Opt; 2236 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2237 if (Opt.empty()) 2238 return; 2239 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2240 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2241 } 2242 2243 void CodeGenModule::AddDependentLib(StringRef Lib) { 2244 auto &C = getLLVMContext(); 2245 if (getTarget().getTriple().isOSBinFormatELF()) { 2246 ELFDependentLibraries.push_back( 2247 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2248 return; 2249 } 2250 2251 llvm::SmallString<24> Opt; 2252 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2253 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2254 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2255 } 2256 2257 /// Add link options implied by the given module, including modules 2258 /// it depends on, using a postorder walk. 2259 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2260 SmallVectorImpl<llvm::MDNode *> &Metadata, 2261 llvm::SmallPtrSet<Module *, 16> &Visited) { 2262 // Import this module's parent. 2263 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2264 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2265 } 2266 2267 // Import this module's dependencies. 2268 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2269 if (Visited.insert(Mod->Imports[I - 1]).second) 2270 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2271 } 2272 2273 // Add linker options to link against the libraries/frameworks 2274 // described by this module. 2275 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2276 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2277 2278 // For modules that use export_as for linking, use that module 2279 // name instead. 2280 if (Mod->UseExportAsModuleLinkName) 2281 return; 2282 2283 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2284 // Link against a framework. Frameworks are currently Darwin only, so we 2285 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2286 if (Mod->LinkLibraries[I-1].IsFramework) { 2287 llvm::Metadata *Args[2] = { 2288 llvm::MDString::get(Context, "-framework"), 2289 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2290 2291 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2292 continue; 2293 } 2294 2295 // Link against a library. 2296 if (IsELF) { 2297 llvm::Metadata *Args[2] = { 2298 llvm::MDString::get(Context, "lib"), 2299 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2300 }; 2301 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2302 } else { 2303 llvm::SmallString<24> Opt; 2304 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2305 Mod->LinkLibraries[I - 1].Library, Opt); 2306 auto *OptString = llvm::MDString::get(Context, Opt); 2307 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2308 } 2309 } 2310 } 2311 2312 void CodeGenModule::EmitModuleLinkOptions() { 2313 // Collect the set of all of the modules we want to visit to emit link 2314 // options, which is essentially the imported modules and all of their 2315 // non-explicit child modules. 2316 llvm::SetVector<clang::Module *> LinkModules; 2317 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2318 SmallVector<clang::Module *, 16> Stack; 2319 2320 // Seed the stack with imported modules. 2321 for (Module *M : ImportedModules) { 2322 // Do not add any link flags when an implementation TU of a module imports 2323 // a header of that same module. 2324 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2325 !getLangOpts().isCompilingModule()) 2326 continue; 2327 if (Visited.insert(M).second) 2328 Stack.push_back(M); 2329 } 2330 2331 // Find all of the modules to import, making a little effort to prune 2332 // non-leaf modules. 2333 while (!Stack.empty()) { 2334 clang::Module *Mod = Stack.pop_back_val(); 2335 2336 bool AnyChildren = false; 2337 2338 // Visit the submodules of this module. 2339 for (const auto &SM : Mod->submodules()) { 2340 // Skip explicit children; they need to be explicitly imported to be 2341 // linked against. 2342 if (SM->IsExplicit) 2343 continue; 2344 2345 if (Visited.insert(SM).second) { 2346 Stack.push_back(SM); 2347 AnyChildren = true; 2348 } 2349 } 2350 2351 // We didn't find any children, so add this module to the list of 2352 // modules to link against. 2353 if (!AnyChildren) { 2354 LinkModules.insert(Mod); 2355 } 2356 } 2357 2358 // Add link options for all of the imported modules in reverse topological 2359 // order. We don't do anything to try to order import link flags with respect 2360 // to linker options inserted by things like #pragma comment(). 2361 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2362 Visited.clear(); 2363 for (Module *M : LinkModules) 2364 if (Visited.insert(M).second) 2365 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2366 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2367 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2368 2369 // Add the linker options metadata flag. 2370 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2371 for (auto *MD : LinkerOptionsMetadata) 2372 NMD->addOperand(MD); 2373 } 2374 2375 void CodeGenModule::EmitDeferred() { 2376 // Emit deferred declare target declarations. 2377 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2378 getOpenMPRuntime().emitDeferredTargetDecls(); 2379 2380 // Emit code for any potentially referenced deferred decls. Since a 2381 // previously unused static decl may become used during the generation of code 2382 // for a static function, iterate until no changes are made. 2383 2384 if (!DeferredVTables.empty()) { 2385 EmitDeferredVTables(); 2386 2387 // Emitting a vtable doesn't directly cause more vtables to 2388 // become deferred, although it can cause functions to be 2389 // emitted that then need those vtables. 2390 assert(DeferredVTables.empty()); 2391 } 2392 2393 // Emit CUDA/HIP static device variables referenced by host code only. 2394 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2395 // needed for further handling. 2396 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2397 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2398 DeferredDeclsToEmit.push_back(V); 2399 2400 // Stop if we're out of both deferred vtables and deferred declarations. 2401 if (DeferredDeclsToEmit.empty()) 2402 return; 2403 2404 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2405 // work, it will not interfere with this. 2406 std::vector<GlobalDecl> CurDeclsToEmit; 2407 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2408 2409 for (GlobalDecl &D : CurDeclsToEmit) { 2410 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2411 // to get GlobalValue with exactly the type we need, not something that 2412 // might had been created for another decl with the same mangled name but 2413 // different type. 2414 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2415 GetAddrOfGlobal(D, ForDefinition)); 2416 2417 // In case of different address spaces, we may still get a cast, even with 2418 // IsForDefinition equal to true. Query mangled names table to get 2419 // GlobalValue. 2420 if (!GV) 2421 GV = GetGlobalValue(getMangledName(D)); 2422 2423 // Make sure GetGlobalValue returned non-null. 2424 assert(GV); 2425 2426 // Check to see if we've already emitted this. This is necessary 2427 // for a couple of reasons: first, decls can end up in the 2428 // deferred-decls queue multiple times, and second, decls can end 2429 // up with definitions in unusual ways (e.g. by an extern inline 2430 // function acquiring a strong function redefinition). Just 2431 // ignore these cases. 2432 if (!GV->isDeclaration()) 2433 continue; 2434 2435 // If this is OpenMP, check if it is legal to emit this global normally. 2436 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2437 continue; 2438 2439 // Otherwise, emit the definition and move on to the next one. 2440 EmitGlobalDefinition(D, GV); 2441 2442 // If we found out that we need to emit more decls, do that recursively. 2443 // This has the advantage that the decls are emitted in a DFS and related 2444 // ones are close together, which is convenient for testing. 2445 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2446 EmitDeferred(); 2447 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2448 } 2449 } 2450 } 2451 2452 void CodeGenModule::EmitVTablesOpportunistically() { 2453 // Try to emit external vtables as available_externally if they have emitted 2454 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2455 // is not allowed to create new references to things that need to be emitted 2456 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2457 2458 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2459 && "Only emit opportunistic vtables with optimizations"); 2460 2461 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2462 assert(getVTables().isVTableExternal(RD) && 2463 "This queue should only contain external vtables"); 2464 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2465 VTables.GenerateClassData(RD); 2466 } 2467 OpportunisticVTables.clear(); 2468 } 2469 2470 void CodeGenModule::EmitGlobalAnnotations() { 2471 if (Annotations.empty()) 2472 return; 2473 2474 // Create a new global variable for the ConstantStruct in the Module. 2475 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2476 Annotations[0]->getType(), Annotations.size()), Annotations); 2477 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2478 llvm::GlobalValue::AppendingLinkage, 2479 Array, "llvm.global.annotations"); 2480 gv->setSection(AnnotationSection); 2481 } 2482 2483 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2484 llvm::Constant *&AStr = AnnotationStrings[Str]; 2485 if (AStr) 2486 return AStr; 2487 2488 // Not found yet, create a new global. 2489 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2490 auto *gv = 2491 new llvm::GlobalVariable(getModule(), s->getType(), true, 2492 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2493 gv->setSection(AnnotationSection); 2494 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2495 AStr = gv; 2496 return gv; 2497 } 2498 2499 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2500 SourceManager &SM = getContext().getSourceManager(); 2501 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2502 if (PLoc.isValid()) 2503 return EmitAnnotationString(PLoc.getFilename()); 2504 return EmitAnnotationString(SM.getBufferName(Loc)); 2505 } 2506 2507 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2508 SourceManager &SM = getContext().getSourceManager(); 2509 PresumedLoc PLoc = SM.getPresumedLoc(L); 2510 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2511 SM.getExpansionLineNumber(L); 2512 return llvm::ConstantInt::get(Int32Ty, LineNo); 2513 } 2514 2515 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2516 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2517 if (Exprs.empty()) 2518 return llvm::ConstantPointerNull::get(Int8PtrTy); 2519 2520 llvm::FoldingSetNodeID ID; 2521 for (Expr *E : Exprs) { 2522 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2523 } 2524 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2525 if (Lookup) 2526 return Lookup; 2527 2528 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2529 LLVMArgs.reserve(Exprs.size()); 2530 ConstantEmitter ConstEmiter(*this); 2531 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2532 const auto *CE = cast<clang::ConstantExpr>(E); 2533 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2534 CE->getType()); 2535 }); 2536 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2537 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2538 llvm::GlobalValue::PrivateLinkage, Struct, 2539 ".args"); 2540 GV->setSection(AnnotationSection); 2541 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2542 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2543 2544 Lookup = Bitcasted; 2545 return Bitcasted; 2546 } 2547 2548 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2549 const AnnotateAttr *AA, 2550 SourceLocation L) { 2551 // Get the globals for file name, annotation, and the line number. 2552 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2553 *UnitGV = EmitAnnotationUnit(L), 2554 *LineNoCst = EmitAnnotationLineNo(L), 2555 *Args = EmitAnnotationArgs(AA); 2556 2557 llvm::Constant *ASZeroGV = GV; 2558 if (GV->getAddressSpace() != 0) { 2559 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2560 GV, GV->getValueType()->getPointerTo(0)); 2561 } 2562 2563 // Create the ConstantStruct for the global annotation. 2564 llvm::Constant *Fields[] = { 2565 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2566 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2567 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2568 LineNoCst, 2569 Args, 2570 }; 2571 return llvm::ConstantStruct::getAnon(Fields); 2572 } 2573 2574 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2575 llvm::GlobalValue *GV) { 2576 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2577 // Get the struct elements for these annotations. 2578 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2579 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2580 } 2581 2582 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2583 SourceLocation Loc) const { 2584 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2585 // NoSanitize by function name. 2586 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2587 return true; 2588 // NoSanitize by location. 2589 if (Loc.isValid()) 2590 return NoSanitizeL.containsLocation(Kind, Loc); 2591 // If location is unknown, this may be a compiler-generated function. Assume 2592 // it's located in the main file. 2593 auto &SM = Context.getSourceManager(); 2594 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2595 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2596 } 2597 return false; 2598 } 2599 2600 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2601 SourceLocation Loc, QualType Ty, 2602 StringRef Category) const { 2603 // For now globals can be ignored only in ASan and KASan. 2604 const SanitizerMask EnabledAsanMask = 2605 LangOpts.Sanitize.Mask & 2606 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2607 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2608 SanitizerKind::MemTag); 2609 if (!EnabledAsanMask) 2610 return false; 2611 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2612 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2613 return true; 2614 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2615 return true; 2616 // Check global type. 2617 if (!Ty.isNull()) { 2618 // Drill down the array types: if global variable of a fixed type is 2619 // not sanitized, we also don't instrument arrays of them. 2620 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2621 Ty = AT->getElementType(); 2622 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2623 // Only record types (classes, structs etc.) are ignored. 2624 if (Ty->isRecordType()) { 2625 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2626 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2627 return true; 2628 } 2629 } 2630 return false; 2631 } 2632 2633 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2634 StringRef Category) const { 2635 const auto &XRayFilter = getContext().getXRayFilter(); 2636 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2637 auto Attr = ImbueAttr::NONE; 2638 if (Loc.isValid()) 2639 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2640 if (Attr == ImbueAttr::NONE) 2641 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2642 switch (Attr) { 2643 case ImbueAttr::NONE: 2644 return false; 2645 case ImbueAttr::ALWAYS: 2646 Fn->addFnAttr("function-instrument", "xray-always"); 2647 break; 2648 case ImbueAttr::ALWAYS_ARG1: 2649 Fn->addFnAttr("function-instrument", "xray-always"); 2650 Fn->addFnAttr("xray-log-args", "1"); 2651 break; 2652 case ImbueAttr::NEVER: 2653 Fn->addFnAttr("function-instrument", "xray-never"); 2654 break; 2655 } 2656 return true; 2657 } 2658 2659 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2660 SourceLocation Loc) const { 2661 const auto &ProfileList = getContext().getProfileList(); 2662 // If the profile list is empty, then instrument everything. 2663 if (ProfileList.isEmpty()) 2664 return false; 2665 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2666 // First, check the function name. 2667 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2668 if (V.hasValue()) 2669 return *V; 2670 // Next, check the source location. 2671 if (Loc.isValid()) { 2672 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2673 if (V.hasValue()) 2674 return *V; 2675 } 2676 // If location is unknown, this may be a compiler-generated function. Assume 2677 // it's located in the main file. 2678 auto &SM = Context.getSourceManager(); 2679 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2680 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2681 if (V.hasValue()) 2682 return *V; 2683 } 2684 return ProfileList.getDefault(); 2685 } 2686 2687 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2688 // Never defer when EmitAllDecls is specified. 2689 if (LangOpts.EmitAllDecls) 2690 return true; 2691 2692 if (CodeGenOpts.KeepStaticConsts) { 2693 const auto *VD = dyn_cast<VarDecl>(Global); 2694 if (VD && VD->getType().isConstQualified() && 2695 VD->getStorageDuration() == SD_Static) 2696 return true; 2697 } 2698 2699 return getContext().DeclMustBeEmitted(Global); 2700 } 2701 2702 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2703 // In OpenMP 5.0 variables and function may be marked as 2704 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2705 // that they must be emitted on the host/device. To be sure we need to have 2706 // seen a declare target with an explicit mentioning of the function, we know 2707 // we have if the level of the declare target attribute is -1. Note that we 2708 // check somewhere else if we should emit this at all. 2709 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2710 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2711 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2712 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2713 return false; 2714 } 2715 2716 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2717 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2718 // Implicit template instantiations may change linkage if they are later 2719 // explicitly instantiated, so they should not be emitted eagerly. 2720 return false; 2721 } 2722 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2723 if (Context.getInlineVariableDefinitionKind(VD) == 2724 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2725 // A definition of an inline constexpr static data member may change 2726 // linkage later if it's redeclared outside the class. 2727 return false; 2728 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2729 // codegen for global variables, because they may be marked as threadprivate. 2730 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2731 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2732 !isTypeConstant(Global->getType(), false) && 2733 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2734 return false; 2735 2736 return true; 2737 } 2738 2739 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2740 StringRef Name = getMangledName(GD); 2741 2742 // The UUID descriptor should be pointer aligned. 2743 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2744 2745 // Look for an existing global. 2746 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2747 return ConstantAddress(GV, Alignment); 2748 2749 ConstantEmitter Emitter(*this); 2750 llvm::Constant *Init; 2751 2752 APValue &V = GD->getAsAPValue(); 2753 if (!V.isAbsent()) { 2754 // If possible, emit the APValue version of the initializer. In particular, 2755 // this gets the type of the constant right. 2756 Init = Emitter.emitForInitializer( 2757 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2758 } else { 2759 // As a fallback, directly construct the constant. 2760 // FIXME: This may get padding wrong under esoteric struct layout rules. 2761 // MSVC appears to create a complete type 'struct __s_GUID' that it 2762 // presumably uses to represent these constants. 2763 MSGuidDecl::Parts Parts = GD->getParts(); 2764 llvm::Constant *Fields[4] = { 2765 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2766 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2767 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2768 llvm::ConstantDataArray::getRaw( 2769 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2770 Int8Ty)}; 2771 Init = llvm::ConstantStruct::getAnon(Fields); 2772 } 2773 2774 auto *GV = new llvm::GlobalVariable( 2775 getModule(), Init->getType(), 2776 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2777 if (supportsCOMDAT()) 2778 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2779 setDSOLocal(GV); 2780 2781 llvm::Constant *Addr = GV; 2782 if (!V.isAbsent()) { 2783 Emitter.finalize(GV); 2784 } else { 2785 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2786 Addr = llvm::ConstantExpr::getBitCast( 2787 GV, Ty->getPointerTo(GV->getAddressSpace())); 2788 } 2789 return ConstantAddress(Addr, Alignment); 2790 } 2791 2792 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2793 const TemplateParamObjectDecl *TPO) { 2794 StringRef Name = getMangledName(TPO); 2795 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2796 2797 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2798 return ConstantAddress(GV, Alignment); 2799 2800 ConstantEmitter Emitter(*this); 2801 llvm::Constant *Init = Emitter.emitForInitializer( 2802 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2803 2804 if (!Init) { 2805 ErrorUnsupported(TPO, "template parameter object"); 2806 return ConstantAddress::invalid(); 2807 } 2808 2809 auto *GV = new llvm::GlobalVariable( 2810 getModule(), Init->getType(), 2811 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2812 if (supportsCOMDAT()) 2813 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2814 Emitter.finalize(GV); 2815 2816 return ConstantAddress(GV, Alignment); 2817 } 2818 2819 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2820 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2821 assert(AA && "No alias?"); 2822 2823 CharUnits Alignment = getContext().getDeclAlign(VD); 2824 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2825 2826 // See if there is already something with the target's name in the module. 2827 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2828 if (Entry) { 2829 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2830 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2831 return ConstantAddress(Ptr, Alignment); 2832 } 2833 2834 llvm::Constant *Aliasee; 2835 if (isa<llvm::FunctionType>(DeclTy)) 2836 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2837 GlobalDecl(cast<FunctionDecl>(VD)), 2838 /*ForVTable=*/false); 2839 else 2840 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr); 2841 2842 auto *F = cast<llvm::GlobalValue>(Aliasee); 2843 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2844 WeakRefReferences.insert(F); 2845 2846 return ConstantAddress(Aliasee, Alignment); 2847 } 2848 2849 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2850 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2851 2852 // Weak references don't produce any output by themselves. 2853 if (Global->hasAttr<WeakRefAttr>()) 2854 return; 2855 2856 // If this is an alias definition (which otherwise looks like a declaration) 2857 // emit it now. 2858 if (Global->hasAttr<AliasAttr>()) 2859 return EmitAliasDefinition(GD); 2860 2861 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2862 if (Global->hasAttr<IFuncAttr>()) 2863 return emitIFuncDefinition(GD); 2864 2865 // If this is a cpu_dispatch multiversion function, emit the resolver. 2866 if (Global->hasAttr<CPUDispatchAttr>()) 2867 return emitCPUDispatchDefinition(GD); 2868 2869 // If this is CUDA, be selective about which declarations we emit. 2870 if (LangOpts.CUDA) { 2871 if (LangOpts.CUDAIsDevice) { 2872 if (!Global->hasAttr<CUDADeviceAttr>() && 2873 !Global->hasAttr<CUDAGlobalAttr>() && 2874 !Global->hasAttr<CUDAConstantAttr>() && 2875 !Global->hasAttr<CUDASharedAttr>() && 2876 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2877 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2878 return; 2879 } else { 2880 // We need to emit host-side 'shadows' for all global 2881 // device-side variables because the CUDA runtime needs their 2882 // size and host-side address in order to provide access to 2883 // their device-side incarnations. 2884 2885 // So device-only functions are the only things we skip. 2886 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2887 Global->hasAttr<CUDADeviceAttr>()) 2888 return; 2889 2890 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2891 "Expected Variable or Function"); 2892 } 2893 } 2894 2895 if (LangOpts.OpenMP) { 2896 // If this is OpenMP, check if it is legal to emit this global normally. 2897 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2898 return; 2899 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2900 if (MustBeEmitted(Global)) 2901 EmitOMPDeclareReduction(DRD); 2902 return; 2903 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2904 if (MustBeEmitted(Global)) 2905 EmitOMPDeclareMapper(DMD); 2906 return; 2907 } 2908 } 2909 2910 // Ignore declarations, they will be emitted on their first use. 2911 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2912 // Forward declarations are emitted lazily on first use. 2913 if (!FD->doesThisDeclarationHaveABody()) { 2914 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2915 return; 2916 2917 StringRef MangledName = getMangledName(GD); 2918 2919 // Compute the function info and LLVM type. 2920 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2921 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2922 2923 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2924 /*DontDefer=*/false); 2925 return; 2926 } 2927 } else { 2928 const auto *VD = cast<VarDecl>(Global); 2929 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2930 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2931 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2932 if (LangOpts.OpenMP) { 2933 // Emit declaration of the must-be-emitted declare target variable. 2934 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2935 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2936 bool UnifiedMemoryEnabled = 2937 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2938 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2939 !UnifiedMemoryEnabled) { 2940 (void)GetAddrOfGlobalVar(VD); 2941 } else { 2942 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2943 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2944 UnifiedMemoryEnabled)) && 2945 "Link clause or to clause with unified memory expected."); 2946 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2947 } 2948 2949 return; 2950 } 2951 } 2952 // If this declaration may have caused an inline variable definition to 2953 // change linkage, make sure that it's emitted. 2954 if (Context.getInlineVariableDefinitionKind(VD) == 2955 ASTContext::InlineVariableDefinitionKind::Strong) 2956 GetAddrOfGlobalVar(VD); 2957 return; 2958 } 2959 } 2960 2961 // Defer code generation to first use when possible, e.g. if this is an inline 2962 // function. If the global must always be emitted, do it eagerly if possible 2963 // to benefit from cache locality. 2964 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2965 // Emit the definition if it can't be deferred. 2966 EmitGlobalDefinition(GD); 2967 return; 2968 } 2969 2970 // If we're deferring emission of a C++ variable with an 2971 // initializer, remember the order in which it appeared in the file. 2972 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2973 cast<VarDecl>(Global)->hasInit()) { 2974 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2975 CXXGlobalInits.push_back(nullptr); 2976 } 2977 2978 StringRef MangledName = getMangledName(GD); 2979 if (GetGlobalValue(MangledName) != nullptr) { 2980 // The value has already been used and should therefore be emitted. 2981 addDeferredDeclToEmit(GD); 2982 } else if (MustBeEmitted(Global)) { 2983 // The value must be emitted, but cannot be emitted eagerly. 2984 assert(!MayBeEmittedEagerly(Global)); 2985 addDeferredDeclToEmit(GD); 2986 } else { 2987 // Otherwise, remember that we saw a deferred decl with this name. The 2988 // first use of the mangled name will cause it to move into 2989 // DeferredDeclsToEmit. 2990 DeferredDecls[MangledName] = GD; 2991 } 2992 } 2993 2994 // Check if T is a class type with a destructor that's not dllimport. 2995 static bool HasNonDllImportDtor(QualType T) { 2996 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2997 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2998 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2999 return true; 3000 3001 return false; 3002 } 3003 3004 namespace { 3005 struct FunctionIsDirectlyRecursive 3006 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3007 const StringRef Name; 3008 const Builtin::Context &BI; 3009 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3010 : Name(N), BI(C) {} 3011 3012 bool VisitCallExpr(const CallExpr *E) { 3013 const FunctionDecl *FD = E->getDirectCallee(); 3014 if (!FD) 3015 return false; 3016 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3017 if (Attr && Name == Attr->getLabel()) 3018 return true; 3019 unsigned BuiltinID = FD->getBuiltinID(); 3020 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3021 return false; 3022 StringRef BuiltinName = BI.getName(BuiltinID); 3023 if (BuiltinName.startswith("__builtin_") && 3024 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3025 return true; 3026 } 3027 return false; 3028 } 3029 3030 bool VisitStmt(const Stmt *S) { 3031 for (const Stmt *Child : S->children()) 3032 if (Child && this->Visit(Child)) 3033 return true; 3034 return false; 3035 } 3036 }; 3037 3038 // Make sure we're not referencing non-imported vars or functions. 3039 struct DLLImportFunctionVisitor 3040 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3041 bool SafeToInline = true; 3042 3043 bool shouldVisitImplicitCode() const { return true; } 3044 3045 bool VisitVarDecl(VarDecl *VD) { 3046 if (VD->getTLSKind()) { 3047 // A thread-local variable cannot be imported. 3048 SafeToInline = false; 3049 return SafeToInline; 3050 } 3051 3052 // A variable definition might imply a destructor call. 3053 if (VD->isThisDeclarationADefinition()) 3054 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3055 3056 return SafeToInline; 3057 } 3058 3059 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3060 if (const auto *D = E->getTemporary()->getDestructor()) 3061 SafeToInline = D->hasAttr<DLLImportAttr>(); 3062 return SafeToInline; 3063 } 3064 3065 bool VisitDeclRefExpr(DeclRefExpr *E) { 3066 ValueDecl *VD = E->getDecl(); 3067 if (isa<FunctionDecl>(VD)) 3068 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3069 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3070 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3071 return SafeToInline; 3072 } 3073 3074 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3075 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3076 return SafeToInline; 3077 } 3078 3079 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3080 CXXMethodDecl *M = E->getMethodDecl(); 3081 if (!M) { 3082 // Call through a pointer to member function. This is safe to inline. 3083 SafeToInline = true; 3084 } else { 3085 SafeToInline = M->hasAttr<DLLImportAttr>(); 3086 } 3087 return SafeToInline; 3088 } 3089 3090 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3091 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3092 return SafeToInline; 3093 } 3094 3095 bool VisitCXXNewExpr(CXXNewExpr *E) { 3096 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3097 return SafeToInline; 3098 } 3099 }; 3100 } 3101 3102 // isTriviallyRecursive - Check if this function calls another 3103 // decl that, because of the asm attribute or the other decl being a builtin, 3104 // ends up pointing to itself. 3105 bool 3106 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3107 StringRef Name; 3108 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3109 // asm labels are a special kind of mangling we have to support. 3110 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3111 if (!Attr) 3112 return false; 3113 Name = Attr->getLabel(); 3114 } else { 3115 Name = FD->getName(); 3116 } 3117 3118 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3119 const Stmt *Body = FD->getBody(); 3120 return Body ? Walker.Visit(Body) : false; 3121 } 3122 3123 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3124 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3125 return true; 3126 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3127 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3128 return false; 3129 3130 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3131 // Check whether it would be safe to inline this dllimport function. 3132 DLLImportFunctionVisitor Visitor; 3133 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3134 if (!Visitor.SafeToInline) 3135 return false; 3136 3137 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3138 // Implicit destructor invocations aren't captured in the AST, so the 3139 // check above can't see them. Check for them manually here. 3140 for (const Decl *Member : Dtor->getParent()->decls()) 3141 if (isa<FieldDecl>(Member)) 3142 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3143 return false; 3144 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3145 if (HasNonDllImportDtor(B.getType())) 3146 return false; 3147 } 3148 } 3149 3150 // PR9614. Avoid cases where the source code is lying to us. An available 3151 // externally function should have an equivalent function somewhere else, 3152 // but a function that calls itself through asm label/`__builtin_` trickery is 3153 // clearly not equivalent to the real implementation. 3154 // This happens in glibc's btowc and in some configure checks. 3155 return !isTriviallyRecursive(F); 3156 } 3157 3158 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3159 return CodeGenOpts.OptimizationLevel > 0; 3160 } 3161 3162 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3163 llvm::GlobalValue *GV) { 3164 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3165 3166 if (FD->isCPUSpecificMultiVersion()) { 3167 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3168 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3169 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3170 // Requires multiple emits. 3171 } else 3172 EmitGlobalFunctionDefinition(GD, GV); 3173 } 3174 3175 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3176 const auto *D = cast<ValueDecl>(GD.getDecl()); 3177 3178 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3179 Context.getSourceManager(), 3180 "Generating code for declaration"); 3181 3182 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3183 // At -O0, don't generate IR for functions with available_externally 3184 // linkage. 3185 if (!shouldEmitFunction(GD)) 3186 return; 3187 3188 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3189 std::string Name; 3190 llvm::raw_string_ostream OS(Name); 3191 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3192 /*Qualified=*/true); 3193 return Name; 3194 }); 3195 3196 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3197 // Make sure to emit the definition(s) before we emit the thunks. 3198 // This is necessary for the generation of certain thunks. 3199 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3200 ABI->emitCXXStructor(GD); 3201 else if (FD->isMultiVersion()) 3202 EmitMultiVersionFunctionDefinition(GD, GV); 3203 else 3204 EmitGlobalFunctionDefinition(GD, GV); 3205 3206 if (Method->isVirtual()) 3207 getVTables().EmitThunks(GD); 3208 3209 return; 3210 } 3211 3212 if (FD->isMultiVersion()) 3213 return EmitMultiVersionFunctionDefinition(GD, GV); 3214 return EmitGlobalFunctionDefinition(GD, GV); 3215 } 3216 3217 if (const auto *VD = dyn_cast<VarDecl>(D)) 3218 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3219 3220 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3221 } 3222 3223 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3224 llvm::Function *NewFn); 3225 3226 static unsigned 3227 TargetMVPriority(const TargetInfo &TI, 3228 const CodeGenFunction::MultiVersionResolverOption &RO) { 3229 unsigned Priority = 0; 3230 for (StringRef Feat : RO.Conditions.Features) 3231 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3232 3233 if (!RO.Conditions.Architecture.empty()) 3234 Priority = std::max( 3235 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3236 return Priority; 3237 } 3238 3239 void CodeGenModule::emitMultiVersionFunctions() { 3240 std::vector<GlobalDecl> MVFuncsToEmit; 3241 MultiVersionFuncs.swap(MVFuncsToEmit); 3242 for (GlobalDecl GD : MVFuncsToEmit) { 3243 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3244 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3245 getContext().forEachMultiversionedFunctionVersion( 3246 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3247 GlobalDecl CurGD{ 3248 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3249 StringRef MangledName = getMangledName(CurGD); 3250 llvm::Constant *Func = GetGlobalValue(MangledName); 3251 if (!Func) { 3252 if (CurFD->isDefined()) { 3253 EmitGlobalFunctionDefinition(CurGD, nullptr); 3254 Func = GetGlobalValue(MangledName); 3255 } else { 3256 const CGFunctionInfo &FI = 3257 getTypes().arrangeGlobalDeclaration(GD); 3258 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3259 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3260 /*DontDefer=*/false, ForDefinition); 3261 } 3262 assert(Func && "This should have just been created"); 3263 } 3264 3265 const auto *TA = CurFD->getAttr<TargetAttr>(); 3266 llvm::SmallVector<StringRef, 8> Feats; 3267 TA->getAddedFeatures(Feats); 3268 3269 Options.emplace_back(cast<llvm::Function>(Func), 3270 TA->getArchitecture(), Feats); 3271 }); 3272 3273 llvm::Function *ResolverFunc; 3274 const TargetInfo &TI = getTarget(); 3275 3276 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3277 ResolverFunc = cast<llvm::Function>( 3278 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3279 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3280 } else { 3281 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3282 } 3283 3284 if (supportsCOMDAT()) 3285 ResolverFunc->setComdat( 3286 getModule().getOrInsertComdat(ResolverFunc->getName())); 3287 3288 llvm::stable_sort( 3289 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3290 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3291 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3292 }); 3293 CodeGenFunction CGF(*this); 3294 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3295 } 3296 3297 // Ensure that any additions to the deferred decls list caused by emitting a 3298 // variant are emitted. This can happen when the variant itself is inline and 3299 // calls a function without linkage. 3300 if (!MVFuncsToEmit.empty()) 3301 EmitDeferred(); 3302 3303 // Ensure that any additions to the multiversion funcs list from either the 3304 // deferred decls or the multiversion functions themselves are emitted. 3305 if (!MultiVersionFuncs.empty()) 3306 emitMultiVersionFunctions(); 3307 } 3308 3309 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3310 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3311 assert(FD && "Not a FunctionDecl?"); 3312 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3313 assert(DD && "Not a cpu_dispatch Function?"); 3314 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3315 3316 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3317 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3318 DeclTy = getTypes().GetFunctionType(FInfo); 3319 } 3320 3321 StringRef ResolverName = getMangledName(GD); 3322 3323 llvm::Type *ResolverType; 3324 GlobalDecl ResolverGD; 3325 if (getTarget().supportsIFunc()) 3326 ResolverType = llvm::FunctionType::get( 3327 llvm::PointerType::get(DeclTy, 3328 Context.getTargetAddressSpace(FD->getType())), 3329 false); 3330 else { 3331 ResolverType = DeclTy; 3332 ResolverGD = GD; 3333 } 3334 3335 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3336 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3337 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3338 if (supportsCOMDAT()) 3339 ResolverFunc->setComdat( 3340 getModule().getOrInsertComdat(ResolverFunc->getName())); 3341 3342 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3343 const TargetInfo &Target = getTarget(); 3344 unsigned Index = 0; 3345 for (const IdentifierInfo *II : DD->cpus()) { 3346 // Get the name of the target function so we can look it up/create it. 3347 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3348 getCPUSpecificMangling(*this, II->getName()); 3349 3350 llvm::Constant *Func = GetGlobalValue(MangledName); 3351 3352 if (!Func) { 3353 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3354 if (ExistingDecl.getDecl() && 3355 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3356 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3357 Func = GetGlobalValue(MangledName); 3358 } else { 3359 if (!ExistingDecl.getDecl()) 3360 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3361 3362 Func = GetOrCreateLLVMFunction( 3363 MangledName, DeclTy, ExistingDecl, 3364 /*ForVTable=*/false, /*DontDefer=*/true, 3365 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3366 } 3367 } 3368 3369 llvm::SmallVector<StringRef, 32> Features; 3370 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3371 llvm::transform(Features, Features.begin(), 3372 [](StringRef Str) { return Str.substr(1); }); 3373 Features.erase(std::remove_if( 3374 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3375 return !Target.validateCpuSupports(Feat); 3376 }), Features.end()); 3377 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3378 ++Index; 3379 } 3380 3381 llvm::stable_sort( 3382 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3383 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3384 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3385 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3386 }); 3387 3388 // If the list contains multiple 'default' versions, such as when it contains 3389 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3390 // always run on at least a 'pentium'). We do this by deleting the 'least 3391 // advanced' (read, lowest mangling letter). 3392 while (Options.size() > 1 && 3393 CodeGenFunction::GetX86CpuSupportsMask( 3394 (Options.end() - 2)->Conditions.Features) == 0) { 3395 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3396 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3397 if (LHSName.compare(RHSName) < 0) 3398 Options.erase(Options.end() - 2); 3399 else 3400 Options.erase(Options.end() - 1); 3401 } 3402 3403 CodeGenFunction CGF(*this); 3404 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3405 3406 if (getTarget().supportsIFunc()) { 3407 std::string AliasName = getMangledNameImpl( 3408 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3409 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3410 if (!AliasFunc) { 3411 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3412 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3413 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3414 auto *GA = llvm::GlobalAlias::create( 3415 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3416 GA->setLinkage(llvm::Function::WeakODRLinkage); 3417 SetCommonAttributes(GD, GA); 3418 } 3419 } 3420 } 3421 3422 /// If a dispatcher for the specified mangled name is not in the module, create 3423 /// and return an llvm Function with the specified type. 3424 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3425 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3426 std::string MangledName = 3427 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3428 3429 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3430 // a separate resolver). 3431 std::string ResolverName = MangledName; 3432 if (getTarget().supportsIFunc()) 3433 ResolverName += ".ifunc"; 3434 else if (FD->isTargetMultiVersion()) 3435 ResolverName += ".resolver"; 3436 3437 // If this already exists, just return that one. 3438 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3439 return ResolverGV; 3440 3441 // Since this is the first time we've created this IFunc, make sure 3442 // that we put this multiversioned function into the list to be 3443 // replaced later if necessary (target multiversioning only). 3444 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3445 MultiVersionFuncs.push_back(GD); 3446 3447 if (getTarget().supportsIFunc()) { 3448 llvm::Type *ResolverType = llvm::FunctionType::get( 3449 llvm::PointerType::get( 3450 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3451 false); 3452 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3453 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3454 /*ForVTable=*/false); 3455 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3456 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3457 GIF->setName(ResolverName); 3458 SetCommonAttributes(FD, GIF); 3459 3460 return GIF; 3461 } 3462 3463 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3464 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3465 assert(isa<llvm::GlobalValue>(Resolver) && 3466 "Resolver should be created for the first time"); 3467 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3468 return Resolver; 3469 } 3470 3471 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3472 /// module, create and return an llvm Function with the specified type. If there 3473 /// is something in the module with the specified name, return it potentially 3474 /// bitcasted to the right type. 3475 /// 3476 /// If D is non-null, it specifies a decl that correspond to this. This is used 3477 /// to set the attributes on the function when it is first created. 3478 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3479 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3480 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3481 ForDefinition_t IsForDefinition) { 3482 const Decl *D = GD.getDecl(); 3483 3484 // Any attempts to use a MultiVersion function should result in retrieving 3485 // the iFunc instead. Name Mangling will handle the rest of the changes. 3486 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3487 // For the device mark the function as one that should be emitted. 3488 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3489 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3490 !DontDefer && !IsForDefinition) { 3491 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3492 GlobalDecl GDDef; 3493 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3494 GDDef = GlobalDecl(CD, GD.getCtorType()); 3495 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3496 GDDef = GlobalDecl(DD, GD.getDtorType()); 3497 else 3498 GDDef = GlobalDecl(FDDef); 3499 EmitGlobal(GDDef); 3500 } 3501 } 3502 3503 if (FD->isMultiVersion()) { 3504 if (FD->hasAttr<TargetAttr>()) 3505 UpdateMultiVersionNames(GD, FD); 3506 if (!IsForDefinition) 3507 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3508 } 3509 } 3510 3511 // Lookup the entry, lazily creating it if necessary. 3512 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3513 if (Entry) { 3514 if (WeakRefReferences.erase(Entry)) { 3515 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3516 if (FD && !FD->hasAttr<WeakAttr>()) 3517 Entry->setLinkage(llvm::Function::ExternalLinkage); 3518 } 3519 3520 // Handle dropped DLL attributes. 3521 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3522 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3523 setDSOLocal(Entry); 3524 } 3525 3526 // If there are two attempts to define the same mangled name, issue an 3527 // error. 3528 if (IsForDefinition && !Entry->isDeclaration()) { 3529 GlobalDecl OtherGD; 3530 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3531 // to make sure that we issue an error only once. 3532 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3533 (GD.getCanonicalDecl().getDecl() != 3534 OtherGD.getCanonicalDecl().getDecl()) && 3535 DiagnosedConflictingDefinitions.insert(GD).second) { 3536 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3537 << MangledName; 3538 getDiags().Report(OtherGD.getDecl()->getLocation(), 3539 diag::note_previous_definition); 3540 } 3541 } 3542 3543 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3544 (Entry->getValueType() == Ty)) { 3545 return Entry; 3546 } 3547 3548 // Make sure the result is of the correct type. 3549 // (If function is requested for a definition, we always need to create a new 3550 // function, not just return a bitcast.) 3551 if (!IsForDefinition) 3552 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3553 } 3554 3555 // This function doesn't have a complete type (for example, the return 3556 // type is an incomplete struct). Use a fake type instead, and make 3557 // sure not to try to set attributes. 3558 bool IsIncompleteFunction = false; 3559 3560 llvm::FunctionType *FTy; 3561 if (isa<llvm::FunctionType>(Ty)) { 3562 FTy = cast<llvm::FunctionType>(Ty); 3563 } else { 3564 FTy = llvm::FunctionType::get(VoidTy, false); 3565 IsIncompleteFunction = true; 3566 } 3567 3568 llvm::Function *F = 3569 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3570 Entry ? StringRef() : MangledName, &getModule()); 3571 3572 // If we already created a function with the same mangled name (but different 3573 // type) before, take its name and add it to the list of functions to be 3574 // replaced with F at the end of CodeGen. 3575 // 3576 // This happens if there is a prototype for a function (e.g. "int f()") and 3577 // then a definition of a different type (e.g. "int f(int x)"). 3578 if (Entry) { 3579 F->takeName(Entry); 3580 3581 // This might be an implementation of a function without a prototype, in 3582 // which case, try to do special replacement of calls which match the new 3583 // prototype. The really key thing here is that we also potentially drop 3584 // arguments from the call site so as to make a direct call, which makes the 3585 // inliner happier and suppresses a number of optimizer warnings (!) about 3586 // dropping arguments. 3587 if (!Entry->use_empty()) { 3588 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3589 Entry->removeDeadConstantUsers(); 3590 } 3591 3592 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3593 F, Entry->getValueType()->getPointerTo()); 3594 addGlobalValReplacement(Entry, BC); 3595 } 3596 3597 assert(F->getName() == MangledName && "name was uniqued!"); 3598 if (D) 3599 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3600 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3601 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3602 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3603 } 3604 3605 if (!DontDefer) { 3606 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3607 // each other bottoming out with the base dtor. Therefore we emit non-base 3608 // dtors on usage, even if there is no dtor definition in the TU. 3609 if (D && isa<CXXDestructorDecl>(D) && 3610 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3611 GD.getDtorType())) 3612 addDeferredDeclToEmit(GD); 3613 3614 // This is the first use or definition of a mangled name. If there is a 3615 // deferred decl with this name, remember that we need to emit it at the end 3616 // of the file. 3617 auto DDI = DeferredDecls.find(MangledName); 3618 if (DDI != DeferredDecls.end()) { 3619 // Move the potentially referenced deferred decl to the 3620 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3621 // don't need it anymore). 3622 addDeferredDeclToEmit(DDI->second); 3623 DeferredDecls.erase(DDI); 3624 3625 // Otherwise, there are cases we have to worry about where we're 3626 // using a declaration for which we must emit a definition but where 3627 // we might not find a top-level definition: 3628 // - member functions defined inline in their classes 3629 // - friend functions defined inline in some class 3630 // - special member functions with implicit definitions 3631 // If we ever change our AST traversal to walk into class methods, 3632 // this will be unnecessary. 3633 // 3634 // We also don't emit a definition for a function if it's going to be an 3635 // entry in a vtable, unless it's already marked as used. 3636 } else if (getLangOpts().CPlusPlus && D) { 3637 // Look for a declaration that's lexically in a record. 3638 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3639 FD = FD->getPreviousDecl()) { 3640 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3641 if (FD->doesThisDeclarationHaveABody()) { 3642 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3643 break; 3644 } 3645 } 3646 } 3647 } 3648 } 3649 3650 // Make sure the result is of the requested type. 3651 if (!IsIncompleteFunction) { 3652 assert(F->getFunctionType() == Ty); 3653 return F; 3654 } 3655 3656 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3657 return llvm::ConstantExpr::getBitCast(F, PTy); 3658 } 3659 3660 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3661 /// non-null, then this function will use the specified type if it has to 3662 /// create it (this occurs when we see a definition of the function). 3663 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3664 llvm::Type *Ty, 3665 bool ForVTable, 3666 bool DontDefer, 3667 ForDefinition_t IsForDefinition) { 3668 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3669 "consteval function should never be emitted"); 3670 // If there was no specific requested type, just convert it now. 3671 if (!Ty) { 3672 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3673 Ty = getTypes().ConvertType(FD->getType()); 3674 } 3675 3676 // Devirtualized destructor calls may come through here instead of via 3677 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3678 // of the complete destructor when necessary. 3679 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3680 if (getTarget().getCXXABI().isMicrosoft() && 3681 GD.getDtorType() == Dtor_Complete && 3682 DD->getParent()->getNumVBases() == 0) 3683 GD = GlobalDecl(DD, Dtor_Base); 3684 } 3685 3686 StringRef MangledName = getMangledName(GD); 3687 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3688 /*IsThunk=*/false, llvm::AttributeList(), 3689 IsForDefinition); 3690 // Returns kernel handle for HIP kernel stub function. 3691 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3692 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3693 auto *Handle = getCUDARuntime().getKernelHandle( 3694 cast<llvm::Function>(F->stripPointerCasts()), GD); 3695 if (IsForDefinition) 3696 return F; 3697 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3698 } 3699 return F; 3700 } 3701 3702 static const FunctionDecl * 3703 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3704 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3705 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3706 3707 IdentifierInfo &CII = C.Idents.get(Name); 3708 for (const auto *Result : DC->lookup(&CII)) 3709 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3710 return FD; 3711 3712 if (!C.getLangOpts().CPlusPlus) 3713 return nullptr; 3714 3715 // Demangle the premangled name from getTerminateFn() 3716 IdentifierInfo &CXXII = 3717 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3718 ? C.Idents.get("terminate") 3719 : C.Idents.get(Name); 3720 3721 for (const auto &N : {"__cxxabiv1", "std"}) { 3722 IdentifierInfo &NS = C.Idents.get(N); 3723 for (const auto *Result : DC->lookup(&NS)) { 3724 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3725 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3726 for (const auto *Result : LSD->lookup(&NS)) 3727 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3728 break; 3729 3730 if (ND) 3731 for (const auto *Result : ND->lookup(&CXXII)) 3732 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3733 return FD; 3734 } 3735 } 3736 3737 return nullptr; 3738 } 3739 3740 /// CreateRuntimeFunction - Create a new runtime function with the specified 3741 /// type and name. 3742 llvm::FunctionCallee 3743 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3744 llvm::AttributeList ExtraAttrs, bool Local, 3745 bool AssumeConvergent) { 3746 if (AssumeConvergent) { 3747 ExtraAttrs = 3748 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3749 llvm::Attribute::Convergent); 3750 } 3751 3752 llvm::Constant *C = 3753 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3754 /*DontDefer=*/false, /*IsThunk=*/false, 3755 ExtraAttrs); 3756 3757 if (auto *F = dyn_cast<llvm::Function>(C)) { 3758 if (F->empty()) { 3759 F->setCallingConv(getRuntimeCC()); 3760 3761 // In Windows Itanium environments, try to mark runtime functions 3762 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3763 // will link their standard library statically or dynamically. Marking 3764 // functions imported when they are not imported can cause linker errors 3765 // and warnings. 3766 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3767 !getCodeGenOpts().LTOVisibilityPublicStd) { 3768 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3769 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3770 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3771 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3772 } 3773 } 3774 setDSOLocal(F); 3775 } 3776 } 3777 3778 return {FTy, C}; 3779 } 3780 3781 /// isTypeConstant - Determine whether an object of this type can be emitted 3782 /// as a constant. 3783 /// 3784 /// If ExcludeCtor is true, the duration when the object's constructor runs 3785 /// will not be considered. The caller will need to verify that the object is 3786 /// not written to during its construction. 3787 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3788 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3789 return false; 3790 3791 if (Context.getLangOpts().CPlusPlus) { 3792 if (const CXXRecordDecl *Record 3793 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3794 return ExcludeCtor && !Record->hasMutableFields() && 3795 Record->hasTrivialDestructor(); 3796 } 3797 3798 return true; 3799 } 3800 3801 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3802 /// create and return an llvm GlobalVariable with the specified type and address 3803 /// space. If there is something in the module with the specified name, return 3804 /// it potentially bitcasted to the right type. 3805 /// 3806 /// If D is non-null, it specifies a decl that correspond to this. This is used 3807 /// to set the attributes on the global when it is first created. 3808 /// 3809 /// If IsForDefinition is true, it is guaranteed that an actual global with 3810 /// type Ty will be returned, not conversion of a variable with the same 3811 /// mangled name but some other type. 3812 llvm::Constant * 3813 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 3814 unsigned AddrSpace, const VarDecl *D, 3815 ForDefinition_t IsForDefinition) { 3816 // Lookup the entry, lazily creating it if necessary. 3817 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3818 if (Entry) { 3819 if (WeakRefReferences.erase(Entry)) { 3820 if (D && !D->hasAttr<WeakAttr>()) 3821 Entry->setLinkage(llvm::Function::ExternalLinkage); 3822 } 3823 3824 // Handle dropped DLL attributes. 3825 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3826 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3827 3828 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3829 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3830 3831 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace) 3832 return Entry; 3833 3834 // If there are two attempts to define the same mangled name, issue an 3835 // error. 3836 if (IsForDefinition && !Entry->isDeclaration()) { 3837 GlobalDecl OtherGD; 3838 const VarDecl *OtherD; 3839 3840 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3841 // to make sure that we issue an error only once. 3842 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3843 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3844 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3845 OtherD->hasInit() && 3846 DiagnosedConflictingDefinitions.insert(D).second) { 3847 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3848 << MangledName; 3849 getDiags().Report(OtherGD.getDecl()->getLocation(), 3850 diag::note_previous_definition); 3851 } 3852 } 3853 3854 // Make sure the result is of the correct type. 3855 if (Entry->getType()->getAddressSpace() != AddrSpace) { 3856 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 3857 Ty->getPointerTo(AddrSpace)); 3858 } 3859 3860 // (If global is requested for a definition, we always need to create a new 3861 // global, not just return a bitcast.) 3862 if (!IsForDefinition) 3863 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace)); 3864 } 3865 3866 auto DAddrSpace = GetGlobalVarAddressSpace(D); 3867 auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace); 3868 3869 auto *GV = new llvm::GlobalVariable( 3870 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 3871 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 3872 TargetAddrSpace); 3873 3874 // If we already created a global with the same mangled name (but different 3875 // type) before, take its name and remove it from its parent. 3876 if (Entry) { 3877 GV->takeName(Entry); 3878 3879 if (!Entry->use_empty()) { 3880 llvm::Constant *NewPtrForOldDecl = 3881 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3882 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3883 } 3884 3885 Entry->eraseFromParent(); 3886 } 3887 3888 // This is the first use or definition of a mangled name. If there is a 3889 // deferred decl with this name, remember that we need to emit it at the end 3890 // of the file. 3891 auto DDI = DeferredDecls.find(MangledName); 3892 if (DDI != DeferredDecls.end()) { 3893 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3894 // list, and remove it from DeferredDecls (since we don't need it anymore). 3895 addDeferredDeclToEmit(DDI->second); 3896 DeferredDecls.erase(DDI); 3897 } 3898 3899 // Handle things which are present even on external declarations. 3900 if (D) { 3901 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3902 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3903 3904 // FIXME: This code is overly simple and should be merged with other global 3905 // handling. 3906 GV->setConstant(isTypeConstant(D->getType(), false)); 3907 3908 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3909 3910 setLinkageForGV(GV, D); 3911 3912 if (D->getTLSKind()) { 3913 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3914 CXXThreadLocals.push_back(D); 3915 setTLSMode(GV, *D); 3916 } 3917 3918 setGVProperties(GV, D); 3919 3920 // If required by the ABI, treat declarations of static data members with 3921 // inline initializers as definitions. 3922 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3923 EmitGlobalVarDefinition(D); 3924 } 3925 3926 // Emit section information for extern variables. 3927 if (D->hasExternalStorage()) { 3928 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3929 GV->setSection(SA->getName()); 3930 } 3931 3932 // Handle XCore specific ABI requirements. 3933 if (getTriple().getArch() == llvm::Triple::xcore && 3934 D->getLanguageLinkage() == CLanguageLinkage && 3935 D->getType().isConstant(Context) && 3936 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3937 GV->setSection(".cp.rodata"); 3938 3939 // Check if we a have a const declaration with an initializer, we may be 3940 // able to emit it as available_externally to expose it's value to the 3941 // optimizer. 3942 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3943 D->getType().isConstQualified() && !GV->hasInitializer() && 3944 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3945 const auto *Record = 3946 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3947 bool HasMutableFields = Record && Record->hasMutableFields(); 3948 if (!HasMutableFields) { 3949 const VarDecl *InitDecl; 3950 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3951 if (InitExpr) { 3952 ConstantEmitter emitter(*this); 3953 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3954 if (Init) { 3955 auto *InitType = Init->getType(); 3956 if (GV->getValueType() != InitType) { 3957 // The type of the initializer does not match the definition. 3958 // This happens when an initializer has a different type from 3959 // the type of the global (because of padding at the end of a 3960 // structure for instance). 3961 GV->setName(StringRef()); 3962 // Make a new global with the correct type, this is now guaranteed 3963 // to work. 3964 auto *NewGV = cast<llvm::GlobalVariable>( 3965 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3966 ->stripPointerCasts()); 3967 3968 // Erase the old global, since it is no longer used. 3969 GV->eraseFromParent(); 3970 GV = NewGV; 3971 } else { 3972 GV->setInitializer(Init); 3973 GV->setConstant(true); 3974 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3975 } 3976 emitter.finalize(GV); 3977 } 3978 } 3979 } 3980 } 3981 } 3982 3983 if (GV->isDeclaration()) { 3984 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3985 // External HIP managed variables needed to be recorded for transformation 3986 // in both device and host compilations. 3987 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 3988 D->hasExternalStorage()) 3989 getCUDARuntime().handleVarRegistration(D, *GV); 3990 } 3991 3992 LangAS ExpectedAS = 3993 D ? D->getType().getAddressSpace() 3994 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3995 assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace); 3996 if (DAddrSpace != ExpectedAS) { 3997 return getTargetCodeGenInfo().performAddrSpaceCast( 3998 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace)); 3999 } 4000 4001 return GV; 4002 } 4003 4004 llvm::Constant * 4005 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4006 const Decl *D = GD.getDecl(); 4007 4008 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4009 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4010 /*DontDefer=*/false, IsForDefinition); 4011 4012 if (isa<CXXMethodDecl>(D)) { 4013 auto FInfo = 4014 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4015 auto Ty = getTypes().GetFunctionType(*FInfo); 4016 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4017 IsForDefinition); 4018 } 4019 4020 if (isa<FunctionDecl>(D)) { 4021 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4022 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4023 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4024 IsForDefinition); 4025 } 4026 4027 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4028 } 4029 4030 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4031 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4032 unsigned Alignment) { 4033 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4034 llvm::GlobalVariable *OldGV = nullptr; 4035 4036 if (GV) { 4037 // Check if the variable has the right type. 4038 if (GV->getValueType() == Ty) 4039 return GV; 4040 4041 // Because C++ name mangling, the only way we can end up with an already 4042 // existing global with the same name is if it has been declared extern "C". 4043 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4044 OldGV = GV; 4045 } 4046 4047 // Create a new variable. 4048 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4049 Linkage, nullptr, Name); 4050 4051 if (OldGV) { 4052 // Replace occurrences of the old variable if needed. 4053 GV->takeName(OldGV); 4054 4055 if (!OldGV->use_empty()) { 4056 llvm::Constant *NewPtrForOldDecl = 4057 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4058 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4059 } 4060 4061 OldGV->eraseFromParent(); 4062 } 4063 4064 if (supportsCOMDAT() && GV->isWeakForLinker() && 4065 !GV->hasAvailableExternallyLinkage()) 4066 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4067 4068 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4069 4070 return GV; 4071 } 4072 4073 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4074 /// given global variable. If Ty is non-null and if the global doesn't exist, 4075 /// then it will be created with the specified type instead of whatever the 4076 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4077 /// that an actual global with type Ty will be returned, not conversion of a 4078 /// variable with the same mangled name but some other type. 4079 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4080 llvm::Type *Ty, 4081 ForDefinition_t IsForDefinition) { 4082 assert(D->hasGlobalStorage() && "Not a global variable"); 4083 QualType ASTTy = D->getType(); 4084 if (!Ty) 4085 Ty = getTypes().ConvertTypeForMem(ASTTy); 4086 4087 StringRef MangledName = getMangledName(D); 4088 return GetOrCreateLLVMGlobal(MangledName, Ty, 4089 getContext().getTargetAddressSpace(ASTTy), D, 4090 IsForDefinition); 4091 } 4092 4093 /// CreateRuntimeVariable - Create a new runtime global variable with the 4094 /// specified type and name. 4095 llvm::Constant * 4096 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4097 StringRef Name) { 4098 auto AddrSpace = 4099 getContext().getLangOpts().OpenCL 4100 ? getContext().getTargetAddressSpace(LangAS::opencl_global) 4101 : 0; 4102 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4103 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4104 return Ret; 4105 } 4106 4107 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4108 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4109 4110 StringRef MangledName = getMangledName(D); 4111 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4112 4113 // We already have a definition, not declaration, with the same mangled name. 4114 // Emitting of declaration is not required (and actually overwrites emitted 4115 // definition). 4116 if (GV && !GV->isDeclaration()) 4117 return; 4118 4119 // If we have not seen a reference to this variable yet, place it into the 4120 // deferred declarations table to be emitted if needed later. 4121 if (!MustBeEmitted(D) && !GV) { 4122 DeferredDecls[MangledName] = D; 4123 return; 4124 } 4125 4126 // The tentative definition is the only definition. 4127 EmitGlobalVarDefinition(D); 4128 } 4129 4130 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4131 EmitExternalVarDeclaration(D); 4132 } 4133 4134 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4135 return Context.toCharUnitsFromBits( 4136 getDataLayout().getTypeStoreSizeInBits(Ty)); 4137 } 4138 4139 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4140 LangAS AddrSpace = LangAS::Default; 4141 if (LangOpts.OpenCL) { 4142 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4143 assert(AddrSpace == LangAS::opencl_global || 4144 AddrSpace == LangAS::opencl_global_device || 4145 AddrSpace == LangAS::opencl_global_host || 4146 AddrSpace == LangAS::opencl_constant || 4147 AddrSpace == LangAS::opencl_local || 4148 AddrSpace >= LangAS::FirstTargetAddressSpace); 4149 return AddrSpace; 4150 } 4151 4152 if (LangOpts.SYCLIsDevice && 4153 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4154 return LangAS::sycl_global; 4155 4156 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4157 if (D && D->hasAttr<CUDAConstantAttr>()) 4158 return LangAS::cuda_constant; 4159 else if (D && D->hasAttr<CUDASharedAttr>()) 4160 return LangAS::cuda_shared; 4161 else if (D && D->hasAttr<CUDADeviceAttr>()) 4162 return LangAS::cuda_device; 4163 else if (D && D->getType().isConstQualified()) 4164 return LangAS::cuda_constant; 4165 else 4166 return LangAS::cuda_device; 4167 } 4168 4169 if (LangOpts.OpenMP) { 4170 LangAS AS; 4171 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4172 return AS; 4173 } 4174 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4175 } 4176 4177 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4178 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4179 if (LangOpts.OpenCL) 4180 return LangAS::opencl_constant; 4181 if (LangOpts.SYCLIsDevice) 4182 return LangAS::sycl_global; 4183 if (auto AS = getTarget().getConstantAddressSpace()) 4184 return AS.getValue(); 4185 return LangAS::Default; 4186 } 4187 4188 // In address space agnostic languages, string literals are in default address 4189 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4190 // emitted in constant address space in LLVM IR. To be consistent with other 4191 // parts of AST, string literal global variables in constant address space 4192 // need to be casted to default address space before being put into address 4193 // map and referenced by other part of CodeGen. 4194 // In OpenCL, string literals are in constant address space in AST, therefore 4195 // they should not be casted to default address space. 4196 static llvm::Constant * 4197 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4198 llvm::GlobalVariable *GV) { 4199 llvm::Constant *Cast = GV; 4200 if (!CGM.getLangOpts().OpenCL) { 4201 auto AS = CGM.GetGlobalConstantAddressSpace(); 4202 if (AS != LangAS::Default) 4203 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4204 CGM, GV, AS, LangAS::Default, 4205 GV->getValueType()->getPointerTo( 4206 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4207 } 4208 return Cast; 4209 } 4210 4211 template<typename SomeDecl> 4212 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4213 llvm::GlobalValue *GV) { 4214 if (!getLangOpts().CPlusPlus) 4215 return; 4216 4217 // Must have 'used' attribute, or else inline assembly can't rely on 4218 // the name existing. 4219 if (!D->template hasAttr<UsedAttr>()) 4220 return; 4221 4222 // Must have internal linkage and an ordinary name. 4223 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4224 return; 4225 4226 // Must be in an extern "C" context. Entities declared directly within 4227 // a record are not extern "C" even if the record is in such a context. 4228 const SomeDecl *First = D->getFirstDecl(); 4229 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4230 return; 4231 4232 // OK, this is an internal linkage entity inside an extern "C" linkage 4233 // specification. Make a note of that so we can give it the "expected" 4234 // mangled name if nothing else is using that name. 4235 std::pair<StaticExternCMap::iterator, bool> R = 4236 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4237 4238 // If we have multiple internal linkage entities with the same name 4239 // in extern "C" regions, none of them gets that name. 4240 if (!R.second) 4241 R.first->second = nullptr; 4242 } 4243 4244 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4245 if (!CGM.supportsCOMDAT()) 4246 return false; 4247 4248 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4249 // them being "merged" by the COMDAT Folding linker optimization. 4250 if (D.hasAttr<CUDAGlobalAttr>()) 4251 return false; 4252 4253 if (D.hasAttr<SelectAnyAttr>()) 4254 return true; 4255 4256 GVALinkage Linkage; 4257 if (auto *VD = dyn_cast<VarDecl>(&D)) 4258 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4259 else 4260 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4261 4262 switch (Linkage) { 4263 case GVA_Internal: 4264 case GVA_AvailableExternally: 4265 case GVA_StrongExternal: 4266 return false; 4267 case GVA_DiscardableODR: 4268 case GVA_StrongODR: 4269 return true; 4270 } 4271 llvm_unreachable("No such linkage"); 4272 } 4273 4274 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4275 llvm::GlobalObject &GO) { 4276 if (!shouldBeInCOMDAT(*this, D)) 4277 return; 4278 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4279 } 4280 4281 /// Pass IsTentative as true if you want to create a tentative definition. 4282 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4283 bool IsTentative) { 4284 // OpenCL global variables of sampler type are translated to function calls, 4285 // therefore no need to be translated. 4286 QualType ASTTy = D->getType(); 4287 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4288 return; 4289 4290 // If this is OpenMP device, check if it is legal to emit this global 4291 // normally. 4292 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4293 OpenMPRuntime->emitTargetGlobalVariable(D)) 4294 return; 4295 4296 llvm::TrackingVH<llvm::Constant> Init; 4297 bool NeedsGlobalCtor = false; 4298 bool NeedsGlobalDtor = 4299 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4300 4301 const VarDecl *InitDecl; 4302 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4303 4304 Optional<ConstantEmitter> emitter; 4305 4306 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4307 // as part of their declaration." Sema has already checked for 4308 // error cases, so we just need to set Init to UndefValue. 4309 bool IsCUDASharedVar = 4310 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4311 // Shadows of initialized device-side global variables are also left 4312 // undefined. 4313 // Managed Variables should be initialized on both host side and device side. 4314 bool IsCUDAShadowVar = 4315 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4316 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4317 D->hasAttr<CUDASharedAttr>()); 4318 bool IsCUDADeviceShadowVar = 4319 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4320 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4321 D->getType()->isCUDADeviceBuiltinTextureType()); 4322 if (getLangOpts().CUDA && 4323 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4324 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4325 else if (D->hasAttr<LoaderUninitializedAttr>()) 4326 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4327 else if (!InitExpr) { 4328 // This is a tentative definition; tentative definitions are 4329 // implicitly initialized with { 0 }. 4330 // 4331 // Note that tentative definitions are only emitted at the end of 4332 // a translation unit, so they should never have incomplete 4333 // type. In addition, EmitTentativeDefinition makes sure that we 4334 // never attempt to emit a tentative definition if a real one 4335 // exists. A use may still exists, however, so we still may need 4336 // to do a RAUW. 4337 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4338 Init = EmitNullConstant(D->getType()); 4339 } else { 4340 initializedGlobalDecl = GlobalDecl(D); 4341 emitter.emplace(*this); 4342 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4343 if (!Initializer) { 4344 QualType T = InitExpr->getType(); 4345 if (D->getType()->isReferenceType()) 4346 T = D->getType(); 4347 4348 if (getLangOpts().CPlusPlus) { 4349 Init = EmitNullConstant(T); 4350 NeedsGlobalCtor = true; 4351 } else { 4352 ErrorUnsupported(D, "static initializer"); 4353 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4354 } 4355 } else { 4356 Init = Initializer; 4357 // We don't need an initializer, so remove the entry for the delayed 4358 // initializer position (just in case this entry was delayed) if we 4359 // also don't need to register a destructor. 4360 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4361 DelayedCXXInitPosition.erase(D); 4362 } 4363 } 4364 4365 llvm::Type* InitType = Init->getType(); 4366 llvm::Constant *Entry = 4367 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4368 4369 // Strip off pointer casts if we got them. 4370 Entry = Entry->stripPointerCasts(); 4371 4372 // Entry is now either a Function or GlobalVariable. 4373 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4374 4375 // We have a definition after a declaration with the wrong type. 4376 // We must make a new GlobalVariable* and update everything that used OldGV 4377 // (a declaration or tentative definition) with the new GlobalVariable* 4378 // (which will be a definition). 4379 // 4380 // This happens if there is a prototype for a global (e.g. 4381 // "extern int x[];") and then a definition of a different type (e.g. 4382 // "int x[10];"). This also happens when an initializer has a different type 4383 // from the type of the global (this happens with unions). 4384 if (!GV || GV->getValueType() != InitType || 4385 GV->getType()->getAddressSpace() != 4386 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4387 4388 // Move the old entry aside so that we'll create a new one. 4389 Entry->setName(StringRef()); 4390 4391 // Make a new global with the correct type, this is now guaranteed to work. 4392 GV = cast<llvm::GlobalVariable>( 4393 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4394 ->stripPointerCasts()); 4395 4396 // Replace all uses of the old global with the new global 4397 llvm::Constant *NewPtrForOldDecl = 4398 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4399 Entry->getType()); 4400 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4401 4402 // Erase the old global, since it is no longer used. 4403 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4404 } 4405 4406 MaybeHandleStaticInExternC(D, GV); 4407 4408 if (D->hasAttr<AnnotateAttr>()) 4409 AddGlobalAnnotations(D, GV); 4410 4411 // Set the llvm linkage type as appropriate. 4412 llvm::GlobalValue::LinkageTypes Linkage = 4413 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4414 4415 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4416 // the device. [...]" 4417 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4418 // __device__, declares a variable that: [...] 4419 // Is accessible from all the threads within the grid and from the host 4420 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4421 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4422 if (GV && LangOpts.CUDA) { 4423 if (LangOpts.CUDAIsDevice) { 4424 if (Linkage != llvm::GlobalValue::InternalLinkage && 4425 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4426 GV->setExternallyInitialized(true); 4427 } else { 4428 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4429 } 4430 getCUDARuntime().handleVarRegistration(D, *GV); 4431 } 4432 4433 GV->setInitializer(Init); 4434 if (emitter) 4435 emitter->finalize(GV); 4436 4437 // If it is safe to mark the global 'constant', do so now. 4438 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4439 isTypeConstant(D->getType(), true)); 4440 4441 // If it is in a read-only section, mark it 'constant'. 4442 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4443 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4444 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4445 GV->setConstant(true); 4446 } 4447 4448 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4449 4450 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4451 // function is only defined alongside the variable, not also alongside 4452 // callers. Normally, all accesses to a thread_local go through the 4453 // thread-wrapper in order to ensure initialization has occurred, underlying 4454 // variable will never be used other than the thread-wrapper, so it can be 4455 // converted to internal linkage. 4456 // 4457 // However, if the variable has the 'constinit' attribute, it _can_ be 4458 // referenced directly, without calling the thread-wrapper, so the linkage 4459 // must not be changed. 4460 // 4461 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4462 // weak or linkonce, the de-duplication semantics are important to preserve, 4463 // so we don't change the linkage. 4464 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4465 Linkage == llvm::GlobalValue::ExternalLinkage && 4466 Context.getTargetInfo().getTriple().isOSDarwin() && 4467 !D->hasAttr<ConstInitAttr>()) 4468 Linkage = llvm::GlobalValue::InternalLinkage; 4469 4470 GV->setLinkage(Linkage); 4471 if (D->hasAttr<DLLImportAttr>()) 4472 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4473 else if (D->hasAttr<DLLExportAttr>()) 4474 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4475 else 4476 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4477 4478 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4479 // common vars aren't constant even if declared const. 4480 GV->setConstant(false); 4481 // Tentative definition of global variables may be initialized with 4482 // non-zero null pointers. In this case they should have weak linkage 4483 // since common linkage must have zero initializer and must not have 4484 // explicit section therefore cannot have non-zero initial value. 4485 if (!GV->getInitializer()->isNullValue()) 4486 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4487 } 4488 4489 setNonAliasAttributes(D, GV); 4490 4491 if (D->getTLSKind() && !GV->isThreadLocal()) { 4492 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4493 CXXThreadLocals.push_back(D); 4494 setTLSMode(GV, *D); 4495 } 4496 4497 maybeSetTrivialComdat(*D, *GV); 4498 4499 // Emit the initializer function if necessary. 4500 if (NeedsGlobalCtor || NeedsGlobalDtor) 4501 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4502 4503 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4504 4505 // Emit global variable debug information. 4506 if (CGDebugInfo *DI = getModuleDebugInfo()) 4507 if (getCodeGenOpts().hasReducedDebugInfo()) 4508 DI->EmitGlobalVariable(GV, D); 4509 } 4510 4511 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4512 if (CGDebugInfo *DI = getModuleDebugInfo()) 4513 if (getCodeGenOpts().hasReducedDebugInfo()) { 4514 QualType ASTTy = D->getType(); 4515 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4516 llvm::Constant *GV = GetOrCreateLLVMGlobal( 4517 D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D); 4518 DI->EmitExternalVariable( 4519 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4520 } 4521 } 4522 4523 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4524 CodeGenModule &CGM, const VarDecl *D, 4525 bool NoCommon) { 4526 // Don't give variables common linkage if -fno-common was specified unless it 4527 // was overridden by a NoCommon attribute. 4528 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4529 return true; 4530 4531 // C11 6.9.2/2: 4532 // A declaration of an identifier for an object that has file scope without 4533 // an initializer, and without a storage-class specifier or with the 4534 // storage-class specifier static, constitutes a tentative definition. 4535 if (D->getInit() || D->hasExternalStorage()) 4536 return true; 4537 4538 // A variable cannot be both common and exist in a section. 4539 if (D->hasAttr<SectionAttr>()) 4540 return true; 4541 4542 // A variable cannot be both common and exist in a section. 4543 // We don't try to determine which is the right section in the front-end. 4544 // If no specialized section name is applicable, it will resort to default. 4545 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4546 D->hasAttr<PragmaClangDataSectionAttr>() || 4547 D->hasAttr<PragmaClangRelroSectionAttr>() || 4548 D->hasAttr<PragmaClangRodataSectionAttr>()) 4549 return true; 4550 4551 // Thread local vars aren't considered common linkage. 4552 if (D->getTLSKind()) 4553 return true; 4554 4555 // Tentative definitions marked with WeakImportAttr are true definitions. 4556 if (D->hasAttr<WeakImportAttr>()) 4557 return true; 4558 4559 // A variable cannot be both common and exist in a comdat. 4560 if (shouldBeInCOMDAT(CGM, *D)) 4561 return true; 4562 4563 // Declarations with a required alignment do not have common linkage in MSVC 4564 // mode. 4565 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4566 if (D->hasAttr<AlignedAttr>()) 4567 return true; 4568 QualType VarType = D->getType(); 4569 if (Context.isAlignmentRequired(VarType)) 4570 return true; 4571 4572 if (const auto *RT = VarType->getAs<RecordType>()) { 4573 const RecordDecl *RD = RT->getDecl(); 4574 for (const FieldDecl *FD : RD->fields()) { 4575 if (FD->isBitField()) 4576 continue; 4577 if (FD->hasAttr<AlignedAttr>()) 4578 return true; 4579 if (Context.isAlignmentRequired(FD->getType())) 4580 return true; 4581 } 4582 } 4583 } 4584 4585 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4586 // common symbols, so symbols with greater alignment requirements cannot be 4587 // common. 4588 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4589 // alignments for common symbols via the aligncomm directive, so this 4590 // restriction only applies to MSVC environments. 4591 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4592 Context.getTypeAlignIfKnown(D->getType()) > 4593 Context.toBits(CharUnits::fromQuantity(32))) 4594 return true; 4595 4596 return false; 4597 } 4598 4599 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4600 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4601 if (Linkage == GVA_Internal) 4602 return llvm::Function::InternalLinkage; 4603 4604 if (D->hasAttr<WeakAttr>()) { 4605 if (IsConstantVariable) 4606 return llvm::GlobalVariable::WeakODRLinkage; 4607 else 4608 return llvm::GlobalVariable::WeakAnyLinkage; 4609 } 4610 4611 if (const auto *FD = D->getAsFunction()) 4612 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4613 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4614 4615 // We are guaranteed to have a strong definition somewhere else, 4616 // so we can use available_externally linkage. 4617 if (Linkage == GVA_AvailableExternally) 4618 return llvm::GlobalValue::AvailableExternallyLinkage; 4619 4620 // Note that Apple's kernel linker doesn't support symbol 4621 // coalescing, so we need to avoid linkonce and weak linkages there. 4622 // Normally, this means we just map to internal, but for explicit 4623 // instantiations we'll map to external. 4624 4625 // In C++, the compiler has to emit a definition in every translation unit 4626 // that references the function. We should use linkonce_odr because 4627 // a) if all references in this translation unit are optimized away, we 4628 // don't need to codegen it. b) if the function persists, it needs to be 4629 // merged with other definitions. c) C++ has the ODR, so we know the 4630 // definition is dependable. 4631 if (Linkage == GVA_DiscardableODR) 4632 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4633 : llvm::Function::InternalLinkage; 4634 4635 // An explicit instantiation of a template has weak linkage, since 4636 // explicit instantiations can occur in multiple translation units 4637 // and must all be equivalent. However, we are not allowed to 4638 // throw away these explicit instantiations. 4639 // 4640 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4641 // so say that CUDA templates are either external (for kernels) or internal. 4642 // This lets llvm perform aggressive inter-procedural optimizations. For 4643 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4644 // therefore we need to follow the normal linkage paradigm. 4645 if (Linkage == GVA_StrongODR) { 4646 if (getLangOpts().AppleKext) 4647 return llvm::Function::ExternalLinkage; 4648 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4649 !getLangOpts().GPURelocatableDeviceCode) 4650 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4651 : llvm::Function::InternalLinkage; 4652 return llvm::Function::WeakODRLinkage; 4653 } 4654 4655 // C++ doesn't have tentative definitions and thus cannot have common 4656 // linkage. 4657 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4658 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4659 CodeGenOpts.NoCommon)) 4660 return llvm::GlobalVariable::CommonLinkage; 4661 4662 // selectany symbols are externally visible, so use weak instead of 4663 // linkonce. MSVC optimizes away references to const selectany globals, so 4664 // all definitions should be the same and ODR linkage should be used. 4665 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4666 if (D->hasAttr<SelectAnyAttr>()) 4667 return llvm::GlobalVariable::WeakODRLinkage; 4668 4669 // Otherwise, we have strong external linkage. 4670 assert(Linkage == GVA_StrongExternal); 4671 return llvm::GlobalVariable::ExternalLinkage; 4672 } 4673 4674 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4675 const VarDecl *VD, bool IsConstant) { 4676 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4677 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4678 } 4679 4680 /// Replace the uses of a function that was declared with a non-proto type. 4681 /// We want to silently drop extra arguments from call sites 4682 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4683 llvm::Function *newFn) { 4684 // Fast path. 4685 if (old->use_empty()) return; 4686 4687 llvm::Type *newRetTy = newFn->getReturnType(); 4688 SmallVector<llvm::Value*, 4> newArgs; 4689 4690 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4691 ui != ue; ) { 4692 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4693 llvm::User *user = use->getUser(); 4694 4695 // Recognize and replace uses of bitcasts. Most calls to 4696 // unprototyped functions will use bitcasts. 4697 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4698 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4699 replaceUsesOfNonProtoConstant(bitcast, newFn); 4700 continue; 4701 } 4702 4703 // Recognize calls to the function. 4704 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4705 if (!callSite) continue; 4706 if (!callSite->isCallee(&*use)) 4707 continue; 4708 4709 // If the return types don't match exactly, then we can't 4710 // transform this call unless it's dead. 4711 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4712 continue; 4713 4714 // Get the call site's attribute list. 4715 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4716 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4717 4718 // If the function was passed too few arguments, don't transform. 4719 unsigned newNumArgs = newFn->arg_size(); 4720 if (callSite->arg_size() < newNumArgs) 4721 continue; 4722 4723 // If extra arguments were passed, we silently drop them. 4724 // If any of the types mismatch, we don't transform. 4725 unsigned argNo = 0; 4726 bool dontTransform = false; 4727 for (llvm::Argument &A : newFn->args()) { 4728 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4729 dontTransform = true; 4730 break; 4731 } 4732 4733 // Add any parameter attributes. 4734 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4735 argNo++; 4736 } 4737 if (dontTransform) 4738 continue; 4739 4740 // Okay, we can transform this. Create the new call instruction and copy 4741 // over the required information. 4742 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4743 4744 // Copy over any operand bundles. 4745 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4746 callSite->getOperandBundlesAsDefs(newBundles); 4747 4748 llvm::CallBase *newCall; 4749 if (dyn_cast<llvm::CallInst>(callSite)) { 4750 newCall = 4751 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4752 } else { 4753 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4754 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4755 oldInvoke->getUnwindDest(), newArgs, 4756 newBundles, "", callSite); 4757 } 4758 newArgs.clear(); // for the next iteration 4759 4760 if (!newCall->getType()->isVoidTy()) 4761 newCall->takeName(callSite); 4762 newCall->setAttributes(llvm::AttributeList::get( 4763 newFn->getContext(), oldAttrs.getFnAttributes(), 4764 oldAttrs.getRetAttributes(), newArgAttrs)); 4765 newCall->setCallingConv(callSite->getCallingConv()); 4766 4767 // Finally, remove the old call, replacing any uses with the new one. 4768 if (!callSite->use_empty()) 4769 callSite->replaceAllUsesWith(newCall); 4770 4771 // Copy debug location attached to CI. 4772 if (callSite->getDebugLoc()) 4773 newCall->setDebugLoc(callSite->getDebugLoc()); 4774 4775 callSite->eraseFromParent(); 4776 } 4777 } 4778 4779 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4780 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4781 /// existing call uses of the old function in the module, this adjusts them to 4782 /// call the new function directly. 4783 /// 4784 /// This is not just a cleanup: the always_inline pass requires direct calls to 4785 /// functions to be able to inline them. If there is a bitcast in the way, it 4786 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4787 /// run at -O0. 4788 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4789 llvm::Function *NewFn) { 4790 // If we're redefining a global as a function, don't transform it. 4791 if (!isa<llvm::Function>(Old)) return; 4792 4793 replaceUsesOfNonProtoConstant(Old, NewFn); 4794 } 4795 4796 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4797 auto DK = VD->isThisDeclarationADefinition(); 4798 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4799 return; 4800 4801 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4802 // If we have a definition, this might be a deferred decl. If the 4803 // instantiation is explicit, make sure we emit it at the end. 4804 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4805 GetAddrOfGlobalVar(VD); 4806 4807 EmitTopLevelDecl(VD); 4808 } 4809 4810 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4811 llvm::GlobalValue *GV) { 4812 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4813 4814 // Compute the function info and LLVM type. 4815 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4816 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4817 4818 // Get or create the prototype for the function. 4819 if (!GV || (GV->getValueType() != Ty)) 4820 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4821 /*DontDefer=*/true, 4822 ForDefinition)); 4823 4824 // Already emitted. 4825 if (!GV->isDeclaration()) 4826 return; 4827 4828 // We need to set linkage and visibility on the function before 4829 // generating code for it because various parts of IR generation 4830 // want to propagate this information down (e.g. to local static 4831 // declarations). 4832 auto *Fn = cast<llvm::Function>(GV); 4833 setFunctionLinkage(GD, Fn); 4834 4835 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4836 setGVProperties(Fn, GD); 4837 4838 MaybeHandleStaticInExternC(D, Fn); 4839 4840 maybeSetTrivialComdat(*D, *Fn); 4841 4842 // Set CodeGen attributes that represent floating point environment. 4843 setLLVMFunctionFEnvAttributes(D, Fn); 4844 4845 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4846 4847 setNonAliasAttributes(GD, Fn); 4848 SetLLVMFunctionAttributesForDefinition(D, Fn); 4849 4850 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4851 AddGlobalCtor(Fn, CA->getPriority()); 4852 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4853 AddGlobalDtor(Fn, DA->getPriority(), true); 4854 if (D->hasAttr<AnnotateAttr>()) 4855 AddGlobalAnnotations(D, Fn); 4856 } 4857 4858 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4859 const auto *D = cast<ValueDecl>(GD.getDecl()); 4860 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4861 assert(AA && "Not an alias?"); 4862 4863 StringRef MangledName = getMangledName(GD); 4864 4865 if (AA->getAliasee() == MangledName) { 4866 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4867 return; 4868 } 4869 4870 // If there is a definition in the module, then it wins over the alias. 4871 // This is dubious, but allow it to be safe. Just ignore the alias. 4872 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4873 if (Entry && !Entry->isDeclaration()) 4874 return; 4875 4876 Aliases.push_back(GD); 4877 4878 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4879 4880 // Create a reference to the named value. This ensures that it is emitted 4881 // if a deferred decl. 4882 llvm::Constant *Aliasee; 4883 llvm::GlobalValue::LinkageTypes LT; 4884 if (isa<llvm::FunctionType>(DeclTy)) { 4885 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4886 /*ForVTable=*/false); 4887 LT = getFunctionLinkage(GD); 4888 } else { 4889 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, 4890 /*D=*/nullptr); 4891 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4892 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4893 else 4894 LT = getFunctionLinkage(GD); 4895 } 4896 4897 // Create the new alias itself, but don't set a name yet. 4898 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4899 auto *GA = 4900 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4901 4902 if (Entry) { 4903 if (GA->getAliasee() == Entry) { 4904 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4905 return; 4906 } 4907 4908 assert(Entry->isDeclaration()); 4909 4910 // If there is a declaration in the module, then we had an extern followed 4911 // by the alias, as in: 4912 // extern int test6(); 4913 // ... 4914 // int test6() __attribute__((alias("test7"))); 4915 // 4916 // Remove it and replace uses of it with the alias. 4917 GA->takeName(Entry); 4918 4919 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4920 Entry->getType())); 4921 Entry->eraseFromParent(); 4922 } else { 4923 GA->setName(MangledName); 4924 } 4925 4926 // Set attributes which are particular to an alias; this is a 4927 // specialization of the attributes which may be set on a global 4928 // variable/function. 4929 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4930 D->isWeakImported()) { 4931 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4932 } 4933 4934 if (const auto *VD = dyn_cast<VarDecl>(D)) 4935 if (VD->getTLSKind()) 4936 setTLSMode(GA, *VD); 4937 4938 SetCommonAttributes(GD, GA); 4939 } 4940 4941 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4942 const auto *D = cast<ValueDecl>(GD.getDecl()); 4943 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4944 assert(IFA && "Not an ifunc?"); 4945 4946 StringRef MangledName = getMangledName(GD); 4947 4948 if (IFA->getResolver() == MangledName) { 4949 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4950 return; 4951 } 4952 4953 // Report an error if some definition overrides ifunc. 4954 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4955 if (Entry && !Entry->isDeclaration()) { 4956 GlobalDecl OtherGD; 4957 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4958 DiagnosedConflictingDefinitions.insert(GD).second) { 4959 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4960 << MangledName; 4961 Diags.Report(OtherGD.getDecl()->getLocation(), 4962 diag::note_previous_definition); 4963 } 4964 return; 4965 } 4966 4967 Aliases.push_back(GD); 4968 4969 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4970 llvm::Constant *Resolver = 4971 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4972 /*ForVTable=*/false); 4973 llvm::GlobalIFunc *GIF = 4974 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4975 "", Resolver, &getModule()); 4976 if (Entry) { 4977 if (GIF->getResolver() == Entry) { 4978 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4979 return; 4980 } 4981 assert(Entry->isDeclaration()); 4982 4983 // If there is a declaration in the module, then we had an extern followed 4984 // by the ifunc, as in: 4985 // extern int test(); 4986 // ... 4987 // int test() __attribute__((ifunc("resolver"))); 4988 // 4989 // Remove it and replace uses of it with the ifunc. 4990 GIF->takeName(Entry); 4991 4992 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4993 Entry->getType())); 4994 Entry->eraseFromParent(); 4995 } else 4996 GIF->setName(MangledName); 4997 4998 SetCommonAttributes(GD, GIF); 4999 } 5000 5001 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5002 ArrayRef<llvm::Type*> Tys) { 5003 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5004 Tys); 5005 } 5006 5007 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5008 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5009 const StringLiteral *Literal, bool TargetIsLSB, 5010 bool &IsUTF16, unsigned &StringLength) { 5011 StringRef String = Literal->getString(); 5012 unsigned NumBytes = String.size(); 5013 5014 // Check for simple case. 5015 if (!Literal->containsNonAsciiOrNull()) { 5016 StringLength = NumBytes; 5017 return *Map.insert(std::make_pair(String, nullptr)).first; 5018 } 5019 5020 // Otherwise, convert the UTF8 literals into a string of shorts. 5021 IsUTF16 = true; 5022 5023 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5024 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5025 llvm::UTF16 *ToPtr = &ToBuf[0]; 5026 5027 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5028 ToPtr + NumBytes, llvm::strictConversion); 5029 5030 // ConvertUTF8toUTF16 returns the length in ToPtr. 5031 StringLength = ToPtr - &ToBuf[0]; 5032 5033 // Add an explicit null. 5034 *ToPtr = 0; 5035 return *Map.insert(std::make_pair( 5036 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5037 (StringLength + 1) * 2), 5038 nullptr)).first; 5039 } 5040 5041 ConstantAddress 5042 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5043 unsigned StringLength = 0; 5044 bool isUTF16 = false; 5045 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5046 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5047 getDataLayout().isLittleEndian(), isUTF16, 5048 StringLength); 5049 5050 if (auto *C = Entry.second) 5051 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 5052 5053 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5054 llvm::Constant *Zeros[] = { Zero, Zero }; 5055 5056 const ASTContext &Context = getContext(); 5057 const llvm::Triple &Triple = getTriple(); 5058 5059 const auto CFRuntime = getLangOpts().CFRuntime; 5060 const bool IsSwiftABI = 5061 static_cast<unsigned>(CFRuntime) >= 5062 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5063 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5064 5065 // If we don't already have it, get __CFConstantStringClassReference. 5066 if (!CFConstantStringClassRef) { 5067 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5068 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5069 Ty = llvm::ArrayType::get(Ty, 0); 5070 5071 switch (CFRuntime) { 5072 default: break; 5073 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5074 case LangOptions::CoreFoundationABI::Swift5_0: 5075 CFConstantStringClassName = 5076 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5077 : "$s10Foundation19_NSCFConstantStringCN"; 5078 Ty = IntPtrTy; 5079 break; 5080 case LangOptions::CoreFoundationABI::Swift4_2: 5081 CFConstantStringClassName = 5082 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5083 : "$S10Foundation19_NSCFConstantStringCN"; 5084 Ty = IntPtrTy; 5085 break; 5086 case LangOptions::CoreFoundationABI::Swift4_1: 5087 CFConstantStringClassName = 5088 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5089 : "__T010Foundation19_NSCFConstantStringCN"; 5090 Ty = IntPtrTy; 5091 break; 5092 } 5093 5094 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5095 5096 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5097 llvm::GlobalValue *GV = nullptr; 5098 5099 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5100 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5101 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5102 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5103 5104 const VarDecl *VD = nullptr; 5105 for (const auto *Result : DC->lookup(&II)) 5106 if ((VD = dyn_cast<VarDecl>(Result))) 5107 break; 5108 5109 if (Triple.isOSBinFormatELF()) { 5110 if (!VD) 5111 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5112 } else { 5113 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5114 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5115 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5116 else 5117 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5118 } 5119 5120 setDSOLocal(GV); 5121 } 5122 } 5123 5124 // Decay array -> ptr 5125 CFConstantStringClassRef = 5126 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5127 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5128 } 5129 5130 QualType CFTy = Context.getCFConstantStringType(); 5131 5132 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5133 5134 ConstantInitBuilder Builder(*this); 5135 auto Fields = Builder.beginStruct(STy); 5136 5137 // Class pointer. 5138 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5139 5140 // Flags. 5141 if (IsSwiftABI) { 5142 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5143 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5144 } else { 5145 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5146 } 5147 5148 // String pointer. 5149 llvm::Constant *C = nullptr; 5150 if (isUTF16) { 5151 auto Arr = llvm::makeArrayRef( 5152 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5153 Entry.first().size() / 2); 5154 C = llvm::ConstantDataArray::get(VMContext, Arr); 5155 } else { 5156 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5157 } 5158 5159 // Note: -fwritable-strings doesn't make the backing store strings of 5160 // CFStrings writable. (See <rdar://problem/10657500>) 5161 auto *GV = 5162 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5163 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5164 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5165 // Don't enforce the target's minimum global alignment, since the only use 5166 // of the string is via this class initializer. 5167 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5168 : Context.getTypeAlignInChars(Context.CharTy); 5169 GV->setAlignment(Align.getAsAlign()); 5170 5171 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5172 // Without it LLVM can merge the string with a non unnamed_addr one during 5173 // LTO. Doing that changes the section it ends in, which surprises ld64. 5174 if (Triple.isOSBinFormatMachO()) 5175 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5176 : "__TEXT,__cstring,cstring_literals"); 5177 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5178 // the static linker to adjust permissions to read-only later on. 5179 else if (Triple.isOSBinFormatELF()) 5180 GV->setSection(".rodata"); 5181 5182 // String. 5183 llvm::Constant *Str = 5184 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5185 5186 if (isUTF16) 5187 // Cast the UTF16 string to the correct type. 5188 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5189 Fields.add(Str); 5190 5191 // String length. 5192 llvm::IntegerType *LengthTy = 5193 llvm::IntegerType::get(getModule().getContext(), 5194 Context.getTargetInfo().getLongWidth()); 5195 if (IsSwiftABI) { 5196 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5197 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5198 LengthTy = Int32Ty; 5199 else 5200 LengthTy = IntPtrTy; 5201 } 5202 Fields.addInt(LengthTy, StringLength); 5203 5204 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5205 // properly aligned on 32-bit platforms. 5206 CharUnits Alignment = 5207 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5208 5209 // The struct. 5210 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5211 /*isConstant=*/false, 5212 llvm::GlobalVariable::PrivateLinkage); 5213 GV->addAttribute("objc_arc_inert"); 5214 switch (Triple.getObjectFormat()) { 5215 case llvm::Triple::UnknownObjectFormat: 5216 llvm_unreachable("unknown file format"); 5217 case llvm::Triple::GOFF: 5218 llvm_unreachable("GOFF is not yet implemented"); 5219 case llvm::Triple::XCOFF: 5220 llvm_unreachable("XCOFF is not yet implemented"); 5221 case llvm::Triple::COFF: 5222 case llvm::Triple::ELF: 5223 case llvm::Triple::Wasm: 5224 GV->setSection("cfstring"); 5225 break; 5226 case llvm::Triple::MachO: 5227 GV->setSection("__DATA,__cfstring"); 5228 break; 5229 } 5230 Entry.second = GV; 5231 5232 return ConstantAddress(GV, Alignment); 5233 } 5234 5235 bool CodeGenModule::getExpressionLocationsEnabled() const { 5236 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5237 } 5238 5239 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5240 if (ObjCFastEnumerationStateType.isNull()) { 5241 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5242 D->startDefinition(); 5243 5244 QualType FieldTypes[] = { 5245 Context.UnsignedLongTy, 5246 Context.getPointerType(Context.getObjCIdType()), 5247 Context.getPointerType(Context.UnsignedLongTy), 5248 Context.getConstantArrayType(Context.UnsignedLongTy, 5249 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5250 }; 5251 5252 for (size_t i = 0; i < 4; ++i) { 5253 FieldDecl *Field = FieldDecl::Create(Context, 5254 D, 5255 SourceLocation(), 5256 SourceLocation(), nullptr, 5257 FieldTypes[i], /*TInfo=*/nullptr, 5258 /*BitWidth=*/nullptr, 5259 /*Mutable=*/false, 5260 ICIS_NoInit); 5261 Field->setAccess(AS_public); 5262 D->addDecl(Field); 5263 } 5264 5265 D->completeDefinition(); 5266 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5267 } 5268 5269 return ObjCFastEnumerationStateType; 5270 } 5271 5272 llvm::Constant * 5273 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5274 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5275 5276 // Don't emit it as the address of the string, emit the string data itself 5277 // as an inline array. 5278 if (E->getCharByteWidth() == 1) { 5279 SmallString<64> Str(E->getString()); 5280 5281 // Resize the string to the right size, which is indicated by its type. 5282 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5283 Str.resize(CAT->getSize().getZExtValue()); 5284 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5285 } 5286 5287 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5288 llvm::Type *ElemTy = AType->getElementType(); 5289 unsigned NumElements = AType->getNumElements(); 5290 5291 // Wide strings have either 2-byte or 4-byte elements. 5292 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5293 SmallVector<uint16_t, 32> Elements; 5294 Elements.reserve(NumElements); 5295 5296 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5297 Elements.push_back(E->getCodeUnit(i)); 5298 Elements.resize(NumElements); 5299 return llvm::ConstantDataArray::get(VMContext, Elements); 5300 } 5301 5302 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5303 SmallVector<uint32_t, 32> Elements; 5304 Elements.reserve(NumElements); 5305 5306 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5307 Elements.push_back(E->getCodeUnit(i)); 5308 Elements.resize(NumElements); 5309 return llvm::ConstantDataArray::get(VMContext, Elements); 5310 } 5311 5312 static llvm::GlobalVariable * 5313 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5314 CodeGenModule &CGM, StringRef GlobalName, 5315 CharUnits Alignment) { 5316 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5317 CGM.GetGlobalConstantAddressSpace()); 5318 5319 llvm::Module &M = CGM.getModule(); 5320 // Create a global variable for this string 5321 auto *GV = new llvm::GlobalVariable( 5322 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5323 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5324 GV->setAlignment(Alignment.getAsAlign()); 5325 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5326 if (GV->isWeakForLinker()) { 5327 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5328 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5329 } 5330 CGM.setDSOLocal(GV); 5331 5332 return GV; 5333 } 5334 5335 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5336 /// constant array for the given string literal. 5337 ConstantAddress 5338 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5339 StringRef Name) { 5340 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5341 5342 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5343 llvm::GlobalVariable **Entry = nullptr; 5344 if (!LangOpts.WritableStrings) { 5345 Entry = &ConstantStringMap[C]; 5346 if (auto GV = *Entry) { 5347 if (Alignment.getQuantity() > GV->getAlignment()) 5348 GV->setAlignment(Alignment.getAsAlign()); 5349 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5350 Alignment); 5351 } 5352 } 5353 5354 SmallString<256> MangledNameBuffer; 5355 StringRef GlobalVariableName; 5356 llvm::GlobalValue::LinkageTypes LT; 5357 5358 // Mangle the string literal if that's how the ABI merges duplicate strings. 5359 // Don't do it if they are writable, since we don't want writes in one TU to 5360 // affect strings in another. 5361 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5362 !LangOpts.WritableStrings) { 5363 llvm::raw_svector_ostream Out(MangledNameBuffer); 5364 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5365 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5366 GlobalVariableName = MangledNameBuffer; 5367 } else { 5368 LT = llvm::GlobalValue::PrivateLinkage; 5369 GlobalVariableName = Name; 5370 } 5371 5372 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5373 if (Entry) 5374 *Entry = GV; 5375 5376 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5377 QualType()); 5378 5379 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5380 Alignment); 5381 } 5382 5383 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5384 /// array for the given ObjCEncodeExpr node. 5385 ConstantAddress 5386 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5387 std::string Str; 5388 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5389 5390 return GetAddrOfConstantCString(Str); 5391 } 5392 5393 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5394 /// the literal and a terminating '\0' character. 5395 /// The result has pointer to array type. 5396 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5397 const std::string &Str, const char *GlobalName) { 5398 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5399 CharUnits Alignment = 5400 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5401 5402 llvm::Constant *C = 5403 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5404 5405 // Don't share any string literals if strings aren't constant. 5406 llvm::GlobalVariable **Entry = nullptr; 5407 if (!LangOpts.WritableStrings) { 5408 Entry = &ConstantStringMap[C]; 5409 if (auto GV = *Entry) { 5410 if (Alignment.getQuantity() > GV->getAlignment()) 5411 GV->setAlignment(Alignment.getAsAlign()); 5412 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5413 Alignment); 5414 } 5415 } 5416 5417 // Get the default prefix if a name wasn't specified. 5418 if (!GlobalName) 5419 GlobalName = ".str"; 5420 // Create a global variable for this. 5421 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5422 GlobalName, Alignment); 5423 if (Entry) 5424 *Entry = GV; 5425 5426 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5427 Alignment); 5428 } 5429 5430 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5431 const MaterializeTemporaryExpr *E, const Expr *Init) { 5432 assert((E->getStorageDuration() == SD_Static || 5433 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5434 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5435 5436 // If we're not materializing a subobject of the temporary, keep the 5437 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5438 QualType MaterializedType = Init->getType(); 5439 if (Init == E->getSubExpr()) 5440 MaterializedType = E->getType(); 5441 5442 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5443 5444 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5445 if (!InsertResult.second) { 5446 // We've seen this before: either we already created it or we're in the 5447 // process of doing so. 5448 if (!InsertResult.first->second) { 5449 // We recursively re-entered this function, probably during emission of 5450 // the initializer. Create a placeholder. We'll clean this up in the 5451 // outer call, at the end of this function. 5452 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5453 InsertResult.first->second = new llvm::GlobalVariable( 5454 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5455 nullptr); 5456 } 5457 return ConstantAddress(InsertResult.first->second, Align); 5458 } 5459 5460 // FIXME: If an externally-visible declaration extends multiple temporaries, 5461 // we need to give each temporary the same name in every translation unit (and 5462 // we also need to make the temporaries externally-visible). 5463 SmallString<256> Name; 5464 llvm::raw_svector_ostream Out(Name); 5465 getCXXABI().getMangleContext().mangleReferenceTemporary( 5466 VD, E->getManglingNumber(), Out); 5467 5468 APValue *Value = nullptr; 5469 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5470 // If the initializer of the extending declaration is a constant 5471 // initializer, we should have a cached constant initializer for this 5472 // temporary. Note that this might have a different value from the value 5473 // computed by evaluating the initializer if the surrounding constant 5474 // expression modifies the temporary. 5475 Value = E->getOrCreateValue(false); 5476 } 5477 5478 // Try evaluating it now, it might have a constant initializer. 5479 Expr::EvalResult EvalResult; 5480 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5481 !EvalResult.hasSideEffects()) 5482 Value = &EvalResult.Val; 5483 5484 LangAS AddrSpace = 5485 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5486 5487 Optional<ConstantEmitter> emitter; 5488 llvm::Constant *InitialValue = nullptr; 5489 bool Constant = false; 5490 llvm::Type *Type; 5491 if (Value) { 5492 // The temporary has a constant initializer, use it. 5493 emitter.emplace(*this); 5494 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5495 MaterializedType); 5496 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5497 Type = InitialValue->getType(); 5498 } else { 5499 // No initializer, the initialization will be provided when we 5500 // initialize the declaration which performed lifetime extension. 5501 Type = getTypes().ConvertTypeForMem(MaterializedType); 5502 } 5503 5504 // Create a global variable for this lifetime-extended temporary. 5505 llvm::GlobalValue::LinkageTypes Linkage = 5506 getLLVMLinkageVarDefinition(VD, Constant); 5507 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5508 const VarDecl *InitVD; 5509 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5510 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5511 // Temporaries defined inside a class get linkonce_odr linkage because the 5512 // class can be defined in multiple translation units. 5513 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5514 } else { 5515 // There is no need for this temporary to have external linkage if the 5516 // VarDecl has external linkage. 5517 Linkage = llvm::GlobalVariable::InternalLinkage; 5518 } 5519 } 5520 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5521 auto *GV = new llvm::GlobalVariable( 5522 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5523 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5524 if (emitter) emitter->finalize(GV); 5525 setGVProperties(GV, VD); 5526 GV->setAlignment(Align.getAsAlign()); 5527 if (supportsCOMDAT() && GV->isWeakForLinker()) 5528 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5529 if (VD->getTLSKind()) 5530 setTLSMode(GV, *VD); 5531 llvm::Constant *CV = GV; 5532 if (AddrSpace != LangAS::Default) 5533 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5534 *this, GV, AddrSpace, LangAS::Default, 5535 Type->getPointerTo( 5536 getContext().getTargetAddressSpace(LangAS::Default))); 5537 5538 // Update the map with the new temporary. If we created a placeholder above, 5539 // replace it with the new global now. 5540 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5541 if (Entry) { 5542 Entry->replaceAllUsesWith( 5543 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5544 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5545 } 5546 Entry = CV; 5547 5548 return ConstantAddress(CV, Align); 5549 } 5550 5551 /// EmitObjCPropertyImplementations - Emit information for synthesized 5552 /// properties for an implementation. 5553 void CodeGenModule::EmitObjCPropertyImplementations(const 5554 ObjCImplementationDecl *D) { 5555 for (const auto *PID : D->property_impls()) { 5556 // Dynamic is just for type-checking. 5557 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5558 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5559 5560 // Determine which methods need to be implemented, some may have 5561 // been overridden. Note that ::isPropertyAccessor is not the method 5562 // we want, that just indicates if the decl came from a 5563 // property. What we want to know is if the method is defined in 5564 // this implementation. 5565 auto *Getter = PID->getGetterMethodDecl(); 5566 if (!Getter || Getter->isSynthesizedAccessorStub()) 5567 CodeGenFunction(*this).GenerateObjCGetter( 5568 const_cast<ObjCImplementationDecl *>(D), PID); 5569 auto *Setter = PID->getSetterMethodDecl(); 5570 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5571 CodeGenFunction(*this).GenerateObjCSetter( 5572 const_cast<ObjCImplementationDecl *>(D), PID); 5573 } 5574 } 5575 } 5576 5577 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5578 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5579 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5580 ivar; ivar = ivar->getNextIvar()) 5581 if (ivar->getType().isDestructedType()) 5582 return true; 5583 5584 return false; 5585 } 5586 5587 static bool AllTrivialInitializers(CodeGenModule &CGM, 5588 ObjCImplementationDecl *D) { 5589 CodeGenFunction CGF(CGM); 5590 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5591 E = D->init_end(); B != E; ++B) { 5592 CXXCtorInitializer *CtorInitExp = *B; 5593 Expr *Init = CtorInitExp->getInit(); 5594 if (!CGF.isTrivialInitializer(Init)) 5595 return false; 5596 } 5597 return true; 5598 } 5599 5600 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5601 /// for an implementation. 5602 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5603 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5604 if (needsDestructMethod(D)) { 5605 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5606 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5607 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5608 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5609 getContext().VoidTy, nullptr, D, 5610 /*isInstance=*/true, /*isVariadic=*/false, 5611 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5612 /*isImplicitlyDeclared=*/true, 5613 /*isDefined=*/false, ObjCMethodDecl::Required); 5614 D->addInstanceMethod(DTORMethod); 5615 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5616 D->setHasDestructors(true); 5617 } 5618 5619 // If the implementation doesn't have any ivar initializers, we don't need 5620 // a .cxx_construct. 5621 if (D->getNumIvarInitializers() == 0 || 5622 AllTrivialInitializers(*this, D)) 5623 return; 5624 5625 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5626 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5627 // The constructor returns 'self'. 5628 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5629 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5630 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5631 /*isVariadic=*/false, 5632 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5633 /*isImplicitlyDeclared=*/true, 5634 /*isDefined=*/false, ObjCMethodDecl::Required); 5635 D->addInstanceMethod(CTORMethod); 5636 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5637 D->setHasNonZeroConstructors(true); 5638 } 5639 5640 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5641 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5642 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5643 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5644 ErrorUnsupported(LSD, "linkage spec"); 5645 return; 5646 } 5647 5648 EmitDeclContext(LSD); 5649 } 5650 5651 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5652 for (auto *I : DC->decls()) { 5653 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5654 // are themselves considered "top-level", so EmitTopLevelDecl on an 5655 // ObjCImplDecl does not recursively visit them. We need to do that in 5656 // case they're nested inside another construct (LinkageSpecDecl / 5657 // ExportDecl) that does stop them from being considered "top-level". 5658 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5659 for (auto *M : OID->methods()) 5660 EmitTopLevelDecl(M); 5661 } 5662 5663 EmitTopLevelDecl(I); 5664 } 5665 } 5666 5667 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5668 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5669 // Ignore dependent declarations. 5670 if (D->isTemplated()) 5671 return; 5672 5673 // Consteval function shouldn't be emitted. 5674 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5675 if (FD->isConsteval()) 5676 return; 5677 5678 switch (D->getKind()) { 5679 case Decl::CXXConversion: 5680 case Decl::CXXMethod: 5681 case Decl::Function: 5682 EmitGlobal(cast<FunctionDecl>(D)); 5683 // Always provide some coverage mapping 5684 // even for the functions that aren't emitted. 5685 AddDeferredUnusedCoverageMapping(D); 5686 break; 5687 5688 case Decl::CXXDeductionGuide: 5689 // Function-like, but does not result in code emission. 5690 break; 5691 5692 case Decl::Var: 5693 case Decl::Decomposition: 5694 case Decl::VarTemplateSpecialization: 5695 EmitGlobal(cast<VarDecl>(D)); 5696 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5697 for (auto *B : DD->bindings()) 5698 if (auto *HD = B->getHoldingVar()) 5699 EmitGlobal(HD); 5700 break; 5701 5702 // Indirect fields from global anonymous structs and unions can be 5703 // ignored; only the actual variable requires IR gen support. 5704 case Decl::IndirectField: 5705 break; 5706 5707 // C++ Decls 5708 case Decl::Namespace: 5709 EmitDeclContext(cast<NamespaceDecl>(D)); 5710 break; 5711 case Decl::ClassTemplateSpecialization: { 5712 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5713 if (CGDebugInfo *DI = getModuleDebugInfo()) 5714 if (Spec->getSpecializationKind() == 5715 TSK_ExplicitInstantiationDefinition && 5716 Spec->hasDefinition()) 5717 DI->completeTemplateDefinition(*Spec); 5718 } LLVM_FALLTHROUGH; 5719 case Decl::CXXRecord: { 5720 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5721 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5722 if (CRD->hasDefinition()) 5723 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5724 if (auto *ES = D->getASTContext().getExternalSource()) 5725 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5726 DI->completeUnusedClass(*CRD); 5727 } 5728 // Emit any static data members, they may be definitions. 5729 for (auto *I : CRD->decls()) 5730 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5731 EmitTopLevelDecl(I); 5732 break; 5733 } 5734 // No code generation needed. 5735 case Decl::UsingShadow: 5736 case Decl::ClassTemplate: 5737 case Decl::VarTemplate: 5738 case Decl::Concept: 5739 case Decl::VarTemplatePartialSpecialization: 5740 case Decl::FunctionTemplate: 5741 case Decl::TypeAliasTemplate: 5742 case Decl::Block: 5743 case Decl::Empty: 5744 case Decl::Binding: 5745 break; 5746 case Decl::Using: // using X; [C++] 5747 if (CGDebugInfo *DI = getModuleDebugInfo()) 5748 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5749 break; 5750 case Decl::UsingEnum: // using enum X; [C++] 5751 if (CGDebugInfo *DI = getModuleDebugInfo()) 5752 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5753 break; 5754 case Decl::NamespaceAlias: 5755 if (CGDebugInfo *DI = getModuleDebugInfo()) 5756 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5757 break; 5758 case Decl::UsingDirective: // using namespace X; [C++] 5759 if (CGDebugInfo *DI = getModuleDebugInfo()) 5760 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5761 break; 5762 case Decl::CXXConstructor: 5763 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5764 break; 5765 case Decl::CXXDestructor: 5766 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5767 break; 5768 5769 case Decl::StaticAssert: 5770 // Nothing to do. 5771 break; 5772 5773 // Objective-C Decls 5774 5775 // Forward declarations, no (immediate) code generation. 5776 case Decl::ObjCInterface: 5777 case Decl::ObjCCategory: 5778 break; 5779 5780 case Decl::ObjCProtocol: { 5781 auto *Proto = cast<ObjCProtocolDecl>(D); 5782 if (Proto->isThisDeclarationADefinition()) 5783 ObjCRuntime->GenerateProtocol(Proto); 5784 break; 5785 } 5786 5787 case Decl::ObjCCategoryImpl: 5788 // Categories have properties but don't support synthesize so we 5789 // can ignore them here. 5790 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5791 break; 5792 5793 case Decl::ObjCImplementation: { 5794 auto *OMD = cast<ObjCImplementationDecl>(D); 5795 EmitObjCPropertyImplementations(OMD); 5796 EmitObjCIvarInitializations(OMD); 5797 ObjCRuntime->GenerateClass(OMD); 5798 // Emit global variable debug information. 5799 if (CGDebugInfo *DI = getModuleDebugInfo()) 5800 if (getCodeGenOpts().hasReducedDebugInfo()) 5801 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5802 OMD->getClassInterface()), OMD->getLocation()); 5803 break; 5804 } 5805 case Decl::ObjCMethod: { 5806 auto *OMD = cast<ObjCMethodDecl>(D); 5807 // If this is not a prototype, emit the body. 5808 if (OMD->getBody()) 5809 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5810 break; 5811 } 5812 case Decl::ObjCCompatibleAlias: 5813 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5814 break; 5815 5816 case Decl::PragmaComment: { 5817 const auto *PCD = cast<PragmaCommentDecl>(D); 5818 switch (PCD->getCommentKind()) { 5819 case PCK_Unknown: 5820 llvm_unreachable("unexpected pragma comment kind"); 5821 case PCK_Linker: 5822 AppendLinkerOptions(PCD->getArg()); 5823 break; 5824 case PCK_Lib: 5825 AddDependentLib(PCD->getArg()); 5826 break; 5827 case PCK_Compiler: 5828 case PCK_ExeStr: 5829 case PCK_User: 5830 break; // We ignore all of these. 5831 } 5832 break; 5833 } 5834 5835 case Decl::PragmaDetectMismatch: { 5836 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5837 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5838 break; 5839 } 5840 5841 case Decl::LinkageSpec: 5842 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5843 break; 5844 5845 case Decl::FileScopeAsm: { 5846 // File-scope asm is ignored during device-side CUDA compilation. 5847 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5848 break; 5849 // File-scope asm is ignored during device-side OpenMP compilation. 5850 if (LangOpts.OpenMPIsDevice) 5851 break; 5852 // File-scope asm is ignored during device-side SYCL compilation. 5853 if (LangOpts.SYCLIsDevice) 5854 break; 5855 auto *AD = cast<FileScopeAsmDecl>(D); 5856 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5857 break; 5858 } 5859 5860 case Decl::Import: { 5861 auto *Import = cast<ImportDecl>(D); 5862 5863 // If we've already imported this module, we're done. 5864 if (!ImportedModules.insert(Import->getImportedModule())) 5865 break; 5866 5867 // Emit debug information for direct imports. 5868 if (!Import->getImportedOwningModule()) { 5869 if (CGDebugInfo *DI = getModuleDebugInfo()) 5870 DI->EmitImportDecl(*Import); 5871 } 5872 5873 // Find all of the submodules and emit the module initializers. 5874 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5875 SmallVector<clang::Module *, 16> Stack; 5876 Visited.insert(Import->getImportedModule()); 5877 Stack.push_back(Import->getImportedModule()); 5878 5879 while (!Stack.empty()) { 5880 clang::Module *Mod = Stack.pop_back_val(); 5881 if (!EmittedModuleInitializers.insert(Mod).second) 5882 continue; 5883 5884 for (auto *D : Context.getModuleInitializers(Mod)) 5885 EmitTopLevelDecl(D); 5886 5887 // Visit the submodules of this module. 5888 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5889 SubEnd = Mod->submodule_end(); 5890 Sub != SubEnd; ++Sub) { 5891 // Skip explicit children; they need to be explicitly imported to emit 5892 // the initializers. 5893 if ((*Sub)->IsExplicit) 5894 continue; 5895 5896 if (Visited.insert(*Sub).second) 5897 Stack.push_back(*Sub); 5898 } 5899 } 5900 break; 5901 } 5902 5903 case Decl::Export: 5904 EmitDeclContext(cast<ExportDecl>(D)); 5905 break; 5906 5907 case Decl::OMPThreadPrivate: 5908 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5909 break; 5910 5911 case Decl::OMPAllocate: 5912 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 5913 break; 5914 5915 case Decl::OMPDeclareReduction: 5916 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5917 break; 5918 5919 case Decl::OMPDeclareMapper: 5920 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5921 break; 5922 5923 case Decl::OMPRequires: 5924 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5925 break; 5926 5927 case Decl::Typedef: 5928 case Decl::TypeAlias: // using foo = bar; [C++11] 5929 if (CGDebugInfo *DI = getModuleDebugInfo()) 5930 DI->EmitAndRetainType( 5931 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5932 break; 5933 5934 case Decl::Record: 5935 if (CGDebugInfo *DI = getModuleDebugInfo()) 5936 if (cast<RecordDecl>(D)->getDefinition()) 5937 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5938 break; 5939 5940 case Decl::Enum: 5941 if (CGDebugInfo *DI = getModuleDebugInfo()) 5942 if (cast<EnumDecl>(D)->getDefinition()) 5943 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5944 break; 5945 5946 default: 5947 // Make sure we handled everything we should, every other kind is a 5948 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5949 // function. Need to recode Decl::Kind to do that easily. 5950 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5951 break; 5952 } 5953 } 5954 5955 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5956 // Do we need to generate coverage mapping? 5957 if (!CodeGenOpts.CoverageMapping) 5958 return; 5959 switch (D->getKind()) { 5960 case Decl::CXXConversion: 5961 case Decl::CXXMethod: 5962 case Decl::Function: 5963 case Decl::ObjCMethod: 5964 case Decl::CXXConstructor: 5965 case Decl::CXXDestructor: { 5966 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5967 break; 5968 SourceManager &SM = getContext().getSourceManager(); 5969 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5970 break; 5971 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5972 if (I == DeferredEmptyCoverageMappingDecls.end()) 5973 DeferredEmptyCoverageMappingDecls[D] = true; 5974 break; 5975 } 5976 default: 5977 break; 5978 }; 5979 } 5980 5981 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5982 // Do we need to generate coverage mapping? 5983 if (!CodeGenOpts.CoverageMapping) 5984 return; 5985 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5986 if (Fn->isTemplateInstantiation()) 5987 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5988 } 5989 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5990 if (I == DeferredEmptyCoverageMappingDecls.end()) 5991 DeferredEmptyCoverageMappingDecls[D] = false; 5992 else 5993 I->second = false; 5994 } 5995 5996 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5997 // We call takeVector() here to avoid use-after-free. 5998 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5999 // we deserialize function bodies to emit coverage info for them, and that 6000 // deserializes more declarations. How should we handle that case? 6001 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6002 if (!Entry.second) 6003 continue; 6004 const Decl *D = Entry.first; 6005 switch (D->getKind()) { 6006 case Decl::CXXConversion: 6007 case Decl::CXXMethod: 6008 case Decl::Function: 6009 case Decl::ObjCMethod: { 6010 CodeGenPGO PGO(*this); 6011 GlobalDecl GD(cast<FunctionDecl>(D)); 6012 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6013 getFunctionLinkage(GD)); 6014 break; 6015 } 6016 case Decl::CXXConstructor: { 6017 CodeGenPGO PGO(*this); 6018 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6019 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6020 getFunctionLinkage(GD)); 6021 break; 6022 } 6023 case Decl::CXXDestructor: { 6024 CodeGenPGO PGO(*this); 6025 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6026 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6027 getFunctionLinkage(GD)); 6028 break; 6029 } 6030 default: 6031 break; 6032 }; 6033 } 6034 } 6035 6036 void CodeGenModule::EmitMainVoidAlias() { 6037 // In order to transition away from "__original_main" gracefully, emit an 6038 // alias for "main" in the no-argument case so that libc can detect when 6039 // new-style no-argument main is in used. 6040 if (llvm::Function *F = getModule().getFunction("main")) { 6041 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6042 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6043 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6044 } 6045 } 6046 6047 /// Turns the given pointer into a constant. 6048 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6049 const void *Ptr) { 6050 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6051 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6052 return llvm::ConstantInt::get(i64, PtrInt); 6053 } 6054 6055 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6056 llvm::NamedMDNode *&GlobalMetadata, 6057 GlobalDecl D, 6058 llvm::GlobalValue *Addr) { 6059 if (!GlobalMetadata) 6060 GlobalMetadata = 6061 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6062 6063 // TODO: should we report variant information for ctors/dtors? 6064 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6065 llvm::ConstantAsMetadata::get(GetPointerConstant( 6066 CGM.getLLVMContext(), D.getDecl()))}; 6067 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6068 } 6069 6070 /// For each function which is declared within an extern "C" region and marked 6071 /// as 'used', but has internal linkage, create an alias from the unmangled 6072 /// name to the mangled name if possible. People expect to be able to refer 6073 /// to such functions with an unmangled name from inline assembly within the 6074 /// same translation unit. 6075 void CodeGenModule::EmitStaticExternCAliases() { 6076 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6077 return; 6078 for (auto &I : StaticExternCValues) { 6079 IdentifierInfo *Name = I.first; 6080 llvm::GlobalValue *Val = I.second; 6081 if (Val && !getModule().getNamedValue(Name->getName())) 6082 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6083 } 6084 } 6085 6086 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6087 GlobalDecl &Result) const { 6088 auto Res = Manglings.find(MangledName); 6089 if (Res == Manglings.end()) 6090 return false; 6091 Result = Res->getValue(); 6092 return true; 6093 } 6094 6095 /// Emits metadata nodes associating all the global values in the 6096 /// current module with the Decls they came from. This is useful for 6097 /// projects using IR gen as a subroutine. 6098 /// 6099 /// Since there's currently no way to associate an MDNode directly 6100 /// with an llvm::GlobalValue, we create a global named metadata 6101 /// with the name 'clang.global.decl.ptrs'. 6102 void CodeGenModule::EmitDeclMetadata() { 6103 llvm::NamedMDNode *GlobalMetadata = nullptr; 6104 6105 for (auto &I : MangledDeclNames) { 6106 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6107 // Some mangled names don't necessarily have an associated GlobalValue 6108 // in this module, e.g. if we mangled it for DebugInfo. 6109 if (Addr) 6110 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6111 } 6112 } 6113 6114 /// Emits metadata nodes for all the local variables in the current 6115 /// function. 6116 void CodeGenFunction::EmitDeclMetadata() { 6117 if (LocalDeclMap.empty()) return; 6118 6119 llvm::LLVMContext &Context = getLLVMContext(); 6120 6121 // Find the unique metadata ID for this name. 6122 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6123 6124 llvm::NamedMDNode *GlobalMetadata = nullptr; 6125 6126 for (auto &I : LocalDeclMap) { 6127 const Decl *D = I.first; 6128 llvm::Value *Addr = I.second.getPointer(); 6129 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6130 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6131 Alloca->setMetadata( 6132 DeclPtrKind, llvm::MDNode::get( 6133 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6134 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6135 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6136 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6137 } 6138 } 6139 } 6140 6141 void CodeGenModule::EmitVersionIdentMetadata() { 6142 llvm::NamedMDNode *IdentMetadata = 6143 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6144 std::string Version = getClangFullVersion(); 6145 llvm::LLVMContext &Ctx = TheModule.getContext(); 6146 6147 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6148 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6149 } 6150 6151 void CodeGenModule::EmitCommandLineMetadata() { 6152 llvm::NamedMDNode *CommandLineMetadata = 6153 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6154 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6155 llvm::LLVMContext &Ctx = TheModule.getContext(); 6156 6157 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6158 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6159 } 6160 6161 void CodeGenModule::EmitCoverageFile() { 6162 if (getCodeGenOpts().CoverageDataFile.empty() && 6163 getCodeGenOpts().CoverageNotesFile.empty()) 6164 return; 6165 6166 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6167 if (!CUNode) 6168 return; 6169 6170 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6171 llvm::LLVMContext &Ctx = TheModule.getContext(); 6172 auto *CoverageDataFile = 6173 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6174 auto *CoverageNotesFile = 6175 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6176 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6177 llvm::MDNode *CU = CUNode->getOperand(i); 6178 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6179 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6180 } 6181 } 6182 6183 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6184 bool ForEH) { 6185 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6186 // FIXME: should we even be calling this method if RTTI is disabled 6187 // and it's not for EH? 6188 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6189 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6190 getTriple().isNVPTX())) 6191 return llvm::Constant::getNullValue(Int8PtrTy); 6192 6193 if (ForEH && Ty->isObjCObjectPointerType() && 6194 LangOpts.ObjCRuntime.isGNUFamily()) 6195 return ObjCRuntime->GetEHType(Ty); 6196 6197 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6198 } 6199 6200 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6201 // Do not emit threadprivates in simd-only mode. 6202 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6203 return; 6204 for (auto RefExpr : D->varlists()) { 6205 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6206 bool PerformInit = 6207 VD->getAnyInitializer() && 6208 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6209 /*ForRef=*/false); 6210 6211 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6212 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6213 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6214 CXXGlobalInits.push_back(InitFunction); 6215 } 6216 } 6217 6218 llvm::Metadata * 6219 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6220 StringRef Suffix) { 6221 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6222 if (InternalId) 6223 return InternalId; 6224 6225 if (isExternallyVisible(T->getLinkage())) { 6226 std::string OutName; 6227 llvm::raw_string_ostream Out(OutName); 6228 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6229 Out << Suffix; 6230 6231 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6232 } else { 6233 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6234 llvm::ArrayRef<llvm::Metadata *>()); 6235 } 6236 6237 return InternalId; 6238 } 6239 6240 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6241 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6242 } 6243 6244 llvm::Metadata * 6245 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6246 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6247 } 6248 6249 // Generalize pointer types to a void pointer with the qualifiers of the 6250 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6251 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6252 // 'void *'. 6253 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6254 if (!Ty->isPointerType()) 6255 return Ty; 6256 6257 return Ctx.getPointerType( 6258 QualType(Ctx.VoidTy).withCVRQualifiers( 6259 Ty->getPointeeType().getCVRQualifiers())); 6260 } 6261 6262 // Apply type generalization to a FunctionType's return and argument types 6263 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6264 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6265 SmallVector<QualType, 8> GeneralizedParams; 6266 for (auto &Param : FnType->param_types()) 6267 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6268 6269 return Ctx.getFunctionType( 6270 GeneralizeType(Ctx, FnType->getReturnType()), 6271 GeneralizedParams, FnType->getExtProtoInfo()); 6272 } 6273 6274 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6275 return Ctx.getFunctionNoProtoType( 6276 GeneralizeType(Ctx, FnType->getReturnType())); 6277 6278 llvm_unreachable("Encountered unknown FunctionType"); 6279 } 6280 6281 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6282 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6283 GeneralizedMetadataIdMap, ".generalized"); 6284 } 6285 6286 /// Returns whether this module needs the "all-vtables" type identifier. 6287 bool CodeGenModule::NeedAllVtablesTypeId() const { 6288 // Returns true if at least one of vtable-based CFI checkers is enabled and 6289 // is not in the trapping mode. 6290 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6291 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6292 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6293 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6294 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6295 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6296 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6297 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6298 } 6299 6300 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6301 CharUnits Offset, 6302 const CXXRecordDecl *RD) { 6303 llvm::Metadata *MD = 6304 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6305 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6306 6307 if (CodeGenOpts.SanitizeCfiCrossDso) 6308 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6309 VTable->addTypeMetadata(Offset.getQuantity(), 6310 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6311 6312 if (NeedAllVtablesTypeId()) { 6313 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6314 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6315 } 6316 } 6317 6318 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6319 if (!SanStats) 6320 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6321 6322 return *SanStats; 6323 } 6324 6325 llvm::Value * 6326 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6327 CodeGenFunction &CGF) { 6328 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6329 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6330 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6331 auto *Call = CGF.EmitRuntimeCall( 6332 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6333 return Call; 6334 } 6335 6336 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6337 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6338 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6339 /* forPointeeType= */ true); 6340 } 6341 6342 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6343 LValueBaseInfo *BaseInfo, 6344 TBAAAccessInfo *TBAAInfo, 6345 bool forPointeeType) { 6346 if (TBAAInfo) 6347 *TBAAInfo = getTBAAAccessInfo(T); 6348 6349 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6350 // that doesn't return the information we need to compute BaseInfo. 6351 6352 // Honor alignment typedef attributes even on incomplete types. 6353 // We also honor them straight for C++ class types, even as pointees; 6354 // there's an expressivity gap here. 6355 if (auto TT = T->getAs<TypedefType>()) { 6356 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6357 if (BaseInfo) 6358 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6359 return getContext().toCharUnitsFromBits(Align); 6360 } 6361 } 6362 6363 bool AlignForArray = T->isArrayType(); 6364 6365 // Analyze the base element type, so we don't get confused by incomplete 6366 // array types. 6367 T = getContext().getBaseElementType(T); 6368 6369 if (T->isIncompleteType()) { 6370 // We could try to replicate the logic from 6371 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6372 // type is incomplete, so it's impossible to test. We could try to reuse 6373 // getTypeAlignIfKnown, but that doesn't return the information we need 6374 // to set BaseInfo. So just ignore the possibility that the alignment is 6375 // greater than one. 6376 if (BaseInfo) 6377 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6378 return CharUnits::One(); 6379 } 6380 6381 if (BaseInfo) 6382 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6383 6384 CharUnits Alignment; 6385 const CXXRecordDecl *RD; 6386 if (T.getQualifiers().hasUnaligned()) { 6387 Alignment = CharUnits::One(); 6388 } else if (forPointeeType && !AlignForArray && 6389 (RD = T->getAsCXXRecordDecl())) { 6390 // For C++ class pointees, we don't know whether we're pointing at a 6391 // base or a complete object, so we generally need to use the 6392 // non-virtual alignment. 6393 Alignment = getClassPointerAlignment(RD); 6394 } else { 6395 Alignment = getContext().getTypeAlignInChars(T); 6396 } 6397 6398 // Cap to the global maximum type alignment unless the alignment 6399 // was somehow explicit on the type. 6400 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6401 if (Alignment.getQuantity() > MaxAlign && 6402 !getContext().isAlignmentRequired(T)) 6403 Alignment = CharUnits::fromQuantity(MaxAlign); 6404 } 6405 return Alignment; 6406 } 6407 6408 bool CodeGenModule::stopAutoInit() { 6409 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6410 if (StopAfter) { 6411 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6412 // used 6413 if (NumAutoVarInit >= StopAfter) { 6414 return true; 6415 } 6416 if (!NumAutoVarInit) { 6417 unsigned DiagID = getDiags().getCustomDiagID( 6418 DiagnosticsEngine::Warning, 6419 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6420 "number of times ftrivial-auto-var-init=%1 gets applied."); 6421 getDiags().Report(DiagID) 6422 << StopAfter 6423 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6424 LangOptions::TrivialAutoVarInitKind::Zero 6425 ? "zero" 6426 : "pattern"); 6427 } 6428 ++NumAutoVarInit; 6429 } 6430 return false; 6431 } 6432 6433 void CodeGenModule::printPostfixForExternalizedStaticVar( 6434 llvm::raw_ostream &OS) const { 6435 OS << ".static." << getContext().getCUIDHash(); 6436 } 6437