xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9cd93774098c861c260090a690f428b7ae031c65)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::m68k:
120     return createM68kTargetCodeGenInfo(CGM);
121   case llvm::Triple::mips:
122   case llvm::Triple::mipsel:
123     if (Triple.getOS() == llvm::Triple::NaCl)
124       return createPNaClTargetCodeGenInfo(CGM);
125     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126 
127   case llvm::Triple::mips64:
128   case llvm::Triple::mips64el:
129     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130 
131   case llvm::Triple::avr: {
132     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133     // on avrtiny. For passing return value, R18~R25 are used on avr, and
134     // R22~R25 are used on avrtiny.
135     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138   }
139 
140   case llvm::Triple::aarch64:
141   case llvm::Triple::aarch64_32:
142   case llvm::Triple::aarch64_be: {
143     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144     if (Target.getABI() == "darwinpcs")
145       Kind = AArch64ABIKind::DarwinPCS;
146     else if (Triple.isOSWindows())
147       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
148     else if (Target.getABI() == "aapcs-soft")
149       Kind = AArch64ABIKind::AAPCSSoft;
150     else if (Target.getABI() == "pauthtest")
151       Kind = AArch64ABIKind::PAuthTest;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::dxil:
302     return createDirectXTargetCodeGenInfo(CGM);
303   case llvm::Triple::ve:
304     return createVETargetCodeGenInfo(CGM);
305   case llvm::Triple::csky: {
306     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
307     bool hasFP64 =
308         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
309     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
310                                             : hasFP64   ? 64
311                                                         : 32);
312   }
313   case llvm::Triple::bpfeb:
314   case llvm::Triple::bpfel:
315     return createBPFTargetCodeGenInfo(CGM);
316   case llvm::Triple::loongarch32:
317   case llvm::Triple::loongarch64: {
318     StringRef ABIStr = Target.getABI();
319     unsigned ABIFRLen = 0;
320     if (ABIStr.ends_with("f"))
321       ABIFRLen = 32;
322     else if (ABIStr.ends_with("d"))
323       ABIFRLen = 64;
324     return createLoongArchTargetCodeGenInfo(
325         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
326   }
327   }
328 }
329 
330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
331   if (!TheTargetCodeGenInfo)
332     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
333   return *TheTargetCodeGenInfo;
334 }
335 
336 CodeGenModule::CodeGenModule(ASTContext &C,
337                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
338                              const HeaderSearchOptions &HSO,
339                              const PreprocessorOptions &PPO,
340                              const CodeGenOptions &CGO, llvm::Module &M,
341                              DiagnosticsEngine &diags,
342                              CoverageSourceInfo *CoverageInfo)
343     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
344       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
345       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
346       VMContext(M.getContext()), VTables(*this),
347       SanitizerMD(new SanitizerMetadata(*this)) {
348 
349   // Initialize the type cache.
350   Types.reset(new CodeGenTypes(*this));
351   llvm::LLVMContext &LLVMContext = M.getContext();
352   VoidTy = llvm::Type::getVoidTy(LLVMContext);
353   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
354   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
355   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
356   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
357   HalfTy = llvm::Type::getHalfTy(LLVMContext);
358   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
359   FloatTy = llvm::Type::getFloatTy(LLVMContext);
360   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
361   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
362   PointerAlignInBytes =
363       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
364           .getQuantity();
365   SizeSizeInBytes =
366     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
367   IntAlignInBytes =
368     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
369   CharTy =
370     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
371   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
372   IntPtrTy = llvm::IntegerType::get(LLVMContext,
373     C.getTargetInfo().getMaxPointerWidth());
374   Int8PtrTy = llvm::PointerType::get(LLVMContext,
375                                      C.getTargetAddressSpace(LangAS::Default));
376   const llvm::DataLayout &DL = M.getDataLayout();
377   AllocaInt8PtrTy =
378       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
379   GlobalsInt8PtrTy =
380       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
381   ConstGlobalsPtrTy = llvm::PointerType::get(
382       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
383   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
384 
385   // Build C++20 Module initializers.
386   // TODO: Add Microsoft here once we know the mangling required for the
387   // initializers.
388   CXX20ModuleInits =
389       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
390                                        ItaniumMangleContext::MK_Itanium;
391 
392   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
393 
394   if (LangOpts.ObjC)
395     createObjCRuntime();
396   if (LangOpts.OpenCL)
397     createOpenCLRuntime();
398   if (LangOpts.OpenMP)
399     createOpenMPRuntime();
400   if (LangOpts.CUDA)
401     createCUDARuntime();
402   if (LangOpts.HLSL)
403     createHLSLRuntime();
404 
405   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
406   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
407       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
408     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
409                                getLangOpts()));
410 
411   // If debug info or coverage generation is enabled, create the CGDebugInfo
412   // object.
413   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
414       CodeGenOpts.CoverageNotesFile.size() ||
415       CodeGenOpts.CoverageDataFile.size())
416     DebugInfo.reset(new CGDebugInfo(*this));
417 
418   Block.GlobalUniqueCount = 0;
419 
420   if (C.getLangOpts().ObjC)
421     ObjCData.reset(new ObjCEntrypoints());
422 
423   if (CodeGenOpts.hasProfileClangUse()) {
424     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
425         CodeGenOpts.ProfileInstrumentUsePath, *FS,
426         CodeGenOpts.ProfileRemappingFile);
427     // We're checking for profile read errors in CompilerInvocation, so if
428     // there was an error it should've already been caught. If it hasn't been
429     // somehow, trip an assertion.
430     assert(ReaderOrErr);
431     PGOReader = std::move(ReaderOrErr.get());
432   }
433 
434   // If coverage mapping generation is enabled, create the
435   // CoverageMappingModuleGen object.
436   if (CodeGenOpts.CoverageMapping)
437     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
438 
439   // Generate the module name hash here if needed.
440   if (CodeGenOpts.UniqueInternalLinkageNames &&
441       !getModule().getSourceFileName().empty()) {
442     std::string Path = getModule().getSourceFileName();
443     // Check if a path substitution is needed from the MacroPrefixMap.
444     for (const auto &Entry : LangOpts.MacroPrefixMap)
445       if (Path.rfind(Entry.first, 0) != std::string::npos) {
446         Path = Entry.second + Path.substr(Entry.first.size());
447         break;
448       }
449     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
450   }
451 
452   // Record mregparm value now so it is visible through all of codegen.
453   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
454     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
455                               CodeGenOpts.NumRegisterParameters);
456 }
457 
458 CodeGenModule::~CodeGenModule() {}
459 
460 void CodeGenModule::createObjCRuntime() {
461   // This is just isGNUFamily(), but we want to force implementors of
462   // new ABIs to decide how best to do this.
463   switch (LangOpts.ObjCRuntime.getKind()) {
464   case ObjCRuntime::GNUstep:
465   case ObjCRuntime::GCC:
466   case ObjCRuntime::ObjFW:
467     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
468     return;
469 
470   case ObjCRuntime::FragileMacOSX:
471   case ObjCRuntime::MacOSX:
472   case ObjCRuntime::iOS:
473   case ObjCRuntime::WatchOS:
474     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
475     return;
476   }
477   llvm_unreachable("bad runtime kind");
478 }
479 
480 void CodeGenModule::createOpenCLRuntime() {
481   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
482 }
483 
484 void CodeGenModule::createOpenMPRuntime() {
485   // Select a specialized code generation class based on the target, if any.
486   // If it does not exist use the default implementation.
487   switch (getTriple().getArch()) {
488   case llvm::Triple::nvptx:
489   case llvm::Triple::nvptx64:
490   case llvm::Triple::amdgcn:
491     assert(getLangOpts().OpenMPIsTargetDevice &&
492            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
493     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
494     break;
495   default:
496     if (LangOpts.OpenMPSimd)
497       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
498     else
499       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
500     break;
501   }
502 }
503 
504 void CodeGenModule::createCUDARuntime() {
505   CUDARuntime.reset(CreateNVCUDARuntime(*this));
506 }
507 
508 void CodeGenModule::createHLSLRuntime() {
509   HLSLRuntime.reset(new CGHLSLRuntime(*this));
510 }
511 
512 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
513   Replacements[Name] = C;
514 }
515 
516 void CodeGenModule::applyReplacements() {
517   for (auto &I : Replacements) {
518     StringRef MangledName = I.first;
519     llvm::Constant *Replacement = I.second;
520     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
521     if (!Entry)
522       continue;
523     auto *OldF = cast<llvm::Function>(Entry);
524     auto *NewF = dyn_cast<llvm::Function>(Replacement);
525     if (!NewF) {
526       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
527         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
528       } else {
529         auto *CE = cast<llvm::ConstantExpr>(Replacement);
530         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
531                CE->getOpcode() == llvm::Instruction::GetElementPtr);
532         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
533       }
534     }
535 
536     // Replace old with new, but keep the old order.
537     OldF->replaceAllUsesWith(Replacement);
538     if (NewF) {
539       NewF->removeFromParent();
540       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
541                                                        NewF);
542     }
543     OldF->eraseFromParent();
544   }
545 }
546 
547 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
548   GlobalValReplacements.push_back(std::make_pair(GV, C));
549 }
550 
551 void CodeGenModule::applyGlobalValReplacements() {
552   for (auto &I : GlobalValReplacements) {
553     llvm::GlobalValue *GV = I.first;
554     llvm::Constant *C = I.second;
555 
556     GV->replaceAllUsesWith(C);
557     GV->eraseFromParent();
558   }
559 }
560 
561 // This is only used in aliases that we created and we know they have a
562 // linear structure.
563 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
564   const llvm::Constant *C;
565   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
566     C = GA->getAliasee();
567   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
568     C = GI->getResolver();
569   else
570     return GV;
571 
572   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
573   if (!AliaseeGV)
574     return nullptr;
575 
576   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
577   if (FinalGV == GV)
578     return nullptr;
579 
580   return FinalGV;
581 }
582 
583 static bool checkAliasedGlobal(
584     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
585     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
586     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
587     SourceRange AliasRange) {
588   GV = getAliasedGlobal(Alias);
589   if (!GV) {
590     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
591     return false;
592   }
593 
594   if (GV->hasCommonLinkage()) {
595     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
596     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
597       Diags.Report(Location, diag::err_alias_to_common);
598       return false;
599     }
600   }
601 
602   if (GV->isDeclaration()) {
603     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
604     Diags.Report(Location, diag::note_alias_requires_mangled_name)
605         << IsIFunc << IsIFunc;
606     // Provide a note if the given function is not found and exists as a
607     // mangled name.
608     for (const auto &[Decl, Name] : MangledDeclNames) {
609       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
610         if (ND->getName() == GV->getName()) {
611           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
612               << Name
613               << FixItHint::CreateReplacement(
614                      AliasRange,
615                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
616                          .str());
617         }
618       }
619     }
620     return false;
621   }
622 
623   if (IsIFunc) {
624     // Check resolver function type.
625     const auto *F = dyn_cast<llvm::Function>(GV);
626     if (!F) {
627       Diags.Report(Location, diag::err_alias_to_undefined)
628           << IsIFunc << IsIFunc;
629       return false;
630     }
631 
632     llvm::FunctionType *FTy = F->getFunctionType();
633     if (!FTy->getReturnType()->isPointerTy()) {
634       Diags.Report(Location, diag::err_ifunc_resolver_return);
635       return false;
636     }
637   }
638 
639   return true;
640 }
641 
642 // Emit a warning if toc-data attribute is requested for global variables that
643 // have aliases and remove the toc-data attribute.
644 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
645                                  const CodeGenOptions &CodeGenOpts,
646                                  DiagnosticsEngine &Diags,
647                                  SourceLocation Location) {
648   if (GVar->hasAttribute("toc-data")) {
649     auto GVId = GVar->getName();
650     // Is this a global variable specified by the user as local?
651     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
652       Diags.Report(Location, diag::warn_toc_unsupported_type)
653           << GVId << "the variable has an alias";
654     }
655     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
656     llvm::AttributeSet NewAttributes =
657         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
658     GVar->setAttributes(NewAttributes);
659   }
660 }
661 
662 void CodeGenModule::checkAliases() {
663   // Check if the constructed aliases are well formed. It is really unfortunate
664   // that we have to do this in CodeGen, but we only construct mangled names
665   // and aliases during codegen.
666   bool Error = false;
667   DiagnosticsEngine &Diags = getDiags();
668   for (const GlobalDecl &GD : Aliases) {
669     const auto *D = cast<ValueDecl>(GD.getDecl());
670     SourceLocation Location;
671     SourceRange Range;
672     bool IsIFunc = D->hasAttr<IFuncAttr>();
673     if (const Attr *A = D->getDefiningAttr()) {
674       Location = A->getLocation();
675       Range = A->getRange();
676     } else
677       llvm_unreachable("Not an alias or ifunc?");
678 
679     StringRef MangledName = getMangledName(GD);
680     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
681     const llvm::GlobalValue *GV = nullptr;
682     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
683                             MangledDeclNames, Range)) {
684       Error = true;
685       continue;
686     }
687 
688     if (getContext().getTargetInfo().getTriple().isOSAIX())
689       if (const llvm::GlobalVariable *GVar =
690               dyn_cast<const llvm::GlobalVariable>(GV))
691         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
692                              getCodeGenOpts(), Diags, Location);
693 
694     llvm::Constant *Aliasee =
695         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
696                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
697 
698     llvm::GlobalValue *AliaseeGV;
699     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
700       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
701     else
702       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
703 
704     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
705       StringRef AliasSection = SA->getName();
706       if (AliasSection != AliaseeGV->getSection())
707         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
708             << AliasSection << IsIFunc << IsIFunc;
709     }
710 
711     // We have to handle alias to weak aliases in here. LLVM itself disallows
712     // this since the object semantics would not match the IL one. For
713     // compatibility with gcc we implement it by just pointing the alias
714     // to its aliasee's aliasee. We also warn, since the user is probably
715     // expecting the link to be weak.
716     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
717       if (GA->isInterposable()) {
718         Diags.Report(Location, diag::warn_alias_to_weak_alias)
719             << GV->getName() << GA->getName() << IsIFunc;
720         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
721             GA->getAliasee(), Alias->getType());
722 
723         if (IsIFunc)
724           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
725         else
726           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
727       }
728     }
729     // ifunc resolvers are usually implemented to run before sanitizer
730     // initialization. Disable instrumentation to prevent the ordering issue.
731     if (IsIFunc)
732       cast<llvm::Function>(Aliasee)->addFnAttr(
733           llvm::Attribute::DisableSanitizerInstrumentation);
734   }
735   if (!Error)
736     return;
737 
738   for (const GlobalDecl &GD : Aliases) {
739     StringRef MangledName = getMangledName(GD);
740     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
741     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
742     Alias->eraseFromParent();
743   }
744 }
745 
746 void CodeGenModule::clear() {
747   DeferredDeclsToEmit.clear();
748   EmittedDeferredDecls.clear();
749   DeferredAnnotations.clear();
750   if (OpenMPRuntime)
751     OpenMPRuntime->clear();
752 }
753 
754 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
755                                        StringRef MainFile) {
756   if (!hasDiagnostics())
757     return;
758   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
759     if (MainFile.empty())
760       MainFile = "<stdin>";
761     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
762   } else {
763     if (Mismatched > 0)
764       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
765 
766     if (Missing > 0)
767       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
768   }
769 }
770 
771 static std::optional<llvm::GlobalValue::VisibilityTypes>
772 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
773   // Map to LLVM visibility.
774   switch (K) {
775   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
776     return std::nullopt;
777   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
778     return llvm::GlobalValue::DefaultVisibility;
779   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
780     return llvm::GlobalValue::HiddenVisibility;
781   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
782     return llvm::GlobalValue::ProtectedVisibility;
783   }
784   llvm_unreachable("unknown option value!");
785 }
786 
787 void setLLVMVisibility(llvm::GlobalValue &GV,
788                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
789   if (!V)
790     return;
791 
792   // Reset DSO locality before setting the visibility. This removes
793   // any effects that visibility options and annotations may have
794   // had on the DSO locality. Setting the visibility will implicitly set
795   // appropriate globals to DSO Local; however, this will be pessimistic
796   // w.r.t. to the normal compiler IRGen.
797   GV.setDSOLocal(false);
798   GV.setVisibility(*V);
799 }
800 
801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
802                                              llvm::Module &M) {
803   if (!LO.VisibilityFromDLLStorageClass)
804     return;
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
807       getLLVMVisibility(LO.getDLLExportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       NoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
812 
813   std::optional<llvm::GlobalValue::VisibilityTypes>
814       ExternDeclDLLImportVisibility =
815           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
816 
817   std::optional<llvm::GlobalValue::VisibilityTypes>
818       ExternDeclNoDLLStorageClassVisibility =
819           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
820 
821   for (llvm::GlobalValue &GV : M.global_values()) {
822     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
823       continue;
824 
825     if (GV.isDeclarationForLinker())
826       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
827                                     llvm::GlobalValue::DLLImportStorageClass
828                                 ? ExternDeclDLLImportVisibility
829                                 : ExternDeclNoDLLStorageClassVisibility);
830     else
831       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
832                                     llvm::GlobalValue::DLLExportStorageClass
833                                 ? DLLExportVisibility
834                                 : NoDLLStorageClassVisibility);
835 
836     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
837   }
838 }
839 
840 static bool isStackProtectorOn(const LangOptions &LangOpts,
841                                const llvm::Triple &Triple,
842                                clang::LangOptions::StackProtectorMode Mode) {
843   if (Triple.isAMDGPU() || Triple.isNVPTX())
844     return false;
845   return LangOpts.getStackProtector() == Mode;
846 }
847 
848 void CodeGenModule::Release() {
849   Module *Primary = getContext().getCurrentNamedModule();
850   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
851     EmitModuleInitializers(Primary);
852   EmitDeferred();
853   DeferredDecls.insert(EmittedDeferredDecls.begin(),
854                        EmittedDeferredDecls.end());
855   EmittedDeferredDecls.clear();
856   EmitVTablesOpportunistically();
857   applyGlobalValReplacements();
858   applyReplacements();
859   emitMultiVersionFunctions();
860 
861   if (Context.getLangOpts().IncrementalExtensions &&
862       GlobalTopLevelStmtBlockInFlight.first) {
863     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
864     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
865     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
866   }
867 
868   // Module implementations are initialized the same way as a regular TU that
869   // imports one or more modules.
870   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
871     EmitCXXModuleInitFunc(Primary);
872   else
873     EmitCXXGlobalInitFunc();
874   EmitCXXGlobalCleanUpFunc();
875   registerGlobalDtorsWithAtExit();
876   EmitCXXThreadLocalInitFunc();
877   if (ObjCRuntime)
878     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
879       AddGlobalCtor(ObjCInitFunction);
880   if (Context.getLangOpts().CUDA && CUDARuntime) {
881     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
882       AddGlobalCtor(CudaCtorFunction);
883   }
884   if (OpenMPRuntime) {
885     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
886     OpenMPRuntime->clear();
887   }
888   if (PGOReader) {
889     getModule().setProfileSummary(
890         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
891         llvm::ProfileSummary::PSK_Instr);
892     if (PGOStats.hasDiagnostics())
893       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
894   }
895   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
896     return L.LexOrder < R.LexOrder;
897   });
898   EmitCtorList(GlobalCtors, "llvm.global_ctors");
899   EmitCtorList(GlobalDtors, "llvm.global_dtors");
900   EmitGlobalAnnotations();
901   EmitStaticExternCAliases();
902   checkAliases();
903   EmitDeferredUnusedCoverageMappings();
904   CodeGenPGO(*this).setValueProfilingFlag(getModule());
905   CodeGenPGO(*this).setProfileVersion(getModule());
906   if (CoverageMapping)
907     CoverageMapping->emit();
908   if (CodeGenOpts.SanitizeCfiCrossDso) {
909     CodeGenFunction(*this).EmitCfiCheckFail();
910     CodeGenFunction(*this).EmitCfiCheckStub();
911   }
912   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
913     finalizeKCFITypes();
914   emitAtAvailableLinkGuard();
915   if (Context.getTargetInfo().getTriple().isWasm())
916     EmitMainVoidAlias();
917 
918   if (getTriple().isAMDGPU() ||
919       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
920     // Emit amdhsa_code_object_version module flag, which is code object version
921     // times 100.
922     if (getTarget().getTargetOpts().CodeObjectVersion !=
923         llvm::CodeObjectVersionKind::COV_None) {
924       getModule().addModuleFlag(llvm::Module::Error,
925                                 "amdhsa_code_object_version",
926                                 getTarget().getTargetOpts().CodeObjectVersion);
927     }
928 
929     // Currently, "-mprintf-kind" option is only supported for HIP
930     if (LangOpts.HIP) {
931       auto *MDStr = llvm::MDString::get(
932           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
933                              TargetOptions::AMDGPUPrintfKind::Hostcall)
934                                 ? "hostcall"
935                                 : "buffered");
936       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
937                                 MDStr);
938     }
939   }
940 
941   // Emit a global array containing all external kernels or device variables
942   // used by host functions and mark it as used for CUDA/HIP. This is necessary
943   // to get kernels or device variables in archives linked in even if these
944   // kernels or device variables are only used in host functions.
945   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
946     SmallVector<llvm::Constant *, 8> UsedArray;
947     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
948       GlobalDecl GD;
949       if (auto *FD = dyn_cast<FunctionDecl>(D))
950         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
951       else
952         GD = GlobalDecl(D);
953       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
954           GetAddrOfGlobal(GD), Int8PtrTy));
955     }
956 
957     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
958 
959     auto *GV = new llvm::GlobalVariable(
960         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
961         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
962     addCompilerUsedGlobal(GV);
963   }
964   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
965     // Emit a unique ID so that host and device binaries from the same
966     // compilation unit can be associated.
967     auto *GV = new llvm::GlobalVariable(
968         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
969         llvm::Constant::getNullValue(Int8Ty),
970         "__hip_cuid_" + getContext().getCUIDHash());
971     addCompilerUsedGlobal(GV);
972   }
973   emitLLVMUsed();
974   if (SanStats)
975     SanStats->finish();
976 
977   if (CodeGenOpts.Autolink &&
978       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
979     EmitModuleLinkOptions();
980   }
981 
982   // On ELF we pass the dependent library specifiers directly to the linker
983   // without manipulating them. This is in contrast to other platforms where
984   // they are mapped to a specific linker option by the compiler. This
985   // difference is a result of the greater variety of ELF linkers and the fact
986   // that ELF linkers tend to handle libraries in a more complicated fashion
987   // than on other platforms. This forces us to defer handling the dependent
988   // libs to the linker.
989   //
990   // CUDA/HIP device and host libraries are different. Currently there is no
991   // way to differentiate dependent libraries for host or device. Existing
992   // usage of #pragma comment(lib, *) is intended for host libraries on
993   // Windows. Therefore emit llvm.dependent-libraries only for host.
994   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
995     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
996     for (auto *MD : ELFDependentLibraries)
997       NMD->addOperand(MD);
998   }
999 
1000   if (CodeGenOpts.DwarfVersion) {
1001     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1002                               CodeGenOpts.DwarfVersion);
1003   }
1004 
1005   if (CodeGenOpts.Dwarf64)
1006     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1007 
1008   if (Context.getLangOpts().SemanticInterposition)
1009     // Require various optimization to respect semantic interposition.
1010     getModule().setSemanticInterposition(true);
1011 
1012   if (CodeGenOpts.EmitCodeView) {
1013     // Indicate that we want CodeView in the metadata.
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1015   }
1016   if (CodeGenOpts.CodeViewGHash) {
1017     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1018   }
1019   if (CodeGenOpts.ControlFlowGuard) {
1020     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1022   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1023     // Function ID tables for Control Flow Guard (cfguard=1).
1024     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1025   }
1026   if (CodeGenOpts.EHContGuard) {
1027     // Function ID tables for EH Continuation Guard.
1028     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1029   }
1030   if (Context.getLangOpts().Kernel) {
1031     // Note if we are compiling with /kernel.
1032     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1033   }
1034   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1035     // We don't support LTO with 2 with different StrictVTablePointers
1036     // FIXME: we could support it by stripping all the information introduced
1037     // by StrictVTablePointers.
1038 
1039     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1040 
1041     llvm::Metadata *Ops[2] = {
1042               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1043               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1044                   llvm::Type::getInt32Ty(VMContext), 1))};
1045 
1046     getModule().addModuleFlag(llvm::Module::Require,
1047                               "StrictVTablePointersRequirement",
1048                               llvm::MDNode::get(VMContext, Ops));
1049   }
1050   if (getModuleDebugInfo())
1051     // We support a single version in the linked module. The LLVM
1052     // parser will drop debug info with a different version number
1053     // (and warn about it, too).
1054     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1055                               llvm::DEBUG_METADATA_VERSION);
1056 
1057   // We need to record the widths of enums and wchar_t, so that we can generate
1058   // the correct build attributes in the ARM backend. wchar_size is also used by
1059   // TargetLibraryInfo.
1060   uint64_t WCharWidth =
1061       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1062   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1063 
1064   if (getTriple().isOSzOS()) {
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_major_version",
1067                               uint32_t(CLANG_VERSION_MAJOR));
1068     getModule().addModuleFlag(llvm::Module::Warning,
1069                               "zos_product_minor_version",
1070                               uint32_t(CLANG_VERSION_MINOR));
1071     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1072                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1073     std::string ProductId = getClangVendor() + "clang";
1074     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1075                               llvm::MDString::get(VMContext, ProductId));
1076 
1077     // Record the language because we need it for the PPA2.
1078     StringRef lang_str = languageToString(
1079         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1080     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1081                               llvm::MDString::get(VMContext, lang_str));
1082 
1083     time_t TT = PreprocessorOpts.SourceDateEpoch
1084                     ? *PreprocessorOpts.SourceDateEpoch
1085                     : std::time(nullptr);
1086     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1087                               static_cast<uint64_t>(TT));
1088 
1089     // Multiple modes will be supported here.
1090     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1091                               llvm::MDString::get(VMContext, "ascii"));
1092   }
1093 
1094   llvm::Triple T = Context.getTargetInfo().getTriple();
1095   if (T.isARM() || T.isThumb()) {
1096     // The minimum width of an enum in bytes
1097     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1098     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1099   }
1100 
1101   if (T.isRISCV()) {
1102     StringRef ABIStr = Target.getABI();
1103     llvm::LLVMContext &Ctx = TheModule.getContext();
1104     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1105                               llvm::MDString::get(Ctx, ABIStr));
1106 
1107     // Add the canonical ISA string as metadata so the backend can set the ELF
1108     // attributes correctly. We use AppendUnique so LTO will keep all of the
1109     // unique ISA strings that were linked together.
1110     const std::vector<std::string> &Features =
1111         getTarget().getTargetOpts().Features;
1112     auto ParseResult =
1113         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1114     if (!errorToBool(ParseResult.takeError()))
1115       getModule().addModuleFlag(
1116           llvm::Module::AppendUnique, "riscv-isa",
1117           llvm::MDNode::get(
1118               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1119   }
1120 
1121   if (CodeGenOpts.SanitizeCfiCrossDso) {
1122     // Indicate that we want cross-DSO control flow integrity checks.
1123     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1124   }
1125 
1126   if (CodeGenOpts.WholeProgramVTables) {
1127     // Indicate whether VFE was enabled for this module, so that the
1128     // vcall_visibility metadata added under whole program vtables is handled
1129     // appropriately in the optimizer.
1130     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1131                               CodeGenOpts.VirtualFunctionElimination);
1132   }
1133 
1134   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1135     getModule().addModuleFlag(llvm::Module::Override,
1136                               "CFI Canonical Jump Tables",
1137                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1138   }
1139 
1140   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1141     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1142                               1);
1143   }
1144 
1145   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1146     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1147     // KCFI assumes patchable-function-prefix is the same for all indirectly
1148     // called functions. Store the expected offset for code generation.
1149     if (CodeGenOpts.PatchableFunctionEntryOffset)
1150       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1151                                 CodeGenOpts.PatchableFunctionEntryOffset);
1152   }
1153 
1154   if (CodeGenOpts.CFProtectionReturn &&
1155       Target.checkCFProtectionReturnSupported(getDiags())) {
1156     // Indicate that we want to instrument return control flow protection.
1157     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1158                               1);
1159   }
1160 
1161   if (CodeGenOpts.CFProtectionBranch &&
1162       Target.checkCFProtectionBranchSupported(getDiags())) {
1163     // Indicate that we want to instrument branch control flow protection.
1164     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1165                               1);
1166   }
1167 
1168   if (CodeGenOpts.FunctionReturnThunks)
1169     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1170 
1171   if (CodeGenOpts.IndirectBranchCSPrefix)
1172     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1173 
1174   // Add module metadata for return address signing (ignoring
1175   // non-leaf/all) and stack tagging. These are actually turned on by function
1176   // attributes, but we use module metadata to emit build attributes. This is
1177   // needed for LTO, where the function attributes are inside bitcode
1178   // serialised into a global variable by the time build attributes are
1179   // emitted, so we can't access them. LTO objects could be compiled with
1180   // different flags therefore module flags are set to "Min" behavior to achieve
1181   // the same end result of the normal build where e.g BTI is off if any object
1182   // doesn't support it.
1183   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1184       LangOpts.getSignReturnAddressScope() !=
1185           LangOptions::SignReturnAddressScopeKind::None)
1186     getModule().addModuleFlag(llvm::Module::Override,
1187                               "sign-return-address-buildattr", 1);
1188   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1189     getModule().addModuleFlag(llvm::Module::Override,
1190                               "tag-stack-memory-buildattr", 1);
1191 
1192   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1193     if (LangOpts.BranchTargetEnforcement)
1194       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1195                                 1);
1196     if (LangOpts.BranchProtectionPAuthLR)
1197       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1198                                 1);
1199     if (LangOpts.GuardedControlStack)
1200       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1201     if (LangOpts.hasSignReturnAddress())
1202       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1203     if (LangOpts.isSignReturnAddressScopeAll())
1204       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1205                                 1);
1206     if (!LangOpts.isSignReturnAddressWithAKey())
1207       getModule().addModuleFlag(llvm::Module::Min,
1208                                 "sign-return-address-with-bkey", 1);
1209 
1210     if (getTriple().isOSLinux()) {
1211       assert(getTriple().isOSBinFormatELF());
1212       using namespace llvm::ELF;
1213       uint64_t PAuthABIVersion =
1214           (LangOpts.PointerAuthIntrinsics
1215            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1216           (LangOpts.PointerAuthCalls
1217            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1218           (LangOpts.PointerAuthReturns
1219            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1220           (LangOpts.PointerAuthAuthTraps
1221            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1222           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1223            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1224           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1225            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1226           (LangOpts.PointerAuthInitFini
1227            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1228           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1229            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1230           (LangOpts.PointerAuthELFGOT
1231            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1232           (LangOpts.PointerAuthIndirectGotos
1233            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1234           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1235            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1236           (LangOpts.PointerAuthFunctionTypeDiscrimination
1237            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1238       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1239                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1240                     "Update when new enum items are defined");
1241       if (PAuthABIVersion != 0) {
1242         getModule().addModuleFlag(llvm::Module::Error,
1243                                   "aarch64-elf-pauthabi-platform",
1244                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1245         getModule().addModuleFlag(llvm::Module::Error,
1246                                   "aarch64-elf-pauthabi-version",
1247                                   PAuthABIVersion);
1248       }
1249     }
1250   }
1251 
1252   if (CodeGenOpts.StackClashProtector)
1253     getModule().addModuleFlag(
1254         llvm::Module::Override, "probe-stack",
1255         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1256 
1257   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1258     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1259                               CodeGenOpts.StackProbeSize);
1260 
1261   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1262     llvm::LLVMContext &Ctx = TheModule.getContext();
1263     getModule().addModuleFlag(
1264         llvm::Module::Error, "MemProfProfileFilename",
1265         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1266   }
1267 
1268   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1269     // Indicate whether __nvvm_reflect should be configured to flush denormal
1270     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1271     // property.)
1272     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1273                               CodeGenOpts.FP32DenormalMode.Output !=
1274                                   llvm::DenormalMode::IEEE);
1275   }
1276 
1277   if (LangOpts.EHAsynch)
1278     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1279 
1280   // Indicate whether this Module was compiled with -fopenmp
1281   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1282     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1283   if (getLangOpts().OpenMPIsTargetDevice)
1284     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1285                               LangOpts.OpenMP);
1286 
1287   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1288   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1289     EmitOpenCLMetadata();
1290     // Emit SPIR version.
1291     if (getTriple().isSPIR()) {
1292       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1293       // opencl.spir.version named metadata.
1294       // C++ for OpenCL has a distinct mapping for version compatibility with
1295       // OpenCL.
1296       auto Version = LangOpts.getOpenCLCompatibleVersion();
1297       llvm::Metadata *SPIRVerElts[] = {
1298           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1299               Int32Ty, Version / 100)),
1300           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1301               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1302       llvm::NamedMDNode *SPIRVerMD =
1303           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1304       llvm::LLVMContext &Ctx = TheModule.getContext();
1305       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1306     }
1307   }
1308 
1309   // HLSL related end of code gen work items.
1310   if (LangOpts.HLSL)
1311     getHLSLRuntime().finishCodeGen();
1312 
1313   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1314     assert(PLevel < 3 && "Invalid PIC Level");
1315     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1316     if (Context.getLangOpts().PIE)
1317       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1318   }
1319 
1320   if (getCodeGenOpts().CodeModel.size() > 0) {
1321     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1322                   .Case("tiny", llvm::CodeModel::Tiny)
1323                   .Case("small", llvm::CodeModel::Small)
1324                   .Case("kernel", llvm::CodeModel::Kernel)
1325                   .Case("medium", llvm::CodeModel::Medium)
1326                   .Case("large", llvm::CodeModel::Large)
1327                   .Default(~0u);
1328     if (CM != ~0u) {
1329       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1330       getModule().setCodeModel(codeModel);
1331 
1332       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1333           Context.getTargetInfo().getTriple().getArch() ==
1334               llvm::Triple::x86_64) {
1335         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1336       }
1337     }
1338   }
1339 
1340   if (CodeGenOpts.NoPLT)
1341     getModule().setRtLibUseGOT();
1342   if (getTriple().isOSBinFormatELF() &&
1343       CodeGenOpts.DirectAccessExternalData !=
1344           getModule().getDirectAccessExternalData()) {
1345     getModule().setDirectAccessExternalData(
1346         CodeGenOpts.DirectAccessExternalData);
1347   }
1348   if (CodeGenOpts.UnwindTables)
1349     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1350 
1351   switch (CodeGenOpts.getFramePointer()) {
1352   case CodeGenOptions::FramePointerKind::None:
1353     // 0 ("none") is the default.
1354     break;
1355   case CodeGenOptions::FramePointerKind::Reserved:
1356     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1357     break;
1358   case CodeGenOptions::FramePointerKind::NonLeaf:
1359     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1360     break;
1361   case CodeGenOptions::FramePointerKind::All:
1362     getModule().setFramePointer(llvm::FramePointerKind::All);
1363     break;
1364   }
1365 
1366   SimplifyPersonality();
1367 
1368   if (getCodeGenOpts().EmitDeclMetadata)
1369     EmitDeclMetadata();
1370 
1371   if (getCodeGenOpts().CoverageNotesFile.size() ||
1372       getCodeGenOpts().CoverageDataFile.size())
1373     EmitCoverageFile();
1374 
1375   if (CGDebugInfo *DI = getModuleDebugInfo())
1376     DI->finalize();
1377 
1378   if (getCodeGenOpts().EmitVersionIdentMetadata)
1379     EmitVersionIdentMetadata();
1380 
1381   if (!getCodeGenOpts().RecordCommandLine.empty())
1382     EmitCommandLineMetadata();
1383 
1384   if (!getCodeGenOpts().StackProtectorGuard.empty())
1385     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1386   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1387     getModule().setStackProtectorGuardReg(
1388         getCodeGenOpts().StackProtectorGuardReg);
1389   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1390     getModule().setStackProtectorGuardSymbol(
1391         getCodeGenOpts().StackProtectorGuardSymbol);
1392   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1393     getModule().setStackProtectorGuardOffset(
1394         getCodeGenOpts().StackProtectorGuardOffset);
1395   if (getCodeGenOpts().StackAlignment)
1396     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1397   if (getCodeGenOpts().SkipRaxSetup)
1398     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1399   if (getLangOpts().RegCall4)
1400     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1401 
1402   if (getContext().getTargetInfo().getMaxTLSAlign())
1403     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1404                               getContext().getTargetInfo().getMaxTLSAlign());
1405 
1406   getTargetCodeGenInfo().emitTargetGlobals(*this);
1407 
1408   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1409 
1410   EmitBackendOptionsMetadata(getCodeGenOpts());
1411 
1412   // If there is device offloading code embed it in the host now.
1413   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1414 
1415   // Set visibility from DLL storage class
1416   // We do this at the end of LLVM IR generation; after any operation
1417   // that might affect the DLL storage class or the visibility, and
1418   // before anything that might act on these.
1419   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1420 
1421   // Check the tail call symbols are truly undefined.
1422   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1423     for (auto &I : MustTailCallUndefinedGlobals) {
1424       if (!I.first->isDefined())
1425         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1426       else {
1427         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1428         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1429         if (!Entry || Entry->isWeakForLinker() ||
1430             Entry->isDeclarationForLinker())
1431           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1432       }
1433     }
1434   }
1435 }
1436 
1437 void CodeGenModule::EmitOpenCLMetadata() {
1438   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1439   // opencl.ocl.version named metadata node.
1440   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1441   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1442 
1443   auto EmitVersion = [this](StringRef MDName, int Version) {
1444     llvm::Metadata *OCLVerElts[] = {
1445         llvm::ConstantAsMetadata::get(
1446             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1447         llvm::ConstantAsMetadata::get(
1448             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1449     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1450     llvm::LLVMContext &Ctx = TheModule.getContext();
1451     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1452   };
1453 
1454   EmitVersion("opencl.ocl.version", CLVersion);
1455   if (LangOpts.OpenCLCPlusPlus) {
1456     // In addition to the OpenCL compatible version, emit the C++ version.
1457     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1458   }
1459 }
1460 
1461 void CodeGenModule::EmitBackendOptionsMetadata(
1462     const CodeGenOptions &CodeGenOpts) {
1463   if (getTriple().isRISCV()) {
1464     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1465                               CodeGenOpts.SmallDataLimit);
1466   }
1467 }
1468 
1469 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1470   // Make sure that this type is translated.
1471   getTypes().UpdateCompletedType(TD);
1472 }
1473 
1474 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1475   // Make sure that this type is translated.
1476   getTypes().RefreshTypeCacheForClass(RD);
1477 }
1478 
1479 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1480   if (!TBAA)
1481     return nullptr;
1482   return TBAA->getTypeInfo(QTy);
1483 }
1484 
1485 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1486   if (!TBAA)
1487     return TBAAAccessInfo();
1488   if (getLangOpts().CUDAIsDevice) {
1489     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1490     // access info.
1491     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1492       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1493           nullptr)
1494         return TBAAAccessInfo();
1495     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1496       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1497           nullptr)
1498         return TBAAAccessInfo();
1499     }
1500   }
1501   return TBAA->getAccessInfo(AccessType);
1502 }
1503 
1504 TBAAAccessInfo
1505 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1506   if (!TBAA)
1507     return TBAAAccessInfo();
1508   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1509 }
1510 
1511 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1512   if (!TBAA)
1513     return nullptr;
1514   return TBAA->getTBAAStructInfo(QTy);
1515 }
1516 
1517 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1518   if (!TBAA)
1519     return nullptr;
1520   return TBAA->getBaseTypeInfo(QTy);
1521 }
1522 
1523 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1524   if (!TBAA)
1525     return nullptr;
1526   return TBAA->getAccessTagInfo(Info);
1527 }
1528 
1529 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1530                                                    TBAAAccessInfo TargetInfo) {
1531   if (!TBAA)
1532     return TBAAAccessInfo();
1533   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1534 }
1535 
1536 TBAAAccessInfo
1537 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1538                                                    TBAAAccessInfo InfoB) {
1539   if (!TBAA)
1540     return TBAAAccessInfo();
1541   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1542 }
1543 
1544 TBAAAccessInfo
1545 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1546                                               TBAAAccessInfo SrcInfo) {
1547   if (!TBAA)
1548     return TBAAAccessInfo();
1549   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1550 }
1551 
1552 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1553                                                 TBAAAccessInfo TBAAInfo) {
1554   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1555     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1556 }
1557 
1558 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1559     llvm::Instruction *I, const CXXRecordDecl *RD) {
1560   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1561                  llvm::MDNode::get(getLLVMContext(), {}));
1562 }
1563 
1564 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1565   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1566   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1567 }
1568 
1569 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1570 /// specified stmt yet.
1571 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1572   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1573                                                "cannot compile this %0 yet");
1574   std::string Msg = Type;
1575   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1576       << Msg << S->getSourceRange();
1577 }
1578 
1579 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1580 /// specified decl yet.
1581 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1582   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1583                                                "cannot compile this %0 yet");
1584   std::string Msg = Type;
1585   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1586 }
1587 
1588 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1589   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1590 }
1591 
1592 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1593                                         const NamedDecl *D) const {
1594   // Internal definitions always have default visibility.
1595   if (GV->hasLocalLinkage()) {
1596     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1597     return;
1598   }
1599   if (!D)
1600     return;
1601 
1602   // Set visibility for definitions, and for declarations if requested globally
1603   // or set explicitly.
1604   LinkageInfo LV = D->getLinkageAndVisibility();
1605 
1606   // OpenMP declare target variables must be visible to the host so they can
1607   // be registered. We require protected visibility unless the variable has
1608   // the DT_nohost modifier and does not need to be registered.
1609   if (Context.getLangOpts().OpenMP &&
1610       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1611       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1612       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1613           OMPDeclareTargetDeclAttr::DT_NoHost &&
1614       LV.getVisibility() == HiddenVisibility) {
1615     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1616     return;
1617   }
1618 
1619   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1620     // Reject incompatible dlllstorage and visibility annotations.
1621     if (!LV.isVisibilityExplicit())
1622       return;
1623     if (GV->hasDLLExportStorageClass()) {
1624       if (LV.getVisibility() == HiddenVisibility)
1625         getDiags().Report(D->getLocation(),
1626                           diag::err_hidden_visibility_dllexport);
1627     } else if (LV.getVisibility() != DefaultVisibility) {
1628       getDiags().Report(D->getLocation(),
1629                         diag::err_non_default_visibility_dllimport);
1630     }
1631     return;
1632   }
1633 
1634   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1635       !GV->isDeclarationForLinker())
1636     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1637 }
1638 
1639 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1640                                  llvm::GlobalValue *GV) {
1641   if (GV->hasLocalLinkage())
1642     return true;
1643 
1644   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1645     return true;
1646 
1647   // DLLImport explicitly marks the GV as external.
1648   if (GV->hasDLLImportStorageClass())
1649     return false;
1650 
1651   const llvm::Triple &TT = CGM.getTriple();
1652   const auto &CGOpts = CGM.getCodeGenOpts();
1653   if (TT.isWindowsGNUEnvironment()) {
1654     // In MinGW, variables without DLLImport can still be automatically
1655     // imported from a DLL by the linker; don't mark variables that
1656     // potentially could come from another DLL as DSO local.
1657 
1658     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1659     // (and this actually happens in the public interface of libstdc++), so
1660     // such variables can't be marked as DSO local. (Native TLS variables
1661     // can't be dllimported at all, though.)
1662     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1663         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1664         CGOpts.AutoImport)
1665       return false;
1666   }
1667 
1668   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1669   // remain unresolved in the link, they can be resolved to zero, which is
1670   // outside the current DSO.
1671   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1672     return false;
1673 
1674   // Every other GV is local on COFF.
1675   // Make an exception for windows OS in the triple: Some firmware builds use
1676   // *-win32-macho triples. This (accidentally?) produced windows relocations
1677   // without GOT tables in older clang versions; Keep this behaviour.
1678   // FIXME: even thread local variables?
1679   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1680     return true;
1681 
1682   // Only handle COFF and ELF for now.
1683   if (!TT.isOSBinFormatELF())
1684     return false;
1685 
1686   // If this is not an executable, don't assume anything is local.
1687   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1688   const auto &LOpts = CGM.getLangOpts();
1689   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1690     // On ELF, if -fno-semantic-interposition is specified and the target
1691     // supports local aliases, there will be neither CC1
1692     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1693     // dso_local on the function if using a local alias is preferable (can avoid
1694     // PLT indirection).
1695     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1696       return false;
1697     return !(CGM.getLangOpts().SemanticInterposition ||
1698              CGM.getLangOpts().HalfNoSemanticInterposition);
1699   }
1700 
1701   // A definition cannot be preempted from an executable.
1702   if (!GV->isDeclarationForLinker())
1703     return true;
1704 
1705   // Most PIC code sequences that assume that a symbol is local cannot produce a
1706   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1707   // depended, it seems worth it to handle it here.
1708   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1709     return false;
1710 
1711   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1712   if (TT.isPPC64())
1713     return false;
1714 
1715   if (CGOpts.DirectAccessExternalData) {
1716     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1717     // for non-thread-local variables. If the symbol is not defined in the
1718     // executable, a copy relocation will be needed at link time. dso_local is
1719     // excluded for thread-local variables because they generally don't support
1720     // copy relocations.
1721     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1722       if (!Var->isThreadLocal())
1723         return true;
1724 
1725     // -fno-pic sets dso_local on a function declaration to allow direct
1726     // accesses when taking its address (similar to a data symbol). If the
1727     // function is not defined in the executable, a canonical PLT entry will be
1728     // needed at link time. -fno-direct-access-external-data can avoid the
1729     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1730     // it could just cause trouble without providing perceptible benefits.
1731     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1732       return true;
1733   }
1734 
1735   // If we can use copy relocations we can assume it is local.
1736 
1737   // Otherwise don't assume it is local.
1738   return false;
1739 }
1740 
1741 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1742   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1743 }
1744 
1745 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1746                                           GlobalDecl GD) const {
1747   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1748   // C++ destructors have a few C++ ABI specific special cases.
1749   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1750     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1751     return;
1752   }
1753   setDLLImportDLLExport(GV, D);
1754 }
1755 
1756 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1757                                           const NamedDecl *D) const {
1758   if (D && D->isExternallyVisible()) {
1759     if (D->hasAttr<DLLImportAttr>())
1760       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1761     else if ((D->hasAttr<DLLExportAttr>() ||
1762               shouldMapVisibilityToDLLExport(D)) &&
1763              !GV->isDeclarationForLinker())
1764       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1765   }
1766 }
1767 
1768 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1769                                     GlobalDecl GD) const {
1770   setDLLImportDLLExport(GV, GD);
1771   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1772 }
1773 
1774 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1775                                     const NamedDecl *D) const {
1776   setDLLImportDLLExport(GV, D);
1777   setGVPropertiesAux(GV, D);
1778 }
1779 
1780 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1781                                        const NamedDecl *D) const {
1782   setGlobalVisibility(GV, D);
1783   setDSOLocal(GV);
1784   GV->setPartition(CodeGenOpts.SymbolPartition);
1785 }
1786 
1787 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1788   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1789       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1790       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1791       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1792       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1793 }
1794 
1795 llvm::GlobalVariable::ThreadLocalMode
1796 CodeGenModule::GetDefaultLLVMTLSModel() const {
1797   switch (CodeGenOpts.getDefaultTLSModel()) {
1798   case CodeGenOptions::GeneralDynamicTLSModel:
1799     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1800   case CodeGenOptions::LocalDynamicTLSModel:
1801     return llvm::GlobalVariable::LocalDynamicTLSModel;
1802   case CodeGenOptions::InitialExecTLSModel:
1803     return llvm::GlobalVariable::InitialExecTLSModel;
1804   case CodeGenOptions::LocalExecTLSModel:
1805     return llvm::GlobalVariable::LocalExecTLSModel;
1806   }
1807   llvm_unreachable("Invalid TLS model!");
1808 }
1809 
1810 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1811   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1812 
1813   llvm::GlobalValue::ThreadLocalMode TLM;
1814   TLM = GetDefaultLLVMTLSModel();
1815 
1816   // Override the TLS model if it is explicitly specified.
1817   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1818     TLM = GetLLVMTLSModel(Attr->getModel());
1819   }
1820 
1821   GV->setThreadLocalMode(TLM);
1822 }
1823 
1824 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1825                                           StringRef Name) {
1826   const TargetInfo &Target = CGM.getTarget();
1827   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1828 }
1829 
1830 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1831                                                  const CPUSpecificAttr *Attr,
1832                                                  unsigned CPUIndex,
1833                                                  raw_ostream &Out) {
1834   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1835   // supported.
1836   if (Attr)
1837     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1838   else if (CGM.getTarget().supportsIFunc())
1839     Out << ".resolver";
1840 }
1841 
1842 // Returns true if GD is a function decl with internal linkage and
1843 // needs a unique suffix after the mangled name.
1844 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1845                                         CodeGenModule &CGM) {
1846   const Decl *D = GD.getDecl();
1847   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1848          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1849 }
1850 
1851 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1852                                       const NamedDecl *ND,
1853                                       bool OmitMultiVersionMangling = false) {
1854   SmallString<256> Buffer;
1855   llvm::raw_svector_ostream Out(Buffer);
1856   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1857   if (!CGM.getModuleNameHash().empty())
1858     MC.needsUniqueInternalLinkageNames();
1859   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1860   if (ShouldMangle)
1861     MC.mangleName(GD.getWithDecl(ND), Out);
1862   else {
1863     IdentifierInfo *II = ND->getIdentifier();
1864     assert(II && "Attempt to mangle unnamed decl.");
1865     const auto *FD = dyn_cast<FunctionDecl>(ND);
1866 
1867     if (FD &&
1868         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1869       if (CGM.getLangOpts().RegCall4)
1870         Out << "__regcall4__" << II->getName();
1871       else
1872         Out << "__regcall3__" << II->getName();
1873     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1874                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1875       Out << "__device_stub__" << II->getName();
1876     } else {
1877       Out << II->getName();
1878     }
1879   }
1880 
1881   // Check if the module name hash should be appended for internal linkage
1882   // symbols.   This should come before multi-version target suffixes are
1883   // appended. This is to keep the name and module hash suffix of the
1884   // internal linkage function together.  The unique suffix should only be
1885   // added when name mangling is done to make sure that the final name can
1886   // be properly demangled.  For example, for C functions without prototypes,
1887   // name mangling is not done and the unique suffix should not be appeneded
1888   // then.
1889   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1890     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1891            "Hash computed when not explicitly requested");
1892     Out << CGM.getModuleNameHash();
1893   }
1894 
1895   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1896     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1897       switch (FD->getMultiVersionKind()) {
1898       case MultiVersionKind::CPUDispatch:
1899       case MultiVersionKind::CPUSpecific:
1900         AppendCPUSpecificCPUDispatchMangling(CGM,
1901                                              FD->getAttr<CPUSpecificAttr>(),
1902                                              GD.getMultiVersionIndex(), Out);
1903         break;
1904       case MultiVersionKind::Target: {
1905         auto *Attr = FD->getAttr<TargetAttr>();
1906         assert(Attr && "Expected TargetAttr to be present "
1907                        "for attribute mangling");
1908         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1909         Info.appendAttributeMangling(Attr, Out);
1910         break;
1911       }
1912       case MultiVersionKind::TargetVersion: {
1913         auto *Attr = FD->getAttr<TargetVersionAttr>();
1914         assert(Attr && "Expected TargetVersionAttr to be present "
1915                        "for attribute mangling");
1916         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1917         Info.appendAttributeMangling(Attr, Out);
1918         break;
1919       }
1920       case MultiVersionKind::TargetClones: {
1921         auto *Attr = FD->getAttr<TargetClonesAttr>();
1922         assert(Attr && "Expected TargetClonesAttr to be present "
1923                        "for attribute mangling");
1924         unsigned Index = GD.getMultiVersionIndex();
1925         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1926         Info.appendAttributeMangling(Attr, Index, Out);
1927         break;
1928       }
1929       case MultiVersionKind::None:
1930         llvm_unreachable("None multiversion type isn't valid here");
1931       }
1932     }
1933 
1934   // Make unique name for device side static file-scope variable for HIP.
1935   if (CGM.getContext().shouldExternalize(ND) &&
1936       CGM.getLangOpts().GPURelocatableDeviceCode &&
1937       CGM.getLangOpts().CUDAIsDevice)
1938     CGM.printPostfixForExternalizedDecl(Out, ND);
1939 
1940   return std::string(Out.str());
1941 }
1942 
1943 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1944                                             const FunctionDecl *FD,
1945                                             StringRef &CurName) {
1946   if (!FD->isMultiVersion())
1947     return;
1948 
1949   // Get the name of what this would be without the 'target' attribute.  This
1950   // allows us to lookup the version that was emitted when this wasn't a
1951   // multiversion function.
1952   std::string NonTargetName =
1953       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1954   GlobalDecl OtherGD;
1955   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1956     assert(OtherGD.getCanonicalDecl()
1957                .getDecl()
1958                ->getAsFunction()
1959                ->isMultiVersion() &&
1960            "Other GD should now be a multiversioned function");
1961     // OtherFD is the version of this function that was mangled BEFORE
1962     // becoming a MultiVersion function.  It potentially needs to be updated.
1963     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1964                                       .getDecl()
1965                                       ->getAsFunction()
1966                                       ->getMostRecentDecl();
1967     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1968     // This is so that if the initial version was already the 'default'
1969     // version, we don't try to update it.
1970     if (OtherName != NonTargetName) {
1971       // Remove instead of erase, since others may have stored the StringRef
1972       // to this.
1973       const auto ExistingRecord = Manglings.find(NonTargetName);
1974       if (ExistingRecord != std::end(Manglings))
1975         Manglings.remove(&(*ExistingRecord));
1976       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1977       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1978           Result.first->first();
1979       // If this is the current decl is being created, make sure we update the name.
1980       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1981         CurName = OtherNameRef;
1982       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1983         Entry->setName(OtherName);
1984     }
1985   }
1986 }
1987 
1988 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1989   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1990 
1991   // Some ABIs don't have constructor variants.  Make sure that base and
1992   // complete constructors get mangled the same.
1993   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1994     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1995       CXXCtorType OrigCtorType = GD.getCtorType();
1996       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1997       if (OrigCtorType == Ctor_Base)
1998         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1999     }
2000   }
2001 
2002   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2003   // static device variable depends on whether the variable is referenced by
2004   // a host or device host function. Therefore the mangled name cannot be
2005   // cached.
2006   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2007     auto FoundName = MangledDeclNames.find(CanonicalGD);
2008     if (FoundName != MangledDeclNames.end())
2009       return FoundName->second;
2010   }
2011 
2012   // Keep the first result in the case of a mangling collision.
2013   const auto *ND = cast<NamedDecl>(GD.getDecl());
2014   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2015 
2016   // Ensure either we have different ABIs between host and device compilations,
2017   // says host compilation following MSVC ABI but device compilation follows
2018   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2019   // mangling should be the same after name stubbing. The later checking is
2020   // very important as the device kernel name being mangled in host-compilation
2021   // is used to resolve the device binaries to be executed. Inconsistent naming
2022   // result in undefined behavior. Even though we cannot check that naming
2023   // directly between host- and device-compilations, the host- and
2024   // device-mangling in host compilation could help catching certain ones.
2025   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2026          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2027          (getContext().getAuxTargetInfo() &&
2028           (getContext().getAuxTargetInfo()->getCXXABI() !=
2029            getContext().getTargetInfo().getCXXABI())) ||
2030          getCUDARuntime().getDeviceSideName(ND) ==
2031              getMangledNameImpl(
2032                  *this,
2033                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2034                  ND));
2035 
2036   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2037   return MangledDeclNames[CanonicalGD] = Result.first->first();
2038 }
2039 
2040 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2041                                              const BlockDecl *BD) {
2042   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2043   const Decl *D = GD.getDecl();
2044 
2045   SmallString<256> Buffer;
2046   llvm::raw_svector_ostream Out(Buffer);
2047   if (!D)
2048     MangleCtx.mangleGlobalBlock(BD,
2049       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2050   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2051     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2052   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2053     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2054   else
2055     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2056 
2057   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2058   return Result.first->first();
2059 }
2060 
2061 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2062   auto it = MangledDeclNames.begin();
2063   while (it != MangledDeclNames.end()) {
2064     if (it->second == Name)
2065       return it->first;
2066     it++;
2067   }
2068   return GlobalDecl();
2069 }
2070 
2071 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2072   return getModule().getNamedValue(Name);
2073 }
2074 
2075 /// AddGlobalCtor - Add a function to the list that will be called before
2076 /// main() runs.
2077 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2078                                   unsigned LexOrder,
2079                                   llvm::Constant *AssociatedData) {
2080   // FIXME: Type coercion of void()* types.
2081   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2082 }
2083 
2084 /// AddGlobalDtor - Add a function to the list that will be called
2085 /// when the module is unloaded.
2086 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2087                                   bool IsDtorAttrFunc) {
2088   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2089       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2090     DtorsUsingAtExit[Priority].push_back(Dtor);
2091     return;
2092   }
2093 
2094   // FIXME: Type coercion of void()* types.
2095   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2096 }
2097 
2098 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2099   if (Fns.empty()) return;
2100 
2101   const PointerAuthSchema &InitFiniAuthSchema =
2102       getCodeGenOpts().PointerAuth.InitFiniPointers;
2103 
2104   // Ctor function type is ptr.
2105   llvm::PointerType *PtrTy = llvm::PointerType::get(
2106       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2107 
2108   // Get the type of a ctor entry, { i32, ptr, ptr }.
2109   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2110 
2111   // Construct the constructor and destructor arrays.
2112   ConstantInitBuilder Builder(*this);
2113   auto Ctors = Builder.beginArray(CtorStructTy);
2114   for (const auto &I : Fns) {
2115     auto Ctor = Ctors.beginStruct(CtorStructTy);
2116     Ctor.addInt(Int32Ty, I.Priority);
2117     if (InitFiniAuthSchema) {
2118       llvm::Constant *StorageAddress =
2119           (InitFiniAuthSchema.isAddressDiscriminated()
2120                ? llvm::ConstantExpr::getIntToPtr(
2121                      llvm::ConstantInt::get(
2122                          IntPtrTy,
2123                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2124                      PtrTy)
2125                : nullptr);
2126       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2127           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2128           llvm::ConstantInt::get(
2129               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2130       Ctor.add(SignedCtorPtr);
2131     } else {
2132       Ctor.add(I.Initializer);
2133     }
2134     if (I.AssociatedData)
2135       Ctor.add(I.AssociatedData);
2136     else
2137       Ctor.addNullPointer(PtrTy);
2138     Ctor.finishAndAddTo(Ctors);
2139   }
2140 
2141   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2142                                           /*constant*/ false,
2143                                           llvm::GlobalValue::AppendingLinkage);
2144 
2145   // The LTO linker doesn't seem to like it when we set an alignment
2146   // on appending variables.  Take it off as a workaround.
2147   List->setAlignment(std::nullopt);
2148 
2149   Fns.clear();
2150 }
2151 
2152 llvm::GlobalValue::LinkageTypes
2153 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2154   const auto *D = cast<FunctionDecl>(GD.getDecl());
2155 
2156   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2157 
2158   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2159     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2160 
2161   return getLLVMLinkageForDeclarator(D, Linkage);
2162 }
2163 
2164 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2165   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2166   if (!MDS) return nullptr;
2167 
2168   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2169 }
2170 
2171 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2172   if (auto *FnType = T->getAs<FunctionProtoType>())
2173     T = getContext().getFunctionType(
2174         FnType->getReturnType(), FnType->getParamTypes(),
2175         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2176 
2177   std::string OutName;
2178   llvm::raw_string_ostream Out(OutName);
2179   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2180       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2181 
2182   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2183     Out << ".normalized";
2184 
2185   return llvm::ConstantInt::get(Int32Ty,
2186                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2187 }
2188 
2189 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2190                                               const CGFunctionInfo &Info,
2191                                               llvm::Function *F, bool IsThunk) {
2192   unsigned CallingConv;
2193   llvm::AttributeList PAL;
2194   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2195                          /*AttrOnCallSite=*/false, IsThunk);
2196   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2197       getTarget().getTriple().isWindowsArm64EC()) {
2198     SourceLocation Loc;
2199     if (const Decl *D = GD.getDecl())
2200       Loc = D->getLocation();
2201 
2202     Error(Loc, "__vectorcall calling convention is not currently supported");
2203   }
2204   F->setAttributes(PAL);
2205   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2206 }
2207 
2208 static void removeImageAccessQualifier(std::string& TyName) {
2209   std::string ReadOnlyQual("__read_only");
2210   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2211   if (ReadOnlyPos != std::string::npos)
2212     // "+ 1" for the space after access qualifier.
2213     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2214   else {
2215     std::string WriteOnlyQual("__write_only");
2216     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2217     if (WriteOnlyPos != std::string::npos)
2218       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2219     else {
2220       std::string ReadWriteQual("__read_write");
2221       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2222       if (ReadWritePos != std::string::npos)
2223         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2224     }
2225   }
2226 }
2227 
2228 // Returns the address space id that should be produced to the
2229 // kernel_arg_addr_space metadata. This is always fixed to the ids
2230 // as specified in the SPIR 2.0 specification in order to differentiate
2231 // for example in clGetKernelArgInfo() implementation between the address
2232 // spaces with targets without unique mapping to the OpenCL address spaces
2233 // (basically all single AS CPUs).
2234 static unsigned ArgInfoAddressSpace(LangAS AS) {
2235   switch (AS) {
2236   case LangAS::opencl_global:
2237     return 1;
2238   case LangAS::opencl_constant:
2239     return 2;
2240   case LangAS::opencl_local:
2241     return 3;
2242   case LangAS::opencl_generic:
2243     return 4; // Not in SPIR 2.0 specs.
2244   case LangAS::opencl_global_device:
2245     return 5;
2246   case LangAS::opencl_global_host:
2247     return 6;
2248   default:
2249     return 0; // Assume private.
2250   }
2251 }
2252 
2253 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2254                                          const FunctionDecl *FD,
2255                                          CodeGenFunction *CGF) {
2256   assert(((FD && CGF) || (!FD && !CGF)) &&
2257          "Incorrect use - FD and CGF should either be both null or not!");
2258   // Create MDNodes that represent the kernel arg metadata.
2259   // Each MDNode is a list in the form of "key", N number of values which is
2260   // the same number of values as their are kernel arguments.
2261 
2262   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2263 
2264   // MDNode for the kernel argument address space qualifiers.
2265   SmallVector<llvm::Metadata *, 8> addressQuals;
2266 
2267   // MDNode for the kernel argument access qualifiers (images only).
2268   SmallVector<llvm::Metadata *, 8> accessQuals;
2269 
2270   // MDNode for the kernel argument type names.
2271   SmallVector<llvm::Metadata *, 8> argTypeNames;
2272 
2273   // MDNode for the kernel argument base type names.
2274   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2275 
2276   // MDNode for the kernel argument type qualifiers.
2277   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2278 
2279   // MDNode for the kernel argument names.
2280   SmallVector<llvm::Metadata *, 8> argNames;
2281 
2282   if (FD && CGF)
2283     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2284       const ParmVarDecl *parm = FD->getParamDecl(i);
2285       // Get argument name.
2286       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2287 
2288       if (!getLangOpts().OpenCL)
2289         continue;
2290       QualType ty = parm->getType();
2291       std::string typeQuals;
2292 
2293       // Get image and pipe access qualifier:
2294       if (ty->isImageType() || ty->isPipeType()) {
2295         const Decl *PDecl = parm;
2296         if (const auto *TD = ty->getAs<TypedefType>())
2297           PDecl = TD->getDecl();
2298         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2299         if (A && A->isWriteOnly())
2300           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2301         else if (A && A->isReadWrite())
2302           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2303         else
2304           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2305       } else
2306         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2307 
2308       auto getTypeSpelling = [&](QualType Ty) {
2309         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2310 
2311         if (Ty.isCanonical()) {
2312           StringRef typeNameRef = typeName;
2313           // Turn "unsigned type" to "utype"
2314           if (typeNameRef.consume_front("unsigned "))
2315             return std::string("u") + typeNameRef.str();
2316           if (typeNameRef.consume_front("signed "))
2317             return typeNameRef.str();
2318         }
2319 
2320         return typeName;
2321       };
2322 
2323       if (ty->isPointerType()) {
2324         QualType pointeeTy = ty->getPointeeType();
2325 
2326         // Get address qualifier.
2327         addressQuals.push_back(
2328             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2329                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2330 
2331         // Get argument type name.
2332         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2333         std::string baseTypeName =
2334             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2335         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2336         argBaseTypeNames.push_back(
2337             llvm::MDString::get(VMContext, baseTypeName));
2338 
2339         // Get argument type qualifiers:
2340         if (ty.isRestrictQualified())
2341           typeQuals = "restrict";
2342         if (pointeeTy.isConstQualified() ||
2343             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2344           typeQuals += typeQuals.empty() ? "const" : " const";
2345         if (pointeeTy.isVolatileQualified())
2346           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2347       } else {
2348         uint32_t AddrSpc = 0;
2349         bool isPipe = ty->isPipeType();
2350         if (ty->isImageType() || isPipe)
2351           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2352 
2353         addressQuals.push_back(
2354             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2355 
2356         // Get argument type name.
2357         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2358         std::string typeName = getTypeSpelling(ty);
2359         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2360 
2361         // Remove access qualifiers on images
2362         // (as they are inseparable from type in clang implementation,
2363         // but OpenCL spec provides a special query to get access qualifier
2364         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2365         if (ty->isImageType()) {
2366           removeImageAccessQualifier(typeName);
2367           removeImageAccessQualifier(baseTypeName);
2368         }
2369 
2370         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2371         argBaseTypeNames.push_back(
2372             llvm::MDString::get(VMContext, baseTypeName));
2373 
2374         if (isPipe)
2375           typeQuals = "pipe";
2376       }
2377       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2378     }
2379 
2380   if (getLangOpts().OpenCL) {
2381     Fn->setMetadata("kernel_arg_addr_space",
2382                     llvm::MDNode::get(VMContext, addressQuals));
2383     Fn->setMetadata("kernel_arg_access_qual",
2384                     llvm::MDNode::get(VMContext, accessQuals));
2385     Fn->setMetadata("kernel_arg_type",
2386                     llvm::MDNode::get(VMContext, argTypeNames));
2387     Fn->setMetadata("kernel_arg_base_type",
2388                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2389     Fn->setMetadata("kernel_arg_type_qual",
2390                     llvm::MDNode::get(VMContext, argTypeQuals));
2391   }
2392   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2393       getCodeGenOpts().HIPSaveKernelArgName)
2394     Fn->setMetadata("kernel_arg_name",
2395                     llvm::MDNode::get(VMContext, argNames));
2396 }
2397 
2398 /// Determines whether the language options require us to model
2399 /// unwind exceptions.  We treat -fexceptions as mandating this
2400 /// except under the fragile ObjC ABI with only ObjC exceptions
2401 /// enabled.  This means, for example, that C with -fexceptions
2402 /// enables this.
2403 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2404   // If exceptions are completely disabled, obviously this is false.
2405   if (!LangOpts.Exceptions) return false;
2406 
2407   // If C++ exceptions are enabled, this is true.
2408   if (LangOpts.CXXExceptions) return true;
2409 
2410   // If ObjC exceptions are enabled, this depends on the ABI.
2411   if (LangOpts.ObjCExceptions) {
2412     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2413   }
2414 
2415   return true;
2416 }
2417 
2418 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2419                                                       const CXXMethodDecl *MD) {
2420   // Check that the type metadata can ever actually be used by a call.
2421   if (!CGM.getCodeGenOpts().LTOUnit ||
2422       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2423     return false;
2424 
2425   // Only functions whose address can be taken with a member function pointer
2426   // need this sort of type metadata.
2427   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2428          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2429 }
2430 
2431 SmallVector<const CXXRecordDecl *, 0>
2432 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2433   llvm::SetVector<const CXXRecordDecl *> MostBases;
2434 
2435   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2436   CollectMostBases = [&](const CXXRecordDecl *RD) {
2437     if (RD->getNumBases() == 0)
2438       MostBases.insert(RD);
2439     for (const CXXBaseSpecifier &B : RD->bases())
2440       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2441   };
2442   CollectMostBases(RD);
2443   return MostBases.takeVector();
2444 }
2445 
2446 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2447                                                            llvm::Function *F) {
2448   llvm::AttrBuilder B(F->getContext());
2449 
2450   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2451     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2452 
2453   if (CodeGenOpts.StackClashProtector)
2454     B.addAttribute("probe-stack", "inline-asm");
2455 
2456   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2457     B.addAttribute("stack-probe-size",
2458                    std::to_string(CodeGenOpts.StackProbeSize));
2459 
2460   if (!hasUnwindExceptions(LangOpts))
2461     B.addAttribute(llvm::Attribute::NoUnwind);
2462 
2463   if (D && D->hasAttr<NoStackProtectorAttr>())
2464     ; // Do nothing.
2465   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2466            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2467     B.addAttribute(llvm::Attribute::StackProtectStrong);
2468   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2469     B.addAttribute(llvm::Attribute::StackProtect);
2470   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2471     B.addAttribute(llvm::Attribute::StackProtectStrong);
2472   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2473     B.addAttribute(llvm::Attribute::StackProtectReq);
2474 
2475   if (!D) {
2476     // If we don't have a declaration to control inlining, the function isn't
2477     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2478     // disabled, mark the function as noinline.
2479     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2480         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2481       B.addAttribute(llvm::Attribute::NoInline);
2482 
2483     F->addFnAttrs(B);
2484     return;
2485   }
2486 
2487   // Handle SME attributes that apply to function definitions,
2488   // rather than to function prototypes.
2489   if (D->hasAttr<ArmLocallyStreamingAttr>())
2490     B.addAttribute("aarch64_pstate_sm_body");
2491 
2492   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2493     if (Attr->isNewZA())
2494       B.addAttribute("aarch64_new_za");
2495     if (Attr->isNewZT0())
2496       B.addAttribute("aarch64_new_zt0");
2497   }
2498 
2499   // Track whether we need to add the optnone LLVM attribute,
2500   // starting with the default for this optimization level.
2501   bool ShouldAddOptNone =
2502       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2503   // We can't add optnone in the following cases, it won't pass the verifier.
2504   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2505   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2506 
2507   // Add optnone, but do so only if the function isn't always_inline.
2508   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2509       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2510     B.addAttribute(llvm::Attribute::OptimizeNone);
2511 
2512     // OptimizeNone implies noinline; we should not be inlining such functions.
2513     B.addAttribute(llvm::Attribute::NoInline);
2514 
2515     // We still need to handle naked functions even though optnone subsumes
2516     // much of their semantics.
2517     if (D->hasAttr<NakedAttr>())
2518       B.addAttribute(llvm::Attribute::Naked);
2519 
2520     // OptimizeNone wins over OptimizeForSize and MinSize.
2521     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2522     F->removeFnAttr(llvm::Attribute::MinSize);
2523   } else if (D->hasAttr<NakedAttr>()) {
2524     // Naked implies noinline: we should not be inlining such functions.
2525     B.addAttribute(llvm::Attribute::Naked);
2526     B.addAttribute(llvm::Attribute::NoInline);
2527   } else if (D->hasAttr<NoDuplicateAttr>()) {
2528     B.addAttribute(llvm::Attribute::NoDuplicate);
2529   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2530     // Add noinline if the function isn't always_inline.
2531     B.addAttribute(llvm::Attribute::NoInline);
2532   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2533              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2534     // (noinline wins over always_inline, and we can't specify both in IR)
2535     B.addAttribute(llvm::Attribute::AlwaysInline);
2536   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2537     // If we're not inlining, then force everything that isn't always_inline to
2538     // carry an explicit noinline attribute.
2539     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2540       B.addAttribute(llvm::Attribute::NoInline);
2541   } else {
2542     // Otherwise, propagate the inline hint attribute and potentially use its
2543     // absence to mark things as noinline.
2544     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2545       // Search function and template pattern redeclarations for inline.
2546       auto CheckForInline = [](const FunctionDecl *FD) {
2547         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2548           return Redecl->isInlineSpecified();
2549         };
2550         if (any_of(FD->redecls(), CheckRedeclForInline))
2551           return true;
2552         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2553         if (!Pattern)
2554           return false;
2555         return any_of(Pattern->redecls(), CheckRedeclForInline);
2556       };
2557       if (CheckForInline(FD)) {
2558         B.addAttribute(llvm::Attribute::InlineHint);
2559       } else if (CodeGenOpts.getInlining() ==
2560                      CodeGenOptions::OnlyHintInlining &&
2561                  !FD->isInlined() &&
2562                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2563         B.addAttribute(llvm::Attribute::NoInline);
2564       }
2565     }
2566   }
2567 
2568   // Add other optimization related attributes if we are optimizing this
2569   // function.
2570   if (!D->hasAttr<OptimizeNoneAttr>()) {
2571     if (D->hasAttr<ColdAttr>()) {
2572       if (!ShouldAddOptNone)
2573         B.addAttribute(llvm::Attribute::OptimizeForSize);
2574       B.addAttribute(llvm::Attribute::Cold);
2575     }
2576     if (D->hasAttr<HotAttr>())
2577       B.addAttribute(llvm::Attribute::Hot);
2578     if (D->hasAttr<MinSizeAttr>())
2579       B.addAttribute(llvm::Attribute::MinSize);
2580   }
2581 
2582   F->addFnAttrs(B);
2583 
2584   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2585   if (alignment)
2586     F->setAlignment(llvm::Align(alignment));
2587 
2588   if (!D->hasAttr<AlignedAttr>())
2589     if (LangOpts.FunctionAlignment)
2590       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2591 
2592   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2593   // reserve a bit for differentiating between virtual and non-virtual member
2594   // functions. If the current target's C++ ABI requires this and this is a
2595   // member function, set its alignment accordingly.
2596   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2597     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2598       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2599   }
2600 
2601   // In the cross-dso CFI mode with canonical jump tables, we want !type
2602   // attributes on definitions only.
2603   if (CodeGenOpts.SanitizeCfiCrossDso &&
2604       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2605     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2606       // Skip available_externally functions. They won't be codegen'ed in the
2607       // current module anyway.
2608       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2609         CreateFunctionTypeMetadataForIcall(FD, F);
2610     }
2611   }
2612 
2613   // Emit type metadata on member functions for member function pointer checks.
2614   // These are only ever necessary on definitions; we're guaranteed that the
2615   // definition will be present in the LTO unit as a result of LTO visibility.
2616   auto *MD = dyn_cast<CXXMethodDecl>(D);
2617   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2618     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2619       llvm::Metadata *Id =
2620           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2621               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2622       F->addTypeMetadata(0, Id);
2623     }
2624   }
2625 }
2626 
2627 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2628   const Decl *D = GD.getDecl();
2629   if (isa_and_nonnull<NamedDecl>(D))
2630     setGVProperties(GV, GD);
2631   else
2632     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2633 
2634   if (D && D->hasAttr<UsedAttr>())
2635     addUsedOrCompilerUsedGlobal(GV);
2636 
2637   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2638       VD &&
2639       ((CodeGenOpts.KeepPersistentStorageVariables &&
2640         (VD->getStorageDuration() == SD_Static ||
2641          VD->getStorageDuration() == SD_Thread)) ||
2642        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2643         VD->getType().isConstQualified())))
2644     addUsedOrCompilerUsedGlobal(GV);
2645 }
2646 
2647 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2648                                                 llvm::AttrBuilder &Attrs,
2649                                                 bool SetTargetFeatures) {
2650   // Add target-cpu and target-features attributes to functions. If
2651   // we have a decl for the function and it has a target attribute then
2652   // parse that and add it to the feature set.
2653   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2654   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2655   std::vector<std::string> Features;
2656   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2657   FD = FD ? FD->getMostRecentDecl() : FD;
2658   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2659   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2660   assert((!TD || !TV) && "both target_version and target specified");
2661   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2662   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2663   bool AddedAttr = false;
2664   if (TD || TV || SD || TC) {
2665     llvm::StringMap<bool> FeatureMap;
2666     getContext().getFunctionFeatureMap(FeatureMap, GD);
2667 
2668     // Produce the canonical string for this set of features.
2669     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2670       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2671 
2672     // Now add the target-cpu and target-features to the function.
2673     // While we populated the feature map above, we still need to
2674     // get and parse the target attribute so we can get the cpu for
2675     // the function.
2676     if (TD) {
2677       ParsedTargetAttr ParsedAttr =
2678           Target.parseTargetAttr(TD->getFeaturesStr());
2679       if (!ParsedAttr.CPU.empty() &&
2680           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2681         TargetCPU = ParsedAttr.CPU;
2682         TuneCPU = ""; // Clear the tune CPU.
2683       }
2684       if (!ParsedAttr.Tune.empty() &&
2685           getTarget().isValidCPUName(ParsedAttr.Tune))
2686         TuneCPU = ParsedAttr.Tune;
2687     }
2688 
2689     if (SD) {
2690       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2691       // favor this processor.
2692       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2693     }
2694   } else {
2695     // Otherwise just add the existing target cpu and target features to the
2696     // function.
2697     Features = getTarget().getTargetOpts().Features;
2698   }
2699 
2700   if (!TargetCPU.empty()) {
2701     Attrs.addAttribute("target-cpu", TargetCPU);
2702     AddedAttr = true;
2703   }
2704   if (!TuneCPU.empty()) {
2705     Attrs.addAttribute("tune-cpu", TuneCPU);
2706     AddedAttr = true;
2707   }
2708   if (!Features.empty() && SetTargetFeatures) {
2709     llvm::erase_if(Features, [&](const std::string& F) {
2710        return getTarget().isReadOnlyFeature(F.substr(1));
2711     });
2712     llvm::sort(Features);
2713     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2714     AddedAttr = true;
2715   }
2716 
2717   return AddedAttr;
2718 }
2719 
2720 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2721                                           llvm::GlobalObject *GO) {
2722   const Decl *D = GD.getDecl();
2723   SetCommonAttributes(GD, GO);
2724 
2725   if (D) {
2726     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2727       if (D->hasAttr<RetainAttr>())
2728         addUsedGlobal(GV);
2729       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2730         GV->addAttribute("bss-section", SA->getName());
2731       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2732         GV->addAttribute("data-section", SA->getName());
2733       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2734         GV->addAttribute("rodata-section", SA->getName());
2735       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2736         GV->addAttribute("relro-section", SA->getName());
2737     }
2738 
2739     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2740       if (D->hasAttr<RetainAttr>())
2741         addUsedGlobal(F);
2742       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2743         if (!D->getAttr<SectionAttr>())
2744           F->setSection(SA->getName());
2745 
2746       llvm::AttrBuilder Attrs(F->getContext());
2747       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2748         // We know that GetCPUAndFeaturesAttributes will always have the
2749         // newest set, since it has the newest possible FunctionDecl, so the
2750         // new ones should replace the old.
2751         llvm::AttributeMask RemoveAttrs;
2752         RemoveAttrs.addAttribute("target-cpu");
2753         RemoveAttrs.addAttribute("target-features");
2754         RemoveAttrs.addAttribute("tune-cpu");
2755         F->removeFnAttrs(RemoveAttrs);
2756         F->addFnAttrs(Attrs);
2757       }
2758     }
2759 
2760     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2761       GO->setSection(CSA->getName());
2762     else if (const auto *SA = D->getAttr<SectionAttr>())
2763       GO->setSection(SA->getName());
2764   }
2765 
2766   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2767 }
2768 
2769 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2770                                                   llvm::Function *F,
2771                                                   const CGFunctionInfo &FI) {
2772   const Decl *D = GD.getDecl();
2773   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2774   SetLLVMFunctionAttributesForDefinition(D, F);
2775 
2776   F->setLinkage(llvm::Function::InternalLinkage);
2777 
2778   setNonAliasAttributes(GD, F);
2779 }
2780 
2781 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2782   // Set linkage and visibility in case we never see a definition.
2783   LinkageInfo LV = ND->getLinkageAndVisibility();
2784   // Don't set internal linkage on declarations.
2785   // "extern_weak" is overloaded in LLVM; we probably should have
2786   // separate linkage types for this.
2787   if (isExternallyVisible(LV.getLinkage()) &&
2788       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2789     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2790 }
2791 
2792 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2793                                                        llvm::Function *F) {
2794   // Only if we are checking indirect calls.
2795   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2796     return;
2797 
2798   // Non-static class methods are handled via vtable or member function pointer
2799   // checks elsewhere.
2800   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2801     return;
2802 
2803   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2804   F->addTypeMetadata(0, MD);
2805   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2806 
2807   // Emit a hash-based bit set entry for cross-DSO calls.
2808   if (CodeGenOpts.SanitizeCfiCrossDso)
2809     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2810       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2811 }
2812 
2813 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2814   llvm::LLVMContext &Ctx = F->getContext();
2815   llvm::MDBuilder MDB(Ctx);
2816   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2817                  llvm::MDNode::get(
2818                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2819 }
2820 
2821 static bool allowKCFIIdentifier(StringRef Name) {
2822   // KCFI type identifier constants are only necessary for external assembly
2823   // functions, which means it's safe to skip unusual names. Subset of
2824   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2825   return llvm::all_of(Name, [](const char &C) {
2826     return llvm::isAlnum(C) || C == '_' || C == '.';
2827   });
2828 }
2829 
2830 void CodeGenModule::finalizeKCFITypes() {
2831   llvm::Module &M = getModule();
2832   for (auto &F : M.functions()) {
2833     // Remove KCFI type metadata from non-address-taken local functions.
2834     bool AddressTaken = F.hasAddressTaken();
2835     if (!AddressTaken && F.hasLocalLinkage())
2836       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2837 
2838     // Generate a constant with the expected KCFI type identifier for all
2839     // address-taken function declarations to support annotating indirectly
2840     // called assembly functions.
2841     if (!AddressTaken || !F.isDeclaration())
2842       continue;
2843 
2844     const llvm::ConstantInt *Type;
2845     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2846       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2847     else
2848       continue;
2849 
2850     StringRef Name = F.getName();
2851     if (!allowKCFIIdentifier(Name))
2852       continue;
2853 
2854     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2855                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2856                           .str();
2857     M.appendModuleInlineAsm(Asm);
2858   }
2859 }
2860 
2861 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2862                                           bool IsIncompleteFunction,
2863                                           bool IsThunk) {
2864 
2865   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2866     // If this is an intrinsic function, set the function's attributes
2867     // to the intrinsic's attributes.
2868     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2869     return;
2870   }
2871 
2872   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2873 
2874   if (!IsIncompleteFunction)
2875     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2876                               IsThunk);
2877 
2878   // Add the Returned attribute for "this", except for iOS 5 and earlier
2879   // where substantial code, including the libstdc++ dylib, was compiled with
2880   // GCC and does not actually return "this".
2881   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2882       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2883     assert(!F->arg_empty() &&
2884            F->arg_begin()->getType()
2885              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2886            "unexpected this return");
2887     F->addParamAttr(0, llvm::Attribute::Returned);
2888   }
2889 
2890   // Only a few attributes are set on declarations; these may later be
2891   // overridden by a definition.
2892 
2893   setLinkageForGV(F, FD);
2894   setGVProperties(F, FD);
2895 
2896   // Setup target-specific attributes.
2897   if (!IsIncompleteFunction && F->isDeclaration())
2898     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2899 
2900   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2901     F->setSection(CSA->getName());
2902   else if (const auto *SA = FD->getAttr<SectionAttr>())
2903      F->setSection(SA->getName());
2904 
2905   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2906     if (EA->isError())
2907       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2908     else if (EA->isWarning())
2909       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2910   }
2911 
2912   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2913   if (FD->isInlineBuiltinDeclaration()) {
2914     const FunctionDecl *FDBody;
2915     bool HasBody = FD->hasBody(FDBody);
2916     (void)HasBody;
2917     assert(HasBody && "Inline builtin declarations should always have an "
2918                       "available body!");
2919     if (shouldEmitFunction(FDBody))
2920       F->addFnAttr(llvm::Attribute::NoBuiltin);
2921   }
2922 
2923   if (FD->isReplaceableGlobalAllocationFunction()) {
2924     // A replaceable global allocation function does not act like a builtin by
2925     // default, only if it is invoked by a new-expression or delete-expression.
2926     F->addFnAttr(llvm::Attribute::NoBuiltin);
2927   }
2928 
2929   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2930     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2931   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2932     if (MD->isVirtual())
2933       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2934 
2935   // Don't emit entries for function declarations in the cross-DSO mode. This
2936   // is handled with better precision by the receiving DSO. But if jump tables
2937   // are non-canonical then we need type metadata in order to produce the local
2938   // jump table.
2939   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2940       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2941     CreateFunctionTypeMetadataForIcall(FD, F);
2942 
2943   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2944     setKCFIType(FD, F);
2945 
2946   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2947     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2948 
2949   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2950     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2951 
2952   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2953     // Annotate the callback behavior as metadata:
2954     //  - The callback callee (as argument number).
2955     //  - The callback payloads (as argument numbers).
2956     llvm::LLVMContext &Ctx = F->getContext();
2957     llvm::MDBuilder MDB(Ctx);
2958 
2959     // The payload indices are all but the first one in the encoding. The first
2960     // identifies the callback callee.
2961     int CalleeIdx = *CB->encoding_begin();
2962     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2963     F->addMetadata(llvm::LLVMContext::MD_callback,
2964                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2965                                                CalleeIdx, PayloadIndices,
2966                                                /* VarArgsArePassed */ false)}));
2967   }
2968 }
2969 
2970 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2971   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2972          "Only globals with definition can force usage.");
2973   LLVMUsed.emplace_back(GV);
2974 }
2975 
2976 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2977   assert(!GV->isDeclaration() &&
2978          "Only globals with definition can force usage.");
2979   LLVMCompilerUsed.emplace_back(GV);
2980 }
2981 
2982 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2983   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2984          "Only globals with definition can force usage.");
2985   if (getTriple().isOSBinFormatELF())
2986     LLVMCompilerUsed.emplace_back(GV);
2987   else
2988     LLVMUsed.emplace_back(GV);
2989 }
2990 
2991 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2992                      std::vector<llvm::WeakTrackingVH> &List) {
2993   // Don't create llvm.used if there is no need.
2994   if (List.empty())
2995     return;
2996 
2997   // Convert List to what ConstantArray needs.
2998   SmallVector<llvm::Constant*, 8> UsedArray;
2999   UsedArray.resize(List.size());
3000   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3001     UsedArray[i] =
3002         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3003             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3004   }
3005 
3006   if (UsedArray.empty())
3007     return;
3008   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3009 
3010   auto *GV = new llvm::GlobalVariable(
3011       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3012       llvm::ConstantArray::get(ATy, UsedArray), Name);
3013 
3014   GV->setSection("llvm.metadata");
3015 }
3016 
3017 void CodeGenModule::emitLLVMUsed() {
3018   emitUsed(*this, "llvm.used", LLVMUsed);
3019   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3020 }
3021 
3022 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3023   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3024   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3025 }
3026 
3027 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3028   llvm::SmallString<32> Opt;
3029   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3030   if (Opt.empty())
3031     return;
3032   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3033   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3034 }
3035 
3036 void CodeGenModule::AddDependentLib(StringRef Lib) {
3037   auto &C = getLLVMContext();
3038   if (getTarget().getTriple().isOSBinFormatELF()) {
3039       ELFDependentLibraries.push_back(
3040         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3041     return;
3042   }
3043 
3044   llvm::SmallString<24> Opt;
3045   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3046   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3047   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3048 }
3049 
3050 /// Add link options implied by the given module, including modules
3051 /// it depends on, using a postorder walk.
3052 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3053                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3054                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3055   // Import this module's parent.
3056   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3057     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3058   }
3059 
3060   // Import this module's dependencies.
3061   for (Module *Import : llvm::reverse(Mod->Imports)) {
3062     if (Visited.insert(Import).second)
3063       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3064   }
3065 
3066   // Add linker options to link against the libraries/frameworks
3067   // described by this module.
3068   llvm::LLVMContext &Context = CGM.getLLVMContext();
3069   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3070 
3071   // For modules that use export_as for linking, use that module
3072   // name instead.
3073   if (Mod->UseExportAsModuleLinkName)
3074     return;
3075 
3076   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3077     // Link against a framework.  Frameworks are currently Darwin only, so we
3078     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3079     if (LL.IsFramework) {
3080       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3081                                  llvm::MDString::get(Context, LL.Library)};
3082 
3083       Metadata.push_back(llvm::MDNode::get(Context, Args));
3084       continue;
3085     }
3086 
3087     // Link against a library.
3088     if (IsELF) {
3089       llvm::Metadata *Args[2] = {
3090           llvm::MDString::get(Context, "lib"),
3091           llvm::MDString::get(Context, LL.Library),
3092       };
3093       Metadata.push_back(llvm::MDNode::get(Context, Args));
3094     } else {
3095       llvm::SmallString<24> Opt;
3096       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3097       auto *OptString = llvm::MDString::get(Context, Opt);
3098       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3099     }
3100   }
3101 }
3102 
3103 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3104   assert(Primary->isNamedModuleUnit() &&
3105          "We should only emit module initializers for named modules.");
3106 
3107   // Emit the initializers in the order that sub-modules appear in the
3108   // source, first Global Module Fragments, if present.
3109   if (auto GMF = Primary->getGlobalModuleFragment()) {
3110     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3111       if (isa<ImportDecl>(D))
3112         continue;
3113       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3114       EmitTopLevelDecl(D);
3115     }
3116   }
3117   // Second any associated with the module, itself.
3118   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3119     // Skip import decls, the inits for those are called explicitly.
3120     if (isa<ImportDecl>(D))
3121       continue;
3122     EmitTopLevelDecl(D);
3123   }
3124   // Third any associated with the Privat eMOdule Fragment, if present.
3125   if (auto PMF = Primary->getPrivateModuleFragment()) {
3126     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3127       // Skip import decls, the inits for those are called explicitly.
3128       if (isa<ImportDecl>(D))
3129         continue;
3130       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3131       EmitTopLevelDecl(D);
3132     }
3133   }
3134 }
3135 
3136 void CodeGenModule::EmitModuleLinkOptions() {
3137   // Collect the set of all of the modules we want to visit to emit link
3138   // options, which is essentially the imported modules and all of their
3139   // non-explicit child modules.
3140   llvm::SetVector<clang::Module *> LinkModules;
3141   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3142   SmallVector<clang::Module *, 16> Stack;
3143 
3144   // Seed the stack with imported modules.
3145   for (Module *M : ImportedModules) {
3146     // Do not add any link flags when an implementation TU of a module imports
3147     // a header of that same module.
3148     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3149         !getLangOpts().isCompilingModule())
3150       continue;
3151     if (Visited.insert(M).second)
3152       Stack.push_back(M);
3153   }
3154 
3155   // Find all of the modules to import, making a little effort to prune
3156   // non-leaf modules.
3157   while (!Stack.empty()) {
3158     clang::Module *Mod = Stack.pop_back_val();
3159 
3160     bool AnyChildren = false;
3161 
3162     // Visit the submodules of this module.
3163     for (const auto &SM : Mod->submodules()) {
3164       // Skip explicit children; they need to be explicitly imported to be
3165       // linked against.
3166       if (SM->IsExplicit)
3167         continue;
3168 
3169       if (Visited.insert(SM).second) {
3170         Stack.push_back(SM);
3171         AnyChildren = true;
3172       }
3173     }
3174 
3175     // We didn't find any children, so add this module to the list of
3176     // modules to link against.
3177     if (!AnyChildren) {
3178       LinkModules.insert(Mod);
3179     }
3180   }
3181 
3182   // Add link options for all of the imported modules in reverse topological
3183   // order.  We don't do anything to try to order import link flags with respect
3184   // to linker options inserted by things like #pragma comment().
3185   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3186   Visited.clear();
3187   for (Module *M : LinkModules)
3188     if (Visited.insert(M).second)
3189       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3190   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3191   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3192 
3193   // Add the linker options metadata flag.
3194   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3195   for (auto *MD : LinkerOptionsMetadata)
3196     NMD->addOperand(MD);
3197 }
3198 
3199 void CodeGenModule::EmitDeferred() {
3200   // Emit deferred declare target declarations.
3201   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3202     getOpenMPRuntime().emitDeferredTargetDecls();
3203 
3204   // Emit code for any potentially referenced deferred decls.  Since a
3205   // previously unused static decl may become used during the generation of code
3206   // for a static function, iterate until no changes are made.
3207 
3208   if (!DeferredVTables.empty()) {
3209     EmitDeferredVTables();
3210 
3211     // Emitting a vtable doesn't directly cause more vtables to
3212     // become deferred, although it can cause functions to be
3213     // emitted that then need those vtables.
3214     assert(DeferredVTables.empty());
3215   }
3216 
3217   // Emit CUDA/HIP static device variables referenced by host code only.
3218   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3219   // needed for further handling.
3220   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3221     llvm::append_range(DeferredDeclsToEmit,
3222                        getContext().CUDADeviceVarODRUsedByHost);
3223 
3224   // Stop if we're out of both deferred vtables and deferred declarations.
3225   if (DeferredDeclsToEmit.empty())
3226     return;
3227 
3228   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3229   // work, it will not interfere with this.
3230   std::vector<GlobalDecl> CurDeclsToEmit;
3231   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3232 
3233   for (GlobalDecl &D : CurDeclsToEmit) {
3234     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3235     // to get GlobalValue with exactly the type we need, not something that
3236     // might had been created for another decl with the same mangled name but
3237     // different type.
3238     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3239         GetAddrOfGlobal(D, ForDefinition));
3240 
3241     // In case of different address spaces, we may still get a cast, even with
3242     // IsForDefinition equal to true. Query mangled names table to get
3243     // GlobalValue.
3244     if (!GV)
3245       GV = GetGlobalValue(getMangledName(D));
3246 
3247     // Make sure GetGlobalValue returned non-null.
3248     assert(GV);
3249 
3250     // Check to see if we've already emitted this.  This is necessary
3251     // for a couple of reasons: first, decls can end up in the
3252     // deferred-decls queue multiple times, and second, decls can end
3253     // up with definitions in unusual ways (e.g. by an extern inline
3254     // function acquiring a strong function redefinition).  Just
3255     // ignore these cases.
3256     if (!GV->isDeclaration())
3257       continue;
3258 
3259     // If this is OpenMP, check if it is legal to emit this global normally.
3260     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3261       continue;
3262 
3263     // Otherwise, emit the definition and move on to the next one.
3264     EmitGlobalDefinition(D, GV);
3265 
3266     // If we found out that we need to emit more decls, do that recursively.
3267     // This has the advantage that the decls are emitted in a DFS and related
3268     // ones are close together, which is convenient for testing.
3269     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3270       EmitDeferred();
3271       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3272     }
3273   }
3274 }
3275 
3276 void CodeGenModule::EmitVTablesOpportunistically() {
3277   // Try to emit external vtables as available_externally if they have emitted
3278   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3279   // is not allowed to create new references to things that need to be emitted
3280   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3281 
3282   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3283          && "Only emit opportunistic vtables with optimizations");
3284 
3285   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3286     assert(getVTables().isVTableExternal(RD) &&
3287            "This queue should only contain external vtables");
3288     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3289       VTables.GenerateClassData(RD);
3290   }
3291   OpportunisticVTables.clear();
3292 }
3293 
3294 void CodeGenModule::EmitGlobalAnnotations() {
3295   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3296     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3297     if (GV)
3298       AddGlobalAnnotations(VD, GV);
3299   }
3300   DeferredAnnotations.clear();
3301 
3302   if (Annotations.empty())
3303     return;
3304 
3305   // Create a new global variable for the ConstantStruct in the Module.
3306   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3307     Annotations[0]->getType(), Annotations.size()), Annotations);
3308   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3309                                       llvm::GlobalValue::AppendingLinkage,
3310                                       Array, "llvm.global.annotations");
3311   gv->setSection(AnnotationSection);
3312 }
3313 
3314 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3315   llvm::Constant *&AStr = AnnotationStrings[Str];
3316   if (AStr)
3317     return AStr;
3318 
3319   // Not found yet, create a new global.
3320   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3321   auto *gv = new llvm::GlobalVariable(
3322       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3323       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3324       ConstGlobalsPtrTy->getAddressSpace());
3325   gv->setSection(AnnotationSection);
3326   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3327   AStr = gv;
3328   return gv;
3329 }
3330 
3331 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3332   SourceManager &SM = getContext().getSourceManager();
3333   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3334   if (PLoc.isValid())
3335     return EmitAnnotationString(PLoc.getFilename());
3336   return EmitAnnotationString(SM.getBufferName(Loc));
3337 }
3338 
3339 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3340   SourceManager &SM = getContext().getSourceManager();
3341   PresumedLoc PLoc = SM.getPresumedLoc(L);
3342   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3343     SM.getExpansionLineNumber(L);
3344   return llvm::ConstantInt::get(Int32Ty, LineNo);
3345 }
3346 
3347 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3348   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3349   if (Exprs.empty())
3350     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3351 
3352   llvm::FoldingSetNodeID ID;
3353   for (Expr *E : Exprs) {
3354     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3355   }
3356   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3357   if (Lookup)
3358     return Lookup;
3359 
3360   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3361   LLVMArgs.reserve(Exprs.size());
3362   ConstantEmitter ConstEmiter(*this);
3363   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3364     const auto *CE = cast<clang::ConstantExpr>(E);
3365     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3366                                     CE->getType());
3367   });
3368   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3369   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3370                                       llvm::GlobalValue::PrivateLinkage, Struct,
3371                                       ".args");
3372   GV->setSection(AnnotationSection);
3373   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3374 
3375   Lookup = GV;
3376   return GV;
3377 }
3378 
3379 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3380                                                 const AnnotateAttr *AA,
3381                                                 SourceLocation L) {
3382   // Get the globals for file name, annotation, and the line number.
3383   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3384                  *UnitGV = EmitAnnotationUnit(L),
3385                  *LineNoCst = EmitAnnotationLineNo(L),
3386                  *Args = EmitAnnotationArgs(AA);
3387 
3388   llvm::Constant *GVInGlobalsAS = GV;
3389   if (GV->getAddressSpace() !=
3390       getDataLayout().getDefaultGlobalsAddressSpace()) {
3391     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3392         GV,
3393         llvm::PointerType::get(
3394             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3395   }
3396 
3397   // Create the ConstantStruct for the global annotation.
3398   llvm::Constant *Fields[] = {
3399       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3400   };
3401   return llvm::ConstantStruct::getAnon(Fields);
3402 }
3403 
3404 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3405                                          llvm::GlobalValue *GV) {
3406   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3407   // Get the struct elements for these annotations.
3408   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3409     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3410 }
3411 
3412 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3413                                        SourceLocation Loc) const {
3414   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3415   // NoSanitize by function name.
3416   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3417     return true;
3418   // NoSanitize by location. Check "mainfile" prefix.
3419   auto &SM = Context.getSourceManager();
3420   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3421   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3422     return true;
3423 
3424   // Check "src" prefix.
3425   if (Loc.isValid())
3426     return NoSanitizeL.containsLocation(Kind, Loc);
3427   // If location is unknown, this may be a compiler-generated function. Assume
3428   // it's located in the main file.
3429   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3430 }
3431 
3432 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3433                                        llvm::GlobalVariable *GV,
3434                                        SourceLocation Loc, QualType Ty,
3435                                        StringRef Category) const {
3436   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3437   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3438     return true;
3439   auto &SM = Context.getSourceManager();
3440   if (NoSanitizeL.containsMainFile(
3441           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3442           Category))
3443     return true;
3444   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3445     return true;
3446 
3447   // Check global type.
3448   if (!Ty.isNull()) {
3449     // Drill down the array types: if global variable of a fixed type is
3450     // not sanitized, we also don't instrument arrays of them.
3451     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3452       Ty = AT->getElementType();
3453     Ty = Ty.getCanonicalType().getUnqualifiedType();
3454     // Only record types (classes, structs etc.) are ignored.
3455     if (Ty->isRecordType()) {
3456       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3457       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3458         return true;
3459     }
3460   }
3461   return false;
3462 }
3463 
3464 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3465                                    StringRef Category) const {
3466   const auto &XRayFilter = getContext().getXRayFilter();
3467   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3468   auto Attr = ImbueAttr::NONE;
3469   if (Loc.isValid())
3470     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3471   if (Attr == ImbueAttr::NONE)
3472     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3473   switch (Attr) {
3474   case ImbueAttr::NONE:
3475     return false;
3476   case ImbueAttr::ALWAYS:
3477     Fn->addFnAttr("function-instrument", "xray-always");
3478     break;
3479   case ImbueAttr::ALWAYS_ARG1:
3480     Fn->addFnAttr("function-instrument", "xray-always");
3481     Fn->addFnAttr("xray-log-args", "1");
3482     break;
3483   case ImbueAttr::NEVER:
3484     Fn->addFnAttr("function-instrument", "xray-never");
3485     break;
3486   }
3487   return true;
3488 }
3489 
3490 ProfileList::ExclusionType
3491 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3492                                               SourceLocation Loc) const {
3493   const auto &ProfileList = getContext().getProfileList();
3494   // If the profile list is empty, then instrument everything.
3495   if (ProfileList.isEmpty())
3496     return ProfileList::Allow;
3497   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3498   // First, check the function name.
3499   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3500     return *V;
3501   // Next, check the source location.
3502   if (Loc.isValid())
3503     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3504       return *V;
3505   // If location is unknown, this may be a compiler-generated function. Assume
3506   // it's located in the main file.
3507   auto &SM = Context.getSourceManager();
3508   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3509     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3510       return *V;
3511   return ProfileList.getDefault(Kind);
3512 }
3513 
3514 ProfileList::ExclusionType
3515 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3516                                                  SourceLocation Loc) const {
3517   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3518   if (V != ProfileList::Allow)
3519     return V;
3520 
3521   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3522   if (NumGroups > 1) {
3523     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3524     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3525       return ProfileList::Skip;
3526   }
3527   return ProfileList::Allow;
3528 }
3529 
3530 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3531   // Never defer when EmitAllDecls is specified.
3532   if (LangOpts.EmitAllDecls)
3533     return true;
3534 
3535   const auto *VD = dyn_cast<VarDecl>(Global);
3536   if (VD &&
3537       ((CodeGenOpts.KeepPersistentStorageVariables &&
3538         (VD->getStorageDuration() == SD_Static ||
3539          VD->getStorageDuration() == SD_Thread)) ||
3540        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3541         VD->getType().isConstQualified())))
3542     return true;
3543 
3544   return getContext().DeclMustBeEmitted(Global);
3545 }
3546 
3547 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3548   // In OpenMP 5.0 variables and function may be marked as
3549   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3550   // that they must be emitted on the host/device. To be sure we need to have
3551   // seen a declare target with an explicit mentioning of the function, we know
3552   // we have if the level of the declare target attribute is -1. Note that we
3553   // check somewhere else if we should emit this at all.
3554   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3555     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3556         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3557     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3558       return false;
3559   }
3560 
3561   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3562     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3563       // Implicit template instantiations may change linkage if they are later
3564       // explicitly instantiated, so they should not be emitted eagerly.
3565       return false;
3566     // Defer until all versions have been semantically checked.
3567     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3568       return false;
3569   }
3570   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3571     if (Context.getInlineVariableDefinitionKind(VD) ==
3572         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3573       // A definition of an inline constexpr static data member may change
3574       // linkage later if it's redeclared outside the class.
3575       return false;
3576     if (CXX20ModuleInits && VD->getOwningModule() &&
3577         !VD->getOwningModule()->isModuleMapModule()) {
3578       // For CXX20, module-owned initializers need to be deferred, since it is
3579       // not known at this point if they will be run for the current module or
3580       // as part of the initializer for an imported one.
3581       return false;
3582     }
3583   }
3584   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3585   // codegen for global variables, because they may be marked as threadprivate.
3586   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3587       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3588       !Global->getType().isConstantStorage(getContext(), false, false) &&
3589       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3590     return false;
3591 
3592   return true;
3593 }
3594 
3595 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3596   StringRef Name = getMangledName(GD);
3597 
3598   // The UUID descriptor should be pointer aligned.
3599   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3600 
3601   // Look for an existing global.
3602   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3603     return ConstantAddress(GV, GV->getValueType(), Alignment);
3604 
3605   ConstantEmitter Emitter(*this);
3606   llvm::Constant *Init;
3607 
3608   APValue &V = GD->getAsAPValue();
3609   if (!V.isAbsent()) {
3610     // If possible, emit the APValue version of the initializer. In particular,
3611     // this gets the type of the constant right.
3612     Init = Emitter.emitForInitializer(
3613         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3614   } else {
3615     // As a fallback, directly construct the constant.
3616     // FIXME: This may get padding wrong under esoteric struct layout rules.
3617     // MSVC appears to create a complete type 'struct __s_GUID' that it
3618     // presumably uses to represent these constants.
3619     MSGuidDecl::Parts Parts = GD->getParts();
3620     llvm::Constant *Fields[4] = {
3621         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3622         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3623         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3624         llvm::ConstantDataArray::getRaw(
3625             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3626             Int8Ty)};
3627     Init = llvm::ConstantStruct::getAnon(Fields);
3628   }
3629 
3630   auto *GV = new llvm::GlobalVariable(
3631       getModule(), Init->getType(),
3632       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3633   if (supportsCOMDAT())
3634     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3635   setDSOLocal(GV);
3636 
3637   if (!V.isAbsent()) {
3638     Emitter.finalize(GV);
3639     return ConstantAddress(GV, GV->getValueType(), Alignment);
3640   }
3641 
3642   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3643   return ConstantAddress(GV, Ty, Alignment);
3644 }
3645 
3646 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3647     const UnnamedGlobalConstantDecl *GCD) {
3648   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3649 
3650   llvm::GlobalVariable **Entry = nullptr;
3651   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3652   if (*Entry)
3653     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3654 
3655   ConstantEmitter Emitter(*this);
3656   llvm::Constant *Init;
3657 
3658   const APValue &V = GCD->getValue();
3659 
3660   assert(!V.isAbsent());
3661   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3662                                     GCD->getType());
3663 
3664   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3665                                       /*isConstant=*/true,
3666                                       llvm::GlobalValue::PrivateLinkage, Init,
3667                                       ".constant");
3668   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3669   GV->setAlignment(Alignment.getAsAlign());
3670 
3671   Emitter.finalize(GV);
3672 
3673   *Entry = GV;
3674   return ConstantAddress(GV, GV->getValueType(), Alignment);
3675 }
3676 
3677 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3678     const TemplateParamObjectDecl *TPO) {
3679   StringRef Name = getMangledName(TPO);
3680   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3681 
3682   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3683     return ConstantAddress(GV, GV->getValueType(), Alignment);
3684 
3685   ConstantEmitter Emitter(*this);
3686   llvm::Constant *Init = Emitter.emitForInitializer(
3687         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3688 
3689   if (!Init) {
3690     ErrorUnsupported(TPO, "template parameter object");
3691     return ConstantAddress::invalid();
3692   }
3693 
3694   llvm::GlobalValue::LinkageTypes Linkage =
3695       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3696           ? llvm::GlobalValue::LinkOnceODRLinkage
3697           : llvm::GlobalValue::InternalLinkage;
3698   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3699                                       /*isConstant=*/true, Linkage, Init, Name);
3700   setGVProperties(GV, TPO);
3701   if (supportsCOMDAT())
3702     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3703   Emitter.finalize(GV);
3704 
3705     return ConstantAddress(GV, GV->getValueType(), Alignment);
3706 }
3707 
3708 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3709   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3710   assert(AA && "No alias?");
3711 
3712   CharUnits Alignment = getContext().getDeclAlign(VD);
3713   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3714 
3715   // See if there is already something with the target's name in the module.
3716   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3717   if (Entry)
3718     return ConstantAddress(Entry, DeclTy, Alignment);
3719 
3720   llvm::Constant *Aliasee;
3721   if (isa<llvm::FunctionType>(DeclTy))
3722     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3723                                       GlobalDecl(cast<FunctionDecl>(VD)),
3724                                       /*ForVTable=*/false);
3725   else
3726     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3727                                     nullptr);
3728 
3729   auto *F = cast<llvm::GlobalValue>(Aliasee);
3730   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3731   WeakRefReferences.insert(F);
3732 
3733   return ConstantAddress(Aliasee, DeclTy, Alignment);
3734 }
3735 
3736 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3737   if (!D)
3738     return false;
3739   if (auto *A = D->getAttr<AttrT>())
3740     return A->isImplicit();
3741   return D->isImplicit();
3742 }
3743 
3744 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3745   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3746   // We need to emit host-side 'shadows' for all global
3747   // device-side variables because the CUDA runtime needs their
3748   // size and host-side address in order to provide access to
3749   // their device-side incarnations.
3750   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3751          Global->hasAttr<CUDAConstantAttr>() ||
3752          Global->hasAttr<CUDASharedAttr>() ||
3753          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3754          Global->getType()->isCUDADeviceBuiltinTextureType();
3755 }
3756 
3757 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3758   const auto *Global = cast<ValueDecl>(GD.getDecl());
3759 
3760   // Weak references don't produce any output by themselves.
3761   if (Global->hasAttr<WeakRefAttr>())
3762     return;
3763 
3764   // If this is an alias definition (which otherwise looks like a declaration)
3765   // emit it now.
3766   if (Global->hasAttr<AliasAttr>())
3767     return EmitAliasDefinition(GD);
3768 
3769   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3770   if (Global->hasAttr<IFuncAttr>())
3771     return emitIFuncDefinition(GD);
3772 
3773   // If this is a cpu_dispatch multiversion function, emit the resolver.
3774   if (Global->hasAttr<CPUDispatchAttr>())
3775     return emitCPUDispatchDefinition(GD);
3776 
3777   // If this is CUDA, be selective about which declarations we emit.
3778   // Non-constexpr non-lambda implicit host device functions are not emitted
3779   // unless they are used on device side.
3780   if (LangOpts.CUDA) {
3781     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3782            "Expected Variable or Function");
3783     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3784       if (!shouldEmitCUDAGlobalVar(VD))
3785         return;
3786     } else if (LangOpts.CUDAIsDevice) {
3787       const auto *FD = dyn_cast<FunctionDecl>(Global);
3788       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3789            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3790             hasImplicitAttr<CUDAHostAttr>(FD) &&
3791             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3792             !isLambdaCallOperator(FD) &&
3793             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3794           !Global->hasAttr<CUDAGlobalAttr>() &&
3795           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3796             !Global->hasAttr<CUDAHostAttr>()))
3797         return;
3798       // Device-only functions are the only things we skip.
3799     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3800                Global->hasAttr<CUDADeviceAttr>())
3801       return;
3802   }
3803 
3804   if (LangOpts.OpenMP) {
3805     // If this is OpenMP, check if it is legal to emit this global normally.
3806     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3807       return;
3808     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3809       if (MustBeEmitted(Global))
3810         EmitOMPDeclareReduction(DRD);
3811       return;
3812     }
3813     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3814       if (MustBeEmitted(Global))
3815         EmitOMPDeclareMapper(DMD);
3816       return;
3817     }
3818   }
3819 
3820   // Ignore declarations, they will be emitted on their first use.
3821   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3822     // Update deferred annotations with the latest declaration if the function
3823     // function was already used or defined.
3824     if (FD->hasAttr<AnnotateAttr>()) {
3825       StringRef MangledName = getMangledName(GD);
3826       if (GetGlobalValue(MangledName))
3827         DeferredAnnotations[MangledName] = FD;
3828     }
3829 
3830     // Forward declarations are emitted lazily on first use.
3831     if (!FD->doesThisDeclarationHaveABody()) {
3832       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3833           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3834         return;
3835 
3836       StringRef MangledName = getMangledName(GD);
3837 
3838       // Compute the function info and LLVM type.
3839       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3840       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3841 
3842       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3843                               /*DontDefer=*/false);
3844       return;
3845     }
3846   } else {
3847     const auto *VD = cast<VarDecl>(Global);
3848     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3849     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3850         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3851       if (LangOpts.OpenMP) {
3852         // Emit declaration of the must-be-emitted declare target variable.
3853         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3854                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3855 
3856           // If this variable has external storage and doesn't require special
3857           // link handling we defer to its canonical definition.
3858           if (VD->hasExternalStorage() &&
3859               Res != OMPDeclareTargetDeclAttr::MT_Link)
3860             return;
3861 
3862           bool UnifiedMemoryEnabled =
3863               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3864           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3865                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3866               !UnifiedMemoryEnabled) {
3867             (void)GetAddrOfGlobalVar(VD);
3868           } else {
3869             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3870                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3871                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3872                      UnifiedMemoryEnabled)) &&
3873                    "Link clause or to clause with unified memory expected.");
3874             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3875           }
3876 
3877           return;
3878         }
3879       }
3880       // If this declaration may have caused an inline variable definition to
3881       // change linkage, make sure that it's emitted.
3882       if (Context.getInlineVariableDefinitionKind(VD) ==
3883           ASTContext::InlineVariableDefinitionKind::Strong)
3884         GetAddrOfGlobalVar(VD);
3885       return;
3886     }
3887   }
3888 
3889   // Defer code generation to first use when possible, e.g. if this is an inline
3890   // function. If the global must always be emitted, do it eagerly if possible
3891   // to benefit from cache locality.
3892   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3893     // Emit the definition if it can't be deferred.
3894     EmitGlobalDefinition(GD);
3895     addEmittedDeferredDecl(GD);
3896     return;
3897   }
3898 
3899   // If we're deferring emission of a C++ variable with an
3900   // initializer, remember the order in which it appeared in the file.
3901   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3902       cast<VarDecl>(Global)->hasInit()) {
3903     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3904     CXXGlobalInits.push_back(nullptr);
3905   }
3906 
3907   StringRef MangledName = getMangledName(GD);
3908   if (GetGlobalValue(MangledName) != nullptr) {
3909     // The value has already been used and should therefore be emitted.
3910     addDeferredDeclToEmit(GD);
3911   } else if (MustBeEmitted(Global)) {
3912     // The value must be emitted, but cannot be emitted eagerly.
3913     assert(!MayBeEmittedEagerly(Global));
3914     addDeferredDeclToEmit(GD);
3915   } else {
3916     // Otherwise, remember that we saw a deferred decl with this name.  The
3917     // first use of the mangled name will cause it to move into
3918     // DeferredDeclsToEmit.
3919     DeferredDecls[MangledName] = GD;
3920   }
3921 }
3922 
3923 // Check if T is a class type with a destructor that's not dllimport.
3924 static bool HasNonDllImportDtor(QualType T) {
3925   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3926     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3927       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3928         return true;
3929 
3930   return false;
3931 }
3932 
3933 namespace {
3934   struct FunctionIsDirectlyRecursive
3935       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3936     const StringRef Name;
3937     const Builtin::Context &BI;
3938     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3939         : Name(N), BI(C) {}
3940 
3941     bool VisitCallExpr(const CallExpr *E) {
3942       const FunctionDecl *FD = E->getDirectCallee();
3943       if (!FD)
3944         return false;
3945       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3946       if (Attr && Name == Attr->getLabel())
3947         return true;
3948       unsigned BuiltinID = FD->getBuiltinID();
3949       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3950         return false;
3951       StringRef BuiltinName = BI.getName(BuiltinID);
3952       if (BuiltinName.starts_with("__builtin_") &&
3953           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3954         return true;
3955       }
3956       return false;
3957     }
3958 
3959     bool VisitStmt(const Stmt *S) {
3960       for (const Stmt *Child : S->children())
3961         if (Child && this->Visit(Child))
3962           return true;
3963       return false;
3964     }
3965   };
3966 
3967   // Make sure we're not referencing non-imported vars or functions.
3968   struct DLLImportFunctionVisitor
3969       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3970     bool SafeToInline = true;
3971 
3972     bool shouldVisitImplicitCode() const { return true; }
3973 
3974     bool VisitVarDecl(VarDecl *VD) {
3975       if (VD->getTLSKind()) {
3976         // A thread-local variable cannot be imported.
3977         SafeToInline = false;
3978         return SafeToInline;
3979       }
3980 
3981       // A variable definition might imply a destructor call.
3982       if (VD->isThisDeclarationADefinition())
3983         SafeToInline = !HasNonDllImportDtor(VD->getType());
3984 
3985       return SafeToInline;
3986     }
3987 
3988     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3989       if (const auto *D = E->getTemporary()->getDestructor())
3990         SafeToInline = D->hasAttr<DLLImportAttr>();
3991       return SafeToInline;
3992     }
3993 
3994     bool VisitDeclRefExpr(DeclRefExpr *E) {
3995       ValueDecl *VD = E->getDecl();
3996       if (isa<FunctionDecl>(VD))
3997         SafeToInline = VD->hasAttr<DLLImportAttr>();
3998       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3999         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4000       return SafeToInline;
4001     }
4002 
4003     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4004       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4005       return SafeToInline;
4006     }
4007 
4008     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4009       CXXMethodDecl *M = E->getMethodDecl();
4010       if (!M) {
4011         // Call through a pointer to member function. This is safe to inline.
4012         SafeToInline = true;
4013       } else {
4014         SafeToInline = M->hasAttr<DLLImportAttr>();
4015       }
4016       return SafeToInline;
4017     }
4018 
4019     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4020       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4021       return SafeToInline;
4022     }
4023 
4024     bool VisitCXXNewExpr(CXXNewExpr *E) {
4025       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4026       return SafeToInline;
4027     }
4028   };
4029 }
4030 
4031 // isTriviallyRecursive - Check if this function calls another
4032 // decl that, because of the asm attribute or the other decl being a builtin,
4033 // ends up pointing to itself.
4034 bool
4035 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4036   StringRef Name;
4037   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4038     // asm labels are a special kind of mangling we have to support.
4039     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4040     if (!Attr)
4041       return false;
4042     Name = Attr->getLabel();
4043   } else {
4044     Name = FD->getName();
4045   }
4046 
4047   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4048   const Stmt *Body = FD->getBody();
4049   return Body ? Walker.Visit(Body) : false;
4050 }
4051 
4052 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4053   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4054     return true;
4055 
4056   const auto *F = cast<FunctionDecl>(GD.getDecl());
4057   // Inline builtins declaration must be emitted. They often are fortified
4058   // functions.
4059   if (F->isInlineBuiltinDeclaration())
4060     return true;
4061 
4062   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4063     return false;
4064 
4065   // We don't import function bodies from other named module units since that
4066   // behavior may break ABI compatibility of the current unit.
4067   if (const Module *M = F->getOwningModule();
4068       M && M->getTopLevelModule()->isNamedModule() &&
4069       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4070     // There are practices to mark template member function as always-inline
4071     // and mark the template as extern explicit instantiation but not give
4072     // the definition for member function. So we have to emit the function
4073     // from explicitly instantiation with always-inline.
4074     //
4075     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4076     //
4077     // TODO: Maybe it is better to give it a warning if we call a non-inline
4078     // function from other module units which is marked as always-inline.
4079     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4080       return false;
4081     }
4082   }
4083 
4084   if (F->hasAttr<NoInlineAttr>())
4085     return false;
4086 
4087   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4088     // Check whether it would be safe to inline this dllimport function.
4089     DLLImportFunctionVisitor Visitor;
4090     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4091     if (!Visitor.SafeToInline)
4092       return false;
4093 
4094     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4095       // Implicit destructor invocations aren't captured in the AST, so the
4096       // check above can't see them. Check for them manually here.
4097       for (const Decl *Member : Dtor->getParent()->decls())
4098         if (isa<FieldDecl>(Member))
4099           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4100             return false;
4101       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4102         if (HasNonDllImportDtor(B.getType()))
4103           return false;
4104     }
4105   }
4106 
4107   // PR9614. Avoid cases where the source code is lying to us. An available
4108   // externally function should have an equivalent function somewhere else,
4109   // but a function that calls itself through asm label/`__builtin_` trickery is
4110   // clearly not equivalent to the real implementation.
4111   // This happens in glibc's btowc and in some configure checks.
4112   return !isTriviallyRecursive(F);
4113 }
4114 
4115 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4116   return CodeGenOpts.OptimizationLevel > 0;
4117 }
4118 
4119 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4120                                                        llvm::GlobalValue *GV) {
4121   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4122 
4123   if (FD->isCPUSpecificMultiVersion()) {
4124     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4125     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4126       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4127   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4128     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4129       // AArch64 favors the default target version over the clone if any.
4130       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4131           TC->isFirstOfVersion(I))
4132         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4133     // Ensure that the resolver function is also emitted.
4134     GetOrCreateMultiVersionResolver(GD);
4135   } else
4136     EmitGlobalFunctionDefinition(GD, GV);
4137 
4138   // Defer the resolver emission until we can reason whether the TU
4139   // contains a default target version implementation.
4140   if (FD->isTargetVersionMultiVersion())
4141     AddDeferredMultiVersionResolverToEmit(GD);
4142 }
4143 
4144 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4145   const auto *D = cast<ValueDecl>(GD.getDecl());
4146 
4147   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4148                                  Context.getSourceManager(),
4149                                  "Generating code for declaration");
4150 
4151   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4152     // At -O0, don't generate IR for functions with available_externally
4153     // linkage.
4154     if (!shouldEmitFunction(GD))
4155       return;
4156 
4157     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4158       std::string Name;
4159       llvm::raw_string_ostream OS(Name);
4160       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4161                                /*Qualified=*/true);
4162       return Name;
4163     });
4164 
4165     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4166       // Make sure to emit the definition(s) before we emit the thunks.
4167       // This is necessary for the generation of certain thunks.
4168       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4169         ABI->emitCXXStructor(GD);
4170       else if (FD->isMultiVersion())
4171         EmitMultiVersionFunctionDefinition(GD, GV);
4172       else
4173         EmitGlobalFunctionDefinition(GD, GV);
4174 
4175       if (Method->isVirtual())
4176         getVTables().EmitThunks(GD);
4177 
4178       return;
4179     }
4180 
4181     if (FD->isMultiVersion())
4182       return EmitMultiVersionFunctionDefinition(GD, GV);
4183     return EmitGlobalFunctionDefinition(GD, GV);
4184   }
4185 
4186   if (const auto *VD = dyn_cast<VarDecl>(D))
4187     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4188 
4189   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4190 }
4191 
4192 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4193                                                       llvm::Function *NewFn);
4194 
4195 static unsigned
4196 TargetMVPriority(const TargetInfo &TI,
4197                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4198   unsigned Priority = 0;
4199   unsigned NumFeatures = 0;
4200   for (StringRef Feat : RO.Conditions.Features) {
4201     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4202     NumFeatures++;
4203   }
4204 
4205   if (!RO.Conditions.Architecture.empty())
4206     Priority = std::max(
4207         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4208 
4209   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4210 
4211   return Priority;
4212 }
4213 
4214 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4215 // TU can forward declare the function without causing problems.  Particularly
4216 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4217 // work with internal linkage functions, so that the same function name can be
4218 // used with internal linkage in multiple TUs.
4219 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4220                                                        GlobalDecl GD) {
4221   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4222   if (FD->getFormalLinkage() == Linkage::Internal)
4223     return llvm::GlobalValue::InternalLinkage;
4224   return llvm::GlobalValue::WeakODRLinkage;
4225 }
4226 
4227 void CodeGenModule::emitMultiVersionFunctions() {
4228   std::vector<GlobalDecl> MVFuncsToEmit;
4229   MultiVersionFuncs.swap(MVFuncsToEmit);
4230   for (GlobalDecl GD : MVFuncsToEmit) {
4231     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4232     assert(FD && "Expected a FunctionDecl");
4233 
4234     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4235       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4236       StringRef MangledName = getMangledName(CurGD);
4237       llvm::Constant *Func = GetGlobalValue(MangledName);
4238       if (!Func) {
4239         if (Decl->isDefined()) {
4240           EmitGlobalFunctionDefinition(CurGD, nullptr);
4241           Func = GetGlobalValue(MangledName);
4242         } else {
4243           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4244           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4245           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4246                                    /*DontDefer=*/false, ForDefinition);
4247         }
4248         assert(Func && "This should have just been created");
4249       }
4250       return cast<llvm::Function>(Func);
4251     };
4252 
4253     // For AArch64, a resolver is only emitted if a function marked with
4254     // target_version("default")) or target_clones() is present and defined
4255     // in this TU. For other architectures it is always emitted.
4256     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4257     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4258 
4259     getContext().forEachMultiversionedFunctionVersion(
4260         FD, [&](const FunctionDecl *CurFD) {
4261           llvm::SmallVector<StringRef, 8> Feats;
4262           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4263 
4264           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4265             TA->getAddedFeatures(Feats);
4266             llvm::Function *Func = createFunction(CurFD);
4267             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4268           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4269             if (TVA->isDefaultVersion() && IsDefined)
4270               ShouldEmitResolver = true;
4271             TVA->getFeatures(Feats);
4272             llvm::Function *Func = createFunction(CurFD);
4273             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4274           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4275             if (IsDefined)
4276               ShouldEmitResolver = true;
4277             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4278               if (!TC->isFirstOfVersion(I))
4279                 continue;
4280 
4281               llvm::Function *Func = createFunction(CurFD, I);
4282               StringRef Architecture;
4283               Feats.clear();
4284               if (getTarget().getTriple().isAArch64())
4285                 TC->getFeatures(Feats, I);
4286               else if (getTarget().getTriple().isRISCV()) {
4287                 StringRef Version = TC->getFeatureStr(I);
4288                 Feats.push_back(Version);
4289               } else {
4290                 StringRef Version = TC->getFeatureStr(I);
4291                 if (Version.starts_with("arch="))
4292                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4293                 else if (Version != "default")
4294                   Feats.push_back(Version);
4295               }
4296               Options.emplace_back(Func, Architecture, Feats);
4297             }
4298           } else
4299             llvm_unreachable("unexpected MultiVersionKind");
4300         });
4301 
4302     if (!ShouldEmitResolver)
4303       continue;
4304 
4305     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4306     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4307       ResolverConstant = IFunc->getResolver();
4308       if (FD->isTargetClonesMultiVersion() &&
4309           !getTarget().getTriple().isAArch64()) {
4310         std::string MangledName = getMangledNameImpl(
4311             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4312         if (!GetGlobalValue(MangledName + ".ifunc")) {
4313           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4314           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4315           // In prior versions of Clang, the mangling for ifuncs incorrectly
4316           // included an .ifunc suffix. This alias is generated for backward
4317           // compatibility. It is deprecated, and may be removed in the future.
4318           auto *Alias = llvm::GlobalAlias::create(
4319               DeclTy, 0, getMultiversionLinkage(*this, GD),
4320               MangledName + ".ifunc", IFunc, &getModule());
4321           SetCommonAttributes(FD, Alias);
4322         }
4323       }
4324     }
4325     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4326 
4327     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4328 
4329     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4330       ResolverFunc->setComdat(
4331           getModule().getOrInsertComdat(ResolverFunc->getName()));
4332 
4333     const TargetInfo &TI = getTarget();
4334     llvm::stable_sort(
4335         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4336                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4337           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4338         });
4339     CodeGenFunction CGF(*this);
4340     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4341   }
4342 
4343   // Ensure that any additions to the deferred decls list caused by emitting a
4344   // variant are emitted.  This can happen when the variant itself is inline and
4345   // calls a function without linkage.
4346   if (!MVFuncsToEmit.empty())
4347     EmitDeferred();
4348 
4349   // Ensure that any additions to the multiversion funcs list from either the
4350   // deferred decls or the multiversion functions themselves are emitted.
4351   if (!MultiVersionFuncs.empty())
4352     emitMultiVersionFunctions();
4353 }
4354 
4355 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4356                                    llvm::Constant *New) {
4357   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4358   New->takeName(Old);
4359   Old->replaceAllUsesWith(New);
4360   Old->eraseFromParent();
4361 }
4362 
4363 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4364   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4365   assert(FD && "Not a FunctionDecl?");
4366   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4367   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4368   assert(DD && "Not a cpu_dispatch Function?");
4369 
4370   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4371   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4372 
4373   StringRef ResolverName = getMangledName(GD);
4374   UpdateMultiVersionNames(GD, FD, ResolverName);
4375 
4376   llvm::Type *ResolverType;
4377   GlobalDecl ResolverGD;
4378   if (getTarget().supportsIFunc()) {
4379     ResolverType = llvm::FunctionType::get(
4380         llvm::PointerType::get(DeclTy,
4381                                getTypes().getTargetAddressSpace(FD->getType())),
4382         false);
4383   }
4384   else {
4385     ResolverType = DeclTy;
4386     ResolverGD = GD;
4387   }
4388 
4389   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4390       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4391   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4392   if (supportsCOMDAT())
4393     ResolverFunc->setComdat(
4394         getModule().getOrInsertComdat(ResolverFunc->getName()));
4395 
4396   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4397   const TargetInfo &Target = getTarget();
4398   unsigned Index = 0;
4399   for (const IdentifierInfo *II : DD->cpus()) {
4400     // Get the name of the target function so we can look it up/create it.
4401     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4402                               getCPUSpecificMangling(*this, II->getName());
4403 
4404     llvm::Constant *Func = GetGlobalValue(MangledName);
4405 
4406     if (!Func) {
4407       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4408       if (ExistingDecl.getDecl() &&
4409           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4410         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4411         Func = GetGlobalValue(MangledName);
4412       } else {
4413         if (!ExistingDecl.getDecl())
4414           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4415 
4416       Func = GetOrCreateLLVMFunction(
4417           MangledName, DeclTy, ExistingDecl,
4418           /*ForVTable=*/false, /*DontDefer=*/true,
4419           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4420       }
4421     }
4422 
4423     llvm::SmallVector<StringRef, 32> Features;
4424     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4425     llvm::transform(Features, Features.begin(),
4426                     [](StringRef Str) { return Str.substr(1); });
4427     llvm::erase_if(Features, [&Target](StringRef Feat) {
4428       return !Target.validateCpuSupports(Feat);
4429     });
4430     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4431     ++Index;
4432   }
4433 
4434   llvm::stable_sort(
4435       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4436                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4437         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4438                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4439       });
4440 
4441   // If the list contains multiple 'default' versions, such as when it contains
4442   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4443   // always run on at least a 'pentium'). We do this by deleting the 'least
4444   // advanced' (read, lowest mangling letter).
4445   while (Options.size() > 1 &&
4446          llvm::all_of(llvm::X86::getCpuSupportsMask(
4447                           (Options.end() - 2)->Conditions.Features),
4448                       [](auto X) { return X == 0; })) {
4449     StringRef LHSName = (Options.end() - 2)->Function->getName();
4450     StringRef RHSName = (Options.end() - 1)->Function->getName();
4451     if (LHSName.compare(RHSName) < 0)
4452       Options.erase(Options.end() - 2);
4453     else
4454       Options.erase(Options.end() - 1);
4455   }
4456 
4457   CodeGenFunction CGF(*this);
4458   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4459 
4460   if (getTarget().supportsIFunc()) {
4461     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4462     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4463     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4464 
4465     // Fix up function declarations that were created for cpu_specific before
4466     // cpu_dispatch was known
4467     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4468       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4469                                            ResolverFunc, &getModule());
4470       replaceDeclarationWith(IFunc, GI);
4471       IFunc = GI;
4472     }
4473 
4474     std::string AliasName = getMangledNameImpl(
4475         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4476     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4477     if (!AliasFunc) {
4478       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4479                                            IFunc, &getModule());
4480       SetCommonAttributes(GD, GA);
4481     }
4482   }
4483 }
4484 
4485 /// Adds a declaration to the list of multi version functions if not present.
4486 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4487   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4488   assert(FD && "Not a FunctionDecl?");
4489 
4490   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4491     std::string MangledName =
4492         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4493     if (!DeferredResolversToEmit.insert(MangledName).second)
4494       return;
4495   }
4496   MultiVersionFuncs.push_back(GD);
4497 }
4498 
4499 /// If a dispatcher for the specified mangled name is not in the module, create
4500 /// and return it. The dispatcher is either an llvm Function with the specified
4501 /// type, or a global ifunc.
4502 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4503   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4504   assert(FD && "Not a FunctionDecl?");
4505 
4506   std::string MangledName =
4507       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4508 
4509   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4510   // a separate resolver).
4511   std::string ResolverName = MangledName;
4512   if (getTarget().supportsIFunc()) {
4513     switch (FD->getMultiVersionKind()) {
4514     case MultiVersionKind::None:
4515       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4516     case MultiVersionKind::Target:
4517     case MultiVersionKind::CPUSpecific:
4518     case MultiVersionKind::CPUDispatch:
4519       ResolverName += ".ifunc";
4520       break;
4521     case MultiVersionKind::TargetClones:
4522     case MultiVersionKind::TargetVersion:
4523       break;
4524     }
4525   } else if (FD->isTargetMultiVersion()) {
4526     ResolverName += ".resolver";
4527   }
4528 
4529   // If the resolver has already been created, just return it. This lookup may
4530   // yield a function declaration instead of a resolver on AArch64. That is
4531   // because we didn't know whether a resolver will be generated when we first
4532   // encountered a use of the symbol named after this resolver. Therefore,
4533   // targets which support ifuncs should not return here unless we actually
4534   // found an ifunc.
4535   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4536   if (ResolverGV &&
4537       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4538     return ResolverGV;
4539 
4540   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4541   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4542 
4543   // The resolver needs to be created. For target and target_clones, defer
4544   // creation until the end of the TU.
4545   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4546     AddDeferredMultiVersionResolverToEmit(GD);
4547 
4548   // For cpu_specific, don't create an ifunc yet because we don't know if the
4549   // cpu_dispatch will be emitted in this translation unit.
4550   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4551     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4552     llvm::Type *ResolverType =
4553         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4554     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4555         MangledName + ".resolver", ResolverType, GlobalDecl{},
4556         /*ForVTable=*/false);
4557     llvm::GlobalIFunc *GIF =
4558         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4559                                   "", Resolver, &getModule());
4560     GIF->setName(ResolverName);
4561     SetCommonAttributes(FD, GIF);
4562     if (ResolverGV)
4563       replaceDeclarationWith(ResolverGV, GIF);
4564     return GIF;
4565   }
4566 
4567   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4568       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4569   assert(isa<llvm::GlobalValue>(Resolver) &&
4570          "Resolver should be created for the first time");
4571   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4572   if (ResolverGV)
4573     replaceDeclarationWith(ResolverGV, Resolver);
4574   return Resolver;
4575 }
4576 
4577 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4578                                            const llvm::GlobalValue *GV) const {
4579   auto SC = GV->getDLLStorageClass();
4580   if (SC == llvm::GlobalValue::DefaultStorageClass)
4581     return false;
4582   const Decl *MRD = D->getMostRecentDecl();
4583   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4584             !MRD->hasAttr<DLLImportAttr>()) ||
4585            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4586             !MRD->hasAttr<DLLExportAttr>())) &&
4587           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4588 }
4589 
4590 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4591 /// module, create and return an llvm Function with the specified type. If there
4592 /// is something in the module with the specified name, return it potentially
4593 /// bitcasted to the right type.
4594 ///
4595 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4596 /// to set the attributes on the function when it is first created.
4597 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4598     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4599     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4600     ForDefinition_t IsForDefinition) {
4601   const Decl *D = GD.getDecl();
4602 
4603   std::string NameWithoutMultiVersionMangling;
4604   // Any attempts to use a MultiVersion function should result in retrieving
4605   // the iFunc instead. Name Mangling will handle the rest of the changes.
4606   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4607     // For the device mark the function as one that should be emitted.
4608     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4609         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4610         !DontDefer && !IsForDefinition) {
4611       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4612         GlobalDecl GDDef;
4613         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4614           GDDef = GlobalDecl(CD, GD.getCtorType());
4615         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4616           GDDef = GlobalDecl(DD, GD.getDtorType());
4617         else
4618           GDDef = GlobalDecl(FDDef);
4619         EmitGlobal(GDDef);
4620       }
4621     }
4622 
4623     if (FD->isMultiVersion()) {
4624       UpdateMultiVersionNames(GD, FD, MangledName);
4625       if (!IsForDefinition) {
4626         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4627         // function is used. Instead we defer the emission until we see a
4628         // default definition. In the meantime we just reference the symbol
4629         // without FMV mangling (it may or may not be replaced later).
4630         if (getTarget().getTriple().isAArch64()) {
4631           AddDeferredMultiVersionResolverToEmit(GD);
4632           NameWithoutMultiVersionMangling = getMangledNameImpl(
4633               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4634         } else
4635           return GetOrCreateMultiVersionResolver(GD);
4636       }
4637     }
4638   }
4639 
4640   if (!NameWithoutMultiVersionMangling.empty())
4641     MangledName = NameWithoutMultiVersionMangling;
4642 
4643   // Lookup the entry, lazily creating it if necessary.
4644   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4645   if (Entry) {
4646     if (WeakRefReferences.erase(Entry)) {
4647       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4648       if (FD && !FD->hasAttr<WeakAttr>())
4649         Entry->setLinkage(llvm::Function::ExternalLinkage);
4650     }
4651 
4652     // Handle dropped DLL attributes.
4653     if (D && shouldDropDLLAttribute(D, Entry)) {
4654       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4655       setDSOLocal(Entry);
4656     }
4657 
4658     // If there are two attempts to define the same mangled name, issue an
4659     // error.
4660     if (IsForDefinition && !Entry->isDeclaration()) {
4661       GlobalDecl OtherGD;
4662       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4663       // to make sure that we issue an error only once.
4664       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4665           (GD.getCanonicalDecl().getDecl() !=
4666            OtherGD.getCanonicalDecl().getDecl()) &&
4667           DiagnosedConflictingDefinitions.insert(GD).second) {
4668         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4669             << MangledName;
4670         getDiags().Report(OtherGD.getDecl()->getLocation(),
4671                           diag::note_previous_definition);
4672       }
4673     }
4674 
4675     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4676         (Entry->getValueType() == Ty)) {
4677       return Entry;
4678     }
4679 
4680     // Make sure the result is of the correct type.
4681     // (If function is requested for a definition, we always need to create a new
4682     // function, not just return a bitcast.)
4683     if (!IsForDefinition)
4684       return Entry;
4685   }
4686 
4687   // This function doesn't have a complete type (for example, the return
4688   // type is an incomplete struct). Use a fake type instead, and make
4689   // sure not to try to set attributes.
4690   bool IsIncompleteFunction = false;
4691 
4692   llvm::FunctionType *FTy;
4693   if (isa<llvm::FunctionType>(Ty)) {
4694     FTy = cast<llvm::FunctionType>(Ty);
4695   } else {
4696     FTy = llvm::FunctionType::get(VoidTy, false);
4697     IsIncompleteFunction = true;
4698   }
4699 
4700   llvm::Function *F =
4701       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4702                              Entry ? StringRef() : MangledName, &getModule());
4703 
4704   // Store the declaration associated with this function so it is potentially
4705   // updated by further declarations or definitions and emitted at the end.
4706   if (D && D->hasAttr<AnnotateAttr>())
4707     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4708 
4709   // If we already created a function with the same mangled name (but different
4710   // type) before, take its name and add it to the list of functions to be
4711   // replaced with F at the end of CodeGen.
4712   //
4713   // This happens if there is a prototype for a function (e.g. "int f()") and
4714   // then a definition of a different type (e.g. "int f(int x)").
4715   if (Entry) {
4716     F->takeName(Entry);
4717 
4718     // This might be an implementation of a function without a prototype, in
4719     // which case, try to do special replacement of calls which match the new
4720     // prototype.  The really key thing here is that we also potentially drop
4721     // arguments from the call site so as to make a direct call, which makes the
4722     // inliner happier and suppresses a number of optimizer warnings (!) about
4723     // dropping arguments.
4724     if (!Entry->use_empty()) {
4725       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4726       Entry->removeDeadConstantUsers();
4727     }
4728 
4729     addGlobalValReplacement(Entry, F);
4730   }
4731 
4732   assert(F->getName() == MangledName && "name was uniqued!");
4733   if (D)
4734     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4735   if (ExtraAttrs.hasFnAttrs()) {
4736     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4737     F->addFnAttrs(B);
4738   }
4739 
4740   if (!DontDefer) {
4741     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4742     // each other bottoming out with the base dtor.  Therefore we emit non-base
4743     // dtors on usage, even if there is no dtor definition in the TU.
4744     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4745         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4746                                            GD.getDtorType()))
4747       addDeferredDeclToEmit(GD);
4748 
4749     // This is the first use or definition of a mangled name.  If there is a
4750     // deferred decl with this name, remember that we need to emit it at the end
4751     // of the file.
4752     auto DDI = DeferredDecls.find(MangledName);
4753     if (DDI != DeferredDecls.end()) {
4754       // Move the potentially referenced deferred decl to the
4755       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4756       // don't need it anymore).
4757       addDeferredDeclToEmit(DDI->second);
4758       DeferredDecls.erase(DDI);
4759 
4760       // Otherwise, there are cases we have to worry about where we're
4761       // using a declaration for which we must emit a definition but where
4762       // we might not find a top-level definition:
4763       //   - member functions defined inline in their classes
4764       //   - friend functions defined inline in some class
4765       //   - special member functions with implicit definitions
4766       // If we ever change our AST traversal to walk into class methods,
4767       // this will be unnecessary.
4768       //
4769       // We also don't emit a definition for a function if it's going to be an
4770       // entry in a vtable, unless it's already marked as used.
4771     } else if (getLangOpts().CPlusPlus && D) {
4772       // Look for a declaration that's lexically in a record.
4773       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4774            FD = FD->getPreviousDecl()) {
4775         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4776           if (FD->doesThisDeclarationHaveABody()) {
4777             addDeferredDeclToEmit(GD.getWithDecl(FD));
4778             break;
4779           }
4780         }
4781       }
4782     }
4783   }
4784 
4785   // Make sure the result is of the requested type.
4786   if (!IsIncompleteFunction) {
4787     assert(F->getFunctionType() == Ty);
4788     return F;
4789   }
4790 
4791   return F;
4792 }
4793 
4794 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4795 /// non-null, then this function will use the specified type if it has to
4796 /// create it (this occurs when we see a definition of the function).
4797 llvm::Constant *
4798 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4799                                  bool DontDefer,
4800                                  ForDefinition_t IsForDefinition) {
4801   // If there was no specific requested type, just convert it now.
4802   if (!Ty) {
4803     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4804     Ty = getTypes().ConvertType(FD->getType());
4805   }
4806 
4807   // Devirtualized destructor calls may come through here instead of via
4808   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4809   // of the complete destructor when necessary.
4810   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4811     if (getTarget().getCXXABI().isMicrosoft() &&
4812         GD.getDtorType() == Dtor_Complete &&
4813         DD->getParent()->getNumVBases() == 0)
4814       GD = GlobalDecl(DD, Dtor_Base);
4815   }
4816 
4817   StringRef MangledName = getMangledName(GD);
4818   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4819                                     /*IsThunk=*/false, llvm::AttributeList(),
4820                                     IsForDefinition);
4821   // Returns kernel handle for HIP kernel stub function.
4822   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4823       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4824     auto *Handle = getCUDARuntime().getKernelHandle(
4825         cast<llvm::Function>(F->stripPointerCasts()), GD);
4826     if (IsForDefinition)
4827       return F;
4828     return Handle;
4829   }
4830   return F;
4831 }
4832 
4833 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4834   llvm::GlobalValue *F =
4835       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4836 
4837   return llvm::NoCFIValue::get(F);
4838 }
4839 
4840 static const FunctionDecl *
4841 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4842   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4843   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4844 
4845   IdentifierInfo &CII = C.Idents.get(Name);
4846   for (const auto *Result : DC->lookup(&CII))
4847     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4848       return FD;
4849 
4850   if (!C.getLangOpts().CPlusPlus)
4851     return nullptr;
4852 
4853   // Demangle the premangled name from getTerminateFn()
4854   IdentifierInfo &CXXII =
4855       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4856           ? C.Idents.get("terminate")
4857           : C.Idents.get(Name);
4858 
4859   for (const auto &N : {"__cxxabiv1", "std"}) {
4860     IdentifierInfo &NS = C.Idents.get(N);
4861     for (const auto *Result : DC->lookup(&NS)) {
4862       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4863       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4864         for (const auto *Result : LSD->lookup(&NS))
4865           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4866             break;
4867 
4868       if (ND)
4869         for (const auto *Result : ND->lookup(&CXXII))
4870           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4871             return FD;
4872     }
4873   }
4874 
4875   return nullptr;
4876 }
4877 
4878 /// CreateRuntimeFunction - Create a new runtime function with the specified
4879 /// type and name.
4880 llvm::FunctionCallee
4881 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4882                                      llvm::AttributeList ExtraAttrs, bool Local,
4883                                      bool AssumeConvergent) {
4884   if (AssumeConvergent) {
4885     ExtraAttrs =
4886         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4887   }
4888 
4889   llvm::Constant *C =
4890       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4891                               /*DontDefer=*/false, /*IsThunk=*/false,
4892                               ExtraAttrs);
4893 
4894   if (auto *F = dyn_cast<llvm::Function>(C)) {
4895     if (F->empty()) {
4896       F->setCallingConv(getRuntimeCC());
4897 
4898       // In Windows Itanium environments, try to mark runtime functions
4899       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4900       // will link their standard library statically or dynamically. Marking
4901       // functions imported when they are not imported can cause linker errors
4902       // and warnings.
4903       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4904           !getCodeGenOpts().LTOVisibilityPublicStd) {
4905         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4906         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4907           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4908           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4909         }
4910       }
4911       setDSOLocal(F);
4912       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4913       // of trying to approximate the attributes using the LLVM function
4914       // signature. This requires revising the API of CreateRuntimeFunction().
4915       markRegisterParameterAttributes(F);
4916     }
4917   }
4918 
4919   return {FTy, C};
4920 }
4921 
4922 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4923 /// create and return an llvm GlobalVariable with the specified type and address
4924 /// space. If there is something in the module with the specified name, return
4925 /// it potentially bitcasted to the right type.
4926 ///
4927 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4928 /// to set the attributes on the global when it is first created.
4929 ///
4930 /// If IsForDefinition is true, it is guaranteed that an actual global with
4931 /// type Ty will be returned, not conversion of a variable with the same
4932 /// mangled name but some other type.
4933 llvm::Constant *
4934 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4935                                      LangAS AddrSpace, const VarDecl *D,
4936                                      ForDefinition_t IsForDefinition) {
4937   // Lookup the entry, lazily creating it if necessary.
4938   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4939   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4940   if (Entry) {
4941     if (WeakRefReferences.erase(Entry)) {
4942       if (D && !D->hasAttr<WeakAttr>())
4943         Entry->setLinkage(llvm::Function::ExternalLinkage);
4944     }
4945 
4946     // Handle dropped DLL attributes.
4947     if (D && shouldDropDLLAttribute(D, Entry))
4948       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4949 
4950     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4951       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4952 
4953     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4954       return Entry;
4955 
4956     // If there are two attempts to define the same mangled name, issue an
4957     // error.
4958     if (IsForDefinition && !Entry->isDeclaration()) {
4959       GlobalDecl OtherGD;
4960       const VarDecl *OtherD;
4961 
4962       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4963       // to make sure that we issue an error only once.
4964       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4965           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4966           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4967           OtherD->hasInit() &&
4968           DiagnosedConflictingDefinitions.insert(D).second) {
4969         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4970             << MangledName;
4971         getDiags().Report(OtherGD.getDecl()->getLocation(),
4972                           diag::note_previous_definition);
4973       }
4974     }
4975 
4976     // Make sure the result is of the correct type.
4977     if (Entry->getType()->getAddressSpace() != TargetAS)
4978       return llvm::ConstantExpr::getAddrSpaceCast(
4979           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4980 
4981     // (If global is requested for a definition, we always need to create a new
4982     // global, not just return a bitcast.)
4983     if (!IsForDefinition)
4984       return Entry;
4985   }
4986 
4987   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4988 
4989   auto *GV = new llvm::GlobalVariable(
4990       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4991       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4992       getContext().getTargetAddressSpace(DAddrSpace));
4993 
4994   // If we already created a global with the same mangled name (but different
4995   // type) before, take its name and remove it from its parent.
4996   if (Entry) {
4997     GV->takeName(Entry);
4998 
4999     if (!Entry->use_empty()) {
5000       Entry->replaceAllUsesWith(GV);
5001     }
5002 
5003     Entry->eraseFromParent();
5004   }
5005 
5006   // This is the first use or definition of a mangled name.  If there is a
5007   // deferred decl with this name, remember that we need to emit it at the end
5008   // of the file.
5009   auto DDI = DeferredDecls.find(MangledName);
5010   if (DDI != DeferredDecls.end()) {
5011     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5012     // list, and remove it from DeferredDecls (since we don't need it anymore).
5013     addDeferredDeclToEmit(DDI->second);
5014     DeferredDecls.erase(DDI);
5015   }
5016 
5017   // Handle things which are present even on external declarations.
5018   if (D) {
5019     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5020       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5021 
5022     // FIXME: This code is overly simple and should be merged with other global
5023     // handling.
5024     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5025 
5026     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5027 
5028     setLinkageForGV(GV, D);
5029 
5030     if (D->getTLSKind()) {
5031       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5032         CXXThreadLocals.push_back(D);
5033       setTLSMode(GV, *D);
5034     }
5035 
5036     setGVProperties(GV, D);
5037 
5038     // If required by the ABI, treat declarations of static data members with
5039     // inline initializers as definitions.
5040     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5041       EmitGlobalVarDefinition(D);
5042     }
5043 
5044     // Emit section information for extern variables.
5045     if (D->hasExternalStorage()) {
5046       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5047         GV->setSection(SA->getName());
5048     }
5049 
5050     // Handle XCore specific ABI requirements.
5051     if (getTriple().getArch() == llvm::Triple::xcore &&
5052         D->getLanguageLinkage() == CLanguageLinkage &&
5053         D->getType().isConstant(Context) &&
5054         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5055       GV->setSection(".cp.rodata");
5056 
5057     // Handle code model attribute
5058     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5059       GV->setCodeModel(CMA->getModel());
5060 
5061     // Check if we a have a const declaration with an initializer, we may be
5062     // able to emit it as available_externally to expose it's value to the
5063     // optimizer.
5064     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5065         D->getType().isConstQualified() && !GV->hasInitializer() &&
5066         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5067       const auto *Record =
5068           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5069       bool HasMutableFields = Record && Record->hasMutableFields();
5070       if (!HasMutableFields) {
5071         const VarDecl *InitDecl;
5072         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5073         if (InitExpr) {
5074           ConstantEmitter emitter(*this);
5075           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5076           if (Init) {
5077             auto *InitType = Init->getType();
5078             if (GV->getValueType() != InitType) {
5079               // The type of the initializer does not match the definition.
5080               // This happens when an initializer has a different type from
5081               // the type of the global (because of padding at the end of a
5082               // structure for instance).
5083               GV->setName(StringRef());
5084               // Make a new global with the correct type, this is now guaranteed
5085               // to work.
5086               auto *NewGV = cast<llvm::GlobalVariable>(
5087                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5088                       ->stripPointerCasts());
5089 
5090               // Erase the old global, since it is no longer used.
5091               GV->eraseFromParent();
5092               GV = NewGV;
5093             } else {
5094               GV->setInitializer(Init);
5095               GV->setConstant(true);
5096               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5097             }
5098             emitter.finalize(GV);
5099           }
5100         }
5101       }
5102     }
5103   }
5104 
5105   if (D &&
5106       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5107     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5108     // External HIP managed variables needed to be recorded for transformation
5109     // in both device and host compilations.
5110     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5111         D->hasExternalStorage())
5112       getCUDARuntime().handleVarRegistration(D, *GV);
5113   }
5114 
5115   if (D)
5116     SanitizerMD->reportGlobal(GV, *D);
5117 
5118   LangAS ExpectedAS =
5119       D ? D->getType().getAddressSpace()
5120         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5121   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5122   if (DAddrSpace != ExpectedAS) {
5123     return getTargetCodeGenInfo().performAddrSpaceCast(
5124         *this, GV, DAddrSpace, ExpectedAS,
5125         llvm::PointerType::get(getLLVMContext(), TargetAS));
5126   }
5127 
5128   return GV;
5129 }
5130 
5131 llvm::Constant *
5132 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5133   const Decl *D = GD.getDecl();
5134 
5135   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5136     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5137                                 /*DontDefer=*/false, IsForDefinition);
5138 
5139   if (isa<CXXMethodDecl>(D)) {
5140     auto FInfo =
5141         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5142     auto Ty = getTypes().GetFunctionType(*FInfo);
5143     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5144                              IsForDefinition);
5145   }
5146 
5147   if (isa<FunctionDecl>(D)) {
5148     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5149     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5150     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5151                              IsForDefinition);
5152   }
5153 
5154   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5155 }
5156 
5157 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5158     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5159     llvm::Align Alignment) {
5160   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5161   llvm::GlobalVariable *OldGV = nullptr;
5162 
5163   if (GV) {
5164     // Check if the variable has the right type.
5165     if (GV->getValueType() == Ty)
5166       return GV;
5167 
5168     // Because C++ name mangling, the only way we can end up with an already
5169     // existing global with the same name is if it has been declared extern "C".
5170     assert(GV->isDeclaration() && "Declaration has wrong type!");
5171     OldGV = GV;
5172   }
5173 
5174   // Create a new variable.
5175   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5176                                 Linkage, nullptr, Name);
5177 
5178   if (OldGV) {
5179     // Replace occurrences of the old variable if needed.
5180     GV->takeName(OldGV);
5181 
5182     if (!OldGV->use_empty()) {
5183       OldGV->replaceAllUsesWith(GV);
5184     }
5185 
5186     OldGV->eraseFromParent();
5187   }
5188 
5189   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5190       !GV->hasAvailableExternallyLinkage())
5191     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5192 
5193   GV->setAlignment(Alignment);
5194 
5195   return GV;
5196 }
5197 
5198 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5199 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5200 /// then it will be created with the specified type instead of whatever the
5201 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5202 /// that an actual global with type Ty will be returned, not conversion of a
5203 /// variable with the same mangled name but some other type.
5204 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5205                                                   llvm::Type *Ty,
5206                                            ForDefinition_t IsForDefinition) {
5207   assert(D->hasGlobalStorage() && "Not a global variable");
5208   QualType ASTTy = D->getType();
5209   if (!Ty)
5210     Ty = getTypes().ConvertTypeForMem(ASTTy);
5211 
5212   StringRef MangledName = getMangledName(D);
5213   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5214                                IsForDefinition);
5215 }
5216 
5217 /// CreateRuntimeVariable - Create a new runtime global variable with the
5218 /// specified type and name.
5219 llvm::Constant *
5220 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5221                                      StringRef Name) {
5222   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5223                                                        : LangAS::Default;
5224   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5225   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5226   return Ret;
5227 }
5228 
5229 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5230   assert(!D->getInit() && "Cannot emit definite definitions here!");
5231 
5232   StringRef MangledName = getMangledName(D);
5233   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5234 
5235   // We already have a definition, not declaration, with the same mangled name.
5236   // Emitting of declaration is not required (and actually overwrites emitted
5237   // definition).
5238   if (GV && !GV->isDeclaration())
5239     return;
5240 
5241   // If we have not seen a reference to this variable yet, place it into the
5242   // deferred declarations table to be emitted if needed later.
5243   if (!MustBeEmitted(D) && !GV) {
5244       DeferredDecls[MangledName] = D;
5245       return;
5246   }
5247 
5248   // The tentative definition is the only definition.
5249   EmitGlobalVarDefinition(D);
5250 }
5251 
5252 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5253   if (auto const *V = dyn_cast<const VarDecl>(D))
5254     EmitExternalVarDeclaration(V);
5255   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5256     EmitExternalFunctionDeclaration(FD);
5257 }
5258 
5259 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5260   return Context.toCharUnitsFromBits(
5261       getDataLayout().getTypeStoreSizeInBits(Ty));
5262 }
5263 
5264 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5265   if (LangOpts.OpenCL) {
5266     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5267     assert(AS == LangAS::opencl_global ||
5268            AS == LangAS::opencl_global_device ||
5269            AS == LangAS::opencl_global_host ||
5270            AS == LangAS::opencl_constant ||
5271            AS == LangAS::opencl_local ||
5272            AS >= LangAS::FirstTargetAddressSpace);
5273     return AS;
5274   }
5275 
5276   if (LangOpts.SYCLIsDevice &&
5277       (!D || D->getType().getAddressSpace() == LangAS::Default))
5278     return LangAS::sycl_global;
5279 
5280   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5281     if (D) {
5282       if (D->hasAttr<CUDAConstantAttr>())
5283         return LangAS::cuda_constant;
5284       if (D->hasAttr<CUDASharedAttr>())
5285         return LangAS::cuda_shared;
5286       if (D->hasAttr<CUDADeviceAttr>())
5287         return LangAS::cuda_device;
5288       if (D->getType().isConstQualified())
5289         return LangAS::cuda_constant;
5290     }
5291     return LangAS::cuda_device;
5292   }
5293 
5294   if (LangOpts.OpenMP) {
5295     LangAS AS;
5296     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5297       return AS;
5298   }
5299   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5300 }
5301 
5302 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5303   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5304   if (LangOpts.OpenCL)
5305     return LangAS::opencl_constant;
5306   if (LangOpts.SYCLIsDevice)
5307     return LangAS::sycl_global;
5308   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5309     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5310     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5311     // with OpVariable instructions with Generic storage class which is not
5312     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5313     // UniformConstant storage class is not viable as pointers to it may not be
5314     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5315     return LangAS::cuda_device;
5316   if (auto AS = getTarget().getConstantAddressSpace())
5317     return *AS;
5318   return LangAS::Default;
5319 }
5320 
5321 // In address space agnostic languages, string literals are in default address
5322 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5323 // emitted in constant address space in LLVM IR. To be consistent with other
5324 // parts of AST, string literal global variables in constant address space
5325 // need to be casted to default address space before being put into address
5326 // map and referenced by other part of CodeGen.
5327 // In OpenCL, string literals are in constant address space in AST, therefore
5328 // they should not be casted to default address space.
5329 static llvm::Constant *
5330 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5331                                        llvm::GlobalVariable *GV) {
5332   llvm::Constant *Cast = GV;
5333   if (!CGM.getLangOpts().OpenCL) {
5334     auto AS = CGM.GetGlobalConstantAddressSpace();
5335     if (AS != LangAS::Default)
5336       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5337           CGM, GV, AS, LangAS::Default,
5338           llvm::PointerType::get(
5339               CGM.getLLVMContext(),
5340               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5341   }
5342   return Cast;
5343 }
5344 
5345 template<typename SomeDecl>
5346 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5347                                                llvm::GlobalValue *GV) {
5348   if (!getLangOpts().CPlusPlus)
5349     return;
5350 
5351   // Must have 'used' attribute, or else inline assembly can't rely on
5352   // the name existing.
5353   if (!D->template hasAttr<UsedAttr>())
5354     return;
5355 
5356   // Must have internal linkage and an ordinary name.
5357   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5358     return;
5359 
5360   // Must be in an extern "C" context. Entities declared directly within
5361   // a record are not extern "C" even if the record is in such a context.
5362   const SomeDecl *First = D->getFirstDecl();
5363   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5364     return;
5365 
5366   // OK, this is an internal linkage entity inside an extern "C" linkage
5367   // specification. Make a note of that so we can give it the "expected"
5368   // mangled name if nothing else is using that name.
5369   std::pair<StaticExternCMap::iterator, bool> R =
5370       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5371 
5372   // If we have multiple internal linkage entities with the same name
5373   // in extern "C" regions, none of them gets that name.
5374   if (!R.second)
5375     R.first->second = nullptr;
5376 }
5377 
5378 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5379   if (!CGM.supportsCOMDAT())
5380     return false;
5381 
5382   if (D.hasAttr<SelectAnyAttr>())
5383     return true;
5384 
5385   GVALinkage Linkage;
5386   if (auto *VD = dyn_cast<VarDecl>(&D))
5387     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5388   else
5389     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5390 
5391   switch (Linkage) {
5392   case GVA_Internal:
5393   case GVA_AvailableExternally:
5394   case GVA_StrongExternal:
5395     return false;
5396   case GVA_DiscardableODR:
5397   case GVA_StrongODR:
5398     return true;
5399   }
5400   llvm_unreachable("No such linkage");
5401 }
5402 
5403 bool CodeGenModule::supportsCOMDAT() const {
5404   return getTriple().supportsCOMDAT();
5405 }
5406 
5407 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5408                                           llvm::GlobalObject &GO) {
5409   if (!shouldBeInCOMDAT(*this, D))
5410     return;
5411   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5412 }
5413 
5414 const ABIInfo &CodeGenModule::getABIInfo() {
5415   return getTargetCodeGenInfo().getABIInfo();
5416 }
5417 
5418 /// Pass IsTentative as true if you want to create a tentative definition.
5419 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5420                                             bool IsTentative) {
5421   // OpenCL global variables of sampler type are translated to function calls,
5422   // therefore no need to be translated.
5423   QualType ASTTy = D->getType();
5424   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5425     return;
5426 
5427   // If this is OpenMP device, check if it is legal to emit this global
5428   // normally.
5429   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5430       OpenMPRuntime->emitTargetGlobalVariable(D))
5431     return;
5432 
5433   llvm::TrackingVH<llvm::Constant> Init;
5434   bool NeedsGlobalCtor = false;
5435   // Whether the definition of the variable is available externally.
5436   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5437   // since this is the job for its original source.
5438   bool IsDefinitionAvailableExternally =
5439       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5440   bool NeedsGlobalDtor =
5441       !IsDefinitionAvailableExternally &&
5442       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5443 
5444   // It is helpless to emit the definition for an available_externally variable
5445   // which can't be marked as const.
5446   // We don't need to check if it needs global ctor or dtor. See the above
5447   // comment for ideas.
5448   if (IsDefinitionAvailableExternally &&
5449       (!D->hasConstantInitialization() ||
5450        // TODO: Update this when we have interface to check constexpr
5451        // destructor.
5452        D->needsDestruction(getContext()) ||
5453        !D->getType().isConstantStorage(getContext(), true, true)))
5454     return;
5455 
5456   const VarDecl *InitDecl;
5457   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5458 
5459   std::optional<ConstantEmitter> emitter;
5460 
5461   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5462   // as part of their declaration."  Sema has already checked for
5463   // error cases, so we just need to set Init to UndefValue.
5464   bool IsCUDASharedVar =
5465       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5466   // Shadows of initialized device-side global variables are also left
5467   // undefined.
5468   // Managed Variables should be initialized on both host side and device side.
5469   bool IsCUDAShadowVar =
5470       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5471       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5472        D->hasAttr<CUDASharedAttr>());
5473   bool IsCUDADeviceShadowVar =
5474       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5475       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5476        D->getType()->isCUDADeviceBuiltinTextureType());
5477   if (getLangOpts().CUDA &&
5478       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5479     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5480   else if (D->hasAttr<LoaderUninitializedAttr>())
5481     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5482   else if (!InitExpr) {
5483     // This is a tentative definition; tentative definitions are
5484     // implicitly initialized with { 0 }.
5485     //
5486     // Note that tentative definitions are only emitted at the end of
5487     // a translation unit, so they should never have incomplete
5488     // type. In addition, EmitTentativeDefinition makes sure that we
5489     // never attempt to emit a tentative definition if a real one
5490     // exists. A use may still exists, however, so we still may need
5491     // to do a RAUW.
5492     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5493     Init = EmitNullConstant(D->getType());
5494   } else {
5495     initializedGlobalDecl = GlobalDecl(D);
5496     emitter.emplace(*this);
5497     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5498     if (!Initializer) {
5499       QualType T = InitExpr->getType();
5500       if (D->getType()->isReferenceType())
5501         T = D->getType();
5502 
5503       if (getLangOpts().CPlusPlus) {
5504         if (InitDecl->hasFlexibleArrayInit(getContext()))
5505           ErrorUnsupported(D, "flexible array initializer");
5506         Init = EmitNullConstant(T);
5507 
5508         if (!IsDefinitionAvailableExternally)
5509           NeedsGlobalCtor = true;
5510       } else {
5511         ErrorUnsupported(D, "static initializer");
5512         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5513       }
5514     } else {
5515       Init = Initializer;
5516       // We don't need an initializer, so remove the entry for the delayed
5517       // initializer position (just in case this entry was delayed) if we
5518       // also don't need to register a destructor.
5519       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5520         DelayedCXXInitPosition.erase(D);
5521 
5522 #ifndef NDEBUG
5523       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5524                           InitDecl->getFlexibleArrayInitChars(getContext());
5525       CharUnits CstSize = CharUnits::fromQuantity(
5526           getDataLayout().getTypeAllocSize(Init->getType()));
5527       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5528 #endif
5529     }
5530   }
5531 
5532   llvm::Type* InitType = Init->getType();
5533   llvm::Constant *Entry =
5534       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5535 
5536   // Strip off pointer casts if we got them.
5537   Entry = Entry->stripPointerCasts();
5538 
5539   // Entry is now either a Function or GlobalVariable.
5540   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5541 
5542   // We have a definition after a declaration with the wrong type.
5543   // We must make a new GlobalVariable* and update everything that used OldGV
5544   // (a declaration or tentative definition) with the new GlobalVariable*
5545   // (which will be a definition).
5546   //
5547   // This happens if there is a prototype for a global (e.g.
5548   // "extern int x[];") and then a definition of a different type (e.g.
5549   // "int x[10];"). This also happens when an initializer has a different type
5550   // from the type of the global (this happens with unions).
5551   if (!GV || GV->getValueType() != InitType ||
5552       GV->getType()->getAddressSpace() !=
5553           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5554 
5555     // Move the old entry aside so that we'll create a new one.
5556     Entry->setName(StringRef());
5557 
5558     // Make a new global with the correct type, this is now guaranteed to work.
5559     GV = cast<llvm::GlobalVariable>(
5560         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5561             ->stripPointerCasts());
5562 
5563     // Replace all uses of the old global with the new global
5564     llvm::Constant *NewPtrForOldDecl =
5565         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5566                                                              Entry->getType());
5567     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5568 
5569     // Erase the old global, since it is no longer used.
5570     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5571   }
5572 
5573   MaybeHandleStaticInExternC(D, GV);
5574 
5575   if (D->hasAttr<AnnotateAttr>())
5576     AddGlobalAnnotations(D, GV);
5577 
5578   // Set the llvm linkage type as appropriate.
5579   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5580 
5581   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5582   // the device. [...]"
5583   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5584   // __device__, declares a variable that: [...]
5585   // Is accessible from all the threads within the grid and from the host
5586   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5587   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5588   if (LangOpts.CUDA) {
5589     if (LangOpts.CUDAIsDevice) {
5590       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5591           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5592            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5593            D->getType()->isCUDADeviceBuiltinTextureType()))
5594         GV->setExternallyInitialized(true);
5595     } else {
5596       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5597     }
5598     getCUDARuntime().handleVarRegistration(D, *GV);
5599   }
5600 
5601   GV->setInitializer(Init);
5602   if (emitter)
5603     emitter->finalize(GV);
5604 
5605   // If it is safe to mark the global 'constant', do so now.
5606   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5607                   D->getType().isConstantStorage(getContext(), true, true));
5608 
5609   // If it is in a read-only section, mark it 'constant'.
5610   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5611     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5612     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5613       GV->setConstant(true);
5614   }
5615 
5616   CharUnits AlignVal = getContext().getDeclAlign(D);
5617   // Check for alignment specifed in an 'omp allocate' directive.
5618   if (std::optional<CharUnits> AlignValFromAllocate =
5619           getOMPAllocateAlignment(D))
5620     AlignVal = *AlignValFromAllocate;
5621   GV->setAlignment(AlignVal.getAsAlign());
5622 
5623   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5624   // function is only defined alongside the variable, not also alongside
5625   // callers. Normally, all accesses to a thread_local go through the
5626   // thread-wrapper in order to ensure initialization has occurred, underlying
5627   // variable will never be used other than the thread-wrapper, so it can be
5628   // converted to internal linkage.
5629   //
5630   // However, if the variable has the 'constinit' attribute, it _can_ be
5631   // referenced directly, without calling the thread-wrapper, so the linkage
5632   // must not be changed.
5633   //
5634   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5635   // weak or linkonce, the de-duplication semantics are important to preserve,
5636   // so we don't change the linkage.
5637   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5638       Linkage == llvm::GlobalValue::ExternalLinkage &&
5639       Context.getTargetInfo().getTriple().isOSDarwin() &&
5640       !D->hasAttr<ConstInitAttr>())
5641     Linkage = llvm::GlobalValue::InternalLinkage;
5642 
5643   GV->setLinkage(Linkage);
5644   if (D->hasAttr<DLLImportAttr>())
5645     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5646   else if (D->hasAttr<DLLExportAttr>())
5647     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5648   else
5649     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5650 
5651   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5652     // common vars aren't constant even if declared const.
5653     GV->setConstant(false);
5654     // Tentative definition of global variables may be initialized with
5655     // non-zero null pointers. In this case they should have weak linkage
5656     // since common linkage must have zero initializer and must not have
5657     // explicit section therefore cannot have non-zero initial value.
5658     if (!GV->getInitializer()->isNullValue())
5659       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5660   }
5661 
5662   setNonAliasAttributes(D, GV);
5663 
5664   if (D->getTLSKind() && !GV->isThreadLocal()) {
5665     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5666       CXXThreadLocals.push_back(D);
5667     setTLSMode(GV, *D);
5668   }
5669 
5670   maybeSetTrivialComdat(*D, *GV);
5671 
5672   // Emit the initializer function if necessary.
5673   if (NeedsGlobalCtor || NeedsGlobalDtor)
5674     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5675 
5676   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5677 
5678   // Emit global variable debug information.
5679   if (CGDebugInfo *DI = getModuleDebugInfo())
5680     if (getCodeGenOpts().hasReducedDebugInfo())
5681       DI->EmitGlobalVariable(GV, D);
5682 }
5683 
5684 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5685   if (CGDebugInfo *DI = getModuleDebugInfo())
5686     if (getCodeGenOpts().hasReducedDebugInfo()) {
5687       QualType ASTTy = D->getType();
5688       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5689       llvm::Constant *GV =
5690           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5691       DI->EmitExternalVariable(
5692           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5693     }
5694 }
5695 
5696 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5697   if (CGDebugInfo *DI = getModuleDebugInfo())
5698     if (getCodeGenOpts().hasReducedDebugInfo()) {
5699       auto *Ty = getTypes().ConvertType(FD->getType());
5700       StringRef MangledName = getMangledName(FD);
5701       auto *Fn = cast<llvm::Function>(
5702           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5703       if (!Fn->getSubprogram())
5704         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5705     }
5706 }
5707 
5708 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5709                                       CodeGenModule &CGM, const VarDecl *D,
5710                                       bool NoCommon) {
5711   // Don't give variables common linkage if -fno-common was specified unless it
5712   // was overridden by a NoCommon attribute.
5713   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5714     return true;
5715 
5716   // C11 6.9.2/2:
5717   //   A declaration of an identifier for an object that has file scope without
5718   //   an initializer, and without a storage-class specifier or with the
5719   //   storage-class specifier static, constitutes a tentative definition.
5720   if (D->getInit() || D->hasExternalStorage())
5721     return true;
5722 
5723   // A variable cannot be both common and exist in a section.
5724   if (D->hasAttr<SectionAttr>())
5725     return true;
5726 
5727   // A variable cannot be both common and exist in a section.
5728   // We don't try to determine which is the right section in the front-end.
5729   // If no specialized section name is applicable, it will resort to default.
5730   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5731       D->hasAttr<PragmaClangDataSectionAttr>() ||
5732       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5733       D->hasAttr<PragmaClangRodataSectionAttr>())
5734     return true;
5735 
5736   // Thread local vars aren't considered common linkage.
5737   if (D->getTLSKind())
5738     return true;
5739 
5740   // Tentative definitions marked with WeakImportAttr are true definitions.
5741   if (D->hasAttr<WeakImportAttr>())
5742     return true;
5743 
5744   // A variable cannot be both common and exist in a comdat.
5745   if (shouldBeInCOMDAT(CGM, *D))
5746     return true;
5747 
5748   // Declarations with a required alignment do not have common linkage in MSVC
5749   // mode.
5750   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5751     if (D->hasAttr<AlignedAttr>())
5752       return true;
5753     QualType VarType = D->getType();
5754     if (Context.isAlignmentRequired(VarType))
5755       return true;
5756 
5757     if (const auto *RT = VarType->getAs<RecordType>()) {
5758       const RecordDecl *RD = RT->getDecl();
5759       for (const FieldDecl *FD : RD->fields()) {
5760         if (FD->isBitField())
5761           continue;
5762         if (FD->hasAttr<AlignedAttr>())
5763           return true;
5764         if (Context.isAlignmentRequired(FD->getType()))
5765           return true;
5766       }
5767     }
5768   }
5769 
5770   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5771   // common symbols, so symbols with greater alignment requirements cannot be
5772   // common.
5773   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5774   // alignments for common symbols via the aligncomm directive, so this
5775   // restriction only applies to MSVC environments.
5776   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5777       Context.getTypeAlignIfKnown(D->getType()) >
5778           Context.toBits(CharUnits::fromQuantity(32)))
5779     return true;
5780 
5781   return false;
5782 }
5783 
5784 llvm::GlobalValue::LinkageTypes
5785 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5786                                            GVALinkage Linkage) {
5787   if (Linkage == GVA_Internal)
5788     return llvm::Function::InternalLinkage;
5789 
5790   if (D->hasAttr<WeakAttr>())
5791     return llvm::GlobalVariable::WeakAnyLinkage;
5792 
5793   if (const auto *FD = D->getAsFunction())
5794     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5795       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5796 
5797   // We are guaranteed to have a strong definition somewhere else,
5798   // so we can use available_externally linkage.
5799   if (Linkage == GVA_AvailableExternally)
5800     return llvm::GlobalValue::AvailableExternallyLinkage;
5801 
5802   // Note that Apple's kernel linker doesn't support symbol
5803   // coalescing, so we need to avoid linkonce and weak linkages there.
5804   // Normally, this means we just map to internal, but for explicit
5805   // instantiations we'll map to external.
5806 
5807   // In C++, the compiler has to emit a definition in every translation unit
5808   // that references the function.  We should use linkonce_odr because
5809   // a) if all references in this translation unit are optimized away, we
5810   // don't need to codegen it.  b) if the function persists, it needs to be
5811   // merged with other definitions. c) C++ has the ODR, so we know the
5812   // definition is dependable.
5813   if (Linkage == GVA_DiscardableODR)
5814     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5815                                             : llvm::Function::InternalLinkage;
5816 
5817   // An explicit instantiation of a template has weak linkage, since
5818   // explicit instantiations can occur in multiple translation units
5819   // and must all be equivalent. However, we are not allowed to
5820   // throw away these explicit instantiations.
5821   //
5822   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5823   // so say that CUDA templates are either external (for kernels) or internal.
5824   // This lets llvm perform aggressive inter-procedural optimizations. For
5825   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5826   // therefore we need to follow the normal linkage paradigm.
5827   if (Linkage == GVA_StrongODR) {
5828     if (getLangOpts().AppleKext)
5829       return llvm::Function::ExternalLinkage;
5830     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5831         !getLangOpts().GPURelocatableDeviceCode)
5832       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5833                                           : llvm::Function::InternalLinkage;
5834     return llvm::Function::WeakODRLinkage;
5835   }
5836 
5837   // C++ doesn't have tentative definitions and thus cannot have common
5838   // linkage.
5839   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5840       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5841                                  CodeGenOpts.NoCommon))
5842     return llvm::GlobalVariable::CommonLinkage;
5843 
5844   // selectany symbols are externally visible, so use weak instead of
5845   // linkonce.  MSVC optimizes away references to const selectany globals, so
5846   // all definitions should be the same and ODR linkage should be used.
5847   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5848   if (D->hasAttr<SelectAnyAttr>())
5849     return llvm::GlobalVariable::WeakODRLinkage;
5850 
5851   // Otherwise, we have strong external linkage.
5852   assert(Linkage == GVA_StrongExternal);
5853   return llvm::GlobalVariable::ExternalLinkage;
5854 }
5855 
5856 llvm::GlobalValue::LinkageTypes
5857 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5858   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5859   return getLLVMLinkageForDeclarator(VD, Linkage);
5860 }
5861 
5862 /// Replace the uses of a function that was declared with a non-proto type.
5863 /// We want to silently drop extra arguments from call sites
5864 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5865                                           llvm::Function *newFn) {
5866   // Fast path.
5867   if (old->use_empty())
5868     return;
5869 
5870   llvm::Type *newRetTy = newFn->getReturnType();
5871   SmallVector<llvm::Value *, 4> newArgs;
5872 
5873   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5874 
5875   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5876        ui != ue; ui++) {
5877     llvm::User *user = ui->getUser();
5878 
5879     // Recognize and replace uses of bitcasts.  Most calls to
5880     // unprototyped functions will use bitcasts.
5881     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5882       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5883         replaceUsesOfNonProtoConstant(bitcast, newFn);
5884       continue;
5885     }
5886 
5887     // Recognize calls to the function.
5888     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5889     if (!callSite)
5890       continue;
5891     if (!callSite->isCallee(&*ui))
5892       continue;
5893 
5894     // If the return types don't match exactly, then we can't
5895     // transform this call unless it's dead.
5896     if (callSite->getType() != newRetTy && !callSite->use_empty())
5897       continue;
5898 
5899     // Get the call site's attribute list.
5900     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5901     llvm::AttributeList oldAttrs = callSite->getAttributes();
5902 
5903     // If the function was passed too few arguments, don't transform.
5904     unsigned newNumArgs = newFn->arg_size();
5905     if (callSite->arg_size() < newNumArgs)
5906       continue;
5907 
5908     // If extra arguments were passed, we silently drop them.
5909     // If any of the types mismatch, we don't transform.
5910     unsigned argNo = 0;
5911     bool dontTransform = false;
5912     for (llvm::Argument &A : newFn->args()) {
5913       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5914         dontTransform = true;
5915         break;
5916       }
5917 
5918       // Add any parameter attributes.
5919       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5920       argNo++;
5921     }
5922     if (dontTransform)
5923       continue;
5924 
5925     // Okay, we can transform this.  Create the new call instruction and copy
5926     // over the required information.
5927     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5928 
5929     // Copy over any operand bundles.
5930     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5931     callSite->getOperandBundlesAsDefs(newBundles);
5932 
5933     llvm::CallBase *newCall;
5934     if (isa<llvm::CallInst>(callSite)) {
5935       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5936                                        callSite->getIterator());
5937     } else {
5938       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5939       newCall = llvm::InvokeInst::Create(
5940           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5941           newArgs, newBundles, "", callSite->getIterator());
5942     }
5943     newArgs.clear(); // for the next iteration
5944 
5945     if (!newCall->getType()->isVoidTy())
5946       newCall->takeName(callSite);
5947     newCall->setAttributes(
5948         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5949                                  oldAttrs.getRetAttrs(), newArgAttrs));
5950     newCall->setCallingConv(callSite->getCallingConv());
5951 
5952     // Finally, remove the old call, replacing any uses with the new one.
5953     if (!callSite->use_empty())
5954       callSite->replaceAllUsesWith(newCall);
5955 
5956     // Copy debug location attached to CI.
5957     if (callSite->getDebugLoc())
5958       newCall->setDebugLoc(callSite->getDebugLoc());
5959 
5960     callSitesToBeRemovedFromParent.push_back(callSite);
5961   }
5962 
5963   for (auto *callSite : callSitesToBeRemovedFromParent) {
5964     callSite->eraseFromParent();
5965   }
5966 }
5967 
5968 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5969 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5970 /// existing call uses of the old function in the module, this adjusts them to
5971 /// call the new function directly.
5972 ///
5973 /// This is not just a cleanup: the always_inline pass requires direct calls to
5974 /// functions to be able to inline them.  If there is a bitcast in the way, it
5975 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5976 /// run at -O0.
5977 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5978                                                       llvm::Function *NewFn) {
5979   // If we're redefining a global as a function, don't transform it.
5980   if (!isa<llvm::Function>(Old)) return;
5981 
5982   replaceUsesOfNonProtoConstant(Old, NewFn);
5983 }
5984 
5985 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5986   auto DK = VD->isThisDeclarationADefinition();
5987   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5988       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5989     return;
5990 
5991   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5992   // If we have a definition, this might be a deferred decl. If the
5993   // instantiation is explicit, make sure we emit it at the end.
5994   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5995     GetAddrOfGlobalVar(VD);
5996 
5997   EmitTopLevelDecl(VD);
5998 }
5999 
6000 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6001                                                  llvm::GlobalValue *GV) {
6002   const auto *D = cast<FunctionDecl>(GD.getDecl());
6003 
6004   // Compute the function info and LLVM type.
6005   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6006   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6007 
6008   // Get or create the prototype for the function.
6009   if (!GV || (GV->getValueType() != Ty))
6010     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6011                                                    /*DontDefer=*/true,
6012                                                    ForDefinition));
6013 
6014   // Already emitted.
6015   if (!GV->isDeclaration())
6016     return;
6017 
6018   // We need to set linkage and visibility on the function before
6019   // generating code for it because various parts of IR generation
6020   // want to propagate this information down (e.g. to local static
6021   // declarations).
6022   auto *Fn = cast<llvm::Function>(GV);
6023   setFunctionLinkage(GD, Fn);
6024 
6025   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6026   setGVProperties(Fn, GD);
6027 
6028   MaybeHandleStaticInExternC(D, Fn);
6029 
6030   maybeSetTrivialComdat(*D, *Fn);
6031 
6032   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6033 
6034   setNonAliasAttributes(GD, Fn);
6035   SetLLVMFunctionAttributesForDefinition(D, Fn);
6036 
6037   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6038     AddGlobalCtor(Fn, CA->getPriority());
6039   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6040     AddGlobalDtor(Fn, DA->getPriority(), true);
6041   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6042     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6043 }
6044 
6045 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6046   const auto *D = cast<ValueDecl>(GD.getDecl());
6047   const AliasAttr *AA = D->getAttr<AliasAttr>();
6048   assert(AA && "Not an alias?");
6049 
6050   StringRef MangledName = getMangledName(GD);
6051 
6052   if (AA->getAliasee() == MangledName) {
6053     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6054     return;
6055   }
6056 
6057   // If there is a definition in the module, then it wins over the alias.
6058   // This is dubious, but allow it to be safe.  Just ignore the alias.
6059   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6060   if (Entry && !Entry->isDeclaration())
6061     return;
6062 
6063   Aliases.push_back(GD);
6064 
6065   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6066 
6067   // Create a reference to the named value.  This ensures that it is emitted
6068   // if a deferred decl.
6069   llvm::Constant *Aliasee;
6070   llvm::GlobalValue::LinkageTypes LT;
6071   if (isa<llvm::FunctionType>(DeclTy)) {
6072     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6073                                       /*ForVTable=*/false);
6074     LT = getFunctionLinkage(GD);
6075   } else {
6076     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6077                                     /*D=*/nullptr);
6078     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6079       LT = getLLVMLinkageVarDefinition(VD);
6080     else
6081       LT = getFunctionLinkage(GD);
6082   }
6083 
6084   // Create the new alias itself, but don't set a name yet.
6085   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6086   auto *GA =
6087       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6088 
6089   if (Entry) {
6090     if (GA->getAliasee() == Entry) {
6091       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6092       return;
6093     }
6094 
6095     assert(Entry->isDeclaration());
6096 
6097     // If there is a declaration in the module, then we had an extern followed
6098     // by the alias, as in:
6099     //   extern int test6();
6100     //   ...
6101     //   int test6() __attribute__((alias("test7")));
6102     //
6103     // Remove it and replace uses of it with the alias.
6104     GA->takeName(Entry);
6105 
6106     Entry->replaceAllUsesWith(GA);
6107     Entry->eraseFromParent();
6108   } else {
6109     GA->setName(MangledName);
6110   }
6111 
6112   // Set attributes which are particular to an alias; this is a
6113   // specialization of the attributes which may be set on a global
6114   // variable/function.
6115   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6116       D->isWeakImported()) {
6117     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6118   }
6119 
6120   if (const auto *VD = dyn_cast<VarDecl>(D))
6121     if (VD->getTLSKind())
6122       setTLSMode(GA, *VD);
6123 
6124   SetCommonAttributes(GD, GA);
6125 
6126   // Emit global alias debug information.
6127   if (isa<VarDecl>(D))
6128     if (CGDebugInfo *DI = getModuleDebugInfo())
6129       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6130 }
6131 
6132 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6133   const auto *D = cast<ValueDecl>(GD.getDecl());
6134   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6135   assert(IFA && "Not an ifunc?");
6136 
6137   StringRef MangledName = getMangledName(GD);
6138 
6139   if (IFA->getResolver() == MangledName) {
6140     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6141     return;
6142   }
6143 
6144   // Report an error if some definition overrides ifunc.
6145   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6146   if (Entry && !Entry->isDeclaration()) {
6147     GlobalDecl OtherGD;
6148     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6149         DiagnosedConflictingDefinitions.insert(GD).second) {
6150       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6151           << MangledName;
6152       Diags.Report(OtherGD.getDecl()->getLocation(),
6153                    diag::note_previous_definition);
6154     }
6155     return;
6156   }
6157 
6158   Aliases.push_back(GD);
6159 
6160   // The resolver might not be visited yet. Specify a dummy non-function type to
6161   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6162   // was emitted) or the whole function will be replaced (if the resolver has
6163   // not been emitted).
6164   llvm::Constant *Resolver =
6165       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6166                               /*ForVTable=*/false);
6167   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6168   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6169   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6170       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6171   if (Entry) {
6172     if (GIF->getResolver() == Entry) {
6173       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6174       return;
6175     }
6176     assert(Entry->isDeclaration());
6177 
6178     // If there is a declaration in the module, then we had an extern followed
6179     // by the ifunc, as in:
6180     //   extern int test();
6181     //   ...
6182     //   int test() __attribute__((ifunc("resolver")));
6183     //
6184     // Remove it and replace uses of it with the ifunc.
6185     GIF->takeName(Entry);
6186 
6187     Entry->replaceAllUsesWith(GIF);
6188     Entry->eraseFromParent();
6189   } else
6190     GIF->setName(MangledName);
6191   SetCommonAttributes(GD, GIF);
6192 }
6193 
6194 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6195                                             ArrayRef<llvm::Type*> Tys) {
6196   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6197                                          Tys);
6198 }
6199 
6200 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6201 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6202                          const StringLiteral *Literal, bool TargetIsLSB,
6203                          bool &IsUTF16, unsigned &StringLength) {
6204   StringRef String = Literal->getString();
6205   unsigned NumBytes = String.size();
6206 
6207   // Check for simple case.
6208   if (!Literal->containsNonAsciiOrNull()) {
6209     StringLength = NumBytes;
6210     return *Map.insert(std::make_pair(String, nullptr)).first;
6211   }
6212 
6213   // Otherwise, convert the UTF8 literals into a string of shorts.
6214   IsUTF16 = true;
6215 
6216   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6217   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6218   llvm::UTF16 *ToPtr = &ToBuf[0];
6219 
6220   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6221                                  ToPtr + NumBytes, llvm::strictConversion);
6222 
6223   // ConvertUTF8toUTF16 returns the length in ToPtr.
6224   StringLength = ToPtr - &ToBuf[0];
6225 
6226   // Add an explicit null.
6227   *ToPtr = 0;
6228   return *Map.insert(std::make_pair(
6229                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6230                                    (StringLength + 1) * 2),
6231                          nullptr)).first;
6232 }
6233 
6234 ConstantAddress
6235 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6236   unsigned StringLength = 0;
6237   bool isUTF16 = false;
6238   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6239       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6240                                getDataLayout().isLittleEndian(), isUTF16,
6241                                StringLength);
6242 
6243   if (auto *C = Entry.second)
6244     return ConstantAddress(
6245         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6246 
6247   const ASTContext &Context = getContext();
6248   const llvm::Triple &Triple = getTriple();
6249 
6250   const auto CFRuntime = getLangOpts().CFRuntime;
6251   const bool IsSwiftABI =
6252       static_cast<unsigned>(CFRuntime) >=
6253       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6254   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6255 
6256   // If we don't already have it, get __CFConstantStringClassReference.
6257   if (!CFConstantStringClassRef) {
6258     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6259     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6260     Ty = llvm::ArrayType::get(Ty, 0);
6261 
6262     switch (CFRuntime) {
6263     default: break;
6264     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6265     case LangOptions::CoreFoundationABI::Swift5_0:
6266       CFConstantStringClassName =
6267           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6268                               : "$s10Foundation19_NSCFConstantStringCN";
6269       Ty = IntPtrTy;
6270       break;
6271     case LangOptions::CoreFoundationABI::Swift4_2:
6272       CFConstantStringClassName =
6273           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6274                               : "$S10Foundation19_NSCFConstantStringCN";
6275       Ty = IntPtrTy;
6276       break;
6277     case LangOptions::CoreFoundationABI::Swift4_1:
6278       CFConstantStringClassName =
6279           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6280                               : "__T010Foundation19_NSCFConstantStringCN";
6281       Ty = IntPtrTy;
6282       break;
6283     }
6284 
6285     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6286 
6287     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6288       llvm::GlobalValue *GV = nullptr;
6289 
6290       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6291         IdentifierInfo &II = Context.Idents.get(GV->getName());
6292         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6293         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6294 
6295         const VarDecl *VD = nullptr;
6296         for (const auto *Result : DC->lookup(&II))
6297           if ((VD = dyn_cast<VarDecl>(Result)))
6298             break;
6299 
6300         if (Triple.isOSBinFormatELF()) {
6301           if (!VD)
6302             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6303         } else {
6304           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6305           if (!VD || !VD->hasAttr<DLLExportAttr>())
6306             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6307           else
6308             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6309         }
6310 
6311         setDSOLocal(GV);
6312       }
6313     }
6314 
6315     // Decay array -> ptr
6316     CFConstantStringClassRef =
6317         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6318   }
6319 
6320   QualType CFTy = Context.getCFConstantStringType();
6321 
6322   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6323 
6324   ConstantInitBuilder Builder(*this);
6325   auto Fields = Builder.beginStruct(STy);
6326 
6327   // Class pointer.
6328   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6329 
6330   // Flags.
6331   if (IsSwiftABI) {
6332     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6333     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6334   } else {
6335     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6336   }
6337 
6338   // String pointer.
6339   llvm::Constant *C = nullptr;
6340   if (isUTF16) {
6341     auto Arr = llvm::ArrayRef(
6342         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6343         Entry.first().size() / 2);
6344     C = llvm::ConstantDataArray::get(VMContext, Arr);
6345   } else {
6346     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6347   }
6348 
6349   // Note: -fwritable-strings doesn't make the backing store strings of
6350   // CFStrings writable.
6351   auto *GV =
6352       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6353                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6354   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6355   // Don't enforce the target's minimum global alignment, since the only use
6356   // of the string is via this class initializer.
6357   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6358                             : Context.getTypeAlignInChars(Context.CharTy);
6359   GV->setAlignment(Align.getAsAlign());
6360 
6361   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6362   // Without it LLVM can merge the string with a non unnamed_addr one during
6363   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6364   if (Triple.isOSBinFormatMachO())
6365     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6366                            : "__TEXT,__cstring,cstring_literals");
6367   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6368   // the static linker to adjust permissions to read-only later on.
6369   else if (Triple.isOSBinFormatELF())
6370     GV->setSection(".rodata");
6371 
6372   // String.
6373   Fields.add(GV);
6374 
6375   // String length.
6376   llvm::IntegerType *LengthTy =
6377       llvm::IntegerType::get(getModule().getContext(),
6378                              Context.getTargetInfo().getLongWidth());
6379   if (IsSwiftABI) {
6380     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6381         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6382       LengthTy = Int32Ty;
6383     else
6384       LengthTy = IntPtrTy;
6385   }
6386   Fields.addInt(LengthTy, StringLength);
6387 
6388   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6389   // properly aligned on 32-bit platforms.
6390   CharUnits Alignment =
6391       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6392 
6393   // The struct.
6394   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6395                                     /*isConstant=*/false,
6396                                     llvm::GlobalVariable::PrivateLinkage);
6397   GV->addAttribute("objc_arc_inert");
6398   switch (Triple.getObjectFormat()) {
6399   case llvm::Triple::UnknownObjectFormat:
6400     llvm_unreachable("unknown file format");
6401   case llvm::Triple::DXContainer:
6402   case llvm::Triple::GOFF:
6403   case llvm::Triple::SPIRV:
6404   case llvm::Triple::XCOFF:
6405     llvm_unreachable("unimplemented");
6406   case llvm::Triple::COFF:
6407   case llvm::Triple::ELF:
6408   case llvm::Triple::Wasm:
6409     GV->setSection("cfstring");
6410     break;
6411   case llvm::Triple::MachO:
6412     GV->setSection("__DATA,__cfstring");
6413     break;
6414   }
6415   Entry.second = GV;
6416 
6417   return ConstantAddress(GV, GV->getValueType(), Alignment);
6418 }
6419 
6420 bool CodeGenModule::getExpressionLocationsEnabled() const {
6421   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6422 }
6423 
6424 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6425   if (ObjCFastEnumerationStateType.isNull()) {
6426     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6427     D->startDefinition();
6428 
6429     QualType FieldTypes[] = {
6430         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6431         Context.getPointerType(Context.UnsignedLongTy),
6432         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6433                                      nullptr, ArraySizeModifier::Normal, 0)};
6434 
6435     for (size_t i = 0; i < 4; ++i) {
6436       FieldDecl *Field = FieldDecl::Create(Context,
6437                                            D,
6438                                            SourceLocation(),
6439                                            SourceLocation(), nullptr,
6440                                            FieldTypes[i], /*TInfo=*/nullptr,
6441                                            /*BitWidth=*/nullptr,
6442                                            /*Mutable=*/false,
6443                                            ICIS_NoInit);
6444       Field->setAccess(AS_public);
6445       D->addDecl(Field);
6446     }
6447 
6448     D->completeDefinition();
6449     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6450   }
6451 
6452   return ObjCFastEnumerationStateType;
6453 }
6454 
6455 llvm::Constant *
6456 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6457   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6458 
6459   // Don't emit it as the address of the string, emit the string data itself
6460   // as an inline array.
6461   if (E->getCharByteWidth() == 1) {
6462     SmallString<64> Str(E->getString());
6463 
6464     // Resize the string to the right size, which is indicated by its type.
6465     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6466     assert(CAT && "String literal not of constant array type!");
6467     Str.resize(CAT->getZExtSize());
6468     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6469   }
6470 
6471   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6472   llvm::Type *ElemTy = AType->getElementType();
6473   unsigned NumElements = AType->getNumElements();
6474 
6475   // Wide strings have either 2-byte or 4-byte elements.
6476   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6477     SmallVector<uint16_t, 32> Elements;
6478     Elements.reserve(NumElements);
6479 
6480     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6481       Elements.push_back(E->getCodeUnit(i));
6482     Elements.resize(NumElements);
6483     return llvm::ConstantDataArray::get(VMContext, Elements);
6484   }
6485 
6486   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6487   SmallVector<uint32_t, 32> Elements;
6488   Elements.reserve(NumElements);
6489 
6490   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6491     Elements.push_back(E->getCodeUnit(i));
6492   Elements.resize(NumElements);
6493   return llvm::ConstantDataArray::get(VMContext, Elements);
6494 }
6495 
6496 static llvm::GlobalVariable *
6497 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6498                       CodeGenModule &CGM, StringRef GlobalName,
6499                       CharUnits Alignment) {
6500   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6501       CGM.GetGlobalConstantAddressSpace());
6502 
6503   llvm::Module &M = CGM.getModule();
6504   // Create a global variable for this string
6505   auto *GV = new llvm::GlobalVariable(
6506       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6507       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6508   GV->setAlignment(Alignment.getAsAlign());
6509   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6510   if (GV->isWeakForLinker()) {
6511     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6512     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6513   }
6514   CGM.setDSOLocal(GV);
6515 
6516   return GV;
6517 }
6518 
6519 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6520 /// constant array for the given string literal.
6521 ConstantAddress
6522 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6523                                                   StringRef Name) {
6524   CharUnits Alignment =
6525       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6526 
6527   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6528   llvm::GlobalVariable **Entry = nullptr;
6529   if (!LangOpts.WritableStrings) {
6530     Entry = &ConstantStringMap[C];
6531     if (auto GV = *Entry) {
6532       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6533         GV->setAlignment(Alignment.getAsAlign());
6534       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6535                              GV->getValueType(), Alignment);
6536     }
6537   }
6538 
6539   SmallString<256> MangledNameBuffer;
6540   StringRef GlobalVariableName;
6541   llvm::GlobalValue::LinkageTypes LT;
6542 
6543   // Mangle the string literal if that's how the ABI merges duplicate strings.
6544   // Don't do it if they are writable, since we don't want writes in one TU to
6545   // affect strings in another.
6546   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6547       !LangOpts.WritableStrings) {
6548     llvm::raw_svector_ostream Out(MangledNameBuffer);
6549     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6550     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6551     GlobalVariableName = MangledNameBuffer;
6552   } else {
6553     LT = llvm::GlobalValue::PrivateLinkage;
6554     GlobalVariableName = Name;
6555   }
6556 
6557   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6558 
6559   CGDebugInfo *DI = getModuleDebugInfo();
6560   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6561     DI->AddStringLiteralDebugInfo(GV, S);
6562 
6563   if (Entry)
6564     *Entry = GV;
6565 
6566   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6567 
6568   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6569                          GV->getValueType(), Alignment);
6570 }
6571 
6572 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6573 /// array for the given ObjCEncodeExpr node.
6574 ConstantAddress
6575 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6576   std::string Str;
6577   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6578 
6579   return GetAddrOfConstantCString(Str);
6580 }
6581 
6582 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6583 /// the literal and a terminating '\0' character.
6584 /// The result has pointer to array type.
6585 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6586     const std::string &Str, const char *GlobalName) {
6587   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6588   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6589       getContext().CharTy, /*VD=*/nullptr);
6590 
6591   llvm::Constant *C =
6592       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6593 
6594   // Don't share any string literals if strings aren't constant.
6595   llvm::GlobalVariable **Entry = nullptr;
6596   if (!LangOpts.WritableStrings) {
6597     Entry = &ConstantStringMap[C];
6598     if (auto GV = *Entry) {
6599       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6600         GV->setAlignment(Alignment.getAsAlign());
6601       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6602                              GV->getValueType(), Alignment);
6603     }
6604   }
6605 
6606   // Get the default prefix if a name wasn't specified.
6607   if (!GlobalName)
6608     GlobalName = ".str";
6609   // Create a global variable for this.
6610   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6611                                   GlobalName, Alignment);
6612   if (Entry)
6613     *Entry = GV;
6614 
6615   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6616                          GV->getValueType(), Alignment);
6617 }
6618 
6619 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6620     const MaterializeTemporaryExpr *E, const Expr *Init) {
6621   assert((E->getStorageDuration() == SD_Static ||
6622           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6623   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6624 
6625   // If we're not materializing a subobject of the temporary, keep the
6626   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6627   QualType MaterializedType = Init->getType();
6628   if (Init == E->getSubExpr())
6629     MaterializedType = E->getType();
6630 
6631   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6632 
6633   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6634   if (!InsertResult.second) {
6635     // We've seen this before: either we already created it or we're in the
6636     // process of doing so.
6637     if (!InsertResult.first->second) {
6638       // We recursively re-entered this function, probably during emission of
6639       // the initializer. Create a placeholder. We'll clean this up in the
6640       // outer call, at the end of this function.
6641       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6642       InsertResult.first->second = new llvm::GlobalVariable(
6643           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6644           nullptr);
6645     }
6646     return ConstantAddress(InsertResult.first->second,
6647                            llvm::cast<llvm::GlobalVariable>(
6648                                InsertResult.first->second->stripPointerCasts())
6649                                ->getValueType(),
6650                            Align);
6651   }
6652 
6653   // FIXME: If an externally-visible declaration extends multiple temporaries,
6654   // we need to give each temporary the same name in every translation unit (and
6655   // we also need to make the temporaries externally-visible).
6656   SmallString<256> Name;
6657   llvm::raw_svector_ostream Out(Name);
6658   getCXXABI().getMangleContext().mangleReferenceTemporary(
6659       VD, E->getManglingNumber(), Out);
6660 
6661   APValue *Value = nullptr;
6662   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6663     // If the initializer of the extending declaration is a constant
6664     // initializer, we should have a cached constant initializer for this
6665     // temporary. Note that this might have a different value from the value
6666     // computed by evaluating the initializer if the surrounding constant
6667     // expression modifies the temporary.
6668     Value = E->getOrCreateValue(false);
6669   }
6670 
6671   // Try evaluating it now, it might have a constant initializer.
6672   Expr::EvalResult EvalResult;
6673   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6674       !EvalResult.hasSideEffects())
6675     Value = &EvalResult.Val;
6676 
6677   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6678 
6679   std::optional<ConstantEmitter> emitter;
6680   llvm::Constant *InitialValue = nullptr;
6681   bool Constant = false;
6682   llvm::Type *Type;
6683   if (Value) {
6684     // The temporary has a constant initializer, use it.
6685     emitter.emplace(*this);
6686     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6687                                                MaterializedType);
6688     Constant =
6689         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6690                                            /*ExcludeDtor*/ false);
6691     Type = InitialValue->getType();
6692   } else {
6693     // No initializer, the initialization will be provided when we
6694     // initialize the declaration which performed lifetime extension.
6695     Type = getTypes().ConvertTypeForMem(MaterializedType);
6696   }
6697 
6698   // Create a global variable for this lifetime-extended temporary.
6699   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6700   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6701     const VarDecl *InitVD;
6702     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6703         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6704       // Temporaries defined inside a class get linkonce_odr linkage because the
6705       // class can be defined in multiple translation units.
6706       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6707     } else {
6708       // There is no need for this temporary to have external linkage if the
6709       // VarDecl has external linkage.
6710       Linkage = llvm::GlobalVariable::InternalLinkage;
6711     }
6712   }
6713   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6714   auto *GV = new llvm::GlobalVariable(
6715       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6716       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6717   if (emitter) emitter->finalize(GV);
6718   // Don't assign dllimport or dllexport to local linkage globals.
6719   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6720     setGVProperties(GV, VD);
6721     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6722       // The reference temporary should never be dllexport.
6723       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6724   }
6725   GV->setAlignment(Align.getAsAlign());
6726   if (supportsCOMDAT() && GV->isWeakForLinker())
6727     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6728   if (VD->getTLSKind())
6729     setTLSMode(GV, *VD);
6730   llvm::Constant *CV = GV;
6731   if (AddrSpace != LangAS::Default)
6732     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6733         *this, GV, AddrSpace, LangAS::Default,
6734         llvm::PointerType::get(
6735             getLLVMContext(),
6736             getContext().getTargetAddressSpace(LangAS::Default)));
6737 
6738   // Update the map with the new temporary. If we created a placeholder above,
6739   // replace it with the new global now.
6740   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6741   if (Entry) {
6742     Entry->replaceAllUsesWith(CV);
6743     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6744   }
6745   Entry = CV;
6746 
6747   return ConstantAddress(CV, Type, Align);
6748 }
6749 
6750 /// EmitObjCPropertyImplementations - Emit information for synthesized
6751 /// properties for an implementation.
6752 void CodeGenModule::EmitObjCPropertyImplementations(const
6753                                                     ObjCImplementationDecl *D) {
6754   for (const auto *PID : D->property_impls()) {
6755     // Dynamic is just for type-checking.
6756     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6757       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6758 
6759       // Determine which methods need to be implemented, some may have
6760       // been overridden. Note that ::isPropertyAccessor is not the method
6761       // we want, that just indicates if the decl came from a
6762       // property. What we want to know is if the method is defined in
6763       // this implementation.
6764       auto *Getter = PID->getGetterMethodDecl();
6765       if (!Getter || Getter->isSynthesizedAccessorStub())
6766         CodeGenFunction(*this).GenerateObjCGetter(
6767             const_cast<ObjCImplementationDecl *>(D), PID);
6768       auto *Setter = PID->getSetterMethodDecl();
6769       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6770         CodeGenFunction(*this).GenerateObjCSetter(
6771                                  const_cast<ObjCImplementationDecl *>(D), PID);
6772     }
6773   }
6774 }
6775 
6776 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6777   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6778   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6779        ivar; ivar = ivar->getNextIvar())
6780     if (ivar->getType().isDestructedType())
6781       return true;
6782 
6783   return false;
6784 }
6785 
6786 static bool AllTrivialInitializers(CodeGenModule &CGM,
6787                                    ObjCImplementationDecl *D) {
6788   CodeGenFunction CGF(CGM);
6789   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6790        E = D->init_end(); B != E; ++B) {
6791     CXXCtorInitializer *CtorInitExp = *B;
6792     Expr *Init = CtorInitExp->getInit();
6793     if (!CGF.isTrivialInitializer(Init))
6794       return false;
6795   }
6796   return true;
6797 }
6798 
6799 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6800 /// for an implementation.
6801 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6802   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6803   if (needsDestructMethod(D)) {
6804     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6805     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6806     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6807         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6808         getContext().VoidTy, nullptr, D,
6809         /*isInstance=*/true, /*isVariadic=*/false,
6810         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6811         /*isImplicitlyDeclared=*/true,
6812         /*isDefined=*/false, ObjCImplementationControl::Required);
6813     D->addInstanceMethod(DTORMethod);
6814     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6815     D->setHasDestructors(true);
6816   }
6817 
6818   // If the implementation doesn't have any ivar initializers, we don't need
6819   // a .cxx_construct.
6820   if (D->getNumIvarInitializers() == 0 ||
6821       AllTrivialInitializers(*this, D))
6822     return;
6823 
6824   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6825   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6826   // The constructor returns 'self'.
6827   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6828       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6829       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6830       /*isVariadic=*/false,
6831       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6832       /*isImplicitlyDeclared=*/true,
6833       /*isDefined=*/false, ObjCImplementationControl::Required);
6834   D->addInstanceMethod(CTORMethod);
6835   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6836   D->setHasNonZeroConstructors(true);
6837 }
6838 
6839 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6840 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6841   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6842       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6843     ErrorUnsupported(LSD, "linkage spec");
6844     return;
6845   }
6846 
6847   EmitDeclContext(LSD);
6848 }
6849 
6850 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6851   // Device code should not be at top level.
6852   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6853     return;
6854 
6855   std::unique_ptr<CodeGenFunction> &CurCGF =
6856       GlobalTopLevelStmtBlockInFlight.first;
6857 
6858   // We emitted a top-level stmt but after it there is initialization.
6859   // Stop squashing the top-level stmts into a single function.
6860   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6861     CurCGF->FinishFunction(D->getEndLoc());
6862     CurCGF = nullptr;
6863   }
6864 
6865   if (!CurCGF) {
6866     // void __stmts__N(void)
6867     // FIXME: Ask the ABI name mangler to pick a name.
6868     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6869     FunctionArgList Args;
6870     QualType RetTy = getContext().VoidTy;
6871     const CGFunctionInfo &FnInfo =
6872         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6873     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6874     llvm::Function *Fn = llvm::Function::Create(
6875         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6876 
6877     CurCGF.reset(new CodeGenFunction(*this));
6878     GlobalTopLevelStmtBlockInFlight.second = D;
6879     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6880                           D->getBeginLoc(), D->getBeginLoc());
6881     CXXGlobalInits.push_back(Fn);
6882   }
6883 
6884   CurCGF->EmitStmt(D->getStmt());
6885 }
6886 
6887 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6888   for (auto *I : DC->decls()) {
6889     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6890     // are themselves considered "top-level", so EmitTopLevelDecl on an
6891     // ObjCImplDecl does not recursively visit them. We need to do that in
6892     // case they're nested inside another construct (LinkageSpecDecl /
6893     // ExportDecl) that does stop them from being considered "top-level".
6894     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6895       for (auto *M : OID->methods())
6896         EmitTopLevelDecl(M);
6897     }
6898 
6899     EmitTopLevelDecl(I);
6900   }
6901 }
6902 
6903 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6904 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6905   // Ignore dependent declarations.
6906   if (D->isTemplated())
6907     return;
6908 
6909   // Consteval function shouldn't be emitted.
6910   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6911     return;
6912 
6913   switch (D->getKind()) {
6914   case Decl::CXXConversion:
6915   case Decl::CXXMethod:
6916   case Decl::Function:
6917     EmitGlobal(cast<FunctionDecl>(D));
6918     // Always provide some coverage mapping
6919     // even for the functions that aren't emitted.
6920     AddDeferredUnusedCoverageMapping(D);
6921     break;
6922 
6923   case Decl::CXXDeductionGuide:
6924     // Function-like, but does not result in code emission.
6925     break;
6926 
6927   case Decl::Var:
6928   case Decl::Decomposition:
6929   case Decl::VarTemplateSpecialization:
6930     EmitGlobal(cast<VarDecl>(D));
6931     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6932       for (auto *B : DD->bindings())
6933         if (auto *HD = B->getHoldingVar())
6934           EmitGlobal(HD);
6935     break;
6936 
6937   // Indirect fields from global anonymous structs and unions can be
6938   // ignored; only the actual variable requires IR gen support.
6939   case Decl::IndirectField:
6940     break;
6941 
6942   // C++ Decls
6943   case Decl::Namespace:
6944     EmitDeclContext(cast<NamespaceDecl>(D));
6945     break;
6946   case Decl::ClassTemplateSpecialization: {
6947     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6948     if (CGDebugInfo *DI = getModuleDebugInfo())
6949       if (Spec->getSpecializationKind() ==
6950               TSK_ExplicitInstantiationDefinition &&
6951           Spec->hasDefinition())
6952         DI->completeTemplateDefinition(*Spec);
6953   } [[fallthrough]];
6954   case Decl::CXXRecord: {
6955     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6956     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6957       if (CRD->hasDefinition())
6958         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6959       if (auto *ES = D->getASTContext().getExternalSource())
6960         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6961           DI->completeUnusedClass(*CRD);
6962     }
6963     // Emit any static data members, they may be definitions.
6964     for (auto *I : CRD->decls())
6965       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6966         EmitTopLevelDecl(I);
6967     break;
6968   }
6969     // No code generation needed.
6970   case Decl::UsingShadow:
6971   case Decl::ClassTemplate:
6972   case Decl::VarTemplate:
6973   case Decl::Concept:
6974   case Decl::VarTemplatePartialSpecialization:
6975   case Decl::FunctionTemplate:
6976   case Decl::TypeAliasTemplate:
6977   case Decl::Block:
6978   case Decl::Empty:
6979   case Decl::Binding:
6980     break;
6981   case Decl::Using:          // using X; [C++]
6982     if (CGDebugInfo *DI = getModuleDebugInfo())
6983         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6984     break;
6985   case Decl::UsingEnum: // using enum X; [C++]
6986     if (CGDebugInfo *DI = getModuleDebugInfo())
6987       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6988     break;
6989   case Decl::NamespaceAlias:
6990     if (CGDebugInfo *DI = getModuleDebugInfo())
6991         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6992     break;
6993   case Decl::UsingDirective: // using namespace X; [C++]
6994     if (CGDebugInfo *DI = getModuleDebugInfo())
6995       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6996     break;
6997   case Decl::CXXConstructor:
6998     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6999     break;
7000   case Decl::CXXDestructor:
7001     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7002     break;
7003 
7004   case Decl::StaticAssert:
7005     // Nothing to do.
7006     break;
7007 
7008   // Objective-C Decls
7009 
7010   // Forward declarations, no (immediate) code generation.
7011   case Decl::ObjCInterface:
7012   case Decl::ObjCCategory:
7013     break;
7014 
7015   case Decl::ObjCProtocol: {
7016     auto *Proto = cast<ObjCProtocolDecl>(D);
7017     if (Proto->isThisDeclarationADefinition())
7018       ObjCRuntime->GenerateProtocol(Proto);
7019     break;
7020   }
7021 
7022   case Decl::ObjCCategoryImpl:
7023     // Categories have properties but don't support synthesize so we
7024     // can ignore them here.
7025     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7026     break;
7027 
7028   case Decl::ObjCImplementation: {
7029     auto *OMD = cast<ObjCImplementationDecl>(D);
7030     EmitObjCPropertyImplementations(OMD);
7031     EmitObjCIvarInitializations(OMD);
7032     ObjCRuntime->GenerateClass(OMD);
7033     // Emit global variable debug information.
7034     if (CGDebugInfo *DI = getModuleDebugInfo())
7035       if (getCodeGenOpts().hasReducedDebugInfo())
7036         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7037             OMD->getClassInterface()), OMD->getLocation());
7038     break;
7039   }
7040   case Decl::ObjCMethod: {
7041     auto *OMD = cast<ObjCMethodDecl>(D);
7042     // If this is not a prototype, emit the body.
7043     if (OMD->getBody())
7044       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7045     break;
7046   }
7047   case Decl::ObjCCompatibleAlias:
7048     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7049     break;
7050 
7051   case Decl::PragmaComment: {
7052     const auto *PCD = cast<PragmaCommentDecl>(D);
7053     switch (PCD->getCommentKind()) {
7054     case PCK_Unknown:
7055       llvm_unreachable("unexpected pragma comment kind");
7056     case PCK_Linker:
7057       AppendLinkerOptions(PCD->getArg());
7058       break;
7059     case PCK_Lib:
7060         AddDependentLib(PCD->getArg());
7061       break;
7062     case PCK_Compiler:
7063     case PCK_ExeStr:
7064     case PCK_User:
7065       break; // We ignore all of these.
7066     }
7067     break;
7068   }
7069 
7070   case Decl::PragmaDetectMismatch: {
7071     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7072     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7073     break;
7074   }
7075 
7076   case Decl::LinkageSpec:
7077     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7078     break;
7079 
7080   case Decl::FileScopeAsm: {
7081     // File-scope asm is ignored during device-side CUDA compilation.
7082     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7083       break;
7084     // File-scope asm is ignored during device-side OpenMP compilation.
7085     if (LangOpts.OpenMPIsTargetDevice)
7086       break;
7087     // File-scope asm is ignored during device-side SYCL compilation.
7088     if (LangOpts.SYCLIsDevice)
7089       break;
7090     auto *AD = cast<FileScopeAsmDecl>(D);
7091     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7092     break;
7093   }
7094 
7095   case Decl::TopLevelStmt:
7096     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7097     break;
7098 
7099   case Decl::Import: {
7100     auto *Import = cast<ImportDecl>(D);
7101 
7102     // If we've already imported this module, we're done.
7103     if (!ImportedModules.insert(Import->getImportedModule()))
7104       break;
7105 
7106     // Emit debug information for direct imports.
7107     if (!Import->getImportedOwningModule()) {
7108       if (CGDebugInfo *DI = getModuleDebugInfo())
7109         DI->EmitImportDecl(*Import);
7110     }
7111 
7112     // For C++ standard modules we are done - we will call the module
7113     // initializer for imported modules, and that will likewise call those for
7114     // any imports it has.
7115     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7116         !Import->getImportedOwningModule()->isModuleMapModule())
7117       break;
7118 
7119     // For clang C++ module map modules the initializers for sub-modules are
7120     // emitted here.
7121 
7122     // Find all of the submodules and emit the module initializers.
7123     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7124     SmallVector<clang::Module *, 16> Stack;
7125     Visited.insert(Import->getImportedModule());
7126     Stack.push_back(Import->getImportedModule());
7127 
7128     while (!Stack.empty()) {
7129       clang::Module *Mod = Stack.pop_back_val();
7130       if (!EmittedModuleInitializers.insert(Mod).second)
7131         continue;
7132 
7133       for (auto *D : Context.getModuleInitializers(Mod))
7134         EmitTopLevelDecl(D);
7135 
7136       // Visit the submodules of this module.
7137       for (auto *Submodule : Mod->submodules()) {
7138         // Skip explicit children; they need to be explicitly imported to emit
7139         // the initializers.
7140         if (Submodule->IsExplicit)
7141           continue;
7142 
7143         if (Visited.insert(Submodule).second)
7144           Stack.push_back(Submodule);
7145       }
7146     }
7147     break;
7148   }
7149 
7150   case Decl::Export:
7151     EmitDeclContext(cast<ExportDecl>(D));
7152     break;
7153 
7154   case Decl::OMPThreadPrivate:
7155     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7156     break;
7157 
7158   case Decl::OMPAllocate:
7159     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7160     break;
7161 
7162   case Decl::OMPDeclareReduction:
7163     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7164     break;
7165 
7166   case Decl::OMPDeclareMapper:
7167     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7168     break;
7169 
7170   case Decl::OMPRequires:
7171     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7172     break;
7173 
7174   case Decl::Typedef:
7175   case Decl::TypeAlias: // using foo = bar; [C++11]
7176     if (CGDebugInfo *DI = getModuleDebugInfo())
7177       DI->EmitAndRetainType(
7178           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7179     break;
7180 
7181   case Decl::Record:
7182     if (CGDebugInfo *DI = getModuleDebugInfo())
7183       if (cast<RecordDecl>(D)->getDefinition())
7184         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7185     break;
7186 
7187   case Decl::Enum:
7188     if (CGDebugInfo *DI = getModuleDebugInfo())
7189       if (cast<EnumDecl>(D)->getDefinition())
7190         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7191     break;
7192 
7193   case Decl::HLSLBuffer:
7194     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7195     break;
7196 
7197   default:
7198     // Make sure we handled everything we should, every other kind is a
7199     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7200     // function. Need to recode Decl::Kind to do that easily.
7201     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7202     break;
7203   }
7204 }
7205 
7206 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7207   // Do we need to generate coverage mapping?
7208   if (!CodeGenOpts.CoverageMapping)
7209     return;
7210   switch (D->getKind()) {
7211   case Decl::CXXConversion:
7212   case Decl::CXXMethod:
7213   case Decl::Function:
7214   case Decl::ObjCMethod:
7215   case Decl::CXXConstructor:
7216   case Decl::CXXDestructor: {
7217     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7218       break;
7219     SourceManager &SM = getContext().getSourceManager();
7220     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7221       break;
7222     if (!llvm::coverage::SystemHeadersCoverage &&
7223         SM.isInSystemHeader(D->getBeginLoc()))
7224       break;
7225     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7226     break;
7227   }
7228   default:
7229     break;
7230   };
7231 }
7232 
7233 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7234   // Do we need to generate coverage mapping?
7235   if (!CodeGenOpts.CoverageMapping)
7236     return;
7237   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7238     if (Fn->isTemplateInstantiation())
7239       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7240   }
7241   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7242 }
7243 
7244 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7245   // We call takeVector() here to avoid use-after-free.
7246   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7247   // we deserialize function bodies to emit coverage info for them, and that
7248   // deserializes more declarations. How should we handle that case?
7249   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7250     if (!Entry.second)
7251       continue;
7252     const Decl *D = Entry.first;
7253     switch (D->getKind()) {
7254     case Decl::CXXConversion:
7255     case Decl::CXXMethod:
7256     case Decl::Function:
7257     case Decl::ObjCMethod: {
7258       CodeGenPGO PGO(*this);
7259       GlobalDecl GD(cast<FunctionDecl>(D));
7260       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7261                                   getFunctionLinkage(GD));
7262       break;
7263     }
7264     case Decl::CXXConstructor: {
7265       CodeGenPGO PGO(*this);
7266       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7267       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7268                                   getFunctionLinkage(GD));
7269       break;
7270     }
7271     case Decl::CXXDestructor: {
7272       CodeGenPGO PGO(*this);
7273       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7274       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7275                                   getFunctionLinkage(GD));
7276       break;
7277     }
7278     default:
7279       break;
7280     };
7281   }
7282 }
7283 
7284 void CodeGenModule::EmitMainVoidAlias() {
7285   // In order to transition away from "__original_main" gracefully, emit an
7286   // alias for "main" in the no-argument case so that libc can detect when
7287   // new-style no-argument main is in used.
7288   if (llvm::Function *F = getModule().getFunction("main")) {
7289     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7290         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7291       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7292       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7293     }
7294   }
7295 }
7296 
7297 /// Turns the given pointer into a constant.
7298 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7299                                           const void *Ptr) {
7300   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7301   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7302   return llvm::ConstantInt::get(i64, PtrInt);
7303 }
7304 
7305 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7306                                    llvm::NamedMDNode *&GlobalMetadata,
7307                                    GlobalDecl D,
7308                                    llvm::GlobalValue *Addr) {
7309   if (!GlobalMetadata)
7310     GlobalMetadata =
7311       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7312 
7313   // TODO: should we report variant information for ctors/dtors?
7314   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7315                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7316                                CGM.getLLVMContext(), D.getDecl()))};
7317   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7318 }
7319 
7320 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7321                                                  llvm::GlobalValue *CppFunc) {
7322   // Store the list of ifuncs we need to replace uses in.
7323   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7324   // List of ConstantExprs that we should be able to delete when we're done
7325   // here.
7326   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7327 
7328   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7329   if (Elem == CppFunc)
7330     return false;
7331 
7332   // First make sure that all users of this are ifuncs (or ifuncs via a
7333   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7334   // later.
7335   for (llvm::User *User : Elem->users()) {
7336     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7337     // ifunc directly. In any other case, just give up, as we don't know what we
7338     // could break by changing those.
7339     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7340       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7341         return false;
7342 
7343       for (llvm::User *CEUser : ConstExpr->users()) {
7344         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7345           IFuncs.push_back(IFunc);
7346         } else {
7347           return false;
7348         }
7349       }
7350       CEs.push_back(ConstExpr);
7351     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7352       IFuncs.push_back(IFunc);
7353     } else {
7354       // This user is one we don't know how to handle, so fail redirection. This
7355       // will result in an ifunc retaining a resolver name that will ultimately
7356       // fail to be resolved to a defined function.
7357       return false;
7358     }
7359   }
7360 
7361   // Now we know this is a valid case where we can do this alias replacement, we
7362   // need to remove all of the references to Elem (and the bitcasts!) so we can
7363   // delete it.
7364   for (llvm::GlobalIFunc *IFunc : IFuncs)
7365     IFunc->setResolver(nullptr);
7366   for (llvm::ConstantExpr *ConstExpr : CEs)
7367     ConstExpr->destroyConstant();
7368 
7369   // We should now be out of uses for the 'old' version of this function, so we
7370   // can erase it as well.
7371   Elem->eraseFromParent();
7372 
7373   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7374     // The type of the resolver is always just a function-type that returns the
7375     // type of the IFunc, so create that here. If the type of the actual
7376     // resolver doesn't match, it just gets bitcast to the right thing.
7377     auto *ResolverTy =
7378         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7379     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7380         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7381     IFunc->setResolver(Resolver);
7382   }
7383   return true;
7384 }
7385 
7386 /// For each function which is declared within an extern "C" region and marked
7387 /// as 'used', but has internal linkage, create an alias from the unmangled
7388 /// name to the mangled name if possible. People expect to be able to refer
7389 /// to such functions with an unmangled name from inline assembly within the
7390 /// same translation unit.
7391 void CodeGenModule::EmitStaticExternCAliases() {
7392   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7393     return;
7394   for (auto &I : StaticExternCValues) {
7395     const IdentifierInfo *Name = I.first;
7396     llvm::GlobalValue *Val = I.second;
7397 
7398     // If Val is null, that implies there were multiple declarations that each
7399     // had a claim to the unmangled name. In this case, generation of the alias
7400     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7401     if (!Val)
7402       break;
7403 
7404     llvm::GlobalValue *ExistingElem =
7405         getModule().getNamedValue(Name->getName());
7406 
7407     // If there is either not something already by this name, or we were able to
7408     // replace all uses from IFuncs, create the alias.
7409     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7410       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7411   }
7412 }
7413 
7414 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7415                                              GlobalDecl &Result) const {
7416   auto Res = Manglings.find(MangledName);
7417   if (Res == Manglings.end())
7418     return false;
7419   Result = Res->getValue();
7420   return true;
7421 }
7422 
7423 /// Emits metadata nodes associating all the global values in the
7424 /// current module with the Decls they came from.  This is useful for
7425 /// projects using IR gen as a subroutine.
7426 ///
7427 /// Since there's currently no way to associate an MDNode directly
7428 /// with an llvm::GlobalValue, we create a global named metadata
7429 /// with the name 'clang.global.decl.ptrs'.
7430 void CodeGenModule::EmitDeclMetadata() {
7431   llvm::NamedMDNode *GlobalMetadata = nullptr;
7432 
7433   for (auto &I : MangledDeclNames) {
7434     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7435     // Some mangled names don't necessarily have an associated GlobalValue
7436     // in this module, e.g. if we mangled it for DebugInfo.
7437     if (Addr)
7438       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7439   }
7440 }
7441 
7442 /// Emits metadata nodes for all the local variables in the current
7443 /// function.
7444 void CodeGenFunction::EmitDeclMetadata() {
7445   if (LocalDeclMap.empty()) return;
7446 
7447   llvm::LLVMContext &Context = getLLVMContext();
7448 
7449   // Find the unique metadata ID for this name.
7450   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7451 
7452   llvm::NamedMDNode *GlobalMetadata = nullptr;
7453 
7454   for (auto &I : LocalDeclMap) {
7455     const Decl *D = I.first;
7456     llvm::Value *Addr = I.second.emitRawPointer(*this);
7457     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7458       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7459       Alloca->setMetadata(
7460           DeclPtrKind, llvm::MDNode::get(
7461                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7462     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7463       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7464       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7465     }
7466   }
7467 }
7468 
7469 void CodeGenModule::EmitVersionIdentMetadata() {
7470   llvm::NamedMDNode *IdentMetadata =
7471     TheModule.getOrInsertNamedMetadata("llvm.ident");
7472   std::string Version = getClangFullVersion();
7473   llvm::LLVMContext &Ctx = TheModule.getContext();
7474 
7475   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7476   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7477 }
7478 
7479 void CodeGenModule::EmitCommandLineMetadata() {
7480   llvm::NamedMDNode *CommandLineMetadata =
7481     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7482   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7483   llvm::LLVMContext &Ctx = TheModule.getContext();
7484 
7485   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7486   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7487 }
7488 
7489 void CodeGenModule::EmitCoverageFile() {
7490   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7491   if (!CUNode)
7492     return;
7493 
7494   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7495   llvm::LLVMContext &Ctx = TheModule.getContext();
7496   auto *CoverageDataFile =
7497       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7498   auto *CoverageNotesFile =
7499       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7500   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7501     llvm::MDNode *CU = CUNode->getOperand(i);
7502     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7503     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7504   }
7505 }
7506 
7507 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7508                                                        bool ForEH) {
7509   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7510   // FIXME: should we even be calling this method if RTTI is disabled
7511   // and it's not for EH?
7512   if (!shouldEmitRTTI(ForEH))
7513     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7514 
7515   if (ForEH && Ty->isObjCObjectPointerType() &&
7516       LangOpts.ObjCRuntime.isGNUFamily())
7517     return ObjCRuntime->GetEHType(Ty);
7518 
7519   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7520 }
7521 
7522 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7523   // Do not emit threadprivates in simd-only mode.
7524   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7525     return;
7526   for (auto RefExpr : D->varlist()) {
7527     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7528     bool PerformInit =
7529         VD->getAnyInitializer() &&
7530         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7531                                                         /*ForRef=*/false);
7532 
7533     Address Addr(GetAddrOfGlobalVar(VD),
7534                  getTypes().ConvertTypeForMem(VD->getType()),
7535                  getContext().getDeclAlign(VD));
7536     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7537             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7538       CXXGlobalInits.push_back(InitFunction);
7539   }
7540 }
7541 
7542 llvm::Metadata *
7543 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7544                                             StringRef Suffix) {
7545   if (auto *FnType = T->getAs<FunctionProtoType>())
7546     T = getContext().getFunctionType(
7547         FnType->getReturnType(), FnType->getParamTypes(),
7548         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7549 
7550   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7551   if (InternalId)
7552     return InternalId;
7553 
7554   if (isExternallyVisible(T->getLinkage())) {
7555     std::string OutName;
7556     llvm::raw_string_ostream Out(OutName);
7557     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7558         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7559 
7560     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7561       Out << ".normalized";
7562 
7563     Out << Suffix;
7564 
7565     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7566   } else {
7567     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7568                                            llvm::ArrayRef<llvm::Metadata *>());
7569   }
7570 
7571   return InternalId;
7572 }
7573 
7574 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7575   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7576 }
7577 
7578 llvm::Metadata *
7579 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7580   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7581 }
7582 
7583 // Generalize pointer types to a void pointer with the qualifiers of the
7584 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7585 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7586 // 'void *'.
7587 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7588   if (!Ty->isPointerType())
7589     return Ty;
7590 
7591   return Ctx.getPointerType(
7592       QualType(Ctx.VoidTy).withCVRQualifiers(
7593           Ty->getPointeeType().getCVRQualifiers()));
7594 }
7595 
7596 // Apply type generalization to a FunctionType's return and argument types
7597 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7598   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7599     SmallVector<QualType, 8> GeneralizedParams;
7600     for (auto &Param : FnType->param_types())
7601       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7602 
7603     return Ctx.getFunctionType(
7604         GeneralizeType(Ctx, FnType->getReturnType()),
7605         GeneralizedParams, FnType->getExtProtoInfo());
7606   }
7607 
7608   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7609     return Ctx.getFunctionNoProtoType(
7610         GeneralizeType(Ctx, FnType->getReturnType()));
7611 
7612   llvm_unreachable("Encountered unknown FunctionType");
7613 }
7614 
7615 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7616   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7617                                       GeneralizedMetadataIdMap, ".generalized");
7618 }
7619 
7620 /// Returns whether this module needs the "all-vtables" type identifier.
7621 bool CodeGenModule::NeedAllVtablesTypeId() const {
7622   // Returns true if at least one of vtable-based CFI checkers is enabled and
7623   // is not in the trapping mode.
7624   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7625            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7626           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7627            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7628           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7629            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7630           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7631            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7632 }
7633 
7634 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7635                                           CharUnits Offset,
7636                                           const CXXRecordDecl *RD) {
7637   llvm::Metadata *MD =
7638       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7639   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7640 
7641   if (CodeGenOpts.SanitizeCfiCrossDso)
7642     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7643       VTable->addTypeMetadata(Offset.getQuantity(),
7644                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7645 
7646   if (NeedAllVtablesTypeId()) {
7647     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7648     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7649   }
7650 }
7651 
7652 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7653   if (!SanStats)
7654     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7655 
7656   return *SanStats;
7657 }
7658 
7659 llvm::Value *
7660 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7661                                                   CodeGenFunction &CGF) {
7662   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7663   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7664   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7665   auto *Call = CGF.EmitRuntimeCall(
7666       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7667   return Call;
7668 }
7669 
7670 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7671     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7672   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7673                                  /* forPointeeType= */ true);
7674 }
7675 
7676 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7677                                                  LValueBaseInfo *BaseInfo,
7678                                                  TBAAAccessInfo *TBAAInfo,
7679                                                  bool forPointeeType) {
7680   if (TBAAInfo)
7681     *TBAAInfo = getTBAAAccessInfo(T);
7682 
7683   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7684   // that doesn't return the information we need to compute BaseInfo.
7685 
7686   // Honor alignment typedef attributes even on incomplete types.
7687   // We also honor them straight for C++ class types, even as pointees;
7688   // there's an expressivity gap here.
7689   if (auto TT = T->getAs<TypedefType>()) {
7690     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7691       if (BaseInfo)
7692         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7693       return getContext().toCharUnitsFromBits(Align);
7694     }
7695   }
7696 
7697   bool AlignForArray = T->isArrayType();
7698 
7699   // Analyze the base element type, so we don't get confused by incomplete
7700   // array types.
7701   T = getContext().getBaseElementType(T);
7702 
7703   if (T->isIncompleteType()) {
7704     // We could try to replicate the logic from
7705     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7706     // type is incomplete, so it's impossible to test. We could try to reuse
7707     // getTypeAlignIfKnown, but that doesn't return the information we need
7708     // to set BaseInfo.  So just ignore the possibility that the alignment is
7709     // greater than one.
7710     if (BaseInfo)
7711       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7712     return CharUnits::One();
7713   }
7714 
7715   if (BaseInfo)
7716     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7717 
7718   CharUnits Alignment;
7719   const CXXRecordDecl *RD;
7720   if (T.getQualifiers().hasUnaligned()) {
7721     Alignment = CharUnits::One();
7722   } else if (forPointeeType && !AlignForArray &&
7723              (RD = T->getAsCXXRecordDecl())) {
7724     // For C++ class pointees, we don't know whether we're pointing at a
7725     // base or a complete object, so we generally need to use the
7726     // non-virtual alignment.
7727     Alignment = getClassPointerAlignment(RD);
7728   } else {
7729     Alignment = getContext().getTypeAlignInChars(T);
7730   }
7731 
7732   // Cap to the global maximum type alignment unless the alignment
7733   // was somehow explicit on the type.
7734   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7735     if (Alignment.getQuantity() > MaxAlign &&
7736         !getContext().isAlignmentRequired(T))
7737       Alignment = CharUnits::fromQuantity(MaxAlign);
7738   }
7739   return Alignment;
7740 }
7741 
7742 bool CodeGenModule::stopAutoInit() {
7743   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7744   if (StopAfter) {
7745     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7746     // used
7747     if (NumAutoVarInit >= StopAfter) {
7748       return true;
7749     }
7750     if (!NumAutoVarInit) {
7751       unsigned DiagID = getDiags().getCustomDiagID(
7752           DiagnosticsEngine::Warning,
7753           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7754           "number of times ftrivial-auto-var-init=%1 gets applied.");
7755       getDiags().Report(DiagID)
7756           << StopAfter
7757           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7758                       LangOptions::TrivialAutoVarInitKind::Zero
7759                   ? "zero"
7760                   : "pattern");
7761     }
7762     ++NumAutoVarInit;
7763   }
7764   return false;
7765 }
7766 
7767 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7768                                                     const Decl *D) const {
7769   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7770   // postfix beginning with '.' since the symbol name can be demangled.
7771   if (LangOpts.HIP)
7772     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7773   else
7774     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7775 
7776   // If the CUID is not specified we try to generate a unique postfix.
7777   if (getLangOpts().CUID.empty()) {
7778     SourceManager &SM = getContext().getSourceManager();
7779     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7780     assert(PLoc.isValid() && "Source location is expected to be valid.");
7781 
7782     // Get the hash of the user defined macros.
7783     llvm::MD5 Hash;
7784     llvm::MD5::MD5Result Result;
7785     for (const auto &Arg : PreprocessorOpts.Macros)
7786       Hash.update(Arg.first);
7787     Hash.final(Result);
7788 
7789     // Get the UniqueID for the file containing the decl.
7790     llvm::sys::fs::UniqueID ID;
7791     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7792       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7793       assert(PLoc.isValid() && "Source location is expected to be valid.");
7794       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7795         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7796             << PLoc.getFilename() << EC.message();
7797     }
7798     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7799        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7800   } else {
7801     OS << getContext().getCUIDHash();
7802   }
7803 }
7804 
7805 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7806   assert(DeferredDeclsToEmit.empty() &&
7807          "Should have emitted all decls deferred to emit.");
7808   assert(NewBuilder->DeferredDecls.empty() &&
7809          "Newly created module should not have deferred decls");
7810   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7811   assert(EmittedDeferredDecls.empty() &&
7812          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7813 
7814   assert(NewBuilder->DeferredVTables.empty() &&
7815          "Newly created module should not have deferred vtables");
7816   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7817 
7818   assert(NewBuilder->MangledDeclNames.empty() &&
7819          "Newly created module should not have mangled decl names");
7820   assert(NewBuilder->Manglings.empty() &&
7821          "Newly created module should not have manglings");
7822   NewBuilder->Manglings = std::move(Manglings);
7823 
7824   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7825 
7826   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7827 }
7828