xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9bb7f1518e74164b125267270351b6bb56fbe13f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr),
91       SanitizerBlacklist(
92           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
93       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
94                                           : LangOpts.Sanitize) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (SanOpts.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 }
152 
153 CodeGenModule::~CodeGenModule() {
154   delete ObjCRuntime;
155   delete OpenCLRuntime;
156   delete OpenMPRuntime;
157   delete CUDARuntime;
158   delete TheTargetCodeGenInfo;
159   delete TBAA;
160   delete DebugInfo;
161   delete ARCData;
162   delete RRData;
163 }
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime = CreateGNUObjCRuntime(*this);
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178     ObjCRuntime = CreateMacObjCRuntime(*this);
179     return;
180   }
181   llvm_unreachable("bad runtime kind");
182 }
183 
184 void CodeGenModule::createOpenCLRuntime() {
185   OpenCLRuntime = new CGOpenCLRuntime(*this);
186 }
187 
188 void CodeGenModule::createOpenMPRuntime() {
189   OpenMPRuntime = new CGOpenMPRuntime(*this);
190 }
191 
192 void CodeGenModule::createCUDARuntime() {
193   CUDARuntime = CreateNVCUDARuntime(*this);
194 }
195 
196 void CodeGenModule::applyReplacements() {
197   for (ReplacementsTy::iterator I = Replacements.begin(),
198                                 E = Replacements.end();
199        I != E; ++I) {
200     StringRef MangledName = I->first();
201     llvm::Constant *Replacement = I->second;
202     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
203     if (!Entry)
204       continue;
205     auto *OldF = cast<llvm::Function>(Entry);
206     auto *NewF = dyn_cast<llvm::Function>(Replacement);
207     if (!NewF) {
208       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
209         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
210       } else {
211         auto *CE = cast<llvm::ConstantExpr>(Replacement);
212         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
213                CE->getOpcode() == llvm::Instruction::GetElementPtr);
214         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
215       }
216     }
217 
218     // Replace old with new, but keep the old order.
219     OldF->replaceAllUsesWith(Replacement);
220     if (NewF) {
221       NewF->removeFromParent();
222       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
223     }
224     OldF->eraseFromParent();
225   }
226 }
227 
228 // This is only used in aliases that we created and we know they have a
229 // linear structure.
230 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
231   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
232   const llvm::Constant *C = &GA;
233   for (;;) {
234     C = C->stripPointerCasts();
235     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
236       return GO;
237     // stripPointerCasts will not walk over weak aliases.
238     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
239     if (!GA2)
240       return nullptr;
241     if (!Visited.insert(GA2))
242       return nullptr;
243     C = GA2->getAliasee();
244   }
245 }
246 
247 void CodeGenModule::checkAliases() {
248   // Check if the constructed aliases are well formed. It is really unfortunate
249   // that we have to do this in CodeGen, but we only construct mangled names
250   // and aliases during codegen.
251   bool Error = false;
252   DiagnosticsEngine &Diags = getDiags();
253   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
254          E = Aliases.end(); I != E; ++I) {
255     const GlobalDecl &GD = *I;
256     const auto *D = cast<ValueDecl>(GD.getDecl());
257     const AliasAttr *AA = D->getAttr<AliasAttr>();
258     StringRef MangledName = getMangledName(GD);
259     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
260     auto *Alias = cast<llvm::GlobalAlias>(Entry);
261     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
262     if (!GV) {
263       Error = true;
264       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
265     } else if (GV->isDeclaration()) {
266       Error = true;
267       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
268     }
269 
270     llvm::Constant *Aliasee = Alias->getAliasee();
271     llvm::GlobalValue *AliaseeGV;
272     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
273       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
274     else
275       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
276 
277     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
278       StringRef AliasSection = SA->getName();
279       if (AliasSection != AliaseeGV->getSection())
280         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
281             << AliasSection;
282     }
283 
284     // We have to handle alias to weak aliases in here. LLVM itself disallows
285     // this since the object semantics would not match the IL one. For
286     // compatibility with gcc we implement it by just pointing the alias
287     // to its aliasee's aliasee. We also warn, since the user is probably
288     // expecting the link to be weak.
289     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
290       if (GA->mayBeOverridden()) {
291         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
292             << GV->getName() << GA->getName();
293         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
294             GA->getAliasee(), Alias->getType());
295         Alias->setAliasee(Aliasee);
296       }
297     }
298   }
299   if (!Error)
300     return;
301 
302   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
303          E = Aliases.end(); I != E; ++I) {
304     const GlobalDecl &GD = *I;
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias = cast<llvm::GlobalAlias>(Entry);
308     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
309     Alias->eraseFromParent();
310   }
311 }
312 
313 void CodeGenModule::clear() {
314   DeferredDeclsToEmit.clear();
315 }
316 
317 void CodeGenModule::Release() {
318   EmitDeferred();
319   applyReplacements();
320   checkAliases();
321   EmitCXXGlobalInitFunc();
322   EmitCXXGlobalDtorFunc();
323   EmitCXXThreadLocalInitFunc();
324   if (ObjCRuntime)
325     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
326       AddGlobalCtor(ObjCInitFunction);
327   if (getCodeGenOpts().ProfileInstrGenerate)
328     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
329       AddGlobalCtor(PGOInit, 0);
330   if (PGOReader && PGOStats.isOutOfDate())
331     getDiags().Report(diag::warn_profile_data_out_of_date)
332         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
333   EmitCtorList(GlobalCtors, "llvm.global_ctors");
334   EmitCtorList(GlobalDtors, "llvm.global_dtors");
335   EmitGlobalAnnotations();
336   EmitStaticExternCAliases();
337   emitLLVMUsed();
338 
339   if (CodeGenOpts.Autolink &&
340       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
341     EmitModuleLinkOptions();
342   }
343   if (CodeGenOpts.DwarfVersion)
344     // We actually want the latest version when there are conflicts.
345     // We can change from Warning to Latest if such mode is supported.
346     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
347                               CodeGenOpts.DwarfVersion);
348   if (DebugInfo)
349     // We support a single version in the linked module. The LLVM
350     // parser will drop debug info with a different version number
351     // (and warn about it, too).
352     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
353                               llvm::DEBUG_METADATA_VERSION);
354 
355   // We need to record the widths of enums and wchar_t, so that we can generate
356   // the correct build attributes in the ARM backend.
357   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
358   if (   Arch == llvm::Triple::arm
359       || Arch == llvm::Triple::armeb
360       || Arch == llvm::Triple::thumb
361       || Arch == llvm::Triple::thumbeb) {
362     // Width of wchar_t in bytes
363     uint64_t WCharWidth =
364         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
365     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
366 
367     // The minimum width of an enum in bytes
368     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
369     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
370   }
371 
372   SimplifyPersonality();
373 
374   if (getCodeGenOpts().EmitDeclMetadata)
375     EmitDeclMetadata();
376 
377   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
378     EmitCoverageFile();
379 
380   if (DebugInfo)
381     DebugInfo->finalize();
382 
383   EmitVersionIdentMetadata();
384 }
385 
386 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
387   // Make sure that this type is translated.
388   Types.UpdateCompletedType(TD);
389 }
390 
391 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
392   if (!TBAA)
393     return nullptr;
394   return TBAA->getTBAAInfo(QTy);
395 }
396 
397 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
398   if (!TBAA)
399     return nullptr;
400   return TBAA->getTBAAInfoForVTablePtr();
401 }
402 
403 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
404   if (!TBAA)
405     return nullptr;
406   return TBAA->getTBAAStructInfo(QTy);
407 }
408 
409 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
410   if (!TBAA)
411     return nullptr;
412   return TBAA->getTBAAStructTypeInfo(QTy);
413 }
414 
415 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
416                                                   llvm::MDNode *AccessN,
417                                                   uint64_t O) {
418   if (!TBAA)
419     return nullptr;
420   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
421 }
422 
423 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
424 /// and struct-path aware TBAA, the tag has the same format:
425 /// base type, access type and offset.
426 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
427 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
428                                         llvm::MDNode *TBAAInfo,
429                                         bool ConvertTypeToTag) {
430   if (ConvertTypeToTag && TBAA)
431     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
432                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
433   else
434     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
435 }
436 
437 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
438   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
439   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
440 }
441 
442 /// ErrorUnsupported - Print out an error that codegen doesn't support the
443 /// specified stmt yet.
444 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
445   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
446                                                "cannot compile this %0 yet");
447   std::string Msg = Type;
448   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
449     << Msg << S->getSourceRange();
450 }
451 
452 /// ErrorUnsupported - Print out an error that codegen doesn't support the
453 /// specified decl yet.
454 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
455   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
456                                                "cannot compile this %0 yet");
457   std::string Msg = Type;
458   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
459 }
460 
461 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
462   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
463 }
464 
465 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
466                                         const NamedDecl *D) const {
467   // Internal definitions always have default visibility.
468   if (GV->hasLocalLinkage()) {
469     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
470     return;
471   }
472 
473   // Set visibility for definitions.
474   LinkageInfo LV = D->getLinkageAndVisibility();
475   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
476     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
477 }
478 
479 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
480   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
481       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
482       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
483       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
484       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
485 }
486 
487 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
488     CodeGenOptions::TLSModel M) {
489   switch (M) {
490   case CodeGenOptions::GeneralDynamicTLSModel:
491     return llvm::GlobalVariable::GeneralDynamicTLSModel;
492   case CodeGenOptions::LocalDynamicTLSModel:
493     return llvm::GlobalVariable::LocalDynamicTLSModel;
494   case CodeGenOptions::InitialExecTLSModel:
495     return llvm::GlobalVariable::InitialExecTLSModel;
496   case CodeGenOptions::LocalExecTLSModel:
497     return llvm::GlobalVariable::LocalExecTLSModel;
498   }
499   llvm_unreachable("Invalid TLS model!");
500 }
501 
502 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
503                                const VarDecl &D) const {
504   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
505 
506   llvm::GlobalVariable::ThreadLocalMode TLM;
507   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
508 
509   // Override the TLS model if it is explicitly specified.
510   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
511     TLM = GetLLVMTLSModel(Attr->getModel());
512   }
513 
514   GV->setThreadLocalMode(TLM);
515 }
516 
517 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
518   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
519   if (!FoundStr.empty())
520     return FoundStr;
521 
522   const auto *ND = cast<NamedDecl>(GD.getDecl());
523   SmallString<256> Buffer;
524   StringRef Str;
525   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
526     llvm::raw_svector_ostream Out(Buffer);
527     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
528       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
529     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
530       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
531     else
532       getCXXABI().getMangleContext().mangleName(ND, Out);
533     Str = Out.str();
534   } else {
535     IdentifierInfo *II = ND->getIdentifier();
536     assert(II && "Attempt to mangle unnamed decl.");
537     Str = II->getName();
538   }
539 
540   auto &Mangled = Manglings.GetOrCreateValue(Str);
541   Mangled.second = GD;
542   return FoundStr = Mangled.first();
543 }
544 
545 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
546                                              const BlockDecl *BD) {
547   MangleContext &MangleCtx = getCXXABI().getMangleContext();
548   const Decl *D = GD.getDecl();
549 
550   SmallString<256> Buffer;
551   llvm::raw_svector_ostream Out(Buffer);
552   if (!D)
553     MangleCtx.mangleGlobalBlock(BD,
554       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
555   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
556     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
557   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
558     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
559   else
560     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
561 
562   auto &Mangled = Manglings.GetOrCreateValue(Out.str());
563   Mangled.second = BD;
564   return Mangled.first();
565 }
566 
567 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
568   return getModule().getNamedValue(Name);
569 }
570 
571 /// AddGlobalCtor - Add a function to the list that will be called before
572 /// main() runs.
573 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
574                                   llvm::Constant *AssociatedData) {
575   // FIXME: Type coercion of void()* types.
576   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
577 }
578 
579 /// AddGlobalDtor - Add a function to the list that will be called
580 /// when the module is unloaded.
581 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
582   // FIXME: Type coercion of void()* types.
583   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
584 }
585 
586 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
587   // Ctor function type is void()*.
588   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
589   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
590 
591   // Get the type of a ctor entry, { i32, void ()*, i8* }.
592   llvm::StructType *CtorStructTy = llvm::StructType::get(
593       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
594 
595   // Construct the constructor and destructor arrays.
596   SmallVector<llvm::Constant*, 8> Ctors;
597   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
598     llvm::Constant *S[] = {
599       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
600       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
601       (I->AssociatedData
602            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
603            : llvm::Constant::getNullValue(VoidPtrTy))
604     };
605     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
606   }
607 
608   if (!Ctors.empty()) {
609     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
610     new llvm::GlobalVariable(TheModule, AT, false,
611                              llvm::GlobalValue::AppendingLinkage,
612                              llvm::ConstantArray::get(AT, Ctors),
613                              GlobalName);
614   }
615 }
616 
617 llvm::GlobalValue::LinkageTypes
618 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
619   const auto *D = cast<FunctionDecl>(GD.getDecl());
620 
621   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
622 
623   if (isa<CXXDestructorDecl>(D) &&
624       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
625                                          GD.getDtorType())) {
626     // Destructor variants in the Microsoft C++ ABI are always internal or
627     // linkonce_odr thunks emitted on an as-needed basis.
628     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
629                                    : llvm::GlobalValue::LinkOnceODRLinkage;
630   }
631 
632   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
633 }
634 
635 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
636                                                     llvm::Function *F) {
637   setNonAliasAttributes(D, F);
638 }
639 
640 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
641                                               const CGFunctionInfo &Info,
642                                               llvm::Function *F) {
643   unsigned CallingConv;
644   AttributeListType AttributeList;
645   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
646   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
647   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
648 }
649 
650 /// Determines whether the language options require us to model
651 /// unwind exceptions.  We treat -fexceptions as mandating this
652 /// except under the fragile ObjC ABI with only ObjC exceptions
653 /// enabled.  This means, for example, that C with -fexceptions
654 /// enables this.
655 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
656   // If exceptions are completely disabled, obviously this is false.
657   if (!LangOpts.Exceptions) return false;
658 
659   // If C++ exceptions are enabled, this is true.
660   if (LangOpts.CXXExceptions) return true;
661 
662   // If ObjC exceptions are enabled, this depends on the ABI.
663   if (LangOpts.ObjCExceptions) {
664     return LangOpts.ObjCRuntime.hasUnwindExceptions();
665   }
666 
667   return true;
668 }
669 
670 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
671                                                            llvm::Function *F) {
672   llvm::AttrBuilder B;
673 
674   if (CodeGenOpts.UnwindTables)
675     B.addAttribute(llvm::Attribute::UWTable);
676 
677   if (!hasUnwindExceptions(LangOpts))
678     B.addAttribute(llvm::Attribute::NoUnwind);
679 
680   if (D->hasAttr<NakedAttr>()) {
681     // Naked implies noinline: we should not be inlining such functions.
682     B.addAttribute(llvm::Attribute::Naked);
683     B.addAttribute(llvm::Attribute::NoInline);
684   } else if (D->hasAttr<OptimizeNoneAttr>()) {
685     // OptimizeNone implies noinline; we should not be inlining such functions.
686     B.addAttribute(llvm::Attribute::OptimizeNone);
687     B.addAttribute(llvm::Attribute::NoInline);
688   } else if (D->hasAttr<NoDuplicateAttr>()) {
689     B.addAttribute(llvm::Attribute::NoDuplicate);
690   } else if (D->hasAttr<NoInlineAttr>()) {
691     B.addAttribute(llvm::Attribute::NoInline);
692   } else if (D->hasAttr<AlwaysInlineAttr>() &&
693              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
694                                               llvm::Attribute::NoInline)) {
695     // (noinline wins over always_inline, and we can't specify both in IR)
696     B.addAttribute(llvm::Attribute::AlwaysInline);
697   }
698 
699   if (D->hasAttr<ColdAttr>()) {
700     B.addAttribute(llvm::Attribute::OptimizeForSize);
701     B.addAttribute(llvm::Attribute::Cold);
702   }
703 
704   if (D->hasAttr<MinSizeAttr>())
705     B.addAttribute(llvm::Attribute::MinSize);
706 
707   if (D->hasAttr<OptimizeNoneAttr>()) {
708     // OptimizeNone wins over OptimizeForSize and MinSize.
709     B.removeAttribute(llvm::Attribute::OptimizeForSize);
710     B.removeAttribute(llvm::Attribute::MinSize);
711   }
712 
713   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
714     B.addAttribute(llvm::Attribute::StackProtect);
715   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
716     B.addAttribute(llvm::Attribute::StackProtectStrong);
717   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
718     B.addAttribute(llvm::Attribute::StackProtectReq);
719 
720   // Add sanitizer attributes if function is not blacklisted.
721   if (!SanitizerBlacklist->isIn(*F)) {
722     // When AddressSanitizer is enabled, set SanitizeAddress attribute
723     // unless __attribute__((no_sanitize_address)) is used.
724     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
725       B.addAttribute(llvm::Attribute::SanitizeAddress);
726     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
727     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
728       B.addAttribute(llvm::Attribute::SanitizeThread);
729     }
730     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
731     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
732       B.addAttribute(llvm::Attribute::SanitizeMemory);
733   }
734 
735   F->addAttributes(llvm::AttributeSet::FunctionIndex,
736                    llvm::AttributeSet::get(
737                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
738 
739   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
740     F->setUnnamedAddr(true);
741   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
742     if (MD->isVirtual())
743       F->setUnnamedAddr(true);
744 
745   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
746   if (alignment)
747     F->setAlignment(alignment);
748 
749   // C++ ABI requires 2-byte alignment for member functions.
750   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
751     F->setAlignment(2);
752 }
753 
754 void CodeGenModule::SetCommonAttributes(const Decl *D,
755                                         llvm::GlobalValue *GV) {
756   if (const auto *ND = dyn_cast<NamedDecl>(D))
757     setGlobalVisibility(GV, ND);
758   else
759     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
760 
761   if (D->hasAttr<UsedAttr>())
762     addUsedGlobal(GV);
763 }
764 
765 void CodeGenModule::setNonAliasAttributes(const Decl *D,
766                                           llvm::GlobalObject *GO) {
767   SetCommonAttributes(D, GO);
768 
769   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
770     GO->setSection(SA->getName());
771 
772   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
773 }
774 
775 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
776                                                   llvm::Function *F,
777                                                   const CGFunctionInfo &FI) {
778   SetLLVMFunctionAttributes(D, FI, F);
779   SetLLVMFunctionAttributesForDefinition(D, F);
780 
781   F->setLinkage(llvm::Function::InternalLinkage);
782 
783   setNonAliasAttributes(D, F);
784 }
785 
786 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
787                                          const NamedDecl *ND) {
788   // Set linkage and visibility in case we never see a definition.
789   LinkageInfo LV = ND->getLinkageAndVisibility();
790   if (LV.getLinkage() != ExternalLinkage) {
791     // Don't set internal linkage on declarations.
792   } else {
793     if (ND->hasAttr<DLLImportAttr>()) {
794       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
795       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
796     } else if (ND->hasAttr<DLLExportAttr>()) {
797       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
798       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
799     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
800       // "extern_weak" is overloaded in LLVM; we probably should have
801       // separate linkage types for this.
802       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
803     }
804 
805     // Set visibility on a declaration only if it's explicit.
806     if (LV.isVisibilityExplicit())
807       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
808   }
809 }
810 
811 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
812                                           llvm::Function *F,
813                                           bool IsIncompleteFunction) {
814   if (unsigned IID = F->getIntrinsicID()) {
815     // If this is an intrinsic function, set the function's attributes
816     // to the intrinsic's attributes.
817     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
818                                                     (llvm::Intrinsic::ID)IID));
819     return;
820   }
821 
822   const auto *FD = cast<FunctionDecl>(GD.getDecl());
823 
824   if (!IsIncompleteFunction)
825     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
826 
827   // Add the Returned attribute for "this", except for iOS 5 and earlier
828   // where substantial code, including the libstdc++ dylib, was compiled with
829   // GCC and does not actually return "this".
830   if (getCXXABI().HasThisReturn(GD) &&
831       !(getTarget().getTriple().isiOS() &&
832         getTarget().getTriple().isOSVersionLT(6))) {
833     assert(!F->arg_empty() &&
834            F->arg_begin()->getType()
835              ->canLosslesslyBitCastTo(F->getReturnType()) &&
836            "unexpected this return");
837     F->addAttribute(1, llvm::Attribute::Returned);
838   }
839 
840   // Only a few attributes are set on declarations; these may later be
841   // overridden by a definition.
842 
843   setLinkageAndVisibilityForGV(F, FD);
844 
845   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
846     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
847       // Don't dllexport/import destructor thunks.
848       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
849     }
850   }
851 
852   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
853     F->setSection(SA->getName());
854 
855   // A replaceable global allocation function does not act like a builtin by
856   // default, only if it is invoked by a new-expression or delete-expression.
857   if (FD->isReplaceableGlobalAllocationFunction())
858     F->addAttribute(llvm::AttributeSet::FunctionIndex,
859                     llvm::Attribute::NoBuiltin);
860 }
861 
862 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
863   assert(!GV->isDeclaration() &&
864          "Only globals with definition can force usage.");
865   LLVMUsed.push_back(GV);
866 }
867 
868 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
869   assert(!GV->isDeclaration() &&
870          "Only globals with definition can force usage.");
871   LLVMCompilerUsed.push_back(GV);
872 }
873 
874 static void emitUsed(CodeGenModule &CGM, StringRef Name,
875                      std::vector<llvm::WeakVH> &List) {
876   // Don't create llvm.used if there is no need.
877   if (List.empty())
878     return;
879 
880   // Convert List to what ConstantArray needs.
881   SmallVector<llvm::Constant*, 8> UsedArray;
882   UsedArray.resize(List.size());
883   for (unsigned i = 0, e = List.size(); i != e; ++i) {
884     UsedArray[i] =
885      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
886                                     CGM.Int8PtrTy);
887   }
888 
889   if (UsedArray.empty())
890     return;
891   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
892 
893   auto *GV = new llvm::GlobalVariable(
894       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
895       llvm::ConstantArray::get(ATy, UsedArray), Name);
896 
897   GV->setSection("llvm.metadata");
898 }
899 
900 void CodeGenModule::emitLLVMUsed() {
901   emitUsed(*this, "llvm.used", LLVMUsed);
902   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
903 }
904 
905 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
906   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
907   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
908 }
909 
910 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
911   llvm::SmallString<32> Opt;
912   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
913   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
914   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
915 }
916 
917 void CodeGenModule::AddDependentLib(StringRef Lib) {
918   llvm::SmallString<24> Opt;
919   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
920   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
921   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
922 }
923 
924 /// \brief Add link options implied by the given module, including modules
925 /// it depends on, using a postorder walk.
926 static void addLinkOptionsPostorder(CodeGenModule &CGM,
927                                     Module *Mod,
928                                     SmallVectorImpl<llvm::Value *> &Metadata,
929                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
930   // Import this module's parent.
931   if (Mod->Parent && Visited.insert(Mod->Parent)) {
932     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
933   }
934 
935   // Import this module's dependencies.
936   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
937     if (Visited.insert(Mod->Imports[I-1]))
938       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
939   }
940 
941   // Add linker options to link against the libraries/frameworks
942   // described by this module.
943   llvm::LLVMContext &Context = CGM.getLLVMContext();
944   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
945     // Link against a framework.  Frameworks are currently Darwin only, so we
946     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
947     if (Mod->LinkLibraries[I-1].IsFramework) {
948       llvm::Value *Args[2] = {
949         llvm::MDString::get(Context, "-framework"),
950         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
951       };
952 
953       Metadata.push_back(llvm::MDNode::get(Context, Args));
954       continue;
955     }
956 
957     // Link against a library.
958     llvm::SmallString<24> Opt;
959     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
960       Mod->LinkLibraries[I-1].Library, Opt);
961     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
962     Metadata.push_back(llvm::MDNode::get(Context, OptString));
963   }
964 }
965 
966 void CodeGenModule::EmitModuleLinkOptions() {
967   // Collect the set of all of the modules we want to visit to emit link
968   // options, which is essentially the imported modules and all of their
969   // non-explicit child modules.
970   llvm::SetVector<clang::Module *> LinkModules;
971   llvm::SmallPtrSet<clang::Module *, 16> Visited;
972   SmallVector<clang::Module *, 16> Stack;
973 
974   // Seed the stack with imported modules.
975   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
976                                                MEnd = ImportedModules.end();
977        M != MEnd; ++M) {
978     if (Visited.insert(*M))
979       Stack.push_back(*M);
980   }
981 
982   // Find all of the modules to import, making a little effort to prune
983   // non-leaf modules.
984   while (!Stack.empty()) {
985     clang::Module *Mod = Stack.pop_back_val();
986 
987     bool AnyChildren = false;
988 
989     // Visit the submodules of this module.
990     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
991                                         SubEnd = Mod->submodule_end();
992          Sub != SubEnd; ++Sub) {
993       // Skip explicit children; they need to be explicitly imported to be
994       // linked against.
995       if ((*Sub)->IsExplicit)
996         continue;
997 
998       if (Visited.insert(*Sub)) {
999         Stack.push_back(*Sub);
1000         AnyChildren = true;
1001       }
1002     }
1003 
1004     // We didn't find any children, so add this module to the list of
1005     // modules to link against.
1006     if (!AnyChildren) {
1007       LinkModules.insert(Mod);
1008     }
1009   }
1010 
1011   // Add link options for all of the imported modules in reverse topological
1012   // order.  We don't do anything to try to order import link flags with respect
1013   // to linker options inserted by things like #pragma comment().
1014   SmallVector<llvm::Value *, 16> MetadataArgs;
1015   Visited.clear();
1016   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1017                                                MEnd = LinkModules.end();
1018        M != MEnd; ++M) {
1019     if (Visited.insert(*M))
1020       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1021   }
1022   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1023   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1024 
1025   // Add the linker options metadata flag.
1026   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1027                             llvm::MDNode::get(getLLVMContext(),
1028                                               LinkerOptionsMetadata));
1029 }
1030 
1031 void CodeGenModule::EmitDeferred() {
1032   // Emit code for any potentially referenced deferred decls.  Since a
1033   // previously unused static decl may become used during the generation of code
1034   // for a static function, iterate until no changes are made.
1035 
1036   while (true) {
1037     if (!DeferredVTables.empty()) {
1038       EmitDeferredVTables();
1039 
1040       // Emitting a v-table doesn't directly cause more v-tables to
1041       // become deferred, although it can cause functions to be
1042       // emitted that then need those v-tables.
1043       assert(DeferredVTables.empty());
1044     }
1045 
1046     // Stop if we're out of both deferred v-tables and deferred declarations.
1047     if (DeferredDeclsToEmit.empty()) break;
1048 
1049     DeferredGlobal &G = DeferredDeclsToEmit.back();
1050     GlobalDecl D = G.GD;
1051     llvm::GlobalValue *GV = G.GV;
1052     DeferredDeclsToEmit.pop_back();
1053 
1054     assert(GV == GetGlobalValue(getMangledName(D)));
1055     // Check to see if we've already emitted this.  This is necessary
1056     // for a couple of reasons: first, decls can end up in the
1057     // deferred-decls queue multiple times, and second, decls can end
1058     // up with definitions in unusual ways (e.g. by an extern inline
1059     // function acquiring a strong function redefinition).  Just
1060     // ignore these cases.
1061     if(!GV->isDeclaration())
1062       continue;
1063 
1064     // Otherwise, emit the definition and move on to the next one.
1065     EmitGlobalDefinition(D, GV);
1066   }
1067 }
1068 
1069 void CodeGenModule::EmitGlobalAnnotations() {
1070   if (Annotations.empty())
1071     return;
1072 
1073   // Create a new global variable for the ConstantStruct in the Module.
1074   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1075     Annotations[0]->getType(), Annotations.size()), Annotations);
1076   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1077                                       llvm::GlobalValue::AppendingLinkage,
1078                                       Array, "llvm.global.annotations");
1079   gv->setSection(AnnotationSection);
1080 }
1081 
1082 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1083   llvm::Constant *&AStr = AnnotationStrings[Str];
1084   if (AStr)
1085     return AStr;
1086 
1087   // Not found yet, create a new global.
1088   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1089   auto *gv =
1090       new llvm::GlobalVariable(getModule(), s->getType(), true,
1091                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1092   gv->setSection(AnnotationSection);
1093   gv->setUnnamedAddr(true);
1094   AStr = gv;
1095   return gv;
1096 }
1097 
1098 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1099   SourceManager &SM = getContext().getSourceManager();
1100   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1101   if (PLoc.isValid())
1102     return EmitAnnotationString(PLoc.getFilename());
1103   return EmitAnnotationString(SM.getBufferName(Loc));
1104 }
1105 
1106 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1107   SourceManager &SM = getContext().getSourceManager();
1108   PresumedLoc PLoc = SM.getPresumedLoc(L);
1109   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1110     SM.getExpansionLineNumber(L);
1111   return llvm::ConstantInt::get(Int32Ty, LineNo);
1112 }
1113 
1114 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1115                                                 const AnnotateAttr *AA,
1116                                                 SourceLocation L) {
1117   // Get the globals for file name, annotation, and the line number.
1118   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1119                  *UnitGV = EmitAnnotationUnit(L),
1120                  *LineNoCst = EmitAnnotationLineNo(L);
1121 
1122   // Create the ConstantStruct for the global annotation.
1123   llvm::Constant *Fields[4] = {
1124     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1125     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1126     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1127     LineNoCst
1128   };
1129   return llvm::ConstantStruct::getAnon(Fields);
1130 }
1131 
1132 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1133                                          llvm::GlobalValue *GV) {
1134   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1135   // Get the struct elements for these annotations.
1136   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1137     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1138 }
1139 
1140 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1141   // Never defer when EmitAllDecls is specified.
1142   if (LangOpts.EmitAllDecls)
1143     return false;
1144 
1145   return !getContext().DeclMustBeEmitted(Global);
1146 }
1147 
1148 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1149     const CXXUuidofExpr* E) {
1150   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1151   // well-formed.
1152   StringRef Uuid = E->getUuidAsStringRef(Context);
1153   std::string Name = "_GUID_" + Uuid.lower();
1154   std::replace(Name.begin(), Name.end(), '-', '_');
1155 
1156   // Look for an existing global.
1157   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1158     return GV;
1159 
1160   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1161   assert(Init && "failed to initialize as constant");
1162 
1163   auto *GV = new llvm::GlobalVariable(
1164       getModule(), Init->getType(),
1165       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1166   return GV;
1167 }
1168 
1169 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1170   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1171   assert(AA && "No alias?");
1172 
1173   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1174 
1175   // See if there is already something with the target's name in the module.
1176   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1177   if (Entry) {
1178     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1179     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1180   }
1181 
1182   llvm::Constant *Aliasee;
1183   if (isa<llvm::FunctionType>(DeclTy))
1184     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1185                                       GlobalDecl(cast<FunctionDecl>(VD)),
1186                                       /*ForVTable=*/false);
1187   else
1188     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1189                                     llvm::PointerType::getUnqual(DeclTy),
1190                                     nullptr);
1191 
1192   auto *F = cast<llvm::GlobalValue>(Aliasee);
1193   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1194   WeakRefReferences.insert(F);
1195 
1196   return Aliasee;
1197 }
1198 
1199 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1200   const auto *Global = cast<ValueDecl>(GD.getDecl());
1201 
1202   // Weak references don't produce any output by themselves.
1203   if (Global->hasAttr<WeakRefAttr>())
1204     return;
1205 
1206   // If this is an alias definition (which otherwise looks like a declaration)
1207   // emit it now.
1208   if (Global->hasAttr<AliasAttr>())
1209     return EmitAliasDefinition(GD);
1210 
1211   // If this is CUDA, be selective about which declarations we emit.
1212   if (LangOpts.CUDA) {
1213     if (CodeGenOpts.CUDAIsDevice) {
1214       if (!Global->hasAttr<CUDADeviceAttr>() &&
1215           !Global->hasAttr<CUDAGlobalAttr>() &&
1216           !Global->hasAttr<CUDAConstantAttr>() &&
1217           !Global->hasAttr<CUDASharedAttr>())
1218         return;
1219     } else {
1220       if (!Global->hasAttr<CUDAHostAttr>() && (
1221             Global->hasAttr<CUDADeviceAttr>() ||
1222             Global->hasAttr<CUDAConstantAttr>() ||
1223             Global->hasAttr<CUDASharedAttr>()))
1224         return;
1225     }
1226   }
1227 
1228   // Ignore declarations, they will be emitted on their first use.
1229   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1230     // Forward declarations are emitted lazily on first use.
1231     if (!FD->doesThisDeclarationHaveABody()) {
1232       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1233         return;
1234 
1235       StringRef MangledName = getMangledName(GD);
1236 
1237       // Compute the function info and LLVM type.
1238       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1239       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1240 
1241       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1242                               /*DontDefer=*/false);
1243       return;
1244     }
1245   } else {
1246     const auto *VD = cast<VarDecl>(Global);
1247     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1248 
1249     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1250       return;
1251   }
1252 
1253   // Defer code generation when possible if this is a static definition, inline
1254   // function etc.  These we only want to emit if they are used.
1255   if (!MayDeferGeneration(Global)) {
1256     // Emit the definition if it can't be deferred.
1257     EmitGlobalDefinition(GD);
1258     return;
1259   }
1260 
1261   // If we're deferring emission of a C++ variable with an
1262   // initializer, remember the order in which it appeared in the file.
1263   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1264       cast<VarDecl>(Global)->hasInit()) {
1265     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1266     CXXGlobalInits.push_back(nullptr);
1267   }
1268 
1269   // If the value has already been used, add it directly to the
1270   // DeferredDeclsToEmit list.
1271   StringRef MangledName = getMangledName(GD);
1272   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1273     addDeferredDeclToEmit(GV, GD);
1274   else {
1275     // Otherwise, remember that we saw a deferred decl with this name.  The
1276     // first use of the mangled name will cause it to move into
1277     // DeferredDeclsToEmit.
1278     DeferredDecls[MangledName] = GD;
1279   }
1280 }
1281 
1282 namespace {
1283   struct FunctionIsDirectlyRecursive :
1284     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1285     const StringRef Name;
1286     const Builtin::Context &BI;
1287     bool Result;
1288     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1289       Name(N), BI(C), Result(false) {
1290     }
1291     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1292 
1293     bool TraverseCallExpr(CallExpr *E) {
1294       const FunctionDecl *FD = E->getDirectCallee();
1295       if (!FD)
1296         return true;
1297       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1298       if (Attr && Name == Attr->getLabel()) {
1299         Result = true;
1300         return false;
1301       }
1302       unsigned BuiltinID = FD->getBuiltinID();
1303       if (!BuiltinID)
1304         return true;
1305       StringRef BuiltinName = BI.GetName(BuiltinID);
1306       if (BuiltinName.startswith("__builtin_") &&
1307           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1308         Result = true;
1309         return false;
1310       }
1311       return true;
1312     }
1313   };
1314 }
1315 
1316 // isTriviallyRecursive - Check if this function calls another
1317 // decl that, because of the asm attribute or the other decl being a builtin,
1318 // ends up pointing to itself.
1319 bool
1320 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1321   StringRef Name;
1322   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1323     // asm labels are a special kind of mangling we have to support.
1324     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1325     if (!Attr)
1326       return false;
1327     Name = Attr->getLabel();
1328   } else {
1329     Name = FD->getName();
1330   }
1331 
1332   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1333   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1334   return Walker.Result;
1335 }
1336 
1337 bool
1338 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1339   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1340     return true;
1341   const auto *F = cast<FunctionDecl>(GD.getDecl());
1342   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1343     return false;
1344   // PR9614. Avoid cases where the source code is lying to us. An available
1345   // externally function should have an equivalent function somewhere else,
1346   // but a function that calls itself is clearly not equivalent to the real
1347   // implementation.
1348   // This happens in glibc's btowc and in some configure checks.
1349   return !isTriviallyRecursive(F);
1350 }
1351 
1352 /// If the type for the method's class was generated by
1353 /// CGDebugInfo::createContextChain(), the cache contains only a
1354 /// limited DIType without any declarations. Since EmitFunctionStart()
1355 /// needs to find the canonical declaration for each method, we need
1356 /// to construct the complete type prior to emitting the method.
1357 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1358   if (!D->isInstance())
1359     return;
1360 
1361   if (CGDebugInfo *DI = getModuleDebugInfo())
1362     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1363       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1364       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1365     }
1366 }
1367 
1368 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1369   const auto *D = cast<ValueDecl>(GD.getDecl());
1370 
1371   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1372                                  Context.getSourceManager(),
1373                                  "Generating code for declaration");
1374 
1375   if (isa<FunctionDecl>(D)) {
1376     // At -O0, don't generate IR for functions with available_externally
1377     // linkage.
1378     if (!shouldEmitFunction(GD))
1379       return;
1380 
1381     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1382       CompleteDIClassType(Method);
1383       // Make sure to emit the definition(s) before we emit the thunks.
1384       // This is necessary for the generation of certain thunks.
1385       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1386         EmitCXXConstructor(CD, GD.getCtorType());
1387       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1388         EmitCXXDestructor(DD, GD.getDtorType());
1389       else
1390         EmitGlobalFunctionDefinition(GD, GV);
1391 
1392       if (Method->isVirtual())
1393         getVTables().EmitThunks(GD);
1394 
1395       return;
1396     }
1397 
1398     return EmitGlobalFunctionDefinition(GD, GV);
1399   }
1400 
1401   if (const auto *VD = dyn_cast<VarDecl>(D))
1402     return EmitGlobalVarDefinition(VD);
1403 
1404   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1405 }
1406 
1407 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1408 /// module, create and return an llvm Function with the specified type. If there
1409 /// is something in the module with the specified name, return it potentially
1410 /// bitcasted to the right type.
1411 ///
1412 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1413 /// to set the attributes on the function when it is first created.
1414 llvm::Constant *
1415 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1416                                        llvm::Type *Ty,
1417                                        GlobalDecl GD, bool ForVTable,
1418                                        bool DontDefer,
1419                                        llvm::AttributeSet ExtraAttrs) {
1420   const Decl *D = GD.getDecl();
1421 
1422   // Lookup the entry, lazily creating it if necessary.
1423   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1424   if (Entry) {
1425     if (WeakRefReferences.erase(Entry)) {
1426       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1427       if (FD && !FD->hasAttr<WeakAttr>())
1428         Entry->setLinkage(llvm::Function::ExternalLinkage);
1429     }
1430 
1431     if (Entry->getType()->getElementType() == Ty)
1432       return Entry;
1433 
1434     // Make sure the result is of the correct type.
1435     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1436   }
1437 
1438   // This function doesn't have a complete type (for example, the return
1439   // type is an incomplete struct). Use a fake type instead, and make
1440   // sure not to try to set attributes.
1441   bool IsIncompleteFunction = false;
1442 
1443   llvm::FunctionType *FTy;
1444   if (isa<llvm::FunctionType>(Ty)) {
1445     FTy = cast<llvm::FunctionType>(Ty);
1446   } else {
1447     FTy = llvm::FunctionType::get(VoidTy, false);
1448     IsIncompleteFunction = true;
1449   }
1450 
1451   llvm::Function *F = llvm::Function::Create(FTy,
1452                                              llvm::Function::ExternalLinkage,
1453                                              MangledName, &getModule());
1454   assert(F->getName() == MangledName && "name was uniqued!");
1455   if (D)
1456     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1457   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1458     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1459     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1460                      llvm::AttributeSet::get(VMContext,
1461                                              llvm::AttributeSet::FunctionIndex,
1462                                              B));
1463   }
1464 
1465   if (!DontDefer) {
1466     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1467     // each other bottoming out with the base dtor.  Therefore we emit non-base
1468     // dtors on usage, even if there is no dtor definition in the TU.
1469     if (D && isa<CXXDestructorDecl>(D) &&
1470         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1471                                            GD.getDtorType()))
1472       addDeferredDeclToEmit(F, GD);
1473 
1474     // This is the first use or definition of a mangled name.  If there is a
1475     // deferred decl with this name, remember that we need to emit it at the end
1476     // of the file.
1477     auto DDI = DeferredDecls.find(MangledName);
1478     if (DDI != DeferredDecls.end()) {
1479       // Move the potentially referenced deferred decl to the
1480       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1481       // don't need it anymore).
1482       addDeferredDeclToEmit(F, DDI->second);
1483       DeferredDecls.erase(DDI);
1484 
1485       // Otherwise, if this is a sized deallocation function, emit a weak
1486       // definition
1487       // for it at the end of the translation unit.
1488     } else if (D && cast<FunctionDecl>(D)
1489                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1490       addDeferredDeclToEmit(F, GD);
1491 
1492       // Otherwise, there are cases we have to worry about where we're
1493       // using a declaration for which we must emit a definition but where
1494       // we might not find a top-level definition:
1495       //   - member functions defined inline in their classes
1496       //   - friend functions defined inline in some class
1497       //   - special member functions with implicit definitions
1498       // If we ever change our AST traversal to walk into class methods,
1499       // this will be unnecessary.
1500       //
1501       // We also don't emit a definition for a function if it's going to be an
1502       // entry
1503       // in a vtable, unless it's already marked as used.
1504     } else if (getLangOpts().CPlusPlus && D) {
1505       // Look for a declaration that's lexically in a record.
1506       const auto *FD = cast<FunctionDecl>(D);
1507       FD = FD->getMostRecentDecl();
1508       do {
1509         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1510           if (FD->isImplicit() && !ForVTable) {
1511             assert(FD->isUsed() &&
1512                    "Sema didn't mark implicit function as used!");
1513             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1514             break;
1515           } else if (FD->doesThisDeclarationHaveABody()) {
1516             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1517             break;
1518           }
1519         }
1520         FD = FD->getPreviousDecl();
1521       } while (FD);
1522     }
1523   }
1524 
1525   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1526 
1527   // Make sure the result is of the requested type.
1528   if (!IsIncompleteFunction) {
1529     assert(F->getType()->getElementType() == Ty);
1530     return F;
1531   }
1532 
1533   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1534   return llvm::ConstantExpr::getBitCast(F, PTy);
1535 }
1536 
1537 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1538 /// non-null, then this function will use the specified type if it has to
1539 /// create it (this occurs when we see a definition of the function).
1540 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1541                                                  llvm::Type *Ty,
1542                                                  bool ForVTable,
1543                                                  bool DontDefer) {
1544   // If there was no specific requested type, just convert it now.
1545   if (!Ty)
1546     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1547 
1548   StringRef MangledName = getMangledName(GD);
1549   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1550 }
1551 
1552 /// CreateRuntimeFunction - Create a new runtime function with the specified
1553 /// type and name.
1554 llvm::Constant *
1555 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1556                                      StringRef Name,
1557                                      llvm::AttributeSet ExtraAttrs) {
1558   llvm::Constant *C =
1559       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1560                               /*DontDefer=*/false, ExtraAttrs);
1561   if (auto *F = dyn_cast<llvm::Function>(C))
1562     if (F->empty())
1563       F->setCallingConv(getRuntimeCC());
1564   return C;
1565 }
1566 
1567 /// isTypeConstant - Determine whether an object of this type can be emitted
1568 /// as a constant.
1569 ///
1570 /// If ExcludeCtor is true, the duration when the object's constructor runs
1571 /// will not be considered. The caller will need to verify that the object is
1572 /// not written to during its construction.
1573 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1574   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1575     return false;
1576 
1577   if (Context.getLangOpts().CPlusPlus) {
1578     if (const CXXRecordDecl *Record
1579           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1580       return ExcludeCtor && !Record->hasMutableFields() &&
1581              Record->hasTrivialDestructor();
1582   }
1583 
1584   return true;
1585 }
1586 
1587 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1588   if (!VD->isStaticDataMember())
1589     return false;
1590   const VarDecl *InitDecl;
1591   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1592   if (!InitExpr)
1593     return false;
1594   if (InitDecl->isThisDeclarationADefinition())
1595     return false;
1596   return true;
1597 }
1598 
1599 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1600 /// create and return an llvm GlobalVariable with the specified type.  If there
1601 /// is something in the module with the specified name, return it potentially
1602 /// bitcasted to the right type.
1603 ///
1604 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1605 /// to set the attributes on the global when it is first created.
1606 llvm::Constant *
1607 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1608                                      llvm::PointerType *Ty,
1609                                      const VarDecl *D) {
1610   // Lookup the entry, lazily creating it if necessary.
1611   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1612   if (Entry) {
1613     if (WeakRefReferences.erase(Entry)) {
1614       if (D && !D->hasAttr<WeakAttr>())
1615         Entry->setLinkage(llvm::Function::ExternalLinkage);
1616     }
1617 
1618     if (Entry->getType() == Ty)
1619       return Entry;
1620 
1621     // Make sure the result is of the correct type.
1622     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1623       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1624 
1625     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1626   }
1627 
1628   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1629   auto *GV = new llvm::GlobalVariable(
1630       getModule(), Ty->getElementType(), false,
1631       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1632       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1633 
1634   // This is the first use or definition of a mangled name.  If there is a
1635   // deferred decl with this name, remember that we need to emit it at the end
1636   // of the file.
1637   auto DDI = DeferredDecls.find(MangledName);
1638   if (DDI != DeferredDecls.end()) {
1639     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1640     // list, and remove it from DeferredDecls (since we don't need it anymore).
1641     addDeferredDeclToEmit(GV, DDI->second);
1642     DeferredDecls.erase(DDI);
1643   }
1644 
1645   // Handle things which are present even on external declarations.
1646   if (D) {
1647     // FIXME: This code is overly simple and should be merged with other global
1648     // handling.
1649     GV->setConstant(isTypeConstant(D->getType(), false));
1650 
1651     setLinkageAndVisibilityForGV(GV, D);
1652 
1653     if (D->getTLSKind()) {
1654       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1655         CXXThreadLocals.push_back(std::make_pair(D, GV));
1656       setTLSMode(GV, *D);
1657     }
1658 
1659     // If required by the ABI, treat declarations of static data members with
1660     // inline initializers as definitions.
1661     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1662         isVarDeclInlineInitializedStaticDataMember(D))
1663       EmitGlobalVarDefinition(D);
1664 
1665     // Handle XCore specific ABI requirements.
1666     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1667         D->getLanguageLinkage() == CLanguageLinkage &&
1668         D->getType().isConstant(Context) &&
1669         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1670       GV->setSection(".cp.rodata");
1671   }
1672 
1673   if (AddrSpace != Ty->getAddressSpace())
1674     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1675 
1676   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1677 
1678   return GV;
1679 }
1680 
1681 
1682 llvm::GlobalVariable *
1683 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1684                                       llvm::Type *Ty,
1685                                       llvm::GlobalValue::LinkageTypes Linkage) {
1686   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1687   llvm::GlobalVariable *OldGV = nullptr;
1688 
1689   if (GV) {
1690     // Check if the variable has the right type.
1691     if (GV->getType()->getElementType() == Ty)
1692       return GV;
1693 
1694     // Because C++ name mangling, the only way we can end up with an already
1695     // existing global with the same name is if it has been declared extern "C".
1696     assert(GV->isDeclaration() && "Declaration has wrong type!");
1697     OldGV = GV;
1698   }
1699 
1700   // Create a new variable.
1701   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1702                                 Linkage, nullptr, Name);
1703 
1704   if (OldGV) {
1705     // Replace occurrences of the old variable if needed.
1706     GV->takeName(OldGV);
1707 
1708     if (!OldGV->use_empty()) {
1709       llvm::Constant *NewPtrForOldDecl =
1710       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1711       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1712     }
1713 
1714     OldGV->eraseFromParent();
1715   }
1716 
1717   return GV;
1718 }
1719 
1720 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1721 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1722 /// then it will be created with the specified type instead of whatever the
1723 /// normal requested type would be.
1724 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1725                                                   llvm::Type *Ty) {
1726   assert(D->hasGlobalStorage() && "Not a global variable");
1727   QualType ASTTy = D->getType();
1728   if (!Ty)
1729     Ty = getTypes().ConvertTypeForMem(ASTTy);
1730 
1731   llvm::PointerType *PTy =
1732     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1733 
1734   StringRef MangledName = getMangledName(D);
1735   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1736 }
1737 
1738 /// CreateRuntimeVariable - Create a new runtime global variable with the
1739 /// specified type and name.
1740 llvm::Constant *
1741 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1742                                      StringRef Name) {
1743   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1744 }
1745 
1746 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1747   assert(!D->getInit() && "Cannot emit definite definitions here!");
1748 
1749   if (MayDeferGeneration(D)) {
1750     // If we have not seen a reference to this variable yet, place it
1751     // into the deferred declarations table to be emitted if needed
1752     // later.
1753     StringRef MangledName = getMangledName(D);
1754     if (!GetGlobalValue(MangledName)) {
1755       DeferredDecls[MangledName] = D;
1756       return;
1757     }
1758   }
1759 
1760   // The tentative definition is the only definition.
1761   EmitGlobalVarDefinition(D);
1762 }
1763 
1764 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1765     return Context.toCharUnitsFromBits(
1766       TheDataLayout.getTypeStoreSizeInBits(Ty));
1767 }
1768 
1769 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1770                                                  unsigned AddrSpace) {
1771   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1772     if (D->hasAttr<CUDAConstantAttr>())
1773       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1774     else if (D->hasAttr<CUDASharedAttr>())
1775       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1776     else
1777       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1778   }
1779 
1780   return AddrSpace;
1781 }
1782 
1783 template<typename SomeDecl>
1784 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1785                                                llvm::GlobalValue *GV) {
1786   if (!getLangOpts().CPlusPlus)
1787     return;
1788 
1789   // Must have 'used' attribute, or else inline assembly can't rely on
1790   // the name existing.
1791   if (!D->template hasAttr<UsedAttr>())
1792     return;
1793 
1794   // Must have internal linkage and an ordinary name.
1795   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1796     return;
1797 
1798   // Must be in an extern "C" context. Entities declared directly within
1799   // a record are not extern "C" even if the record is in such a context.
1800   const SomeDecl *First = D->getFirstDecl();
1801   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1802     return;
1803 
1804   // OK, this is an internal linkage entity inside an extern "C" linkage
1805   // specification. Make a note of that so we can give it the "expected"
1806   // mangled name if nothing else is using that name.
1807   std::pair<StaticExternCMap::iterator, bool> R =
1808       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1809 
1810   // If we have multiple internal linkage entities with the same name
1811   // in extern "C" regions, none of them gets that name.
1812   if (!R.second)
1813     R.first->second = nullptr;
1814 }
1815 
1816 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1817   llvm::Constant *Init = nullptr;
1818   QualType ASTTy = D->getType();
1819   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1820   bool NeedsGlobalCtor = false;
1821   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1822 
1823   const VarDecl *InitDecl;
1824   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1825 
1826   if (!InitExpr) {
1827     // This is a tentative definition; tentative definitions are
1828     // implicitly initialized with { 0 }.
1829     //
1830     // Note that tentative definitions are only emitted at the end of
1831     // a translation unit, so they should never have incomplete
1832     // type. In addition, EmitTentativeDefinition makes sure that we
1833     // never attempt to emit a tentative definition if a real one
1834     // exists. A use may still exists, however, so we still may need
1835     // to do a RAUW.
1836     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1837     Init = EmitNullConstant(D->getType());
1838   } else {
1839     initializedGlobalDecl = GlobalDecl(D);
1840     Init = EmitConstantInit(*InitDecl);
1841 
1842     if (!Init) {
1843       QualType T = InitExpr->getType();
1844       if (D->getType()->isReferenceType())
1845         T = D->getType();
1846 
1847       if (getLangOpts().CPlusPlus) {
1848         Init = EmitNullConstant(T);
1849         NeedsGlobalCtor = true;
1850       } else {
1851         ErrorUnsupported(D, "static initializer");
1852         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1853       }
1854     } else {
1855       // We don't need an initializer, so remove the entry for the delayed
1856       // initializer position (just in case this entry was delayed) if we
1857       // also don't need to register a destructor.
1858       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1859         DelayedCXXInitPosition.erase(D);
1860     }
1861   }
1862 
1863   llvm::Type* InitType = Init->getType();
1864   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1865 
1866   // Strip off a bitcast if we got one back.
1867   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1868     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1869            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1870            // All zero index gep.
1871            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1872     Entry = CE->getOperand(0);
1873   }
1874 
1875   // Entry is now either a Function or GlobalVariable.
1876   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1877 
1878   // We have a definition after a declaration with the wrong type.
1879   // We must make a new GlobalVariable* and update everything that used OldGV
1880   // (a declaration or tentative definition) with the new GlobalVariable*
1881   // (which will be a definition).
1882   //
1883   // This happens if there is a prototype for a global (e.g.
1884   // "extern int x[];") and then a definition of a different type (e.g.
1885   // "int x[10];"). This also happens when an initializer has a different type
1886   // from the type of the global (this happens with unions).
1887   if (!GV ||
1888       GV->getType()->getElementType() != InitType ||
1889       GV->getType()->getAddressSpace() !=
1890        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1891 
1892     // Move the old entry aside so that we'll create a new one.
1893     Entry->setName(StringRef());
1894 
1895     // Make a new global with the correct type, this is now guaranteed to work.
1896     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1897 
1898     // Replace all uses of the old global with the new global
1899     llvm::Constant *NewPtrForOldDecl =
1900         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1901     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1902 
1903     // Erase the old global, since it is no longer used.
1904     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1905   }
1906 
1907   MaybeHandleStaticInExternC(D, GV);
1908 
1909   if (D->hasAttr<AnnotateAttr>())
1910     AddGlobalAnnotations(D, GV);
1911 
1912   GV->setInitializer(Init);
1913 
1914   // If it is safe to mark the global 'constant', do so now.
1915   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1916                   isTypeConstant(D->getType(), true));
1917 
1918   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1919 
1920   // Set the llvm linkage type as appropriate.
1921   llvm::GlobalValue::LinkageTypes Linkage =
1922       getLLVMLinkageVarDefinition(D, GV->isConstant());
1923 
1924   // On Darwin, the backing variable for a C++11 thread_local variable always
1925   // has internal linkage; all accesses should just be calls to the
1926   // Itanium-specified entry point, which has the normal linkage of the
1927   // variable.
1928   if (const auto *VD = dyn_cast<VarDecl>(D))
1929     if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1930         Context.getTargetInfo().getTriple().isMacOSX())
1931       Linkage = llvm::GlobalValue::InternalLinkage;
1932 
1933   GV->setLinkage(Linkage);
1934   if (D->hasAttr<DLLImportAttr>())
1935     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1936   else if (D->hasAttr<DLLExportAttr>())
1937     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1938 
1939   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1940     // common vars aren't constant even if declared const.
1941     GV->setConstant(false);
1942 
1943   setNonAliasAttributes(D, GV);
1944 
1945   // Emit the initializer function if necessary.
1946   if (NeedsGlobalCtor || NeedsGlobalDtor)
1947     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1948 
1949   // If we are compiling with ASan, add metadata indicating dynamically
1950   // initialized (and not blacklisted) globals.
1951   if (SanOpts.Address && NeedsGlobalCtor &&
1952       !SanitizerBlacklist->isIn(*GV, "init")) {
1953     llvm::NamedMDNode *DynamicInitializers = TheModule.getOrInsertNamedMetadata(
1954         "llvm.asan.dynamically_initialized_globals");
1955     llvm::Value *GlobalToAdd[] = { GV };
1956     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1957     DynamicInitializers->addOperand(ThisGlobal);
1958   }
1959 
1960   // Emit global variable debug information.
1961   if (CGDebugInfo *DI = getModuleDebugInfo())
1962     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1963       DI->EmitGlobalVariable(GV, D);
1964 }
1965 
1966 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1967   // Don't give variables common linkage if -fno-common was specified unless it
1968   // was overridden by a NoCommon attribute.
1969   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1970     return true;
1971 
1972   // C11 6.9.2/2:
1973   //   A declaration of an identifier for an object that has file scope without
1974   //   an initializer, and without a storage-class specifier or with the
1975   //   storage-class specifier static, constitutes a tentative definition.
1976   if (D->getInit() || D->hasExternalStorage())
1977     return true;
1978 
1979   // A variable cannot be both common and exist in a section.
1980   if (D->hasAttr<SectionAttr>())
1981     return true;
1982 
1983   // Thread local vars aren't considered common linkage.
1984   if (D->getTLSKind())
1985     return true;
1986 
1987   // Tentative definitions marked with WeakImportAttr are true definitions.
1988   if (D->hasAttr<WeakImportAttr>())
1989     return true;
1990 
1991   return false;
1992 }
1993 
1994 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1995     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
1996   if (Linkage == GVA_Internal)
1997     return llvm::Function::InternalLinkage;
1998 
1999   if (D->hasAttr<WeakAttr>()) {
2000     if (IsConstantVariable)
2001       return llvm::GlobalVariable::WeakODRLinkage;
2002     else
2003       return llvm::GlobalVariable::WeakAnyLinkage;
2004   }
2005 
2006   // We are guaranteed to have a strong definition somewhere else,
2007   // so we can use available_externally linkage.
2008   if (Linkage == GVA_AvailableExternally)
2009     return llvm::Function::AvailableExternallyLinkage;
2010 
2011   // Note that Apple's kernel linker doesn't support symbol
2012   // coalescing, so we need to avoid linkonce and weak linkages there.
2013   // Normally, this means we just map to internal, but for explicit
2014   // instantiations we'll map to external.
2015 
2016   // In C++, the compiler has to emit a definition in every translation unit
2017   // that references the function.  We should use linkonce_odr because
2018   // a) if all references in this translation unit are optimized away, we
2019   // don't need to codegen it.  b) if the function persists, it needs to be
2020   // merged with other definitions. c) C++ has the ODR, so we know the
2021   // definition is dependable.
2022   if (Linkage == GVA_DiscardableODR)
2023     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2024                                             : llvm::Function::InternalLinkage;
2025 
2026   // An explicit instantiation of a template has weak linkage, since
2027   // explicit instantiations can occur in multiple translation units
2028   // and must all be equivalent. However, we are not allowed to
2029   // throw away these explicit instantiations.
2030   if (Linkage == GVA_StrongODR)
2031     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2032                                             : llvm::Function::ExternalLinkage;
2033 
2034   // If required by the ABI, give definitions of static data members with inline
2035   // initializers at least linkonce_odr linkage.
2036   auto const VD = dyn_cast<VarDecl>(D);
2037   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
2038       VD && isVarDeclInlineInitializedStaticDataMember(VD)) {
2039     if (VD->hasAttr<DLLImportAttr>())
2040       return llvm::GlobalValue::AvailableExternallyLinkage;
2041     if (VD->hasAttr<DLLExportAttr>())
2042       return llvm::GlobalValue::WeakODRLinkage;
2043     return llvm::GlobalValue::LinkOnceODRLinkage;
2044   }
2045 
2046   // C++ doesn't have tentative definitions and thus cannot have common
2047   // linkage.
2048   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2049       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
2050     return llvm::GlobalVariable::CommonLinkage;
2051 
2052   // selectany symbols are externally visible, so use weak instead of
2053   // linkonce.  MSVC optimizes away references to const selectany globals, so
2054   // all definitions should be the same and ODR linkage should be used.
2055   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2056   if (D->hasAttr<SelectAnyAttr>())
2057     return llvm::GlobalVariable::WeakODRLinkage;
2058 
2059   // Otherwise, we have strong external linkage.
2060   assert(Linkage == GVA_StrongExternal);
2061   return llvm::GlobalVariable::ExternalLinkage;
2062 }
2063 
2064 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2065     const VarDecl *VD, bool IsConstant) {
2066   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2067   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2068 }
2069 
2070 /// Replace the uses of a function that was declared with a non-proto type.
2071 /// We want to silently drop extra arguments from call sites
2072 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2073                                           llvm::Function *newFn) {
2074   // Fast path.
2075   if (old->use_empty()) return;
2076 
2077   llvm::Type *newRetTy = newFn->getReturnType();
2078   SmallVector<llvm::Value*, 4> newArgs;
2079 
2080   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2081          ui != ue; ) {
2082     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2083     llvm::User *user = use->getUser();
2084 
2085     // Recognize and replace uses of bitcasts.  Most calls to
2086     // unprototyped functions will use bitcasts.
2087     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2088       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2089         replaceUsesOfNonProtoConstant(bitcast, newFn);
2090       continue;
2091     }
2092 
2093     // Recognize calls to the function.
2094     llvm::CallSite callSite(user);
2095     if (!callSite) continue;
2096     if (!callSite.isCallee(&*use)) continue;
2097 
2098     // If the return types don't match exactly, then we can't
2099     // transform this call unless it's dead.
2100     if (callSite->getType() != newRetTy && !callSite->use_empty())
2101       continue;
2102 
2103     // Get the call site's attribute list.
2104     SmallVector<llvm::AttributeSet, 8> newAttrs;
2105     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2106 
2107     // Collect any return attributes from the call.
2108     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2109       newAttrs.push_back(
2110         llvm::AttributeSet::get(newFn->getContext(),
2111                                 oldAttrs.getRetAttributes()));
2112 
2113     // If the function was passed too few arguments, don't transform.
2114     unsigned newNumArgs = newFn->arg_size();
2115     if (callSite.arg_size() < newNumArgs) continue;
2116 
2117     // If extra arguments were passed, we silently drop them.
2118     // If any of the types mismatch, we don't transform.
2119     unsigned argNo = 0;
2120     bool dontTransform = false;
2121     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2122            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2123       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2124         dontTransform = true;
2125         break;
2126       }
2127 
2128       // Add any parameter attributes.
2129       if (oldAttrs.hasAttributes(argNo + 1))
2130         newAttrs.
2131           push_back(llvm::
2132                     AttributeSet::get(newFn->getContext(),
2133                                       oldAttrs.getParamAttributes(argNo + 1)));
2134     }
2135     if (dontTransform)
2136       continue;
2137 
2138     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2139       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2140                                                  oldAttrs.getFnAttributes()));
2141 
2142     // Okay, we can transform this.  Create the new call instruction and copy
2143     // over the required information.
2144     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2145 
2146     llvm::CallSite newCall;
2147     if (callSite.isCall()) {
2148       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2149                                        callSite.getInstruction());
2150     } else {
2151       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2152       newCall = llvm::InvokeInst::Create(newFn,
2153                                          oldInvoke->getNormalDest(),
2154                                          oldInvoke->getUnwindDest(),
2155                                          newArgs, "",
2156                                          callSite.getInstruction());
2157     }
2158     newArgs.clear(); // for the next iteration
2159 
2160     if (!newCall->getType()->isVoidTy())
2161       newCall->takeName(callSite.getInstruction());
2162     newCall.setAttributes(
2163                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2164     newCall.setCallingConv(callSite.getCallingConv());
2165 
2166     // Finally, remove the old call, replacing any uses with the new one.
2167     if (!callSite->use_empty())
2168       callSite->replaceAllUsesWith(newCall.getInstruction());
2169 
2170     // Copy debug location attached to CI.
2171     if (!callSite->getDebugLoc().isUnknown())
2172       newCall->setDebugLoc(callSite->getDebugLoc());
2173     callSite->eraseFromParent();
2174   }
2175 }
2176 
2177 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2178 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2179 /// existing call uses of the old function in the module, this adjusts them to
2180 /// call the new function directly.
2181 ///
2182 /// This is not just a cleanup: the always_inline pass requires direct calls to
2183 /// functions to be able to inline them.  If there is a bitcast in the way, it
2184 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2185 /// run at -O0.
2186 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2187                                                       llvm::Function *NewFn) {
2188   // If we're redefining a global as a function, don't transform it.
2189   if (!isa<llvm::Function>(Old)) return;
2190 
2191   replaceUsesOfNonProtoConstant(Old, NewFn);
2192 }
2193 
2194 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2195   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2196   // If we have a definition, this might be a deferred decl. If the
2197   // instantiation is explicit, make sure we emit it at the end.
2198   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2199     GetAddrOfGlobalVar(VD);
2200 
2201   EmitTopLevelDecl(VD);
2202 }
2203 
2204 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2205                                                  llvm::GlobalValue *GV) {
2206   const auto *D = cast<FunctionDecl>(GD.getDecl());
2207 
2208   // Compute the function info and LLVM type.
2209   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2210   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2211 
2212   // Get or create the prototype for the function.
2213   if (!GV) {
2214     llvm::Constant *C =
2215         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2216 
2217     // Strip off a bitcast if we got one back.
2218     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2219       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2220       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2221     } else {
2222       GV = cast<llvm::GlobalValue>(C);
2223     }
2224   }
2225 
2226   if (!GV->isDeclaration()) {
2227     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2228     return;
2229   }
2230 
2231   if (GV->getType()->getElementType() != Ty) {
2232     // If the types mismatch then we have to rewrite the definition.
2233     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2234 
2235     // F is the Function* for the one with the wrong type, we must make a new
2236     // Function* and update everything that used F (a declaration) with the new
2237     // Function* (which will be a definition).
2238     //
2239     // This happens if there is a prototype for a function
2240     // (e.g. "int f()") and then a definition of a different type
2241     // (e.g. "int f(int x)").  Move the old function aside so that it
2242     // doesn't interfere with GetAddrOfFunction.
2243     GV->setName(StringRef());
2244     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2245 
2246     // This might be an implementation of a function without a
2247     // prototype, in which case, try to do special replacement of
2248     // calls which match the new prototype.  The really key thing here
2249     // is that we also potentially drop arguments from the call site
2250     // so as to make a direct call, which makes the inliner happier
2251     // and suppresses a number of optimizer warnings (!) about
2252     // dropping arguments.
2253     if (!GV->use_empty()) {
2254       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2255       GV->removeDeadConstantUsers();
2256     }
2257 
2258     // Replace uses of F with the Function we will endow with a body.
2259     if (!GV->use_empty()) {
2260       llvm::Constant *NewPtrForOldDecl =
2261           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2262       GV->replaceAllUsesWith(NewPtrForOldDecl);
2263     }
2264 
2265     // Ok, delete the old function now, which is dead.
2266     GV->eraseFromParent();
2267 
2268     GV = NewFn;
2269   }
2270 
2271   // We need to set linkage and visibility on the function before
2272   // generating code for it because various parts of IR generation
2273   // want to propagate this information down (e.g. to local static
2274   // declarations).
2275   auto *Fn = cast<llvm::Function>(GV);
2276   setFunctionLinkage(GD, Fn);
2277 
2278   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2279   setGlobalVisibility(Fn, D);
2280 
2281   MaybeHandleStaticInExternC(D, Fn);
2282 
2283   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2284 
2285   setFunctionDefinitionAttributes(D, Fn);
2286   SetLLVMFunctionAttributesForDefinition(D, Fn);
2287 
2288   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2289     AddGlobalCtor(Fn, CA->getPriority());
2290   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2291     AddGlobalDtor(Fn, DA->getPriority());
2292   if (D->hasAttr<AnnotateAttr>())
2293     AddGlobalAnnotations(D, Fn);
2294 }
2295 
2296 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2297   const auto *D = cast<ValueDecl>(GD.getDecl());
2298   const AliasAttr *AA = D->getAttr<AliasAttr>();
2299   assert(AA && "Not an alias?");
2300 
2301   StringRef MangledName = getMangledName(GD);
2302 
2303   // If there is a definition in the module, then it wins over the alias.
2304   // This is dubious, but allow it to be safe.  Just ignore the alias.
2305   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2306   if (Entry && !Entry->isDeclaration())
2307     return;
2308 
2309   Aliases.push_back(GD);
2310 
2311   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2312 
2313   // Create a reference to the named value.  This ensures that it is emitted
2314   // if a deferred decl.
2315   llvm::Constant *Aliasee;
2316   if (isa<llvm::FunctionType>(DeclTy))
2317     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2318                                       /*ForVTable=*/false);
2319   else
2320     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2321                                     llvm::PointerType::getUnqual(DeclTy),
2322                                     nullptr);
2323 
2324   // Create the new alias itself, but don't set a name yet.
2325   auto *GA = llvm::GlobalAlias::create(
2326       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2327       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2328 
2329   if (Entry) {
2330     if (GA->getAliasee() == Entry) {
2331       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2332       return;
2333     }
2334 
2335     assert(Entry->isDeclaration());
2336 
2337     // If there is a declaration in the module, then we had an extern followed
2338     // by the alias, as in:
2339     //   extern int test6();
2340     //   ...
2341     //   int test6() __attribute__((alias("test7")));
2342     //
2343     // Remove it and replace uses of it with the alias.
2344     GA->takeName(Entry);
2345 
2346     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2347                                                           Entry->getType()));
2348     Entry->eraseFromParent();
2349   } else {
2350     GA->setName(MangledName);
2351   }
2352 
2353   // Set attributes which are particular to an alias; this is a
2354   // specialization of the attributes which may be set on a global
2355   // variable/function.
2356   if (D->hasAttr<DLLExportAttr>()) {
2357     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2358       // The dllexport attribute is ignored for undefined symbols.
2359       if (FD->hasBody())
2360         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2361     } else {
2362       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2363     }
2364   } else if (D->hasAttr<WeakAttr>() ||
2365              D->hasAttr<WeakRefAttr>() ||
2366              D->isWeakImported()) {
2367     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2368   }
2369 
2370   SetCommonAttributes(D, GA);
2371 }
2372 
2373 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2374                                             ArrayRef<llvm::Type*> Tys) {
2375   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2376                                          Tys);
2377 }
2378 
2379 static llvm::StringMapEntry<llvm::Constant*> &
2380 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2381                          const StringLiteral *Literal,
2382                          bool TargetIsLSB,
2383                          bool &IsUTF16,
2384                          unsigned &StringLength) {
2385   StringRef String = Literal->getString();
2386   unsigned NumBytes = String.size();
2387 
2388   // Check for simple case.
2389   if (!Literal->containsNonAsciiOrNull()) {
2390     StringLength = NumBytes;
2391     return Map.GetOrCreateValue(String);
2392   }
2393 
2394   // Otherwise, convert the UTF8 literals into a string of shorts.
2395   IsUTF16 = true;
2396 
2397   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2398   const UTF8 *FromPtr = (const UTF8 *)String.data();
2399   UTF16 *ToPtr = &ToBuf[0];
2400 
2401   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2402                            &ToPtr, ToPtr + NumBytes,
2403                            strictConversion);
2404 
2405   // ConvertUTF8toUTF16 returns the length in ToPtr.
2406   StringLength = ToPtr - &ToBuf[0];
2407 
2408   // Add an explicit null.
2409   *ToPtr = 0;
2410   return Map.
2411     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2412                                (StringLength + 1) * 2));
2413 }
2414 
2415 static llvm::StringMapEntry<llvm::Constant*> &
2416 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2417                        const StringLiteral *Literal,
2418                        unsigned &StringLength) {
2419   StringRef String = Literal->getString();
2420   StringLength = String.size();
2421   return Map.GetOrCreateValue(String);
2422 }
2423 
2424 llvm::Constant *
2425 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2426   unsigned StringLength = 0;
2427   bool isUTF16 = false;
2428   llvm::StringMapEntry<llvm::Constant*> &Entry =
2429     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2430                              getDataLayout().isLittleEndian(),
2431                              isUTF16, StringLength);
2432 
2433   if (llvm::Constant *C = Entry.getValue())
2434     return C;
2435 
2436   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2437   llvm::Constant *Zeros[] = { Zero, Zero };
2438   llvm::Value *V;
2439 
2440   // If we don't already have it, get __CFConstantStringClassReference.
2441   if (!CFConstantStringClassRef) {
2442     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2443     Ty = llvm::ArrayType::get(Ty, 0);
2444     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2445                                            "__CFConstantStringClassReference");
2446     // Decay array -> ptr
2447     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2448     CFConstantStringClassRef = V;
2449   }
2450   else
2451     V = CFConstantStringClassRef;
2452 
2453   QualType CFTy = getContext().getCFConstantStringType();
2454 
2455   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2456 
2457   llvm::Constant *Fields[4];
2458 
2459   // Class pointer.
2460   Fields[0] = cast<llvm::ConstantExpr>(V);
2461 
2462   // Flags.
2463   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2464   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2465     llvm::ConstantInt::get(Ty, 0x07C8);
2466 
2467   // String pointer.
2468   llvm::Constant *C = nullptr;
2469   if (isUTF16) {
2470     ArrayRef<uint16_t> Arr =
2471       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2472                                      const_cast<char *>(Entry.getKey().data())),
2473                                    Entry.getKey().size() / 2);
2474     C = llvm::ConstantDataArray::get(VMContext, Arr);
2475   } else {
2476     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2477   }
2478 
2479   // Note: -fwritable-strings doesn't make the backing store strings of
2480   // CFStrings writable. (See <rdar://problem/10657500>)
2481   auto *GV =
2482       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2483                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2484   GV->setUnnamedAddr(true);
2485   // Don't enforce the target's minimum global alignment, since the only use
2486   // of the string is via this class initializer.
2487   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2488   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2489   // that changes the section it ends in, which surprises ld64.
2490   if (isUTF16) {
2491     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2492     GV->setAlignment(Align.getQuantity());
2493     GV->setSection("__TEXT,__ustring");
2494   } else {
2495     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2496     GV->setAlignment(Align.getQuantity());
2497     GV->setSection("__TEXT,__cstring,cstring_literals");
2498   }
2499 
2500   // String.
2501   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2502 
2503   if (isUTF16)
2504     // Cast the UTF16 string to the correct type.
2505     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2506 
2507   // String length.
2508   Ty = getTypes().ConvertType(getContext().LongTy);
2509   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2510 
2511   // The struct.
2512   C = llvm::ConstantStruct::get(STy, Fields);
2513   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2514                                 llvm::GlobalVariable::PrivateLinkage, C,
2515                                 "_unnamed_cfstring_");
2516   GV->setSection("__DATA,__cfstring");
2517   Entry.setValue(GV);
2518 
2519   return GV;
2520 }
2521 
2522 llvm::Constant *
2523 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2524   unsigned StringLength = 0;
2525   llvm::StringMapEntry<llvm::Constant*> &Entry =
2526     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2527 
2528   if (llvm::Constant *C = Entry.getValue())
2529     return C;
2530 
2531   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2532   llvm::Constant *Zeros[] = { Zero, Zero };
2533   llvm::Value *V;
2534   // If we don't already have it, get _NSConstantStringClassReference.
2535   if (!ConstantStringClassRef) {
2536     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2537     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2538     llvm::Constant *GV;
2539     if (LangOpts.ObjCRuntime.isNonFragile()) {
2540       std::string str =
2541         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2542                             : "OBJC_CLASS_$_" + StringClass;
2543       GV = getObjCRuntime().GetClassGlobal(str);
2544       // Make sure the result is of the correct type.
2545       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2546       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2547       ConstantStringClassRef = V;
2548     } else {
2549       std::string str =
2550         StringClass.empty() ? "_NSConstantStringClassReference"
2551                             : "_" + StringClass + "ClassReference";
2552       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2553       GV = CreateRuntimeVariable(PTy, str);
2554       // Decay array -> ptr
2555       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2556       ConstantStringClassRef = V;
2557     }
2558   }
2559   else
2560     V = ConstantStringClassRef;
2561 
2562   if (!NSConstantStringType) {
2563     // Construct the type for a constant NSString.
2564     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2565     D->startDefinition();
2566 
2567     QualType FieldTypes[3];
2568 
2569     // const int *isa;
2570     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2571     // const char *str;
2572     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2573     // unsigned int length;
2574     FieldTypes[2] = Context.UnsignedIntTy;
2575 
2576     // Create fields
2577     for (unsigned i = 0; i < 3; ++i) {
2578       FieldDecl *Field = FieldDecl::Create(Context, D,
2579                                            SourceLocation(),
2580                                            SourceLocation(), nullptr,
2581                                            FieldTypes[i], /*TInfo=*/nullptr,
2582                                            /*BitWidth=*/nullptr,
2583                                            /*Mutable=*/false,
2584                                            ICIS_NoInit);
2585       Field->setAccess(AS_public);
2586       D->addDecl(Field);
2587     }
2588 
2589     D->completeDefinition();
2590     QualType NSTy = Context.getTagDeclType(D);
2591     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2592   }
2593 
2594   llvm::Constant *Fields[3];
2595 
2596   // Class pointer.
2597   Fields[0] = cast<llvm::ConstantExpr>(V);
2598 
2599   // String pointer.
2600   llvm::Constant *C =
2601     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2602 
2603   llvm::GlobalValue::LinkageTypes Linkage;
2604   bool isConstant;
2605   Linkage = llvm::GlobalValue::PrivateLinkage;
2606   isConstant = !LangOpts.WritableStrings;
2607 
2608   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2609                                       Linkage, C, ".str");
2610   GV->setUnnamedAddr(true);
2611   // Don't enforce the target's minimum global alignment, since the only use
2612   // of the string is via this class initializer.
2613   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2614   GV->setAlignment(Align.getQuantity());
2615   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2616 
2617   // String length.
2618   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2619   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2620 
2621   // The struct.
2622   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2623   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2624                                 llvm::GlobalVariable::PrivateLinkage, C,
2625                                 "_unnamed_nsstring_");
2626   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2627   const char *NSStringNonFragileABISection =
2628       "__DATA,__objc_stringobj,regular,no_dead_strip";
2629   // FIXME. Fix section.
2630   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2631                      ? NSStringNonFragileABISection
2632                      : NSStringSection);
2633   Entry.setValue(GV);
2634 
2635   return GV;
2636 }
2637 
2638 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2639   if (ObjCFastEnumerationStateType.isNull()) {
2640     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2641     D->startDefinition();
2642 
2643     QualType FieldTypes[] = {
2644       Context.UnsignedLongTy,
2645       Context.getPointerType(Context.getObjCIdType()),
2646       Context.getPointerType(Context.UnsignedLongTy),
2647       Context.getConstantArrayType(Context.UnsignedLongTy,
2648                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2649     };
2650 
2651     for (size_t i = 0; i < 4; ++i) {
2652       FieldDecl *Field = FieldDecl::Create(Context,
2653                                            D,
2654                                            SourceLocation(),
2655                                            SourceLocation(), nullptr,
2656                                            FieldTypes[i], /*TInfo=*/nullptr,
2657                                            /*BitWidth=*/nullptr,
2658                                            /*Mutable=*/false,
2659                                            ICIS_NoInit);
2660       Field->setAccess(AS_public);
2661       D->addDecl(Field);
2662     }
2663 
2664     D->completeDefinition();
2665     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2666   }
2667 
2668   return ObjCFastEnumerationStateType;
2669 }
2670 
2671 llvm::Constant *
2672 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2673   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2674 
2675   // Don't emit it as the address of the string, emit the string data itself
2676   // as an inline array.
2677   if (E->getCharByteWidth() == 1) {
2678     SmallString<64> Str(E->getString());
2679 
2680     // Resize the string to the right size, which is indicated by its type.
2681     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2682     Str.resize(CAT->getSize().getZExtValue());
2683     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2684   }
2685 
2686   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2687   llvm::Type *ElemTy = AType->getElementType();
2688   unsigned NumElements = AType->getNumElements();
2689 
2690   // Wide strings have either 2-byte or 4-byte elements.
2691   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2692     SmallVector<uint16_t, 32> Elements;
2693     Elements.reserve(NumElements);
2694 
2695     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2696       Elements.push_back(E->getCodeUnit(i));
2697     Elements.resize(NumElements);
2698     return llvm::ConstantDataArray::get(VMContext, Elements);
2699   }
2700 
2701   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2702   SmallVector<uint32_t, 32> Elements;
2703   Elements.reserve(NumElements);
2704 
2705   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2706     Elements.push_back(E->getCodeUnit(i));
2707   Elements.resize(NumElements);
2708   return llvm::ConstantDataArray::get(VMContext, Elements);
2709 }
2710 
2711 static llvm::GlobalVariable *
2712 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2713                       CodeGenModule &CGM, StringRef GlobalName,
2714                       unsigned Alignment) {
2715   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2716   unsigned AddrSpace = 0;
2717   if (CGM.getLangOpts().OpenCL)
2718     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2719 
2720   // Create a global variable for this string
2721   auto *GV = new llvm::GlobalVariable(
2722       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2723       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2724   GV->setAlignment(Alignment);
2725   GV->setUnnamedAddr(true);
2726   return GV;
2727 }
2728 
2729 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2730 /// constant array for the given string literal.
2731 llvm::Constant *
2732 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2733   auto Alignment =
2734       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2735 
2736   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2737   if (!LangOpts.WritableStrings) {
2738     Entry = getConstantStringMapEntry(S->getBytes(), S->getCharByteWidth());
2739     if (auto GV = Entry->getValue()) {
2740       if (Alignment > GV->getAlignment())
2741         GV->setAlignment(Alignment);
2742       return GV;
2743     }
2744   }
2745 
2746   SmallString<256> MangledNameBuffer;
2747   StringRef GlobalVariableName;
2748   llvm::GlobalValue::LinkageTypes LT;
2749 
2750   // Mangle the string literal if the ABI allows for it.  However, we cannot
2751   // do this if  we are compiling with ASan or -fwritable-strings because they
2752   // rely on strings having normal linkage.
2753   if (!LangOpts.WritableStrings && !SanOpts.Address &&
2754       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2755     llvm::raw_svector_ostream Out(MangledNameBuffer);
2756     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2757     Out.flush();
2758 
2759     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2760     GlobalVariableName = MangledNameBuffer;
2761   } else {
2762     LT = llvm::GlobalValue::PrivateLinkage;
2763     GlobalVariableName = ".str";
2764   }
2765 
2766   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2767   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2768   if (Entry)
2769     Entry->setValue(GV);
2770   return GV;
2771 }
2772 
2773 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2774 /// array for the given ObjCEncodeExpr node.
2775 llvm::Constant *
2776 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2777   std::string Str;
2778   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2779 
2780   return GetAddrOfConstantCString(Str);
2781 }
2782 
2783 
2784 llvm::StringMapEntry<llvm::GlobalVariable *> *CodeGenModule::getConstantStringMapEntry(
2785     StringRef Str, int CharByteWidth) {
2786   llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2787   switch (CharByteWidth) {
2788   case 1:
2789     ConstantStringMap = &Constant1ByteStringMap;
2790     break;
2791   case 2:
2792     ConstantStringMap = &Constant2ByteStringMap;
2793     break;
2794   case 4:
2795     ConstantStringMap = &Constant4ByteStringMap;
2796     break;
2797   default:
2798     llvm_unreachable("unhandled byte width!");
2799   }
2800   return &ConstantStringMap->GetOrCreateValue(Str);
2801 }
2802 
2803 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2804 /// the literal and a terminating '\0' character.
2805 /// The result has pointer to array type.
2806 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2807                                                         const char *GlobalName,
2808                                                         unsigned Alignment) {
2809   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2810   if (Alignment == 0) {
2811     Alignment = getContext()
2812                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2813                     .getQuantity();
2814   }
2815 
2816   // Don't share any string literals if strings aren't constant.
2817   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2818   if (!LangOpts.WritableStrings) {
2819     Entry = getConstantStringMapEntry(StrWithNull, 1);
2820     if (auto GV = Entry->getValue()) {
2821       if (Alignment > GV->getAlignment())
2822         GV->setAlignment(Alignment);
2823       return GV;
2824     }
2825   }
2826 
2827   llvm::Constant *C =
2828       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2829   // Get the default prefix if a name wasn't specified.
2830   if (!GlobalName)
2831     GlobalName = ".str";
2832   // Create a global variable for this.
2833   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2834                                   GlobalName, Alignment);
2835   if (Entry)
2836     Entry->setValue(GV);
2837   return GV;
2838 }
2839 
2840 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2841     const MaterializeTemporaryExpr *E, const Expr *Init) {
2842   assert((E->getStorageDuration() == SD_Static ||
2843           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2844   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2845 
2846   // If we're not materializing a subobject of the temporary, keep the
2847   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2848   QualType MaterializedType = Init->getType();
2849   if (Init == E->GetTemporaryExpr())
2850     MaterializedType = E->getType();
2851 
2852   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2853   if (Slot)
2854     return Slot;
2855 
2856   // FIXME: If an externally-visible declaration extends multiple temporaries,
2857   // we need to give each temporary the same name in every translation unit (and
2858   // we also need to make the temporaries externally-visible).
2859   SmallString<256> Name;
2860   llvm::raw_svector_ostream Out(Name);
2861   getCXXABI().getMangleContext().mangleReferenceTemporary(
2862       VD, E->getManglingNumber(), Out);
2863   Out.flush();
2864 
2865   APValue *Value = nullptr;
2866   if (E->getStorageDuration() == SD_Static) {
2867     // We might have a cached constant initializer for this temporary. Note
2868     // that this might have a different value from the value computed by
2869     // evaluating the initializer if the surrounding constant expression
2870     // modifies the temporary.
2871     Value = getContext().getMaterializedTemporaryValue(E, false);
2872     if (Value && Value->isUninit())
2873       Value = nullptr;
2874   }
2875 
2876   // Try evaluating it now, it might have a constant initializer.
2877   Expr::EvalResult EvalResult;
2878   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2879       !EvalResult.hasSideEffects())
2880     Value = &EvalResult.Val;
2881 
2882   llvm::Constant *InitialValue = nullptr;
2883   bool Constant = false;
2884   llvm::Type *Type;
2885   if (Value) {
2886     // The temporary has a constant initializer, use it.
2887     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2888     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2889     Type = InitialValue->getType();
2890   } else {
2891     // No initializer, the initialization will be provided when we
2892     // initialize the declaration which performed lifetime extension.
2893     Type = getTypes().ConvertTypeForMem(MaterializedType);
2894   }
2895 
2896   // Create a global variable for this lifetime-extended temporary.
2897   llvm::GlobalValue::LinkageTypes Linkage =
2898       getLLVMLinkageVarDefinition(VD, Constant);
2899   // There is no need for this temporary to have global linkage if the global
2900   // variable has external linkage.
2901   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2902     Linkage = llvm::GlobalVariable::PrivateLinkage;
2903   unsigned AddrSpace = GetGlobalVarAddressSpace(
2904       VD, getContext().getTargetAddressSpace(MaterializedType));
2905   auto *GV = new llvm::GlobalVariable(
2906       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2907       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2908       AddrSpace);
2909   setGlobalVisibility(GV, VD);
2910   GV->setAlignment(
2911       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2912   if (VD->getTLSKind())
2913     setTLSMode(GV, *VD);
2914   Slot = GV;
2915   return GV;
2916 }
2917 
2918 /// EmitObjCPropertyImplementations - Emit information for synthesized
2919 /// properties for an implementation.
2920 void CodeGenModule::EmitObjCPropertyImplementations(const
2921                                                     ObjCImplementationDecl *D) {
2922   for (const auto *PID : D->property_impls()) {
2923     // Dynamic is just for type-checking.
2924     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2925       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2926 
2927       // Determine which methods need to be implemented, some may have
2928       // been overridden. Note that ::isPropertyAccessor is not the method
2929       // we want, that just indicates if the decl came from a
2930       // property. What we want to know is if the method is defined in
2931       // this implementation.
2932       if (!D->getInstanceMethod(PD->getGetterName()))
2933         CodeGenFunction(*this).GenerateObjCGetter(
2934                                  const_cast<ObjCImplementationDecl *>(D), PID);
2935       if (!PD->isReadOnly() &&
2936           !D->getInstanceMethod(PD->getSetterName()))
2937         CodeGenFunction(*this).GenerateObjCSetter(
2938                                  const_cast<ObjCImplementationDecl *>(D), PID);
2939     }
2940   }
2941 }
2942 
2943 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2944   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2945   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2946        ivar; ivar = ivar->getNextIvar())
2947     if (ivar->getType().isDestructedType())
2948       return true;
2949 
2950   return false;
2951 }
2952 
2953 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2954 /// for an implementation.
2955 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2956   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2957   if (needsDestructMethod(D)) {
2958     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2959     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2960     ObjCMethodDecl *DTORMethod =
2961       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2962                              cxxSelector, getContext().VoidTy, nullptr, D,
2963                              /*isInstance=*/true, /*isVariadic=*/false,
2964                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2965                              /*isDefined=*/false, ObjCMethodDecl::Required);
2966     D->addInstanceMethod(DTORMethod);
2967     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2968     D->setHasDestructors(true);
2969   }
2970 
2971   // If the implementation doesn't have any ivar initializers, we don't need
2972   // a .cxx_construct.
2973   if (D->getNumIvarInitializers() == 0)
2974     return;
2975 
2976   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2977   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2978   // The constructor returns 'self'.
2979   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2980                                                 D->getLocation(),
2981                                                 D->getLocation(),
2982                                                 cxxSelector,
2983                                                 getContext().getObjCIdType(),
2984                                                 nullptr, D, /*isInstance=*/true,
2985                                                 /*isVariadic=*/false,
2986                                                 /*isPropertyAccessor=*/true,
2987                                                 /*isImplicitlyDeclared=*/true,
2988                                                 /*isDefined=*/false,
2989                                                 ObjCMethodDecl::Required);
2990   D->addInstanceMethod(CTORMethod);
2991   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2992   D->setHasNonZeroConstructors(true);
2993 }
2994 
2995 /// EmitNamespace - Emit all declarations in a namespace.
2996 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2997   for (auto *I : ND->decls()) {
2998     if (const auto *VD = dyn_cast<VarDecl>(I))
2999       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3000           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3001         continue;
3002     EmitTopLevelDecl(I);
3003   }
3004 }
3005 
3006 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3007 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3008   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3009       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3010     ErrorUnsupported(LSD, "linkage spec");
3011     return;
3012   }
3013 
3014   for (auto *I : LSD->decls()) {
3015     // Meta-data for ObjC class includes references to implemented methods.
3016     // Generate class's method definitions first.
3017     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3018       for (auto *M : OID->methods())
3019         EmitTopLevelDecl(M);
3020     }
3021     EmitTopLevelDecl(I);
3022   }
3023 }
3024 
3025 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3026 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3027   // Ignore dependent declarations.
3028   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3029     return;
3030 
3031   switch (D->getKind()) {
3032   case Decl::CXXConversion:
3033   case Decl::CXXMethod:
3034   case Decl::Function:
3035     // Skip function templates
3036     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3037         cast<FunctionDecl>(D)->isLateTemplateParsed())
3038       return;
3039 
3040     EmitGlobal(cast<FunctionDecl>(D));
3041     break;
3042 
3043   case Decl::Var:
3044     // Skip variable templates
3045     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3046       return;
3047   case Decl::VarTemplateSpecialization:
3048     EmitGlobal(cast<VarDecl>(D));
3049     break;
3050 
3051   // Indirect fields from global anonymous structs and unions can be
3052   // ignored; only the actual variable requires IR gen support.
3053   case Decl::IndirectField:
3054     break;
3055 
3056   // C++ Decls
3057   case Decl::Namespace:
3058     EmitNamespace(cast<NamespaceDecl>(D));
3059     break;
3060     // No code generation needed.
3061   case Decl::UsingShadow:
3062   case Decl::ClassTemplate:
3063   case Decl::VarTemplate:
3064   case Decl::VarTemplatePartialSpecialization:
3065   case Decl::FunctionTemplate:
3066   case Decl::TypeAliasTemplate:
3067   case Decl::Block:
3068   case Decl::Empty:
3069     break;
3070   case Decl::Using:          // using X; [C++]
3071     if (CGDebugInfo *DI = getModuleDebugInfo())
3072         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3073     return;
3074   case Decl::NamespaceAlias:
3075     if (CGDebugInfo *DI = getModuleDebugInfo())
3076         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3077     return;
3078   case Decl::UsingDirective: // using namespace X; [C++]
3079     if (CGDebugInfo *DI = getModuleDebugInfo())
3080       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3081     return;
3082   case Decl::CXXConstructor:
3083     // Skip function templates
3084     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3085         cast<FunctionDecl>(D)->isLateTemplateParsed())
3086       return;
3087 
3088     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3089     break;
3090   case Decl::CXXDestructor:
3091     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3092       return;
3093     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3094     break;
3095 
3096   case Decl::StaticAssert:
3097     // Nothing to do.
3098     break;
3099 
3100   // Objective-C Decls
3101 
3102   // Forward declarations, no (immediate) code generation.
3103   case Decl::ObjCInterface:
3104   case Decl::ObjCCategory:
3105     break;
3106 
3107   case Decl::ObjCProtocol: {
3108     auto *Proto = cast<ObjCProtocolDecl>(D);
3109     if (Proto->isThisDeclarationADefinition())
3110       ObjCRuntime->GenerateProtocol(Proto);
3111     break;
3112   }
3113 
3114   case Decl::ObjCCategoryImpl:
3115     // Categories have properties but don't support synthesize so we
3116     // can ignore them here.
3117     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3118     break;
3119 
3120   case Decl::ObjCImplementation: {
3121     auto *OMD = cast<ObjCImplementationDecl>(D);
3122     EmitObjCPropertyImplementations(OMD);
3123     EmitObjCIvarInitializations(OMD);
3124     ObjCRuntime->GenerateClass(OMD);
3125     // Emit global variable debug information.
3126     if (CGDebugInfo *DI = getModuleDebugInfo())
3127       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3128         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3129             OMD->getClassInterface()), OMD->getLocation());
3130     break;
3131   }
3132   case Decl::ObjCMethod: {
3133     auto *OMD = cast<ObjCMethodDecl>(D);
3134     // If this is not a prototype, emit the body.
3135     if (OMD->getBody())
3136       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3137     break;
3138   }
3139   case Decl::ObjCCompatibleAlias:
3140     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3141     break;
3142 
3143   case Decl::LinkageSpec:
3144     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3145     break;
3146 
3147   case Decl::FileScopeAsm: {
3148     auto *AD = cast<FileScopeAsmDecl>(D);
3149     StringRef AsmString = AD->getAsmString()->getString();
3150 
3151     const std::string &S = getModule().getModuleInlineAsm();
3152     if (S.empty())
3153       getModule().setModuleInlineAsm(AsmString);
3154     else if (S.end()[-1] == '\n')
3155       getModule().setModuleInlineAsm(S + AsmString.str());
3156     else
3157       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3158     break;
3159   }
3160 
3161   case Decl::Import: {
3162     auto *Import = cast<ImportDecl>(D);
3163 
3164     // Ignore import declarations that come from imported modules.
3165     if (clang::Module *Owner = Import->getOwningModule()) {
3166       if (getLangOpts().CurrentModule.empty() ||
3167           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3168         break;
3169     }
3170 
3171     ImportedModules.insert(Import->getImportedModule());
3172     break;
3173   }
3174 
3175   case Decl::ClassTemplateSpecialization: {
3176     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3177     if (DebugInfo &&
3178         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3179       DebugInfo->completeTemplateDefinition(*Spec);
3180   }
3181 
3182   default:
3183     // Make sure we handled everything we should, every other kind is a
3184     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3185     // function. Need to recode Decl::Kind to do that easily.
3186     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3187   }
3188 }
3189 
3190 /// Turns the given pointer into a constant.
3191 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3192                                           const void *Ptr) {
3193   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3194   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3195   return llvm::ConstantInt::get(i64, PtrInt);
3196 }
3197 
3198 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3199                                    llvm::NamedMDNode *&GlobalMetadata,
3200                                    GlobalDecl D,
3201                                    llvm::GlobalValue *Addr) {
3202   if (!GlobalMetadata)
3203     GlobalMetadata =
3204       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3205 
3206   // TODO: should we report variant information for ctors/dtors?
3207   llvm::Value *Ops[] = {
3208     Addr,
3209     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3210   };
3211   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3212 }
3213 
3214 /// For each function which is declared within an extern "C" region and marked
3215 /// as 'used', but has internal linkage, create an alias from the unmangled
3216 /// name to the mangled name if possible. People expect to be able to refer
3217 /// to such functions with an unmangled name from inline assembly within the
3218 /// same translation unit.
3219 void CodeGenModule::EmitStaticExternCAliases() {
3220   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3221                                   E = StaticExternCValues.end();
3222        I != E; ++I) {
3223     IdentifierInfo *Name = I->first;
3224     llvm::GlobalValue *Val = I->second;
3225     if (Val && !getModule().getNamedValue(Name->getName()))
3226       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3227   }
3228 }
3229 
3230 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3231                                              GlobalDecl &Result) const {
3232   auto Res = Manglings.find(MangledName);
3233   if (Res == Manglings.end())
3234     return false;
3235   Result = Res->getValue();
3236   return true;
3237 }
3238 
3239 /// Emits metadata nodes associating all the global values in the
3240 /// current module with the Decls they came from.  This is useful for
3241 /// projects using IR gen as a subroutine.
3242 ///
3243 /// Since there's currently no way to associate an MDNode directly
3244 /// with an llvm::GlobalValue, we create a global named metadata
3245 /// with the name 'clang.global.decl.ptrs'.
3246 void CodeGenModule::EmitDeclMetadata() {
3247   llvm::NamedMDNode *GlobalMetadata = nullptr;
3248 
3249   // StaticLocalDeclMap
3250   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3251          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3252        I != E; ++I) {
3253     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3254     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3255   }
3256 }
3257 
3258 /// Emits metadata nodes for all the local variables in the current
3259 /// function.
3260 void CodeGenFunction::EmitDeclMetadata() {
3261   if (LocalDeclMap.empty()) return;
3262 
3263   llvm::LLVMContext &Context = getLLVMContext();
3264 
3265   // Find the unique metadata ID for this name.
3266   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3267 
3268   llvm::NamedMDNode *GlobalMetadata = nullptr;
3269 
3270   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3271          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3272     const Decl *D = I->first;
3273     llvm::Value *Addr = I->second;
3274 
3275     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3276       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3277       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3278     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3279       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3280       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3281     }
3282   }
3283 }
3284 
3285 void CodeGenModule::EmitVersionIdentMetadata() {
3286   llvm::NamedMDNode *IdentMetadata =
3287     TheModule.getOrInsertNamedMetadata("llvm.ident");
3288   std::string Version = getClangFullVersion();
3289   llvm::LLVMContext &Ctx = TheModule.getContext();
3290 
3291   llvm::Value *IdentNode[] = {
3292     llvm::MDString::get(Ctx, Version)
3293   };
3294   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3295 }
3296 
3297 void CodeGenModule::EmitCoverageFile() {
3298   if (!getCodeGenOpts().CoverageFile.empty()) {
3299     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3300       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3301       llvm::LLVMContext &Ctx = TheModule.getContext();
3302       llvm::MDString *CoverageFile =
3303           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3304       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3305         llvm::MDNode *CU = CUNode->getOperand(i);
3306         llvm::Value *node[] = { CoverageFile, CU };
3307         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3308         GCov->addOperand(N);
3309       }
3310     }
3311   }
3312 }
3313 
3314 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3315                                                      QualType GuidType) {
3316   // Sema has checked that all uuid strings are of the form
3317   // "12345678-1234-1234-1234-1234567890ab".
3318   assert(Uuid.size() == 36);
3319   for (unsigned i = 0; i < 36; ++i) {
3320     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3321     else                                         assert(isHexDigit(Uuid[i]));
3322   }
3323 
3324   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3325 
3326   llvm::Constant *Field3[8];
3327   for (unsigned Idx = 0; Idx < 8; ++Idx)
3328     Field3[Idx] = llvm::ConstantInt::get(
3329         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3330 
3331   llvm::Constant *Fields[4] = {
3332     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3333     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3334     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3335     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3336   };
3337 
3338   return llvm::ConstantStruct::getAnon(Fields);
3339 }
3340