1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC1) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC1) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (getCodeGenOpts().CodeModel.size() > 0) { 560 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 561 .Case("tiny", llvm::CodeModel::Tiny) 562 .Case("small", llvm::CodeModel::Small) 563 .Case("kernel", llvm::CodeModel::Kernel) 564 .Case("medium", llvm::CodeModel::Medium) 565 .Case("large", llvm::CodeModel::Large) 566 .Default(~0u); 567 if (CM != ~0u) { 568 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 569 getModule().setCodeModel(codeModel); 570 } 571 } 572 573 if (CodeGenOpts.NoPLT) 574 getModule().setRtLibUseGOT(); 575 576 SimplifyPersonality(); 577 578 if (getCodeGenOpts().EmitDeclMetadata) 579 EmitDeclMetadata(); 580 581 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 582 EmitCoverageFile(); 583 584 if (DebugInfo) 585 DebugInfo->finalize(); 586 587 if (getCodeGenOpts().EmitVersionIdentMetadata) 588 EmitVersionIdentMetadata(); 589 590 EmitTargetMetadata(); 591 } 592 593 void CodeGenModule::EmitOpenCLMetadata() { 594 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 595 // opencl.ocl.version named metadata node. 596 llvm::Metadata *OCLVerElts[] = { 597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 598 Int32Ty, LangOpts.OpenCLVersion / 100)), 599 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 600 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 601 llvm::NamedMDNode *OCLVerMD = 602 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 603 llvm::LLVMContext &Ctx = TheModule.getContext(); 604 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 605 } 606 607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 608 // Make sure that this type is translated. 609 Types.UpdateCompletedType(TD); 610 } 611 612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 613 // Make sure that this type is translated. 614 Types.RefreshTypeCacheForClass(RD); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTypeInfo(QTy); 621 } 622 623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 624 if (!TBAA) 625 return TBAAAccessInfo(); 626 return TBAA->getAccessInfo(AccessType); 627 } 628 629 TBAAAccessInfo 630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 631 if (!TBAA) 632 return TBAAAccessInfo(); 633 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 634 } 635 636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 637 if (!TBAA) 638 return nullptr; 639 return TBAA->getTBAAStructInfo(QTy); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getBaseTypeInfo(QTy); 646 } 647 648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 649 if (!TBAA) 650 return nullptr; 651 return TBAA->getAccessTagInfo(Info); 652 } 653 654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 655 TBAAAccessInfo TargetInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 659 } 660 661 TBAAAccessInfo 662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 663 TBAAAccessInfo InfoB) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 671 TBAAAccessInfo SrcInfo) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 675 } 676 677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 678 TBAAAccessInfo TBAAInfo) { 679 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 680 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 681 } 682 683 void CodeGenModule::DecorateInstructionWithInvariantGroup( 684 llvm::Instruction *I, const CXXRecordDecl *RD) { 685 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 686 llvm::MDNode::get(getLLVMContext(), {})); 687 } 688 689 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 690 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 691 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 692 } 693 694 /// ErrorUnsupported - Print out an error that codegen doesn't support the 695 /// specified stmt yet. 696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 697 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 698 "cannot compile this %0 yet"); 699 std::string Msg = Type; 700 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 701 << Msg << S->getSourceRange(); 702 } 703 704 /// ErrorUnsupported - Print out an error that codegen doesn't support the 705 /// specified decl yet. 706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 707 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 708 "cannot compile this %0 yet"); 709 std::string Msg = Type; 710 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 711 } 712 713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 714 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 715 } 716 717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 718 const NamedDecl *D) const { 719 if (GV->hasDLLImportStorageClass()) 720 return; 721 // Internal definitions always have default visibility. 722 if (GV->hasLocalLinkage()) { 723 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 724 return; 725 } 726 if (!D) 727 return; 728 // Set visibility for definitions. 729 LinkageInfo LV = D->getLinkageAndVisibility(); 730 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 731 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 732 } 733 734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 735 llvm::GlobalValue *GV) { 736 if (GV->hasLocalLinkage()) 737 return true; 738 739 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 740 return true; 741 742 // DLLImport explicitly marks the GV as external. 743 if (GV->hasDLLImportStorageClass()) 744 return false; 745 746 const llvm::Triple &TT = CGM.getTriple(); 747 if (TT.isWindowsGNUEnvironment()) { 748 // In MinGW, variables without DLLImport can still be automatically 749 // imported from a DLL by the linker; don't mark variables that 750 // potentially could come from another DLL as DSO local. 751 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 752 !GV->isThreadLocal()) 753 return false; 754 } 755 // Every other GV is local on COFF. 756 // Make an exception for windows OS in the triple: Some firmware builds use 757 // *-win32-macho triples. This (accidentally?) produced windows relocations 758 // without GOT tables in older clang versions; Keep this behaviour. 759 // FIXME: even thread local variables? 760 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 761 return true; 762 763 // Only handle COFF and ELF for now. 764 if (!TT.isOSBinFormatELF()) 765 return false; 766 767 // If this is not an executable, don't assume anything is local. 768 const auto &CGOpts = CGM.getCodeGenOpts(); 769 llvm::Reloc::Model RM = CGOpts.RelocationModel; 770 const auto &LOpts = CGM.getLangOpts(); 771 if (RM != llvm::Reloc::Static && !LOpts.PIE) 772 return false; 773 774 // A definition cannot be preempted from an executable. 775 if (!GV->isDeclarationForLinker()) 776 return true; 777 778 // Most PIC code sequences that assume that a symbol is local cannot produce a 779 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 780 // depended, it seems worth it to handle it here. 781 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 782 return false; 783 784 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 785 llvm::Triple::ArchType Arch = TT.getArch(); 786 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 787 Arch == llvm::Triple::ppc64le) 788 return false; 789 790 // If we can use copy relocations we can assume it is local. 791 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 792 if (!Var->isThreadLocal() && 793 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 794 return true; 795 796 // If we can use a plt entry as the symbol address we can assume it 797 // is local. 798 // FIXME: This should work for PIE, but the gold linker doesn't support it. 799 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 800 return true; 801 802 // Otherwise don't assue it is local. 803 return false; 804 } 805 806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 807 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 808 } 809 810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 813 // C++ destructors have a few C++ ABI specific special cases. 814 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 815 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 816 return; 817 } 818 setDLLImportDLLExport(GV, D); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 if (D && D->isExternallyVisible()) { 824 if (D->hasAttr<DLLImportAttr>()) 825 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 826 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 828 } 829 } 830 831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 832 GlobalDecl GD) const { 833 setDLLImportDLLExport(GV, GD); 834 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 835 } 836 837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 838 const NamedDecl *D) const { 839 setDLLImportDLLExport(GV, D); 840 setGlobalVisibilityAndLocal(GV, D); 841 } 842 843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 844 const NamedDecl *D) const { 845 setGlobalVisibility(GV, D); 846 setDSOLocal(GV); 847 } 848 849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 850 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 851 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 852 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 853 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 854 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 855 } 856 857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 858 CodeGenOptions::TLSModel M) { 859 switch (M) { 860 case CodeGenOptions::GeneralDynamicTLSModel: 861 return llvm::GlobalVariable::GeneralDynamicTLSModel; 862 case CodeGenOptions::LocalDynamicTLSModel: 863 return llvm::GlobalVariable::LocalDynamicTLSModel; 864 case CodeGenOptions::InitialExecTLSModel: 865 return llvm::GlobalVariable::InitialExecTLSModel; 866 case CodeGenOptions::LocalExecTLSModel: 867 return llvm::GlobalVariable::LocalExecTLSModel; 868 } 869 llvm_unreachable("Invalid TLS model!"); 870 } 871 872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 873 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 874 875 llvm::GlobalValue::ThreadLocalMode TLM; 876 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 877 878 // Override the TLS model if it is explicitly specified. 879 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 880 TLM = GetLLVMTLSModel(Attr->getModel()); 881 } 882 883 GV->setThreadLocalMode(TLM); 884 } 885 886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 887 StringRef Name) { 888 const TargetInfo &Target = CGM.getTarget(); 889 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 890 } 891 892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 893 const CPUSpecificAttr *Attr, 894 raw_ostream &Out) { 895 // cpu_specific gets the current name, dispatch gets the resolver. 896 if (Attr) 897 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 898 else 899 Out << ".resolver"; 900 } 901 902 static void AppendTargetMangling(const CodeGenModule &CGM, 903 const TargetAttr *Attr, raw_ostream &Out) { 904 if (Attr->isDefaultVersion()) 905 return; 906 907 Out << '.'; 908 const TargetInfo &Target = CGM.getTarget(); 909 TargetAttr::ParsedTargetAttr Info = 910 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 911 // Multiversioning doesn't allow "no-${feature}", so we can 912 // only have "+" prefixes here. 913 assert(LHS.startswith("+") && RHS.startswith("+") && 914 "Features should always have a prefix."); 915 return Target.multiVersionSortPriority(LHS.substr(1)) > 916 Target.multiVersionSortPriority(RHS.substr(1)); 917 }); 918 919 bool IsFirst = true; 920 921 if (!Info.Architecture.empty()) { 922 IsFirst = false; 923 Out << "arch_" << Info.Architecture; 924 } 925 926 for (StringRef Feat : Info.Features) { 927 if (!IsFirst) 928 Out << '_'; 929 IsFirst = false; 930 Out << Feat.substr(1); 931 } 932 } 933 934 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 935 const NamedDecl *ND, 936 bool OmitMultiVersionMangling = false) { 937 SmallString<256> Buffer; 938 llvm::raw_svector_ostream Out(Buffer); 939 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 940 if (MC.shouldMangleDeclName(ND)) { 941 llvm::raw_svector_ostream Out(Buffer); 942 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 943 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 944 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 945 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 946 else 947 MC.mangleName(ND, Out); 948 } else { 949 IdentifierInfo *II = ND->getIdentifier(); 950 assert(II && "Attempt to mangle unnamed decl."); 951 const auto *FD = dyn_cast<FunctionDecl>(ND); 952 953 if (FD && 954 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 955 llvm::raw_svector_ostream Out(Buffer); 956 Out << "__regcall3__" << II->getName(); 957 } else { 958 Out << II->getName(); 959 } 960 } 961 962 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 963 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 964 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 965 AppendCPUSpecificCPUDispatchMangling( 966 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 967 else 968 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 969 } 970 971 return Out.str(); 972 } 973 974 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 975 const FunctionDecl *FD) { 976 if (!FD->isMultiVersion()) 977 return; 978 979 // Get the name of what this would be without the 'target' attribute. This 980 // allows us to lookup the version that was emitted when this wasn't a 981 // multiversion function. 982 std::string NonTargetName = 983 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 984 GlobalDecl OtherGD; 985 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 986 assert(OtherGD.getCanonicalDecl() 987 .getDecl() 988 ->getAsFunction() 989 ->isMultiVersion() && 990 "Other GD should now be a multiversioned function"); 991 // OtherFD is the version of this function that was mangled BEFORE 992 // becoming a MultiVersion function. It potentially needs to be updated. 993 const FunctionDecl *OtherFD = 994 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 995 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 996 // This is so that if the initial version was already the 'default' 997 // version, we don't try to update it. 998 if (OtherName != NonTargetName) { 999 // Remove instead of erase, since others may have stored the StringRef 1000 // to this. 1001 const auto ExistingRecord = Manglings.find(NonTargetName); 1002 if (ExistingRecord != std::end(Manglings)) 1003 Manglings.remove(&(*ExistingRecord)); 1004 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1005 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1006 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1007 Entry->setName(OtherName); 1008 } 1009 } 1010 } 1011 1012 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1013 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1014 1015 // Some ABIs don't have constructor variants. Make sure that base and 1016 // complete constructors get mangled the same. 1017 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1018 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1019 CXXCtorType OrigCtorType = GD.getCtorType(); 1020 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1021 if (OrigCtorType == Ctor_Base) 1022 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1023 } 1024 } 1025 1026 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1027 // Since CPUSpecific can require multiple emits per decl, store the manglings 1028 // separately. 1029 if (FD && 1030 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1031 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1032 1033 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1034 CanonicalGD, 1035 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1036 1037 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1038 if (FoundName != CPUSpecificMangledDeclNames.end()) 1039 return FoundName->second; 1040 1041 auto Result = CPUSpecificManglings.insert( 1042 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1043 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1044 } 1045 1046 auto FoundName = MangledDeclNames.find(CanonicalGD); 1047 if (FoundName != MangledDeclNames.end()) 1048 return FoundName->second; 1049 1050 // Keep the first result in the case of a mangling collision. 1051 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1052 auto Result = 1053 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1054 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1055 } 1056 1057 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1058 const BlockDecl *BD) { 1059 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1060 const Decl *D = GD.getDecl(); 1061 1062 SmallString<256> Buffer; 1063 llvm::raw_svector_ostream Out(Buffer); 1064 if (!D) 1065 MangleCtx.mangleGlobalBlock(BD, 1066 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1067 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1068 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1069 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1070 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1071 else 1072 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1073 1074 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1075 return Result.first->first(); 1076 } 1077 1078 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1079 return getModule().getNamedValue(Name); 1080 } 1081 1082 /// AddGlobalCtor - Add a function to the list that will be called before 1083 /// main() runs. 1084 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1085 llvm::Constant *AssociatedData) { 1086 // FIXME: Type coercion of void()* types. 1087 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1088 } 1089 1090 /// AddGlobalDtor - Add a function to the list that will be called 1091 /// when the module is unloaded. 1092 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1093 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1094 DtorsUsingAtExit[Priority].push_back(Dtor); 1095 return; 1096 } 1097 1098 // FIXME: Type coercion of void()* types. 1099 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1100 } 1101 1102 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1103 if (Fns.empty()) return; 1104 1105 // Ctor function type is void()*. 1106 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1107 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1108 1109 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1110 llvm::StructType *CtorStructTy = llvm::StructType::get( 1111 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1112 1113 // Construct the constructor and destructor arrays. 1114 ConstantInitBuilder builder(*this); 1115 auto ctors = builder.beginArray(CtorStructTy); 1116 for (const auto &I : Fns) { 1117 auto ctor = ctors.beginStruct(CtorStructTy); 1118 ctor.addInt(Int32Ty, I.Priority); 1119 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1120 if (I.AssociatedData) 1121 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1122 else 1123 ctor.addNullPointer(VoidPtrTy); 1124 ctor.finishAndAddTo(ctors); 1125 } 1126 1127 auto list = 1128 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1129 /*constant*/ false, 1130 llvm::GlobalValue::AppendingLinkage); 1131 1132 // The LTO linker doesn't seem to like it when we set an alignment 1133 // on appending variables. Take it off as a workaround. 1134 list->setAlignment(0); 1135 1136 Fns.clear(); 1137 } 1138 1139 llvm::GlobalValue::LinkageTypes 1140 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1141 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1142 1143 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1144 1145 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1146 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1147 1148 if (isa<CXXConstructorDecl>(D) && 1149 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1150 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1151 // Our approach to inheriting constructors is fundamentally different from 1152 // that used by the MS ABI, so keep our inheriting constructor thunks 1153 // internal rather than trying to pick an unambiguous mangling for them. 1154 return llvm::GlobalValue::InternalLinkage; 1155 } 1156 1157 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1158 } 1159 1160 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1161 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1162 if (!MDS) return nullptr; 1163 1164 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1165 } 1166 1167 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1168 const CGFunctionInfo &Info, 1169 llvm::Function *F) { 1170 unsigned CallingConv; 1171 llvm::AttributeList PAL; 1172 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1173 F->setAttributes(PAL); 1174 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1175 } 1176 1177 /// Determines whether the language options require us to model 1178 /// unwind exceptions. We treat -fexceptions as mandating this 1179 /// except under the fragile ObjC ABI with only ObjC exceptions 1180 /// enabled. This means, for example, that C with -fexceptions 1181 /// enables this. 1182 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1183 // If exceptions are completely disabled, obviously this is false. 1184 if (!LangOpts.Exceptions) return false; 1185 1186 // If C++ exceptions are enabled, this is true. 1187 if (LangOpts.CXXExceptions) return true; 1188 1189 // If ObjC exceptions are enabled, this depends on the ABI. 1190 if (LangOpts.ObjCExceptions) { 1191 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1192 } 1193 1194 return true; 1195 } 1196 1197 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1198 const CXXMethodDecl *MD) { 1199 // Check that the type metadata can ever actually be used by a call. 1200 if (!CGM.getCodeGenOpts().LTOUnit || 1201 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1202 return false; 1203 1204 // Only functions whose address can be taken with a member function pointer 1205 // need this sort of type metadata. 1206 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1207 !isa<CXXDestructorDecl>(MD); 1208 } 1209 1210 std::vector<const CXXRecordDecl *> 1211 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1212 llvm::SetVector<const CXXRecordDecl *> MostBases; 1213 1214 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1215 CollectMostBases = [&](const CXXRecordDecl *RD) { 1216 if (RD->getNumBases() == 0) 1217 MostBases.insert(RD); 1218 for (const CXXBaseSpecifier &B : RD->bases()) 1219 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1220 }; 1221 CollectMostBases(RD); 1222 return MostBases.takeVector(); 1223 } 1224 1225 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1226 llvm::Function *F) { 1227 llvm::AttrBuilder B; 1228 1229 if (CodeGenOpts.UnwindTables) 1230 B.addAttribute(llvm::Attribute::UWTable); 1231 1232 if (!hasUnwindExceptions(LangOpts)) 1233 B.addAttribute(llvm::Attribute::NoUnwind); 1234 1235 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1236 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1237 B.addAttribute(llvm::Attribute::StackProtect); 1238 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1239 B.addAttribute(llvm::Attribute::StackProtectStrong); 1240 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1241 B.addAttribute(llvm::Attribute::StackProtectReq); 1242 } 1243 1244 if (!D) { 1245 // If we don't have a declaration to control inlining, the function isn't 1246 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1247 // disabled, mark the function as noinline. 1248 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1249 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1250 B.addAttribute(llvm::Attribute::NoInline); 1251 1252 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1253 return; 1254 } 1255 1256 // Track whether we need to add the optnone LLVM attribute, 1257 // starting with the default for this optimization level. 1258 bool ShouldAddOptNone = 1259 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1260 // We can't add optnone in the following cases, it won't pass the verifier. 1261 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1262 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1263 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1264 1265 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1266 B.addAttribute(llvm::Attribute::OptimizeNone); 1267 1268 // OptimizeNone implies noinline; we should not be inlining such functions. 1269 B.addAttribute(llvm::Attribute::NoInline); 1270 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1271 "OptimizeNone and AlwaysInline on same function!"); 1272 1273 // We still need to handle naked functions even though optnone subsumes 1274 // much of their semantics. 1275 if (D->hasAttr<NakedAttr>()) 1276 B.addAttribute(llvm::Attribute::Naked); 1277 1278 // OptimizeNone wins over OptimizeForSize and MinSize. 1279 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1280 F->removeFnAttr(llvm::Attribute::MinSize); 1281 } else if (D->hasAttr<NakedAttr>()) { 1282 // Naked implies noinline: we should not be inlining such functions. 1283 B.addAttribute(llvm::Attribute::Naked); 1284 B.addAttribute(llvm::Attribute::NoInline); 1285 } else if (D->hasAttr<NoDuplicateAttr>()) { 1286 B.addAttribute(llvm::Attribute::NoDuplicate); 1287 } else if (D->hasAttr<NoInlineAttr>()) { 1288 B.addAttribute(llvm::Attribute::NoInline); 1289 } else if (D->hasAttr<AlwaysInlineAttr>() && 1290 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1291 // (noinline wins over always_inline, and we can't specify both in IR) 1292 B.addAttribute(llvm::Attribute::AlwaysInline); 1293 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1294 // If we're not inlining, then force everything that isn't always_inline to 1295 // carry an explicit noinline attribute. 1296 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1297 B.addAttribute(llvm::Attribute::NoInline); 1298 } else { 1299 // Otherwise, propagate the inline hint attribute and potentially use its 1300 // absence to mark things as noinline. 1301 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1302 // Search function and template pattern redeclarations for inline. 1303 auto CheckForInline = [](const FunctionDecl *FD) { 1304 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1305 return Redecl->isInlineSpecified(); 1306 }; 1307 if (any_of(FD->redecls(), CheckRedeclForInline)) 1308 return true; 1309 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1310 if (!Pattern) 1311 return false; 1312 return any_of(Pattern->redecls(), CheckRedeclForInline); 1313 }; 1314 if (CheckForInline(FD)) { 1315 B.addAttribute(llvm::Attribute::InlineHint); 1316 } else if (CodeGenOpts.getInlining() == 1317 CodeGenOptions::OnlyHintInlining && 1318 !FD->isInlined() && 1319 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1320 B.addAttribute(llvm::Attribute::NoInline); 1321 } 1322 } 1323 } 1324 1325 // Add other optimization related attributes if we are optimizing this 1326 // function. 1327 if (!D->hasAttr<OptimizeNoneAttr>()) { 1328 if (D->hasAttr<ColdAttr>()) { 1329 if (!ShouldAddOptNone) 1330 B.addAttribute(llvm::Attribute::OptimizeForSize); 1331 B.addAttribute(llvm::Attribute::Cold); 1332 } 1333 1334 if (D->hasAttr<MinSizeAttr>()) 1335 B.addAttribute(llvm::Attribute::MinSize); 1336 } 1337 1338 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1339 1340 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1341 if (alignment) 1342 F->setAlignment(alignment); 1343 1344 if (!D->hasAttr<AlignedAttr>()) 1345 if (LangOpts.FunctionAlignment) 1346 F->setAlignment(1 << LangOpts.FunctionAlignment); 1347 1348 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1349 // reserve a bit for differentiating between virtual and non-virtual member 1350 // functions. If the current target's C++ ABI requires this and this is a 1351 // member function, set its alignment accordingly. 1352 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1353 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1354 F->setAlignment(2); 1355 } 1356 1357 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1358 if (CodeGenOpts.SanitizeCfiCrossDso) 1359 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1360 CreateFunctionTypeMetadataForIcall(FD, F); 1361 1362 // Emit type metadata on member functions for member function pointer checks. 1363 // These are only ever necessary on definitions; we're guaranteed that the 1364 // definition will be present in the LTO unit as a result of LTO visibility. 1365 auto *MD = dyn_cast<CXXMethodDecl>(D); 1366 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1367 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1368 llvm::Metadata *Id = 1369 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1370 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1371 F->addTypeMetadata(0, Id); 1372 } 1373 } 1374 } 1375 1376 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1377 const Decl *D = GD.getDecl(); 1378 if (dyn_cast_or_null<NamedDecl>(D)) 1379 setGVProperties(GV, GD); 1380 else 1381 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1382 1383 if (D && D->hasAttr<UsedAttr>()) 1384 addUsedGlobal(GV); 1385 1386 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1387 const auto *VD = cast<VarDecl>(D); 1388 if (VD->getType().isConstQualified() && VD->getStorageClass() == SC_Static) 1389 addUsedGlobal(GV); 1390 } 1391 } 1392 1393 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1394 llvm::AttrBuilder &Attrs) { 1395 // Add target-cpu and target-features attributes to functions. If 1396 // we have a decl for the function and it has a target attribute then 1397 // parse that and add it to the feature set. 1398 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1399 std::vector<std::string> Features; 1400 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1401 FD = FD ? FD->getMostRecentDecl() : FD; 1402 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1403 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1404 bool AddedAttr = false; 1405 if (TD || SD) { 1406 llvm::StringMap<bool> FeatureMap; 1407 getFunctionFeatureMap(FeatureMap, FD); 1408 1409 // Produce the canonical string for this set of features. 1410 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1411 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1412 1413 // Now add the target-cpu and target-features to the function. 1414 // While we populated the feature map above, we still need to 1415 // get and parse the target attribute so we can get the cpu for 1416 // the function. 1417 if (TD) { 1418 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1419 if (ParsedAttr.Architecture != "" && 1420 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1421 TargetCPU = ParsedAttr.Architecture; 1422 } 1423 } else { 1424 // Otherwise just add the existing target cpu and target features to the 1425 // function. 1426 Features = getTarget().getTargetOpts().Features; 1427 } 1428 1429 if (TargetCPU != "") { 1430 Attrs.addAttribute("target-cpu", TargetCPU); 1431 AddedAttr = true; 1432 } 1433 if (!Features.empty()) { 1434 llvm::sort(Features); 1435 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1436 AddedAttr = true; 1437 } 1438 1439 return AddedAttr; 1440 } 1441 1442 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1443 llvm::GlobalObject *GO) { 1444 const Decl *D = GD.getDecl(); 1445 SetCommonAttributes(GD, GO); 1446 1447 if (D) { 1448 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1449 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1450 GV->addAttribute("bss-section", SA->getName()); 1451 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1452 GV->addAttribute("data-section", SA->getName()); 1453 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1454 GV->addAttribute("rodata-section", SA->getName()); 1455 } 1456 1457 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1458 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1459 if (!D->getAttr<SectionAttr>()) 1460 F->addFnAttr("implicit-section-name", SA->getName()); 1461 1462 llvm::AttrBuilder Attrs; 1463 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1464 // We know that GetCPUAndFeaturesAttributes will always have the 1465 // newest set, since it has the newest possible FunctionDecl, so the 1466 // new ones should replace the old. 1467 F->removeFnAttr("target-cpu"); 1468 F->removeFnAttr("target-features"); 1469 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1470 } 1471 } 1472 1473 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1474 GO->setSection(CSA->getName()); 1475 else if (const auto *SA = D->getAttr<SectionAttr>()) 1476 GO->setSection(SA->getName()); 1477 } 1478 1479 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1480 } 1481 1482 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1483 llvm::Function *F, 1484 const CGFunctionInfo &FI) { 1485 const Decl *D = GD.getDecl(); 1486 SetLLVMFunctionAttributes(D, FI, F); 1487 SetLLVMFunctionAttributesForDefinition(D, F); 1488 1489 F->setLinkage(llvm::Function::InternalLinkage); 1490 1491 setNonAliasAttributes(GD, F); 1492 } 1493 1494 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1495 // Set linkage and visibility in case we never see a definition. 1496 LinkageInfo LV = ND->getLinkageAndVisibility(); 1497 // Don't set internal linkage on declarations. 1498 // "extern_weak" is overloaded in LLVM; we probably should have 1499 // separate linkage types for this. 1500 if (isExternallyVisible(LV.getLinkage()) && 1501 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1502 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1503 } 1504 1505 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1506 llvm::Function *F) { 1507 // Only if we are checking indirect calls. 1508 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1509 return; 1510 1511 // Non-static class methods are handled via vtable or member function pointer 1512 // checks elsewhere. 1513 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1514 return; 1515 1516 // Additionally, if building with cross-DSO support... 1517 if (CodeGenOpts.SanitizeCfiCrossDso) { 1518 // Skip available_externally functions. They won't be codegen'ed in the 1519 // current module anyway. 1520 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1521 return; 1522 } 1523 1524 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1525 F->addTypeMetadata(0, MD); 1526 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1527 1528 // Emit a hash-based bit set entry for cross-DSO calls. 1529 if (CodeGenOpts.SanitizeCfiCrossDso) 1530 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1531 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1532 } 1533 1534 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1535 bool IsIncompleteFunction, 1536 bool IsThunk) { 1537 1538 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1539 // If this is an intrinsic function, set the function's attributes 1540 // to the intrinsic's attributes. 1541 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1542 return; 1543 } 1544 1545 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1546 1547 if (!IsIncompleteFunction) { 1548 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1549 // Setup target-specific attributes. 1550 if (F->isDeclaration()) 1551 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1552 } 1553 1554 // Add the Returned attribute for "this", except for iOS 5 and earlier 1555 // where substantial code, including the libstdc++ dylib, was compiled with 1556 // GCC and does not actually return "this". 1557 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1558 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1559 assert(!F->arg_empty() && 1560 F->arg_begin()->getType() 1561 ->canLosslesslyBitCastTo(F->getReturnType()) && 1562 "unexpected this return"); 1563 F->addAttribute(1, llvm::Attribute::Returned); 1564 } 1565 1566 // Only a few attributes are set on declarations; these may later be 1567 // overridden by a definition. 1568 1569 setLinkageForGV(F, FD); 1570 setGVProperties(F, FD); 1571 1572 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1573 F->setSection(CSA->getName()); 1574 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1575 F->setSection(SA->getName()); 1576 1577 if (FD->isReplaceableGlobalAllocationFunction()) { 1578 // A replaceable global allocation function does not act like a builtin by 1579 // default, only if it is invoked by a new-expression or delete-expression. 1580 F->addAttribute(llvm::AttributeList::FunctionIndex, 1581 llvm::Attribute::NoBuiltin); 1582 1583 // A sane operator new returns a non-aliasing pointer. 1584 // FIXME: Also add NonNull attribute to the return value 1585 // for the non-nothrow forms? 1586 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1587 if (getCodeGenOpts().AssumeSaneOperatorNew && 1588 (Kind == OO_New || Kind == OO_Array_New)) 1589 F->addAttribute(llvm::AttributeList::ReturnIndex, 1590 llvm::Attribute::NoAlias); 1591 } 1592 1593 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1594 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1595 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1596 if (MD->isVirtual()) 1597 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1598 1599 // Don't emit entries for function declarations in the cross-DSO mode. This 1600 // is handled with better precision by the receiving DSO. 1601 if (!CodeGenOpts.SanitizeCfiCrossDso) 1602 CreateFunctionTypeMetadataForIcall(FD, F); 1603 1604 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1605 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1606 } 1607 1608 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1609 assert(!GV->isDeclaration() && 1610 "Only globals with definition can force usage."); 1611 LLVMUsed.emplace_back(GV); 1612 } 1613 1614 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1615 assert(!GV->isDeclaration() && 1616 "Only globals with definition can force usage."); 1617 LLVMCompilerUsed.emplace_back(GV); 1618 } 1619 1620 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1621 std::vector<llvm::WeakTrackingVH> &List) { 1622 // Don't create llvm.used if there is no need. 1623 if (List.empty()) 1624 return; 1625 1626 // Convert List to what ConstantArray needs. 1627 SmallVector<llvm::Constant*, 8> UsedArray; 1628 UsedArray.resize(List.size()); 1629 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1630 UsedArray[i] = 1631 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1632 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1633 } 1634 1635 if (UsedArray.empty()) 1636 return; 1637 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1638 1639 auto *GV = new llvm::GlobalVariable( 1640 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1641 llvm::ConstantArray::get(ATy, UsedArray), Name); 1642 1643 GV->setSection("llvm.metadata"); 1644 } 1645 1646 void CodeGenModule::emitLLVMUsed() { 1647 emitUsed(*this, "llvm.used", LLVMUsed); 1648 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1649 } 1650 1651 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1652 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1653 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1654 } 1655 1656 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1657 llvm::SmallString<32> Opt; 1658 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1659 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1660 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1661 } 1662 1663 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1664 auto &C = getLLVMContext(); 1665 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1666 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1667 } 1668 1669 void CodeGenModule::AddDependentLib(StringRef Lib) { 1670 llvm::SmallString<24> Opt; 1671 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1672 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1673 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1674 } 1675 1676 /// Add link options implied by the given module, including modules 1677 /// it depends on, using a postorder walk. 1678 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1679 SmallVectorImpl<llvm::MDNode *> &Metadata, 1680 llvm::SmallPtrSet<Module *, 16> &Visited) { 1681 // Import this module's parent. 1682 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1683 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1684 } 1685 1686 // Import this module's dependencies. 1687 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1688 if (Visited.insert(Mod->Imports[I - 1]).second) 1689 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1690 } 1691 1692 // Add linker options to link against the libraries/frameworks 1693 // described by this module. 1694 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1695 1696 // For modules that use export_as for linking, use that module 1697 // name instead. 1698 if (Mod->UseExportAsModuleLinkName) 1699 return; 1700 1701 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1702 // Link against a framework. Frameworks are currently Darwin only, so we 1703 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1704 if (Mod->LinkLibraries[I-1].IsFramework) { 1705 llvm::Metadata *Args[2] = { 1706 llvm::MDString::get(Context, "-framework"), 1707 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1708 1709 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1710 continue; 1711 } 1712 1713 // Link against a library. 1714 llvm::SmallString<24> Opt; 1715 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1716 Mod->LinkLibraries[I-1].Library, Opt); 1717 auto *OptString = llvm::MDString::get(Context, Opt); 1718 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1719 } 1720 } 1721 1722 void CodeGenModule::EmitModuleLinkOptions() { 1723 // Collect the set of all of the modules we want to visit to emit link 1724 // options, which is essentially the imported modules and all of their 1725 // non-explicit child modules. 1726 llvm::SetVector<clang::Module *> LinkModules; 1727 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1728 SmallVector<clang::Module *, 16> Stack; 1729 1730 // Seed the stack with imported modules. 1731 for (Module *M : ImportedModules) { 1732 // Do not add any link flags when an implementation TU of a module imports 1733 // a header of that same module. 1734 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1735 !getLangOpts().isCompilingModule()) 1736 continue; 1737 if (Visited.insert(M).second) 1738 Stack.push_back(M); 1739 } 1740 1741 // Find all of the modules to import, making a little effort to prune 1742 // non-leaf modules. 1743 while (!Stack.empty()) { 1744 clang::Module *Mod = Stack.pop_back_val(); 1745 1746 bool AnyChildren = false; 1747 1748 // Visit the submodules of this module. 1749 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1750 SubEnd = Mod->submodule_end(); 1751 Sub != SubEnd; ++Sub) { 1752 // Skip explicit children; they need to be explicitly imported to be 1753 // linked against. 1754 if ((*Sub)->IsExplicit) 1755 continue; 1756 1757 if (Visited.insert(*Sub).second) { 1758 Stack.push_back(*Sub); 1759 AnyChildren = true; 1760 } 1761 } 1762 1763 // We didn't find any children, so add this module to the list of 1764 // modules to link against. 1765 if (!AnyChildren) { 1766 LinkModules.insert(Mod); 1767 } 1768 } 1769 1770 // Add link options for all of the imported modules in reverse topological 1771 // order. We don't do anything to try to order import link flags with respect 1772 // to linker options inserted by things like #pragma comment(). 1773 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1774 Visited.clear(); 1775 for (Module *M : LinkModules) 1776 if (Visited.insert(M).second) 1777 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1778 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1779 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1780 1781 // Add the linker options metadata flag. 1782 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1783 for (auto *MD : LinkerOptionsMetadata) 1784 NMD->addOperand(MD); 1785 } 1786 1787 void CodeGenModule::EmitDeferred() { 1788 // Emit deferred declare target declarations. 1789 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1790 getOpenMPRuntime().emitDeferredTargetDecls(); 1791 1792 // Emit code for any potentially referenced deferred decls. Since a 1793 // previously unused static decl may become used during the generation of code 1794 // for a static function, iterate until no changes are made. 1795 1796 if (!DeferredVTables.empty()) { 1797 EmitDeferredVTables(); 1798 1799 // Emitting a vtable doesn't directly cause more vtables to 1800 // become deferred, although it can cause functions to be 1801 // emitted that then need those vtables. 1802 assert(DeferredVTables.empty()); 1803 } 1804 1805 // Stop if we're out of both deferred vtables and deferred declarations. 1806 if (DeferredDeclsToEmit.empty()) 1807 return; 1808 1809 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1810 // work, it will not interfere with this. 1811 std::vector<GlobalDecl> CurDeclsToEmit; 1812 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1813 1814 for (GlobalDecl &D : CurDeclsToEmit) { 1815 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1816 // to get GlobalValue with exactly the type we need, not something that 1817 // might had been created for another decl with the same mangled name but 1818 // different type. 1819 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1820 GetAddrOfGlobal(D, ForDefinition)); 1821 1822 // In case of different address spaces, we may still get a cast, even with 1823 // IsForDefinition equal to true. Query mangled names table to get 1824 // GlobalValue. 1825 if (!GV) 1826 GV = GetGlobalValue(getMangledName(D)); 1827 1828 // Make sure GetGlobalValue returned non-null. 1829 assert(GV); 1830 1831 // Check to see if we've already emitted this. This is necessary 1832 // for a couple of reasons: first, decls can end up in the 1833 // deferred-decls queue multiple times, and second, decls can end 1834 // up with definitions in unusual ways (e.g. by an extern inline 1835 // function acquiring a strong function redefinition). Just 1836 // ignore these cases. 1837 if (!GV->isDeclaration()) 1838 continue; 1839 1840 // Otherwise, emit the definition and move on to the next one. 1841 EmitGlobalDefinition(D, GV); 1842 1843 // If we found out that we need to emit more decls, do that recursively. 1844 // This has the advantage that the decls are emitted in a DFS and related 1845 // ones are close together, which is convenient for testing. 1846 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1847 EmitDeferred(); 1848 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1849 } 1850 } 1851 } 1852 1853 void CodeGenModule::EmitVTablesOpportunistically() { 1854 // Try to emit external vtables as available_externally if they have emitted 1855 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1856 // is not allowed to create new references to things that need to be emitted 1857 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1858 1859 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1860 && "Only emit opportunistic vtables with optimizations"); 1861 1862 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1863 assert(getVTables().isVTableExternal(RD) && 1864 "This queue should only contain external vtables"); 1865 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1866 VTables.GenerateClassData(RD); 1867 } 1868 OpportunisticVTables.clear(); 1869 } 1870 1871 void CodeGenModule::EmitGlobalAnnotations() { 1872 if (Annotations.empty()) 1873 return; 1874 1875 // Create a new global variable for the ConstantStruct in the Module. 1876 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1877 Annotations[0]->getType(), Annotations.size()), Annotations); 1878 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1879 llvm::GlobalValue::AppendingLinkage, 1880 Array, "llvm.global.annotations"); 1881 gv->setSection(AnnotationSection); 1882 } 1883 1884 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1885 llvm::Constant *&AStr = AnnotationStrings[Str]; 1886 if (AStr) 1887 return AStr; 1888 1889 // Not found yet, create a new global. 1890 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1891 auto *gv = 1892 new llvm::GlobalVariable(getModule(), s->getType(), true, 1893 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1894 gv->setSection(AnnotationSection); 1895 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1896 AStr = gv; 1897 return gv; 1898 } 1899 1900 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1901 SourceManager &SM = getContext().getSourceManager(); 1902 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1903 if (PLoc.isValid()) 1904 return EmitAnnotationString(PLoc.getFilename()); 1905 return EmitAnnotationString(SM.getBufferName(Loc)); 1906 } 1907 1908 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1909 SourceManager &SM = getContext().getSourceManager(); 1910 PresumedLoc PLoc = SM.getPresumedLoc(L); 1911 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1912 SM.getExpansionLineNumber(L); 1913 return llvm::ConstantInt::get(Int32Ty, LineNo); 1914 } 1915 1916 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1917 const AnnotateAttr *AA, 1918 SourceLocation L) { 1919 // Get the globals for file name, annotation, and the line number. 1920 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1921 *UnitGV = EmitAnnotationUnit(L), 1922 *LineNoCst = EmitAnnotationLineNo(L); 1923 1924 // Create the ConstantStruct for the global annotation. 1925 llvm::Constant *Fields[4] = { 1926 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1927 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1928 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1929 LineNoCst 1930 }; 1931 return llvm::ConstantStruct::getAnon(Fields); 1932 } 1933 1934 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1935 llvm::GlobalValue *GV) { 1936 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1937 // Get the struct elements for these annotations. 1938 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1939 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1940 } 1941 1942 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1943 llvm::Function *Fn, 1944 SourceLocation Loc) const { 1945 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1946 // Blacklist by function name. 1947 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1948 return true; 1949 // Blacklist by location. 1950 if (Loc.isValid()) 1951 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1952 // If location is unknown, this may be a compiler-generated function. Assume 1953 // it's located in the main file. 1954 auto &SM = Context.getSourceManager(); 1955 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1956 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1957 } 1958 return false; 1959 } 1960 1961 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1962 SourceLocation Loc, QualType Ty, 1963 StringRef Category) const { 1964 // For now globals can be blacklisted only in ASan and KASan. 1965 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1966 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1967 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1968 if (!EnabledAsanMask) 1969 return false; 1970 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1971 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1972 return true; 1973 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1974 return true; 1975 // Check global type. 1976 if (!Ty.isNull()) { 1977 // Drill down the array types: if global variable of a fixed type is 1978 // blacklisted, we also don't instrument arrays of them. 1979 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1980 Ty = AT->getElementType(); 1981 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1982 // We allow to blacklist only record types (classes, structs etc.) 1983 if (Ty->isRecordType()) { 1984 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1985 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1986 return true; 1987 } 1988 } 1989 return false; 1990 } 1991 1992 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1993 StringRef Category) const { 1994 const auto &XRayFilter = getContext().getXRayFilter(); 1995 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1996 auto Attr = ImbueAttr::NONE; 1997 if (Loc.isValid()) 1998 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1999 if (Attr == ImbueAttr::NONE) 2000 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2001 switch (Attr) { 2002 case ImbueAttr::NONE: 2003 return false; 2004 case ImbueAttr::ALWAYS: 2005 Fn->addFnAttr("function-instrument", "xray-always"); 2006 break; 2007 case ImbueAttr::ALWAYS_ARG1: 2008 Fn->addFnAttr("function-instrument", "xray-always"); 2009 Fn->addFnAttr("xray-log-args", "1"); 2010 break; 2011 case ImbueAttr::NEVER: 2012 Fn->addFnAttr("function-instrument", "xray-never"); 2013 break; 2014 } 2015 return true; 2016 } 2017 2018 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2019 // Never defer when EmitAllDecls is specified. 2020 if (LangOpts.EmitAllDecls) 2021 return true; 2022 2023 if (CodeGenOpts.KeepStaticConsts) { 2024 const auto *VD = dyn_cast<VarDecl>(Global); 2025 if (VD && VD->getType().isConstQualified() && 2026 VD->getStorageClass() == SC_Static) 2027 return true; 2028 } 2029 2030 return getContext().DeclMustBeEmitted(Global); 2031 } 2032 2033 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2034 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2035 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2036 // Implicit template instantiations may change linkage if they are later 2037 // explicitly instantiated, so they should not be emitted eagerly. 2038 return false; 2039 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2040 if (Context.getInlineVariableDefinitionKind(VD) == 2041 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2042 // A definition of an inline constexpr static data member may change 2043 // linkage later if it's redeclared outside the class. 2044 return false; 2045 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2046 // codegen for global variables, because they may be marked as threadprivate. 2047 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2048 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2049 !isTypeConstant(Global->getType(), false) && 2050 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2051 return false; 2052 2053 return true; 2054 } 2055 2056 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2057 const CXXUuidofExpr* E) { 2058 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2059 // well-formed. 2060 StringRef Uuid = E->getUuidStr(); 2061 std::string Name = "_GUID_" + Uuid.lower(); 2062 std::replace(Name.begin(), Name.end(), '-', '_'); 2063 2064 // The UUID descriptor should be pointer aligned. 2065 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2066 2067 // Look for an existing global. 2068 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2069 return ConstantAddress(GV, Alignment); 2070 2071 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2072 assert(Init && "failed to initialize as constant"); 2073 2074 auto *GV = new llvm::GlobalVariable( 2075 getModule(), Init->getType(), 2076 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2077 if (supportsCOMDAT()) 2078 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2079 setDSOLocal(GV); 2080 return ConstantAddress(GV, Alignment); 2081 } 2082 2083 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2084 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2085 assert(AA && "No alias?"); 2086 2087 CharUnits Alignment = getContext().getDeclAlign(VD); 2088 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2089 2090 // See if there is already something with the target's name in the module. 2091 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2092 if (Entry) { 2093 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2094 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2095 return ConstantAddress(Ptr, Alignment); 2096 } 2097 2098 llvm::Constant *Aliasee; 2099 if (isa<llvm::FunctionType>(DeclTy)) 2100 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2101 GlobalDecl(cast<FunctionDecl>(VD)), 2102 /*ForVTable=*/false); 2103 else 2104 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2105 llvm::PointerType::getUnqual(DeclTy), 2106 nullptr); 2107 2108 auto *F = cast<llvm::GlobalValue>(Aliasee); 2109 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2110 WeakRefReferences.insert(F); 2111 2112 return ConstantAddress(Aliasee, Alignment); 2113 } 2114 2115 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2116 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2117 2118 // Weak references don't produce any output by themselves. 2119 if (Global->hasAttr<WeakRefAttr>()) 2120 return; 2121 2122 // If this is an alias definition (which otherwise looks like a declaration) 2123 // emit it now. 2124 if (Global->hasAttr<AliasAttr>()) 2125 return EmitAliasDefinition(GD); 2126 2127 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2128 if (Global->hasAttr<IFuncAttr>()) 2129 return emitIFuncDefinition(GD); 2130 2131 // If this is a cpu_dispatch multiversion function, emit the resolver. 2132 if (Global->hasAttr<CPUDispatchAttr>()) 2133 return emitCPUDispatchDefinition(GD); 2134 2135 // If this is CUDA, be selective about which declarations we emit. 2136 if (LangOpts.CUDA) { 2137 if (LangOpts.CUDAIsDevice) { 2138 if (!Global->hasAttr<CUDADeviceAttr>() && 2139 !Global->hasAttr<CUDAGlobalAttr>() && 2140 !Global->hasAttr<CUDAConstantAttr>() && 2141 !Global->hasAttr<CUDASharedAttr>()) 2142 return; 2143 } else { 2144 // We need to emit host-side 'shadows' for all global 2145 // device-side variables because the CUDA runtime needs their 2146 // size and host-side address in order to provide access to 2147 // their device-side incarnations. 2148 2149 // So device-only functions are the only things we skip. 2150 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2151 Global->hasAttr<CUDADeviceAttr>()) 2152 return; 2153 2154 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2155 "Expected Variable or Function"); 2156 } 2157 } 2158 2159 if (LangOpts.OpenMP) { 2160 // If this is OpenMP device, check if it is legal to emit this global 2161 // normally. 2162 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2163 return; 2164 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2165 if (MustBeEmitted(Global)) 2166 EmitOMPDeclareReduction(DRD); 2167 return; 2168 } 2169 } 2170 2171 // Ignore declarations, they will be emitted on their first use. 2172 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2173 // Forward declarations are emitted lazily on first use. 2174 if (!FD->doesThisDeclarationHaveABody()) { 2175 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2176 return; 2177 2178 StringRef MangledName = getMangledName(GD); 2179 2180 // Compute the function info and LLVM type. 2181 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2182 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2183 2184 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2185 /*DontDefer=*/false); 2186 return; 2187 } 2188 } else { 2189 const auto *VD = cast<VarDecl>(Global); 2190 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2191 // We need to emit device-side global CUDA variables even if a 2192 // variable does not have a definition -- we still need to define 2193 // host-side shadow for it. 2194 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2195 !VD->hasDefinition() && 2196 (VD->hasAttr<CUDAConstantAttr>() || 2197 VD->hasAttr<CUDADeviceAttr>()); 2198 if (!MustEmitForCuda && 2199 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2200 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2201 if (LangOpts.OpenMP) { 2202 // Emit declaration of the must-be-emitted declare target variable. 2203 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2204 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2205 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2206 (void)GetAddrOfGlobalVar(VD); 2207 } else { 2208 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2209 "link claue expected."); 2210 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2211 } 2212 return; 2213 } 2214 } 2215 // If this declaration may have caused an inline variable definition to 2216 // change linkage, make sure that it's emitted. 2217 if (Context.getInlineVariableDefinitionKind(VD) == 2218 ASTContext::InlineVariableDefinitionKind::Strong) 2219 GetAddrOfGlobalVar(VD); 2220 return; 2221 } 2222 } 2223 2224 // Defer code generation to first use when possible, e.g. if this is an inline 2225 // function. If the global must always be emitted, do it eagerly if possible 2226 // to benefit from cache locality. 2227 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2228 // Emit the definition if it can't be deferred. 2229 EmitGlobalDefinition(GD); 2230 return; 2231 } 2232 2233 // If we're deferring emission of a C++ variable with an 2234 // initializer, remember the order in which it appeared in the file. 2235 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2236 cast<VarDecl>(Global)->hasInit()) { 2237 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2238 CXXGlobalInits.push_back(nullptr); 2239 } 2240 2241 StringRef MangledName = getMangledName(GD); 2242 if (GetGlobalValue(MangledName) != nullptr) { 2243 // The value has already been used and should therefore be emitted. 2244 addDeferredDeclToEmit(GD); 2245 } else if (MustBeEmitted(Global)) { 2246 // The value must be emitted, but cannot be emitted eagerly. 2247 assert(!MayBeEmittedEagerly(Global)); 2248 addDeferredDeclToEmit(GD); 2249 } else { 2250 // Otherwise, remember that we saw a deferred decl with this name. The 2251 // first use of the mangled name will cause it to move into 2252 // DeferredDeclsToEmit. 2253 DeferredDecls[MangledName] = GD; 2254 } 2255 } 2256 2257 // Check if T is a class type with a destructor that's not dllimport. 2258 static bool HasNonDllImportDtor(QualType T) { 2259 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2260 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2261 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2262 return true; 2263 2264 return false; 2265 } 2266 2267 namespace { 2268 struct FunctionIsDirectlyRecursive : 2269 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2270 const StringRef Name; 2271 const Builtin::Context &BI; 2272 bool Result; 2273 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2274 Name(N), BI(C), Result(false) { 2275 } 2276 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2277 2278 bool TraverseCallExpr(CallExpr *E) { 2279 const FunctionDecl *FD = E->getDirectCallee(); 2280 if (!FD) 2281 return true; 2282 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2283 if (Attr && Name == Attr->getLabel()) { 2284 Result = true; 2285 return false; 2286 } 2287 unsigned BuiltinID = FD->getBuiltinID(); 2288 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2289 return true; 2290 StringRef BuiltinName = BI.getName(BuiltinID); 2291 if (BuiltinName.startswith("__builtin_") && 2292 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2293 Result = true; 2294 return false; 2295 } 2296 return true; 2297 } 2298 }; 2299 2300 // Make sure we're not referencing non-imported vars or functions. 2301 struct DLLImportFunctionVisitor 2302 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2303 bool SafeToInline = true; 2304 2305 bool shouldVisitImplicitCode() const { return true; } 2306 2307 bool VisitVarDecl(VarDecl *VD) { 2308 if (VD->getTLSKind()) { 2309 // A thread-local variable cannot be imported. 2310 SafeToInline = false; 2311 return SafeToInline; 2312 } 2313 2314 // A variable definition might imply a destructor call. 2315 if (VD->isThisDeclarationADefinition()) 2316 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2317 2318 return SafeToInline; 2319 } 2320 2321 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2322 if (const auto *D = E->getTemporary()->getDestructor()) 2323 SafeToInline = D->hasAttr<DLLImportAttr>(); 2324 return SafeToInline; 2325 } 2326 2327 bool VisitDeclRefExpr(DeclRefExpr *E) { 2328 ValueDecl *VD = E->getDecl(); 2329 if (isa<FunctionDecl>(VD)) 2330 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2331 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2332 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2333 return SafeToInline; 2334 } 2335 2336 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2337 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2338 return SafeToInline; 2339 } 2340 2341 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2342 CXXMethodDecl *M = E->getMethodDecl(); 2343 if (!M) { 2344 // Call through a pointer to member function. This is safe to inline. 2345 SafeToInline = true; 2346 } else { 2347 SafeToInline = M->hasAttr<DLLImportAttr>(); 2348 } 2349 return SafeToInline; 2350 } 2351 2352 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2353 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2354 return SafeToInline; 2355 } 2356 2357 bool VisitCXXNewExpr(CXXNewExpr *E) { 2358 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2359 return SafeToInline; 2360 } 2361 }; 2362 } 2363 2364 // isTriviallyRecursive - Check if this function calls another 2365 // decl that, because of the asm attribute or the other decl being a builtin, 2366 // ends up pointing to itself. 2367 bool 2368 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2369 StringRef Name; 2370 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2371 // asm labels are a special kind of mangling we have to support. 2372 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2373 if (!Attr) 2374 return false; 2375 Name = Attr->getLabel(); 2376 } else { 2377 Name = FD->getName(); 2378 } 2379 2380 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2381 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2382 return Walker.Result; 2383 } 2384 2385 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2386 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2387 return true; 2388 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2389 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2390 return false; 2391 2392 if (F->hasAttr<DLLImportAttr>()) { 2393 // Check whether it would be safe to inline this dllimport function. 2394 DLLImportFunctionVisitor Visitor; 2395 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2396 if (!Visitor.SafeToInline) 2397 return false; 2398 2399 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2400 // Implicit destructor invocations aren't captured in the AST, so the 2401 // check above can't see them. Check for them manually here. 2402 for (const Decl *Member : Dtor->getParent()->decls()) 2403 if (isa<FieldDecl>(Member)) 2404 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2405 return false; 2406 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2407 if (HasNonDllImportDtor(B.getType())) 2408 return false; 2409 } 2410 } 2411 2412 // PR9614. Avoid cases where the source code is lying to us. An available 2413 // externally function should have an equivalent function somewhere else, 2414 // but a function that calls itself is clearly not equivalent to the real 2415 // implementation. 2416 // This happens in glibc's btowc and in some configure checks. 2417 return !isTriviallyRecursive(F); 2418 } 2419 2420 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2421 return CodeGenOpts.OptimizationLevel > 0; 2422 } 2423 2424 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2425 const auto *D = cast<ValueDecl>(GD.getDecl()); 2426 2427 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2428 Context.getSourceManager(), 2429 "Generating code for declaration"); 2430 2431 if (isa<FunctionDecl>(D)) { 2432 // At -O0, don't generate IR for functions with available_externally 2433 // linkage. 2434 if (!shouldEmitFunction(GD)) 2435 return; 2436 2437 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2438 // Make sure to emit the definition(s) before we emit the thunks. 2439 // This is necessary for the generation of certain thunks. 2440 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2441 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2442 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2443 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2444 else 2445 EmitGlobalFunctionDefinition(GD, GV); 2446 2447 if (Method->isVirtual()) 2448 getVTables().EmitThunks(GD); 2449 2450 return; 2451 } 2452 2453 return EmitGlobalFunctionDefinition(GD, GV); 2454 } 2455 2456 if (const auto *VD = dyn_cast<VarDecl>(D)) 2457 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2458 2459 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2460 } 2461 2462 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2463 llvm::Function *NewFn); 2464 2465 static unsigned 2466 TargetMVPriority(const TargetInfo &TI, 2467 const CodeGenFunction::MultiVersionResolverOption &RO) { 2468 unsigned Priority = 0; 2469 for (StringRef Feat : RO.Conditions.Features) 2470 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2471 2472 if (!RO.Conditions.Architecture.empty()) 2473 Priority = std::max( 2474 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2475 return Priority; 2476 } 2477 2478 void CodeGenModule::emitMultiVersionFunctions() { 2479 for (GlobalDecl GD : MultiVersionFuncs) { 2480 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2481 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2482 getContext().forEachMultiversionedFunctionVersion( 2483 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2484 GlobalDecl CurGD{ 2485 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2486 StringRef MangledName = getMangledName(CurGD); 2487 llvm::Constant *Func = GetGlobalValue(MangledName); 2488 if (!Func) { 2489 if (CurFD->isDefined()) { 2490 EmitGlobalFunctionDefinition(CurGD, nullptr); 2491 Func = GetGlobalValue(MangledName); 2492 } else { 2493 const CGFunctionInfo &FI = 2494 getTypes().arrangeGlobalDeclaration(GD); 2495 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2496 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2497 /*DontDefer=*/false, ForDefinition); 2498 } 2499 assert(Func && "This should have just been created"); 2500 } 2501 2502 const auto *TA = CurFD->getAttr<TargetAttr>(); 2503 llvm::SmallVector<StringRef, 8> Feats; 2504 TA->getAddedFeatures(Feats); 2505 2506 Options.emplace_back(cast<llvm::Function>(Func), 2507 TA->getArchitecture(), Feats); 2508 }); 2509 2510 llvm::Function *ResolverFunc = cast<llvm::Function>( 2511 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2512 if (supportsCOMDAT()) 2513 ResolverFunc->setComdat( 2514 getModule().getOrInsertComdat(ResolverFunc->getName())); 2515 2516 const TargetInfo &TI = getTarget(); 2517 std::stable_sort( 2518 Options.begin(), Options.end(), 2519 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2520 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2521 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2522 }); 2523 CodeGenFunction CGF(*this); 2524 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2525 } 2526 } 2527 2528 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2529 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2530 assert(FD && "Not a FunctionDecl?"); 2531 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2532 assert(DD && "Not a cpu_dispatch Function?"); 2533 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType()); 2534 2535 StringRef ResolverName = getMangledName(GD); 2536 llvm::Type *ResolverType = llvm::FunctionType::get( 2537 llvm::PointerType::get(DeclTy, 2538 Context.getTargetAddressSpace(FD->getType())), 2539 false); 2540 auto *ResolverFunc = cast<llvm::Function>( 2541 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2542 /*ForVTable=*/false)); 2543 2544 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2545 const TargetInfo &Target = getTarget(); 2546 for (const IdentifierInfo *II : DD->cpus()) { 2547 // Get the name of the target function so we can look it up/create it. 2548 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2549 getCPUSpecificMangling(*this, II->getName()); 2550 llvm::Constant *Func = GetOrCreateLLVMFunction( 2551 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false, 2552 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2553 llvm::SmallVector<StringRef, 32> Features; 2554 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2555 llvm::transform(Features, Features.begin(), 2556 [](StringRef Str) { return Str.substr(1); }); 2557 Features.erase(std::remove_if( 2558 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2559 return !Target.validateCpuSupports(Feat); 2560 }), Features.end()); 2561 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2562 } 2563 2564 llvm::sort( 2565 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2566 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2567 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2568 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2569 }); 2570 CodeGenFunction CGF(*this); 2571 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2572 } 2573 2574 /// If an ifunc for the specified mangled name is not in the module, create and 2575 /// return an llvm IFunc Function with the specified type. 2576 llvm::Constant * 2577 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2578 const FunctionDecl *FD) { 2579 std::string MangledName = 2580 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2581 std::string IFuncName = MangledName + ".ifunc"; 2582 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2583 return IFuncGV; 2584 2585 // Since this is the first time we've created this IFunc, make sure 2586 // that we put this multiversioned function into the list to be 2587 // replaced later if necessary (target multiversioning only). 2588 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2589 MultiVersionFuncs.push_back(GD); 2590 2591 std::string ResolverName = MangledName + ".resolver"; 2592 llvm::Type *ResolverType = llvm::FunctionType::get( 2593 llvm::PointerType::get(DeclTy, 2594 Context.getTargetAddressSpace(FD->getType())), 2595 false); 2596 llvm::Constant *Resolver = 2597 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2598 /*ForVTable=*/false); 2599 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2600 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2601 GIF->setName(IFuncName); 2602 SetCommonAttributes(FD, GIF); 2603 2604 return GIF; 2605 } 2606 2607 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2608 /// module, create and return an llvm Function with the specified type. If there 2609 /// is something in the module with the specified name, return it potentially 2610 /// bitcasted to the right type. 2611 /// 2612 /// If D is non-null, it specifies a decl that correspond to this. This is used 2613 /// to set the attributes on the function when it is first created. 2614 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2615 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2616 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2617 ForDefinition_t IsForDefinition) { 2618 const Decl *D = GD.getDecl(); 2619 2620 // Any attempts to use a MultiVersion function should result in retrieving 2621 // the iFunc instead. Name Mangling will handle the rest of the changes. 2622 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2623 // For the device mark the function as one that should be emitted. 2624 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2625 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2626 !DontDefer && !IsForDefinition) { 2627 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2628 GlobalDecl GDDef; 2629 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2630 GDDef = GlobalDecl(CD, GD.getCtorType()); 2631 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2632 GDDef = GlobalDecl(DD, GD.getDtorType()); 2633 else 2634 GDDef = GlobalDecl(FDDef); 2635 EmitGlobal(GDDef); 2636 } 2637 } 2638 2639 if (FD->isMultiVersion()) { 2640 const auto *TA = FD->getAttr<TargetAttr>(); 2641 if (TA && TA->isDefaultVersion()) 2642 UpdateMultiVersionNames(GD, FD); 2643 if (!IsForDefinition) 2644 return GetOrCreateMultiVersionIFunc(GD, Ty, FD); 2645 } 2646 } 2647 2648 // Lookup the entry, lazily creating it if necessary. 2649 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2650 if (Entry) { 2651 if (WeakRefReferences.erase(Entry)) { 2652 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2653 if (FD && !FD->hasAttr<WeakAttr>()) 2654 Entry->setLinkage(llvm::Function::ExternalLinkage); 2655 } 2656 2657 // Handle dropped DLL attributes. 2658 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2659 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2660 setDSOLocal(Entry); 2661 } 2662 2663 // If there are two attempts to define the same mangled name, issue an 2664 // error. 2665 if (IsForDefinition && !Entry->isDeclaration()) { 2666 GlobalDecl OtherGD; 2667 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2668 // to make sure that we issue an error only once. 2669 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2670 (GD.getCanonicalDecl().getDecl() != 2671 OtherGD.getCanonicalDecl().getDecl()) && 2672 DiagnosedConflictingDefinitions.insert(GD).second) { 2673 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2674 << MangledName; 2675 getDiags().Report(OtherGD.getDecl()->getLocation(), 2676 diag::note_previous_definition); 2677 } 2678 } 2679 2680 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2681 (Entry->getType()->getElementType() == Ty)) { 2682 return Entry; 2683 } 2684 2685 // Make sure the result is of the correct type. 2686 // (If function is requested for a definition, we always need to create a new 2687 // function, not just return a bitcast.) 2688 if (!IsForDefinition) 2689 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2690 } 2691 2692 // This function doesn't have a complete type (for example, the return 2693 // type is an incomplete struct). Use a fake type instead, and make 2694 // sure not to try to set attributes. 2695 bool IsIncompleteFunction = false; 2696 2697 llvm::FunctionType *FTy; 2698 if (isa<llvm::FunctionType>(Ty)) { 2699 FTy = cast<llvm::FunctionType>(Ty); 2700 } else { 2701 FTy = llvm::FunctionType::get(VoidTy, false); 2702 IsIncompleteFunction = true; 2703 } 2704 2705 llvm::Function *F = 2706 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2707 Entry ? StringRef() : MangledName, &getModule()); 2708 2709 // If we already created a function with the same mangled name (but different 2710 // type) before, take its name and add it to the list of functions to be 2711 // replaced with F at the end of CodeGen. 2712 // 2713 // This happens if there is a prototype for a function (e.g. "int f()") and 2714 // then a definition of a different type (e.g. "int f(int x)"). 2715 if (Entry) { 2716 F->takeName(Entry); 2717 2718 // This might be an implementation of a function without a prototype, in 2719 // which case, try to do special replacement of calls which match the new 2720 // prototype. The really key thing here is that we also potentially drop 2721 // arguments from the call site so as to make a direct call, which makes the 2722 // inliner happier and suppresses a number of optimizer warnings (!) about 2723 // dropping arguments. 2724 if (!Entry->use_empty()) { 2725 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2726 Entry->removeDeadConstantUsers(); 2727 } 2728 2729 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2730 F, Entry->getType()->getElementType()->getPointerTo()); 2731 addGlobalValReplacement(Entry, BC); 2732 } 2733 2734 assert(F->getName() == MangledName && "name was uniqued!"); 2735 if (D) 2736 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2737 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2738 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2739 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2740 } 2741 2742 if (!DontDefer) { 2743 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2744 // each other bottoming out with the base dtor. Therefore we emit non-base 2745 // dtors on usage, even if there is no dtor definition in the TU. 2746 if (D && isa<CXXDestructorDecl>(D) && 2747 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2748 GD.getDtorType())) 2749 addDeferredDeclToEmit(GD); 2750 2751 // This is the first use or definition of a mangled name. If there is a 2752 // deferred decl with this name, remember that we need to emit it at the end 2753 // of the file. 2754 auto DDI = DeferredDecls.find(MangledName); 2755 if (DDI != DeferredDecls.end()) { 2756 // Move the potentially referenced deferred decl to the 2757 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2758 // don't need it anymore). 2759 addDeferredDeclToEmit(DDI->second); 2760 DeferredDecls.erase(DDI); 2761 2762 // Otherwise, there are cases we have to worry about where we're 2763 // using a declaration for which we must emit a definition but where 2764 // we might not find a top-level definition: 2765 // - member functions defined inline in their classes 2766 // - friend functions defined inline in some class 2767 // - special member functions with implicit definitions 2768 // If we ever change our AST traversal to walk into class methods, 2769 // this will be unnecessary. 2770 // 2771 // We also don't emit a definition for a function if it's going to be an 2772 // entry in a vtable, unless it's already marked as used. 2773 } else if (getLangOpts().CPlusPlus && D) { 2774 // Look for a declaration that's lexically in a record. 2775 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2776 FD = FD->getPreviousDecl()) { 2777 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2778 if (FD->doesThisDeclarationHaveABody()) { 2779 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2780 break; 2781 } 2782 } 2783 } 2784 } 2785 } 2786 2787 // Make sure the result is of the requested type. 2788 if (!IsIncompleteFunction) { 2789 assert(F->getType()->getElementType() == Ty); 2790 return F; 2791 } 2792 2793 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2794 return llvm::ConstantExpr::getBitCast(F, PTy); 2795 } 2796 2797 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2798 /// non-null, then this function will use the specified type if it has to 2799 /// create it (this occurs when we see a definition of the function). 2800 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2801 llvm::Type *Ty, 2802 bool ForVTable, 2803 bool DontDefer, 2804 ForDefinition_t IsForDefinition) { 2805 // If there was no specific requested type, just convert it now. 2806 if (!Ty) { 2807 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2808 auto CanonTy = Context.getCanonicalType(FD->getType()); 2809 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2810 } 2811 2812 // Devirtualized destructor calls may come through here instead of via 2813 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2814 // of the complete destructor when necessary. 2815 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2816 if (getTarget().getCXXABI().isMicrosoft() && 2817 GD.getDtorType() == Dtor_Complete && 2818 DD->getParent()->getNumVBases() == 0) 2819 GD = GlobalDecl(DD, Dtor_Base); 2820 } 2821 2822 StringRef MangledName = getMangledName(GD); 2823 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2824 /*IsThunk=*/false, llvm::AttributeList(), 2825 IsForDefinition); 2826 } 2827 2828 static const FunctionDecl * 2829 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2830 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2831 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2832 2833 IdentifierInfo &CII = C.Idents.get(Name); 2834 for (const auto &Result : DC->lookup(&CII)) 2835 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2836 return FD; 2837 2838 if (!C.getLangOpts().CPlusPlus) 2839 return nullptr; 2840 2841 // Demangle the premangled name from getTerminateFn() 2842 IdentifierInfo &CXXII = 2843 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2844 ? C.Idents.get("terminate") 2845 : C.Idents.get(Name); 2846 2847 for (const auto &N : {"__cxxabiv1", "std"}) { 2848 IdentifierInfo &NS = C.Idents.get(N); 2849 for (const auto &Result : DC->lookup(&NS)) { 2850 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2851 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2852 for (const auto &Result : LSD->lookup(&NS)) 2853 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2854 break; 2855 2856 if (ND) 2857 for (const auto &Result : ND->lookup(&CXXII)) 2858 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2859 return FD; 2860 } 2861 } 2862 2863 return nullptr; 2864 } 2865 2866 /// CreateRuntimeFunction - Create a new runtime function with the specified 2867 /// type and name. 2868 llvm::Constant * 2869 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2870 llvm::AttributeList ExtraAttrs, 2871 bool Local) { 2872 llvm::Constant *C = 2873 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2874 /*DontDefer=*/false, /*IsThunk=*/false, 2875 ExtraAttrs); 2876 2877 if (auto *F = dyn_cast<llvm::Function>(C)) { 2878 if (F->empty()) { 2879 F->setCallingConv(getRuntimeCC()); 2880 2881 if (!Local && getTriple().isOSBinFormatCOFF() && 2882 !getCodeGenOpts().LTOVisibilityPublicStd && 2883 !getTriple().isWindowsGNUEnvironment()) { 2884 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2885 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2886 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2887 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2888 } 2889 } 2890 setDSOLocal(F); 2891 } 2892 } 2893 2894 return C; 2895 } 2896 2897 /// CreateBuiltinFunction - Create a new builtin function with the specified 2898 /// type and name. 2899 llvm::Constant * 2900 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2901 llvm::AttributeList ExtraAttrs) { 2902 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2903 } 2904 2905 /// isTypeConstant - Determine whether an object of this type can be emitted 2906 /// as a constant. 2907 /// 2908 /// If ExcludeCtor is true, the duration when the object's constructor runs 2909 /// will not be considered. The caller will need to verify that the object is 2910 /// not written to during its construction. 2911 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2912 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2913 return false; 2914 2915 if (Context.getLangOpts().CPlusPlus) { 2916 if (const CXXRecordDecl *Record 2917 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2918 return ExcludeCtor && !Record->hasMutableFields() && 2919 Record->hasTrivialDestructor(); 2920 } 2921 2922 return true; 2923 } 2924 2925 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2926 /// create and return an llvm GlobalVariable with the specified type. If there 2927 /// is something in the module with the specified name, return it potentially 2928 /// bitcasted to the right type. 2929 /// 2930 /// If D is non-null, it specifies a decl that correspond to this. This is used 2931 /// to set the attributes on the global when it is first created. 2932 /// 2933 /// If IsForDefinition is true, it is guaranteed that an actual global with 2934 /// type Ty will be returned, not conversion of a variable with the same 2935 /// mangled name but some other type. 2936 llvm::Constant * 2937 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2938 llvm::PointerType *Ty, 2939 const VarDecl *D, 2940 ForDefinition_t IsForDefinition) { 2941 // Lookup the entry, lazily creating it if necessary. 2942 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2943 if (Entry) { 2944 if (WeakRefReferences.erase(Entry)) { 2945 if (D && !D->hasAttr<WeakAttr>()) 2946 Entry->setLinkage(llvm::Function::ExternalLinkage); 2947 } 2948 2949 // Handle dropped DLL attributes. 2950 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2951 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2952 2953 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2954 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2955 2956 if (Entry->getType() == Ty) 2957 return Entry; 2958 2959 // If there are two attempts to define the same mangled name, issue an 2960 // error. 2961 if (IsForDefinition && !Entry->isDeclaration()) { 2962 GlobalDecl OtherGD; 2963 const VarDecl *OtherD; 2964 2965 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2966 // to make sure that we issue an error only once. 2967 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2968 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2969 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2970 OtherD->hasInit() && 2971 DiagnosedConflictingDefinitions.insert(D).second) { 2972 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2973 << MangledName; 2974 getDiags().Report(OtherGD.getDecl()->getLocation(), 2975 diag::note_previous_definition); 2976 } 2977 } 2978 2979 // Make sure the result is of the correct type. 2980 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2981 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2982 2983 // (If global is requested for a definition, we always need to create a new 2984 // global, not just return a bitcast.) 2985 if (!IsForDefinition) 2986 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2987 } 2988 2989 auto AddrSpace = GetGlobalVarAddressSpace(D); 2990 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2991 2992 auto *GV = new llvm::GlobalVariable( 2993 getModule(), Ty->getElementType(), false, 2994 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2995 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2996 2997 // If we already created a global with the same mangled name (but different 2998 // type) before, take its name and remove it from its parent. 2999 if (Entry) { 3000 GV->takeName(Entry); 3001 3002 if (!Entry->use_empty()) { 3003 llvm::Constant *NewPtrForOldDecl = 3004 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3005 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3006 } 3007 3008 Entry->eraseFromParent(); 3009 } 3010 3011 // This is the first use or definition of a mangled name. If there is a 3012 // deferred decl with this name, remember that we need to emit it at the end 3013 // of the file. 3014 auto DDI = DeferredDecls.find(MangledName); 3015 if (DDI != DeferredDecls.end()) { 3016 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3017 // list, and remove it from DeferredDecls (since we don't need it anymore). 3018 addDeferredDeclToEmit(DDI->second); 3019 DeferredDecls.erase(DDI); 3020 } 3021 3022 // Handle things which are present even on external declarations. 3023 if (D) { 3024 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3025 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3026 3027 // FIXME: This code is overly simple and should be merged with other global 3028 // handling. 3029 GV->setConstant(isTypeConstant(D->getType(), false)); 3030 3031 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3032 3033 setLinkageForGV(GV, D); 3034 3035 if (D->getTLSKind()) { 3036 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3037 CXXThreadLocals.push_back(D); 3038 setTLSMode(GV, *D); 3039 } 3040 3041 setGVProperties(GV, D); 3042 3043 // If required by the ABI, treat declarations of static data members with 3044 // inline initializers as definitions. 3045 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3046 EmitGlobalVarDefinition(D); 3047 } 3048 3049 // Emit section information for extern variables. 3050 if (D->hasExternalStorage()) { 3051 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3052 GV->setSection(SA->getName()); 3053 } 3054 3055 // Handle XCore specific ABI requirements. 3056 if (getTriple().getArch() == llvm::Triple::xcore && 3057 D->getLanguageLinkage() == CLanguageLinkage && 3058 D->getType().isConstant(Context) && 3059 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3060 GV->setSection(".cp.rodata"); 3061 3062 // Check if we a have a const declaration with an initializer, we may be 3063 // able to emit it as available_externally to expose it's value to the 3064 // optimizer. 3065 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3066 D->getType().isConstQualified() && !GV->hasInitializer() && 3067 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3068 const auto *Record = 3069 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3070 bool HasMutableFields = Record && Record->hasMutableFields(); 3071 if (!HasMutableFields) { 3072 const VarDecl *InitDecl; 3073 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3074 if (InitExpr) { 3075 ConstantEmitter emitter(*this); 3076 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3077 if (Init) { 3078 auto *InitType = Init->getType(); 3079 if (GV->getType()->getElementType() != InitType) { 3080 // The type of the initializer does not match the definition. 3081 // This happens when an initializer has a different type from 3082 // the type of the global (because of padding at the end of a 3083 // structure for instance). 3084 GV->setName(StringRef()); 3085 // Make a new global with the correct type, this is now guaranteed 3086 // to work. 3087 auto *NewGV = cast<llvm::GlobalVariable>( 3088 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3089 3090 // Erase the old global, since it is no longer used. 3091 GV->eraseFromParent(); 3092 GV = NewGV; 3093 } else { 3094 GV->setInitializer(Init); 3095 GV->setConstant(true); 3096 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3097 } 3098 emitter.finalize(GV); 3099 } 3100 } 3101 } 3102 } 3103 } 3104 3105 LangAS ExpectedAS = 3106 D ? D->getType().getAddressSpace() 3107 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3108 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3109 Ty->getPointerAddressSpace()); 3110 if (AddrSpace != ExpectedAS) 3111 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3112 ExpectedAS, Ty); 3113 3114 return GV; 3115 } 3116 3117 llvm::Constant * 3118 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3119 ForDefinition_t IsForDefinition) { 3120 const Decl *D = GD.getDecl(); 3121 if (isa<CXXConstructorDecl>(D)) 3122 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3123 getFromCtorType(GD.getCtorType()), 3124 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3125 /*DontDefer=*/false, IsForDefinition); 3126 else if (isa<CXXDestructorDecl>(D)) 3127 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3128 getFromDtorType(GD.getDtorType()), 3129 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3130 /*DontDefer=*/false, IsForDefinition); 3131 else if (isa<CXXMethodDecl>(D)) { 3132 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3133 cast<CXXMethodDecl>(D)); 3134 auto Ty = getTypes().GetFunctionType(*FInfo); 3135 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3136 IsForDefinition); 3137 } else if (isa<FunctionDecl>(D)) { 3138 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3139 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3140 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3141 IsForDefinition); 3142 } else 3143 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3144 IsForDefinition); 3145 } 3146 3147 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3148 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3149 unsigned Alignment) { 3150 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3151 llvm::GlobalVariable *OldGV = nullptr; 3152 3153 if (GV) { 3154 // Check if the variable has the right type. 3155 if (GV->getType()->getElementType() == Ty) 3156 return GV; 3157 3158 // Because C++ name mangling, the only way we can end up with an already 3159 // existing global with the same name is if it has been declared extern "C". 3160 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3161 OldGV = GV; 3162 } 3163 3164 // Create a new variable. 3165 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3166 Linkage, nullptr, Name); 3167 3168 if (OldGV) { 3169 // Replace occurrences of the old variable if needed. 3170 GV->takeName(OldGV); 3171 3172 if (!OldGV->use_empty()) { 3173 llvm::Constant *NewPtrForOldDecl = 3174 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3175 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3176 } 3177 3178 OldGV->eraseFromParent(); 3179 } 3180 3181 if (supportsCOMDAT() && GV->isWeakForLinker() && 3182 !GV->hasAvailableExternallyLinkage()) 3183 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3184 3185 GV->setAlignment(Alignment); 3186 3187 return GV; 3188 } 3189 3190 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3191 /// given global variable. If Ty is non-null and if the global doesn't exist, 3192 /// then it will be created with the specified type instead of whatever the 3193 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3194 /// that an actual global with type Ty will be returned, not conversion of a 3195 /// variable with the same mangled name but some other type. 3196 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3197 llvm::Type *Ty, 3198 ForDefinition_t IsForDefinition) { 3199 assert(D->hasGlobalStorage() && "Not a global variable"); 3200 QualType ASTTy = D->getType(); 3201 if (!Ty) 3202 Ty = getTypes().ConvertTypeForMem(ASTTy); 3203 3204 llvm::PointerType *PTy = 3205 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3206 3207 StringRef MangledName = getMangledName(D); 3208 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3209 } 3210 3211 /// CreateRuntimeVariable - Create a new runtime global variable with the 3212 /// specified type and name. 3213 llvm::Constant * 3214 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3215 StringRef Name) { 3216 auto *Ret = 3217 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3218 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3219 return Ret; 3220 } 3221 3222 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3223 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3224 3225 StringRef MangledName = getMangledName(D); 3226 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3227 3228 // We already have a definition, not declaration, with the same mangled name. 3229 // Emitting of declaration is not required (and actually overwrites emitted 3230 // definition). 3231 if (GV && !GV->isDeclaration()) 3232 return; 3233 3234 // If we have not seen a reference to this variable yet, place it into the 3235 // deferred declarations table to be emitted if needed later. 3236 if (!MustBeEmitted(D) && !GV) { 3237 DeferredDecls[MangledName] = D; 3238 return; 3239 } 3240 3241 // The tentative definition is the only definition. 3242 EmitGlobalVarDefinition(D); 3243 } 3244 3245 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3246 return Context.toCharUnitsFromBits( 3247 getDataLayout().getTypeStoreSizeInBits(Ty)); 3248 } 3249 3250 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3251 LangAS AddrSpace = LangAS::Default; 3252 if (LangOpts.OpenCL) { 3253 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3254 assert(AddrSpace == LangAS::opencl_global || 3255 AddrSpace == LangAS::opencl_constant || 3256 AddrSpace == LangAS::opencl_local || 3257 AddrSpace >= LangAS::FirstTargetAddressSpace); 3258 return AddrSpace; 3259 } 3260 3261 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3262 if (D && D->hasAttr<CUDAConstantAttr>()) 3263 return LangAS::cuda_constant; 3264 else if (D && D->hasAttr<CUDASharedAttr>()) 3265 return LangAS::cuda_shared; 3266 else if (D && D->hasAttr<CUDADeviceAttr>()) 3267 return LangAS::cuda_device; 3268 else if (D && D->getType().isConstQualified()) 3269 return LangAS::cuda_constant; 3270 else 3271 return LangAS::cuda_device; 3272 } 3273 3274 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3275 } 3276 3277 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3278 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3279 if (LangOpts.OpenCL) 3280 return LangAS::opencl_constant; 3281 if (auto AS = getTarget().getConstantAddressSpace()) 3282 return AS.getValue(); 3283 return LangAS::Default; 3284 } 3285 3286 // In address space agnostic languages, string literals are in default address 3287 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3288 // emitted in constant address space in LLVM IR. To be consistent with other 3289 // parts of AST, string literal global variables in constant address space 3290 // need to be casted to default address space before being put into address 3291 // map and referenced by other part of CodeGen. 3292 // In OpenCL, string literals are in constant address space in AST, therefore 3293 // they should not be casted to default address space. 3294 static llvm::Constant * 3295 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3296 llvm::GlobalVariable *GV) { 3297 llvm::Constant *Cast = GV; 3298 if (!CGM.getLangOpts().OpenCL) { 3299 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3300 if (AS != LangAS::Default) 3301 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3302 CGM, GV, AS.getValue(), LangAS::Default, 3303 GV->getValueType()->getPointerTo( 3304 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3305 } 3306 } 3307 return Cast; 3308 } 3309 3310 template<typename SomeDecl> 3311 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3312 llvm::GlobalValue *GV) { 3313 if (!getLangOpts().CPlusPlus) 3314 return; 3315 3316 // Must have 'used' attribute, or else inline assembly can't rely on 3317 // the name existing. 3318 if (!D->template hasAttr<UsedAttr>()) 3319 return; 3320 3321 // Must have internal linkage and an ordinary name. 3322 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3323 return; 3324 3325 // Must be in an extern "C" context. Entities declared directly within 3326 // a record are not extern "C" even if the record is in such a context. 3327 const SomeDecl *First = D->getFirstDecl(); 3328 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3329 return; 3330 3331 // OK, this is an internal linkage entity inside an extern "C" linkage 3332 // specification. Make a note of that so we can give it the "expected" 3333 // mangled name if nothing else is using that name. 3334 std::pair<StaticExternCMap::iterator, bool> R = 3335 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3336 3337 // If we have multiple internal linkage entities with the same name 3338 // in extern "C" regions, none of them gets that name. 3339 if (!R.second) 3340 R.first->second = nullptr; 3341 } 3342 3343 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3344 if (!CGM.supportsCOMDAT()) 3345 return false; 3346 3347 if (D.hasAttr<SelectAnyAttr>()) 3348 return true; 3349 3350 GVALinkage Linkage; 3351 if (auto *VD = dyn_cast<VarDecl>(&D)) 3352 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3353 else 3354 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3355 3356 switch (Linkage) { 3357 case GVA_Internal: 3358 case GVA_AvailableExternally: 3359 case GVA_StrongExternal: 3360 return false; 3361 case GVA_DiscardableODR: 3362 case GVA_StrongODR: 3363 return true; 3364 } 3365 llvm_unreachable("No such linkage"); 3366 } 3367 3368 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3369 llvm::GlobalObject &GO) { 3370 if (!shouldBeInCOMDAT(*this, D)) 3371 return; 3372 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3373 } 3374 3375 /// Pass IsTentative as true if you want to create a tentative definition. 3376 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3377 bool IsTentative) { 3378 // OpenCL global variables of sampler type are translated to function calls, 3379 // therefore no need to be translated. 3380 QualType ASTTy = D->getType(); 3381 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3382 return; 3383 3384 // If this is OpenMP device, check if it is legal to emit this global 3385 // normally. 3386 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3387 OpenMPRuntime->emitTargetGlobalVariable(D)) 3388 return; 3389 3390 llvm::Constant *Init = nullptr; 3391 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3392 bool NeedsGlobalCtor = false; 3393 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3394 3395 const VarDecl *InitDecl; 3396 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3397 3398 Optional<ConstantEmitter> emitter; 3399 3400 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3401 // as part of their declaration." Sema has already checked for 3402 // error cases, so we just need to set Init to UndefValue. 3403 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3404 D->hasAttr<CUDASharedAttr>()) 3405 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3406 else if (!InitExpr) { 3407 // This is a tentative definition; tentative definitions are 3408 // implicitly initialized with { 0 }. 3409 // 3410 // Note that tentative definitions are only emitted at the end of 3411 // a translation unit, so they should never have incomplete 3412 // type. In addition, EmitTentativeDefinition makes sure that we 3413 // never attempt to emit a tentative definition if a real one 3414 // exists. A use may still exists, however, so we still may need 3415 // to do a RAUW. 3416 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3417 Init = EmitNullConstant(D->getType()); 3418 } else { 3419 initializedGlobalDecl = GlobalDecl(D); 3420 emitter.emplace(*this); 3421 Init = emitter->tryEmitForInitializer(*InitDecl); 3422 3423 if (!Init) { 3424 QualType T = InitExpr->getType(); 3425 if (D->getType()->isReferenceType()) 3426 T = D->getType(); 3427 3428 if (getLangOpts().CPlusPlus) { 3429 Init = EmitNullConstant(T); 3430 NeedsGlobalCtor = true; 3431 } else { 3432 ErrorUnsupported(D, "static initializer"); 3433 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3434 } 3435 } else { 3436 // We don't need an initializer, so remove the entry for the delayed 3437 // initializer position (just in case this entry was delayed) if we 3438 // also don't need to register a destructor. 3439 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3440 DelayedCXXInitPosition.erase(D); 3441 } 3442 } 3443 3444 llvm::Type* InitType = Init->getType(); 3445 llvm::Constant *Entry = 3446 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3447 3448 // Strip off a bitcast if we got one back. 3449 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3450 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3451 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3452 // All zero index gep. 3453 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3454 Entry = CE->getOperand(0); 3455 } 3456 3457 // Entry is now either a Function or GlobalVariable. 3458 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3459 3460 // We have a definition after a declaration with the wrong type. 3461 // We must make a new GlobalVariable* and update everything that used OldGV 3462 // (a declaration or tentative definition) with the new GlobalVariable* 3463 // (which will be a definition). 3464 // 3465 // This happens if there is a prototype for a global (e.g. 3466 // "extern int x[];") and then a definition of a different type (e.g. 3467 // "int x[10];"). This also happens when an initializer has a different type 3468 // from the type of the global (this happens with unions). 3469 if (!GV || GV->getType()->getElementType() != InitType || 3470 GV->getType()->getAddressSpace() != 3471 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3472 3473 // Move the old entry aside so that we'll create a new one. 3474 Entry->setName(StringRef()); 3475 3476 // Make a new global with the correct type, this is now guaranteed to work. 3477 GV = cast<llvm::GlobalVariable>( 3478 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3479 3480 // Replace all uses of the old global with the new global 3481 llvm::Constant *NewPtrForOldDecl = 3482 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3483 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3484 3485 // Erase the old global, since it is no longer used. 3486 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3487 } 3488 3489 MaybeHandleStaticInExternC(D, GV); 3490 3491 if (D->hasAttr<AnnotateAttr>()) 3492 AddGlobalAnnotations(D, GV); 3493 3494 // Set the llvm linkage type as appropriate. 3495 llvm::GlobalValue::LinkageTypes Linkage = 3496 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3497 3498 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3499 // the device. [...]" 3500 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3501 // __device__, declares a variable that: [...] 3502 // Is accessible from all the threads within the grid and from the host 3503 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3504 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3505 if (GV && LangOpts.CUDA) { 3506 if (LangOpts.CUDAIsDevice) { 3507 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3508 GV->setExternallyInitialized(true); 3509 } else { 3510 // Host-side shadows of external declarations of device-side 3511 // global variables become internal definitions. These have to 3512 // be internal in order to prevent name conflicts with global 3513 // host variables with the same name in a different TUs. 3514 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3515 Linkage = llvm::GlobalValue::InternalLinkage; 3516 3517 // Shadow variables and their properties must be registered 3518 // with CUDA runtime. 3519 unsigned Flags = 0; 3520 if (!D->hasDefinition()) 3521 Flags |= CGCUDARuntime::ExternDeviceVar; 3522 if (D->hasAttr<CUDAConstantAttr>()) 3523 Flags |= CGCUDARuntime::ConstantDeviceVar; 3524 getCUDARuntime().registerDeviceVar(*GV, Flags); 3525 } else if (D->hasAttr<CUDASharedAttr>()) 3526 // __shared__ variables are odd. Shadows do get created, but 3527 // they are not registered with the CUDA runtime, so they 3528 // can't really be used to access their device-side 3529 // counterparts. It's not clear yet whether it's nvcc's bug or 3530 // a feature, but we've got to do the same for compatibility. 3531 Linkage = llvm::GlobalValue::InternalLinkage; 3532 } 3533 } 3534 3535 GV->setInitializer(Init); 3536 if (emitter) emitter->finalize(GV); 3537 3538 // If it is safe to mark the global 'constant', do so now. 3539 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3540 isTypeConstant(D->getType(), true)); 3541 3542 // If it is in a read-only section, mark it 'constant'. 3543 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3544 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3545 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3546 GV->setConstant(true); 3547 } 3548 3549 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3550 3551 3552 // On Darwin, if the normal linkage of a C++ thread_local variable is 3553 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3554 // copies within a linkage unit; otherwise, the backing variable has 3555 // internal linkage and all accesses should just be calls to the 3556 // Itanium-specified entry point, which has the normal linkage of the 3557 // variable. This is to preserve the ability to change the implementation 3558 // behind the scenes. 3559 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3560 Context.getTargetInfo().getTriple().isOSDarwin() && 3561 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3562 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3563 Linkage = llvm::GlobalValue::InternalLinkage; 3564 3565 GV->setLinkage(Linkage); 3566 if (D->hasAttr<DLLImportAttr>()) 3567 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3568 else if (D->hasAttr<DLLExportAttr>()) 3569 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3570 else 3571 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3572 3573 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3574 // common vars aren't constant even if declared const. 3575 GV->setConstant(false); 3576 // Tentative definition of global variables may be initialized with 3577 // non-zero null pointers. In this case they should have weak linkage 3578 // since common linkage must have zero initializer and must not have 3579 // explicit section therefore cannot have non-zero initial value. 3580 if (!GV->getInitializer()->isNullValue()) 3581 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3582 } 3583 3584 setNonAliasAttributes(D, GV); 3585 3586 if (D->getTLSKind() && !GV->isThreadLocal()) { 3587 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3588 CXXThreadLocals.push_back(D); 3589 setTLSMode(GV, *D); 3590 } 3591 3592 maybeSetTrivialComdat(*D, *GV); 3593 3594 // Emit the initializer function if necessary. 3595 if (NeedsGlobalCtor || NeedsGlobalDtor) 3596 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3597 3598 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3599 3600 // Emit global variable debug information. 3601 if (CGDebugInfo *DI = getModuleDebugInfo()) 3602 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3603 DI->EmitGlobalVariable(GV, D); 3604 } 3605 3606 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3607 CodeGenModule &CGM, const VarDecl *D, 3608 bool NoCommon) { 3609 // Don't give variables common linkage if -fno-common was specified unless it 3610 // was overridden by a NoCommon attribute. 3611 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3612 return true; 3613 3614 // C11 6.9.2/2: 3615 // A declaration of an identifier for an object that has file scope without 3616 // an initializer, and without a storage-class specifier or with the 3617 // storage-class specifier static, constitutes a tentative definition. 3618 if (D->getInit() || D->hasExternalStorage()) 3619 return true; 3620 3621 // A variable cannot be both common and exist in a section. 3622 if (D->hasAttr<SectionAttr>()) 3623 return true; 3624 3625 // A variable cannot be both common and exist in a section. 3626 // We don't try to determine which is the right section in the front-end. 3627 // If no specialized section name is applicable, it will resort to default. 3628 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3629 D->hasAttr<PragmaClangDataSectionAttr>() || 3630 D->hasAttr<PragmaClangRodataSectionAttr>()) 3631 return true; 3632 3633 // Thread local vars aren't considered common linkage. 3634 if (D->getTLSKind()) 3635 return true; 3636 3637 // Tentative definitions marked with WeakImportAttr are true definitions. 3638 if (D->hasAttr<WeakImportAttr>()) 3639 return true; 3640 3641 // A variable cannot be both common and exist in a comdat. 3642 if (shouldBeInCOMDAT(CGM, *D)) 3643 return true; 3644 3645 // Declarations with a required alignment do not have common linkage in MSVC 3646 // mode. 3647 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3648 if (D->hasAttr<AlignedAttr>()) 3649 return true; 3650 QualType VarType = D->getType(); 3651 if (Context.isAlignmentRequired(VarType)) 3652 return true; 3653 3654 if (const auto *RT = VarType->getAs<RecordType>()) { 3655 const RecordDecl *RD = RT->getDecl(); 3656 for (const FieldDecl *FD : RD->fields()) { 3657 if (FD->isBitField()) 3658 continue; 3659 if (FD->hasAttr<AlignedAttr>()) 3660 return true; 3661 if (Context.isAlignmentRequired(FD->getType())) 3662 return true; 3663 } 3664 } 3665 } 3666 3667 return false; 3668 } 3669 3670 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3671 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3672 if (Linkage == GVA_Internal) 3673 return llvm::Function::InternalLinkage; 3674 3675 if (D->hasAttr<WeakAttr>()) { 3676 if (IsConstantVariable) 3677 return llvm::GlobalVariable::WeakODRLinkage; 3678 else 3679 return llvm::GlobalVariable::WeakAnyLinkage; 3680 } 3681 3682 if (const auto *FD = D->getAsFunction()) 3683 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3684 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3685 3686 // We are guaranteed to have a strong definition somewhere else, 3687 // so we can use available_externally linkage. 3688 if (Linkage == GVA_AvailableExternally) 3689 return llvm::GlobalValue::AvailableExternallyLinkage; 3690 3691 // Note that Apple's kernel linker doesn't support symbol 3692 // coalescing, so we need to avoid linkonce and weak linkages there. 3693 // Normally, this means we just map to internal, but for explicit 3694 // instantiations we'll map to external. 3695 3696 // In C++, the compiler has to emit a definition in every translation unit 3697 // that references the function. We should use linkonce_odr because 3698 // a) if all references in this translation unit are optimized away, we 3699 // don't need to codegen it. b) if the function persists, it needs to be 3700 // merged with other definitions. c) C++ has the ODR, so we know the 3701 // definition is dependable. 3702 if (Linkage == GVA_DiscardableODR) 3703 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3704 : llvm::Function::InternalLinkage; 3705 3706 // An explicit instantiation of a template has weak linkage, since 3707 // explicit instantiations can occur in multiple translation units 3708 // and must all be equivalent. However, we are not allowed to 3709 // throw away these explicit instantiations. 3710 // 3711 // We don't currently support CUDA device code spread out across multiple TUs, 3712 // so say that CUDA templates are either external (for kernels) or internal. 3713 // This lets llvm perform aggressive inter-procedural optimizations. 3714 if (Linkage == GVA_StrongODR) { 3715 if (Context.getLangOpts().AppleKext) 3716 return llvm::Function::ExternalLinkage; 3717 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3718 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3719 : llvm::Function::InternalLinkage; 3720 return llvm::Function::WeakODRLinkage; 3721 } 3722 3723 // C++ doesn't have tentative definitions and thus cannot have common 3724 // linkage. 3725 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3726 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3727 CodeGenOpts.NoCommon)) 3728 return llvm::GlobalVariable::CommonLinkage; 3729 3730 // selectany symbols are externally visible, so use weak instead of 3731 // linkonce. MSVC optimizes away references to const selectany globals, so 3732 // all definitions should be the same and ODR linkage should be used. 3733 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3734 if (D->hasAttr<SelectAnyAttr>()) 3735 return llvm::GlobalVariable::WeakODRLinkage; 3736 3737 // Otherwise, we have strong external linkage. 3738 assert(Linkage == GVA_StrongExternal); 3739 return llvm::GlobalVariable::ExternalLinkage; 3740 } 3741 3742 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3743 const VarDecl *VD, bool IsConstant) { 3744 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3745 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3746 } 3747 3748 /// Replace the uses of a function that was declared with a non-proto type. 3749 /// We want to silently drop extra arguments from call sites 3750 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3751 llvm::Function *newFn) { 3752 // Fast path. 3753 if (old->use_empty()) return; 3754 3755 llvm::Type *newRetTy = newFn->getReturnType(); 3756 SmallVector<llvm::Value*, 4> newArgs; 3757 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3758 3759 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3760 ui != ue; ) { 3761 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3762 llvm::User *user = use->getUser(); 3763 3764 // Recognize and replace uses of bitcasts. Most calls to 3765 // unprototyped functions will use bitcasts. 3766 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3767 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3768 replaceUsesOfNonProtoConstant(bitcast, newFn); 3769 continue; 3770 } 3771 3772 // Recognize calls to the function. 3773 llvm::CallSite callSite(user); 3774 if (!callSite) continue; 3775 if (!callSite.isCallee(&*use)) continue; 3776 3777 // If the return types don't match exactly, then we can't 3778 // transform this call unless it's dead. 3779 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3780 continue; 3781 3782 // Get the call site's attribute list. 3783 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3784 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3785 3786 // If the function was passed too few arguments, don't transform. 3787 unsigned newNumArgs = newFn->arg_size(); 3788 if (callSite.arg_size() < newNumArgs) continue; 3789 3790 // If extra arguments were passed, we silently drop them. 3791 // If any of the types mismatch, we don't transform. 3792 unsigned argNo = 0; 3793 bool dontTransform = false; 3794 for (llvm::Argument &A : newFn->args()) { 3795 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3796 dontTransform = true; 3797 break; 3798 } 3799 3800 // Add any parameter attributes. 3801 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3802 argNo++; 3803 } 3804 if (dontTransform) 3805 continue; 3806 3807 // Okay, we can transform this. Create the new call instruction and copy 3808 // over the required information. 3809 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3810 3811 // Copy over any operand bundles. 3812 callSite.getOperandBundlesAsDefs(newBundles); 3813 3814 llvm::CallSite newCall; 3815 if (callSite.isCall()) { 3816 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3817 callSite.getInstruction()); 3818 } else { 3819 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3820 newCall = llvm::InvokeInst::Create(newFn, 3821 oldInvoke->getNormalDest(), 3822 oldInvoke->getUnwindDest(), 3823 newArgs, newBundles, "", 3824 callSite.getInstruction()); 3825 } 3826 newArgs.clear(); // for the next iteration 3827 3828 if (!newCall->getType()->isVoidTy()) 3829 newCall->takeName(callSite.getInstruction()); 3830 newCall.setAttributes(llvm::AttributeList::get( 3831 newFn->getContext(), oldAttrs.getFnAttributes(), 3832 oldAttrs.getRetAttributes(), newArgAttrs)); 3833 newCall.setCallingConv(callSite.getCallingConv()); 3834 3835 // Finally, remove the old call, replacing any uses with the new one. 3836 if (!callSite->use_empty()) 3837 callSite->replaceAllUsesWith(newCall.getInstruction()); 3838 3839 // Copy debug location attached to CI. 3840 if (callSite->getDebugLoc()) 3841 newCall->setDebugLoc(callSite->getDebugLoc()); 3842 3843 callSite->eraseFromParent(); 3844 } 3845 } 3846 3847 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3848 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3849 /// existing call uses of the old function in the module, this adjusts them to 3850 /// call the new function directly. 3851 /// 3852 /// This is not just a cleanup: the always_inline pass requires direct calls to 3853 /// functions to be able to inline them. If there is a bitcast in the way, it 3854 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3855 /// run at -O0. 3856 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3857 llvm::Function *NewFn) { 3858 // If we're redefining a global as a function, don't transform it. 3859 if (!isa<llvm::Function>(Old)) return; 3860 3861 replaceUsesOfNonProtoConstant(Old, NewFn); 3862 } 3863 3864 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3865 auto DK = VD->isThisDeclarationADefinition(); 3866 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3867 return; 3868 3869 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3870 // If we have a definition, this might be a deferred decl. If the 3871 // instantiation is explicit, make sure we emit it at the end. 3872 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3873 GetAddrOfGlobalVar(VD); 3874 3875 EmitTopLevelDecl(VD); 3876 } 3877 3878 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3879 llvm::GlobalValue *GV) { 3880 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3881 3882 // Compute the function info and LLVM type. 3883 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3884 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3885 3886 // Get or create the prototype for the function. 3887 if (!GV || (GV->getType()->getElementType() != Ty)) 3888 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3889 /*DontDefer=*/true, 3890 ForDefinition)); 3891 3892 // Already emitted. 3893 if (!GV->isDeclaration()) 3894 return; 3895 3896 // We need to set linkage and visibility on the function before 3897 // generating code for it because various parts of IR generation 3898 // want to propagate this information down (e.g. to local static 3899 // declarations). 3900 auto *Fn = cast<llvm::Function>(GV); 3901 setFunctionLinkage(GD, Fn); 3902 3903 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3904 setGVProperties(Fn, GD); 3905 3906 MaybeHandleStaticInExternC(D, Fn); 3907 3908 3909 maybeSetTrivialComdat(*D, *Fn); 3910 3911 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3912 3913 setNonAliasAttributes(GD, Fn); 3914 SetLLVMFunctionAttributesForDefinition(D, Fn); 3915 3916 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3917 AddGlobalCtor(Fn, CA->getPriority()); 3918 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3919 AddGlobalDtor(Fn, DA->getPriority()); 3920 if (D->hasAttr<AnnotateAttr>()) 3921 AddGlobalAnnotations(D, Fn); 3922 3923 if (D->isCPUSpecificMultiVersion()) { 3924 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3925 // If there is another specific version we need to emit, do so here. 3926 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3927 ++Spec->ActiveArgIndex; 3928 EmitGlobalFunctionDefinition(GD, nullptr); 3929 } 3930 } 3931 } 3932 3933 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3934 const auto *D = cast<ValueDecl>(GD.getDecl()); 3935 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3936 assert(AA && "Not an alias?"); 3937 3938 StringRef MangledName = getMangledName(GD); 3939 3940 if (AA->getAliasee() == MangledName) { 3941 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3942 return; 3943 } 3944 3945 // If there is a definition in the module, then it wins over the alias. 3946 // This is dubious, but allow it to be safe. Just ignore the alias. 3947 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3948 if (Entry && !Entry->isDeclaration()) 3949 return; 3950 3951 Aliases.push_back(GD); 3952 3953 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3954 3955 // Create a reference to the named value. This ensures that it is emitted 3956 // if a deferred decl. 3957 llvm::Constant *Aliasee; 3958 if (isa<llvm::FunctionType>(DeclTy)) 3959 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3960 /*ForVTable=*/false); 3961 else 3962 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3963 llvm::PointerType::getUnqual(DeclTy), 3964 /*D=*/nullptr); 3965 3966 // Create the new alias itself, but don't set a name yet. 3967 auto *GA = llvm::GlobalAlias::create( 3968 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3969 3970 if (Entry) { 3971 if (GA->getAliasee() == Entry) { 3972 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3973 return; 3974 } 3975 3976 assert(Entry->isDeclaration()); 3977 3978 // If there is a declaration in the module, then we had an extern followed 3979 // by the alias, as in: 3980 // extern int test6(); 3981 // ... 3982 // int test6() __attribute__((alias("test7"))); 3983 // 3984 // Remove it and replace uses of it with the alias. 3985 GA->takeName(Entry); 3986 3987 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3988 Entry->getType())); 3989 Entry->eraseFromParent(); 3990 } else { 3991 GA->setName(MangledName); 3992 } 3993 3994 // Set attributes which are particular to an alias; this is a 3995 // specialization of the attributes which may be set on a global 3996 // variable/function. 3997 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3998 D->isWeakImported()) { 3999 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4000 } 4001 4002 if (const auto *VD = dyn_cast<VarDecl>(D)) 4003 if (VD->getTLSKind()) 4004 setTLSMode(GA, *VD); 4005 4006 SetCommonAttributes(GD, GA); 4007 } 4008 4009 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4010 const auto *D = cast<ValueDecl>(GD.getDecl()); 4011 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4012 assert(IFA && "Not an ifunc?"); 4013 4014 StringRef MangledName = getMangledName(GD); 4015 4016 if (IFA->getResolver() == MangledName) { 4017 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4018 return; 4019 } 4020 4021 // Report an error if some definition overrides ifunc. 4022 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4023 if (Entry && !Entry->isDeclaration()) { 4024 GlobalDecl OtherGD; 4025 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4026 DiagnosedConflictingDefinitions.insert(GD).second) { 4027 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4028 << MangledName; 4029 Diags.Report(OtherGD.getDecl()->getLocation(), 4030 diag::note_previous_definition); 4031 } 4032 return; 4033 } 4034 4035 Aliases.push_back(GD); 4036 4037 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4038 llvm::Constant *Resolver = 4039 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4040 /*ForVTable=*/false); 4041 llvm::GlobalIFunc *GIF = 4042 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4043 "", Resolver, &getModule()); 4044 if (Entry) { 4045 if (GIF->getResolver() == Entry) { 4046 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4047 return; 4048 } 4049 assert(Entry->isDeclaration()); 4050 4051 // If there is a declaration in the module, then we had an extern followed 4052 // by the ifunc, as in: 4053 // extern int test(); 4054 // ... 4055 // int test() __attribute__((ifunc("resolver"))); 4056 // 4057 // Remove it and replace uses of it with the ifunc. 4058 GIF->takeName(Entry); 4059 4060 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4061 Entry->getType())); 4062 Entry->eraseFromParent(); 4063 } else 4064 GIF->setName(MangledName); 4065 4066 SetCommonAttributes(GD, GIF); 4067 } 4068 4069 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4070 ArrayRef<llvm::Type*> Tys) { 4071 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4072 Tys); 4073 } 4074 4075 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4076 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4077 const StringLiteral *Literal, bool TargetIsLSB, 4078 bool &IsUTF16, unsigned &StringLength) { 4079 StringRef String = Literal->getString(); 4080 unsigned NumBytes = String.size(); 4081 4082 // Check for simple case. 4083 if (!Literal->containsNonAsciiOrNull()) { 4084 StringLength = NumBytes; 4085 return *Map.insert(std::make_pair(String, nullptr)).first; 4086 } 4087 4088 // Otherwise, convert the UTF8 literals into a string of shorts. 4089 IsUTF16 = true; 4090 4091 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4092 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4093 llvm::UTF16 *ToPtr = &ToBuf[0]; 4094 4095 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4096 ToPtr + NumBytes, llvm::strictConversion); 4097 4098 // ConvertUTF8toUTF16 returns the length in ToPtr. 4099 StringLength = ToPtr - &ToBuf[0]; 4100 4101 // Add an explicit null. 4102 *ToPtr = 0; 4103 return *Map.insert(std::make_pair( 4104 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4105 (StringLength + 1) * 2), 4106 nullptr)).first; 4107 } 4108 4109 ConstantAddress 4110 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4111 unsigned StringLength = 0; 4112 bool isUTF16 = false; 4113 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4114 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4115 getDataLayout().isLittleEndian(), isUTF16, 4116 StringLength); 4117 4118 if (auto *C = Entry.second) 4119 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4120 4121 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4122 llvm::Constant *Zeros[] = { Zero, Zero }; 4123 4124 // If we don't already have it, get __CFConstantStringClassReference. 4125 if (!CFConstantStringClassRef) { 4126 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4127 Ty = llvm::ArrayType::get(Ty, 0); 4128 llvm::Constant *C = 4129 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 4130 4131 if (getTriple().isOSBinFormatELF() || getTriple().isOSBinFormatCOFF()) { 4132 llvm::GlobalValue *GV = nullptr; 4133 4134 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4135 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 4136 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 4137 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4138 4139 const VarDecl *VD = nullptr; 4140 for (const auto &Result : DC->lookup(&II)) 4141 if ((VD = dyn_cast<VarDecl>(Result))) 4142 break; 4143 4144 if (getTriple().isOSBinFormatELF()) { 4145 if (!VD) 4146 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4147 } 4148 else { 4149 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 4150 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4151 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4152 } else { 4153 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4154 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4155 } 4156 } 4157 4158 setDSOLocal(GV); 4159 } 4160 } 4161 4162 // Decay array -> ptr 4163 CFConstantStringClassRef = 4164 llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4165 } 4166 4167 QualType CFTy = getContext().getCFConstantStringType(); 4168 4169 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4170 4171 ConstantInitBuilder Builder(*this); 4172 auto Fields = Builder.beginStruct(STy); 4173 4174 // Class pointer. 4175 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4176 4177 // Flags. 4178 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4179 4180 // String pointer. 4181 llvm::Constant *C = nullptr; 4182 if (isUTF16) { 4183 auto Arr = llvm::makeArrayRef( 4184 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4185 Entry.first().size() / 2); 4186 C = llvm::ConstantDataArray::get(VMContext, Arr); 4187 } else { 4188 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4189 } 4190 4191 // Note: -fwritable-strings doesn't make the backing store strings of 4192 // CFStrings writable. (See <rdar://problem/10657500>) 4193 auto *GV = 4194 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4195 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4196 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4197 // Don't enforce the target's minimum global alignment, since the only use 4198 // of the string is via this class initializer. 4199 CharUnits Align = isUTF16 4200 ? getContext().getTypeAlignInChars(getContext().ShortTy) 4201 : getContext().getTypeAlignInChars(getContext().CharTy); 4202 GV->setAlignment(Align.getQuantity()); 4203 4204 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4205 // Without it LLVM can merge the string with a non unnamed_addr one during 4206 // LTO. Doing that changes the section it ends in, which surprises ld64. 4207 if (getTriple().isOSBinFormatMachO()) 4208 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4209 : "__TEXT,__cstring,cstring_literals"); 4210 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4211 // the static linker to adjust permissions to read-only later on. 4212 else if (getTriple().isOSBinFormatELF()) 4213 GV->setSection(".rodata"); 4214 4215 // String. 4216 llvm::Constant *Str = 4217 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4218 4219 if (isUTF16) 4220 // Cast the UTF16 string to the correct type. 4221 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4222 Fields.add(Str); 4223 4224 // String length. 4225 auto Ty = getTypes().ConvertType(getContext().LongTy); 4226 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4227 4228 CharUnits Alignment = getPointerAlign(); 4229 4230 // The struct. 4231 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4232 /*isConstant=*/false, 4233 llvm::GlobalVariable::PrivateLinkage); 4234 switch (getTriple().getObjectFormat()) { 4235 case llvm::Triple::UnknownObjectFormat: 4236 llvm_unreachable("unknown file format"); 4237 case llvm::Triple::COFF: 4238 case llvm::Triple::ELF: 4239 case llvm::Triple::Wasm: 4240 GV->setSection("cfstring"); 4241 break; 4242 case llvm::Triple::MachO: 4243 GV->setSection("__DATA,__cfstring"); 4244 break; 4245 } 4246 Entry.second = GV; 4247 4248 return ConstantAddress(GV, Alignment); 4249 } 4250 4251 bool CodeGenModule::getExpressionLocationsEnabled() const { 4252 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4253 } 4254 4255 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4256 if (ObjCFastEnumerationStateType.isNull()) { 4257 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4258 D->startDefinition(); 4259 4260 QualType FieldTypes[] = { 4261 Context.UnsignedLongTy, 4262 Context.getPointerType(Context.getObjCIdType()), 4263 Context.getPointerType(Context.UnsignedLongTy), 4264 Context.getConstantArrayType(Context.UnsignedLongTy, 4265 llvm::APInt(32, 5), ArrayType::Normal, 0) 4266 }; 4267 4268 for (size_t i = 0; i < 4; ++i) { 4269 FieldDecl *Field = FieldDecl::Create(Context, 4270 D, 4271 SourceLocation(), 4272 SourceLocation(), nullptr, 4273 FieldTypes[i], /*TInfo=*/nullptr, 4274 /*BitWidth=*/nullptr, 4275 /*Mutable=*/false, 4276 ICIS_NoInit); 4277 Field->setAccess(AS_public); 4278 D->addDecl(Field); 4279 } 4280 4281 D->completeDefinition(); 4282 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4283 } 4284 4285 return ObjCFastEnumerationStateType; 4286 } 4287 4288 llvm::Constant * 4289 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4290 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4291 4292 // Don't emit it as the address of the string, emit the string data itself 4293 // as an inline array. 4294 if (E->getCharByteWidth() == 1) { 4295 SmallString<64> Str(E->getString()); 4296 4297 // Resize the string to the right size, which is indicated by its type. 4298 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4299 Str.resize(CAT->getSize().getZExtValue()); 4300 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4301 } 4302 4303 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4304 llvm::Type *ElemTy = AType->getElementType(); 4305 unsigned NumElements = AType->getNumElements(); 4306 4307 // Wide strings have either 2-byte or 4-byte elements. 4308 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4309 SmallVector<uint16_t, 32> Elements; 4310 Elements.reserve(NumElements); 4311 4312 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4313 Elements.push_back(E->getCodeUnit(i)); 4314 Elements.resize(NumElements); 4315 return llvm::ConstantDataArray::get(VMContext, Elements); 4316 } 4317 4318 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4319 SmallVector<uint32_t, 32> Elements; 4320 Elements.reserve(NumElements); 4321 4322 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4323 Elements.push_back(E->getCodeUnit(i)); 4324 Elements.resize(NumElements); 4325 return llvm::ConstantDataArray::get(VMContext, Elements); 4326 } 4327 4328 static llvm::GlobalVariable * 4329 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4330 CodeGenModule &CGM, StringRef GlobalName, 4331 CharUnits Alignment) { 4332 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4333 CGM.getStringLiteralAddressSpace()); 4334 4335 llvm::Module &M = CGM.getModule(); 4336 // Create a global variable for this string 4337 auto *GV = new llvm::GlobalVariable( 4338 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4339 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4340 GV->setAlignment(Alignment.getQuantity()); 4341 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4342 if (GV->isWeakForLinker()) { 4343 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4344 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4345 } 4346 CGM.setDSOLocal(GV); 4347 4348 return GV; 4349 } 4350 4351 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4352 /// constant array for the given string literal. 4353 ConstantAddress 4354 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4355 StringRef Name) { 4356 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4357 4358 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4359 llvm::GlobalVariable **Entry = nullptr; 4360 if (!LangOpts.WritableStrings) { 4361 Entry = &ConstantStringMap[C]; 4362 if (auto GV = *Entry) { 4363 if (Alignment.getQuantity() > GV->getAlignment()) 4364 GV->setAlignment(Alignment.getQuantity()); 4365 return ConstantAddress(GV, Alignment); 4366 } 4367 } 4368 4369 SmallString<256> MangledNameBuffer; 4370 StringRef GlobalVariableName; 4371 llvm::GlobalValue::LinkageTypes LT; 4372 4373 // Mangle the string literal if that's how the ABI merges duplicate strings. 4374 // Don't do it if they are writable, since we don't want writes in one TU to 4375 // affect strings in another. 4376 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4377 !LangOpts.WritableStrings) { 4378 llvm::raw_svector_ostream Out(MangledNameBuffer); 4379 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4380 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4381 GlobalVariableName = MangledNameBuffer; 4382 } else { 4383 LT = llvm::GlobalValue::PrivateLinkage; 4384 GlobalVariableName = Name; 4385 } 4386 4387 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4388 if (Entry) 4389 *Entry = GV; 4390 4391 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4392 QualType()); 4393 4394 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4395 Alignment); 4396 } 4397 4398 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4399 /// array for the given ObjCEncodeExpr node. 4400 ConstantAddress 4401 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4402 std::string Str; 4403 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4404 4405 return GetAddrOfConstantCString(Str); 4406 } 4407 4408 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4409 /// the literal and a terminating '\0' character. 4410 /// The result has pointer to array type. 4411 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4412 const std::string &Str, const char *GlobalName) { 4413 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4414 CharUnits Alignment = 4415 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4416 4417 llvm::Constant *C = 4418 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4419 4420 // Don't share any string literals if strings aren't constant. 4421 llvm::GlobalVariable **Entry = nullptr; 4422 if (!LangOpts.WritableStrings) { 4423 Entry = &ConstantStringMap[C]; 4424 if (auto GV = *Entry) { 4425 if (Alignment.getQuantity() > GV->getAlignment()) 4426 GV->setAlignment(Alignment.getQuantity()); 4427 return ConstantAddress(GV, Alignment); 4428 } 4429 } 4430 4431 // Get the default prefix if a name wasn't specified. 4432 if (!GlobalName) 4433 GlobalName = ".str"; 4434 // Create a global variable for this. 4435 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4436 GlobalName, Alignment); 4437 if (Entry) 4438 *Entry = GV; 4439 4440 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4441 Alignment); 4442 } 4443 4444 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4445 const MaterializeTemporaryExpr *E, const Expr *Init) { 4446 assert((E->getStorageDuration() == SD_Static || 4447 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4448 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4449 4450 // If we're not materializing a subobject of the temporary, keep the 4451 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4452 QualType MaterializedType = Init->getType(); 4453 if (Init == E->GetTemporaryExpr()) 4454 MaterializedType = E->getType(); 4455 4456 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4457 4458 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4459 return ConstantAddress(Slot, Align); 4460 4461 // FIXME: If an externally-visible declaration extends multiple temporaries, 4462 // we need to give each temporary the same name in every translation unit (and 4463 // we also need to make the temporaries externally-visible). 4464 SmallString<256> Name; 4465 llvm::raw_svector_ostream Out(Name); 4466 getCXXABI().getMangleContext().mangleReferenceTemporary( 4467 VD, E->getManglingNumber(), Out); 4468 4469 APValue *Value = nullptr; 4470 if (E->getStorageDuration() == SD_Static) { 4471 // We might have a cached constant initializer for this temporary. Note 4472 // that this might have a different value from the value computed by 4473 // evaluating the initializer if the surrounding constant expression 4474 // modifies the temporary. 4475 Value = getContext().getMaterializedTemporaryValue(E, false); 4476 if (Value && Value->isUninit()) 4477 Value = nullptr; 4478 } 4479 4480 // Try evaluating it now, it might have a constant initializer. 4481 Expr::EvalResult EvalResult; 4482 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4483 !EvalResult.hasSideEffects()) 4484 Value = &EvalResult.Val; 4485 4486 LangAS AddrSpace = 4487 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4488 4489 Optional<ConstantEmitter> emitter; 4490 llvm::Constant *InitialValue = nullptr; 4491 bool Constant = false; 4492 llvm::Type *Type; 4493 if (Value) { 4494 // The temporary has a constant initializer, use it. 4495 emitter.emplace(*this); 4496 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4497 MaterializedType); 4498 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4499 Type = InitialValue->getType(); 4500 } else { 4501 // No initializer, the initialization will be provided when we 4502 // initialize the declaration which performed lifetime extension. 4503 Type = getTypes().ConvertTypeForMem(MaterializedType); 4504 } 4505 4506 // Create a global variable for this lifetime-extended temporary. 4507 llvm::GlobalValue::LinkageTypes Linkage = 4508 getLLVMLinkageVarDefinition(VD, Constant); 4509 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4510 const VarDecl *InitVD; 4511 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4512 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4513 // Temporaries defined inside a class get linkonce_odr linkage because the 4514 // class can be defined in multiple translation units. 4515 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4516 } else { 4517 // There is no need for this temporary to have external linkage if the 4518 // VarDecl has external linkage. 4519 Linkage = llvm::GlobalVariable::InternalLinkage; 4520 } 4521 } 4522 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4523 auto *GV = new llvm::GlobalVariable( 4524 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4525 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4526 if (emitter) emitter->finalize(GV); 4527 setGVProperties(GV, VD); 4528 GV->setAlignment(Align.getQuantity()); 4529 if (supportsCOMDAT() && GV->isWeakForLinker()) 4530 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4531 if (VD->getTLSKind()) 4532 setTLSMode(GV, *VD); 4533 llvm::Constant *CV = GV; 4534 if (AddrSpace != LangAS::Default) 4535 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4536 *this, GV, AddrSpace, LangAS::Default, 4537 Type->getPointerTo( 4538 getContext().getTargetAddressSpace(LangAS::Default))); 4539 MaterializedGlobalTemporaryMap[E] = CV; 4540 return ConstantAddress(CV, Align); 4541 } 4542 4543 /// EmitObjCPropertyImplementations - Emit information for synthesized 4544 /// properties for an implementation. 4545 void CodeGenModule::EmitObjCPropertyImplementations(const 4546 ObjCImplementationDecl *D) { 4547 for (const auto *PID : D->property_impls()) { 4548 // Dynamic is just for type-checking. 4549 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4550 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4551 4552 // Determine which methods need to be implemented, some may have 4553 // been overridden. Note that ::isPropertyAccessor is not the method 4554 // we want, that just indicates if the decl came from a 4555 // property. What we want to know is if the method is defined in 4556 // this implementation. 4557 if (!D->getInstanceMethod(PD->getGetterName())) 4558 CodeGenFunction(*this).GenerateObjCGetter( 4559 const_cast<ObjCImplementationDecl *>(D), PID); 4560 if (!PD->isReadOnly() && 4561 !D->getInstanceMethod(PD->getSetterName())) 4562 CodeGenFunction(*this).GenerateObjCSetter( 4563 const_cast<ObjCImplementationDecl *>(D), PID); 4564 } 4565 } 4566 } 4567 4568 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4569 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4570 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4571 ivar; ivar = ivar->getNextIvar()) 4572 if (ivar->getType().isDestructedType()) 4573 return true; 4574 4575 return false; 4576 } 4577 4578 static bool AllTrivialInitializers(CodeGenModule &CGM, 4579 ObjCImplementationDecl *D) { 4580 CodeGenFunction CGF(CGM); 4581 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4582 E = D->init_end(); B != E; ++B) { 4583 CXXCtorInitializer *CtorInitExp = *B; 4584 Expr *Init = CtorInitExp->getInit(); 4585 if (!CGF.isTrivialInitializer(Init)) 4586 return false; 4587 } 4588 return true; 4589 } 4590 4591 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4592 /// for an implementation. 4593 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4594 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4595 if (needsDestructMethod(D)) { 4596 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4597 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4598 ObjCMethodDecl *DTORMethod = 4599 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4600 cxxSelector, getContext().VoidTy, nullptr, D, 4601 /*isInstance=*/true, /*isVariadic=*/false, 4602 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4603 /*isDefined=*/false, ObjCMethodDecl::Required); 4604 D->addInstanceMethod(DTORMethod); 4605 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4606 D->setHasDestructors(true); 4607 } 4608 4609 // If the implementation doesn't have any ivar initializers, we don't need 4610 // a .cxx_construct. 4611 if (D->getNumIvarInitializers() == 0 || 4612 AllTrivialInitializers(*this, D)) 4613 return; 4614 4615 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4616 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4617 // The constructor returns 'self'. 4618 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4619 D->getLocation(), 4620 D->getLocation(), 4621 cxxSelector, 4622 getContext().getObjCIdType(), 4623 nullptr, D, /*isInstance=*/true, 4624 /*isVariadic=*/false, 4625 /*isPropertyAccessor=*/true, 4626 /*isImplicitlyDeclared=*/true, 4627 /*isDefined=*/false, 4628 ObjCMethodDecl::Required); 4629 D->addInstanceMethod(CTORMethod); 4630 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4631 D->setHasNonZeroConstructors(true); 4632 } 4633 4634 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4635 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4636 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4637 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4638 ErrorUnsupported(LSD, "linkage spec"); 4639 return; 4640 } 4641 4642 EmitDeclContext(LSD); 4643 } 4644 4645 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4646 for (auto *I : DC->decls()) { 4647 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4648 // are themselves considered "top-level", so EmitTopLevelDecl on an 4649 // ObjCImplDecl does not recursively visit them. We need to do that in 4650 // case they're nested inside another construct (LinkageSpecDecl / 4651 // ExportDecl) that does stop them from being considered "top-level". 4652 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4653 for (auto *M : OID->methods()) 4654 EmitTopLevelDecl(M); 4655 } 4656 4657 EmitTopLevelDecl(I); 4658 } 4659 } 4660 4661 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4662 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4663 // Ignore dependent declarations. 4664 if (D->isTemplated()) 4665 return; 4666 4667 switch (D->getKind()) { 4668 case Decl::CXXConversion: 4669 case Decl::CXXMethod: 4670 case Decl::Function: 4671 EmitGlobal(cast<FunctionDecl>(D)); 4672 // Always provide some coverage mapping 4673 // even for the functions that aren't emitted. 4674 AddDeferredUnusedCoverageMapping(D); 4675 break; 4676 4677 case Decl::CXXDeductionGuide: 4678 // Function-like, but does not result in code emission. 4679 break; 4680 4681 case Decl::Var: 4682 case Decl::Decomposition: 4683 case Decl::VarTemplateSpecialization: 4684 EmitGlobal(cast<VarDecl>(D)); 4685 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4686 for (auto *B : DD->bindings()) 4687 if (auto *HD = B->getHoldingVar()) 4688 EmitGlobal(HD); 4689 break; 4690 4691 // Indirect fields from global anonymous structs and unions can be 4692 // ignored; only the actual variable requires IR gen support. 4693 case Decl::IndirectField: 4694 break; 4695 4696 // C++ Decls 4697 case Decl::Namespace: 4698 EmitDeclContext(cast<NamespaceDecl>(D)); 4699 break; 4700 case Decl::ClassTemplateSpecialization: { 4701 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4702 if (DebugInfo && 4703 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4704 Spec->hasDefinition()) 4705 DebugInfo->completeTemplateDefinition(*Spec); 4706 } LLVM_FALLTHROUGH; 4707 case Decl::CXXRecord: 4708 if (DebugInfo) { 4709 if (auto *ES = D->getASTContext().getExternalSource()) 4710 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4711 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4712 } 4713 // Emit any static data members, they may be definitions. 4714 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4715 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4716 EmitTopLevelDecl(I); 4717 break; 4718 // No code generation needed. 4719 case Decl::UsingShadow: 4720 case Decl::ClassTemplate: 4721 case Decl::VarTemplate: 4722 case Decl::VarTemplatePartialSpecialization: 4723 case Decl::FunctionTemplate: 4724 case Decl::TypeAliasTemplate: 4725 case Decl::Block: 4726 case Decl::Empty: 4727 break; 4728 case Decl::Using: // using X; [C++] 4729 if (CGDebugInfo *DI = getModuleDebugInfo()) 4730 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4731 return; 4732 case Decl::NamespaceAlias: 4733 if (CGDebugInfo *DI = getModuleDebugInfo()) 4734 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4735 return; 4736 case Decl::UsingDirective: // using namespace X; [C++] 4737 if (CGDebugInfo *DI = getModuleDebugInfo()) 4738 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4739 return; 4740 case Decl::CXXConstructor: 4741 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4742 break; 4743 case Decl::CXXDestructor: 4744 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4745 break; 4746 4747 case Decl::StaticAssert: 4748 // Nothing to do. 4749 break; 4750 4751 // Objective-C Decls 4752 4753 // Forward declarations, no (immediate) code generation. 4754 case Decl::ObjCInterface: 4755 case Decl::ObjCCategory: 4756 break; 4757 4758 case Decl::ObjCProtocol: { 4759 auto *Proto = cast<ObjCProtocolDecl>(D); 4760 if (Proto->isThisDeclarationADefinition()) 4761 ObjCRuntime->GenerateProtocol(Proto); 4762 break; 4763 } 4764 4765 case Decl::ObjCCategoryImpl: 4766 // Categories have properties but don't support synthesize so we 4767 // can ignore them here. 4768 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4769 break; 4770 4771 case Decl::ObjCImplementation: { 4772 auto *OMD = cast<ObjCImplementationDecl>(D); 4773 EmitObjCPropertyImplementations(OMD); 4774 EmitObjCIvarInitializations(OMD); 4775 ObjCRuntime->GenerateClass(OMD); 4776 // Emit global variable debug information. 4777 if (CGDebugInfo *DI = getModuleDebugInfo()) 4778 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4779 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4780 OMD->getClassInterface()), OMD->getLocation()); 4781 break; 4782 } 4783 case Decl::ObjCMethod: { 4784 auto *OMD = cast<ObjCMethodDecl>(D); 4785 // If this is not a prototype, emit the body. 4786 if (OMD->getBody()) 4787 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4788 break; 4789 } 4790 case Decl::ObjCCompatibleAlias: 4791 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4792 break; 4793 4794 case Decl::PragmaComment: { 4795 const auto *PCD = cast<PragmaCommentDecl>(D); 4796 switch (PCD->getCommentKind()) { 4797 case PCK_Unknown: 4798 llvm_unreachable("unexpected pragma comment kind"); 4799 case PCK_Linker: 4800 AppendLinkerOptions(PCD->getArg()); 4801 break; 4802 case PCK_Lib: 4803 if (getTarget().getTriple().isOSBinFormatELF() && 4804 !getTarget().getTriple().isPS4()) 4805 AddELFLibDirective(PCD->getArg()); 4806 else 4807 AddDependentLib(PCD->getArg()); 4808 break; 4809 case PCK_Compiler: 4810 case PCK_ExeStr: 4811 case PCK_User: 4812 break; // We ignore all of these. 4813 } 4814 break; 4815 } 4816 4817 case Decl::PragmaDetectMismatch: { 4818 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4819 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4820 break; 4821 } 4822 4823 case Decl::LinkageSpec: 4824 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4825 break; 4826 4827 case Decl::FileScopeAsm: { 4828 // File-scope asm is ignored during device-side CUDA compilation. 4829 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4830 break; 4831 // File-scope asm is ignored during device-side OpenMP compilation. 4832 if (LangOpts.OpenMPIsDevice) 4833 break; 4834 auto *AD = cast<FileScopeAsmDecl>(D); 4835 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4836 break; 4837 } 4838 4839 case Decl::Import: { 4840 auto *Import = cast<ImportDecl>(D); 4841 4842 // If we've already imported this module, we're done. 4843 if (!ImportedModules.insert(Import->getImportedModule())) 4844 break; 4845 4846 // Emit debug information for direct imports. 4847 if (!Import->getImportedOwningModule()) { 4848 if (CGDebugInfo *DI = getModuleDebugInfo()) 4849 DI->EmitImportDecl(*Import); 4850 } 4851 4852 // Find all of the submodules and emit the module initializers. 4853 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4854 SmallVector<clang::Module *, 16> Stack; 4855 Visited.insert(Import->getImportedModule()); 4856 Stack.push_back(Import->getImportedModule()); 4857 4858 while (!Stack.empty()) { 4859 clang::Module *Mod = Stack.pop_back_val(); 4860 if (!EmittedModuleInitializers.insert(Mod).second) 4861 continue; 4862 4863 for (auto *D : Context.getModuleInitializers(Mod)) 4864 EmitTopLevelDecl(D); 4865 4866 // Visit the submodules of this module. 4867 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4868 SubEnd = Mod->submodule_end(); 4869 Sub != SubEnd; ++Sub) { 4870 // Skip explicit children; they need to be explicitly imported to emit 4871 // the initializers. 4872 if ((*Sub)->IsExplicit) 4873 continue; 4874 4875 if (Visited.insert(*Sub).second) 4876 Stack.push_back(*Sub); 4877 } 4878 } 4879 break; 4880 } 4881 4882 case Decl::Export: 4883 EmitDeclContext(cast<ExportDecl>(D)); 4884 break; 4885 4886 case Decl::OMPThreadPrivate: 4887 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4888 break; 4889 4890 case Decl::OMPDeclareReduction: 4891 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4892 break; 4893 4894 case Decl::OMPRequires: 4895 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4896 break; 4897 4898 default: 4899 // Make sure we handled everything we should, every other kind is a 4900 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4901 // function. Need to recode Decl::Kind to do that easily. 4902 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4903 break; 4904 } 4905 } 4906 4907 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4908 // Do we need to generate coverage mapping? 4909 if (!CodeGenOpts.CoverageMapping) 4910 return; 4911 switch (D->getKind()) { 4912 case Decl::CXXConversion: 4913 case Decl::CXXMethod: 4914 case Decl::Function: 4915 case Decl::ObjCMethod: 4916 case Decl::CXXConstructor: 4917 case Decl::CXXDestructor: { 4918 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4919 return; 4920 SourceManager &SM = getContext().getSourceManager(); 4921 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 4922 return; 4923 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4924 if (I == DeferredEmptyCoverageMappingDecls.end()) 4925 DeferredEmptyCoverageMappingDecls[D] = true; 4926 break; 4927 } 4928 default: 4929 break; 4930 }; 4931 } 4932 4933 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4934 // Do we need to generate coverage mapping? 4935 if (!CodeGenOpts.CoverageMapping) 4936 return; 4937 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4938 if (Fn->isTemplateInstantiation()) 4939 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4940 } 4941 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4942 if (I == DeferredEmptyCoverageMappingDecls.end()) 4943 DeferredEmptyCoverageMappingDecls[D] = false; 4944 else 4945 I->second = false; 4946 } 4947 4948 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4949 // We call takeVector() here to avoid use-after-free. 4950 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4951 // we deserialize function bodies to emit coverage info for them, and that 4952 // deserializes more declarations. How should we handle that case? 4953 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4954 if (!Entry.second) 4955 continue; 4956 const Decl *D = Entry.first; 4957 switch (D->getKind()) { 4958 case Decl::CXXConversion: 4959 case Decl::CXXMethod: 4960 case Decl::Function: 4961 case Decl::ObjCMethod: { 4962 CodeGenPGO PGO(*this); 4963 GlobalDecl GD(cast<FunctionDecl>(D)); 4964 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4965 getFunctionLinkage(GD)); 4966 break; 4967 } 4968 case Decl::CXXConstructor: { 4969 CodeGenPGO PGO(*this); 4970 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4971 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4972 getFunctionLinkage(GD)); 4973 break; 4974 } 4975 case Decl::CXXDestructor: { 4976 CodeGenPGO PGO(*this); 4977 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4978 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4979 getFunctionLinkage(GD)); 4980 break; 4981 } 4982 default: 4983 break; 4984 }; 4985 } 4986 } 4987 4988 /// Turns the given pointer into a constant. 4989 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4990 const void *Ptr) { 4991 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4992 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4993 return llvm::ConstantInt::get(i64, PtrInt); 4994 } 4995 4996 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4997 llvm::NamedMDNode *&GlobalMetadata, 4998 GlobalDecl D, 4999 llvm::GlobalValue *Addr) { 5000 if (!GlobalMetadata) 5001 GlobalMetadata = 5002 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5003 5004 // TODO: should we report variant information for ctors/dtors? 5005 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5006 llvm::ConstantAsMetadata::get(GetPointerConstant( 5007 CGM.getLLVMContext(), D.getDecl()))}; 5008 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5009 } 5010 5011 /// For each function which is declared within an extern "C" region and marked 5012 /// as 'used', but has internal linkage, create an alias from the unmangled 5013 /// name to the mangled name if possible. People expect to be able to refer 5014 /// to such functions with an unmangled name from inline assembly within the 5015 /// same translation unit. 5016 void CodeGenModule::EmitStaticExternCAliases() { 5017 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5018 return; 5019 for (auto &I : StaticExternCValues) { 5020 IdentifierInfo *Name = I.first; 5021 llvm::GlobalValue *Val = I.second; 5022 if (Val && !getModule().getNamedValue(Name->getName())) 5023 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5024 } 5025 } 5026 5027 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5028 GlobalDecl &Result) const { 5029 auto Res = Manglings.find(MangledName); 5030 if (Res == Manglings.end()) 5031 return false; 5032 Result = Res->getValue(); 5033 return true; 5034 } 5035 5036 /// Emits metadata nodes associating all the global values in the 5037 /// current module with the Decls they came from. This is useful for 5038 /// projects using IR gen as a subroutine. 5039 /// 5040 /// Since there's currently no way to associate an MDNode directly 5041 /// with an llvm::GlobalValue, we create a global named metadata 5042 /// with the name 'clang.global.decl.ptrs'. 5043 void CodeGenModule::EmitDeclMetadata() { 5044 llvm::NamedMDNode *GlobalMetadata = nullptr; 5045 5046 for (auto &I : MangledDeclNames) { 5047 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5048 // Some mangled names don't necessarily have an associated GlobalValue 5049 // in this module, e.g. if we mangled it for DebugInfo. 5050 if (Addr) 5051 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5052 } 5053 } 5054 5055 /// Emits metadata nodes for all the local variables in the current 5056 /// function. 5057 void CodeGenFunction::EmitDeclMetadata() { 5058 if (LocalDeclMap.empty()) return; 5059 5060 llvm::LLVMContext &Context = getLLVMContext(); 5061 5062 // Find the unique metadata ID for this name. 5063 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5064 5065 llvm::NamedMDNode *GlobalMetadata = nullptr; 5066 5067 for (auto &I : LocalDeclMap) { 5068 const Decl *D = I.first; 5069 llvm::Value *Addr = I.second.getPointer(); 5070 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5071 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5072 Alloca->setMetadata( 5073 DeclPtrKind, llvm::MDNode::get( 5074 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5075 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5076 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5077 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5078 } 5079 } 5080 } 5081 5082 void CodeGenModule::EmitVersionIdentMetadata() { 5083 llvm::NamedMDNode *IdentMetadata = 5084 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5085 std::string Version = getClangFullVersion(); 5086 llvm::LLVMContext &Ctx = TheModule.getContext(); 5087 5088 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5089 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5090 } 5091 5092 void CodeGenModule::EmitTargetMetadata() { 5093 // Warning, new MangledDeclNames may be appended within this loop. 5094 // We rely on MapVector insertions adding new elements to the end 5095 // of the container. 5096 // FIXME: Move this loop into the one target that needs it, and only 5097 // loop over those declarations for which we couldn't emit the target 5098 // metadata when we emitted the declaration. 5099 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5100 auto Val = *(MangledDeclNames.begin() + I); 5101 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5102 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5103 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5104 } 5105 } 5106 5107 void CodeGenModule::EmitCoverageFile() { 5108 if (getCodeGenOpts().CoverageDataFile.empty() && 5109 getCodeGenOpts().CoverageNotesFile.empty()) 5110 return; 5111 5112 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5113 if (!CUNode) 5114 return; 5115 5116 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5117 llvm::LLVMContext &Ctx = TheModule.getContext(); 5118 auto *CoverageDataFile = 5119 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5120 auto *CoverageNotesFile = 5121 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5122 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5123 llvm::MDNode *CU = CUNode->getOperand(i); 5124 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5125 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5126 } 5127 } 5128 5129 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5130 // Sema has checked that all uuid strings are of the form 5131 // "12345678-1234-1234-1234-1234567890ab". 5132 assert(Uuid.size() == 36); 5133 for (unsigned i = 0; i < 36; ++i) { 5134 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5135 else assert(isHexDigit(Uuid[i])); 5136 } 5137 5138 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5139 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5140 5141 llvm::Constant *Field3[8]; 5142 for (unsigned Idx = 0; Idx < 8; ++Idx) 5143 Field3[Idx] = llvm::ConstantInt::get( 5144 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5145 5146 llvm::Constant *Fields[4] = { 5147 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5148 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5149 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5150 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5151 }; 5152 5153 return llvm::ConstantStruct::getAnon(Fields); 5154 } 5155 5156 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5157 bool ForEH) { 5158 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5159 // FIXME: should we even be calling this method if RTTI is disabled 5160 // and it's not for EH? 5161 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5162 return llvm::Constant::getNullValue(Int8PtrTy); 5163 5164 if (ForEH && Ty->isObjCObjectPointerType() && 5165 LangOpts.ObjCRuntime.isGNUFamily()) 5166 return ObjCRuntime->GetEHType(Ty); 5167 5168 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5169 } 5170 5171 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5172 // Do not emit threadprivates in simd-only mode. 5173 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5174 return; 5175 for (auto RefExpr : D->varlists()) { 5176 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5177 bool PerformInit = 5178 VD->getAnyInitializer() && 5179 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5180 /*ForRef=*/false); 5181 5182 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5183 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5184 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5185 CXXGlobalInits.push_back(InitFunction); 5186 } 5187 } 5188 5189 llvm::Metadata * 5190 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5191 StringRef Suffix) { 5192 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5193 if (InternalId) 5194 return InternalId; 5195 5196 if (isExternallyVisible(T->getLinkage())) { 5197 std::string OutName; 5198 llvm::raw_string_ostream Out(OutName); 5199 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5200 Out << Suffix; 5201 5202 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5203 } else { 5204 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5205 llvm::ArrayRef<llvm::Metadata *>()); 5206 } 5207 5208 return InternalId; 5209 } 5210 5211 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5212 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5213 } 5214 5215 llvm::Metadata * 5216 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5217 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5218 } 5219 5220 // Generalize pointer types to a void pointer with the qualifiers of the 5221 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5222 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5223 // 'void *'. 5224 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5225 if (!Ty->isPointerType()) 5226 return Ty; 5227 5228 return Ctx.getPointerType( 5229 QualType(Ctx.VoidTy).withCVRQualifiers( 5230 Ty->getPointeeType().getCVRQualifiers())); 5231 } 5232 5233 // Apply type generalization to a FunctionType's return and argument types 5234 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5235 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5236 SmallVector<QualType, 8> GeneralizedParams; 5237 for (auto &Param : FnType->param_types()) 5238 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5239 5240 return Ctx.getFunctionType( 5241 GeneralizeType(Ctx, FnType->getReturnType()), 5242 GeneralizedParams, FnType->getExtProtoInfo()); 5243 } 5244 5245 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5246 return Ctx.getFunctionNoProtoType( 5247 GeneralizeType(Ctx, FnType->getReturnType())); 5248 5249 llvm_unreachable("Encountered unknown FunctionType"); 5250 } 5251 5252 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5253 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5254 GeneralizedMetadataIdMap, ".generalized"); 5255 } 5256 5257 /// Returns whether this module needs the "all-vtables" type identifier. 5258 bool CodeGenModule::NeedAllVtablesTypeId() const { 5259 // Returns true if at least one of vtable-based CFI checkers is enabled and 5260 // is not in the trapping mode. 5261 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5262 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5263 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5264 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5265 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5266 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5267 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5268 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5269 } 5270 5271 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5272 CharUnits Offset, 5273 const CXXRecordDecl *RD) { 5274 llvm::Metadata *MD = 5275 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5276 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5277 5278 if (CodeGenOpts.SanitizeCfiCrossDso) 5279 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5280 VTable->addTypeMetadata(Offset.getQuantity(), 5281 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5282 5283 if (NeedAllVtablesTypeId()) { 5284 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5285 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5286 } 5287 } 5288 5289 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5290 assert(TD != nullptr); 5291 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5292 5293 ParsedAttr.Features.erase( 5294 llvm::remove_if(ParsedAttr.Features, 5295 [&](const std::string &Feat) { 5296 return !Target.isValidFeatureName( 5297 StringRef{Feat}.substr(1)); 5298 }), 5299 ParsedAttr.Features.end()); 5300 return ParsedAttr; 5301 } 5302 5303 5304 // Fills in the supplied string map with the set of target features for the 5305 // passed in function. 5306 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5307 const FunctionDecl *FD) { 5308 StringRef TargetCPU = Target.getTargetOpts().CPU; 5309 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5310 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5311 5312 // Make a copy of the features as passed on the command line into the 5313 // beginning of the additional features from the function to override. 5314 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5315 Target.getTargetOpts().FeaturesAsWritten.begin(), 5316 Target.getTargetOpts().FeaturesAsWritten.end()); 5317 5318 if (ParsedAttr.Architecture != "" && 5319 Target.isValidCPUName(ParsedAttr.Architecture)) 5320 TargetCPU = ParsedAttr.Architecture; 5321 5322 // Now populate the feature map, first with the TargetCPU which is either 5323 // the default or a new one from the target attribute string. Then we'll use 5324 // the passed in features (FeaturesAsWritten) along with the new ones from 5325 // the attribute. 5326 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5327 ParsedAttr.Features); 5328 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5329 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5330 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5331 FeaturesTmp); 5332 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5333 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5334 } else { 5335 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5336 Target.getTargetOpts().Features); 5337 } 5338 } 5339 5340 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5341 if (!SanStats) 5342 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5343 5344 return *SanStats; 5345 } 5346 llvm::Value * 5347 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5348 CodeGenFunction &CGF) { 5349 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5350 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5351 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5352 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5353 "__translate_sampler_initializer"), 5354 {C}); 5355 } 5356