1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::le32: 120 return createPNaClTargetCodeGenInfo(CGM); 121 case llvm::Triple::m68k: 122 return createM68kTargetCodeGenInfo(CGM); 123 case llvm::Triple::mips: 124 case llvm::Triple::mipsel: 125 if (Triple.getOS() == llvm::Triple::NaCl) 126 return createPNaClTargetCodeGenInfo(CGM); 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 128 129 case llvm::Triple::mips64: 130 case llvm::Triple::mips64el: 131 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 132 133 case llvm::Triple::avr: { 134 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 135 // on avrtiny. For passing return value, R18~R25 are used on avr, and 136 // R22~R25 are used on avrtiny. 137 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 138 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 139 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 140 } 141 142 case llvm::Triple::aarch64: 143 case llvm::Triple::aarch64_32: 144 case llvm::Triple::aarch64_be: { 145 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 146 if (Target.getABI() == "darwinpcs") 147 Kind = AArch64ABIKind::DarwinPCS; 148 else if (Triple.isOSWindows()) 149 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 150 else if (Target.getABI() == "aapcs-soft") 151 Kind = AArch64ABIKind::AAPCSSoft; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::ve: 302 return createVETargetCodeGenInfo(CGM); 303 case llvm::Triple::csky: { 304 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 305 bool hasFP64 = 306 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 307 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 308 : hasFP64 ? 64 309 : 32); 310 } 311 case llvm::Triple::bpfeb: 312 case llvm::Triple::bpfel: 313 return createBPFTargetCodeGenInfo(CGM); 314 case llvm::Triple::loongarch32: 315 case llvm::Triple::loongarch64: { 316 StringRef ABIStr = Target.getABI(); 317 unsigned ABIFRLen = 0; 318 if (ABIStr.ends_with("f")) 319 ABIFRLen = 32; 320 else if (ABIStr.ends_with("d")) 321 ABIFRLen = 64; 322 return createLoongArchTargetCodeGenInfo( 323 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 324 } 325 } 326 } 327 328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 329 if (!TheTargetCodeGenInfo) 330 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 331 return *TheTargetCodeGenInfo; 332 } 333 334 CodeGenModule::CodeGenModule(ASTContext &C, 335 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 336 const HeaderSearchOptions &HSO, 337 const PreprocessorOptions &PPO, 338 const CodeGenOptions &CGO, llvm::Module &M, 339 DiagnosticsEngine &diags, 340 CoverageSourceInfo *CoverageInfo) 341 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 342 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 343 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 344 VMContext(M.getContext()), Types(*this), VTables(*this), 345 SanitizerMD(new SanitizerMetadata(*this)) { 346 347 // Initialize the type cache. 348 llvm::LLVMContext &LLVMContext = M.getContext(); 349 VoidTy = llvm::Type::getVoidTy(LLVMContext); 350 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 351 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 352 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 353 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 354 HalfTy = llvm::Type::getHalfTy(LLVMContext); 355 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 356 FloatTy = llvm::Type::getFloatTy(LLVMContext); 357 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 358 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 359 PointerAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 361 .getQuantity(); 362 SizeSizeInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 364 IntAlignInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 366 CharTy = 367 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 368 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 369 IntPtrTy = llvm::IntegerType::get(LLVMContext, 370 C.getTargetInfo().getMaxPointerWidth()); 371 Int8PtrTy = llvm::PointerType::get(LLVMContext, 372 C.getTargetAddressSpace(LangAS::Default)); 373 const llvm::DataLayout &DL = M.getDataLayout(); 374 AllocaInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 376 GlobalsInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 378 ConstGlobalsPtrTy = llvm::PointerType::get( 379 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 380 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 381 382 // Build C++20 Module initializers. 383 // TODO: Add Microsoft here once we know the mangling required for the 384 // initializers. 385 CXX20ModuleInits = 386 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 387 ItaniumMangleContext::MK_Itanium; 388 389 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 390 391 if (LangOpts.ObjC) 392 createObjCRuntime(); 393 if (LangOpts.OpenCL) 394 createOpenCLRuntime(); 395 if (LangOpts.OpenMP) 396 createOpenMPRuntime(); 397 if (LangOpts.CUDA) 398 createCUDARuntime(); 399 if (LangOpts.HLSL) 400 createHLSLRuntime(); 401 402 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 403 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 404 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 405 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 406 getLangOpts(), getCXXABI().getMangleContext())); 407 408 // If debug info or coverage generation is enabled, create the CGDebugInfo 409 // object. 410 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 411 CodeGenOpts.CoverageNotesFile.size() || 412 CodeGenOpts.CoverageDataFile.size()) 413 DebugInfo.reset(new CGDebugInfo(*this)); 414 415 Block.GlobalUniqueCount = 0; 416 417 if (C.getLangOpts().ObjC) 418 ObjCData.reset(new ObjCEntrypoints()); 419 420 if (CodeGenOpts.hasProfileClangUse()) { 421 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 422 CodeGenOpts.ProfileInstrumentUsePath, *FS, 423 CodeGenOpts.ProfileRemappingFile); 424 // We're checking for profile read errors in CompilerInvocation, so if 425 // there was an error it should've already been caught. If it hasn't been 426 // somehow, trip an assertion. 427 assert(ReaderOrErr); 428 PGOReader = std::move(ReaderOrErr.get()); 429 } 430 431 // If coverage mapping generation is enabled, create the 432 // CoverageMappingModuleGen object. 433 if (CodeGenOpts.CoverageMapping) 434 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 435 436 // Generate the module name hash here if needed. 437 if (CodeGenOpts.UniqueInternalLinkageNames && 438 !getModule().getSourceFileName().empty()) { 439 std::string Path = getModule().getSourceFileName(); 440 // Check if a path substitution is needed from the MacroPrefixMap. 441 for (const auto &Entry : LangOpts.MacroPrefixMap) 442 if (Path.rfind(Entry.first, 0) != std::string::npos) { 443 Path = Entry.second + Path.substr(Entry.first.size()); 444 break; 445 } 446 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 447 } 448 449 // Record mregparm value now so it is visible through all of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 } 454 455 CodeGenModule::~CodeGenModule() {} 456 457 void CodeGenModule::createObjCRuntime() { 458 // This is just isGNUFamily(), but we want to force implementors of 459 // new ABIs to decide how best to do this. 460 switch (LangOpts.ObjCRuntime.getKind()) { 461 case ObjCRuntime::GNUstep: 462 case ObjCRuntime::GCC: 463 case ObjCRuntime::ObjFW: 464 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 465 return; 466 467 case ObjCRuntime::FragileMacOSX: 468 case ObjCRuntime::MacOSX: 469 case ObjCRuntime::iOS: 470 case ObjCRuntime::WatchOS: 471 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 472 return; 473 } 474 llvm_unreachable("bad runtime kind"); 475 } 476 477 void CodeGenModule::createOpenCLRuntime() { 478 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 479 } 480 481 void CodeGenModule::createOpenMPRuntime() { 482 // Select a specialized code generation class based on the target, if any. 483 // If it does not exist use the default implementation. 484 switch (getTriple().getArch()) { 485 case llvm::Triple::nvptx: 486 case llvm::Triple::nvptx64: 487 case llvm::Triple::amdgcn: 488 assert(getLangOpts().OpenMPIsTargetDevice && 489 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 490 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 491 break; 492 default: 493 if (LangOpts.OpenMPSimd) 494 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 495 else 496 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 497 break; 498 } 499 } 500 501 void CodeGenModule::createCUDARuntime() { 502 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 503 } 504 505 void CodeGenModule::createHLSLRuntime() { 506 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 507 } 508 509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 510 Replacements[Name] = C; 511 } 512 513 void CodeGenModule::applyReplacements() { 514 for (auto &I : Replacements) { 515 StringRef MangledName = I.first; 516 llvm::Constant *Replacement = I.second; 517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 518 if (!Entry) 519 continue; 520 auto *OldF = cast<llvm::Function>(Entry); 521 auto *NewF = dyn_cast<llvm::Function>(Replacement); 522 if (!NewF) { 523 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 524 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 525 } else { 526 auto *CE = cast<llvm::ConstantExpr>(Replacement); 527 assert(CE->getOpcode() == llvm::Instruction::BitCast || 528 CE->getOpcode() == llvm::Instruction::GetElementPtr); 529 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 530 } 531 } 532 533 // Replace old with new, but keep the old order. 534 OldF->replaceAllUsesWith(Replacement); 535 if (NewF) { 536 NewF->removeFromParent(); 537 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 538 NewF); 539 } 540 OldF->eraseFromParent(); 541 } 542 } 543 544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 545 GlobalValReplacements.push_back(std::make_pair(GV, C)); 546 } 547 548 void CodeGenModule::applyGlobalValReplacements() { 549 for (auto &I : GlobalValReplacements) { 550 llvm::GlobalValue *GV = I.first; 551 llvm::Constant *C = I.second; 552 553 GV->replaceAllUsesWith(C); 554 GV->eraseFromParent(); 555 } 556 } 557 558 // This is only used in aliases that we created and we know they have a 559 // linear structure. 560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 561 const llvm::Constant *C; 562 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 563 C = GA->getAliasee(); 564 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 565 C = GI->getResolver(); 566 else 567 return GV; 568 569 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 570 if (!AliaseeGV) 571 return nullptr; 572 573 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 574 if (FinalGV == GV) 575 return nullptr; 576 577 return FinalGV; 578 } 579 580 static bool checkAliasedGlobal( 581 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 582 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 583 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 584 SourceRange AliasRange) { 585 GV = getAliasedGlobal(Alias); 586 if (!GV) { 587 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 588 return false; 589 } 590 591 if (GV->hasCommonLinkage()) { 592 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 593 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 594 Diags.Report(Location, diag::err_alias_to_common); 595 return false; 596 } 597 } 598 599 if (GV->isDeclaration()) { 600 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 601 Diags.Report(Location, diag::note_alias_requires_mangled_name) 602 << IsIFunc << IsIFunc; 603 // Provide a note if the given function is not found and exists as a 604 // mangled name. 605 for (const auto &[Decl, Name] : MangledDeclNames) { 606 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 607 if (ND->getName() == GV->getName()) { 608 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 609 << Name 610 << FixItHint::CreateReplacement( 611 AliasRange, 612 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 613 .str()); 614 } 615 } 616 } 617 return false; 618 } 619 620 if (IsIFunc) { 621 // Check resolver function type. 622 const auto *F = dyn_cast<llvm::Function>(GV); 623 if (!F) { 624 Diags.Report(Location, diag::err_alias_to_undefined) 625 << IsIFunc << IsIFunc; 626 return false; 627 } 628 629 llvm::FunctionType *FTy = F->getFunctionType(); 630 if (!FTy->getReturnType()->isPointerTy()) { 631 Diags.Report(Location, diag::err_ifunc_resolver_return); 632 return false; 633 } 634 } 635 636 return true; 637 } 638 639 // Emit a warning if toc-data attribute is requested for global variables that 640 // have aliases and remove the toc-data attribute. 641 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 642 const CodeGenOptions &CodeGenOpts, 643 DiagnosticsEngine &Diags, 644 SourceLocation Location) { 645 if (GVar->hasAttribute("toc-data")) { 646 auto GVId = GVar->getName(); 647 // Is this a global variable specified by the user as local? 648 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 649 Diags.Report(Location, diag::warn_toc_unsupported_type) 650 << GVId << "the variable has an alias"; 651 } 652 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 653 llvm::AttributeSet NewAttributes = 654 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 655 GVar->setAttributes(NewAttributes); 656 } 657 } 658 659 void CodeGenModule::checkAliases() { 660 // Check if the constructed aliases are well formed. It is really unfortunate 661 // that we have to do this in CodeGen, but we only construct mangled names 662 // and aliases during codegen. 663 bool Error = false; 664 DiagnosticsEngine &Diags = getDiags(); 665 for (const GlobalDecl &GD : Aliases) { 666 const auto *D = cast<ValueDecl>(GD.getDecl()); 667 SourceLocation Location; 668 SourceRange Range; 669 bool IsIFunc = D->hasAttr<IFuncAttr>(); 670 if (const Attr *A = D->getDefiningAttr()) { 671 Location = A->getLocation(); 672 Range = A->getRange(); 673 } else 674 llvm_unreachable("Not an alias or ifunc?"); 675 676 StringRef MangledName = getMangledName(GD); 677 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 678 const llvm::GlobalValue *GV = nullptr; 679 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 680 MangledDeclNames, Range)) { 681 Error = true; 682 continue; 683 } 684 685 if (getContext().getTargetInfo().getTriple().isOSAIX()) 686 if (const llvm::GlobalVariable *GVar = 687 dyn_cast<const llvm::GlobalVariable>(GV)) 688 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 689 getCodeGenOpts(), Diags, Location); 690 691 llvm::Constant *Aliasee = 692 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 693 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 694 695 llvm::GlobalValue *AliaseeGV; 696 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 697 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 698 else 699 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 700 701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 702 StringRef AliasSection = SA->getName(); 703 if (AliasSection != AliaseeGV->getSection()) 704 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 705 << AliasSection << IsIFunc << IsIFunc; 706 } 707 708 // We have to handle alias to weak aliases in here. LLVM itself disallows 709 // this since the object semantics would not match the IL one. For 710 // compatibility with gcc we implement it by just pointing the alias 711 // to its aliasee's aliasee. We also warn, since the user is probably 712 // expecting the link to be weak. 713 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 714 if (GA->isInterposable()) { 715 Diags.Report(Location, diag::warn_alias_to_weak_alias) 716 << GV->getName() << GA->getName() << IsIFunc; 717 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 718 GA->getAliasee(), Alias->getType()); 719 720 if (IsIFunc) 721 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 722 else 723 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 724 } 725 } 726 } 727 if (!Error) 728 return; 729 730 for (const GlobalDecl &GD : Aliases) { 731 StringRef MangledName = getMangledName(GD); 732 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 733 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 734 Alias->eraseFromParent(); 735 } 736 } 737 738 void CodeGenModule::clear() { 739 DeferredDeclsToEmit.clear(); 740 EmittedDeferredDecls.clear(); 741 DeferredAnnotations.clear(); 742 if (OpenMPRuntime) 743 OpenMPRuntime->clear(); 744 } 745 746 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 747 StringRef MainFile) { 748 if (!hasDiagnostics()) 749 return; 750 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 751 if (MainFile.empty()) 752 MainFile = "<stdin>"; 753 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 754 } else { 755 if (Mismatched > 0) 756 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 757 758 if (Missing > 0) 759 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 760 } 761 } 762 763 static std::optional<llvm::GlobalValue::VisibilityTypes> 764 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 765 // Map to LLVM visibility. 766 switch (K) { 767 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 768 return std::nullopt; 769 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 770 return llvm::GlobalValue::DefaultVisibility; 771 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 772 return llvm::GlobalValue::HiddenVisibility; 773 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 774 return llvm::GlobalValue::ProtectedVisibility; 775 } 776 llvm_unreachable("unknown option value!"); 777 } 778 779 void setLLVMVisibility(llvm::GlobalValue &GV, 780 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 781 if (!V) 782 return; 783 784 // Reset DSO locality before setting the visibility. This removes 785 // any effects that visibility options and annotations may have 786 // had on the DSO locality. Setting the visibility will implicitly set 787 // appropriate globals to DSO Local; however, this will be pessimistic 788 // w.r.t. to the normal compiler IRGen. 789 GV.setDSOLocal(false); 790 GV.setVisibility(*V); 791 } 792 793 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 794 llvm::Module &M) { 795 if (!LO.VisibilityFromDLLStorageClass) 796 return; 797 798 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 799 getLLVMVisibility(LO.getDLLExportVisibility()); 800 801 std::optional<llvm::GlobalValue::VisibilityTypes> 802 NoDLLStorageClassVisibility = 803 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 804 805 std::optional<llvm::GlobalValue::VisibilityTypes> 806 ExternDeclDLLImportVisibility = 807 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 808 809 std::optional<llvm::GlobalValue::VisibilityTypes> 810 ExternDeclNoDLLStorageClassVisibility = 811 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 812 813 for (llvm::GlobalValue &GV : M.global_values()) { 814 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 815 continue; 816 817 if (GV.isDeclarationForLinker()) 818 setLLVMVisibility(GV, GV.getDLLStorageClass() == 819 llvm::GlobalValue::DLLImportStorageClass 820 ? ExternDeclDLLImportVisibility 821 : ExternDeclNoDLLStorageClassVisibility); 822 else 823 setLLVMVisibility(GV, GV.getDLLStorageClass() == 824 llvm::GlobalValue::DLLExportStorageClass 825 ? DLLExportVisibility 826 : NoDLLStorageClassVisibility); 827 828 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 829 } 830 } 831 832 static bool isStackProtectorOn(const LangOptions &LangOpts, 833 const llvm::Triple &Triple, 834 clang::LangOptions::StackProtectorMode Mode) { 835 if (Triple.isAMDGPU() || Triple.isNVPTX()) 836 return false; 837 return LangOpts.getStackProtector() == Mode; 838 } 839 840 void CodeGenModule::Release() { 841 Module *Primary = getContext().getCurrentNamedModule(); 842 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 843 EmitModuleInitializers(Primary); 844 EmitDeferred(); 845 DeferredDecls.insert(EmittedDeferredDecls.begin(), 846 EmittedDeferredDecls.end()); 847 EmittedDeferredDecls.clear(); 848 EmitVTablesOpportunistically(); 849 applyGlobalValReplacements(); 850 applyReplacements(); 851 emitMultiVersionFunctions(); 852 853 if (Context.getLangOpts().IncrementalExtensions && 854 GlobalTopLevelStmtBlockInFlight.first) { 855 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 856 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 857 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 858 } 859 860 // Module implementations are initialized the same way as a regular TU that 861 // imports one or more modules. 862 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 863 EmitCXXModuleInitFunc(Primary); 864 else 865 EmitCXXGlobalInitFunc(); 866 EmitCXXGlobalCleanUpFunc(); 867 registerGlobalDtorsWithAtExit(); 868 EmitCXXThreadLocalInitFunc(); 869 if (ObjCRuntime) 870 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 871 AddGlobalCtor(ObjCInitFunction); 872 if (Context.getLangOpts().CUDA && CUDARuntime) { 873 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 874 AddGlobalCtor(CudaCtorFunction); 875 } 876 if (OpenMPRuntime) { 877 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 878 OpenMPRuntime->clear(); 879 } 880 if (PGOReader) { 881 getModule().setProfileSummary( 882 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 883 llvm::ProfileSummary::PSK_Instr); 884 if (PGOStats.hasDiagnostics()) 885 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 886 } 887 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 888 return L.LexOrder < R.LexOrder; 889 }); 890 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 891 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 892 EmitGlobalAnnotations(); 893 EmitStaticExternCAliases(); 894 checkAliases(); 895 EmitDeferredUnusedCoverageMappings(); 896 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 897 CodeGenPGO(*this).setProfileVersion(getModule()); 898 if (CoverageMapping) 899 CoverageMapping->emit(); 900 if (CodeGenOpts.SanitizeCfiCrossDso) { 901 CodeGenFunction(*this).EmitCfiCheckFail(); 902 CodeGenFunction(*this).EmitCfiCheckStub(); 903 } 904 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 905 finalizeKCFITypes(); 906 emitAtAvailableLinkGuard(); 907 if (Context.getTargetInfo().getTriple().isWasm()) 908 EmitMainVoidAlias(); 909 910 if (getTriple().isAMDGPU() || 911 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 912 // Emit amdhsa_code_object_version module flag, which is code object version 913 // times 100. 914 if (getTarget().getTargetOpts().CodeObjectVersion != 915 llvm::CodeObjectVersionKind::COV_None) { 916 getModule().addModuleFlag(llvm::Module::Error, 917 "amdhsa_code_object_version", 918 getTarget().getTargetOpts().CodeObjectVersion); 919 } 920 921 // Currently, "-mprintf-kind" option is only supported for HIP 922 if (LangOpts.HIP) { 923 auto *MDStr = llvm::MDString::get( 924 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 925 TargetOptions::AMDGPUPrintfKind::Hostcall) 926 ? "hostcall" 927 : "buffered"); 928 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 929 MDStr); 930 } 931 } 932 933 // Emit a global array containing all external kernels or device variables 934 // used by host functions and mark it as used for CUDA/HIP. This is necessary 935 // to get kernels or device variables in archives linked in even if these 936 // kernels or device variables are only used in host functions. 937 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 938 SmallVector<llvm::Constant *, 8> UsedArray; 939 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 940 GlobalDecl GD; 941 if (auto *FD = dyn_cast<FunctionDecl>(D)) 942 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 943 else 944 GD = GlobalDecl(D); 945 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 946 GetAddrOfGlobal(GD), Int8PtrTy)); 947 } 948 949 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 950 951 auto *GV = new llvm::GlobalVariable( 952 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 953 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 954 addCompilerUsedGlobal(GV); 955 } 956 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 957 // Emit a unique ID so that host and device binaries from the same 958 // compilation unit can be associated. 959 auto *GV = new llvm::GlobalVariable( 960 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 961 llvm::Constant::getNullValue(Int8Ty), 962 "__hip_cuid_" + getContext().getCUIDHash()); 963 addCompilerUsedGlobal(GV); 964 } 965 emitLLVMUsed(); 966 if (SanStats) 967 SanStats->finish(); 968 969 if (CodeGenOpts.Autolink && 970 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 971 EmitModuleLinkOptions(); 972 } 973 974 // On ELF we pass the dependent library specifiers directly to the linker 975 // without manipulating them. This is in contrast to other platforms where 976 // they are mapped to a specific linker option by the compiler. This 977 // difference is a result of the greater variety of ELF linkers and the fact 978 // that ELF linkers tend to handle libraries in a more complicated fashion 979 // than on other platforms. This forces us to defer handling the dependent 980 // libs to the linker. 981 // 982 // CUDA/HIP device and host libraries are different. Currently there is no 983 // way to differentiate dependent libraries for host or device. Existing 984 // usage of #pragma comment(lib, *) is intended for host libraries on 985 // Windows. Therefore emit llvm.dependent-libraries only for host. 986 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 987 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 988 for (auto *MD : ELFDependentLibraries) 989 NMD->addOperand(MD); 990 } 991 992 if (CodeGenOpts.DwarfVersion) { 993 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 994 CodeGenOpts.DwarfVersion); 995 } 996 997 if (CodeGenOpts.Dwarf64) 998 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 999 1000 if (Context.getLangOpts().SemanticInterposition) 1001 // Require various optimization to respect semantic interposition. 1002 getModule().setSemanticInterposition(true); 1003 1004 if (CodeGenOpts.EmitCodeView) { 1005 // Indicate that we want CodeView in the metadata. 1006 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1007 } 1008 if (CodeGenOpts.CodeViewGHash) { 1009 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1010 } 1011 if (CodeGenOpts.ControlFlowGuard) { 1012 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1013 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1014 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1015 // Function ID tables for Control Flow Guard (cfguard=1). 1016 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1017 } 1018 if (CodeGenOpts.EHContGuard) { 1019 // Function ID tables for EH Continuation Guard. 1020 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1021 } 1022 if (Context.getLangOpts().Kernel) { 1023 // Note if we are compiling with /kernel. 1024 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1025 } 1026 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1027 // We don't support LTO with 2 with different StrictVTablePointers 1028 // FIXME: we could support it by stripping all the information introduced 1029 // by StrictVTablePointers. 1030 1031 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1032 1033 llvm::Metadata *Ops[2] = { 1034 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1035 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1036 llvm::Type::getInt32Ty(VMContext), 1))}; 1037 1038 getModule().addModuleFlag(llvm::Module::Require, 1039 "StrictVTablePointersRequirement", 1040 llvm::MDNode::get(VMContext, Ops)); 1041 } 1042 if (getModuleDebugInfo()) 1043 // We support a single version in the linked module. The LLVM 1044 // parser will drop debug info with a different version number 1045 // (and warn about it, too). 1046 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1047 llvm::DEBUG_METADATA_VERSION); 1048 1049 // We need to record the widths of enums and wchar_t, so that we can generate 1050 // the correct build attributes in the ARM backend. wchar_size is also used by 1051 // TargetLibraryInfo. 1052 uint64_t WCharWidth = 1053 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1054 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1055 1056 if (getTriple().isOSzOS()) { 1057 getModule().addModuleFlag(llvm::Module::Warning, 1058 "zos_product_major_version", 1059 uint32_t(CLANG_VERSION_MAJOR)); 1060 getModule().addModuleFlag(llvm::Module::Warning, 1061 "zos_product_minor_version", 1062 uint32_t(CLANG_VERSION_MINOR)); 1063 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1064 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1065 std::string ProductId = getClangVendor() + "clang"; 1066 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1067 llvm::MDString::get(VMContext, ProductId)); 1068 1069 // Record the language because we need it for the PPA2. 1070 StringRef lang_str = languageToString( 1071 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1072 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1073 llvm::MDString::get(VMContext, lang_str)); 1074 1075 time_t TT = PreprocessorOpts.SourceDateEpoch 1076 ? *PreprocessorOpts.SourceDateEpoch 1077 : std::time(nullptr); 1078 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1079 static_cast<uint64_t>(TT)); 1080 1081 // Multiple modes will be supported here. 1082 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1083 llvm::MDString::get(VMContext, "ascii")); 1084 } 1085 1086 llvm::Triple T = Context.getTargetInfo().getTriple(); 1087 if (T.isARM() || T.isThumb()) { 1088 // The minimum width of an enum in bytes 1089 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1090 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1091 } 1092 1093 if (T.isRISCV()) { 1094 StringRef ABIStr = Target.getABI(); 1095 llvm::LLVMContext &Ctx = TheModule.getContext(); 1096 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1097 llvm::MDString::get(Ctx, ABIStr)); 1098 1099 // Add the canonical ISA string as metadata so the backend can set the ELF 1100 // attributes correctly. We use AppendUnique so LTO will keep all of the 1101 // unique ISA strings that were linked together. 1102 const std::vector<std::string> &Features = 1103 getTarget().getTargetOpts().Features; 1104 auto ParseResult = 1105 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1106 if (!errorToBool(ParseResult.takeError())) 1107 getModule().addModuleFlag( 1108 llvm::Module::AppendUnique, "riscv-isa", 1109 llvm::MDNode::get( 1110 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1111 } 1112 1113 if (CodeGenOpts.SanitizeCfiCrossDso) { 1114 // Indicate that we want cross-DSO control flow integrity checks. 1115 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1116 } 1117 1118 if (CodeGenOpts.WholeProgramVTables) { 1119 // Indicate whether VFE was enabled for this module, so that the 1120 // vcall_visibility metadata added under whole program vtables is handled 1121 // appropriately in the optimizer. 1122 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1123 CodeGenOpts.VirtualFunctionElimination); 1124 } 1125 1126 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1127 getModule().addModuleFlag(llvm::Module::Override, 1128 "CFI Canonical Jump Tables", 1129 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1130 } 1131 1132 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1133 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1134 // KCFI assumes patchable-function-prefix is the same for all indirectly 1135 // called functions. Store the expected offset for code generation. 1136 if (CodeGenOpts.PatchableFunctionEntryOffset) 1137 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1138 CodeGenOpts.PatchableFunctionEntryOffset); 1139 } 1140 1141 if (CodeGenOpts.CFProtectionReturn && 1142 Target.checkCFProtectionReturnSupported(getDiags())) { 1143 // Indicate that we want to instrument return control flow protection. 1144 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1145 1); 1146 } 1147 1148 if (CodeGenOpts.CFProtectionBranch && 1149 Target.checkCFProtectionBranchSupported(getDiags())) { 1150 // Indicate that we want to instrument branch control flow protection. 1151 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1152 1); 1153 } 1154 1155 if (CodeGenOpts.FunctionReturnThunks) 1156 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1157 1158 if (CodeGenOpts.IndirectBranchCSPrefix) 1159 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1160 1161 // Add module metadata for return address signing (ignoring 1162 // non-leaf/all) and stack tagging. These are actually turned on by function 1163 // attributes, but we use module metadata to emit build attributes. This is 1164 // needed for LTO, where the function attributes are inside bitcode 1165 // serialised into a global variable by the time build attributes are 1166 // emitted, so we can't access them. LTO objects could be compiled with 1167 // different flags therefore module flags are set to "Min" behavior to achieve 1168 // the same end result of the normal build where e.g BTI is off if any object 1169 // doesn't support it. 1170 if (Context.getTargetInfo().hasFeature("ptrauth") && 1171 LangOpts.getSignReturnAddressScope() != 1172 LangOptions::SignReturnAddressScopeKind::None) 1173 getModule().addModuleFlag(llvm::Module::Override, 1174 "sign-return-address-buildattr", 1); 1175 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1176 getModule().addModuleFlag(llvm::Module::Override, 1177 "tag-stack-memory-buildattr", 1); 1178 1179 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1180 if (LangOpts.BranchTargetEnforcement) 1181 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1182 1); 1183 if (LangOpts.BranchProtectionPAuthLR) 1184 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1185 1); 1186 if (LangOpts.GuardedControlStack) 1187 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1188 if (LangOpts.hasSignReturnAddress()) 1189 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1190 if (LangOpts.isSignReturnAddressScopeAll()) 1191 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1192 1); 1193 if (!LangOpts.isSignReturnAddressWithAKey()) 1194 getModule().addModuleFlag(llvm::Module::Min, 1195 "sign-return-address-with-bkey", 1); 1196 1197 if (getTriple().isOSLinux()) { 1198 assert(getTriple().isOSBinFormatELF()); 1199 using namespace llvm::ELF; 1200 uint64_t PAuthABIVersion = 1201 (LangOpts.PointerAuthIntrinsics 1202 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1203 (LangOpts.PointerAuthCalls 1204 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1205 (LangOpts.PointerAuthReturns 1206 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1207 (LangOpts.PointerAuthAuthTraps 1208 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1209 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1210 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1211 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1212 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1213 (LangOpts.PointerAuthInitFini 1214 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI); 1215 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == 1216 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1217 "Update when new enum items are defined"); 1218 if (PAuthABIVersion != 0) { 1219 getModule().addModuleFlag(llvm::Module::Error, 1220 "aarch64-elf-pauthabi-platform", 1221 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1222 getModule().addModuleFlag(llvm::Module::Error, 1223 "aarch64-elf-pauthabi-version", 1224 PAuthABIVersion); 1225 } 1226 } 1227 } 1228 1229 if (CodeGenOpts.StackClashProtector) 1230 getModule().addModuleFlag( 1231 llvm::Module::Override, "probe-stack", 1232 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1233 1234 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1235 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1236 CodeGenOpts.StackProbeSize); 1237 1238 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1239 llvm::LLVMContext &Ctx = TheModule.getContext(); 1240 getModule().addModuleFlag( 1241 llvm::Module::Error, "MemProfProfileFilename", 1242 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1243 } 1244 1245 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1246 // Indicate whether __nvvm_reflect should be configured to flush denormal 1247 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1248 // property.) 1249 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1250 CodeGenOpts.FP32DenormalMode.Output != 1251 llvm::DenormalMode::IEEE); 1252 } 1253 1254 if (LangOpts.EHAsynch) 1255 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1256 1257 // Indicate whether this Module was compiled with -fopenmp 1258 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1259 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1260 if (getLangOpts().OpenMPIsTargetDevice) 1261 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1262 LangOpts.OpenMP); 1263 1264 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1265 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1266 EmitOpenCLMetadata(); 1267 // Emit SPIR version. 1268 if (getTriple().isSPIR()) { 1269 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1270 // opencl.spir.version named metadata. 1271 // C++ for OpenCL has a distinct mapping for version compatibility with 1272 // OpenCL. 1273 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1274 llvm::Metadata *SPIRVerElts[] = { 1275 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1276 Int32Ty, Version / 100)), 1277 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1278 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1279 llvm::NamedMDNode *SPIRVerMD = 1280 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1281 llvm::LLVMContext &Ctx = TheModule.getContext(); 1282 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1283 } 1284 } 1285 1286 // HLSL related end of code gen work items. 1287 if (LangOpts.HLSL) 1288 getHLSLRuntime().finishCodeGen(); 1289 1290 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1291 assert(PLevel < 3 && "Invalid PIC Level"); 1292 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1293 if (Context.getLangOpts().PIE) 1294 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1295 } 1296 1297 if (getCodeGenOpts().CodeModel.size() > 0) { 1298 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1299 .Case("tiny", llvm::CodeModel::Tiny) 1300 .Case("small", llvm::CodeModel::Small) 1301 .Case("kernel", llvm::CodeModel::Kernel) 1302 .Case("medium", llvm::CodeModel::Medium) 1303 .Case("large", llvm::CodeModel::Large) 1304 .Default(~0u); 1305 if (CM != ~0u) { 1306 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1307 getModule().setCodeModel(codeModel); 1308 1309 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1310 Context.getTargetInfo().getTriple().getArch() == 1311 llvm::Triple::x86_64) { 1312 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1313 } 1314 } 1315 } 1316 1317 if (CodeGenOpts.NoPLT) 1318 getModule().setRtLibUseGOT(); 1319 if (getTriple().isOSBinFormatELF() && 1320 CodeGenOpts.DirectAccessExternalData != 1321 getModule().getDirectAccessExternalData()) { 1322 getModule().setDirectAccessExternalData( 1323 CodeGenOpts.DirectAccessExternalData); 1324 } 1325 if (CodeGenOpts.UnwindTables) 1326 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1327 1328 switch (CodeGenOpts.getFramePointer()) { 1329 case CodeGenOptions::FramePointerKind::None: 1330 // 0 ("none") is the default. 1331 break; 1332 case CodeGenOptions::FramePointerKind::Reserved: 1333 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1334 break; 1335 case CodeGenOptions::FramePointerKind::NonLeaf: 1336 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1337 break; 1338 case CodeGenOptions::FramePointerKind::All: 1339 getModule().setFramePointer(llvm::FramePointerKind::All); 1340 break; 1341 } 1342 1343 SimplifyPersonality(); 1344 1345 if (getCodeGenOpts().EmitDeclMetadata) 1346 EmitDeclMetadata(); 1347 1348 if (getCodeGenOpts().CoverageNotesFile.size() || 1349 getCodeGenOpts().CoverageDataFile.size()) 1350 EmitCoverageFile(); 1351 1352 if (CGDebugInfo *DI = getModuleDebugInfo()) 1353 DI->finalize(); 1354 1355 if (getCodeGenOpts().EmitVersionIdentMetadata) 1356 EmitVersionIdentMetadata(); 1357 1358 if (!getCodeGenOpts().RecordCommandLine.empty()) 1359 EmitCommandLineMetadata(); 1360 1361 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1362 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1363 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1364 getModule().setStackProtectorGuardReg( 1365 getCodeGenOpts().StackProtectorGuardReg); 1366 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1367 getModule().setStackProtectorGuardSymbol( 1368 getCodeGenOpts().StackProtectorGuardSymbol); 1369 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1370 getModule().setStackProtectorGuardOffset( 1371 getCodeGenOpts().StackProtectorGuardOffset); 1372 if (getCodeGenOpts().StackAlignment) 1373 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1374 if (getCodeGenOpts().SkipRaxSetup) 1375 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1376 if (getLangOpts().RegCall4) 1377 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1378 1379 if (getContext().getTargetInfo().getMaxTLSAlign()) 1380 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1381 getContext().getTargetInfo().getMaxTLSAlign()); 1382 1383 getTargetCodeGenInfo().emitTargetGlobals(*this); 1384 1385 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1386 1387 EmitBackendOptionsMetadata(getCodeGenOpts()); 1388 1389 // If there is device offloading code embed it in the host now. 1390 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1391 1392 // Set visibility from DLL storage class 1393 // We do this at the end of LLVM IR generation; after any operation 1394 // that might affect the DLL storage class or the visibility, and 1395 // before anything that might act on these. 1396 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1397 } 1398 1399 void CodeGenModule::EmitOpenCLMetadata() { 1400 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1401 // opencl.ocl.version named metadata node. 1402 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1403 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1404 llvm::Metadata *OCLVerElts[] = { 1405 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1406 Int32Ty, Version / 100)), 1407 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1408 Int32Ty, (Version % 100) / 10))}; 1409 llvm::NamedMDNode *OCLVerMD = 1410 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1411 llvm::LLVMContext &Ctx = TheModule.getContext(); 1412 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1413 } 1414 1415 void CodeGenModule::EmitBackendOptionsMetadata( 1416 const CodeGenOptions &CodeGenOpts) { 1417 if (getTriple().isRISCV()) { 1418 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1419 CodeGenOpts.SmallDataLimit); 1420 } 1421 } 1422 1423 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1424 // Make sure that this type is translated. 1425 Types.UpdateCompletedType(TD); 1426 } 1427 1428 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1429 // Make sure that this type is translated. 1430 Types.RefreshTypeCacheForClass(RD); 1431 } 1432 1433 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1434 if (!TBAA) 1435 return nullptr; 1436 return TBAA->getTypeInfo(QTy); 1437 } 1438 1439 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1440 if (!TBAA) 1441 return TBAAAccessInfo(); 1442 if (getLangOpts().CUDAIsDevice) { 1443 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1444 // access info. 1445 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1446 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1447 nullptr) 1448 return TBAAAccessInfo(); 1449 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1450 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1451 nullptr) 1452 return TBAAAccessInfo(); 1453 } 1454 } 1455 return TBAA->getAccessInfo(AccessType); 1456 } 1457 1458 TBAAAccessInfo 1459 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1460 if (!TBAA) 1461 return TBAAAccessInfo(); 1462 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1463 } 1464 1465 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1466 if (!TBAA) 1467 return nullptr; 1468 return TBAA->getTBAAStructInfo(QTy); 1469 } 1470 1471 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1472 if (!TBAA) 1473 return nullptr; 1474 return TBAA->getBaseTypeInfo(QTy); 1475 } 1476 1477 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1478 if (!TBAA) 1479 return nullptr; 1480 return TBAA->getAccessTagInfo(Info); 1481 } 1482 1483 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1484 TBAAAccessInfo TargetInfo) { 1485 if (!TBAA) 1486 return TBAAAccessInfo(); 1487 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1488 } 1489 1490 TBAAAccessInfo 1491 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1492 TBAAAccessInfo InfoB) { 1493 if (!TBAA) 1494 return TBAAAccessInfo(); 1495 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1496 } 1497 1498 TBAAAccessInfo 1499 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1500 TBAAAccessInfo SrcInfo) { 1501 if (!TBAA) 1502 return TBAAAccessInfo(); 1503 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1504 } 1505 1506 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1507 TBAAAccessInfo TBAAInfo) { 1508 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1509 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1510 } 1511 1512 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1513 llvm::Instruction *I, const CXXRecordDecl *RD) { 1514 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1515 llvm::MDNode::get(getLLVMContext(), {})); 1516 } 1517 1518 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1519 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1520 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1521 } 1522 1523 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1524 /// specified stmt yet. 1525 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1526 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1527 "cannot compile this %0 yet"); 1528 std::string Msg = Type; 1529 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1530 << Msg << S->getSourceRange(); 1531 } 1532 1533 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1534 /// specified decl yet. 1535 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1536 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1537 "cannot compile this %0 yet"); 1538 std::string Msg = Type; 1539 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1540 } 1541 1542 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1543 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1544 } 1545 1546 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1547 const NamedDecl *D) const { 1548 // Internal definitions always have default visibility. 1549 if (GV->hasLocalLinkage()) { 1550 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1551 return; 1552 } 1553 if (!D) 1554 return; 1555 1556 // Set visibility for definitions, and for declarations if requested globally 1557 // or set explicitly. 1558 LinkageInfo LV = D->getLinkageAndVisibility(); 1559 1560 // OpenMP declare target variables must be visible to the host so they can 1561 // be registered. We require protected visibility unless the variable has 1562 // the DT_nohost modifier and does not need to be registered. 1563 if (Context.getLangOpts().OpenMP && 1564 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1565 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1566 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1567 OMPDeclareTargetDeclAttr::DT_NoHost && 1568 LV.getVisibility() == HiddenVisibility) { 1569 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1570 return; 1571 } 1572 1573 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1574 // Reject incompatible dlllstorage and visibility annotations. 1575 if (!LV.isVisibilityExplicit()) 1576 return; 1577 if (GV->hasDLLExportStorageClass()) { 1578 if (LV.getVisibility() == HiddenVisibility) 1579 getDiags().Report(D->getLocation(), 1580 diag::err_hidden_visibility_dllexport); 1581 } else if (LV.getVisibility() != DefaultVisibility) { 1582 getDiags().Report(D->getLocation(), 1583 diag::err_non_default_visibility_dllimport); 1584 } 1585 return; 1586 } 1587 1588 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1589 !GV->isDeclarationForLinker()) 1590 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1591 } 1592 1593 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1594 llvm::GlobalValue *GV) { 1595 if (GV->hasLocalLinkage()) 1596 return true; 1597 1598 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1599 return true; 1600 1601 // DLLImport explicitly marks the GV as external. 1602 if (GV->hasDLLImportStorageClass()) 1603 return false; 1604 1605 const llvm::Triple &TT = CGM.getTriple(); 1606 const auto &CGOpts = CGM.getCodeGenOpts(); 1607 if (TT.isWindowsGNUEnvironment()) { 1608 // In MinGW, variables without DLLImport can still be automatically 1609 // imported from a DLL by the linker; don't mark variables that 1610 // potentially could come from another DLL as DSO local. 1611 1612 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1613 // (and this actually happens in the public interface of libstdc++), so 1614 // such variables can't be marked as DSO local. (Native TLS variables 1615 // can't be dllimported at all, though.) 1616 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1617 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1618 CGOpts.AutoImport) 1619 return false; 1620 } 1621 1622 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1623 // remain unresolved in the link, they can be resolved to zero, which is 1624 // outside the current DSO. 1625 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1626 return false; 1627 1628 // Every other GV is local on COFF. 1629 // Make an exception for windows OS in the triple: Some firmware builds use 1630 // *-win32-macho triples. This (accidentally?) produced windows relocations 1631 // without GOT tables in older clang versions; Keep this behaviour. 1632 // FIXME: even thread local variables? 1633 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1634 return true; 1635 1636 // Only handle COFF and ELF for now. 1637 if (!TT.isOSBinFormatELF()) 1638 return false; 1639 1640 // If this is not an executable, don't assume anything is local. 1641 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1642 const auto &LOpts = CGM.getLangOpts(); 1643 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1644 // On ELF, if -fno-semantic-interposition is specified and the target 1645 // supports local aliases, there will be neither CC1 1646 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1647 // dso_local on the function if using a local alias is preferable (can avoid 1648 // PLT indirection). 1649 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1650 return false; 1651 return !(CGM.getLangOpts().SemanticInterposition || 1652 CGM.getLangOpts().HalfNoSemanticInterposition); 1653 } 1654 1655 // A definition cannot be preempted from an executable. 1656 if (!GV->isDeclarationForLinker()) 1657 return true; 1658 1659 // Most PIC code sequences that assume that a symbol is local cannot produce a 1660 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1661 // depended, it seems worth it to handle it here. 1662 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1663 return false; 1664 1665 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1666 if (TT.isPPC64()) 1667 return false; 1668 1669 if (CGOpts.DirectAccessExternalData) { 1670 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1671 // for non-thread-local variables. If the symbol is not defined in the 1672 // executable, a copy relocation will be needed at link time. dso_local is 1673 // excluded for thread-local variables because they generally don't support 1674 // copy relocations. 1675 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1676 if (!Var->isThreadLocal()) 1677 return true; 1678 1679 // -fno-pic sets dso_local on a function declaration to allow direct 1680 // accesses when taking its address (similar to a data symbol). If the 1681 // function is not defined in the executable, a canonical PLT entry will be 1682 // needed at link time. -fno-direct-access-external-data can avoid the 1683 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1684 // it could just cause trouble without providing perceptible benefits. 1685 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1686 return true; 1687 } 1688 1689 // If we can use copy relocations we can assume it is local. 1690 1691 // Otherwise don't assume it is local. 1692 return false; 1693 } 1694 1695 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1696 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1697 } 1698 1699 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1700 GlobalDecl GD) const { 1701 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1702 // C++ destructors have a few C++ ABI specific special cases. 1703 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1704 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1705 return; 1706 } 1707 setDLLImportDLLExport(GV, D); 1708 } 1709 1710 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1711 const NamedDecl *D) const { 1712 if (D && D->isExternallyVisible()) { 1713 if (D->hasAttr<DLLImportAttr>()) 1714 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1715 else if ((D->hasAttr<DLLExportAttr>() || 1716 shouldMapVisibilityToDLLExport(D)) && 1717 !GV->isDeclarationForLinker()) 1718 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1719 } 1720 } 1721 1722 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1723 GlobalDecl GD) const { 1724 setDLLImportDLLExport(GV, GD); 1725 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1726 } 1727 1728 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1729 const NamedDecl *D) const { 1730 setDLLImportDLLExport(GV, D); 1731 setGVPropertiesAux(GV, D); 1732 } 1733 1734 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1735 const NamedDecl *D) const { 1736 setGlobalVisibility(GV, D); 1737 setDSOLocal(GV); 1738 GV->setPartition(CodeGenOpts.SymbolPartition); 1739 } 1740 1741 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1742 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1743 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1744 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1745 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1746 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1747 } 1748 1749 llvm::GlobalVariable::ThreadLocalMode 1750 CodeGenModule::GetDefaultLLVMTLSModel() const { 1751 switch (CodeGenOpts.getDefaultTLSModel()) { 1752 case CodeGenOptions::GeneralDynamicTLSModel: 1753 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1754 case CodeGenOptions::LocalDynamicTLSModel: 1755 return llvm::GlobalVariable::LocalDynamicTLSModel; 1756 case CodeGenOptions::InitialExecTLSModel: 1757 return llvm::GlobalVariable::InitialExecTLSModel; 1758 case CodeGenOptions::LocalExecTLSModel: 1759 return llvm::GlobalVariable::LocalExecTLSModel; 1760 } 1761 llvm_unreachable("Invalid TLS model!"); 1762 } 1763 1764 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1765 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1766 1767 llvm::GlobalValue::ThreadLocalMode TLM; 1768 TLM = GetDefaultLLVMTLSModel(); 1769 1770 // Override the TLS model if it is explicitly specified. 1771 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1772 TLM = GetLLVMTLSModel(Attr->getModel()); 1773 } 1774 1775 GV->setThreadLocalMode(TLM); 1776 } 1777 1778 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1779 StringRef Name) { 1780 const TargetInfo &Target = CGM.getTarget(); 1781 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1782 } 1783 1784 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1785 const CPUSpecificAttr *Attr, 1786 unsigned CPUIndex, 1787 raw_ostream &Out) { 1788 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1789 // supported. 1790 if (Attr) 1791 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1792 else if (CGM.getTarget().supportsIFunc()) 1793 Out << ".resolver"; 1794 } 1795 1796 // Returns true if GD is a function decl with internal linkage and 1797 // needs a unique suffix after the mangled name. 1798 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1799 CodeGenModule &CGM) { 1800 const Decl *D = GD.getDecl(); 1801 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1802 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1803 } 1804 1805 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1806 const NamedDecl *ND, 1807 bool OmitMultiVersionMangling = false) { 1808 SmallString<256> Buffer; 1809 llvm::raw_svector_ostream Out(Buffer); 1810 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1811 if (!CGM.getModuleNameHash().empty()) 1812 MC.needsUniqueInternalLinkageNames(); 1813 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1814 if (ShouldMangle) 1815 MC.mangleName(GD.getWithDecl(ND), Out); 1816 else { 1817 IdentifierInfo *II = ND->getIdentifier(); 1818 assert(II && "Attempt to mangle unnamed decl."); 1819 const auto *FD = dyn_cast<FunctionDecl>(ND); 1820 1821 if (FD && 1822 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1823 if (CGM.getLangOpts().RegCall4) 1824 Out << "__regcall4__" << II->getName(); 1825 else 1826 Out << "__regcall3__" << II->getName(); 1827 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1828 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1829 Out << "__device_stub__" << II->getName(); 1830 } else { 1831 Out << II->getName(); 1832 } 1833 } 1834 1835 // Check if the module name hash should be appended for internal linkage 1836 // symbols. This should come before multi-version target suffixes are 1837 // appended. This is to keep the name and module hash suffix of the 1838 // internal linkage function together. The unique suffix should only be 1839 // added when name mangling is done to make sure that the final name can 1840 // be properly demangled. For example, for C functions without prototypes, 1841 // name mangling is not done and the unique suffix should not be appeneded 1842 // then. 1843 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1844 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1845 "Hash computed when not explicitly requested"); 1846 Out << CGM.getModuleNameHash(); 1847 } 1848 1849 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1850 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1851 switch (FD->getMultiVersionKind()) { 1852 case MultiVersionKind::CPUDispatch: 1853 case MultiVersionKind::CPUSpecific: 1854 AppendCPUSpecificCPUDispatchMangling(CGM, 1855 FD->getAttr<CPUSpecificAttr>(), 1856 GD.getMultiVersionIndex(), Out); 1857 break; 1858 case MultiVersionKind::Target: { 1859 auto *Attr = FD->getAttr<TargetAttr>(); 1860 assert(Attr && "Expected TargetAttr to be present " 1861 "for attribute mangling"); 1862 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1863 Info.appendAttributeMangling(Attr, Out); 1864 break; 1865 } 1866 case MultiVersionKind::TargetVersion: { 1867 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1868 assert(Attr && "Expected TargetVersionAttr to be present " 1869 "for attribute mangling"); 1870 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1871 Info.appendAttributeMangling(Attr, Out); 1872 break; 1873 } 1874 case MultiVersionKind::TargetClones: { 1875 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1876 assert(Attr && "Expected TargetClonesAttr to be present " 1877 "for attribute mangling"); 1878 unsigned Index = GD.getMultiVersionIndex(); 1879 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1880 Info.appendAttributeMangling(Attr, Index, Out); 1881 break; 1882 } 1883 case MultiVersionKind::None: 1884 llvm_unreachable("None multiversion type isn't valid here"); 1885 } 1886 } 1887 1888 // Make unique name for device side static file-scope variable for HIP. 1889 if (CGM.getContext().shouldExternalize(ND) && 1890 CGM.getLangOpts().GPURelocatableDeviceCode && 1891 CGM.getLangOpts().CUDAIsDevice) 1892 CGM.printPostfixForExternalizedDecl(Out, ND); 1893 1894 return std::string(Out.str()); 1895 } 1896 1897 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1898 const FunctionDecl *FD, 1899 StringRef &CurName) { 1900 if (!FD->isMultiVersion()) 1901 return; 1902 1903 // Get the name of what this would be without the 'target' attribute. This 1904 // allows us to lookup the version that was emitted when this wasn't a 1905 // multiversion function. 1906 std::string NonTargetName = 1907 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1908 GlobalDecl OtherGD; 1909 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1910 assert(OtherGD.getCanonicalDecl() 1911 .getDecl() 1912 ->getAsFunction() 1913 ->isMultiVersion() && 1914 "Other GD should now be a multiversioned function"); 1915 // OtherFD is the version of this function that was mangled BEFORE 1916 // becoming a MultiVersion function. It potentially needs to be updated. 1917 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1918 .getDecl() 1919 ->getAsFunction() 1920 ->getMostRecentDecl(); 1921 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1922 // This is so that if the initial version was already the 'default' 1923 // version, we don't try to update it. 1924 if (OtherName != NonTargetName) { 1925 // Remove instead of erase, since others may have stored the StringRef 1926 // to this. 1927 const auto ExistingRecord = Manglings.find(NonTargetName); 1928 if (ExistingRecord != std::end(Manglings)) 1929 Manglings.remove(&(*ExistingRecord)); 1930 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1931 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1932 Result.first->first(); 1933 // If this is the current decl is being created, make sure we update the name. 1934 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1935 CurName = OtherNameRef; 1936 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1937 Entry->setName(OtherName); 1938 } 1939 } 1940 } 1941 1942 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1943 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1944 1945 // Some ABIs don't have constructor variants. Make sure that base and 1946 // complete constructors get mangled the same. 1947 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1948 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1949 CXXCtorType OrigCtorType = GD.getCtorType(); 1950 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1951 if (OrigCtorType == Ctor_Base) 1952 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1953 } 1954 } 1955 1956 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1957 // static device variable depends on whether the variable is referenced by 1958 // a host or device host function. Therefore the mangled name cannot be 1959 // cached. 1960 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1961 auto FoundName = MangledDeclNames.find(CanonicalGD); 1962 if (FoundName != MangledDeclNames.end()) 1963 return FoundName->second; 1964 } 1965 1966 // Keep the first result in the case of a mangling collision. 1967 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1968 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1969 1970 // Ensure either we have different ABIs between host and device compilations, 1971 // says host compilation following MSVC ABI but device compilation follows 1972 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1973 // mangling should be the same after name stubbing. The later checking is 1974 // very important as the device kernel name being mangled in host-compilation 1975 // is used to resolve the device binaries to be executed. Inconsistent naming 1976 // result in undefined behavior. Even though we cannot check that naming 1977 // directly between host- and device-compilations, the host- and 1978 // device-mangling in host compilation could help catching certain ones. 1979 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1980 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1981 (getContext().getAuxTargetInfo() && 1982 (getContext().getAuxTargetInfo()->getCXXABI() != 1983 getContext().getTargetInfo().getCXXABI())) || 1984 getCUDARuntime().getDeviceSideName(ND) == 1985 getMangledNameImpl( 1986 *this, 1987 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1988 ND)); 1989 1990 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1991 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1992 } 1993 1994 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1995 const BlockDecl *BD) { 1996 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1997 const Decl *D = GD.getDecl(); 1998 1999 SmallString<256> Buffer; 2000 llvm::raw_svector_ostream Out(Buffer); 2001 if (!D) 2002 MangleCtx.mangleGlobalBlock(BD, 2003 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2004 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2005 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2006 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2007 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2008 else 2009 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2010 2011 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2012 return Result.first->first(); 2013 } 2014 2015 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2016 auto it = MangledDeclNames.begin(); 2017 while (it != MangledDeclNames.end()) { 2018 if (it->second == Name) 2019 return it->first; 2020 it++; 2021 } 2022 return GlobalDecl(); 2023 } 2024 2025 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2026 return getModule().getNamedValue(Name); 2027 } 2028 2029 /// AddGlobalCtor - Add a function to the list that will be called before 2030 /// main() runs. 2031 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2032 unsigned LexOrder, 2033 llvm::Constant *AssociatedData) { 2034 // FIXME: Type coercion of void()* types. 2035 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2036 } 2037 2038 /// AddGlobalDtor - Add a function to the list that will be called 2039 /// when the module is unloaded. 2040 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2041 bool IsDtorAttrFunc) { 2042 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2043 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2044 DtorsUsingAtExit[Priority].push_back(Dtor); 2045 return; 2046 } 2047 2048 // FIXME: Type coercion of void()* types. 2049 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2050 } 2051 2052 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2053 if (Fns.empty()) return; 2054 2055 // Ctor function type is void()*. 2056 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2057 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2058 TheModule.getDataLayout().getProgramAddressSpace()); 2059 2060 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2061 llvm::StructType *CtorStructTy = llvm::StructType::get( 2062 Int32Ty, CtorPFTy, VoidPtrTy); 2063 2064 // Construct the constructor and destructor arrays. 2065 ConstantInitBuilder builder(*this); 2066 auto ctors = builder.beginArray(CtorStructTy); 2067 for (const auto &I : Fns) { 2068 auto ctor = ctors.beginStruct(CtorStructTy); 2069 ctor.addInt(Int32Ty, I.Priority); 2070 ctor.add(I.Initializer); 2071 if (I.AssociatedData) 2072 ctor.add(I.AssociatedData); 2073 else 2074 ctor.addNullPointer(VoidPtrTy); 2075 ctor.finishAndAddTo(ctors); 2076 } 2077 2078 auto list = 2079 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2080 /*constant*/ false, 2081 llvm::GlobalValue::AppendingLinkage); 2082 2083 // The LTO linker doesn't seem to like it when we set an alignment 2084 // on appending variables. Take it off as a workaround. 2085 list->setAlignment(std::nullopt); 2086 2087 Fns.clear(); 2088 } 2089 2090 llvm::GlobalValue::LinkageTypes 2091 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2092 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2093 2094 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2095 2096 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2097 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2098 2099 return getLLVMLinkageForDeclarator(D, Linkage); 2100 } 2101 2102 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2103 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2104 if (!MDS) return nullptr; 2105 2106 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2107 } 2108 2109 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2110 if (auto *FnType = T->getAs<FunctionProtoType>()) 2111 T = getContext().getFunctionType( 2112 FnType->getReturnType(), FnType->getParamTypes(), 2113 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2114 2115 std::string OutName; 2116 llvm::raw_string_ostream Out(OutName); 2117 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2118 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2119 2120 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2121 Out << ".normalized"; 2122 2123 return llvm::ConstantInt::get(Int32Ty, 2124 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2125 } 2126 2127 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2128 const CGFunctionInfo &Info, 2129 llvm::Function *F, bool IsThunk) { 2130 unsigned CallingConv; 2131 llvm::AttributeList PAL; 2132 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2133 /*AttrOnCallSite=*/false, IsThunk); 2134 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2135 getTarget().getTriple().isWindowsArm64EC()) { 2136 SourceLocation Loc; 2137 if (const Decl *D = GD.getDecl()) 2138 Loc = D->getLocation(); 2139 2140 Error(Loc, "__vectorcall calling convention is not currently supported"); 2141 } 2142 F->setAttributes(PAL); 2143 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2144 } 2145 2146 static void removeImageAccessQualifier(std::string& TyName) { 2147 std::string ReadOnlyQual("__read_only"); 2148 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2149 if (ReadOnlyPos != std::string::npos) 2150 // "+ 1" for the space after access qualifier. 2151 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2152 else { 2153 std::string WriteOnlyQual("__write_only"); 2154 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2155 if (WriteOnlyPos != std::string::npos) 2156 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2157 else { 2158 std::string ReadWriteQual("__read_write"); 2159 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2160 if (ReadWritePos != std::string::npos) 2161 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2162 } 2163 } 2164 } 2165 2166 // Returns the address space id that should be produced to the 2167 // kernel_arg_addr_space metadata. This is always fixed to the ids 2168 // as specified in the SPIR 2.0 specification in order to differentiate 2169 // for example in clGetKernelArgInfo() implementation between the address 2170 // spaces with targets without unique mapping to the OpenCL address spaces 2171 // (basically all single AS CPUs). 2172 static unsigned ArgInfoAddressSpace(LangAS AS) { 2173 switch (AS) { 2174 case LangAS::opencl_global: 2175 return 1; 2176 case LangAS::opencl_constant: 2177 return 2; 2178 case LangAS::opencl_local: 2179 return 3; 2180 case LangAS::opencl_generic: 2181 return 4; // Not in SPIR 2.0 specs. 2182 case LangAS::opencl_global_device: 2183 return 5; 2184 case LangAS::opencl_global_host: 2185 return 6; 2186 default: 2187 return 0; // Assume private. 2188 } 2189 } 2190 2191 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2192 const FunctionDecl *FD, 2193 CodeGenFunction *CGF) { 2194 assert(((FD && CGF) || (!FD && !CGF)) && 2195 "Incorrect use - FD and CGF should either be both null or not!"); 2196 // Create MDNodes that represent the kernel arg metadata. 2197 // Each MDNode is a list in the form of "key", N number of values which is 2198 // the same number of values as their are kernel arguments. 2199 2200 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2201 2202 // MDNode for the kernel argument address space qualifiers. 2203 SmallVector<llvm::Metadata *, 8> addressQuals; 2204 2205 // MDNode for the kernel argument access qualifiers (images only). 2206 SmallVector<llvm::Metadata *, 8> accessQuals; 2207 2208 // MDNode for the kernel argument type names. 2209 SmallVector<llvm::Metadata *, 8> argTypeNames; 2210 2211 // MDNode for the kernel argument base type names. 2212 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2213 2214 // MDNode for the kernel argument type qualifiers. 2215 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2216 2217 // MDNode for the kernel argument names. 2218 SmallVector<llvm::Metadata *, 8> argNames; 2219 2220 if (FD && CGF) 2221 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2222 const ParmVarDecl *parm = FD->getParamDecl(i); 2223 // Get argument name. 2224 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2225 2226 if (!getLangOpts().OpenCL) 2227 continue; 2228 QualType ty = parm->getType(); 2229 std::string typeQuals; 2230 2231 // Get image and pipe access qualifier: 2232 if (ty->isImageType() || ty->isPipeType()) { 2233 const Decl *PDecl = parm; 2234 if (const auto *TD = ty->getAs<TypedefType>()) 2235 PDecl = TD->getDecl(); 2236 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2237 if (A && A->isWriteOnly()) 2238 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2239 else if (A && A->isReadWrite()) 2240 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2241 else 2242 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2243 } else 2244 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2245 2246 auto getTypeSpelling = [&](QualType Ty) { 2247 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2248 2249 if (Ty.isCanonical()) { 2250 StringRef typeNameRef = typeName; 2251 // Turn "unsigned type" to "utype" 2252 if (typeNameRef.consume_front("unsigned ")) 2253 return std::string("u") + typeNameRef.str(); 2254 if (typeNameRef.consume_front("signed ")) 2255 return typeNameRef.str(); 2256 } 2257 2258 return typeName; 2259 }; 2260 2261 if (ty->isPointerType()) { 2262 QualType pointeeTy = ty->getPointeeType(); 2263 2264 // Get address qualifier. 2265 addressQuals.push_back( 2266 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2267 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2268 2269 // Get argument type name. 2270 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2271 std::string baseTypeName = 2272 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2273 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2274 argBaseTypeNames.push_back( 2275 llvm::MDString::get(VMContext, baseTypeName)); 2276 2277 // Get argument type qualifiers: 2278 if (ty.isRestrictQualified()) 2279 typeQuals = "restrict"; 2280 if (pointeeTy.isConstQualified() || 2281 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2282 typeQuals += typeQuals.empty() ? "const" : " const"; 2283 if (pointeeTy.isVolatileQualified()) 2284 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2285 } else { 2286 uint32_t AddrSpc = 0; 2287 bool isPipe = ty->isPipeType(); 2288 if (ty->isImageType() || isPipe) 2289 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2290 2291 addressQuals.push_back( 2292 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2293 2294 // Get argument type name. 2295 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2296 std::string typeName = getTypeSpelling(ty); 2297 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2298 2299 // Remove access qualifiers on images 2300 // (as they are inseparable from type in clang implementation, 2301 // but OpenCL spec provides a special query to get access qualifier 2302 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2303 if (ty->isImageType()) { 2304 removeImageAccessQualifier(typeName); 2305 removeImageAccessQualifier(baseTypeName); 2306 } 2307 2308 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2309 argBaseTypeNames.push_back( 2310 llvm::MDString::get(VMContext, baseTypeName)); 2311 2312 if (isPipe) 2313 typeQuals = "pipe"; 2314 } 2315 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2316 } 2317 2318 if (getLangOpts().OpenCL) { 2319 Fn->setMetadata("kernel_arg_addr_space", 2320 llvm::MDNode::get(VMContext, addressQuals)); 2321 Fn->setMetadata("kernel_arg_access_qual", 2322 llvm::MDNode::get(VMContext, accessQuals)); 2323 Fn->setMetadata("kernel_arg_type", 2324 llvm::MDNode::get(VMContext, argTypeNames)); 2325 Fn->setMetadata("kernel_arg_base_type", 2326 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2327 Fn->setMetadata("kernel_arg_type_qual", 2328 llvm::MDNode::get(VMContext, argTypeQuals)); 2329 } 2330 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2331 getCodeGenOpts().HIPSaveKernelArgName) 2332 Fn->setMetadata("kernel_arg_name", 2333 llvm::MDNode::get(VMContext, argNames)); 2334 } 2335 2336 /// Determines whether the language options require us to model 2337 /// unwind exceptions. We treat -fexceptions as mandating this 2338 /// except under the fragile ObjC ABI with only ObjC exceptions 2339 /// enabled. This means, for example, that C with -fexceptions 2340 /// enables this. 2341 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2342 // If exceptions are completely disabled, obviously this is false. 2343 if (!LangOpts.Exceptions) return false; 2344 2345 // If C++ exceptions are enabled, this is true. 2346 if (LangOpts.CXXExceptions) return true; 2347 2348 // If ObjC exceptions are enabled, this depends on the ABI. 2349 if (LangOpts.ObjCExceptions) { 2350 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2351 } 2352 2353 return true; 2354 } 2355 2356 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2357 const CXXMethodDecl *MD) { 2358 // Check that the type metadata can ever actually be used by a call. 2359 if (!CGM.getCodeGenOpts().LTOUnit || 2360 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2361 return false; 2362 2363 // Only functions whose address can be taken with a member function pointer 2364 // need this sort of type metadata. 2365 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2366 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2367 } 2368 2369 SmallVector<const CXXRecordDecl *, 0> 2370 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2371 llvm::SetVector<const CXXRecordDecl *> MostBases; 2372 2373 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2374 CollectMostBases = [&](const CXXRecordDecl *RD) { 2375 if (RD->getNumBases() == 0) 2376 MostBases.insert(RD); 2377 for (const CXXBaseSpecifier &B : RD->bases()) 2378 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2379 }; 2380 CollectMostBases(RD); 2381 return MostBases.takeVector(); 2382 } 2383 2384 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2385 llvm::Function *F) { 2386 llvm::AttrBuilder B(F->getContext()); 2387 2388 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2389 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2390 2391 if (CodeGenOpts.StackClashProtector) 2392 B.addAttribute("probe-stack", "inline-asm"); 2393 2394 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2395 B.addAttribute("stack-probe-size", 2396 std::to_string(CodeGenOpts.StackProbeSize)); 2397 2398 if (!hasUnwindExceptions(LangOpts)) 2399 B.addAttribute(llvm::Attribute::NoUnwind); 2400 2401 if (D && D->hasAttr<NoStackProtectorAttr>()) 2402 ; // Do nothing. 2403 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2404 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2405 B.addAttribute(llvm::Attribute::StackProtectStrong); 2406 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2407 B.addAttribute(llvm::Attribute::StackProtect); 2408 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2409 B.addAttribute(llvm::Attribute::StackProtectStrong); 2410 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2411 B.addAttribute(llvm::Attribute::StackProtectReq); 2412 2413 if (!D) { 2414 // If we don't have a declaration to control inlining, the function isn't 2415 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2416 // disabled, mark the function as noinline. 2417 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2418 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2419 B.addAttribute(llvm::Attribute::NoInline); 2420 2421 F->addFnAttrs(B); 2422 return; 2423 } 2424 2425 // Handle SME attributes that apply to function definitions, 2426 // rather than to function prototypes. 2427 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2428 B.addAttribute("aarch64_pstate_sm_body"); 2429 2430 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2431 if (Attr->isNewZA()) 2432 B.addAttribute("aarch64_new_za"); 2433 if (Attr->isNewZT0()) 2434 B.addAttribute("aarch64_new_zt0"); 2435 } 2436 2437 // Track whether we need to add the optnone LLVM attribute, 2438 // starting with the default for this optimization level. 2439 bool ShouldAddOptNone = 2440 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2441 // We can't add optnone in the following cases, it won't pass the verifier. 2442 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2443 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2444 2445 // Add optnone, but do so only if the function isn't always_inline. 2446 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2447 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2448 B.addAttribute(llvm::Attribute::OptimizeNone); 2449 2450 // OptimizeNone implies noinline; we should not be inlining such functions. 2451 B.addAttribute(llvm::Attribute::NoInline); 2452 2453 // We still need to handle naked functions even though optnone subsumes 2454 // much of their semantics. 2455 if (D->hasAttr<NakedAttr>()) 2456 B.addAttribute(llvm::Attribute::Naked); 2457 2458 // OptimizeNone wins over OptimizeForSize and MinSize. 2459 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2460 F->removeFnAttr(llvm::Attribute::MinSize); 2461 } else if (D->hasAttr<NakedAttr>()) { 2462 // Naked implies noinline: we should not be inlining such functions. 2463 B.addAttribute(llvm::Attribute::Naked); 2464 B.addAttribute(llvm::Attribute::NoInline); 2465 } else if (D->hasAttr<NoDuplicateAttr>()) { 2466 B.addAttribute(llvm::Attribute::NoDuplicate); 2467 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2468 // Add noinline if the function isn't always_inline. 2469 B.addAttribute(llvm::Attribute::NoInline); 2470 } else if (D->hasAttr<AlwaysInlineAttr>() && 2471 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2472 // (noinline wins over always_inline, and we can't specify both in IR) 2473 B.addAttribute(llvm::Attribute::AlwaysInline); 2474 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2475 // If we're not inlining, then force everything that isn't always_inline to 2476 // carry an explicit noinline attribute. 2477 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2478 B.addAttribute(llvm::Attribute::NoInline); 2479 } else { 2480 // Otherwise, propagate the inline hint attribute and potentially use its 2481 // absence to mark things as noinline. 2482 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2483 // Search function and template pattern redeclarations for inline. 2484 auto CheckForInline = [](const FunctionDecl *FD) { 2485 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2486 return Redecl->isInlineSpecified(); 2487 }; 2488 if (any_of(FD->redecls(), CheckRedeclForInline)) 2489 return true; 2490 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2491 if (!Pattern) 2492 return false; 2493 return any_of(Pattern->redecls(), CheckRedeclForInline); 2494 }; 2495 if (CheckForInline(FD)) { 2496 B.addAttribute(llvm::Attribute::InlineHint); 2497 } else if (CodeGenOpts.getInlining() == 2498 CodeGenOptions::OnlyHintInlining && 2499 !FD->isInlined() && 2500 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2501 B.addAttribute(llvm::Attribute::NoInline); 2502 } 2503 } 2504 } 2505 2506 // Add other optimization related attributes if we are optimizing this 2507 // function. 2508 if (!D->hasAttr<OptimizeNoneAttr>()) { 2509 if (D->hasAttr<ColdAttr>()) { 2510 if (!ShouldAddOptNone) 2511 B.addAttribute(llvm::Attribute::OptimizeForSize); 2512 B.addAttribute(llvm::Attribute::Cold); 2513 } 2514 if (D->hasAttr<HotAttr>()) 2515 B.addAttribute(llvm::Attribute::Hot); 2516 if (D->hasAttr<MinSizeAttr>()) 2517 B.addAttribute(llvm::Attribute::MinSize); 2518 } 2519 2520 F->addFnAttrs(B); 2521 2522 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2523 if (alignment) 2524 F->setAlignment(llvm::Align(alignment)); 2525 2526 if (!D->hasAttr<AlignedAttr>()) 2527 if (LangOpts.FunctionAlignment) 2528 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2529 2530 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2531 // reserve a bit for differentiating between virtual and non-virtual member 2532 // functions. If the current target's C++ ABI requires this and this is a 2533 // member function, set its alignment accordingly. 2534 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2535 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2536 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2537 } 2538 2539 // In the cross-dso CFI mode with canonical jump tables, we want !type 2540 // attributes on definitions only. 2541 if (CodeGenOpts.SanitizeCfiCrossDso && 2542 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2543 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2544 // Skip available_externally functions. They won't be codegen'ed in the 2545 // current module anyway. 2546 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2547 CreateFunctionTypeMetadataForIcall(FD, F); 2548 } 2549 } 2550 2551 // Emit type metadata on member functions for member function pointer checks. 2552 // These are only ever necessary on definitions; we're guaranteed that the 2553 // definition will be present in the LTO unit as a result of LTO visibility. 2554 auto *MD = dyn_cast<CXXMethodDecl>(D); 2555 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2556 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2557 llvm::Metadata *Id = 2558 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2559 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2560 F->addTypeMetadata(0, Id); 2561 } 2562 } 2563 } 2564 2565 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2566 const Decl *D = GD.getDecl(); 2567 if (isa_and_nonnull<NamedDecl>(D)) 2568 setGVProperties(GV, GD); 2569 else 2570 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2571 2572 if (D && D->hasAttr<UsedAttr>()) 2573 addUsedOrCompilerUsedGlobal(GV); 2574 2575 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2576 VD && 2577 ((CodeGenOpts.KeepPersistentStorageVariables && 2578 (VD->getStorageDuration() == SD_Static || 2579 VD->getStorageDuration() == SD_Thread)) || 2580 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2581 VD->getType().isConstQualified()))) 2582 addUsedOrCompilerUsedGlobal(GV); 2583 } 2584 2585 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2586 llvm::AttrBuilder &Attrs, 2587 bool SetTargetFeatures) { 2588 // Add target-cpu and target-features attributes to functions. If 2589 // we have a decl for the function and it has a target attribute then 2590 // parse that and add it to the feature set. 2591 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2592 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2593 std::vector<std::string> Features; 2594 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2595 FD = FD ? FD->getMostRecentDecl() : FD; 2596 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2597 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2598 assert((!TD || !TV) && "both target_version and target specified"); 2599 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2600 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2601 bool AddedAttr = false; 2602 if (TD || TV || SD || TC) { 2603 llvm::StringMap<bool> FeatureMap; 2604 getContext().getFunctionFeatureMap(FeatureMap, GD); 2605 2606 // Produce the canonical string for this set of features. 2607 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2608 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2609 2610 // Now add the target-cpu and target-features to the function. 2611 // While we populated the feature map above, we still need to 2612 // get and parse the target attribute so we can get the cpu for 2613 // the function. 2614 if (TD) { 2615 ParsedTargetAttr ParsedAttr = 2616 Target.parseTargetAttr(TD->getFeaturesStr()); 2617 if (!ParsedAttr.CPU.empty() && 2618 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2619 TargetCPU = ParsedAttr.CPU; 2620 TuneCPU = ""; // Clear the tune CPU. 2621 } 2622 if (!ParsedAttr.Tune.empty() && 2623 getTarget().isValidCPUName(ParsedAttr.Tune)) 2624 TuneCPU = ParsedAttr.Tune; 2625 } 2626 2627 if (SD) { 2628 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2629 // favor this processor. 2630 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2631 } 2632 } else { 2633 // Otherwise just add the existing target cpu and target features to the 2634 // function. 2635 Features = getTarget().getTargetOpts().Features; 2636 } 2637 2638 if (!TargetCPU.empty()) { 2639 Attrs.addAttribute("target-cpu", TargetCPU); 2640 AddedAttr = true; 2641 } 2642 if (!TuneCPU.empty()) { 2643 Attrs.addAttribute("tune-cpu", TuneCPU); 2644 AddedAttr = true; 2645 } 2646 if (!Features.empty() && SetTargetFeatures) { 2647 llvm::erase_if(Features, [&](const std::string& F) { 2648 return getTarget().isReadOnlyFeature(F.substr(1)); 2649 }); 2650 llvm::sort(Features); 2651 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2652 AddedAttr = true; 2653 } 2654 2655 return AddedAttr; 2656 } 2657 2658 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2659 llvm::GlobalObject *GO) { 2660 const Decl *D = GD.getDecl(); 2661 SetCommonAttributes(GD, GO); 2662 2663 if (D) { 2664 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2665 if (D->hasAttr<RetainAttr>()) 2666 addUsedGlobal(GV); 2667 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2668 GV->addAttribute("bss-section", SA->getName()); 2669 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2670 GV->addAttribute("data-section", SA->getName()); 2671 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2672 GV->addAttribute("rodata-section", SA->getName()); 2673 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2674 GV->addAttribute("relro-section", SA->getName()); 2675 } 2676 2677 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2678 if (D->hasAttr<RetainAttr>()) 2679 addUsedGlobal(F); 2680 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2681 if (!D->getAttr<SectionAttr>()) 2682 F->setSection(SA->getName()); 2683 2684 llvm::AttrBuilder Attrs(F->getContext()); 2685 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2686 // We know that GetCPUAndFeaturesAttributes will always have the 2687 // newest set, since it has the newest possible FunctionDecl, so the 2688 // new ones should replace the old. 2689 llvm::AttributeMask RemoveAttrs; 2690 RemoveAttrs.addAttribute("target-cpu"); 2691 RemoveAttrs.addAttribute("target-features"); 2692 RemoveAttrs.addAttribute("tune-cpu"); 2693 F->removeFnAttrs(RemoveAttrs); 2694 F->addFnAttrs(Attrs); 2695 } 2696 } 2697 2698 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2699 GO->setSection(CSA->getName()); 2700 else if (const auto *SA = D->getAttr<SectionAttr>()) 2701 GO->setSection(SA->getName()); 2702 } 2703 2704 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2705 } 2706 2707 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2708 llvm::Function *F, 2709 const CGFunctionInfo &FI) { 2710 const Decl *D = GD.getDecl(); 2711 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2712 SetLLVMFunctionAttributesForDefinition(D, F); 2713 2714 F->setLinkage(llvm::Function::InternalLinkage); 2715 2716 setNonAliasAttributes(GD, F); 2717 } 2718 2719 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2720 // Set linkage and visibility in case we never see a definition. 2721 LinkageInfo LV = ND->getLinkageAndVisibility(); 2722 // Don't set internal linkage on declarations. 2723 // "extern_weak" is overloaded in LLVM; we probably should have 2724 // separate linkage types for this. 2725 if (isExternallyVisible(LV.getLinkage()) && 2726 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2727 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2728 } 2729 2730 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2731 llvm::Function *F) { 2732 // Only if we are checking indirect calls. 2733 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2734 return; 2735 2736 // Non-static class methods are handled via vtable or member function pointer 2737 // checks elsewhere. 2738 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2739 return; 2740 2741 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2742 F->addTypeMetadata(0, MD); 2743 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2744 2745 // Emit a hash-based bit set entry for cross-DSO calls. 2746 if (CodeGenOpts.SanitizeCfiCrossDso) 2747 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2748 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2749 } 2750 2751 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2752 llvm::LLVMContext &Ctx = F->getContext(); 2753 llvm::MDBuilder MDB(Ctx); 2754 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2755 llvm::MDNode::get( 2756 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2757 } 2758 2759 static bool allowKCFIIdentifier(StringRef Name) { 2760 // KCFI type identifier constants are only necessary for external assembly 2761 // functions, which means it's safe to skip unusual names. Subset of 2762 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2763 return llvm::all_of(Name, [](const char &C) { 2764 return llvm::isAlnum(C) || C == '_' || C == '.'; 2765 }); 2766 } 2767 2768 void CodeGenModule::finalizeKCFITypes() { 2769 llvm::Module &M = getModule(); 2770 for (auto &F : M.functions()) { 2771 // Remove KCFI type metadata from non-address-taken local functions. 2772 bool AddressTaken = F.hasAddressTaken(); 2773 if (!AddressTaken && F.hasLocalLinkage()) 2774 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2775 2776 // Generate a constant with the expected KCFI type identifier for all 2777 // address-taken function declarations to support annotating indirectly 2778 // called assembly functions. 2779 if (!AddressTaken || !F.isDeclaration()) 2780 continue; 2781 2782 const llvm::ConstantInt *Type; 2783 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2784 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2785 else 2786 continue; 2787 2788 StringRef Name = F.getName(); 2789 if (!allowKCFIIdentifier(Name)) 2790 continue; 2791 2792 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2793 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2794 .str(); 2795 M.appendModuleInlineAsm(Asm); 2796 } 2797 } 2798 2799 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2800 bool IsIncompleteFunction, 2801 bool IsThunk) { 2802 2803 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2804 // If this is an intrinsic function, set the function's attributes 2805 // to the intrinsic's attributes. 2806 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2807 return; 2808 } 2809 2810 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2811 2812 if (!IsIncompleteFunction) 2813 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2814 IsThunk); 2815 2816 // Add the Returned attribute for "this", except for iOS 5 and earlier 2817 // where substantial code, including the libstdc++ dylib, was compiled with 2818 // GCC and does not actually return "this". 2819 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2820 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2821 assert(!F->arg_empty() && 2822 F->arg_begin()->getType() 2823 ->canLosslesslyBitCastTo(F->getReturnType()) && 2824 "unexpected this return"); 2825 F->addParamAttr(0, llvm::Attribute::Returned); 2826 } 2827 2828 // Only a few attributes are set on declarations; these may later be 2829 // overridden by a definition. 2830 2831 setLinkageForGV(F, FD); 2832 setGVProperties(F, FD); 2833 2834 // Setup target-specific attributes. 2835 if (!IsIncompleteFunction && F->isDeclaration()) 2836 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2837 2838 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2839 F->setSection(CSA->getName()); 2840 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2841 F->setSection(SA->getName()); 2842 2843 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2844 if (EA->isError()) 2845 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2846 else if (EA->isWarning()) 2847 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2848 } 2849 2850 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2851 if (FD->isInlineBuiltinDeclaration()) { 2852 const FunctionDecl *FDBody; 2853 bool HasBody = FD->hasBody(FDBody); 2854 (void)HasBody; 2855 assert(HasBody && "Inline builtin declarations should always have an " 2856 "available body!"); 2857 if (shouldEmitFunction(FDBody)) 2858 F->addFnAttr(llvm::Attribute::NoBuiltin); 2859 } 2860 2861 if (FD->isReplaceableGlobalAllocationFunction()) { 2862 // A replaceable global allocation function does not act like a builtin by 2863 // default, only if it is invoked by a new-expression or delete-expression. 2864 F->addFnAttr(llvm::Attribute::NoBuiltin); 2865 } 2866 2867 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2868 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2869 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2870 if (MD->isVirtual()) 2871 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2872 2873 // Don't emit entries for function declarations in the cross-DSO mode. This 2874 // is handled with better precision by the receiving DSO. But if jump tables 2875 // are non-canonical then we need type metadata in order to produce the local 2876 // jump table. 2877 if (!CodeGenOpts.SanitizeCfiCrossDso || 2878 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2879 CreateFunctionTypeMetadataForIcall(FD, F); 2880 2881 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2882 setKCFIType(FD, F); 2883 2884 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2885 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2886 2887 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2888 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2889 2890 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2891 // Annotate the callback behavior as metadata: 2892 // - The callback callee (as argument number). 2893 // - The callback payloads (as argument numbers). 2894 llvm::LLVMContext &Ctx = F->getContext(); 2895 llvm::MDBuilder MDB(Ctx); 2896 2897 // The payload indices are all but the first one in the encoding. The first 2898 // identifies the callback callee. 2899 int CalleeIdx = *CB->encoding_begin(); 2900 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2901 F->addMetadata(llvm::LLVMContext::MD_callback, 2902 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2903 CalleeIdx, PayloadIndices, 2904 /* VarArgsArePassed */ false)})); 2905 } 2906 } 2907 2908 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2909 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2910 "Only globals with definition can force usage."); 2911 LLVMUsed.emplace_back(GV); 2912 } 2913 2914 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2915 assert(!GV->isDeclaration() && 2916 "Only globals with definition can force usage."); 2917 LLVMCompilerUsed.emplace_back(GV); 2918 } 2919 2920 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2921 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2922 "Only globals with definition can force usage."); 2923 if (getTriple().isOSBinFormatELF()) 2924 LLVMCompilerUsed.emplace_back(GV); 2925 else 2926 LLVMUsed.emplace_back(GV); 2927 } 2928 2929 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2930 std::vector<llvm::WeakTrackingVH> &List) { 2931 // Don't create llvm.used if there is no need. 2932 if (List.empty()) 2933 return; 2934 2935 // Convert List to what ConstantArray needs. 2936 SmallVector<llvm::Constant*, 8> UsedArray; 2937 UsedArray.resize(List.size()); 2938 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2939 UsedArray[i] = 2940 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2941 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2942 } 2943 2944 if (UsedArray.empty()) 2945 return; 2946 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2947 2948 auto *GV = new llvm::GlobalVariable( 2949 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2950 llvm::ConstantArray::get(ATy, UsedArray), Name); 2951 2952 GV->setSection("llvm.metadata"); 2953 } 2954 2955 void CodeGenModule::emitLLVMUsed() { 2956 emitUsed(*this, "llvm.used", LLVMUsed); 2957 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2958 } 2959 2960 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2961 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2962 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2963 } 2964 2965 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2966 llvm::SmallString<32> Opt; 2967 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2968 if (Opt.empty()) 2969 return; 2970 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2971 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2972 } 2973 2974 void CodeGenModule::AddDependentLib(StringRef Lib) { 2975 auto &C = getLLVMContext(); 2976 if (getTarget().getTriple().isOSBinFormatELF()) { 2977 ELFDependentLibraries.push_back( 2978 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2979 return; 2980 } 2981 2982 llvm::SmallString<24> Opt; 2983 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2984 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2985 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2986 } 2987 2988 /// Add link options implied by the given module, including modules 2989 /// it depends on, using a postorder walk. 2990 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2991 SmallVectorImpl<llvm::MDNode *> &Metadata, 2992 llvm::SmallPtrSet<Module *, 16> &Visited) { 2993 // Import this module's parent. 2994 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2995 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2996 } 2997 2998 // Import this module's dependencies. 2999 for (Module *Import : llvm::reverse(Mod->Imports)) { 3000 if (Visited.insert(Import).second) 3001 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3002 } 3003 3004 // Add linker options to link against the libraries/frameworks 3005 // described by this module. 3006 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3007 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3008 3009 // For modules that use export_as for linking, use that module 3010 // name instead. 3011 if (Mod->UseExportAsModuleLinkName) 3012 return; 3013 3014 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3015 // Link against a framework. Frameworks are currently Darwin only, so we 3016 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3017 if (LL.IsFramework) { 3018 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3019 llvm::MDString::get(Context, LL.Library)}; 3020 3021 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3022 continue; 3023 } 3024 3025 // Link against a library. 3026 if (IsELF) { 3027 llvm::Metadata *Args[2] = { 3028 llvm::MDString::get(Context, "lib"), 3029 llvm::MDString::get(Context, LL.Library), 3030 }; 3031 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3032 } else { 3033 llvm::SmallString<24> Opt; 3034 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3035 auto *OptString = llvm::MDString::get(Context, Opt); 3036 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3037 } 3038 } 3039 } 3040 3041 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3042 assert(Primary->isNamedModuleUnit() && 3043 "We should only emit module initializers for named modules."); 3044 3045 // Emit the initializers in the order that sub-modules appear in the 3046 // source, first Global Module Fragments, if present. 3047 if (auto GMF = Primary->getGlobalModuleFragment()) { 3048 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3049 if (isa<ImportDecl>(D)) 3050 continue; 3051 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3052 EmitTopLevelDecl(D); 3053 } 3054 } 3055 // Second any associated with the module, itself. 3056 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3057 // Skip import decls, the inits for those are called explicitly. 3058 if (isa<ImportDecl>(D)) 3059 continue; 3060 EmitTopLevelDecl(D); 3061 } 3062 // Third any associated with the Privat eMOdule Fragment, if present. 3063 if (auto PMF = Primary->getPrivateModuleFragment()) { 3064 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3065 // Skip import decls, the inits for those are called explicitly. 3066 if (isa<ImportDecl>(D)) 3067 continue; 3068 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3069 EmitTopLevelDecl(D); 3070 } 3071 } 3072 } 3073 3074 void CodeGenModule::EmitModuleLinkOptions() { 3075 // Collect the set of all of the modules we want to visit to emit link 3076 // options, which is essentially the imported modules and all of their 3077 // non-explicit child modules. 3078 llvm::SetVector<clang::Module *> LinkModules; 3079 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3080 SmallVector<clang::Module *, 16> Stack; 3081 3082 // Seed the stack with imported modules. 3083 for (Module *M : ImportedModules) { 3084 // Do not add any link flags when an implementation TU of a module imports 3085 // a header of that same module. 3086 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3087 !getLangOpts().isCompilingModule()) 3088 continue; 3089 if (Visited.insert(M).second) 3090 Stack.push_back(M); 3091 } 3092 3093 // Find all of the modules to import, making a little effort to prune 3094 // non-leaf modules. 3095 while (!Stack.empty()) { 3096 clang::Module *Mod = Stack.pop_back_val(); 3097 3098 bool AnyChildren = false; 3099 3100 // Visit the submodules of this module. 3101 for (const auto &SM : Mod->submodules()) { 3102 // Skip explicit children; they need to be explicitly imported to be 3103 // linked against. 3104 if (SM->IsExplicit) 3105 continue; 3106 3107 if (Visited.insert(SM).second) { 3108 Stack.push_back(SM); 3109 AnyChildren = true; 3110 } 3111 } 3112 3113 // We didn't find any children, so add this module to the list of 3114 // modules to link against. 3115 if (!AnyChildren) { 3116 LinkModules.insert(Mod); 3117 } 3118 } 3119 3120 // Add link options for all of the imported modules in reverse topological 3121 // order. We don't do anything to try to order import link flags with respect 3122 // to linker options inserted by things like #pragma comment(). 3123 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3124 Visited.clear(); 3125 for (Module *M : LinkModules) 3126 if (Visited.insert(M).second) 3127 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3128 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3129 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3130 3131 // Add the linker options metadata flag. 3132 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3133 for (auto *MD : LinkerOptionsMetadata) 3134 NMD->addOperand(MD); 3135 } 3136 3137 void CodeGenModule::EmitDeferred() { 3138 // Emit deferred declare target declarations. 3139 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3140 getOpenMPRuntime().emitDeferredTargetDecls(); 3141 3142 // Emit code for any potentially referenced deferred decls. Since a 3143 // previously unused static decl may become used during the generation of code 3144 // for a static function, iterate until no changes are made. 3145 3146 if (!DeferredVTables.empty()) { 3147 EmitDeferredVTables(); 3148 3149 // Emitting a vtable doesn't directly cause more vtables to 3150 // become deferred, although it can cause functions to be 3151 // emitted that then need those vtables. 3152 assert(DeferredVTables.empty()); 3153 } 3154 3155 // Emit CUDA/HIP static device variables referenced by host code only. 3156 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3157 // needed for further handling. 3158 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3159 llvm::append_range(DeferredDeclsToEmit, 3160 getContext().CUDADeviceVarODRUsedByHost); 3161 3162 // Stop if we're out of both deferred vtables and deferred declarations. 3163 if (DeferredDeclsToEmit.empty()) 3164 return; 3165 3166 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3167 // work, it will not interfere with this. 3168 std::vector<GlobalDecl> CurDeclsToEmit; 3169 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3170 3171 for (GlobalDecl &D : CurDeclsToEmit) { 3172 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3173 // to get GlobalValue with exactly the type we need, not something that 3174 // might had been created for another decl with the same mangled name but 3175 // different type. 3176 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3177 GetAddrOfGlobal(D, ForDefinition)); 3178 3179 // In case of different address spaces, we may still get a cast, even with 3180 // IsForDefinition equal to true. Query mangled names table to get 3181 // GlobalValue. 3182 if (!GV) 3183 GV = GetGlobalValue(getMangledName(D)); 3184 3185 // Make sure GetGlobalValue returned non-null. 3186 assert(GV); 3187 3188 // Check to see if we've already emitted this. This is necessary 3189 // for a couple of reasons: first, decls can end up in the 3190 // deferred-decls queue multiple times, and second, decls can end 3191 // up with definitions in unusual ways (e.g. by an extern inline 3192 // function acquiring a strong function redefinition). Just 3193 // ignore these cases. 3194 if (!GV->isDeclaration()) 3195 continue; 3196 3197 // If this is OpenMP, check if it is legal to emit this global normally. 3198 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3199 continue; 3200 3201 // Otherwise, emit the definition and move on to the next one. 3202 EmitGlobalDefinition(D, GV); 3203 3204 // If we found out that we need to emit more decls, do that recursively. 3205 // This has the advantage that the decls are emitted in a DFS and related 3206 // ones are close together, which is convenient for testing. 3207 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3208 EmitDeferred(); 3209 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3210 } 3211 } 3212 } 3213 3214 void CodeGenModule::EmitVTablesOpportunistically() { 3215 // Try to emit external vtables as available_externally if they have emitted 3216 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3217 // is not allowed to create new references to things that need to be emitted 3218 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3219 3220 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3221 && "Only emit opportunistic vtables with optimizations"); 3222 3223 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3224 assert(getVTables().isVTableExternal(RD) && 3225 "This queue should only contain external vtables"); 3226 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3227 VTables.GenerateClassData(RD); 3228 } 3229 OpportunisticVTables.clear(); 3230 } 3231 3232 void CodeGenModule::EmitGlobalAnnotations() { 3233 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3234 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3235 if (GV) 3236 AddGlobalAnnotations(VD, GV); 3237 } 3238 DeferredAnnotations.clear(); 3239 3240 if (Annotations.empty()) 3241 return; 3242 3243 // Create a new global variable for the ConstantStruct in the Module. 3244 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3245 Annotations[0]->getType(), Annotations.size()), Annotations); 3246 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3247 llvm::GlobalValue::AppendingLinkage, 3248 Array, "llvm.global.annotations"); 3249 gv->setSection(AnnotationSection); 3250 } 3251 3252 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3253 llvm::Constant *&AStr = AnnotationStrings[Str]; 3254 if (AStr) 3255 return AStr; 3256 3257 // Not found yet, create a new global. 3258 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3259 auto *gv = new llvm::GlobalVariable( 3260 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3261 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3262 ConstGlobalsPtrTy->getAddressSpace()); 3263 gv->setSection(AnnotationSection); 3264 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3265 AStr = gv; 3266 return gv; 3267 } 3268 3269 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3270 SourceManager &SM = getContext().getSourceManager(); 3271 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3272 if (PLoc.isValid()) 3273 return EmitAnnotationString(PLoc.getFilename()); 3274 return EmitAnnotationString(SM.getBufferName(Loc)); 3275 } 3276 3277 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3278 SourceManager &SM = getContext().getSourceManager(); 3279 PresumedLoc PLoc = SM.getPresumedLoc(L); 3280 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3281 SM.getExpansionLineNumber(L); 3282 return llvm::ConstantInt::get(Int32Ty, LineNo); 3283 } 3284 3285 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3286 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3287 if (Exprs.empty()) 3288 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3289 3290 llvm::FoldingSetNodeID ID; 3291 for (Expr *E : Exprs) { 3292 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3293 } 3294 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3295 if (Lookup) 3296 return Lookup; 3297 3298 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3299 LLVMArgs.reserve(Exprs.size()); 3300 ConstantEmitter ConstEmiter(*this); 3301 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3302 const auto *CE = cast<clang::ConstantExpr>(E); 3303 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3304 CE->getType()); 3305 }); 3306 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3307 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3308 llvm::GlobalValue::PrivateLinkage, Struct, 3309 ".args"); 3310 GV->setSection(AnnotationSection); 3311 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3312 3313 Lookup = GV; 3314 return GV; 3315 } 3316 3317 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3318 const AnnotateAttr *AA, 3319 SourceLocation L) { 3320 // Get the globals for file name, annotation, and the line number. 3321 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3322 *UnitGV = EmitAnnotationUnit(L), 3323 *LineNoCst = EmitAnnotationLineNo(L), 3324 *Args = EmitAnnotationArgs(AA); 3325 3326 llvm::Constant *GVInGlobalsAS = GV; 3327 if (GV->getAddressSpace() != 3328 getDataLayout().getDefaultGlobalsAddressSpace()) { 3329 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3330 GV, 3331 llvm::PointerType::get( 3332 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3333 } 3334 3335 // Create the ConstantStruct for the global annotation. 3336 llvm::Constant *Fields[] = { 3337 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3338 }; 3339 return llvm::ConstantStruct::getAnon(Fields); 3340 } 3341 3342 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3343 llvm::GlobalValue *GV) { 3344 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3345 // Get the struct elements for these annotations. 3346 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3347 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3348 } 3349 3350 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3351 SourceLocation Loc) const { 3352 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3353 // NoSanitize by function name. 3354 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3355 return true; 3356 // NoSanitize by location. Check "mainfile" prefix. 3357 auto &SM = Context.getSourceManager(); 3358 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3359 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3360 return true; 3361 3362 // Check "src" prefix. 3363 if (Loc.isValid()) 3364 return NoSanitizeL.containsLocation(Kind, Loc); 3365 // If location is unknown, this may be a compiler-generated function. Assume 3366 // it's located in the main file. 3367 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3368 } 3369 3370 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3371 llvm::GlobalVariable *GV, 3372 SourceLocation Loc, QualType Ty, 3373 StringRef Category) const { 3374 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3375 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3376 return true; 3377 auto &SM = Context.getSourceManager(); 3378 if (NoSanitizeL.containsMainFile( 3379 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3380 Category)) 3381 return true; 3382 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3383 return true; 3384 3385 // Check global type. 3386 if (!Ty.isNull()) { 3387 // Drill down the array types: if global variable of a fixed type is 3388 // not sanitized, we also don't instrument arrays of them. 3389 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3390 Ty = AT->getElementType(); 3391 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3392 // Only record types (classes, structs etc.) are ignored. 3393 if (Ty->isRecordType()) { 3394 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3395 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3396 return true; 3397 } 3398 } 3399 return false; 3400 } 3401 3402 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3403 StringRef Category) const { 3404 const auto &XRayFilter = getContext().getXRayFilter(); 3405 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3406 auto Attr = ImbueAttr::NONE; 3407 if (Loc.isValid()) 3408 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3409 if (Attr == ImbueAttr::NONE) 3410 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3411 switch (Attr) { 3412 case ImbueAttr::NONE: 3413 return false; 3414 case ImbueAttr::ALWAYS: 3415 Fn->addFnAttr("function-instrument", "xray-always"); 3416 break; 3417 case ImbueAttr::ALWAYS_ARG1: 3418 Fn->addFnAttr("function-instrument", "xray-always"); 3419 Fn->addFnAttr("xray-log-args", "1"); 3420 break; 3421 case ImbueAttr::NEVER: 3422 Fn->addFnAttr("function-instrument", "xray-never"); 3423 break; 3424 } 3425 return true; 3426 } 3427 3428 ProfileList::ExclusionType 3429 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3430 SourceLocation Loc) const { 3431 const auto &ProfileList = getContext().getProfileList(); 3432 // If the profile list is empty, then instrument everything. 3433 if (ProfileList.isEmpty()) 3434 return ProfileList::Allow; 3435 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3436 // First, check the function name. 3437 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3438 return *V; 3439 // Next, check the source location. 3440 if (Loc.isValid()) 3441 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3442 return *V; 3443 // If location is unknown, this may be a compiler-generated function. Assume 3444 // it's located in the main file. 3445 auto &SM = Context.getSourceManager(); 3446 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3447 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3448 return *V; 3449 return ProfileList.getDefault(Kind); 3450 } 3451 3452 ProfileList::ExclusionType 3453 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3454 SourceLocation Loc) const { 3455 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3456 if (V != ProfileList::Allow) 3457 return V; 3458 3459 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3460 if (NumGroups > 1) { 3461 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3462 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3463 return ProfileList::Skip; 3464 } 3465 return ProfileList::Allow; 3466 } 3467 3468 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3469 // Never defer when EmitAllDecls is specified. 3470 if (LangOpts.EmitAllDecls) 3471 return true; 3472 3473 const auto *VD = dyn_cast<VarDecl>(Global); 3474 if (VD && 3475 ((CodeGenOpts.KeepPersistentStorageVariables && 3476 (VD->getStorageDuration() == SD_Static || 3477 VD->getStorageDuration() == SD_Thread)) || 3478 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3479 VD->getType().isConstQualified()))) 3480 return true; 3481 3482 return getContext().DeclMustBeEmitted(Global); 3483 } 3484 3485 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3486 // In OpenMP 5.0 variables and function may be marked as 3487 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3488 // that they must be emitted on the host/device. To be sure we need to have 3489 // seen a declare target with an explicit mentioning of the function, we know 3490 // we have if the level of the declare target attribute is -1. Note that we 3491 // check somewhere else if we should emit this at all. 3492 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3493 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3494 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3495 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3496 return false; 3497 } 3498 3499 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3500 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3501 // Implicit template instantiations may change linkage if they are later 3502 // explicitly instantiated, so they should not be emitted eagerly. 3503 return false; 3504 // Defer until all versions have been semantically checked. 3505 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3506 return false; 3507 } 3508 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3509 if (Context.getInlineVariableDefinitionKind(VD) == 3510 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3511 // A definition of an inline constexpr static data member may change 3512 // linkage later if it's redeclared outside the class. 3513 return false; 3514 if (CXX20ModuleInits && VD->getOwningModule() && 3515 !VD->getOwningModule()->isModuleMapModule()) { 3516 // For CXX20, module-owned initializers need to be deferred, since it is 3517 // not known at this point if they will be run for the current module or 3518 // as part of the initializer for an imported one. 3519 return false; 3520 } 3521 } 3522 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3523 // codegen for global variables, because they may be marked as threadprivate. 3524 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3525 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3526 !Global->getType().isConstantStorage(getContext(), false, false) && 3527 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3528 return false; 3529 3530 return true; 3531 } 3532 3533 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3534 StringRef Name = getMangledName(GD); 3535 3536 // The UUID descriptor should be pointer aligned. 3537 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3538 3539 // Look for an existing global. 3540 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3541 return ConstantAddress(GV, GV->getValueType(), Alignment); 3542 3543 ConstantEmitter Emitter(*this); 3544 llvm::Constant *Init; 3545 3546 APValue &V = GD->getAsAPValue(); 3547 if (!V.isAbsent()) { 3548 // If possible, emit the APValue version of the initializer. In particular, 3549 // this gets the type of the constant right. 3550 Init = Emitter.emitForInitializer( 3551 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3552 } else { 3553 // As a fallback, directly construct the constant. 3554 // FIXME: This may get padding wrong under esoteric struct layout rules. 3555 // MSVC appears to create a complete type 'struct __s_GUID' that it 3556 // presumably uses to represent these constants. 3557 MSGuidDecl::Parts Parts = GD->getParts(); 3558 llvm::Constant *Fields[4] = { 3559 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3560 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3561 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3562 llvm::ConstantDataArray::getRaw( 3563 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3564 Int8Ty)}; 3565 Init = llvm::ConstantStruct::getAnon(Fields); 3566 } 3567 3568 auto *GV = new llvm::GlobalVariable( 3569 getModule(), Init->getType(), 3570 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3571 if (supportsCOMDAT()) 3572 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3573 setDSOLocal(GV); 3574 3575 if (!V.isAbsent()) { 3576 Emitter.finalize(GV); 3577 return ConstantAddress(GV, GV->getValueType(), Alignment); 3578 } 3579 3580 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3581 return ConstantAddress(GV, Ty, Alignment); 3582 } 3583 3584 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3585 const UnnamedGlobalConstantDecl *GCD) { 3586 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3587 3588 llvm::GlobalVariable **Entry = nullptr; 3589 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3590 if (*Entry) 3591 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3592 3593 ConstantEmitter Emitter(*this); 3594 llvm::Constant *Init; 3595 3596 const APValue &V = GCD->getValue(); 3597 3598 assert(!V.isAbsent()); 3599 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3600 GCD->getType()); 3601 3602 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3603 /*isConstant=*/true, 3604 llvm::GlobalValue::PrivateLinkage, Init, 3605 ".constant"); 3606 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3607 GV->setAlignment(Alignment.getAsAlign()); 3608 3609 Emitter.finalize(GV); 3610 3611 *Entry = GV; 3612 return ConstantAddress(GV, GV->getValueType(), Alignment); 3613 } 3614 3615 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3616 const TemplateParamObjectDecl *TPO) { 3617 StringRef Name = getMangledName(TPO); 3618 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3619 3620 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3621 return ConstantAddress(GV, GV->getValueType(), Alignment); 3622 3623 ConstantEmitter Emitter(*this); 3624 llvm::Constant *Init = Emitter.emitForInitializer( 3625 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3626 3627 if (!Init) { 3628 ErrorUnsupported(TPO, "template parameter object"); 3629 return ConstantAddress::invalid(); 3630 } 3631 3632 llvm::GlobalValue::LinkageTypes Linkage = 3633 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3634 ? llvm::GlobalValue::LinkOnceODRLinkage 3635 : llvm::GlobalValue::InternalLinkage; 3636 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3637 /*isConstant=*/true, Linkage, Init, Name); 3638 setGVProperties(GV, TPO); 3639 if (supportsCOMDAT()) 3640 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3641 Emitter.finalize(GV); 3642 3643 return ConstantAddress(GV, GV->getValueType(), Alignment); 3644 } 3645 3646 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3647 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3648 assert(AA && "No alias?"); 3649 3650 CharUnits Alignment = getContext().getDeclAlign(VD); 3651 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3652 3653 // See if there is already something with the target's name in the module. 3654 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3655 if (Entry) 3656 return ConstantAddress(Entry, DeclTy, Alignment); 3657 3658 llvm::Constant *Aliasee; 3659 if (isa<llvm::FunctionType>(DeclTy)) 3660 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3661 GlobalDecl(cast<FunctionDecl>(VD)), 3662 /*ForVTable=*/false); 3663 else 3664 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3665 nullptr); 3666 3667 auto *F = cast<llvm::GlobalValue>(Aliasee); 3668 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3669 WeakRefReferences.insert(F); 3670 3671 return ConstantAddress(Aliasee, DeclTy, Alignment); 3672 } 3673 3674 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3675 if (!D) 3676 return false; 3677 if (auto *A = D->getAttr<AttrT>()) 3678 return A->isImplicit(); 3679 return D->isImplicit(); 3680 } 3681 3682 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3683 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3684 3685 // Weak references don't produce any output by themselves. 3686 if (Global->hasAttr<WeakRefAttr>()) 3687 return; 3688 3689 // If this is an alias definition (which otherwise looks like a declaration) 3690 // emit it now. 3691 if (Global->hasAttr<AliasAttr>()) 3692 return EmitAliasDefinition(GD); 3693 3694 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3695 if (Global->hasAttr<IFuncAttr>()) 3696 return emitIFuncDefinition(GD); 3697 3698 // If this is a cpu_dispatch multiversion function, emit the resolver. 3699 if (Global->hasAttr<CPUDispatchAttr>()) 3700 return emitCPUDispatchDefinition(GD); 3701 3702 // If this is CUDA, be selective about which declarations we emit. 3703 // Non-constexpr non-lambda implicit host device functions are not emitted 3704 // unless they are used on device side. 3705 if (LangOpts.CUDA) { 3706 if (LangOpts.CUDAIsDevice) { 3707 const auto *FD = dyn_cast<FunctionDecl>(Global); 3708 if ((!Global->hasAttr<CUDADeviceAttr>() || 3709 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3710 hasImplicitAttr<CUDAHostAttr>(FD) && 3711 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3712 !isLambdaCallOperator(FD) && 3713 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3714 !Global->hasAttr<CUDAGlobalAttr>() && 3715 !Global->hasAttr<CUDAConstantAttr>() && 3716 !Global->hasAttr<CUDASharedAttr>() && 3717 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3718 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3719 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3720 !Global->hasAttr<CUDAHostAttr>())) 3721 return; 3722 } else { 3723 // We need to emit host-side 'shadows' for all global 3724 // device-side variables because the CUDA runtime needs their 3725 // size and host-side address in order to provide access to 3726 // their device-side incarnations. 3727 3728 // So device-only functions are the only things we skip. 3729 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3730 Global->hasAttr<CUDADeviceAttr>()) 3731 return; 3732 3733 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3734 "Expected Variable or Function"); 3735 } 3736 } 3737 3738 if (LangOpts.OpenMP) { 3739 // If this is OpenMP, check if it is legal to emit this global normally. 3740 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3741 return; 3742 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3743 if (MustBeEmitted(Global)) 3744 EmitOMPDeclareReduction(DRD); 3745 return; 3746 } 3747 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3748 if (MustBeEmitted(Global)) 3749 EmitOMPDeclareMapper(DMD); 3750 return; 3751 } 3752 } 3753 3754 // Ignore declarations, they will be emitted on their first use. 3755 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3756 // Update deferred annotations with the latest declaration if the function 3757 // function was already used or defined. 3758 if (FD->hasAttr<AnnotateAttr>()) { 3759 StringRef MangledName = getMangledName(GD); 3760 if (GetGlobalValue(MangledName)) 3761 DeferredAnnotations[MangledName] = FD; 3762 } 3763 3764 // Forward declarations are emitted lazily on first use. 3765 if (!FD->doesThisDeclarationHaveABody()) { 3766 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3767 (!FD->isMultiVersion() || 3768 !FD->getASTContext().getTargetInfo().getTriple().isAArch64())) 3769 return; 3770 3771 StringRef MangledName = getMangledName(GD); 3772 3773 // Compute the function info and LLVM type. 3774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3775 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3776 3777 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3778 /*DontDefer=*/false); 3779 return; 3780 } 3781 } else { 3782 const auto *VD = cast<VarDecl>(Global); 3783 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3784 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3785 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3786 if (LangOpts.OpenMP) { 3787 // Emit declaration of the must-be-emitted declare target variable. 3788 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3789 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3790 3791 // If this variable has external storage and doesn't require special 3792 // link handling we defer to its canonical definition. 3793 if (VD->hasExternalStorage() && 3794 Res != OMPDeclareTargetDeclAttr::MT_Link) 3795 return; 3796 3797 bool UnifiedMemoryEnabled = 3798 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3799 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3800 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3801 !UnifiedMemoryEnabled) { 3802 (void)GetAddrOfGlobalVar(VD); 3803 } else { 3804 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3805 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3806 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3807 UnifiedMemoryEnabled)) && 3808 "Link clause or to clause with unified memory expected."); 3809 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3810 } 3811 3812 return; 3813 } 3814 } 3815 // If this declaration may have caused an inline variable definition to 3816 // change linkage, make sure that it's emitted. 3817 if (Context.getInlineVariableDefinitionKind(VD) == 3818 ASTContext::InlineVariableDefinitionKind::Strong) 3819 GetAddrOfGlobalVar(VD); 3820 return; 3821 } 3822 } 3823 3824 // Defer code generation to first use when possible, e.g. if this is an inline 3825 // function. If the global must always be emitted, do it eagerly if possible 3826 // to benefit from cache locality. 3827 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3828 // Emit the definition if it can't be deferred. 3829 EmitGlobalDefinition(GD); 3830 addEmittedDeferredDecl(GD); 3831 return; 3832 } 3833 3834 // If we're deferring emission of a C++ variable with an 3835 // initializer, remember the order in which it appeared in the file. 3836 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3837 cast<VarDecl>(Global)->hasInit()) { 3838 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3839 CXXGlobalInits.push_back(nullptr); 3840 } 3841 3842 StringRef MangledName = getMangledName(GD); 3843 if (GetGlobalValue(MangledName) != nullptr) { 3844 // The value has already been used and should therefore be emitted. 3845 addDeferredDeclToEmit(GD); 3846 } else if (MustBeEmitted(Global)) { 3847 // The value must be emitted, but cannot be emitted eagerly. 3848 assert(!MayBeEmittedEagerly(Global)); 3849 addDeferredDeclToEmit(GD); 3850 } else { 3851 // Otherwise, remember that we saw a deferred decl with this name. The 3852 // first use of the mangled name will cause it to move into 3853 // DeferredDeclsToEmit. 3854 DeferredDecls[MangledName] = GD; 3855 } 3856 } 3857 3858 // Check if T is a class type with a destructor that's not dllimport. 3859 static bool HasNonDllImportDtor(QualType T) { 3860 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3861 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3862 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3863 return true; 3864 3865 return false; 3866 } 3867 3868 namespace { 3869 struct FunctionIsDirectlyRecursive 3870 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3871 const StringRef Name; 3872 const Builtin::Context &BI; 3873 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3874 : Name(N), BI(C) {} 3875 3876 bool VisitCallExpr(const CallExpr *E) { 3877 const FunctionDecl *FD = E->getDirectCallee(); 3878 if (!FD) 3879 return false; 3880 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3881 if (Attr && Name == Attr->getLabel()) 3882 return true; 3883 unsigned BuiltinID = FD->getBuiltinID(); 3884 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3885 return false; 3886 StringRef BuiltinName = BI.getName(BuiltinID); 3887 if (BuiltinName.starts_with("__builtin_") && 3888 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3889 return true; 3890 } 3891 return false; 3892 } 3893 3894 bool VisitStmt(const Stmt *S) { 3895 for (const Stmt *Child : S->children()) 3896 if (Child && this->Visit(Child)) 3897 return true; 3898 return false; 3899 } 3900 }; 3901 3902 // Make sure we're not referencing non-imported vars or functions. 3903 struct DLLImportFunctionVisitor 3904 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3905 bool SafeToInline = true; 3906 3907 bool shouldVisitImplicitCode() const { return true; } 3908 3909 bool VisitVarDecl(VarDecl *VD) { 3910 if (VD->getTLSKind()) { 3911 // A thread-local variable cannot be imported. 3912 SafeToInline = false; 3913 return SafeToInline; 3914 } 3915 3916 // A variable definition might imply a destructor call. 3917 if (VD->isThisDeclarationADefinition()) 3918 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3919 3920 return SafeToInline; 3921 } 3922 3923 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3924 if (const auto *D = E->getTemporary()->getDestructor()) 3925 SafeToInline = D->hasAttr<DLLImportAttr>(); 3926 return SafeToInline; 3927 } 3928 3929 bool VisitDeclRefExpr(DeclRefExpr *E) { 3930 ValueDecl *VD = E->getDecl(); 3931 if (isa<FunctionDecl>(VD)) 3932 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3933 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3934 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3935 return SafeToInline; 3936 } 3937 3938 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3939 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3940 return SafeToInline; 3941 } 3942 3943 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3944 CXXMethodDecl *M = E->getMethodDecl(); 3945 if (!M) { 3946 // Call through a pointer to member function. This is safe to inline. 3947 SafeToInline = true; 3948 } else { 3949 SafeToInline = M->hasAttr<DLLImportAttr>(); 3950 } 3951 return SafeToInline; 3952 } 3953 3954 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3955 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3956 return SafeToInline; 3957 } 3958 3959 bool VisitCXXNewExpr(CXXNewExpr *E) { 3960 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3961 return SafeToInline; 3962 } 3963 }; 3964 } 3965 3966 // isTriviallyRecursive - Check if this function calls another 3967 // decl that, because of the asm attribute or the other decl being a builtin, 3968 // ends up pointing to itself. 3969 bool 3970 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3971 StringRef Name; 3972 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3973 // asm labels are a special kind of mangling we have to support. 3974 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3975 if (!Attr) 3976 return false; 3977 Name = Attr->getLabel(); 3978 } else { 3979 Name = FD->getName(); 3980 } 3981 3982 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3983 const Stmt *Body = FD->getBody(); 3984 return Body ? Walker.Visit(Body) : false; 3985 } 3986 3987 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3988 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3989 return true; 3990 3991 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3992 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3993 return false; 3994 3995 // We don't import function bodies from other named module units since that 3996 // behavior may break ABI compatibility of the current unit. 3997 if (const Module *M = F->getOwningModule(); 3998 M && M->getTopLevelModule()->isNamedModule() && 3999 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4000 // There are practices to mark template member function as always-inline 4001 // and mark the template as extern explicit instantiation but not give 4002 // the definition for member function. So we have to emit the function 4003 // from explicitly instantiation with always-inline. 4004 // 4005 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4006 // 4007 // TODO: Maybe it is better to give it a warning if we call a non-inline 4008 // function from other module units which is marked as always-inline. 4009 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4010 return false; 4011 } 4012 } 4013 4014 if (F->hasAttr<NoInlineAttr>()) 4015 return false; 4016 4017 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4018 // Check whether it would be safe to inline this dllimport function. 4019 DLLImportFunctionVisitor Visitor; 4020 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4021 if (!Visitor.SafeToInline) 4022 return false; 4023 4024 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4025 // Implicit destructor invocations aren't captured in the AST, so the 4026 // check above can't see them. Check for them manually here. 4027 for (const Decl *Member : Dtor->getParent()->decls()) 4028 if (isa<FieldDecl>(Member)) 4029 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4030 return false; 4031 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4032 if (HasNonDllImportDtor(B.getType())) 4033 return false; 4034 } 4035 } 4036 4037 // Inline builtins declaration must be emitted. They often are fortified 4038 // functions. 4039 if (F->isInlineBuiltinDeclaration()) 4040 return true; 4041 4042 // PR9614. Avoid cases where the source code is lying to us. An available 4043 // externally function should have an equivalent function somewhere else, 4044 // but a function that calls itself through asm label/`__builtin_` trickery is 4045 // clearly not equivalent to the real implementation. 4046 // This happens in glibc's btowc and in some configure checks. 4047 return !isTriviallyRecursive(F); 4048 } 4049 4050 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4051 return CodeGenOpts.OptimizationLevel > 0; 4052 } 4053 4054 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4055 llvm::GlobalValue *GV) { 4056 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4057 4058 if (FD->isCPUSpecificMultiVersion()) { 4059 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4060 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4061 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4062 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4063 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4064 // AArch64 favors the default target version over the clone if any. 4065 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4066 TC->isFirstOfVersion(I)) 4067 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4068 // Ensure that the resolver function is also emitted. 4069 GetOrCreateMultiVersionResolver(GD); 4070 } else 4071 EmitGlobalFunctionDefinition(GD, GV); 4072 4073 // Defer the resolver emission until we can reason whether the TU 4074 // contains a default target version implementation. 4075 if (FD->isTargetVersionMultiVersion()) 4076 AddDeferredMultiVersionResolverToEmit(GD); 4077 } 4078 4079 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4080 const auto *D = cast<ValueDecl>(GD.getDecl()); 4081 4082 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4083 Context.getSourceManager(), 4084 "Generating code for declaration"); 4085 4086 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4087 // At -O0, don't generate IR for functions with available_externally 4088 // linkage. 4089 if (!shouldEmitFunction(GD)) 4090 return; 4091 4092 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4093 std::string Name; 4094 llvm::raw_string_ostream OS(Name); 4095 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4096 /*Qualified=*/true); 4097 return Name; 4098 }); 4099 4100 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4101 // Make sure to emit the definition(s) before we emit the thunks. 4102 // This is necessary for the generation of certain thunks. 4103 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4104 ABI->emitCXXStructor(GD); 4105 else if (FD->isMultiVersion()) 4106 EmitMultiVersionFunctionDefinition(GD, GV); 4107 else 4108 EmitGlobalFunctionDefinition(GD, GV); 4109 4110 if (Method->isVirtual()) 4111 getVTables().EmitThunks(GD); 4112 4113 return; 4114 } 4115 4116 if (FD->isMultiVersion()) 4117 return EmitMultiVersionFunctionDefinition(GD, GV); 4118 return EmitGlobalFunctionDefinition(GD, GV); 4119 } 4120 4121 if (const auto *VD = dyn_cast<VarDecl>(D)) 4122 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4123 4124 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4125 } 4126 4127 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4128 llvm::Function *NewFn); 4129 4130 static unsigned 4131 TargetMVPriority(const TargetInfo &TI, 4132 const CodeGenFunction::MultiVersionResolverOption &RO) { 4133 unsigned Priority = 0; 4134 unsigned NumFeatures = 0; 4135 for (StringRef Feat : RO.Conditions.Features) { 4136 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4137 NumFeatures++; 4138 } 4139 4140 if (!RO.Conditions.Architecture.empty()) 4141 Priority = std::max( 4142 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4143 4144 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4145 4146 return Priority; 4147 } 4148 4149 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4150 // TU can forward declare the function without causing problems. Particularly 4151 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4152 // work with internal linkage functions, so that the same function name can be 4153 // used with internal linkage in multiple TUs. 4154 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4155 GlobalDecl GD) { 4156 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4157 if (FD->getFormalLinkage() == Linkage::Internal) 4158 return llvm::GlobalValue::InternalLinkage; 4159 return llvm::GlobalValue::WeakODRLinkage; 4160 } 4161 4162 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) { 4163 auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext()); 4164 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 4165 StorageClass SC = FD->getStorageClass(); 4166 DeclarationName Name = FD->getNameInfo().getName(); 4167 4168 FunctionDecl *NewDecl = 4169 FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(), 4170 FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC); 4171 4172 NewDecl->setIsMultiVersion(); 4173 NewDecl->addAttr(TargetVersionAttr::CreateImplicit( 4174 NewDecl->getASTContext(), "default", NewDecl->getSourceRange())); 4175 4176 return NewDecl; 4177 } 4178 4179 void CodeGenModule::emitMultiVersionFunctions() { 4180 std::vector<GlobalDecl> MVFuncsToEmit; 4181 MultiVersionFuncs.swap(MVFuncsToEmit); 4182 for (GlobalDecl GD : MVFuncsToEmit) { 4183 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4184 assert(FD && "Expected a FunctionDecl"); 4185 4186 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4187 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4188 StringRef MangledName = getMangledName(CurGD); 4189 llvm::Constant *Func = GetGlobalValue(MangledName); 4190 if (!Func) { 4191 if (Decl->isDefined()) { 4192 EmitGlobalFunctionDefinition(CurGD, nullptr); 4193 Func = GetGlobalValue(MangledName); 4194 } else { 4195 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4196 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4197 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4198 /*DontDefer=*/false, ForDefinition); 4199 } 4200 assert(Func && "This should have just been created"); 4201 } 4202 return cast<llvm::Function>(Func); 4203 }; 4204 4205 bool HasDefaultDecl = !FD->isTargetVersionMultiVersion(); 4206 bool ShouldEmitResolver = 4207 !getContext().getTargetInfo().getTriple().isAArch64(); 4208 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4209 4210 getContext().forEachMultiversionedFunctionVersion( 4211 FD, [&](const FunctionDecl *CurFD) { 4212 llvm::SmallVector<StringRef, 8> Feats; 4213 4214 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4215 TA->getAddedFeatures(Feats); 4216 llvm::Function *Func = createFunction(CurFD); 4217 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4218 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4219 bool HasDefaultDef = TVA->isDefaultVersion() && 4220 CurFD->doesThisDeclarationHaveABody(); 4221 HasDefaultDecl |= TVA->isDefaultVersion(); 4222 ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef); 4223 TVA->getFeatures(Feats); 4224 llvm::Function *Func = createFunction(CurFD); 4225 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4226 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4227 ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody(); 4228 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4229 if (!TC->isFirstOfVersion(I)) 4230 continue; 4231 4232 llvm::Function *Func = createFunction(CurFD, I); 4233 StringRef Architecture; 4234 Feats.clear(); 4235 if (getTarget().getTriple().isAArch64()) 4236 TC->getFeatures(Feats, I); 4237 else { 4238 StringRef Version = TC->getFeatureStr(I); 4239 if (Version.starts_with("arch=")) 4240 Architecture = Version.drop_front(sizeof("arch=") - 1); 4241 else if (Version != "default") 4242 Feats.push_back(Version); 4243 } 4244 Options.emplace_back(Func, Architecture, Feats); 4245 } 4246 } else 4247 llvm_unreachable("unexpected MultiVersionKind"); 4248 }); 4249 4250 if (!ShouldEmitResolver) 4251 continue; 4252 4253 if (!HasDefaultDecl) { 4254 FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD); 4255 llvm::Function *Func = createFunction(NewFD); 4256 llvm::SmallVector<StringRef, 1> Feats; 4257 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4258 } 4259 4260 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4261 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4262 ResolverConstant = IFunc->getResolver(); 4263 if (FD->isTargetClonesMultiVersion() && 4264 !getTarget().getTriple().isAArch64()) { 4265 std::string MangledName = getMangledNameImpl( 4266 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4267 if (!GetGlobalValue(MangledName + ".ifunc")) { 4268 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4269 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4270 // In prior versions of Clang, the mangling for ifuncs incorrectly 4271 // included an .ifunc suffix. This alias is generated for backward 4272 // compatibility. It is deprecated, and may be removed in the future. 4273 auto *Alias = llvm::GlobalAlias::create( 4274 DeclTy, 0, getMultiversionLinkage(*this, GD), 4275 MangledName + ".ifunc", IFunc, &getModule()); 4276 SetCommonAttributes(FD, Alias); 4277 } 4278 } 4279 } 4280 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4281 4282 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4283 4284 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4285 ResolverFunc->setComdat( 4286 getModule().getOrInsertComdat(ResolverFunc->getName())); 4287 4288 const TargetInfo &TI = getTarget(); 4289 llvm::stable_sort( 4290 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4291 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4292 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4293 }); 4294 CodeGenFunction CGF(*this); 4295 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4296 } 4297 4298 // Ensure that any additions to the deferred decls list caused by emitting a 4299 // variant are emitted. This can happen when the variant itself is inline and 4300 // calls a function without linkage. 4301 if (!MVFuncsToEmit.empty()) 4302 EmitDeferred(); 4303 4304 // Ensure that any additions to the multiversion funcs list from either the 4305 // deferred decls or the multiversion functions themselves are emitted. 4306 if (!MultiVersionFuncs.empty()) 4307 emitMultiVersionFunctions(); 4308 } 4309 4310 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4311 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4312 assert(FD && "Not a FunctionDecl?"); 4313 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4314 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4315 assert(DD && "Not a cpu_dispatch Function?"); 4316 4317 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4318 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4319 4320 StringRef ResolverName = getMangledName(GD); 4321 UpdateMultiVersionNames(GD, FD, ResolverName); 4322 4323 llvm::Type *ResolverType; 4324 GlobalDecl ResolverGD; 4325 if (getTarget().supportsIFunc()) { 4326 ResolverType = llvm::FunctionType::get( 4327 llvm::PointerType::get(DeclTy, 4328 getTypes().getTargetAddressSpace(FD->getType())), 4329 false); 4330 } 4331 else { 4332 ResolverType = DeclTy; 4333 ResolverGD = GD; 4334 } 4335 4336 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4337 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4338 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4339 if (supportsCOMDAT()) 4340 ResolverFunc->setComdat( 4341 getModule().getOrInsertComdat(ResolverFunc->getName())); 4342 4343 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4344 const TargetInfo &Target = getTarget(); 4345 unsigned Index = 0; 4346 for (const IdentifierInfo *II : DD->cpus()) { 4347 // Get the name of the target function so we can look it up/create it. 4348 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4349 getCPUSpecificMangling(*this, II->getName()); 4350 4351 llvm::Constant *Func = GetGlobalValue(MangledName); 4352 4353 if (!Func) { 4354 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4355 if (ExistingDecl.getDecl() && 4356 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4357 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4358 Func = GetGlobalValue(MangledName); 4359 } else { 4360 if (!ExistingDecl.getDecl()) 4361 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4362 4363 Func = GetOrCreateLLVMFunction( 4364 MangledName, DeclTy, ExistingDecl, 4365 /*ForVTable=*/false, /*DontDefer=*/true, 4366 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4367 } 4368 } 4369 4370 llvm::SmallVector<StringRef, 32> Features; 4371 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4372 llvm::transform(Features, Features.begin(), 4373 [](StringRef Str) { return Str.substr(1); }); 4374 llvm::erase_if(Features, [&Target](StringRef Feat) { 4375 return !Target.validateCpuSupports(Feat); 4376 }); 4377 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4378 ++Index; 4379 } 4380 4381 llvm::stable_sort( 4382 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4383 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4384 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4385 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4386 }); 4387 4388 // If the list contains multiple 'default' versions, such as when it contains 4389 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4390 // always run on at least a 'pentium'). We do this by deleting the 'least 4391 // advanced' (read, lowest mangling letter). 4392 while (Options.size() > 1 && 4393 llvm::all_of(llvm::X86::getCpuSupportsMask( 4394 (Options.end() - 2)->Conditions.Features), 4395 [](auto X) { return X == 0; })) { 4396 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4397 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4398 if (LHSName.compare(RHSName) < 0) 4399 Options.erase(Options.end() - 2); 4400 else 4401 Options.erase(Options.end() - 1); 4402 } 4403 4404 CodeGenFunction CGF(*this); 4405 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4406 4407 if (getTarget().supportsIFunc()) { 4408 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4409 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4410 4411 // Fix up function declarations that were created for cpu_specific before 4412 // cpu_dispatch was known 4413 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4414 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4415 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4416 &getModule()); 4417 GI->takeName(IFunc); 4418 IFunc->replaceAllUsesWith(GI); 4419 IFunc->eraseFromParent(); 4420 IFunc = GI; 4421 } 4422 4423 std::string AliasName = getMangledNameImpl( 4424 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4425 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4426 if (!AliasFunc) { 4427 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4428 &getModule()); 4429 SetCommonAttributes(GD, GA); 4430 } 4431 } 4432 } 4433 4434 /// Adds a declaration to the list of multi version functions if not present. 4435 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4436 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4437 assert(FD && "Not a FunctionDecl?"); 4438 4439 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4440 std::string MangledName = 4441 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4442 if (!DeferredResolversToEmit.insert(MangledName).second) 4443 return; 4444 } 4445 MultiVersionFuncs.push_back(GD); 4446 } 4447 4448 /// If a dispatcher for the specified mangled name is not in the module, create 4449 /// and return an llvm Function with the specified type. 4450 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4451 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4452 assert(FD && "Not a FunctionDecl?"); 4453 4454 std::string MangledName = 4455 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4456 4457 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4458 // a separate resolver). 4459 std::string ResolverName = MangledName; 4460 if (getTarget().supportsIFunc()) { 4461 switch (FD->getMultiVersionKind()) { 4462 case MultiVersionKind::None: 4463 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4464 case MultiVersionKind::Target: 4465 case MultiVersionKind::CPUSpecific: 4466 case MultiVersionKind::CPUDispatch: 4467 ResolverName += ".ifunc"; 4468 break; 4469 case MultiVersionKind::TargetClones: 4470 case MultiVersionKind::TargetVersion: 4471 break; 4472 } 4473 } else if (FD->isTargetMultiVersion()) { 4474 ResolverName += ".resolver"; 4475 } 4476 4477 // If the resolver has already been created, just return it. 4478 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4479 return ResolverGV; 4480 4481 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4482 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4483 4484 // The resolver needs to be created. For target and target_clones, defer 4485 // creation until the end of the TU. 4486 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4487 AddDeferredMultiVersionResolverToEmit(GD); 4488 4489 // For cpu_specific, don't create an ifunc yet because we don't know if the 4490 // cpu_dispatch will be emitted in this translation unit. 4491 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4492 llvm::Type *ResolverType = llvm::FunctionType::get( 4493 llvm::PointerType::get(DeclTy, 4494 getTypes().getTargetAddressSpace(FD->getType())), 4495 false); 4496 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4497 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4498 /*ForVTable=*/false); 4499 llvm::GlobalIFunc *GIF = 4500 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4501 "", Resolver, &getModule()); 4502 GIF->setName(ResolverName); 4503 SetCommonAttributes(FD, GIF); 4504 4505 return GIF; 4506 } 4507 4508 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4509 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4510 assert(isa<llvm::GlobalValue>(Resolver) && 4511 "Resolver should be created for the first time"); 4512 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4513 return Resolver; 4514 } 4515 4516 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4517 const llvm::GlobalValue *GV) const { 4518 auto SC = GV->getDLLStorageClass(); 4519 if (SC == llvm::GlobalValue::DefaultStorageClass) 4520 return false; 4521 const Decl *MRD = D->getMostRecentDecl(); 4522 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4523 !MRD->hasAttr<DLLImportAttr>()) || 4524 (SC == llvm::GlobalValue::DLLExportStorageClass && 4525 !MRD->hasAttr<DLLExportAttr>())) && 4526 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4527 } 4528 4529 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4530 /// module, create and return an llvm Function with the specified type. If there 4531 /// is something in the module with the specified name, return it potentially 4532 /// bitcasted to the right type. 4533 /// 4534 /// If D is non-null, it specifies a decl that correspond to this. This is used 4535 /// to set the attributes on the function when it is first created. 4536 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4537 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4538 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4539 ForDefinition_t IsForDefinition) { 4540 const Decl *D = GD.getDecl(); 4541 4542 // Any attempts to use a MultiVersion function should result in retrieving 4543 // the iFunc instead. Name Mangling will handle the rest of the changes. 4544 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4545 // For the device mark the function as one that should be emitted. 4546 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4547 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4548 !DontDefer && !IsForDefinition) { 4549 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4550 GlobalDecl GDDef; 4551 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4552 GDDef = GlobalDecl(CD, GD.getCtorType()); 4553 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4554 GDDef = GlobalDecl(DD, GD.getDtorType()); 4555 else 4556 GDDef = GlobalDecl(FDDef); 4557 EmitGlobal(GDDef); 4558 } 4559 } 4560 4561 if (FD->isMultiVersion()) { 4562 UpdateMultiVersionNames(GD, FD, MangledName); 4563 if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() && 4564 !FD->isUsed()) 4565 AddDeferredMultiVersionResolverToEmit(GD); 4566 else if (!IsForDefinition) 4567 return GetOrCreateMultiVersionResolver(GD); 4568 } 4569 } 4570 4571 // Lookup the entry, lazily creating it if necessary. 4572 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4573 if (Entry) { 4574 if (WeakRefReferences.erase(Entry)) { 4575 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4576 if (FD && !FD->hasAttr<WeakAttr>()) 4577 Entry->setLinkage(llvm::Function::ExternalLinkage); 4578 } 4579 4580 // Handle dropped DLL attributes. 4581 if (D && shouldDropDLLAttribute(D, Entry)) { 4582 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4583 setDSOLocal(Entry); 4584 } 4585 4586 // If there are two attempts to define the same mangled name, issue an 4587 // error. 4588 if (IsForDefinition && !Entry->isDeclaration()) { 4589 GlobalDecl OtherGD; 4590 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4591 // to make sure that we issue an error only once. 4592 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4593 (GD.getCanonicalDecl().getDecl() != 4594 OtherGD.getCanonicalDecl().getDecl()) && 4595 DiagnosedConflictingDefinitions.insert(GD).second) { 4596 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4597 << MangledName; 4598 getDiags().Report(OtherGD.getDecl()->getLocation(), 4599 diag::note_previous_definition); 4600 } 4601 } 4602 4603 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4604 (Entry->getValueType() == Ty)) { 4605 return Entry; 4606 } 4607 4608 // Make sure the result is of the correct type. 4609 // (If function is requested for a definition, we always need to create a new 4610 // function, not just return a bitcast.) 4611 if (!IsForDefinition) 4612 return Entry; 4613 } 4614 4615 // This function doesn't have a complete type (for example, the return 4616 // type is an incomplete struct). Use a fake type instead, and make 4617 // sure not to try to set attributes. 4618 bool IsIncompleteFunction = false; 4619 4620 llvm::FunctionType *FTy; 4621 if (isa<llvm::FunctionType>(Ty)) { 4622 FTy = cast<llvm::FunctionType>(Ty); 4623 } else { 4624 FTy = llvm::FunctionType::get(VoidTy, false); 4625 IsIncompleteFunction = true; 4626 } 4627 4628 llvm::Function *F = 4629 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4630 Entry ? StringRef() : MangledName, &getModule()); 4631 4632 // Store the declaration associated with this function so it is potentially 4633 // updated by further declarations or definitions and emitted at the end. 4634 if (D && D->hasAttr<AnnotateAttr>()) 4635 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4636 4637 // If we already created a function with the same mangled name (but different 4638 // type) before, take its name and add it to the list of functions to be 4639 // replaced with F at the end of CodeGen. 4640 // 4641 // This happens if there is a prototype for a function (e.g. "int f()") and 4642 // then a definition of a different type (e.g. "int f(int x)"). 4643 if (Entry) { 4644 F->takeName(Entry); 4645 4646 // This might be an implementation of a function without a prototype, in 4647 // which case, try to do special replacement of calls which match the new 4648 // prototype. The really key thing here is that we also potentially drop 4649 // arguments from the call site so as to make a direct call, which makes the 4650 // inliner happier and suppresses a number of optimizer warnings (!) about 4651 // dropping arguments. 4652 if (!Entry->use_empty()) { 4653 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4654 Entry->removeDeadConstantUsers(); 4655 } 4656 4657 addGlobalValReplacement(Entry, F); 4658 } 4659 4660 assert(F->getName() == MangledName && "name was uniqued!"); 4661 if (D) 4662 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4663 if (ExtraAttrs.hasFnAttrs()) { 4664 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4665 F->addFnAttrs(B); 4666 } 4667 4668 if (!DontDefer) { 4669 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4670 // each other bottoming out with the base dtor. Therefore we emit non-base 4671 // dtors on usage, even if there is no dtor definition in the TU. 4672 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4673 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4674 GD.getDtorType())) 4675 addDeferredDeclToEmit(GD); 4676 4677 // This is the first use or definition of a mangled name. If there is a 4678 // deferred decl with this name, remember that we need to emit it at the end 4679 // of the file. 4680 auto DDI = DeferredDecls.find(MangledName); 4681 if (DDI != DeferredDecls.end()) { 4682 // Move the potentially referenced deferred decl to the 4683 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4684 // don't need it anymore). 4685 addDeferredDeclToEmit(DDI->second); 4686 DeferredDecls.erase(DDI); 4687 4688 // Otherwise, there are cases we have to worry about where we're 4689 // using a declaration for which we must emit a definition but where 4690 // we might not find a top-level definition: 4691 // - member functions defined inline in their classes 4692 // - friend functions defined inline in some class 4693 // - special member functions with implicit definitions 4694 // If we ever change our AST traversal to walk into class methods, 4695 // this will be unnecessary. 4696 // 4697 // We also don't emit a definition for a function if it's going to be an 4698 // entry in a vtable, unless it's already marked as used. 4699 } else if (getLangOpts().CPlusPlus && D) { 4700 // Look for a declaration that's lexically in a record. 4701 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4702 FD = FD->getPreviousDecl()) { 4703 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4704 if (FD->doesThisDeclarationHaveABody()) { 4705 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4706 break; 4707 } 4708 } 4709 } 4710 } 4711 } 4712 4713 // Make sure the result is of the requested type. 4714 if (!IsIncompleteFunction) { 4715 assert(F->getFunctionType() == Ty); 4716 return F; 4717 } 4718 4719 return F; 4720 } 4721 4722 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4723 /// non-null, then this function will use the specified type if it has to 4724 /// create it (this occurs when we see a definition of the function). 4725 llvm::Constant * 4726 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4727 bool DontDefer, 4728 ForDefinition_t IsForDefinition) { 4729 // If there was no specific requested type, just convert it now. 4730 if (!Ty) { 4731 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4732 Ty = getTypes().ConvertType(FD->getType()); 4733 } 4734 4735 // Devirtualized destructor calls may come through here instead of via 4736 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4737 // of the complete destructor when necessary. 4738 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4739 if (getTarget().getCXXABI().isMicrosoft() && 4740 GD.getDtorType() == Dtor_Complete && 4741 DD->getParent()->getNumVBases() == 0) 4742 GD = GlobalDecl(DD, Dtor_Base); 4743 } 4744 4745 StringRef MangledName = getMangledName(GD); 4746 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4747 /*IsThunk=*/false, llvm::AttributeList(), 4748 IsForDefinition); 4749 // Returns kernel handle for HIP kernel stub function. 4750 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4751 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4752 auto *Handle = getCUDARuntime().getKernelHandle( 4753 cast<llvm::Function>(F->stripPointerCasts()), GD); 4754 if (IsForDefinition) 4755 return F; 4756 return Handle; 4757 } 4758 return F; 4759 } 4760 4761 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4762 llvm::GlobalValue *F = 4763 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4764 4765 return llvm::NoCFIValue::get(F); 4766 } 4767 4768 static const FunctionDecl * 4769 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4770 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4771 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4772 4773 IdentifierInfo &CII = C.Idents.get(Name); 4774 for (const auto *Result : DC->lookup(&CII)) 4775 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4776 return FD; 4777 4778 if (!C.getLangOpts().CPlusPlus) 4779 return nullptr; 4780 4781 // Demangle the premangled name from getTerminateFn() 4782 IdentifierInfo &CXXII = 4783 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4784 ? C.Idents.get("terminate") 4785 : C.Idents.get(Name); 4786 4787 for (const auto &N : {"__cxxabiv1", "std"}) { 4788 IdentifierInfo &NS = C.Idents.get(N); 4789 for (const auto *Result : DC->lookup(&NS)) { 4790 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4791 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4792 for (const auto *Result : LSD->lookup(&NS)) 4793 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4794 break; 4795 4796 if (ND) 4797 for (const auto *Result : ND->lookup(&CXXII)) 4798 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4799 return FD; 4800 } 4801 } 4802 4803 return nullptr; 4804 } 4805 4806 /// CreateRuntimeFunction - Create a new runtime function with the specified 4807 /// type and name. 4808 llvm::FunctionCallee 4809 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4810 llvm::AttributeList ExtraAttrs, bool Local, 4811 bool AssumeConvergent) { 4812 if (AssumeConvergent) { 4813 ExtraAttrs = 4814 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4815 } 4816 4817 llvm::Constant *C = 4818 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4819 /*DontDefer=*/false, /*IsThunk=*/false, 4820 ExtraAttrs); 4821 4822 if (auto *F = dyn_cast<llvm::Function>(C)) { 4823 if (F->empty()) { 4824 F->setCallingConv(getRuntimeCC()); 4825 4826 // In Windows Itanium environments, try to mark runtime functions 4827 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4828 // will link their standard library statically or dynamically. Marking 4829 // functions imported when they are not imported can cause linker errors 4830 // and warnings. 4831 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4832 !getCodeGenOpts().LTOVisibilityPublicStd) { 4833 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4834 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4835 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4836 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4837 } 4838 } 4839 setDSOLocal(F); 4840 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4841 // of trying to approximate the attributes using the LLVM function 4842 // signature. This requires revising the API of CreateRuntimeFunction(). 4843 markRegisterParameterAttributes(F); 4844 } 4845 } 4846 4847 return {FTy, C}; 4848 } 4849 4850 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4851 /// create and return an llvm GlobalVariable with the specified type and address 4852 /// space. If there is something in the module with the specified name, return 4853 /// it potentially bitcasted to the right type. 4854 /// 4855 /// If D is non-null, it specifies a decl that correspond to this. This is used 4856 /// to set the attributes on the global when it is first created. 4857 /// 4858 /// If IsForDefinition is true, it is guaranteed that an actual global with 4859 /// type Ty will be returned, not conversion of a variable with the same 4860 /// mangled name but some other type. 4861 llvm::Constant * 4862 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4863 LangAS AddrSpace, const VarDecl *D, 4864 ForDefinition_t IsForDefinition) { 4865 // Lookup the entry, lazily creating it if necessary. 4866 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4867 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4868 if (Entry) { 4869 if (WeakRefReferences.erase(Entry)) { 4870 if (D && !D->hasAttr<WeakAttr>()) 4871 Entry->setLinkage(llvm::Function::ExternalLinkage); 4872 } 4873 4874 // Handle dropped DLL attributes. 4875 if (D && shouldDropDLLAttribute(D, Entry)) 4876 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4877 4878 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4879 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4880 4881 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4882 return Entry; 4883 4884 // If there are two attempts to define the same mangled name, issue an 4885 // error. 4886 if (IsForDefinition && !Entry->isDeclaration()) { 4887 GlobalDecl OtherGD; 4888 const VarDecl *OtherD; 4889 4890 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4891 // to make sure that we issue an error only once. 4892 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4893 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4894 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4895 OtherD->hasInit() && 4896 DiagnosedConflictingDefinitions.insert(D).second) { 4897 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4898 << MangledName; 4899 getDiags().Report(OtherGD.getDecl()->getLocation(), 4900 diag::note_previous_definition); 4901 } 4902 } 4903 4904 // Make sure the result is of the correct type. 4905 if (Entry->getType()->getAddressSpace() != TargetAS) 4906 return llvm::ConstantExpr::getAddrSpaceCast( 4907 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4908 4909 // (If global is requested for a definition, we always need to create a new 4910 // global, not just return a bitcast.) 4911 if (!IsForDefinition) 4912 return Entry; 4913 } 4914 4915 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4916 4917 auto *GV = new llvm::GlobalVariable( 4918 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4919 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4920 getContext().getTargetAddressSpace(DAddrSpace)); 4921 4922 // If we already created a global with the same mangled name (but different 4923 // type) before, take its name and remove it from its parent. 4924 if (Entry) { 4925 GV->takeName(Entry); 4926 4927 if (!Entry->use_empty()) { 4928 Entry->replaceAllUsesWith(GV); 4929 } 4930 4931 Entry->eraseFromParent(); 4932 } 4933 4934 // This is the first use or definition of a mangled name. If there is a 4935 // deferred decl with this name, remember that we need to emit it at the end 4936 // of the file. 4937 auto DDI = DeferredDecls.find(MangledName); 4938 if (DDI != DeferredDecls.end()) { 4939 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4940 // list, and remove it from DeferredDecls (since we don't need it anymore). 4941 addDeferredDeclToEmit(DDI->second); 4942 DeferredDecls.erase(DDI); 4943 } 4944 4945 // Handle things which are present even on external declarations. 4946 if (D) { 4947 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4948 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4949 4950 // FIXME: This code is overly simple and should be merged with other global 4951 // handling. 4952 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4953 4954 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4955 4956 setLinkageForGV(GV, D); 4957 4958 if (D->getTLSKind()) { 4959 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4960 CXXThreadLocals.push_back(D); 4961 setTLSMode(GV, *D); 4962 } 4963 4964 setGVProperties(GV, D); 4965 4966 // If required by the ABI, treat declarations of static data members with 4967 // inline initializers as definitions. 4968 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4969 EmitGlobalVarDefinition(D); 4970 } 4971 4972 // Emit section information for extern variables. 4973 if (D->hasExternalStorage()) { 4974 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4975 GV->setSection(SA->getName()); 4976 } 4977 4978 // Handle XCore specific ABI requirements. 4979 if (getTriple().getArch() == llvm::Triple::xcore && 4980 D->getLanguageLinkage() == CLanguageLinkage && 4981 D->getType().isConstant(Context) && 4982 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4983 GV->setSection(".cp.rodata"); 4984 4985 // Handle code model attribute 4986 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4987 GV->setCodeModel(CMA->getModel()); 4988 4989 // Check if we a have a const declaration with an initializer, we may be 4990 // able to emit it as available_externally to expose it's value to the 4991 // optimizer. 4992 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4993 D->getType().isConstQualified() && !GV->hasInitializer() && 4994 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4995 const auto *Record = 4996 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4997 bool HasMutableFields = Record && Record->hasMutableFields(); 4998 if (!HasMutableFields) { 4999 const VarDecl *InitDecl; 5000 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5001 if (InitExpr) { 5002 ConstantEmitter emitter(*this); 5003 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5004 if (Init) { 5005 auto *InitType = Init->getType(); 5006 if (GV->getValueType() != InitType) { 5007 // The type of the initializer does not match the definition. 5008 // This happens when an initializer has a different type from 5009 // the type of the global (because of padding at the end of a 5010 // structure for instance). 5011 GV->setName(StringRef()); 5012 // Make a new global with the correct type, this is now guaranteed 5013 // to work. 5014 auto *NewGV = cast<llvm::GlobalVariable>( 5015 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5016 ->stripPointerCasts()); 5017 5018 // Erase the old global, since it is no longer used. 5019 GV->eraseFromParent(); 5020 GV = NewGV; 5021 } else { 5022 GV->setInitializer(Init); 5023 GV->setConstant(true); 5024 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5025 } 5026 emitter.finalize(GV); 5027 } 5028 } 5029 } 5030 } 5031 } 5032 5033 if (D && 5034 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5035 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5036 // External HIP managed variables needed to be recorded for transformation 5037 // in both device and host compilations. 5038 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5039 D->hasExternalStorage()) 5040 getCUDARuntime().handleVarRegistration(D, *GV); 5041 } 5042 5043 if (D) 5044 SanitizerMD->reportGlobal(GV, *D); 5045 5046 LangAS ExpectedAS = 5047 D ? D->getType().getAddressSpace() 5048 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5049 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5050 if (DAddrSpace != ExpectedAS) { 5051 return getTargetCodeGenInfo().performAddrSpaceCast( 5052 *this, GV, DAddrSpace, ExpectedAS, 5053 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5054 } 5055 5056 return GV; 5057 } 5058 5059 llvm::Constant * 5060 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5061 const Decl *D = GD.getDecl(); 5062 5063 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5064 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5065 /*DontDefer=*/false, IsForDefinition); 5066 5067 if (isa<CXXMethodDecl>(D)) { 5068 auto FInfo = 5069 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5070 auto Ty = getTypes().GetFunctionType(*FInfo); 5071 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5072 IsForDefinition); 5073 } 5074 5075 if (isa<FunctionDecl>(D)) { 5076 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5077 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5078 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5079 IsForDefinition); 5080 } 5081 5082 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5083 } 5084 5085 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5086 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5087 llvm::Align Alignment) { 5088 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5089 llvm::GlobalVariable *OldGV = nullptr; 5090 5091 if (GV) { 5092 // Check if the variable has the right type. 5093 if (GV->getValueType() == Ty) 5094 return GV; 5095 5096 // Because C++ name mangling, the only way we can end up with an already 5097 // existing global with the same name is if it has been declared extern "C". 5098 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5099 OldGV = GV; 5100 } 5101 5102 // Create a new variable. 5103 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5104 Linkage, nullptr, Name); 5105 5106 if (OldGV) { 5107 // Replace occurrences of the old variable if needed. 5108 GV->takeName(OldGV); 5109 5110 if (!OldGV->use_empty()) { 5111 OldGV->replaceAllUsesWith(GV); 5112 } 5113 5114 OldGV->eraseFromParent(); 5115 } 5116 5117 if (supportsCOMDAT() && GV->isWeakForLinker() && 5118 !GV->hasAvailableExternallyLinkage()) 5119 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5120 5121 GV->setAlignment(Alignment); 5122 5123 return GV; 5124 } 5125 5126 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5127 /// given global variable. If Ty is non-null and if the global doesn't exist, 5128 /// then it will be created with the specified type instead of whatever the 5129 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5130 /// that an actual global with type Ty will be returned, not conversion of a 5131 /// variable with the same mangled name but some other type. 5132 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5133 llvm::Type *Ty, 5134 ForDefinition_t IsForDefinition) { 5135 assert(D->hasGlobalStorage() && "Not a global variable"); 5136 QualType ASTTy = D->getType(); 5137 if (!Ty) 5138 Ty = getTypes().ConvertTypeForMem(ASTTy); 5139 5140 StringRef MangledName = getMangledName(D); 5141 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5142 IsForDefinition); 5143 } 5144 5145 /// CreateRuntimeVariable - Create a new runtime global variable with the 5146 /// specified type and name. 5147 llvm::Constant * 5148 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5149 StringRef Name) { 5150 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5151 : LangAS::Default; 5152 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5153 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5154 return Ret; 5155 } 5156 5157 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5158 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5159 5160 StringRef MangledName = getMangledName(D); 5161 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5162 5163 // We already have a definition, not declaration, with the same mangled name. 5164 // Emitting of declaration is not required (and actually overwrites emitted 5165 // definition). 5166 if (GV && !GV->isDeclaration()) 5167 return; 5168 5169 // If we have not seen a reference to this variable yet, place it into the 5170 // deferred declarations table to be emitted if needed later. 5171 if (!MustBeEmitted(D) && !GV) { 5172 DeferredDecls[MangledName] = D; 5173 return; 5174 } 5175 5176 // The tentative definition is the only definition. 5177 EmitGlobalVarDefinition(D); 5178 } 5179 5180 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5181 EmitExternalVarDeclaration(D); 5182 } 5183 5184 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5185 return Context.toCharUnitsFromBits( 5186 getDataLayout().getTypeStoreSizeInBits(Ty)); 5187 } 5188 5189 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5190 if (LangOpts.OpenCL) { 5191 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5192 assert(AS == LangAS::opencl_global || 5193 AS == LangAS::opencl_global_device || 5194 AS == LangAS::opencl_global_host || 5195 AS == LangAS::opencl_constant || 5196 AS == LangAS::opencl_local || 5197 AS >= LangAS::FirstTargetAddressSpace); 5198 return AS; 5199 } 5200 5201 if (LangOpts.SYCLIsDevice && 5202 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5203 return LangAS::sycl_global; 5204 5205 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5206 if (D) { 5207 if (D->hasAttr<CUDAConstantAttr>()) 5208 return LangAS::cuda_constant; 5209 if (D->hasAttr<CUDASharedAttr>()) 5210 return LangAS::cuda_shared; 5211 if (D->hasAttr<CUDADeviceAttr>()) 5212 return LangAS::cuda_device; 5213 if (D->getType().isConstQualified()) 5214 return LangAS::cuda_constant; 5215 } 5216 return LangAS::cuda_device; 5217 } 5218 5219 if (LangOpts.OpenMP) { 5220 LangAS AS; 5221 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5222 return AS; 5223 } 5224 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5225 } 5226 5227 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5228 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5229 if (LangOpts.OpenCL) 5230 return LangAS::opencl_constant; 5231 if (LangOpts.SYCLIsDevice) 5232 return LangAS::sycl_global; 5233 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5234 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5235 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5236 // with OpVariable instructions with Generic storage class which is not 5237 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5238 // UniformConstant storage class is not viable as pointers to it may not be 5239 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5240 return LangAS::cuda_device; 5241 if (auto AS = getTarget().getConstantAddressSpace()) 5242 return *AS; 5243 return LangAS::Default; 5244 } 5245 5246 // In address space agnostic languages, string literals are in default address 5247 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5248 // emitted in constant address space in LLVM IR. To be consistent with other 5249 // parts of AST, string literal global variables in constant address space 5250 // need to be casted to default address space before being put into address 5251 // map and referenced by other part of CodeGen. 5252 // In OpenCL, string literals are in constant address space in AST, therefore 5253 // they should not be casted to default address space. 5254 static llvm::Constant * 5255 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5256 llvm::GlobalVariable *GV) { 5257 llvm::Constant *Cast = GV; 5258 if (!CGM.getLangOpts().OpenCL) { 5259 auto AS = CGM.GetGlobalConstantAddressSpace(); 5260 if (AS != LangAS::Default) 5261 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5262 CGM, GV, AS, LangAS::Default, 5263 llvm::PointerType::get( 5264 CGM.getLLVMContext(), 5265 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5266 } 5267 return Cast; 5268 } 5269 5270 template<typename SomeDecl> 5271 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5272 llvm::GlobalValue *GV) { 5273 if (!getLangOpts().CPlusPlus) 5274 return; 5275 5276 // Must have 'used' attribute, or else inline assembly can't rely on 5277 // the name existing. 5278 if (!D->template hasAttr<UsedAttr>()) 5279 return; 5280 5281 // Must have internal linkage and an ordinary name. 5282 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5283 return; 5284 5285 // Must be in an extern "C" context. Entities declared directly within 5286 // a record are not extern "C" even if the record is in such a context. 5287 const SomeDecl *First = D->getFirstDecl(); 5288 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5289 return; 5290 5291 // OK, this is an internal linkage entity inside an extern "C" linkage 5292 // specification. Make a note of that so we can give it the "expected" 5293 // mangled name if nothing else is using that name. 5294 std::pair<StaticExternCMap::iterator, bool> R = 5295 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5296 5297 // If we have multiple internal linkage entities with the same name 5298 // in extern "C" regions, none of them gets that name. 5299 if (!R.second) 5300 R.first->second = nullptr; 5301 } 5302 5303 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5304 if (!CGM.supportsCOMDAT()) 5305 return false; 5306 5307 if (D.hasAttr<SelectAnyAttr>()) 5308 return true; 5309 5310 GVALinkage Linkage; 5311 if (auto *VD = dyn_cast<VarDecl>(&D)) 5312 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5313 else 5314 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5315 5316 switch (Linkage) { 5317 case GVA_Internal: 5318 case GVA_AvailableExternally: 5319 case GVA_StrongExternal: 5320 return false; 5321 case GVA_DiscardableODR: 5322 case GVA_StrongODR: 5323 return true; 5324 } 5325 llvm_unreachable("No such linkage"); 5326 } 5327 5328 bool CodeGenModule::supportsCOMDAT() const { 5329 return getTriple().supportsCOMDAT(); 5330 } 5331 5332 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5333 llvm::GlobalObject &GO) { 5334 if (!shouldBeInCOMDAT(*this, D)) 5335 return; 5336 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5337 } 5338 5339 /// Pass IsTentative as true if you want to create a tentative definition. 5340 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5341 bool IsTentative) { 5342 // OpenCL global variables of sampler type are translated to function calls, 5343 // therefore no need to be translated. 5344 QualType ASTTy = D->getType(); 5345 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5346 return; 5347 5348 // If this is OpenMP device, check if it is legal to emit this global 5349 // normally. 5350 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5351 OpenMPRuntime->emitTargetGlobalVariable(D)) 5352 return; 5353 5354 llvm::TrackingVH<llvm::Constant> Init; 5355 bool NeedsGlobalCtor = false; 5356 // Whether the definition of the variable is available externally. 5357 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5358 // since this is the job for its original source. 5359 bool IsDefinitionAvailableExternally = 5360 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5361 bool NeedsGlobalDtor = 5362 !IsDefinitionAvailableExternally && 5363 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5364 5365 // It is helpless to emit the definition for an available_externally variable 5366 // which can't be marked as const. 5367 // We don't need to check if it needs global ctor or dtor. See the above 5368 // comment for ideas. 5369 if (IsDefinitionAvailableExternally && 5370 (!D->hasConstantInitialization() || 5371 // TODO: Update this when we have interface to check constexpr 5372 // destructor. 5373 D->needsDestruction(getContext()) || 5374 !D->getType().isConstantStorage(getContext(), true, true))) 5375 return; 5376 5377 const VarDecl *InitDecl; 5378 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5379 5380 std::optional<ConstantEmitter> emitter; 5381 5382 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5383 // as part of their declaration." Sema has already checked for 5384 // error cases, so we just need to set Init to UndefValue. 5385 bool IsCUDASharedVar = 5386 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5387 // Shadows of initialized device-side global variables are also left 5388 // undefined. 5389 // Managed Variables should be initialized on both host side and device side. 5390 bool IsCUDAShadowVar = 5391 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5392 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5393 D->hasAttr<CUDASharedAttr>()); 5394 bool IsCUDADeviceShadowVar = 5395 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5396 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5397 D->getType()->isCUDADeviceBuiltinTextureType()); 5398 if (getLangOpts().CUDA && 5399 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5400 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5401 else if (D->hasAttr<LoaderUninitializedAttr>()) 5402 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5403 else if (!InitExpr) { 5404 // This is a tentative definition; tentative definitions are 5405 // implicitly initialized with { 0 }. 5406 // 5407 // Note that tentative definitions are only emitted at the end of 5408 // a translation unit, so they should never have incomplete 5409 // type. In addition, EmitTentativeDefinition makes sure that we 5410 // never attempt to emit a tentative definition if a real one 5411 // exists. A use may still exists, however, so we still may need 5412 // to do a RAUW. 5413 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5414 Init = EmitNullConstant(D->getType()); 5415 } else { 5416 initializedGlobalDecl = GlobalDecl(D); 5417 emitter.emplace(*this); 5418 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5419 if (!Initializer) { 5420 QualType T = InitExpr->getType(); 5421 if (D->getType()->isReferenceType()) 5422 T = D->getType(); 5423 5424 if (getLangOpts().CPlusPlus) { 5425 if (InitDecl->hasFlexibleArrayInit(getContext())) 5426 ErrorUnsupported(D, "flexible array initializer"); 5427 Init = EmitNullConstant(T); 5428 5429 if (!IsDefinitionAvailableExternally) 5430 NeedsGlobalCtor = true; 5431 } else { 5432 ErrorUnsupported(D, "static initializer"); 5433 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5434 } 5435 } else { 5436 Init = Initializer; 5437 // We don't need an initializer, so remove the entry for the delayed 5438 // initializer position (just in case this entry was delayed) if we 5439 // also don't need to register a destructor. 5440 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5441 DelayedCXXInitPosition.erase(D); 5442 5443 #ifndef NDEBUG 5444 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5445 InitDecl->getFlexibleArrayInitChars(getContext()); 5446 CharUnits CstSize = CharUnits::fromQuantity( 5447 getDataLayout().getTypeAllocSize(Init->getType())); 5448 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5449 #endif 5450 } 5451 } 5452 5453 llvm::Type* InitType = Init->getType(); 5454 llvm::Constant *Entry = 5455 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5456 5457 // Strip off pointer casts if we got them. 5458 Entry = Entry->stripPointerCasts(); 5459 5460 // Entry is now either a Function or GlobalVariable. 5461 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5462 5463 // We have a definition after a declaration with the wrong type. 5464 // We must make a new GlobalVariable* and update everything that used OldGV 5465 // (a declaration or tentative definition) with the new GlobalVariable* 5466 // (which will be a definition). 5467 // 5468 // This happens if there is a prototype for a global (e.g. 5469 // "extern int x[];") and then a definition of a different type (e.g. 5470 // "int x[10];"). This also happens when an initializer has a different type 5471 // from the type of the global (this happens with unions). 5472 if (!GV || GV->getValueType() != InitType || 5473 GV->getType()->getAddressSpace() != 5474 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5475 5476 // Move the old entry aside so that we'll create a new one. 5477 Entry->setName(StringRef()); 5478 5479 // Make a new global with the correct type, this is now guaranteed to work. 5480 GV = cast<llvm::GlobalVariable>( 5481 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5482 ->stripPointerCasts()); 5483 5484 // Replace all uses of the old global with the new global 5485 llvm::Constant *NewPtrForOldDecl = 5486 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5487 Entry->getType()); 5488 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5489 5490 // Erase the old global, since it is no longer used. 5491 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5492 } 5493 5494 MaybeHandleStaticInExternC(D, GV); 5495 5496 if (D->hasAttr<AnnotateAttr>()) 5497 AddGlobalAnnotations(D, GV); 5498 5499 // Set the llvm linkage type as appropriate. 5500 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5501 5502 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5503 // the device. [...]" 5504 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5505 // __device__, declares a variable that: [...] 5506 // Is accessible from all the threads within the grid and from the host 5507 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5508 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5509 if (LangOpts.CUDA) { 5510 if (LangOpts.CUDAIsDevice) { 5511 if (Linkage != llvm::GlobalValue::InternalLinkage && 5512 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5513 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5514 D->getType()->isCUDADeviceBuiltinTextureType())) 5515 GV->setExternallyInitialized(true); 5516 } else { 5517 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5518 } 5519 getCUDARuntime().handleVarRegistration(D, *GV); 5520 } 5521 5522 GV->setInitializer(Init); 5523 if (emitter) 5524 emitter->finalize(GV); 5525 5526 // If it is safe to mark the global 'constant', do so now. 5527 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5528 D->getType().isConstantStorage(getContext(), true, true)); 5529 5530 // If it is in a read-only section, mark it 'constant'. 5531 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5532 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5533 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5534 GV->setConstant(true); 5535 } 5536 5537 CharUnits AlignVal = getContext().getDeclAlign(D); 5538 // Check for alignment specifed in an 'omp allocate' directive. 5539 if (std::optional<CharUnits> AlignValFromAllocate = 5540 getOMPAllocateAlignment(D)) 5541 AlignVal = *AlignValFromAllocate; 5542 GV->setAlignment(AlignVal.getAsAlign()); 5543 5544 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5545 // function is only defined alongside the variable, not also alongside 5546 // callers. Normally, all accesses to a thread_local go through the 5547 // thread-wrapper in order to ensure initialization has occurred, underlying 5548 // variable will never be used other than the thread-wrapper, so it can be 5549 // converted to internal linkage. 5550 // 5551 // However, if the variable has the 'constinit' attribute, it _can_ be 5552 // referenced directly, without calling the thread-wrapper, so the linkage 5553 // must not be changed. 5554 // 5555 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5556 // weak or linkonce, the de-duplication semantics are important to preserve, 5557 // so we don't change the linkage. 5558 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5559 Linkage == llvm::GlobalValue::ExternalLinkage && 5560 Context.getTargetInfo().getTriple().isOSDarwin() && 5561 !D->hasAttr<ConstInitAttr>()) 5562 Linkage = llvm::GlobalValue::InternalLinkage; 5563 5564 GV->setLinkage(Linkage); 5565 if (D->hasAttr<DLLImportAttr>()) 5566 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5567 else if (D->hasAttr<DLLExportAttr>()) 5568 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5569 else 5570 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5571 5572 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5573 // common vars aren't constant even if declared const. 5574 GV->setConstant(false); 5575 // Tentative definition of global variables may be initialized with 5576 // non-zero null pointers. In this case they should have weak linkage 5577 // since common linkage must have zero initializer and must not have 5578 // explicit section therefore cannot have non-zero initial value. 5579 if (!GV->getInitializer()->isNullValue()) 5580 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5581 } 5582 5583 setNonAliasAttributes(D, GV); 5584 5585 if (D->getTLSKind() && !GV->isThreadLocal()) { 5586 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5587 CXXThreadLocals.push_back(D); 5588 setTLSMode(GV, *D); 5589 } 5590 5591 maybeSetTrivialComdat(*D, *GV); 5592 5593 // Emit the initializer function if necessary. 5594 if (NeedsGlobalCtor || NeedsGlobalDtor) 5595 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5596 5597 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5598 5599 // Emit global variable debug information. 5600 if (CGDebugInfo *DI = getModuleDebugInfo()) 5601 if (getCodeGenOpts().hasReducedDebugInfo()) 5602 DI->EmitGlobalVariable(GV, D); 5603 } 5604 5605 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5606 if (CGDebugInfo *DI = getModuleDebugInfo()) 5607 if (getCodeGenOpts().hasReducedDebugInfo()) { 5608 QualType ASTTy = D->getType(); 5609 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5610 llvm::Constant *GV = 5611 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5612 DI->EmitExternalVariable( 5613 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5614 } 5615 } 5616 5617 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5618 CodeGenModule &CGM, const VarDecl *D, 5619 bool NoCommon) { 5620 // Don't give variables common linkage if -fno-common was specified unless it 5621 // was overridden by a NoCommon attribute. 5622 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5623 return true; 5624 5625 // C11 6.9.2/2: 5626 // A declaration of an identifier for an object that has file scope without 5627 // an initializer, and without a storage-class specifier or with the 5628 // storage-class specifier static, constitutes a tentative definition. 5629 if (D->getInit() || D->hasExternalStorage()) 5630 return true; 5631 5632 // A variable cannot be both common and exist in a section. 5633 if (D->hasAttr<SectionAttr>()) 5634 return true; 5635 5636 // A variable cannot be both common and exist in a section. 5637 // We don't try to determine which is the right section in the front-end. 5638 // If no specialized section name is applicable, it will resort to default. 5639 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5640 D->hasAttr<PragmaClangDataSectionAttr>() || 5641 D->hasAttr<PragmaClangRelroSectionAttr>() || 5642 D->hasAttr<PragmaClangRodataSectionAttr>()) 5643 return true; 5644 5645 // Thread local vars aren't considered common linkage. 5646 if (D->getTLSKind()) 5647 return true; 5648 5649 // Tentative definitions marked with WeakImportAttr are true definitions. 5650 if (D->hasAttr<WeakImportAttr>()) 5651 return true; 5652 5653 // A variable cannot be both common and exist in a comdat. 5654 if (shouldBeInCOMDAT(CGM, *D)) 5655 return true; 5656 5657 // Declarations with a required alignment do not have common linkage in MSVC 5658 // mode. 5659 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5660 if (D->hasAttr<AlignedAttr>()) 5661 return true; 5662 QualType VarType = D->getType(); 5663 if (Context.isAlignmentRequired(VarType)) 5664 return true; 5665 5666 if (const auto *RT = VarType->getAs<RecordType>()) { 5667 const RecordDecl *RD = RT->getDecl(); 5668 for (const FieldDecl *FD : RD->fields()) { 5669 if (FD->isBitField()) 5670 continue; 5671 if (FD->hasAttr<AlignedAttr>()) 5672 return true; 5673 if (Context.isAlignmentRequired(FD->getType())) 5674 return true; 5675 } 5676 } 5677 } 5678 5679 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5680 // common symbols, so symbols with greater alignment requirements cannot be 5681 // common. 5682 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5683 // alignments for common symbols via the aligncomm directive, so this 5684 // restriction only applies to MSVC environments. 5685 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5686 Context.getTypeAlignIfKnown(D->getType()) > 5687 Context.toBits(CharUnits::fromQuantity(32))) 5688 return true; 5689 5690 return false; 5691 } 5692 5693 llvm::GlobalValue::LinkageTypes 5694 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5695 GVALinkage Linkage) { 5696 if (Linkage == GVA_Internal) 5697 return llvm::Function::InternalLinkage; 5698 5699 if (D->hasAttr<WeakAttr>()) 5700 return llvm::GlobalVariable::WeakAnyLinkage; 5701 5702 if (const auto *FD = D->getAsFunction()) 5703 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5704 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5705 5706 // We are guaranteed to have a strong definition somewhere else, 5707 // so we can use available_externally linkage. 5708 if (Linkage == GVA_AvailableExternally) 5709 return llvm::GlobalValue::AvailableExternallyLinkage; 5710 5711 // Note that Apple's kernel linker doesn't support symbol 5712 // coalescing, so we need to avoid linkonce and weak linkages there. 5713 // Normally, this means we just map to internal, but for explicit 5714 // instantiations we'll map to external. 5715 5716 // In C++, the compiler has to emit a definition in every translation unit 5717 // that references the function. We should use linkonce_odr because 5718 // a) if all references in this translation unit are optimized away, we 5719 // don't need to codegen it. b) if the function persists, it needs to be 5720 // merged with other definitions. c) C++ has the ODR, so we know the 5721 // definition is dependable. 5722 if (Linkage == GVA_DiscardableODR) 5723 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5724 : llvm::Function::InternalLinkage; 5725 5726 // An explicit instantiation of a template has weak linkage, since 5727 // explicit instantiations can occur in multiple translation units 5728 // and must all be equivalent. However, we are not allowed to 5729 // throw away these explicit instantiations. 5730 // 5731 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5732 // so say that CUDA templates are either external (for kernels) or internal. 5733 // This lets llvm perform aggressive inter-procedural optimizations. For 5734 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5735 // therefore we need to follow the normal linkage paradigm. 5736 if (Linkage == GVA_StrongODR) { 5737 if (getLangOpts().AppleKext) 5738 return llvm::Function::ExternalLinkage; 5739 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5740 !getLangOpts().GPURelocatableDeviceCode) 5741 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5742 : llvm::Function::InternalLinkage; 5743 return llvm::Function::WeakODRLinkage; 5744 } 5745 5746 // C++ doesn't have tentative definitions and thus cannot have common 5747 // linkage. 5748 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5749 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5750 CodeGenOpts.NoCommon)) 5751 return llvm::GlobalVariable::CommonLinkage; 5752 5753 // selectany symbols are externally visible, so use weak instead of 5754 // linkonce. MSVC optimizes away references to const selectany globals, so 5755 // all definitions should be the same and ODR linkage should be used. 5756 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5757 if (D->hasAttr<SelectAnyAttr>()) 5758 return llvm::GlobalVariable::WeakODRLinkage; 5759 5760 // Otherwise, we have strong external linkage. 5761 assert(Linkage == GVA_StrongExternal); 5762 return llvm::GlobalVariable::ExternalLinkage; 5763 } 5764 5765 llvm::GlobalValue::LinkageTypes 5766 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5767 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5768 return getLLVMLinkageForDeclarator(VD, Linkage); 5769 } 5770 5771 /// Replace the uses of a function that was declared with a non-proto type. 5772 /// We want to silently drop extra arguments from call sites 5773 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5774 llvm::Function *newFn) { 5775 // Fast path. 5776 if (old->use_empty()) 5777 return; 5778 5779 llvm::Type *newRetTy = newFn->getReturnType(); 5780 SmallVector<llvm::Value *, 4> newArgs; 5781 5782 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5783 5784 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5785 ui != ue; ui++) { 5786 llvm::User *user = ui->getUser(); 5787 5788 // Recognize and replace uses of bitcasts. Most calls to 5789 // unprototyped functions will use bitcasts. 5790 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5791 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5792 replaceUsesOfNonProtoConstant(bitcast, newFn); 5793 continue; 5794 } 5795 5796 // Recognize calls to the function. 5797 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5798 if (!callSite) 5799 continue; 5800 if (!callSite->isCallee(&*ui)) 5801 continue; 5802 5803 // If the return types don't match exactly, then we can't 5804 // transform this call unless it's dead. 5805 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5806 continue; 5807 5808 // Get the call site's attribute list. 5809 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5810 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5811 5812 // If the function was passed too few arguments, don't transform. 5813 unsigned newNumArgs = newFn->arg_size(); 5814 if (callSite->arg_size() < newNumArgs) 5815 continue; 5816 5817 // If extra arguments were passed, we silently drop them. 5818 // If any of the types mismatch, we don't transform. 5819 unsigned argNo = 0; 5820 bool dontTransform = false; 5821 for (llvm::Argument &A : newFn->args()) { 5822 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5823 dontTransform = true; 5824 break; 5825 } 5826 5827 // Add any parameter attributes. 5828 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5829 argNo++; 5830 } 5831 if (dontTransform) 5832 continue; 5833 5834 // Okay, we can transform this. Create the new call instruction and copy 5835 // over the required information. 5836 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5837 5838 // Copy over any operand bundles. 5839 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5840 callSite->getOperandBundlesAsDefs(newBundles); 5841 5842 llvm::CallBase *newCall; 5843 if (isa<llvm::CallInst>(callSite)) { 5844 newCall = 5845 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5846 } else { 5847 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5848 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5849 oldInvoke->getUnwindDest(), newArgs, 5850 newBundles, "", callSite); 5851 } 5852 newArgs.clear(); // for the next iteration 5853 5854 if (!newCall->getType()->isVoidTy()) 5855 newCall->takeName(callSite); 5856 newCall->setAttributes( 5857 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5858 oldAttrs.getRetAttrs(), newArgAttrs)); 5859 newCall->setCallingConv(callSite->getCallingConv()); 5860 5861 // Finally, remove the old call, replacing any uses with the new one. 5862 if (!callSite->use_empty()) 5863 callSite->replaceAllUsesWith(newCall); 5864 5865 // Copy debug location attached to CI. 5866 if (callSite->getDebugLoc()) 5867 newCall->setDebugLoc(callSite->getDebugLoc()); 5868 5869 callSitesToBeRemovedFromParent.push_back(callSite); 5870 } 5871 5872 for (auto *callSite : callSitesToBeRemovedFromParent) { 5873 callSite->eraseFromParent(); 5874 } 5875 } 5876 5877 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5878 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5879 /// existing call uses of the old function in the module, this adjusts them to 5880 /// call the new function directly. 5881 /// 5882 /// This is not just a cleanup: the always_inline pass requires direct calls to 5883 /// functions to be able to inline them. If there is a bitcast in the way, it 5884 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5885 /// run at -O0. 5886 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5887 llvm::Function *NewFn) { 5888 // If we're redefining a global as a function, don't transform it. 5889 if (!isa<llvm::Function>(Old)) return; 5890 5891 replaceUsesOfNonProtoConstant(Old, NewFn); 5892 } 5893 5894 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5895 auto DK = VD->isThisDeclarationADefinition(); 5896 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5897 return; 5898 5899 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5900 // If we have a definition, this might be a deferred decl. If the 5901 // instantiation is explicit, make sure we emit it at the end. 5902 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5903 GetAddrOfGlobalVar(VD); 5904 5905 EmitTopLevelDecl(VD); 5906 } 5907 5908 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5909 llvm::GlobalValue *GV) { 5910 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5911 5912 // Compute the function info and LLVM type. 5913 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5914 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5915 5916 // Get or create the prototype for the function. 5917 if (!GV || (GV->getValueType() != Ty)) 5918 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5919 /*DontDefer=*/true, 5920 ForDefinition)); 5921 5922 // Already emitted. 5923 if (!GV->isDeclaration()) 5924 return; 5925 5926 // We need to set linkage and visibility on the function before 5927 // generating code for it because various parts of IR generation 5928 // want to propagate this information down (e.g. to local static 5929 // declarations). 5930 auto *Fn = cast<llvm::Function>(GV); 5931 setFunctionLinkage(GD, Fn); 5932 5933 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5934 setGVProperties(Fn, GD); 5935 5936 MaybeHandleStaticInExternC(D, Fn); 5937 5938 maybeSetTrivialComdat(*D, *Fn); 5939 5940 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5941 5942 setNonAliasAttributes(GD, Fn); 5943 SetLLVMFunctionAttributesForDefinition(D, Fn); 5944 5945 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5946 AddGlobalCtor(Fn, CA->getPriority()); 5947 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5948 AddGlobalDtor(Fn, DA->getPriority(), true); 5949 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5950 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5951 } 5952 5953 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5954 const auto *D = cast<ValueDecl>(GD.getDecl()); 5955 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5956 assert(AA && "Not an alias?"); 5957 5958 StringRef MangledName = getMangledName(GD); 5959 5960 if (AA->getAliasee() == MangledName) { 5961 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5962 return; 5963 } 5964 5965 // If there is a definition in the module, then it wins over the alias. 5966 // This is dubious, but allow it to be safe. Just ignore the alias. 5967 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5968 if (Entry && !Entry->isDeclaration()) 5969 return; 5970 5971 Aliases.push_back(GD); 5972 5973 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5974 5975 // Create a reference to the named value. This ensures that it is emitted 5976 // if a deferred decl. 5977 llvm::Constant *Aliasee; 5978 llvm::GlobalValue::LinkageTypes LT; 5979 if (isa<llvm::FunctionType>(DeclTy)) { 5980 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5981 /*ForVTable=*/false); 5982 LT = getFunctionLinkage(GD); 5983 } else { 5984 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5985 /*D=*/nullptr); 5986 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5987 LT = getLLVMLinkageVarDefinition(VD); 5988 else 5989 LT = getFunctionLinkage(GD); 5990 } 5991 5992 // Create the new alias itself, but don't set a name yet. 5993 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5994 auto *GA = 5995 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5996 5997 if (Entry) { 5998 if (GA->getAliasee() == Entry) { 5999 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6000 return; 6001 } 6002 6003 assert(Entry->isDeclaration()); 6004 6005 // If there is a declaration in the module, then we had an extern followed 6006 // by the alias, as in: 6007 // extern int test6(); 6008 // ... 6009 // int test6() __attribute__((alias("test7"))); 6010 // 6011 // Remove it and replace uses of it with the alias. 6012 GA->takeName(Entry); 6013 6014 Entry->replaceAllUsesWith(GA); 6015 Entry->eraseFromParent(); 6016 } else { 6017 GA->setName(MangledName); 6018 } 6019 6020 // Set attributes which are particular to an alias; this is a 6021 // specialization of the attributes which may be set on a global 6022 // variable/function. 6023 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6024 D->isWeakImported()) { 6025 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6026 } 6027 6028 if (const auto *VD = dyn_cast<VarDecl>(D)) 6029 if (VD->getTLSKind()) 6030 setTLSMode(GA, *VD); 6031 6032 SetCommonAttributes(GD, GA); 6033 6034 // Emit global alias debug information. 6035 if (isa<VarDecl>(D)) 6036 if (CGDebugInfo *DI = getModuleDebugInfo()) 6037 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6038 } 6039 6040 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6041 const auto *D = cast<ValueDecl>(GD.getDecl()); 6042 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6043 assert(IFA && "Not an ifunc?"); 6044 6045 StringRef MangledName = getMangledName(GD); 6046 6047 if (IFA->getResolver() == MangledName) { 6048 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6049 return; 6050 } 6051 6052 // Report an error if some definition overrides ifunc. 6053 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6054 if (Entry && !Entry->isDeclaration()) { 6055 GlobalDecl OtherGD; 6056 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6057 DiagnosedConflictingDefinitions.insert(GD).second) { 6058 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6059 << MangledName; 6060 Diags.Report(OtherGD.getDecl()->getLocation(), 6061 diag::note_previous_definition); 6062 } 6063 return; 6064 } 6065 6066 Aliases.push_back(GD); 6067 6068 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6069 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 6070 llvm::Constant *Resolver = 6071 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 6072 /*ForVTable=*/false); 6073 llvm::GlobalIFunc *GIF = 6074 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6075 "", Resolver, &getModule()); 6076 if (Entry) { 6077 if (GIF->getResolver() == Entry) { 6078 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6079 return; 6080 } 6081 assert(Entry->isDeclaration()); 6082 6083 // If there is a declaration in the module, then we had an extern followed 6084 // by the ifunc, as in: 6085 // extern int test(); 6086 // ... 6087 // int test() __attribute__((ifunc("resolver"))); 6088 // 6089 // Remove it and replace uses of it with the ifunc. 6090 GIF->takeName(Entry); 6091 6092 Entry->replaceAllUsesWith(GIF); 6093 Entry->eraseFromParent(); 6094 } else 6095 GIF->setName(MangledName); 6096 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 6097 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 6098 } 6099 SetCommonAttributes(GD, GIF); 6100 } 6101 6102 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6103 ArrayRef<llvm::Type*> Tys) { 6104 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6105 Tys); 6106 } 6107 6108 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6109 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6110 const StringLiteral *Literal, bool TargetIsLSB, 6111 bool &IsUTF16, unsigned &StringLength) { 6112 StringRef String = Literal->getString(); 6113 unsigned NumBytes = String.size(); 6114 6115 // Check for simple case. 6116 if (!Literal->containsNonAsciiOrNull()) { 6117 StringLength = NumBytes; 6118 return *Map.insert(std::make_pair(String, nullptr)).first; 6119 } 6120 6121 // Otherwise, convert the UTF8 literals into a string of shorts. 6122 IsUTF16 = true; 6123 6124 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6125 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6126 llvm::UTF16 *ToPtr = &ToBuf[0]; 6127 6128 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6129 ToPtr + NumBytes, llvm::strictConversion); 6130 6131 // ConvertUTF8toUTF16 returns the length in ToPtr. 6132 StringLength = ToPtr - &ToBuf[0]; 6133 6134 // Add an explicit null. 6135 *ToPtr = 0; 6136 return *Map.insert(std::make_pair( 6137 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6138 (StringLength + 1) * 2), 6139 nullptr)).first; 6140 } 6141 6142 ConstantAddress 6143 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6144 unsigned StringLength = 0; 6145 bool isUTF16 = false; 6146 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6147 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6148 getDataLayout().isLittleEndian(), isUTF16, 6149 StringLength); 6150 6151 if (auto *C = Entry.second) 6152 return ConstantAddress( 6153 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6154 6155 const ASTContext &Context = getContext(); 6156 const llvm::Triple &Triple = getTriple(); 6157 6158 const auto CFRuntime = getLangOpts().CFRuntime; 6159 const bool IsSwiftABI = 6160 static_cast<unsigned>(CFRuntime) >= 6161 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6162 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6163 6164 // If we don't already have it, get __CFConstantStringClassReference. 6165 if (!CFConstantStringClassRef) { 6166 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6167 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6168 Ty = llvm::ArrayType::get(Ty, 0); 6169 6170 switch (CFRuntime) { 6171 default: break; 6172 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6173 case LangOptions::CoreFoundationABI::Swift5_0: 6174 CFConstantStringClassName = 6175 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6176 : "$s10Foundation19_NSCFConstantStringCN"; 6177 Ty = IntPtrTy; 6178 break; 6179 case LangOptions::CoreFoundationABI::Swift4_2: 6180 CFConstantStringClassName = 6181 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6182 : "$S10Foundation19_NSCFConstantStringCN"; 6183 Ty = IntPtrTy; 6184 break; 6185 case LangOptions::CoreFoundationABI::Swift4_1: 6186 CFConstantStringClassName = 6187 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6188 : "__T010Foundation19_NSCFConstantStringCN"; 6189 Ty = IntPtrTy; 6190 break; 6191 } 6192 6193 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6194 6195 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6196 llvm::GlobalValue *GV = nullptr; 6197 6198 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6199 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6200 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6201 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6202 6203 const VarDecl *VD = nullptr; 6204 for (const auto *Result : DC->lookup(&II)) 6205 if ((VD = dyn_cast<VarDecl>(Result))) 6206 break; 6207 6208 if (Triple.isOSBinFormatELF()) { 6209 if (!VD) 6210 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6211 } else { 6212 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6213 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6214 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6215 else 6216 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6217 } 6218 6219 setDSOLocal(GV); 6220 } 6221 } 6222 6223 // Decay array -> ptr 6224 CFConstantStringClassRef = 6225 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6226 } 6227 6228 QualType CFTy = Context.getCFConstantStringType(); 6229 6230 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6231 6232 ConstantInitBuilder Builder(*this); 6233 auto Fields = Builder.beginStruct(STy); 6234 6235 // Class pointer. 6236 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6237 6238 // Flags. 6239 if (IsSwiftABI) { 6240 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6241 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6242 } else { 6243 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6244 } 6245 6246 // String pointer. 6247 llvm::Constant *C = nullptr; 6248 if (isUTF16) { 6249 auto Arr = llvm::ArrayRef( 6250 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6251 Entry.first().size() / 2); 6252 C = llvm::ConstantDataArray::get(VMContext, Arr); 6253 } else { 6254 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6255 } 6256 6257 // Note: -fwritable-strings doesn't make the backing store strings of 6258 // CFStrings writable. 6259 auto *GV = 6260 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6261 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6262 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6263 // Don't enforce the target's minimum global alignment, since the only use 6264 // of the string is via this class initializer. 6265 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6266 : Context.getTypeAlignInChars(Context.CharTy); 6267 GV->setAlignment(Align.getAsAlign()); 6268 6269 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6270 // Without it LLVM can merge the string with a non unnamed_addr one during 6271 // LTO. Doing that changes the section it ends in, which surprises ld64. 6272 if (Triple.isOSBinFormatMachO()) 6273 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6274 : "__TEXT,__cstring,cstring_literals"); 6275 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6276 // the static linker to adjust permissions to read-only later on. 6277 else if (Triple.isOSBinFormatELF()) 6278 GV->setSection(".rodata"); 6279 6280 // String. 6281 Fields.add(GV); 6282 6283 // String length. 6284 llvm::IntegerType *LengthTy = 6285 llvm::IntegerType::get(getModule().getContext(), 6286 Context.getTargetInfo().getLongWidth()); 6287 if (IsSwiftABI) { 6288 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6289 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6290 LengthTy = Int32Ty; 6291 else 6292 LengthTy = IntPtrTy; 6293 } 6294 Fields.addInt(LengthTy, StringLength); 6295 6296 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6297 // properly aligned on 32-bit platforms. 6298 CharUnits Alignment = 6299 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6300 6301 // The struct. 6302 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6303 /*isConstant=*/false, 6304 llvm::GlobalVariable::PrivateLinkage); 6305 GV->addAttribute("objc_arc_inert"); 6306 switch (Triple.getObjectFormat()) { 6307 case llvm::Triple::UnknownObjectFormat: 6308 llvm_unreachable("unknown file format"); 6309 case llvm::Triple::DXContainer: 6310 case llvm::Triple::GOFF: 6311 case llvm::Triple::SPIRV: 6312 case llvm::Triple::XCOFF: 6313 llvm_unreachable("unimplemented"); 6314 case llvm::Triple::COFF: 6315 case llvm::Triple::ELF: 6316 case llvm::Triple::Wasm: 6317 GV->setSection("cfstring"); 6318 break; 6319 case llvm::Triple::MachO: 6320 GV->setSection("__DATA,__cfstring"); 6321 break; 6322 } 6323 Entry.second = GV; 6324 6325 return ConstantAddress(GV, GV->getValueType(), Alignment); 6326 } 6327 6328 bool CodeGenModule::getExpressionLocationsEnabled() const { 6329 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6330 } 6331 6332 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6333 if (ObjCFastEnumerationStateType.isNull()) { 6334 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6335 D->startDefinition(); 6336 6337 QualType FieldTypes[] = { 6338 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6339 Context.getPointerType(Context.UnsignedLongTy), 6340 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6341 nullptr, ArraySizeModifier::Normal, 0)}; 6342 6343 for (size_t i = 0; i < 4; ++i) { 6344 FieldDecl *Field = FieldDecl::Create(Context, 6345 D, 6346 SourceLocation(), 6347 SourceLocation(), nullptr, 6348 FieldTypes[i], /*TInfo=*/nullptr, 6349 /*BitWidth=*/nullptr, 6350 /*Mutable=*/false, 6351 ICIS_NoInit); 6352 Field->setAccess(AS_public); 6353 D->addDecl(Field); 6354 } 6355 6356 D->completeDefinition(); 6357 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6358 } 6359 6360 return ObjCFastEnumerationStateType; 6361 } 6362 6363 llvm::Constant * 6364 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6365 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6366 6367 // Don't emit it as the address of the string, emit the string data itself 6368 // as an inline array. 6369 if (E->getCharByteWidth() == 1) { 6370 SmallString<64> Str(E->getString()); 6371 6372 // Resize the string to the right size, which is indicated by its type. 6373 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6374 assert(CAT && "String literal not of constant array type!"); 6375 Str.resize(CAT->getZExtSize()); 6376 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6377 } 6378 6379 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6380 llvm::Type *ElemTy = AType->getElementType(); 6381 unsigned NumElements = AType->getNumElements(); 6382 6383 // Wide strings have either 2-byte or 4-byte elements. 6384 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6385 SmallVector<uint16_t, 32> Elements; 6386 Elements.reserve(NumElements); 6387 6388 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6389 Elements.push_back(E->getCodeUnit(i)); 6390 Elements.resize(NumElements); 6391 return llvm::ConstantDataArray::get(VMContext, Elements); 6392 } 6393 6394 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6395 SmallVector<uint32_t, 32> Elements; 6396 Elements.reserve(NumElements); 6397 6398 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6399 Elements.push_back(E->getCodeUnit(i)); 6400 Elements.resize(NumElements); 6401 return llvm::ConstantDataArray::get(VMContext, Elements); 6402 } 6403 6404 static llvm::GlobalVariable * 6405 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6406 CodeGenModule &CGM, StringRef GlobalName, 6407 CharUnits Alignment) { 6408 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6409 CGM.GetGlobalConstantAddressSpace()); 6410 6411 llvm::Module &M = CGM.getModule(); 6412 // Create a global variable for this string 6413 auto *GV = new llvm::GlobalVariable( 6414 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6415 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6416 GV->setAlignment(Alignment.getAsAlign()); 6417 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6418 if (GV->isWeakForLinker()) { 6419 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6420 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6421 } 6422 CGM.setDSOLocal(GV); 6423 6424 return GV; 6425 } 6426 6427 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6428 /// constant array for the given string literal. 6429 ConstantAddress 6430 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6431 StringRef Name) { 6432 CharUnits Alignment = 6433 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6434 6435 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6436 llvm::GlobalVariable **Entry = nullptr; 6437 if (!LangOpts.WritableStrings) { 6438 Entry = &ConstantStringMap[C]; 6439 if (auto GV = *Entry) { 6440 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6441 GV->setAlignment(Alignment.getAsAlign()); 6442 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6443 GV->getValueType(), Alignment); 6444 } 6445 } 6446 6447 SmallString<256> MangledNameBuffer; 6448 StringRef GlobalVariableName; 6449 llvm::GlobalValue::LinkageTypes LT; 6450 6451 // Mangle the string literal if that's how the ABI merges duplicate strings. 6452 // Don't do it if they are writable, since we don't want writes in one TU to 6453 // affect strings in another. 6454 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6455 !LangOpts.WritableStrings) { 6456 llvm::raw_svector_ostream Out(MangledNameBuffer); 6457 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6458 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6459 GlobalVariableName = MangledNameBuffer; 6460 } else { 6461 LT = llvm::GlobalValue::PrivateLinkage; 6462 GlobalVariableName = Name; 6463 } 6464 6465 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6466 6467 CGDebugInfo *DI = getModuleDebugInfo(); 6468 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6469 DI->AddStringLiteralDebugInfo(GV, S); 6470 6471 if (Entry) 6472 *Entry = GV; 6473 6474 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6475 6476 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6477 GV->getValueType(), Alignment); 6478 } 6479 6480 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6481 /// array for the given ObjCEncodeExpr node. 6482 ConstantAddress 6483 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6484 std::string Str; 6485 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6486 6487 return GetAddrOfConstantCString(Str); 6488 } 6489 6490 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6491 /// the literal and a terminating '\0' character. 6492 /// The result has pointer to array type. 6493 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6494 const std::string &Str, const char *GlobalName) { 6495 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6496 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6497 getContext().CharTy, /*VD=*/nullptr); 6498 6499 llvm::Constant *C = 6500 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6501 6502 // Don't share any string literals if strings aren't constant. 6503 llvm::GlobalVariable **Entry = nullptr; 6504 if (!LangOpts.WritableStrings) { 6505 Entry = &ConstantStringMap[C]; 6506 if (auto GV = *Entry) { 6507 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6508 GV->setAlignment(Alignment.getAsAlign()); 6509 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6510 GV->getValueType(), Alignment); 6511 } 6512 } 6513 6514 // Get the default prefix if a name wasn't specified. 6515 if (!GlobalName) 6516 GlobalName = ".str"; 6517 // Create a global variable for this. 6518 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6519 GlobalName, Alignment); 6520 if (Entry) 6521 *Entry = GV; 6522 6523 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6524 GV->getValueType(), Alignment); 6525 } 6526 6527 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6528 const MaterializeTemporaryExpr *E, const Expr *Init) { 6529 assert((E->getStorageDuration() == SD_Static || 6530 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6531 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6532 6533 // If we're not materializing a subobject of the temporary, keep the 6534 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6535 QualType MaterializedType = Init->getType(); 6536 if (Init == E->getSubExpr()) 6537 MaterializedType = E->getType(); 6538 6539 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6540 6541 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6542 if (!InsertResult.second) { 6543 // We've seen this before: either we already created it or we're in the 6544 // process of doing so. 6545 if (!InsertResult.first->second) { 6546 // We recursively re-entered this function, probably during emission of 6547 // the initializer. Create a placeholder. We'll clean this up in the 6548 // outer call, at the end of this function. 6549 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6550 InsertResult.first->second = new llvm::GlobalVariable( 6551 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6552 nullptr); 6553 } 6554 return ConstantAddress(InsertResult.first->second, 6555 llvm::cast<llvm::GlobalVariable>( 6556 InsertResult.first->second->stripPointerCasts()) 6557 ->getValueType(), 6558 Align); 6559 } 6560 6561 // FIXME: If an externally-visible declaration extends multiple temporaries, 6562 // we need to give each temporary the same name in every translation unit (and 6563 // we also need to make the temporaries externally-visible). 6564 SmallString<256> Name; 6565 llvm::raw_svector_ostream Out(Name); 6566 getCXXABI().getMangleContext().mangleReferenceTemporary( 6567 VD, E->getManglingNumber(), Out); 6568 6569 APValue *Value = nullptr; 6570 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6571 // If the initializer of the extending declaration is a constant 6572 // initializer, we should have a cached constant initializer for this 6573 // temporary. Note that this might have a different value from the value 6574 // computed by evaluating the initializer if the surrounding constant 6575 // expression modifies the temporary. 6576 Value = E->getOrCreateValue(false); 6577 } 6578 6579 // Try evaluating it now, it might have a constant initializer. 6580 Expr::EvalResult EvalResult; 6581 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6582 !EvalResult.hasSideEffects()) 6583 Value = &EvalResult.Val; 6584 6585 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6586 6587 std::optional<ConstantEmitter> emitter; 6588 llvm::Constant *InitialValue = nullptr; 6589 bool Constant = false; 6590 llvm::Type *Type; 6591 if (Value) { 6592 // The temporary has a constant initializer, use it. 6593 emitter.emplace(*this); 6594 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6595 MaterializedType); 6596 Constant = 6597 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6598 /*ExcludeDtor*/ false); 6599 Type = InitialValue->getType(); 6600 } else { 6601 // No initializer, the initialization will be provided when we 6602 // initialize the declaration which performed lifetime extension. 6603 Type = getTypes().ConvertTypeForMem(MaterializedType); 6604 } 6605 6606 // Create a global variable for this lifetime-extended temporary. 6607 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6608 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6609 const VarDecl *InitVD; 6610 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6611 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6612 // Temporaries defined inside a class get linkonce_odr linkage because the 6613 // class can be defined in multiple translation units. 6614 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6615 } else { 6616 // There is no need for this temporary to have external linkage if the 6617 // VarDecl has external linkage. 6618 Linkage = llvm::GlobalVariable::InternalLinkage; 6619 } 6620 } 6621 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6622 auto *GV = new llvm::GlobalVariable( 6623 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6624 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6625 if (emitter) emitter->finalize(GV); 6626 // Don't assign dllimport or dllexport to local linkage globals. 6627 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6628 setGVProperties(GV, VD); 6629 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6630 // The reference temporary should never be dllexport. 6631 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6632 } 6633 GV->setAlignment(Align.getAsAlign()); 6634 if (supportsCOMDAT() && GV->isWeakForLinker()) 6635 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6636 if (VD->getTLSKind()) 6637 setTLSMode(GV, *VD); 6638 llvm::Constant *CV = GV; 6639 if (AddrSpace != LangAS::Default) 6640 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6641 *this, GV, AddrSpace, LangAS::Default, 6642 llvm::PointerType::get( 6643 getLLVMContext(), 6644 getContext().getTargetAddressSpace(LangAS::Default))); 6645 6646 // Update the map with the new temporary. If we created a placeholder above, 6647 // replace it with the new global now. 6648 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6649 if (Entry) { 6650 Entry->replaceAllUsesWith(CV); 6651 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6652 } 6653 Entry = CV; 6654 6655 return ConstantAddress(CV, Type, Align); 6656 } 6657 6658 /// EmitObjCPropertyImplementations - Emit information for synthesized 6659 /// properties for an implementation. 6660 void CodeGenModule::EmitObjCPropertyImplementations(const 6661 ObjCImplementationDecl *D) { 6662 for (const auto *PID : D->property_impls()) { 6663 // Dynamic is just for type-checking. 6664 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6665 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6666 6667 // Determine which methods need to be implemented, some may have 6668 // been overridden. Note that ::isPropertyAccessor is not the method 6669 // we want, that just indicates if the decl came from a 6670 // property. What we want to know is if the method is defined in 6671 // this implementation. 6672 auto *Getter = PID->getGetterMethodDecl(); 6673 if (!Getter || Getter->isSynthesizedAccessorStub()) 6674 CodeGenFunction(*this).GenerateObjCGetter( 6675 const_cast<ObjCImplementationDecl *>(D), PID); 6676 auto *Setter = PID->getSetterMethodDecl(); 6677 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6678 CodeGenFunction(*this).GenerateObjCSetter( 6679 const_cast<ObjCImplementationDecl *>(D), PID); 6680 } 6681 } 6682 } 6683 6684 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6685 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6686 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6687 ivar; ivar = ivar->getNextIvar()) 6688 if (ivar->getType().isDestructedType()) 6689 return true; 6690 6691 return false; 6692 } 6693 6694 static bool AllTrivialInitializers(CodeGenModule &CGM, 6695 ObjCImplementationDecl *D) { 6696 CodeGenFunction CGF(CGM); 6697 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6698 E = D->init_end(); B != E; ++B) { 6699 CXXCtorInitializer *CtorInitExp = *B; 6700 Expr *Init = CtorInitExp->getInit(); 6701 if (!CGF.isTrivialInitializer(Init)) 6702 return false; 6703 } 6704 return true; 6705 } 6706 6707 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6708 /// for an implementation. 6709 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6710 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6711 if (needsDestructMethod(D)) { 6712 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6713 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6714 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6715 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6716 getContext().VoidTy, nullptr, D, 6717 /*isInstance=*/true, /*isVariadic=*/false, 6718 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6719 /*isImplicitlyDeclared=*/true, 6720 /*isDefined=*/false, ObjCImplementationControl::Required); 6721 D->addInstanceMethod(DTORMethod); 6722 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6723 D->setHasDestructors(true); 6724 } 6725 6726 // If the implementation doesn't have any ivar initializers, we don't need 6727 // a .cxx_construct. 6728 if (D->getNumIvarInitializers() == 0 || 6729 AllTrivialInitializers(*this, D)) 6730 return; 6731 6732 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6733 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6734 // The constructor returns 'self'. 6735 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6736 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6737 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6738 /*isVariadic=*/false, 6739 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6740 /*isImplicitlyDeclared=*/true, 6741 /*isDefined=*/false, ObjCImplementationControl::Required); 6742 D->addInstanceMethod(CTORMethod); 6743 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6744 D->setHasNonZeroConstructors(true); 6745 } 6746 6747 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6748 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6749 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6750 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6751 ErrorUnsupported(LSD, "linkage spec"); 6752 return; 6753 } 6754 6755 EmitDeclContext(LSD); 6756 } 6757 6758 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6759 // Device code should not be at top level. 6760 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6761 return; 6762 6763 std::unique_ptr<CodeGenFunction> &CurCGF = 6764 GlobalTopLevelStmtBlockInFlight.first; 6765 6766 // We emitted a top-level stmt but after it there is initialization. 6767 // Stop squashing the top-level stmts into a single function. 6768 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6769 CurCGF->FinishFunction(D->getEndLoc()); 6770 CurCGF = nullptr; 6771 } 6772 6773 if (!CurCGF) { 6774 // void __stmts__N(void) 6775 // FIXME: Ask the ABI name mangler to pick a name. 6776 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6777 FunctionArgList Args; 6778 QualType RetTy = getContext().VoidTy; 6779 const CGFunctionInfo &FnInfo = 6780 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6781 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6782 llvm::Function *Fn = llvm::Function::Create( 6783 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6784 6785 CurCGF.reset(new CodeGenFunction(*this)); 6786 GlobalTopLevelStmtBlockInFlight.second = D; 6787 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6788 D->getBeginLoc(), D->getBeginLoc()); 6789 CXXGlobalInits.push_back(Fn); 6790 } 6791 6792 CurCGF->EmitStmt(D->getStmt()); 6793 } 6794 6795 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6796 for (auto *I : DC->decls()) { 6797 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6798 // are themselves considered "top-level", so EmitTopLevelDecl on an 6799 // ObjCImplDecl does not recursively visit them. We need to do that in 6800 // case they're nested inside another construct (LinkageSpecDecl / 6801 // ExportDecl) that does stop them from being considered "top-level". 6802 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6803 for (auto *M : OID->methods()) 6804 EmitTopLevelDecl(M); 6805 } 6806 6807 EmitTopLevelDecl(I); 6808 } 6809 } 6810 6811 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6812 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6813 // Ignore dependent declarations. 6814 if (D->isTemplated()) 6815 return; 6816 6817 // Consteval function shouldn't be emitted. 6818 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6819 return; 6820 6821 switch (D->getKind()) { 6822 case Decl::CXXConversion: 6823 case Decl::CXXMethod: 6824 case Decl::Function: 6825 EmitGlobal(cast<FunctionDecl>(D)); 6826 // Always provide some coverage mapping 6827 // even for the functions that aren't emitted. 6828 AddDeferredUnusedCoverageMapping(D); 6829 break; 6830 6831 case Decl::CXXDeductionGuide: 6832 // Function-like, but does not result in code emission. 6833 break; 6834 6835 case Decl::Var: 6836 case Decl::Decomposition: 6837 case Decl::VarTemplateSpecialization: 6838 EmitGlobal(cast<VarDecl>(D)); 6839 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6840 for (auto *B : DD->bindings()) 6841 if (auto *HD = B->getHoldingVar()) 6842 EmitGlobal(HD); 6843 break; 6844 6845 // Indirect fields from global anonymous structs and unions can be 6846 // ignored; only the actual variable requires IR gen support. 6847 case Decl::IndirectField: 6848 break; 6849 6850 // C++ Decls 6851 case Decl::Namespace: 6852 EmitDeclContext(cast<NamespaceDecl>(D)); 6853 break; 6854 case Decl::ClassTemplateSpecialization: { 6855 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6856 if (CGDebugInfo *DI = getModuleDebugInfo()) 6857 if (Spec->getSpecializationKind() == 6858 TSK_ExplicitInstantiationDefinition && 6859 Spec->hasDefinition()) 6860 DI->completeTemplateDefinition(*Spec); 6861 } [[fallthrough]]; 6862 case Decl::CXXRecord: { 6863 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6864 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6865 if (CRD->hasDefinition()) 6866 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6867 if (auto *ES = D->getASTContext().getExternalSource()) 6868 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6869 DI->completeUnusedClass(*CRD); 6870 } 6871 // Emit any static data members, they may be definitions. 6872 for (auto *I : CRD->decls()) 6873 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6874 EmitTopLevelDecl(I); 6875 break; 6876 } 6877 // No code generation needed. 6878 case Decl::UsingShadow: 6879 case Decl::ClassTemplate: 6880 case Decl::VarTemplate: 6881 case Decl::Concept: 6882 case Decl::VarTemplatePartialSpecialization: 6883 case Decl::FunctionTemplate: 6884 case Decl::TypeAliasTemplate: 6885 case Decl::Block: 6886 case Decl::Empty: 6887 case Decl::Binding: 6888 break; 6889 case Decl::Using: // using X; [C++] 6890 if (CGDebugInfo *DI = getModuleDebugInfo()) 6891 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6892 break; 6893 case Decl::UsingEnum: // using enum X; [C++] 6894 if (CGDebugInfo *DI = getModuleDebugInfo()) 6895 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6896 break; 6897 case Decl::NamespaceAlias: 6898 if (CGDebugInfo *DI = getModuleDebugInfo()) 6899 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6900 break; 6901 case Decl::UsingDirective: // using namespace X; [C++] 6902 if (CGDebugInfo *DI = getModuleDebugInfo()) 6903 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6904 break; 6905 case Decl::CXXConstructor: 6906 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6907 break; 6908 case Decl::CXXDestructor: 6909 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6910 break; 6911 6912 case Decl::StaticAssert: 6913 // Nothing to do. 6914 break; 6915 6916 // Objective-C Decls 6917 6918 // Forward declarations, no (immediate) code generation. 6919 case Decl::ObjCInterface: 6920 case Decl::ObjCCategory: 6921 break; 6922 6923 case Decl::ObjCProtocol: { 6924 auto *Proto = cast<ObjCProtocolDecl>(D); 6925 if (Proto->isThisDeclarationADefinition()) 6926 ObjCRuntime->GenerateProtocol(Proto); 6927 break; 6928 } 6929 6930 case Decl::ObjCCategoryImpl: 6931 // Categories have properties but don't support synthesize so we 6932 // can ignore them here. 6933 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6934 break; 6935 6936 case Decl::ObjCImplementation: { 6937 auto *OMD = cast<ObjCImplementationDecl>(D); 6938 EmitObjCPropertyImplementations(OMD); 6939 EmitObjCIvarInitializations(OMD); 6940 ObjCRuntime->GenerateClass(OMD); 6941 // Emit global variable debug information. 6942 if (CGDebugInfo *DI = getModuleDebugInfo()) 6943 if (getCodeGenOpts().hasReducedDebugInfo()) 6944 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6945 OMD->getClassInterface()), OMD->getLocation()); 6946 break; 6947 } 6948 case Decl::ObjCMethod: { 6949 auto *OMD = cast<ObjCMethodDecl>(D); 6950 // If this is not a prototype, emit the body. 6951 if (OMD->getBody()) 6952 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6953 break; 6954 } 6955 case Decl::ObjCCompatibleAlias: 6956 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6957 break; 6958 6959 case Decl::PragmaComment: { 6960 const auto *PCD = cast<PragmaCommentDecl>(D); 6961 switch (PCD->getCommentKind()) { 6962 case PCK_Unknown: 6963 llvm_unreachable("unexpected pragma comment kind"); 6964 case PCK_Linker: 6965 AppendLinkerOptions(PCD->getArg()); 6966 break; 6967 case PCK_Lib: 6968 AddDependentLib(PCD->getArg()); 6969 break; 6970 case PCK_Compiler: 6971 case PCK_ExeStr: 6972 case PCK_User: 6973 break; // We ignore all of these. 6974 } 6975 break; 6976 } 6977 6978 case Decl::PragmaDetectMismatch: { 6979 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6980 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6981 break; 6982 } 6983 6984 case Decl::LinkageSpec: 6985 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6986 break; 6987 6988 case Decl::FileScopeAsm: { 6989 // File-scope asm is ignored during device-side CUDA compilation. 6990 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6991 break; 6992 // File-scope asm is ignored during device-side OpenMP compilation. 6993 if (LangOpts.OpenMPIsTargetDevice) 6994 break; 6995 // File-scope asm is ignored during device-side SYCL compilation. 6996 if (LangOpts.SYCLIsDevice) 6997 break; 6998 auto *AD = cast<FileScopeAsmDecl>(D); 6999 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7000 break; 7001 } 7002 7003 case Decl::TopLevelStmt: 7004 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7005 break; 7006 7007 case Decl::Import: { 7008 auto *Import = cast<ImportDecl>(D); 7009 7010 // If we've already imported this module, we're done. 7011 if (!ImportedModules.insert(Import->getImportedModule())) 7012 break; 7013 7014 // Emit debug information for direct imports. 7015 if (!Import->getImportedOwningModule()) { 7016 if (CGDebugInfo *DI = getModuleDebugInfo()) 7017 DI->EmitImportDecl(*Import); 7018 } 7019 7020 // For C++ standard modules we are done - we will call the module 7021 // initializer for imported modules, and that will likewise call those for 7022 // any imports it has. 7023 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7024 !Import->getImportedOwningModule()->isModuleMapModule()) 7025 break; 7026 7027 // For clang C++ module map modules the initializers for sub-modules are 7028 // emitted here. 7029 7030 // Find all of the submodules and emit the module initializers. 7031 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7032 SmallVector<clang::Module *, 16> Stack; 7033 Visited.insert(Import->getImportedModule()); 7034 Stack.push_back(Import->getImportedModule()); 7035 7036 while (!Stack.empty()) { 7037 clang::Module *Mod = Stack.pop_back_val(); 7038 if (!EmittedModuleInitializers.insert(Mod).second) 7039 continue; 7040 7041 for (auto *D : Context.getModuleInitializers(Mod)) 7042 EmitTopLevelDecl(D); 7043 7044 // Visit the submodules of this module. 7045 for (auto *Submodule : Mod->submodules()) { 7046 // Skip explicit children; they need to be explicitly imported to emit 7047 // the initializers. 7048 if (Submodule->IsExplicit) 7049 continue; 7050 7051 if (Visited.insert(Submodule).second) 7052 Stack.push_back(Submodule); 7053 } 7054 } 7055 break; 7056 } 7057 7058 case Decl::Export: 7059 EmitDeclContext(cast<ExportDecl>(D)); 7060 break; 7061 7062 case Decl::OMPThreadPrivate: 7063 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7064 break; 7065 7066 case Decl::OMPAllocate: 7067 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7068 break; 7069 7070 case Decl::OMPDeclareReduction: 7071 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7072 break; 7073 7074 case Decl::OMPDeclareMapper: 7075 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7076 break; 7077 7078 case Decl::OMPRequires: 7079 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7080 break; 7081 7082 case Decl::Typedef: 7083 case Decl::TypeAlias: // using foo = bar; [C++11] 7084 if (CGDebugInfo *DI = getModuleDebugInfo()) 7085 DI->EmitAndRetainType( 7086 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7087 break; 7088 7089 case Decl::Record: 7090 if (CGDebugInfo *DI = getModuleDebugInfo()) 7091 if (cast<RecordDecl>(D)->getDefinition()) 7092 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7093 break; 7094 7095 case Decl::Enum: 7096 if (CGDebugInfo *DI = getModuleDebugInfo()) 7097 if (cast<EnumDecl>(D)->getDefinition()) 7098 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7099 break; 7100 7101 case Decl::HLSLBuffer: 7102 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7103 break; 7104 7105 default: 7106 // Make sure we handled everything we should, every other kind is a 7107 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7108 // function. Need to recode Decl::Kind to do that easily. 7109 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7110 break; 7111 } 7112 } 7113 7114 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7115 // Do we need to generate coverage mapping? 7116 if (!CodeGenOpts.CoverageMapping) 7117 return; 7118 switch (D->getKind()) { 7119 case Decl::CXXConversion: 7120 case Decl::CXXMethod: 7121 case Decl::Function: 7122 case Decl::ObjCMethod: 7123 case Decl::CXXConstructor: 7124 case Decl::CXXDestructor: { 7125 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7126 break; 7127 SourceManager &SM = getContext().getSourceManager(); 7128 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7129 break; 7130 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7131 break; 7132 } 7133 default: 7134 break; 7135 }; 7136 } 7137 7138 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7139 // Do we need to generate coverage mapping? 7140 if (!CodeGenOpts.CoverageMapping) 7141 return; 7142 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7143 if (Fn->isTemplateInstantiation()) 7144 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7145 } 7146 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7147 } 7148 7149 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7150 // We call takeVector() here to avoid use-after-free. 7151 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7152 // we deserialize function bodies to emit coverage info for them, and that 7153 // deserializes more declarations. How should we handle that case? 7154 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7155 if (!Entry.second) 7156 continue; 7157 const Decl *D = Entry.first; 7158 switch (D->getKind()) { 7159 case Decl::CXXConversion: 7160 case Decl::CXXMethod: 7161 case Decl::Function: 7162 case Decl::ObjCMethod: { 7163 CodeGenPGO PGO(*this); 7164 GlobalDecl GD(cast<FunctionDecl>(D)); 7165 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7166 getFunctionLinkage(GD)); 7167 break; 7168 } 7169 case Decl::CXXConstructor: { 7170 CodeGenPGO PGO(*this); 7171 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7172 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7173 getFunctionLinkage(GD)); 7174 break; 7175 } 7176 case Decl::CXXDestructor: { 7177 CodeGenPGO PGO(*this); 7178 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7179 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7180 getFunctionLinkage(GD)); 7181 break; 7182 } 7183 default: 7184 break; 7185 }; 7186 } 7187 } 7188 7189 void CodeGenModule::EmitMainVoidAlias() { 7190 // In order to transition away from "__original_main" gracefully, emit an 7191 // alias for "main" in the no-argument case so that libc can detect when 7192 // new-style no-argument main is in used. 7193 if (llvm::Function *F = getModule().getFunction("main")) { 7194 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7195 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7196 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7197 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7198 } 7199 } 7200 } 7201 7202 /// Turns the given pointer into a constant. 7203 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7204 const void *Ptr) { 7205 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7206 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7207 return llvm::ConstantInt::get(i64, PtrInt); 7208 } 7209 7210 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7211 llvm::NamedMDNode *&GlobalMetadata, 7212 GlobalDecl D, 7213 llvm::GlobalValue *Addr) { 7214 if (!GlobalMetadata) 7215 GlobalMetadata = 7216 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7217 7218 // TODO: should we report variant information for ctors/dtors? 7219 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7220 llvm::ConstantAsMetadata::get(GetPointerConstant( 7221 CGM.getLLVMContext(), D.getDecl()))}; 7222 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7223 } 7224 7225 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7226 llvm::GlobalValue *CppFunc) { 7227 // Store the list of ifuncs we need to replace uses in. 7228 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7229 // List of ConstantExprs that we should be able to delete when we're done 7230 // here. 7231 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7232 7233 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7234 if (Elem == CppFunc) 7235 return false; 7236 7237 // First make sure that all users of this are ifuncs (or ifuncs via a 7238 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7239 // later. 7240 for (llvm::User *User : Elem->users()) { 7241 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7242 // ifunc directly. In any other case, just give up, as we don't know what we 7243 // could break by changing those. 7244 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7245 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7246 return false; 7247 7248 for (llvm::User *CEUser : ConstExpr->users()) { 7249 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7250 IFuncs.push_back(IFunc); 7251 } else { 7252 return false; 7253 } 7254 } 7255 CEs.push_back(ConstExpr); 7256 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7257 IFuncs.push_back(IFunc); 7258 } else { 7259 // This user is one we don't know how to handle, so fail redirection. This 7260 // will result in an ifunc retaining a resolver name that will ultimately 7261 // fail to be resolved to a defined function. 7262 return false; 7263 } 7264 } 7265 7266 // Now we know this is a valid case where we can do this alias replacement, we 7267 // need to remove all of the references to Elem (and the bitcasts!) so we can 7268 // delete it. 7269 for (llvm::GlobalIFunc *IFunc : IFuncs) 7270 IFunc->setResolver(nullptr); 7271 for (llvm::ConstantExpr *ConstExpr : CEs) 7272 ConstExpr->destroyConstant(); 7273 7274 // We should now be out of uses for the 'old' version of this function, so we 7275 // can erase it as well. 7276 Elem->eraseFromParent(); 7277 7278 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7279 // The type of the resolver is always just a function-type that returns the 7280 // type of the IFunc, so create that here. If the type of the actual 7281 // resolver doesn't match, it just gets bitcast to the right thing. 7282 auto *ResolverTy = 7283 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7284 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7285 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7286 IFunc->setResolver(Resolver); 7287 } 7288 return true; 7289 } 7290 7291 /// For each function which is declared within an extern "C" region and marked 7292 /// as 'used', but has internal linkage, create an alias from the unmangled 7293 /// name to the mangled name if possible. People expect to be able to refer 7294 /// to such functions with an unmangled name from inline assembly within the 7295 /// same translation unit. 7296 void CodeGenModule::EmitStaticExternCAliases() { 7297 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7298 return; 7299 for (auto &I : StaticExternCValues) { 7300 const IdentifierInfo *Name = I.first; 7301 llvm::GlobalValue *Val = I.second; 7302 7303 // If Val is null, that implies there were multiple declarations that each 7304 // had a claim to the unmangled name. In this case, generation of the alias 7305 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7306 if (!Val) 7307 break; 7308 7309 llvm::GlobalValue *ExistingElem = 7310 getModule().getNamedValue(Name->getName()); 7311 7312 // If there is either not something already by this name, or we were able to 7313 // replace all uses from IFuncs, create the alias. 7314 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7315 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7316 } 7317 } 7318 7319 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7320 GlobalDecl &Result) const { 7321 auto Res = Manglings.find(MangledName); 7322 if (Res == Manglings.end()) 7323 return false; 7324 Result = Res->getValue(); 7325 return true; 7326 } 7327 7328 /// Emits metadata nodes associating all the global values in the 7329 /// current module with the Decls they came from. This is useful for 7330 /// projects using IR gen as a subroutine. 7331 /// 7332 /// Since there's currently no way to associate an MDNode directly 7333 /// with an llvm::GlobalValue, we create a global named metadata 7334 /// with the name 'clang.global.decl.ptrs'. 7335 void CodeGenModule::EmitDeclMetadata() { 7336 llvm::NamedMDNode *GlobalMetadata = nullptr; 7337 7338 for (auto &I : MangledDeclNames) { 7339 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7340 // Some mangled names don't necessarily have an associated GlobalValue 7341 // in this module, e.g. if we mangled it for DebugInfo. 7342 if (Addr) 7343 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7344 } 7345 } 7346 7347 /// Emits metadata nodes for all the local variables in the current 7348 /// function. 7349 void CodeGenFunction::EmitDeclMetadata() { 7350 if (LocalDeclMap.empty()) return; 7351 7352 llvm::LLVMContext &Context = getLLVMContext(); 7353 7354 // Find the unique metadata ID for this name. 7355 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7356 7357 llvm::NamedMDNode *GlobalMetadata = nullptr; 7358 7359 for (auto &I : LocalDeclMap) { 7360 const Decl *D = I.first; 7361 llvm::Value *Addr = I.second.emitRawPointer(*this); 7362 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7363 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7364 Alloca->setMetadata( 7365 DeclPtrKind, llvm::MDNode::get( 7366 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7367 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7368 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7369 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7370 } 7371 } 7372 } 7373 7374 void CodeGenModule::EmitVersionIdentMetadata() { 7375 llvm::NamedMDNode *IdentMetadata = 7376 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7377 std::string Version = getClangFullVersion(); 7378 llvm::LLVMContext &Ctx = TheModule.getContext(); 7379 7380 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7381 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7382 } 7383 7384 void CodeGenModule::EmitCommandLineMetadata() { 7385 llvm::NamedMDNode *CommandLineMetadata = 7386 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7387 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7388 llvm::LLVMContext &Ctx = TheModule.getContext(); 7389 7390 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7391 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7392 } 7393 7394 void CodeGenModule::EmitCoverageFile() { 7395 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7396 if (!CUNode) 7397 return; 7398 7399 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7400 llvm::LLVMContext &Ctx = TheModule.getContext(); 7401 auto *CoverageDataFile = 7402 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7403 auto *CoverageNotesFile = 7404 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7405 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7406 llvm::MDNode *CU = CUNode->getOperand(i); 7407 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7408 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7409 } 7410 } 7411 7412 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7413 bool ForEH) { 7414 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7415 // FIXME: should we even be calling this method if RTTI is disabled 7416 // and it's not for EH? 7417 if (!shouldEmitRTTI(ForEH)) 7418 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7419 7420 if (ForEH && Ty->isObjCObjectPointerType() && 7421 LangOpts.ObjCRuntime.isGNUFamily()) 7422 return ObjCRuntime->GetEHType(Ty); 7423 7424 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7425 } 7426 7427 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7428 // Do not emit threadprivates in simd-only mode. 7429 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7430 return; 7431 for (auto RefExpr : D->varlists()) { 7432 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7433 bool PerformInit = 7434 VD->getAnyInitializer() && 7435 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7436 /*ForRef=*/false); 7437 7438 Address Addr(GetAddrOfGlobalVar(VD), 7439 getTypes().ConvertTypeForMem(VD->getType()), 7440 getContext().getDeclAlign(VD)); 7441 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7442 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7443 CXXGlobalInits.push_back(InitFunction); 7444 } 7445 } 7446 7447 llvm::Metadata * 7448 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7449 StringRef Suffix) { 7450 if (auto *FnType = T->getAs<FunctionProtoType>()) 7451 T = getContext().getFunctionType( 7452 FnType->getReturnType(), FnType->getParamTypes(), 7453 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7454 7455 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7456 if (InternalId) 7457 return InternalId; 7458 7459 if (isExternallyVisible(T->getLinkage())) { 7460 std::string OutName; 7461 llvm::raw_string_ostream Out(OutName); 7462 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7463 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7464 7465 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7466 Out << ".normalized"; 7467 7468 Out << Suffix; 7469 7470 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7471 } else { 7472 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7473 llvm::ArrayRef<llvm::Metadata *>()); 7474 } 7475 7476 return InternalId; 7477 } 7478 7479 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7480 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7481 } 7482 7483 llvm::Metadata * 7484 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7485 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7486 } 7487 7488 // Generalize pointer types to a void pointer with the qualifiers of the 7489 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7490 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7491 // 'void *'. 7492 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7493 if (!Ty->isPointerType()) 7494 return Ty; 7495 7496 return Ctx.getPointerType( 7497 QualType(Ctx.VoidTy).withCVRQualifiers( 7498 Ty->getPointeeType().getCVRQualifiers())); 7499 } 7500 7501 // Apply type generalization to a FunctionType's return and argument types 7502 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7503 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7504 SmallVector<QualType, 8> GeneralizedParams; 7505 for (auto &Param : FnType->param_types()) 7506 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7507 7508 return Ctx.getFunctionType( 7509 GeneralizeType(Ctx, FnType->getReturnType()), 7510 GeneralizedParams, FnType->getExtProtoInfo()); 7511 } 7512 7513 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7514 return Ctx.getFunctionNoProtoType( 7515 GeneralizeType(Ctx, FnType->getReturnType())); 7516 7517 llvm_unreachable("Encountered unknown FunctionType"); 7518 } 7519 7520 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7521 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7522 GeneralizedMetadataIdMap, ".generalized"); 7523 } 7524 7525 /// Returns whether this module needs the "all-vtables" type identifier. 7526 bool CodeGenModule::NeedAllVtablesTypeId() const { 7527 // Returns true if at least one of vtable-based CFI checkers is enabled and 7528 // is not in the trapping mode. 7529 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7530 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7531 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7532 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7533 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7534 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7535 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7536 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7537 } 7538 7539 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7540 CharUnits Offset, 7541 const CXXRecordDecl *RD) { 7542 llvm::Metadata *MD = 7543 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7544 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7545 7546 if (CodeGenOpts.SanitizeCfiCrossDso) 7547 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7548 VTable->addTypeMetadata(Offset.getQuantity(), 7549 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7550 7551 if (NeedAllVtablesTypeId()) { 7552 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7553 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7554 } 7555 } 7556 7557 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7558 if (!SanStats) 7559 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7560 7561 return *SanStats; 7562 } 7563 7564 llvm::Value * 7565 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7566 CodeGenFunction &CGF) { 7567 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7568 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7569 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7570 auto *Call = CGF.EmitRuntimeCall( 7571 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7572 return Call; 7573 } 7574 7575 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7576 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7577 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7578 /* forPointeeType= */ true); 7579 } 7580 7581 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7582 LValueBaseInfo *BaseInfo, 7583 TBAAAccessInfo *TBAAInfo, 7584 bool forPointeeType) { 7585 if (TBAAInfo) 7586 *TBAAInfo = getTBAAAccessInfo(T); 7587 7588 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7589 // that doesn't return the information we need to compute BaseInfo. 7590 7591 // Honor alignment typedef attributes even on incomplete types. 7592 // We also honor them straight for C++ class types, even as pointees; 7593 // there's an expressivity gap here. 7594 if (auto TT = T->getAs<TypedefType>()) { 7595 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7596 if (BaseInfo) 7597 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7598 return getContext().toCharUnitsFromBits(Align); 7599 } 7600 } 7601 7602 bool AlignForArray = T->isArrayType(); 7603 7604 // Analyze the base element type, so we don't get confused by incomplete 7605 // array types. 7606 T = getContext().getBaseElementType(T); 7607 7608 if (T->isIncompleteType()) { 7609 // We could try to replicate the logic from 7610 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7611 // type is incomplete, so it's impossible to test. We could try to reuse 7612 // getTypeAlignIfKnown, but that doesn't return the information we need 7613 // to set BaseInfo. So just ignore the possibility that the alignment is 7614 // greater than one. 7615 if (BaseInfo) 7616 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7617 return CharUnits::One(); 7618 } 7619 7620 if (BaseInfo) 7621 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7622 7623 CharUnits Alignment; 7624 const CXXRecordDecl *RD; 7625 if (T.getQualifiers().hasUnaligned()) { 7626 Alignment = CharUnits::One(); 7627 } else if (forPointeeType && !AlignForArray && 7628 (RD = T->getAsCXXRecordDecl())) { 7629 // For C++ class pointees, we don't know whether we're pointing at a 7630 // base or a complete object, so we generally need to use the 7631 // non-virtual alignment. 7632 Alignment = getClassPointerAlignment(RD); 7633 } else { 7634 Alignment = getContext().getTypeAlignInChars(T); 7635 } 7636 7637 // Cap to the global maximum type alignment unless the alignment 7638 // was somehow explicit on the type. 7639 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7640 if (Alignment.getQuantity() > MaxAlign && 7641 !getContext().isAlignmentRequired(T)) 7642 Alignment = CharUnits::fromQuantity(MaxAlign); 7643 } 7644 return Alignment; 7645 } 7646 7647 bool CodeGenModule::stopAutoInit() { 7648 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7649 if (StopAfter) { 7650 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7651 // used 7652 if (NumAutoVarInit >= StopAfter) { 7653 return true; 7654 } 7655 if (!NumAutoVarInit) { 7656 unsigned DiagID = getDiags().getCustomDiagID( 7657 DiagnosticsEngine::Warning, 7658 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7659 "number of times ftrivial-auto-var-init=%1 gets applied."); 7660 getDiags().Report(DiagID) 7661 << StopAfter 7662 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7663 LangOptions::TrivialAutoVarInitKind::Zero 7664 ? "zero" 7665 : "pattern"); 7666 } 7667 ++NumAutoVarInit; 7668 } 7669 return false; 7670 } 7671 7672 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7673 const Decl *D) const { 7674 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7675 // postfix beginning with '.' since the symbol name can be demangled. 7676 if (LangOpts.HIP) 7677 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7678 else 7679 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7680 7681 // If the CUID is not specified we try to generate a unique postfix. 7682 if (getLangOpts().CUID.empty()) { 7683 SourceManager &SM = getContext().getSourceManager(); 7684 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7685 assert(PLoc.isValid() && "Source location is expected to be valid."); 7686 7687 // Get the hash of the user defined macros. 7688 llvm::MD5 Hash; 7689 llvm::MD5::MD5Result Result; 7690 for (const auto &Arg : PreprocessorOpts.Macros) 7691 Hash.update(Arg.first); 7692 Hash.final(Result); 7693 7694 // Get the UniqueID for the file containing the decl. 7695 llvm::sys::fs::UniqueID ID; 7696 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7697 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7698 assert(PLoc.isValid() && "Source location is expected to be valid."); 7699 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7700 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7701 << PLoc.getFilename() << EC.message(); 7702 } 7703 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7704 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7705 } else { 7706 OS << getContext().getCUIDHash(); 7707 } 7708 } 7709 7710 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7711 assert(DeferredDeclsToEmit.empty() && 7712 "Should have emitted all decls deferred to emit."); 7713 assert(NewBuilder->DeferredDecls.empty() && 7714 "Newly created module should not have deferred decls"); 7715 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7716 assert(EmittedDeferredDecls.empty() && 7717 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7718 7719 assert(NewBuilder->DeferredVTables.empty() && 7720 "Newly created module should not have deferred vtables"); 7721 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7722 7723 assert(NewBuilder->MangledDeclNames.empty() && 7724 "Newly created module should not have mangled decl names"); 7725 assert(NewBuilder->Manglings.empty() && 7726 "Newly created module should not have manglings"); 7727 NewBuilder->Manglings = std::move(Manglings); 7728 7729 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7730 7731 NewBuilder->TBAA = std::move(TBAA); 7732 7733 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7734 } 7735