xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 99fdfb6a464467aeb8c8935b0aa8d68ba4f902a5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecordLayout.h"
37 #include "clang/AST/RecursiveASTVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/CodeGenOptions.h"
47 #include "clang/Sema/SemaDiagnostic.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/ConvertUTF.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MD5.h"
60 
61 using namespace clang;
62 using namespace CodeGen;
63 
64 static llvm::cl::opt<bool> LimitedCoverage(
65     "limited-coverage-experimental", llvm::cl::ZeroOrMore,
66     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
67     llvm::cl::init(false));
68 
69 static const char AnnotationSection[] = "llvm.metadata";
70 
71 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
72   switch (CGM.getTarget().getCXXABI().getKind()) {
73   case TargetCXXABI::GenericAArch64:
74   case TargetCXXABI::GenericARM:
75   case TargetCXXABI::iOS:
76   case TargetCXXABI::iOS64:
77   case TargetCXXABI::WatchOS:
78   case TargetCXXABI::GenericMIPS:
79   case TargetCXXABI::GenericItanium:
80   case TargetCXXABI::WebAssembly:
81     return CreateItaniumCXXABI(CGM);
82   case TargetCXXABI::Microsoft:
83     return CreateMicrosoftCXXABI(CGM);
84   }
85 
86   llvm_unreachable("invalid C++ ABI kind");
87 }
88 
89 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
90                              const PreprocessorOptions &PPO,
91                              const CodeGenOptions &CGO, llvm::Module &M,
92                              DiagnosticsEngine &diags,
93                              CoverageSourceInfo *CoverageInfo)
94     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
95       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
96       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
97       VMContext(M.getContext()), Types(*this), VTables(*this),
98       SanitizerMD(new SanitizerMetadata(*this)) {
99 
100   // Initialize the type cache.
101   llvm::LLVMContext &LLVMContext = M.getContext();
102   VoidTy = llvm::Type::getVoidTy(LLVMContext);
103   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
104   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
105   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
106   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
212     break;
213   }
214 }
215 
216 void CodeGenModule::createCUDARuntime() {
217   CUDARuntime.reset(CreateNVCUDARuntime(*this));
218 }
219 
220 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
221   Replacements[Name] = C;
222 }
223 
224 void CodeGenModule::applyReplacements() {
225   for (auto &I : Replacements) {
226     StringRef MangledName = I.first();
227     llvm::Constant *Replacement = I.second;
228     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
229     if (!Entry)
230       continue;
231     auto *OldF = cast<llvm::Function>(Entry);
232     auto *NewF = dyn_cast<llvm::Function>(Replacement);
233     if (!NewF) {
234       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
235         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
236       } else {
237         auto *CE = cast<llvm::ConstantExpr>(Replacement);
238         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
239                CE->getOpcode() == llvm::Instruction::GetElementPtr);
240         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
241       }
242     }
243 
244     // Replace old with new, but keep the old order.
245     OldF->replaceAllUsesWith(Replacement);
246     if (NewF) {
247       NewF->removeFromParent();
248       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
249                                                        NewF);
250     }
251     OldF->eraseFromParent();
252   }
253 }
254 
255 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
256   GlobalValReplacements.push_back(std::make_pair(GV, C));
257 }
258 
259 void CodeGenModule::applyGlobalValReplacements() {
260   for (auto &I : GlobalValReplacements) {
261     llvm::GlobalValue *GV = I.first;
262     llvm::Constant *C = I.second;
263 
264     GV->replaceAllUsesWith(C);
265     GV->eraseFromParent();
266   }
267 }
268 
269 // This is only used in aliases that we created and we know they have a
270 // linear structure.
271 static const llvm::GlobalObject *getAliasedGlobal(
272     const llvm::GlobalIndirectSymbol &GIS) {
273   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
274   const llvm::Constant *C = &GIS;
275   for (;;) {
276     C = C->stripPointerCasts();
277     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
278       return GO;
279     // stripPointerCasts will not walk over weak aliases.
280     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
281     if (!GIS2)
282       return nullptr;
283     if (!Visited.insert(GIS2).second)
284       return nullptr;
285     C = GIS2->getIndirectSymbol();
286   }
287 }
288 
289 void CodeGenModule::checkAliases() {
290   // Check if the constructed aliases are well formed. It is really unfortunate
291   // that we have to do this in CodeGen, but we only construct mangled names
292   // and aliases during codegen.
293   bool Error = false;
294   DiagnosticsEngine &Diags = getDiags();
295   for (const GlobalDecl &GD : Aliases) {
296     const auto *D = cast<ValueDecl>(GD.getDecl());
297     SourceLocation Location;
298     bool IsIFunc = D->hasAttr<IFuncAttr>();
299     if (const Attr *A = D->getDefiningAttr())
300       Location = A->getLocation();
301     else
302       llvm_unreachable("Not an alias or ifunc?");
303     StringRef MangledName = getMangledName(GD);
304     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
305     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
306     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
307     if (!GV) {
308       Error = true;
309       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
310     } else if (GV->isDeclaration()) {
311       Error = true;
312       Diags.Report(Location, diag::err_alias_to_undefined)
313           << IsIFunc << IsIFunc;
314     } else if (IsIFunc) {
315       // Check resolver function type.
316       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
317           GV->getType()->getPointerElementType());
318       assert(FTy);
319       if (!FTy->getReturnType()->isPointerTy())
320         Diags.Report(Location, diag::err_ifunc_resolver_return);
321       if (FTy->getNumParams())
322         Diags.Report(Location, diag::err_ifunc_resolver_params);
323     }
324 
325     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
326     llvm::GlobalValue *AliaseeGV;
327     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
328       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
329     else
330       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
331 
332     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
333       StringRef AliasSection = SA->getName();
334       if (AliasSection != AliaseeGV->getSection())
335         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
336             << AliasSection << IsIFunc << IsIFunc;
337     }
338 
339     // We have to handle alias to weak aliases in here. LLVM itself disallows
340     // this since the object semantics would not match the IL one. For
341     // compatibility with gcc we implement it by just pointing the alias
342     // to its aliasee's aliasee. We also warn, since the user is probably
343     // expecting the link to be weak.
344     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
345       if (GA->isInterposable()) {
346         Diags.Report(Location, diag::warn_alias_to_weak_alias)
347             << GV->getName() << GA->getName() << IsIFunc;
348         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
349             GA->getIndirectSymbol(), Alias->getType());
350         Alias->setIndirectSymbol(Aliasee);
351       }
352     }
353   }
354   if (!Error)
355     return;
356 
357   for (const GlobalDecl &GD : Aliases) {
358     StringRef MangledName = getMangledName(GD);
359     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
360     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
361     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
362     Alias->eraseFromParent();
363   }
364 }
365 
366 void CodeGenModule::clear() {
367   DeferredDeclsToEmit.clear();
368   if (OpenMPRuntime)
369     OpenMPRuntime->clear();
370 }
371 
372 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
373                                        StringRef MainFile) {
374   if (!hasDiagnostics())
375     return;
376   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
377     if (MainFile.empty())
378       MainFile = "<stdin>";
379     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
380   } else {
381     if (Mismatched > 0)
382       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
383 
384     if (Missing > 0)
385       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
386   }
387 }
388 
389 void CodeGenModule::Release() {
390   EmitDeferred();
391   EmitVTablesOpportunistically();
392   applyGlobalValReplacements();
393   applyReplacements();
394   checkAliases();
395   EmitCXXGlobalInitFunc();
396   EmitCXXGlobalDtorFunc();
397   EmitCXXThreadLocalInitFunc();
398   if (ObjCRuntime)
399     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
400       AddGlobalCtor(ObjCInitFunction);
401   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
402       CUDARuntime) {
403     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
404       AddGlobalCtor(CudaCtorFunction);
405     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
406       AddGlobalDtor(CudaDtorFunction);
407   }
408   if (OpenMPRuntime)
409     if (llvm::Function *OpenMPRegistrationFunction =
410             OpenMPRuntime->emitRegistrationFunction()) {
411       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
412         OpenMPRegistrationFunction : nullptr;
413       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
414     }
415   if (PGOReader) {
416     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
417     if (PGOStats.hasDiagnostics())
418       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
419   }
420   EmitCtorList(GlobalCtors, "llvm.global_ctors");
421   EmitCtorList(GlobalDtors, "llvm.global_dtors");
422   EmitGlobalAnnotations();
423   EmitStaticExternCAliases();
424   EmitDeferredUnusedCoverageMappings();
425   if (CoverageMapping)
426     CoverageMapping->emit();
427   if (CodeGenOpts.SanitizeCfiCrossDso) {
428     CodeGenFunction(*this).EmitCfiCheckFail();
429     CodeGenFunction(*this).EmitCfiCheckStub();
430   }
431   emitAtAvailableLinkGuard();
432   emitLLVMUsed();
433   if (SanStats)
434     SanStats->finish();
435 
436   if (CodeGenOpts.Autolink &&
437       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
438     EmitModuleLinkOptions();
439   }
440 
441   // Record mregparm value now so it is visible through rest of codegen.
442   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
443     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
444                               CodeGenOpts.NumRegisterParameters);
445 
446   if (CodeGenOpts.DwarfVersion) {
447     // We actually want the latest version when there are conflicts.
448     // We can change from Warning to Latest if such mode is supported.
449     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
450                               CodeGenOpts.DwarfVersion);
451   }
452   if (CodeGenOpts.EmitCodeView) {
453     // Indicate that we want CodeView in the metadata.
454     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
455   }
456   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
457     // We don't support LTO with 2 with different StrictVTablePointers
458     // FIXME: we could support it by stripping all the information introduced
459     // by StrictVTablePointers.
460 
461     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
462 
463     llvm::Metadata *Ops[2] = {
464               llvm::MDString::get(VMContext, "StrictVTablePointers"),
465               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
466                   llvm::Type::getInt32Ty(VMContext), 1))};
467 
468     getModule().addModuleFlag(llvm::Module::Require,
469                               "StrictVTablePointersRequirement",
470                               llvm::MDNode::get(VMContext, Ops));
471   }
472   if (DebugInfo)
473     // We support a single version in the linked module. The LLVM
474     // parser will drop debug info with a different version number
475     // (and warn about it, too).
476     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
477                               llvm::DEBUG_METADATA_VERSION);
478 
479   // We need to record the widths of enums and wchar_t, so that we can generate
480   // the correct build attributes in the ARM backend. wchar_size is also used by
481   // TargetLibraryInfo.
482   uint64_t WCharWidth =
483       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
484   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
485 
486   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
487   if (   Arch == llvm::Triple::arm
488       || Arch == llvm::Triple::armeb
489       || Arch == llvm::Triple::thumb
490       || Arch == llvm::Triple::thumbeb) {
491     // The minimum width of an enum in bytes
492     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
493     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
494   }
495 
496   if (CodeGenOpts.SanitizeCfiCrossDso) {
497     // Indicate that we want cross-DSO control flow integrity checks.
498     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
499   }
500 
501   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
502     // Indicate whether __nvvm_reflect should be configured to flush denormal
503     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
504     // property.)
505     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
506                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
507   }
508 
509   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
510   if (LangOpts.OpenCL) {
511     EmitOpenCLMetadata();
512     // Emit SPIR version.
513     if (getTriple().getArch() == llvm::Triple::spir ||
514         getTriple().getArch() == llvm::Triple::spir64) {
515       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
516       // opencl.spir.version named metadata.
517       llvm::Metadata *SPIRVerElts[] = {
518           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
519               Int32Ty, LangOpts.OpenCLVersion / 100)),
520           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
521               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
522       llvm::NamedMDNode *SPIRVerMD =
523           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
524       llvm::LLVMContext &Ctx = TheModule.getContext();
525       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
526     }
527   }
528 
529   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
530     assert(PLevel < 3 && "Invalid PIC Level");
531     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
532     if (Context.getLangOpts().PIE)
533       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
534   }
535 
536   SimplifyPersonality();
537 
538   if (getCodeGenOpts().EmitDeclMetadata)
539     EmitDeclMetadata();
540 
541   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
542     EmitCoverageFile();
543 
544   if (DebugInfo)
545     DebugInfo->finalize();
546 
547   EmitVersionIdentMetadata();
548 
549   EmitTargetMetadata();
550 }
551 
552 void CodeGenModule::EmitOpenCLMetadata() {
553   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
554   // opencl.ocl.version named metadata node.
555   llvm::Metadata *OCLVerElts[] = {
556       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
557           Int32Ty, LangOpts.OpenCLVersion / 100)),
558       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
560   llvm::NamedMDNode *OCLVerMD =
561       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
562   llvm::LLVMContext &Ctx = TheModule.getContext();
563   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
564 }
565 
566 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
567   // Make sure that this type is translated.
568   Types.UpdateCompletedType(TD);
569 }
570 
571 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
572   // Make sure that this type is translated.
573   Types.RefreshTypeCacheForClass(RD);
574 }
575 
576 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
577   if (!TBAA)
578     return nullptr;
579   return TBAA->getTBAAInfo(QTy);
580 }
581 
582 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
583   if (!TBAA)
584     return nullptr;
585   return TBAA->getTBAAInfoForVTablePtr();
586 }
587 
588 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
589   if (!TBAA)
590     return nullptr;
591   return TBAA->getTBAAStructInfo(QTy);
592 }
593 
594 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
595                                                   llvm::MDNode *AccessN,
596                                                   uint64_t O) {
597   if (!TBAA)
598     return nullptr;
599   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
600 }
601 
602 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
603 /// and struct-path aware TBAA, the tag has the same format:
604 /// base type, access type and offset.
605 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
606 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
607                                                 llvm::MDNode *TBAAInfo,
608                                                 bool ConvertTypeToTag) {
609   if (ConvertTypeToTag && TBAA)
610     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
611                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
612   else
613     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
614 }
615 
616 void CodeGenModule::DecorateInstructionWithInvariantGroup(
617     llvm::Instruction *I, const CXXRecordDecl *RD) {
618   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
619                  llvm::MDNode::get(getLLVMContext(), {}));
620 }
621 
622 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
623   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
624   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
625 }
626 
627 /// ErrorUnsupported - Print out an error that codegen doesn't support the
628 /// specified stmt yet.
629 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
630   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
631                                                "cannot compile this %0 yet");
632   std::string Msg = Type;
633   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
634     << Msg << S->getSourceRange();
635 }
636 
637 /// ErrorUnsupported - Print out an error that codegen doesn't support the
638 /// specified decl yet.
639 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
640   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
641                                                "cannot compile this %0 yet");
642   std::string Msg = Type;
643   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
644 }
645 
646 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
647   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
648 }
649 
650 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
651                                         const NamedDecl *D) const {
652   // Internal definitions always have default visibility.
653   if (GV->hasLocalLinkage()) {
654     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
655     return;
656   }
657 
658   // Set visibility for definitions.
659   LinkageInfo LV = D->getLinkageAndVisibility();
660   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
661     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
662 }
663 
664 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
665   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
666       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
667       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
668       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
669       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
670 }
671 
672 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
673     CodeGenOptions::TLSModel M) {
674   switch (M) {
675   case CodeGenOptions::GeneralDynamicTLSModel:
676     return llvm::GlobalVariable::GeneralDynamicTLSModel;
677   case CodeGenOptions::LocalDynamicTLSModel:
678     return llvm::GlobalVariable::LocalDynamicTLSModel;
679   case CodeGenOptions::InitialExecTLSModel:
680     return llvm::GlobalVariable::InitialExecTLSModel;
681   case CodeGenOptions::LocalExecTLSModel:
682     return llvm::GlobalVariable::LocalExecTLSModel;
683   }
684   llvm_unreachable("Invalid TLS model!");
685 }
686 
687 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
688   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
689 
690   llvm::GlobalValue::ThreadLocalMode TLM;
691   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
692 
693   // Override the TLS model if it is explicitly specified.
694   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
695     TLM = GetLLVMTLSModel(Attr->getModel());
696   }
697 
698   GV->setThreadLocalMode(TLM);
699 }
700 
701 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
702   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
703 
704   // Some ABIs don't have constructor variants.  Make sure that base and
705   // complete constructors get mangled the same.
706   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
707     if (!getTarget().getCXXABI().hasConstructorVariants()) {
708       CXXCtorType OrigCtorType = GD.getCtorType();
709       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
710       if (OrigCtorType == Ctor_Base)
711         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
712     }
713   }
714 
715   auto FoundName = MangledDeclNames.find(CanonicalGD);
716   if (FoundName != MangledDeclNames.end())
717     return FoundName->second;
718 
719   const auto *ND = cast<NamedDecl>(GD.getDecl());
720   SmallString<256> Buffer;
721   StringRef Str;
722   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
723     llvm::raw_svector_ostream Out(Buffer);
724     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
725       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
726     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
727       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
728     else
729       getCXXABI().getMangleContext().mangleName(ND, Out);
730     Str = Out.str();
731   } else {
732     IdentifierInfo *II = ND->getIdentifier();
733     assert(II && "Attempt to mangle unnamed decl.");
734     const auto *FD = dyn_cast<FunctionDecl>(ND);
735 
736     if (FD &&
737         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
738       llvm::raw_svector_ostream Out(Buffer);
739       Out << "__regcall3__" << II->getName();
740       Str = Out.str();
741     } else {
742       Str = II->getName();
743     }
744   }
745 
746   // Keep the first result in the case of a mangling collision.
747   auto Result = Manglings.insert(std::make_pair(Str, GD));
748   return MangledDeclNames[CanonicalGD] = Result.first->first();
749 }
750 
751 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
752                                              const BlockDecl *BD) {
753   MangleContext &MangleCtx = getCXXABI().getMangleContext();
754   const Decl *D = GD.getDecl();
755 
756   SmallString<256> Buffer;
757   llvm::raw_svector_ostream Out(Buffer);
758   if (!D)
759     MangleCtx.mangleGlobalBlock(BD,
760       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
761   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
762     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
763   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
764     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
765   else
766     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
767 
768   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
769   return Result.first->first();
770 }
771 
772 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
773   return getModule().getNamedValue(Name);
774 }
775 
776 /// AddGlobalCtor - Add a function to the list that will be called before
777 /// main() runs.
778 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
779                                   llvm::Constant *AssociatedData) {
780   // FIXME: Type coercion of void()* types.
781   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
782 }
783 
784 /// AddGlobalDtor - Add a function to the list that will be called
785 /// when the module is unloaded.
786 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
787   // FIXME: Type coercion of void()* types.
788   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
789 }
790 
791 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
792   if (Fns.empty()) return;
793 
794   // Ctor function type is void()*.
795   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
796   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
797 
798   // Get the type of a ctor entry, { i32, void ()*, i8* }.
799   llvm::StructType *CtorStructTy = llvm::StructType::get(
800       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
801 
802   // Construct the constructor and destructor arrays.
803   ConstantInitBuilder builder(*this);
804   auto ctors = builder.beginArray(CtorStructTy);
805   for (const auto &I : Fns) {
806     auto ctor = ctors.beginStruct(CtorStructTy);
807     ctor.addInt(Int32Ty, I.Priority);
808     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
809     if (I.AssociatedData)
810       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
811     else
812       ctor.addNullPointer(VoidPtrTy);
813     ctor.finishAndAddTo(ctors);
814   }
815 
816   auto list =
817     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
818                                 /*constant*/ false,
819                                 llvm::GlobalValue::AppendingLinkage);
820 
821   // The LTO linker doesn't seem to like it when we set an alignment
822   // on appending variables.  Take it off as a workaround.
823   list->setAlignment(0);
824 
825   Fns.clear();
826 }
827 
828 llvm::GlobalValue::LinkageTypes
829 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
830   const auto *D = cast<FunctionDecl>(GD.getDecl());
831 
832   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
833 
834   if (isa<CXXDestructorDecl>(D) &&
835       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
836                                          GD.getDtorType())) {
837     // Destructor variants in the Microsoft C++ ABI are always internal or
838     // linkonce_odr thunks emitted on an as-needed basis.
839     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
840                                    : llvm::GlobalValue::LinkOnceODRLinkage;
841   }
842 
843   if (isa<CXXConstructorDecl>(D) &&
844       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
845       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
846     // Our approach to inheriting constructors is fundamentally different from
847     // that used by the MS ABI, so keep our inheriting constructor thunks
848     // internal rather than trying to pick an unambiguous mangling for them.
849     return llvm::GlobalValue::InternalLinkage;
850   }
851 
852   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
853 }
854 
855 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
856   const auto *FD = cast<FunctionDecl>(GD.getDecl());
857 
858   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
859     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
860       // Don't dllexport/import destructor thunks.
861       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
862       return;
863     }
864   }
865 
866   if (FD->hasAttr<DLLImportAttr>())
867     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
868   else if (FD->hasAttr<DLLExportAttr>())
869     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
870   else
871     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
872 }
873 
874 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
875   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
876   if (!MDS) return nullptr;
877 
878   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
879 }
880 
881 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
882                                                     llvm::Function *F) {
883   setNonAliasAttributes(D, F);
884 }
885 
886 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
887                                               const CGFunctionInfo &Info,
888                                               llvm::Function *F) {
889   unsigned CallingConv;
890   llvm::AttributeList PAL;
891   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
892   F->setAttributes(PAL);
893   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
894 }
895 
896 /// Determines whether the language options require us to model
897 /// unwind exceptions.  We treat -fexceptions as mandating this
898 /// except under the fragile ObjC ABI with only ObjC exceptions
899 /// enabled.  This means, for example, that C with -fexceptions
900 /// enables this.
901 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
902   // If exceptions are completely disabled, obviously this is false.
903   if (!LangOpts.Exceptions) return false;
904 
905   // If C++ exceptions are enabled, this is true.
906   if (LangOpts.CXXExceptions) return true;
907 
908   // If ObjC exceptions are enabled, this depends on the ABI.
909   if (LangOpts.ObjCExceptions) {
910     return LangOpts.ObjCRuntime.hasUnwindExceptions();
911   }
912 
913   return true;
914 }
915 
916 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
917                                                            llvm::Function *F) {
918   llvm::AttrBuilder B;
919 
920   if (CodeGenOpts.UnwindTables)
921     B.addAttribute(llvm::Attribute::UWTable);
922 
923   if (!hasUnwindExceptions(LangOpts))
924     B.addAttribute(llvm::Attribute::NoUnwind);
925 
926   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
927     B.addAttribute(llvm::Attribute::StackProtect);
928   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
929     B.addAttribute(llvm::Attribute::StackProtectStrong);
930   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
931     B.addAttribute(llvm::Attribute::StackProtectReq);
932 
933   if (!D) {
934     // If we don't have a declaration to control inlining, the function isn't
935     // explicitly marked as alwaysinline for semantic reasons, and inlining is
936     // disabled, mark the function as noinline.
937     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
938         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
939       B.addAttribute(llvm::Attribute::NoInline);
940 
941     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
942     return;
943   }
944 
945   // Track whether we need to add the optnone LLVM attribute,
946   // starting with the default for this optimization level.
947   bool ShouldAddOptNone =
948       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
949   // We can't add optnone in the following cases, it won't pass the verifier.
950   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
951   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
952   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
953 
954   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
955     B.addAttribute(llvm::Attribute::OptimizeNone);
956 
957     // OptimizeNone implies noinline; we should not be inlining such functions.
958     B.addAttribute(llvm::Attribute::NoInline);
959     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
960            "OptimizeNone and AlwaysInline on same function!");
961 
962     // We still need to handle naked functions even though optnone subsumes
963     // much of their semantics.
964     if (D->hasAttr<NakedAttr>())
965       B.addAttribute(llvm::Attribute::Naked);
966 
967     // OptimizeNone wins over OptimizeForSize and MinSize.
968     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
969     F->removeFnAttr(llvm::Attribute::MinSize);
970   } else if (D->hasAttr<NakedAttr>()) {
971     // Naked implies noinline: we should not be inlining such functions.
972     B.addAttribute(llvm::Attribute::Naked);
973     B.addAttribute(llvm::Attribute::NoInline);
974   } else if (D->hasAttr<NoDuplicateAttr>()) {
975     B.addAttribute(llvm::Attribute::NoDuplicate);
976   } else if (D->hasAttr<NoInlineAttr>()) {
977     B.addAttribute(llvm::Attribute::NoInline);
978   } else if (D->hasAttr<AlwaysInlineAttr>() &&
979              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
980     // (noinline wins over always_inline, and we can't specify both in IR)
981     B.addAttribute(llvm::Attribute::AlwaysInline);
982   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
983     // If we're not inlining, then force everything that isn't always_inline to
984     // carry an explicit noinline attribute.
985     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
986       B.addAttribute(llvm::Attribute::NoInline);
987   } else {
988     // Otherwise, propagate the inline hint attribute and potentially use its
989     // absence to mark things as noinline.
990     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
991       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
992             return Redecl->isInlineSpecified();
993           })) {
994         B.addAttribute(llvm::Attribute::InlineHint);
995       } else if (CodeGenOpts.getInlining() ==
996                      CodeGenOptions::OnlyHintInlining &&
997                  !FD->isInlined() &&
998                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
999         B.addAttribute(llvm::Attribute::NoInline);
1000       }
1001     }
1002   }
1003 
1004   // Add other optimization related attributes if we are optimizing this
1005   // function.
1006   if (!D->hasAttr<OptimizeNoneAttr>()) {
1007     if (D->hasAttr<ColdAttr>()) {
1008       if (!ShouldAddOptNone)
1009         B.addAttribute(llvm::Attribute::OptimizeForSize);
1010       B.addAttribute(llvm::Attribute::Cold);
1011     }
1012 
1013     if (D->hasAttr<MinSizeAttr>())
1014       B.addAttribute(llvm::Attribute::MinSize);
1015   }
1016 
1017   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1018 
1019   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1020   if (alignment)
1021     F->setAlignment(alignment);
1022 
1023   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1024   // reserve a bit for differentiating between virtual and non-virtual member
1025   // functions. If the current target's C++ ABI requires this and this is a
1026   // member function, set its alignment accordingly.
1027   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1028     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1029       F->setAlignment(2);
1030   }
1031 
1032   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1033   if (CodeGenOpts.SanitizeCfiCrossDso)
1034     if (auto *FD = dyn_cast<FunctionDecl>(D))
1035       CreateFunctionTypeMetadata(FD, F);
1036 }
1037 
1038 void CodeGenModule::SetCommonAttributes(const Decl *D,
1039                                         llvm::GlobalValue *GV) {
1040   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1041     setGlobalVisibility(GV, ND);
1042   else
1043     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1044 
1045   if (D && D->hasAttr<UsedAttr>())
1046     addUsedGlobal(GV);
1047 }
1048 
1049 void CodeGenModule::setAliasAttributes(const Decl *D,
1050                                        llvm::GlobalValue *GV) {
1051   SetCommonAttributes(D, GV);
1052 
1053   // Process the dllexport attribute based on whether the original definition
1054   // (not necessarily the aliasee) was exported.
1055   if (D->hasAttr<DLLExportAttr>())
1056     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1057 }
1058 
1059 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1060                                           llvm::GlobalObject *GO) {
1061   SetCommonAttributes(D, GO);
1062 
1063   if (D) {
1064     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1065       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1066         GV->addAttribute("bss-section", SA->getName());
1067       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1068         GV->addAttribute("data-section", SA->getName());
1069       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1070         GV->addAttribute("rodata-section", SA->getName());
1071     }
1072 
1073     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1074       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1075        if (!D->getAttr<SectionAttr>())
1076          F->addFnAttr("implicit-section-name", SA->getName());
1077     }
1078 
1079     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1080       GO->setSection(SA->getName());
1081   }
1082 
1083   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1084 }
1085 
1086 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1087                                                   llvm::Function *F,
1088                                                   const CGFunctionInfo &FI) {
1089   SetLLVMFunctionAttributes(D, FI, F);
1090   SetLLVMFunctionAttributesForDefinition(D, F);
1091 
1092   F->setLinkage(llvm::Function::InternalLinkage);
1093 
1094   setNonAliasAttributes(D, F);
1095 }
1096 
1097 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1098                                          const NamedDecl *ND) {
1099   // Set linkage and visibility in case we never see a definition.
1100   LinkageInfo LV = ND->getLinkageAndVisibility();
1101   if (!isExternallyVisible(LV.getLinkage())) {
1102     // Don't set internal linkage on declarations.
1103   } else {
1104     if (ND->hasAttr<DLLImportAttr>()) {
1105       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1106       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1107     } else if (ND->hasAttr<DLLExportAttr>()) {
1108       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1109     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1110       // "extern_weak" is overloaded in LLVM; we probably should have
1111       // separate linkage types for this.
1112       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1113     }
1114 
1115     // Set visibility on a declaration only if it's explicit.
1116     if (LV.isVisibilityExplicit())
1117       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1118   }
1119 }
1120 
1121 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1122                                                llvm::Function *F) {
1123   // Only if we are checking indirect calls.
1124   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1125     return;
1126 
1127   // Non-static class methods are handled via vtable pointer checks elsewhere.
1128   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1129     return;
1130 
1131   // Additionally, if building with cross-DSO support...
1132   if (CodeGenOpts.SanitizeCfiCrossDso) {
1133     // Skip available_externally functions. They won't be codegen'ed in the
1134     // current module anyway.
1135     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1136       return;
1137   }
1138 
1139   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1140   F->addTypeMetadata(0, MD);
1141 
1142   // Emit a hash-based bit set entry for cross-DSO calls.
1143   if (CodeGenOpts.SanitizeCfiCrossDso)
1144     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1145       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1146 }
1147 
1148 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1149                                           bool IsIncompleteFunction,
1150                                           bool IsThunk,
1151                                           ForDefinition_t IsForDefinition) {
1152 
1153   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1154     // If this is an intrinsic function, set the function's attributes
1155     // to the intrinsic's attributes.
1156     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1157     return;
1158   }
1159 
1160   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1161 
1162   if (!IsIncompleteFunction) {
1163     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1164     // Setup target-specific attributes.
1165     if (!IsForDefinition)
1166       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1167                                                  NotForDefinition);
1168   }
1169 
1170   // Add the Returned attribute for "this", except for iOS 5 and earlier
1171   // where substantial code, including the libstdc++ dylib, was compiled with
1172   // GCC and does not actually return "this".
1173   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1174       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1175     assert(!F->arg_empty() &&
1176            F->arg_begin()->getType()
1177              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1178            "unexpected this return");
1179     F->addAttribute(1, llvm::Attribute::Returned);
1180   }
1181 
1182   // Only a few attributes are set on declarations; these may later be
1183   // overridden by a definition.
1184 
1185   setLinkageAndVisibilityForGV(F, FD);
1186 
1187   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1188     F->addFnAttr("implicit-section-name");
1189   }
1190 
1191   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1192     F->setSection(SA->getName());
1193 
1194   if (FD->isReplaceableGlobalAllocationFunction()) {
1195     // A replaceable global allocation function does not act like a builtin by
1196     // default, only if it is invoked by a new-expression or delete-expression.
1197     F->addAttribute(llvm::AttributeList::FunctionIndex,
1198                     llvm::Attribute::NoBuiltin);
1199 
1200     // A sane operator new returns a non-aliasing pointer.
1201     // FIXME: Also add NonNull attribute to the return value
1202     // for the non-nothrow forms?
1203     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1204     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1205         (Kind == OO_New || Kind == OO_Array_New))
1206       F->addAttribute(llvm::AttributeList::ReturnIndex,
1207                       llvm::Attribute::NoAlias);
1208   }
1209 
1210   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1211     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1212   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1213     if (MD->isVirtual())
1214       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1215 
1216   // Don't emit entries for function declarations in the cross-DSO mode. This
1217   // is handled with better precision by the receiving DSO.
1218   if (!CodeGenOpts.SanitizeCfiCrossDso)
1219     CreateFunctionTypeMetadata(FD, F);
1220 }
1221 
1222 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1223   assert(!GV->isDeclaration() &&
1224          "Only globals with definition can force usage.");
1225   LLVMUsed.emplace_back(GV);
1226 }
1227 
1228 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1229   assert(!GV->isDeclaration() &&
1230          "Only globals with definition can force usage.");
1231   LLVMCompilerUsed.emplace_back(GV);
1232 }
1233 
1234 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1235                      std::vector<llvm::WeakTrackingVH> &List) {
1236   // Don't create llvm.used if there is no need.
1237   if (List.empty())
1238     return;
1239 
1240   // Convert List to what ConstantArray needs.
1241   SmallVector<llvm::Constant*, 8> UsedArray;
1242   UsedArray.resize(List.size());
1243   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1244     UsedArray[i] =
1245         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1246             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1247   }
1248 
1249   if (UsedArray.empty())
1250     return;
1251   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1252 
1253   auto *GV = new llvm::GlobalVariable(
1254       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1255       llvm::ConstantArray::get(ATy, UsedArray), Name);
1256 
1257   GV->setSection("llvm.metadata");
1258 }
1259 
1260 void CodeGenModule::emitLLVMUsed() {
1261   emitUsed(*this, "llvm.used", LLVMUsed);
1262   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1263 }
1264 
1265 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1266   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1267   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1268 }
1269 
1270 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1271   llvm::SmallString<32> Opt;
1272   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1273   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1274   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1275 }
1276 
1277 void CodeGenModule::AddDependentLib(StringRef Lib) {
1278   llvm::SmallString<24> Opt;
1279   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1280   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1281   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1282 }
1283 
1284 /// \brief Add link options implied by the given module, including modules
1285 /// it depends on, using a postorder walk.
1286 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1287                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1288                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1289   // Import this module's parent.
1290   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1291     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1292   }
1293 
1294   // Import this module's dependencies.
1295   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1296     if (Visited.insert(Mod->Imports[I - 1]).second)
1297       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1298   }
1299 
1300   // Add linker options to link against the libraries/frameworks
1301   // described by this module.
1302   llvm::LLVMContext &Context = CGM.getLLVMContext();
1303   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1304     // Link against a framework.  Frameworks are currently Darwin only, so we
1305     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1306     if (Mod->LinkLibraries[I-1].IsFramework) {
1307       llvm::Metadata *Args[2] = {
1308           llvm::MDString::get(Context, "-framework"),
1309           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1310 
1311       Metadata.push_back(llvm::MDNode::get(Context, Args));
1312       continue;
1313     }
1314 
1315     // Link against a library.
1316     llvm::SmallString<24> Opt;
1317     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1318       Mod->LinkLibraries[I-1].Library, Opt);
1319     auto *OptString = llvm::MDString::get(Context, Opt);
1320     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1321   }
1322 }
1323 
1324 void CodeGenModule::EmitModuleLinkOptions() {
1325   // Collect the set of all of the modules we want to visit to emit link
1326   // options, which is essentially the imported modules and all of their
1327   // non-explicit child modules.
1328   llvm::SetVector<clang::Module *> LinkModules;
1329   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1330   SmallVector<clang::Module *, 16> Stack;
1331 
1332   // Seed the stack with imported modules.
1333   for (Module *M : ImportedModules) {
1334     // Do not add any link flags when an implementation TU of a module imports
1335     // a header of that same module.
1336     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1337         !getLangOpts().isCompilingModule())
1338       continue;
1339     if (Visited.insert(M).second)
1340       Stack.push_back(M);
1341   }
1342 
1343   // Find all of the modules to import, making a little effort to prune
1344   // non-leaf modules.
1345   while (!Stack.empty()) {
1346     clang::Module *Mod = Stack.pop_back_val();
1347 
1348     bool AnyChildren = false;
1349 
1350     // Visit the submodules of this module.
1351     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1352                                         SubEnd = Mod->submodule_end();
1353          Sub != SubEnd; ++Sub) {
1354       // Skip explicit children; they need to be explicitly imported to be
1355       // linked against.
1356       if ((*Sub)->IsExplicit)
1357         continue;
1358 
1359       if (Visited.insert(*Sub).second) {
1360         Stack.push_back(*Sub);
1361         AnyChildren = true;
1362       }
1363     }
1364 
1365     // We didn't find any children, so add this module to the list of
1366     // modules to link against.
1367     if (!AnyChildren) {
1368       LinkModules.insert(Mod);
1369     }
1370   }
1371 
1372   // Add link options for all of the imported modules in reverse topological
1373   // order.  We don't do anything to try to order import link flags with respect
1374   // to linker options inserted by things like #pragma comment().
1375   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1376   Visited.clear();
1377   for (Module *M : LinkModules)
1378     if (Visited.insert(M).second)
1379       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1380   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1381   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1382 
1383   // Add the linker options metadata flag.
1384   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1385   for (auto *MD : LinkerOptionsMetadata)
1386     NMD->addOperand(MD);
1387 }
1388 
1389 void CodeGenModule::EmitDeferred() {
1390   // Emit code for any potentially referenced deferred decls.  Since a
1391   // previously unused static decl may become used during the generation of code
1392   // for a static function, iterate until no changes are made.
1393 
1394   if (!DeferredVTables.empty()) {
1395     EmitDeferredVTables();
1396 
1397     // Emitting a vtable doesn't directly cause more vtables to
1398     // become deferred, although it can cause functions to be
1399     // emitted that then need those vtables.
1400     assert(DeferredVTables.empty());
1401   }
1402 
1403   // Stop if we're out of both deferred vtables and deferred declarations.
1404   if (DeferredDeclsToEmit.empty())
1405     return;
1406 
1407   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1408   // work, it will not interfere with this.
1409   std::vector<GlobalDecl> CurDeclsToEmit;
1410   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1411 
1412   for (GlobalDecl &D : CurDeclsToEmit) {
1413     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1414     // to get GlobalValue with exactly the type we need, not something that
1415     // might had been created for another decl with the same mangled name but
1416     // different type.
1417     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1418         GetAddrOfGlobal(D, ForDefinition));
1419 
1420     // In case of different address spaces, we may still get a cast, even with
1421     // IsForDefinition equal to true. Query mangled names table to get
1422     // GlobalValue.
1423     if (!GV)
1424       GV = GetGlobalValue(getMangledName(D));
1425 
1426     // Make sure GetGlobalValue returned non-null.
1427     assert(GV);
1428 
1429     // Check to see if we've already emitted this.  This is necessary
1430     // for a couple of reasons: first, decls can end up in the
1431     // deferred-decls queue multiple times, and second, decls can end
1432     // up with definitions in unusual ways (e.g. by an extern inline
1433     // function acquiring a strong function redefinition).  Just
1434     // ignore these cases.
1435     if (!GV->isDeclaration())
1436       continue;
1437 
1438     // Otherwise, emit the definition and move on to the next one.
1439     EmitGlobalDefinition(D, GV);
1440 
1441     // If we found out that we need to emit more decls, do that recursively.
1442     // This has the advantage that the decls are emitted in a DFS and related
1443     // ones are close together, which is convenient for testing.
1444     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1445       EmitDeferred();
1446       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1447     }
1448   }
1449 }
1450 
1451 void CodeGenModule::EmitVTablesOpportunistically() {
1452   // Try to emit external vtables as available_externally if they have emitted
1453   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1454   // is not allowed to create new references to things that need to be emitted
1455   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1456 
1457   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1458          && "Only emit opportunistic vtables with optimizations");
1459 
1460   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1461     assert(getVTables().isVTableExternal(RD) &&
1462            "This queue should only contain external vtables");
1463     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1464       VTables.GenerateClassData(RD);
1465   }
1466   OpportunisticVTables.clear();
1467 }
1468 
1469 void CodeGenModule::EmitGlobalAnnotations() {
1470   if (Annotations.empty())
1471     return;
1472 
1473   // Create a new global variable for the ConstantStruct in the Module.
1474   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1475     Annotations[0]->getType(), Annotations.size()), Annotations);
1476   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1477                                       llvm::GlobalValue::AppendingLinkage,
1478                                       Array, "llvm.global.annotations");
1479   gv->setSection(AnnotationSection);
1480 }
1481 
1482 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1483   llvm::Constant *&AStr = AnnotationStrings[Str];
1484   if (AStr)
1485     return AStr;
1486 
1487   // Not found yet, create a new global.
1488   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1489   auto *gv =
1490       new llvm::GlobalVariable(getModule(), s->getType(), true,
1491                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1492   gv->setSection(AnnotationSection);
1493   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1494   AStr = gv;
1495   return gv;
1496 }
1497 
1498 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1499   SourceManager &SM = getContext().getSourceManager();
1500   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1501   if (PLoc.isValid())
1502     return EmitAnnotationString(PLoc.getFilename());
1503   return EmitAnnotationString(SM.getBufferName(Loc));
1504 }
1505 
1506 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1507   SourceManager &SM = getContext().getSourceManager();
1508   PresumedLoc PLoc = SM.getPresumedLoc(L);
1509   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1510     SM.getExpansionLineNumber(L);
1511   return llvm::ConstantInt::get(Int32Ty, LineNo);
1512 }
1513 
1514 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1515                                                 const AnnotateAttr *AA,
1516                                                 SourceLocation L) {
1517   // Get the globals for file name, annotation, and the line number.
1518   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1519                  *UnitGV = EmitAnnotationUnit(L),
1520                  *LineNoCst = EmitAnnotationLineNo(L);
1521 
1522   // Create the ConstantStruct for the global annotation.
1523   llvm::Constant *Fields[4] = {
1524     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1525     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1526     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1527     LineNoCst
1528   };
1529   return llvm::ConstantStruct::getAnon(Fields);
1530 }
1531 
1532 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1533                                          llvm::GlobalValue *GV) {
1534   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1535   // Get the struct elements for these annotations.
1536   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1537     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1538 }
1539 
1540 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1541                                            llvm::Function *Fn,
1542                                            SourceLocation Loc) const {
1543   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1544   // Blacklist by function name.
1545   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1546     return true;
1547   // Blacklist by location.
1548   if (Loc.isValid())
1549     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1550   // If location is unknown, this may be a compiler-generated function. Assume
1551   // it's located in the main file.
1552   auto &SM = Context.getSourceManager();
1553   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1554     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1555   }
1556   return false;
1557 }
1558 
1559 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1560                                            SourceLocation Loc, QualType Ty,
1561                                            StringRef Category) const {
1562   // For now globals can be blacklisted only in ASan and KASan.
1563   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1564       (SanitizerKind::Address | SanitizerKind::KernelAddress);
1565   if (!EnabledAsanMask)
1566     return false;
1567   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1568   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1569     return true;
1570   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1571     return true;
1572   // Check global type.
1573   if (!Ty.isNull()) {
1574     // Drill down the array types: if global variable of a fixed type is
1575     // blacklisted, we also don't instrument arrays of them.
1576     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1577       Ty = AT->getElementType();
1578     Ty = Ty.getCanonicalType().getUnqualifiedType();
1579     // We allow to blacklist only record types (classes, structs etc.)
1580     if (Ty->isRecordType()) {
1581       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1582       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1583         return true;
1584     }
1585   }
1586   return false;
1587 }
1588 
1589 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1590                                    StringRef Category) const {
1591   if (!LangOpts.XRayInstrument)
1592     return false;
1593   const auto &XRayFilter = getContext().getXRayFilter();
1594   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1595   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1596   if (Loc.isValid())
1597     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1598   if (Attr == ImbueAttr::NONE)
1599     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1600   switch (Attr) {
1601   case ImbueAttr::NONE:
1602     return false;
1603   case ImbueAttr::ALWAYS:
1604     Fn->addFnAttr("function-instrument", "xray-always");
1605     break;
1606   case ImbueAttr::ALWAYS_ARG1:
1607     Fn->addFnAttr("function-instrument", "xray-always");
1608     Fn->addFnAttr("xray-log-args", "1");
1609     break;
1610   case ImbueAttr::NEVER:
1611     Fn->addFnAttr("function-instrument", "xray-never");
1612     break;
1613   }
1614   return true;
1615 }
1616 
1617 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1618   // Never defer when EmitAllDecls is specified.
1619   if (LangOpts.EmitAllDecls)
1620     return true;
1621 
1622   return getContext().DeclMustBeEmitted(Global);
1623 }
1624 
1625 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1626   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1627     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1628       // Implicit template instantiations may change linkage if they are later
1629       // explicitly instantiated, so they should not be emitted eagerly.
1630       return false;
1631   if (const auto *VD = dyn_cast<VarDecl>(Global))
1632     if (Context.getInlineVariableDefinitionKind(VD) ==
1633         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1634       // A definition of an inline constexpr static data member may change
1635       // linkage later if it's redeclared outside the class.
1636       return false;
1637   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1638   // codegen for global variables, because they may be marked as threadprivate.
1639   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1640       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1641     return false;
1642 
1643   return true;
1644 }
1645 
1646 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1647     const CXXUuidofExpr* E) {
1648   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1649   // well-formed.
1650   StringRef Uuid = E->getUuidStr();
1651   std::string Name = "_GUID_" + Uuid.lower();
1652   std::replace(Name.begin(), Name.end(), '-', '_');
1653 
1654   // The UUID descriptor should be pointer aligned.
1655   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1656 
1657   // Look for an existing global.
1658   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1659     return ConstantAddress(GV, Alignment);
1660 
1661   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1662   assert(Init && "failed to initialize as constant");
1663 
1664   auto *GV = new llvm::GlobalVariable(
1665       getModule(), Init->getType(),
1666       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1667   if (supportsCOMDAT())
1668     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1669   return ConstantAddress(GV, Alignment);
1670 }
1671 
1672 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1673   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1674   assert(AA && "No alias?");
1675 
1676   CharUnits Alignment = getContext().getDeclAlign(VD);
1677   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1678 
1679   // See if there is already something with the target's name in the module.
1680   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1681   if (Entry) {
1682     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1683     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1684     return ConstantAddress(Ptr, Alignment);
1685   }
1686 
1687   llvm::Constant *Aliasee;
1688   if (isa<llvm::FunctionType>(DeclTy))
1689     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1690                                       GlobalDecl(cast<FunctionDecl>(VD)),
1691                                       /*ForVTable=*/false);
1692   else
1693     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1694                                     llvm::PointerType::getUnqual(DeclTy),
1695                                     nullptr);
1696 
1697   auto *F = cast<llvm::GlobalValue>(Aliasee);
1698   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1699   WeakRefReferences.insert(F);
1700 
1701   return ConstantAddress(Aliasee, Alignment);
1702 }
1703 
1704 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1705   const auto *Global = cast<ValueDecl>(GD.getDecl());
1706 
1707   // Weak references don't produce any output by themselves.
1708   if (Global->hasAttr<WeakRefAttr>())
1709     return;
1710 
1711   // If this is an alias definition (which otherwise looks like a declaration)
1712   // emit it now.
1713   if (Global->hasAttr<AliasAttr>())
1714     return EmitAliasDefinition(GD);
1715 
1716   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1717   if (Global->hasAttr<IFuncAttr>())
1718     return emitIFuncDefinition(GD);
1719 
1720   // If this is CUDA, be selective about which declarations we emit.
1721   if (LangOpts.CUDA) {
1722     if (LangOpts.CUDAIsDevice) {
1723       if (!Global->hasAttr<CUDADeviceAttr>() &&
1724           !Global->hasAttr<CUDAGlobalAttr>() &&
1725           !Global->hasAttr<CUDAConstantAttr>() &&
1726           !Global->hasAttr<CUDASharedAttr>())
1727         return;
1728     } else {
1729       // We need to emit host-side 'shadows' for all global
1730       // device-side variables because the CUDA runtime needs their
1731       // size and host-side address in order to provide access to
1732       // their device-side incarnations.
1733 
1734       // So device-only functions are the only things we skip.
1735       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1736           Global->hasAttr<CUDADeviceAttr>())
1737         return;
1738 
1739       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1740              "Expected Variable or Function");
1741     }
1742   }
1743 
1744   if (LangOpts.OpenMP) {
1745     // If this is OpenMP device, check if it is legal to emit this global
1746     // normally.
1747     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1748       return;
1749     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1750       if (MustBeEmitted(Global))
1751         EmitOMPDeclareReduction(DRD);
1752       return;
1753     }
1754   }
1755 
1756   // Ignore declarations, they will be emitted on their first use.
1757   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1758     // Forward declarations are emitted lazily on first use.
1759     if (!FD->doesThisDeclarationHaveABody()) {
1760       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1761         return;
1762 
1763       StringRef MangledName = getMangledName(GD);
1764 
1765       // Compute the function info and LLVM type.
1766       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1767       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1768 
1769       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1770                               /*DontDefer=*/false);
1771       return;
1772     }
1773   } else {
1774     const auto *VD = cast<VarDecl>(Global);
1775     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1776     // We need to emit device-side global CUDA variables even if a
1777     // variable does not have a definition -- we still need to define
1778     // host-side shadow for it.
1779     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1780                            !VD->hasDefinition() &&
1781                            (VD->hasAttr<CUDAConstantAttr>() ||
1782                             VD->hasAttr<CUDADeviceAttr>());
1783     if (!MustEmitForCuda &&
1784         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1785         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1786       // If this declaration may have caused an inline variable definition to
1787       // change linkage, make sure that it's emitted.
1788       if (Context.getInlineVariableDefinitionKind(VD) ==
1789           ASTContext::InlineVariableDefinitionKind::Strong)
1790         GetAddrOfGlobalVar(VD);
1791       return;
1792     }
1793   }
1794 
1795   // Defer code generation to first use when possible, e.g. if this is an inline
1796   // function. If the global must always be emitted, do it eagerly if possible
1797   // to benefit from cache locality.
1798   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1799     // Emit the definition if it can't be deferred.
1800     EmitGlobalDefinition(GD);
1801     return;
1802   }
1803 
1804   // If we're deferring emission of a C++ variable with an
1805   // initializer, remember the order in which it appeared in the file.
1806   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1807       cast<VarDecl>(Global)->hasInit()) {
1808     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1809     CXXGlobalInits.push_back(nullptr);
1810   }
1811 
1812   StringRef MangledName = getMangledName(GD);
1813   if (GetGlobalValue(MangledName) != nullptr) {
1814     // The value has already been used and should therefore be emitted.
1815     addDeferredDeclToEmit(GD);
1816   } else if (MustBeEmitted(Global)) {
1817     // The value must be emitted, but cannot be emitted eagerly.
1818     assert(!MayBeEmittedEagerly(Global));
1819     addDeferredDeclToEmit(GD);
1820   } else {
1821     // Otherwise, remember that we saw a deferred decl with this name.  The
1822     // first use of the mangled name will cause it to move into
1823     // DeferredDeclsToEmit.
1824     DeferredDecls[MangledName] = GD;
1825   }
1826 }
1827 
1828 // Check if T is a class type with a destructor that's not dllimport.
1829 static bool HasNonDllImportDtor(QualType T) {
1830   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1831     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1832       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1833         return true;
1834 
1835   return false;
1836 }
1837 
1838 namespace {
1839   struct FunctionIsDirectlyRecursive :
1840     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1841     const StringRef Name;
1842     const Builtin::Context &BI;
1843     bool Result;
1844     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1845       Name(N), BI(C), Result(false) {
1846     }
1847     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1848 
1849     bool TraverseCallExpr(CallExpr *E) {
1850       const FunctionDecl *FD = E->getDirectCallee();
1851       if (!FD)
1852         return true;
1853       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1854       if (Attr && Name == Attr->getLabel()) {
1855         Result = true;
1856         return false;
1857       }
1858       unsigned BuiltinID = FD->getBuiltinID();
1859       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1860         return true;
1861       StringRef BuiltinName = BI.getName(BuiltinID);
1862       if (BuiltinName.startswith("__builtin_") &&
1863           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1864         Result = true;
1865         return false;
1866       }
1867       return true;
1868     }
1869   };
1870 
1871   // Make sure we're not referencing non-imported vars or functions.
1872   struct DLLImportFunctionVisitor
1873       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1874     bool SafeToInline = true;
1875 
1876     bool shouldVisitImplicitCode() const { return true; }
1877 
1878     bool VisitVarDecl(VarDecl *VD) {
1879       if (VD->getTLSKind()) {
1880         // A thread-local variable cannot be imported.
1881         SafeToInline = false;
1882         return SafeToInline;
1883       }
1884 
1885       // A variable definition might imply a destructor call.
1886       if (VD->isThisDeclarationADefinition())
1887         SafeToInline = !HasNonDllImportDtor(VD->getType());
1888 
1889       return SafeToInline;
1890     }
1891 
1892     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1893       if (const auto *D = E->getTemporary()->getDestructor())
1894         SafeToInline = D->hasAttr<DLLImportAttr>();
1895       return SafeToInline;
1896     }
1897 
1898     bool VisitDeclRefExpr(DeclRefExpr *E) {
1899       ValueDecl *VD = E->getDecl();
1900       if (isa<FunctionDecl>(VD))
1901         SafeToInline = VD->hasAttr<DLLImportAttr>();
1902       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1903         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1904       return SafeToInline;
1905     }
1906 
1907     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1908       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1909       return SafeToInline;
1910     }
1911 
1912     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1913       CXXMethodDecl *M = E->getMethodDecl();
1914       if (!M) {
1915         // Call through a pointer to member function. This is safe to inline.
1916         SafeToInline = true;
1917       } else {
1918         SafeToInline = M->hasAttr<DLLImportAttr>();
1919       }
1920       return SafeToInline;
1921     }
1922 
1923     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1924       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1925       return SafeToInline;
1926     }
1927 
1928     bool VisitCXXNewExpr(CXXNewExpr *E) {
1929       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1930       return SafeToInline;
1931     }
1932   };
1933 }
1934 
1935 // isTriviallyRecursive - Check if this function calls another
1936 // decl that, because of the asm attribute or the other decl being a builtin,
1937 // ends up pointing to itself.
1938 bool
1939 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1940   StringRef Name;
1941   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1942     // asm labels are a special kind of mangling we have to support.
1943     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1944     if (!Attr)
1945       return false;
1946     Name = Attr->getLabel();
1947   } else {
1948     Name = FD->getName();
1949   }
1950 
1951   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1952   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1953   return Walker.Result;
1954 }
1955 
1956 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1957   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1958     return true;
1959   const auto *F = cast<FunctionDecl>(GD.getDecl());
1960   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1961     return false;
1962 
1963   if (F->hasAttr<DLLImportAttr>()) {
1964     // Check whether it would be safe to inline this dllimport function.
1965     DLLImportFunctionVisitor Visitor;
1966     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1967     if (!Visitor.SafeToInline)
1968       return false;
1969 
1970     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1971       // Implicit destructor invocations aren't captured in the AST, so the
1972       // check above can't see them. Check for them manually here.
1973       for (const Decl *Member : Dtor->getParent()->decls())
1974         if (isa<FieldDecl>(Member))
1975           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1976             return false;
1977       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1978         if (HasNonDllImportDtor(B.getType()))
1979           return false;
1980     }
1981   }
1982 
1983   // PR9614. Avoid cases where the source code is lying to us. An available
1984   // externally function should have an equivalent function somewhere else,
1985   // but a function that calls itself is clearly not equivalent to the real
1986   // implementation.
1987   // This happens in glibc's btowc and in some configure checks.
1988   return !isTriviallyRecursive(F);
1989 }
1990 
1991 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
1992   return CodeGenOpts.OptimizationLevel > 0;
1993 }
1994 
1995 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1996   const auto *D = cast<ValueDecl>(GD.getDecl());
1997 
1998   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1999                                  Context.getSourceManager(),
2000                                  "Generating code for declaration");
2001 
2002   if (isa<FunctionDecl>(D)) {
2003     // At -O0, don't generate IR for functions with available_externally
2004     // linkage.
2005     if (!shouldEmitFunction(GD))
2006       return;
2007 
2008     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2009       // Make sure to emit the definition(s) before we emit the thunks.
2010       // This is necessary for the generation of certain thunks.
2011       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2012         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2013       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2014         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2015       else
2016         EmitGlobalFunctionDefinition(GD, GV);
2017 
2018       if (Method->isVirtual())
2019         getVTables().EmitThunks(GD);
2020 
2021       return;
2022     }
2023 
2024     return EmitGlobalFunctionDefinition(GD, GV);
2025   }
2026 
2027   if (const auto *VD = dyn_cast<VarDecl>(D))
2028     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2029 
2030   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2031 }
2032 
2033 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2034                                                       llvm::Function *NewFn);
2035 
2036 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2037 /// module, create and return an llvm Function with the specified type. If there
2038 /// is something in the module with the specified name, return it potentially
2039 /// bitcasted to the right type.
2040 ///
2041 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2042 /// to set the attributes on the function when it is first created.
2043 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2044     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2045     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2046     ForDefinition_t IsForDefinition) {
2047   const Decl *D = GD.getDecl();
2048 
2049   // Lookup the entry, lazily creating it if necessary.
2050   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2051   if (Entry) {
2052     if (WeakRefReferences.erase(Entry)) {
2053       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2054       if (FD && !FD->hasAttr<WeakAttr>())
2055         Entry->setLinkage(llvm::Function::ExternalLinkage);
2056     }
2057 
2058     // Handle dropped DLL attributes.
2059     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2060       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2061 
2062     // If there are two attempts to define the same mangled name, issue an
2063     // error.
2064     if (IsForDefinition && !Entry->isDeclaration()) {
2065       GlobalDecl OtherGD;
2066       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2067       // to make sure that we issue an error only once.
2068       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2069           (GD.getCanonicalDecl().getDecl() !=
2070            OtherGD.getCanonicalDecl().getDecl()) &&
2071           DiagnosedConflictingDefinitions.insert(GD).second) {
2072         getDiags().Report(D->getLocation(),
2073                           diag::err_duplicate_mangled_name);
2074         getDiags().Report(OtherGD.getDecl()->getLocation(),
2075                           diag::note_previous_definition);
2076       }
2077     }
2078 
2079     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2080         (Entry->getType()->getElementType() == Ty)) {
2081       return Entry;
2082     }
2083 
2084     // Make sure the result is of the correct type.
2085     // (If function is requested for a definition, we always need to create a new
2086     // function, not just return a bitcast.)
2087     if (!IsForDefinition)
2088       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2089   }
2090 
2091   // This function doesn't have a complete type (for example, the return
2092   // type is an incomplete struct). Use a fake type instead, and make
2093   // sure not to try to set attributes.
2094   bool IsIncompleteFunction = false;
2095 
2096   llvm::FunctionType *FTy;
2097   if (isa<llvm::FunctionType>(Ty)) {
2098     FTy = cast<llvm::FunctionType>(Ty);
2099   } else {
2100     FTy = llvm::FunctionType::get(VoidTy, false);
2101     IsIncompleteFunction = true;
2102   }
2103 
2104   llvm::Function *F =
2105       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2106                              Entry ? StringRef() : MangledName, &getModule());
2107 
2108   // If we already created a function with the same mangled name (but different
2109   // type) before, take its name and add it to the list of functions to be
2110   // replaced with F at the end of CodeGen.
2111   //
2112   // This happens if there is a prototype for a function (e.g. "int f()") and
2113   // then a definition of a different type (e.g. "int f(int x)").
2114   if (Entry) {
2115     F->takeName(Entry);
2116 
2117     // This might be an implementation of a function without a prototype, in
2118     // which case, try to do special replacement of calls which match the new
2119     // prototype.  The really key thing here is that we also potentially drop
2120     // arguments from the call site so as to make a direct call, which makes the
2121     // inliner happier and suppresses a number of optimizer warnings (!) about
2122     // dropping arguments.
2123     if (!Entry->use_empty()) {
2124       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2125       Entry->removeDeadConstantUsers();
2126     }
2127 
2128     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2129         F, Entry->getType()->getElementType()->getPointerTo());
2130     addGlobalValReplacement(Entry, BC);
2131   }
2132 
2133   assert(F->getName() == MangledName && "name was uniqued!");
2134   if (D)
2135     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2136                           IsForDefinition);
2137   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2138     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2139     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2140   }
2141 
2142   if (!DontDefer) {
2143     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2144     // each other bottoming out with the base dtor.  Therefore we emit non-base
2145     // dtors on usage, even if there is no dtor definition in the TU.
2146     if (D && isa<CXXDestructorDecl>(D) &&
2147         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2148                                            GD.getDtorType()))
2149       addDeferredDeclToEmit(GD);
2150 
2151     // This is the first use or definition of a mangled name.  If there is a
2152     // deferred decl with this name, remember that we need to emit it at the end
2153     // of the file.
2154     auto DDI = DeferredDecls.find(MangledName);
2155     if (DDI != DeferredDecls.end()) {
2156       // Move the potentially referenced deferred decl to the
2157       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2158       // don't need it anymore).
2159       addDeferredDeclToEmit(DDI->second);
2160       DeferredDecls.erase(DDI);
2161 
2162       // Otherwise, there are cases we have to worry about where we're
2163       // using a declaration for which we must emit a definition but where
2164       // we might not find a top-level definition:
2165       //   - member functions defined inline in their classes
2166       //   - friend functions defined inline in some class
2167       //   - special member functions with implicit definitions
2168       // If we ever change our AST traversal to walk into class methods,
2169       // this will be unnecessary.
2170       //
2171       // We also don't emit a definition for a function if it's going to be an
2172       // entry in a vtable, unless it's already marked as used.
2173     } else if (getLangOpts().CPlusPlus && D) {
2174       // Look for a declaration that's lexically in a record.
2175       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2176            FD = FD->getPreviousDecl()) {
2177         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2178           if (FD->doesThisDeclarationHaveABody()) {
2179             addDeferredDeclToEmit(GD.getWithDecl(FD));
2180             break;
2181           }
2182         }
2183       }
2184     }
2185   }
2186 
2187   // Make sure the result is of the requested type.
2188   if (!IsIncompleteFunction) {
2189     assert(F->getType()->getElementType() == Ty);
2190     return F;
2191   }
2192 
2193   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2194   return llvm::ConstantExpr::getBitCast(F, PTy);
2195 }
2196 
2197 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2198 /// non-null, then this function will use the specified type if it has to
2199 /// create it (this occurs when we see a definition of the function).
2200 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2201                                                  llvm::Type *Ty,
2202                                                  bool ForVTable,
2203                                                  bool DontDefer,
2204                                               ForDefinition_t IsForDefinition) {
2205   // If there was no specific requested type, just convert it now.
2206   if (!Ty) {
2207     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2208     auto CanonTy = Context.getCanonicalType(FD->getType());
2209     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2210   }
2211 
2212   StringRef MangledName = getMangledName(GD);
2213   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2214                                  /*IsThunk=*/false, llvm::AttributeList(),
2215                                  IsForDefinition);
2216 }
2217 
2218 static const FunctionDecl *
2219 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2220   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2221   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2222 
2223   IdentifierInfo &CII = C.Idents.get(Name);
2224   for (const auto &Result : DC->lookup(&CII))
2225     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2226       return FD;
2227 
2228   if (!C.getLangOpts().CPlusPlus)
2229     return nullptr;
2230 
2231   // Demangle the premangled name from getTerminateFn()
2232   IdentifierInfo &CXXII =
2233       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2234           ? C.Idents.get("terminate")
2235           : C.Idents.get(Name);
2236 
2237   for (const auto &N : {"__cxxabiv1", "std"}) {
2238     IdentifierInfo &NS = C.Idents.get(N);
2239     for (const auto &Result : DC->lookup(&NS)) {
2240       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2241       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2242         for (const auto &Result : LSD->lookup(&NS))
2243           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2244             break;
2245 
2246       if (ND)
2247         for (const auto &Result : ND->lookup(&CXXII))
2248           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2249             return FD;
2250     }
2251   }
2252 
2253   return nullptr;
2254 }
2255 
2256 /// CreateRuntimeFunction - Create a new runtime function with the specified
2257 /// type and name.
2258 llvm::Constant *
2259 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2260                                      llvm::AttributeList ExtraAttrs,
2261                                      bool Local) {
2262   llvm::Constant *C =
2263       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2264                               /*DontDefer=*/false, /*IsThunk=*/false,
2265                               ExtraAttrs);
2266 
2267   if (auto *F = dyn_cast<llvm::Function>(C)) {
2268     if (F->empty()) {
2269       F->setCallingConv(getRuntimeCC());
2270 
2271       if (!Local && getTriple().isOSBinFormatCOFF() &&
2272           !getCodeGenOpts().LTOVisibilityPublicStd) {
2273         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2274         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2275           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2276           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2277         }
2278       }
2279     }
2280   }
2281 
2282   return C;
2283 }
2284 
2285 /// CreateBuiltinFunction - Create a new builtin function with the specified
2286 /// type and name.
2287 llvm::Constant *
2288 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2289                                      llvm::AttributeList ExtraAttrs) {
2290   llvm::Constant *C =
2291       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2292                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2293   if (auto *F = dyn_cast<llvm::Function>(C))
2294     if (F->empty())
2295       F->setCallingConv(getBuiltinCC());
2296   return C;
2297 }
2298 
2299 /// isTypeConstant - Determine whether an object of this type can be emitted
2300 /// as a constant.
2301 ///
2302 /// If ExcludeCtor is true, the duration when the object's constructor runs
2303 /// will not be considered. The caller will need to verify that the object is
2304 /// not written to during its construction.
2305 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2306   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2307     return false;
2308 
2309   if (Context.getLangOpts().CPlusPlus) {
2310     if (const CXXRecordDecl *Record
2311           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2312       return ExcludeCtor && !Record->hasMutableFields() &&
2313              Record->hasTrivialDestructor();
2314   }
2315 
2316   return true;
2317 }
2318 
2319 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2320 /// create and return an llvm GlobalVariable with the specified type.  If there
2321 /// is something in the module with the specified name, return it potentially
2322 /// bitcasted to the right type.
2323 ///
2324 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2325 /// to set the attributes on the global when it is first created.
2326 ///
2327 /// If IsForDefinition is true, it is guranteed that an actual global with
2328 /// type Ty will be returned, not conversion of a variable with the same
2329 /// mangled name but some other type.
2330 llvm::Constant *
2331 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2332                                      llvm::PointerType *Ty,
2333                                      const VarDecl *D,
2334                                      ForDefinition_t IsForDefinition) {
2335   // Lookup the entry, lazily creating it if necessary.
2336   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2337   if (Entry) {
2338     if (WeakRefReferences.erase(Entry)) {
2339       if (D && !D->hasAttr<WeakAttr>())
2340         Entry->setLinkage(llvm::Function::ExternalLinkage);
2341     }
2342 
2343     // Handle dropped DLL attributes.
2344     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2345       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2346 
2347     if (Entry->getType() == Ty)
2348       return Entry;
2349 
2350     // If there are two attempts to define the same mangled name, issue an
2351     // error.
2352     if (IsForDefinition && !Entry->isDeclaration()) {
2353       GlobalDecl OtherGD;
2354       const VarDecl *OtherD;
2355 
2356       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2357       // to make sure that we issue an error only once.
2358       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2359           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2360           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2361           OtherD->hasInit() &&
2362           DiagnosedConflictingDefinitions.insert(D).second) {
2363         getDiags().Report(D->getLocation(),
2364                           diag::err_duplicate_mangled_name);
2365         getDiags().Report(OtherGD.getDecl()->getLocation(),
2366                           diag::note_previous_definition);
2367       }
2368     }
2369 
2370     // Make sure the result is of the correct type.
2371     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2372       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2373 
2374     // (If global is requested for a definition, we always need to create a new
2375     // global, not just return a bitcast.)
2376     if (!IsForDefinition)
2377       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2378   }
2379 
2380   auto AddrSpace = GetGlobalVarAddressSpace(D);
2381   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2382 
2383   auto *GV = new llvm::GlobalVariable(
2384       getModule(), Ty->getElementType(), false,
2385       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2386       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2387 
2388   // If we already created a global with the same mangled name (but different
2389   // type) before, take its name and remove it from its parent.
2390   if (Entry) {
2391     GV->takeName(Entry);
2392 
2393     if (!Entry->use_empty()) {
2394       llvm::Constant *NewPtrForOldDecl =
2395           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2396       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2397     }
2398 
2399     Entry->eraseFromParent();
2400   }
2401 
2402   // This is the first use or definition of a mangled name.  If there is a
2403   // deferred decl with this name, remember that we need to emit it at the end
2404   // of the file.
2405   auto DDI = DeferredDecls.find(MangledName);
2406   if (DDI != DeferredDecls.end()) {
2407     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2408     // list, and remove it from DeferredDecls (since we don't need it anymore).
2409     addDeferredDeclToEmit(DDI->second);
2410     DeferredDecls.erase(DDI);
2411   }
2412 
2413   // Handle things which are present even on external declarations.
2414   if (D) {
2415     // FIXME: This code is overly simple and should be merged with other global
2416     // handling.
2417     GV->setConstant(isTypeConstant(D->getType(), false));
2418 
2419     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2420 
2421     setLinkageAndVisibilityForGV(GV, D);
2422 
2423     if (D->getTLSKind()) {
2424       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2425         CXXThreadLocals.push_back(D);
2426       setTLSMode(GV, *D);
2427     }
2428 
2429     // If required by the ABI, treat declarations of static data members with
2430     // inline initializers as definitions.
2431     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2432       EmitGlobalVarDefinition(D);
2433     }
2434 
2435     // Emit section information for extern variables.
2436     if (D->hasExternalStorage()) {
2437       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2438         GV->setSection(SA->getName());
2439     }
2440 
2441     // Handle XCore specific ABI requirements.
2442     if (getTriple().getArch() == llvm::Triple::xcore &&
2443         D->getLanguageLinkage() == CLanguageLinkage &&
2444         D->getType().isConstant(Context) &&
2445         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2446       GV->setSection(".cp.rodata");
2447 
2448     // Check if we a have a const declaration with an initializer, we may be
2449     // able to emit it as available_externally to expose it's value to the
2450     // optimizer.
2451     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2452         D->getType().isConstQualified() && !GV->hasInitializer() &&
2453         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2454       const auto *Record =
2455           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2456       bool HasMutableFields = Record && Record->hasMutableFields();
2457       if (!HasMutableFields) {
2458         const VarDecl *InitDecl;
2459         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2460         if (InitExpr) {
2461           ConstantEmitter emitter(*this);
2462           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2463           if (Init) {
2464             auto *InitType = Init->getType();
2465             if (GV->getType()->getElementType() != InitType) {
2466               // The type of the initializer does not match the definition.
2467               // This happens when an initializer has a different type from
2468               // the type of the global (because of padding at the end of a
2469               // structure for instance).
2470               GV->setName(StringRef());
2471               // Make a new global with the correct type, this is now guaranteed
2472               // to work.
2473               auto *NewGV = cast<llvm::GlobalVariable>(
2474                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2475 
2476               // Erase the old global, since it is no longer used.
2477               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2478               GV = NewGV;
2479             } else {
2480               GV->setInitializer(Init);
2481               GV->setConstant(true);
2482               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2483             }
2484             emitter.finalize(GV);
2485           }
2486         }
2487       }
2488     }
2489   }
2490 
2491   auto ExpectedAS =
2492       D ? D->getType().getAddressSpace()
2493         : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global
2494                                                 : LangAS::Default);
2495   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2496          Ty->getPointerAddressSpace());
2497   if (AddrSpace != ExpectedAS)
2498     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2499                                                        ExpectedAS, Ty);
2500 
2501   return GV;
2502 }
2503 
2504 llvm::Constant *
2505 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2506                                ForDefinition_t IsForDefinition) {
2507   const Decl *D = GD.getDecl();
2508   if (isa<CXXConstructorDecl>(D))
2509     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2510                                 getFromCtorType(GD.getCtorType()),
2511                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2512                                 /*DontDefer=*/false, IsForDefinition);
2513   else if (isa<CXXDestructorDecl>(D))
2514     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2515                                 getFromDtorType(GD.getDtorType()),
2516                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2517                                 /*DontDefer=*/false, IsForDefinition);
2518   else if (isa<CXXMethodDecl>(D)) {
2519     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2520         cast<CXXMethodDecl>(D));
2521     auto Ty = getTypes().GetFunctionType(*FInfo);
2522     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2523                              IsForDefinition);
2524   } else if (isa<FunctionDecl>(D)) {
2525     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2526     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2527     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2528                              IsForDefinition);
2529   } else
2530     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2531                               IsForDefinition);
2532 }
2533 
2534 llvm::GlobalVariable *
2535 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2536                                       llvm::Type *Ty,
2537                                       llvm::GlobalValue::LinkageTypes Linkage) {
2538   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2539   llvm::GlobalVariable *OldGV = nullptr;
2540 
2541   if (GV) {
2542     // Check if the variable has the right type.
2543     if (GV->getType()->getElementType() == Ty)
2544       return GV;
2545 
2546     // Because C++ name mangling, the only way we can end up with an already
2547     // existing global with the same name is if it has been declared extern "C".
2548     assert(GV->isDeclaration() && "Declaration has wrong type!");
2549     OldGV = GV;
2550   }
2551 
2552   // Create a new variable.
2553   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2554                                 Linkage, nullptr, Name);
2555 
2556   if (OldGV) {
2557     // Replace occurrences of the old variable if needed.
2558     GV->takeName(OldGV);
2559 
2560     if (!OldGV->use_empty()) {
2561       llvm::Constant *NewPtrForOldDecl =
2562       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2563       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2564     }
2565 
2566     OldGV->eraseFromParent();
2567   }
2568 
2569   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2570       !GV->hasAvailableExternallyLinkage())
2571     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2572 
2573   return GV;
2574 }
2575 
2576 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2577 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2578 /// then it will be created with the specified type instead of whatever the
2579 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2580 /// that an actual global with type Ty will be returned, not conversion of a
2581 /// variable with the same mangled name but some other type.
2582 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2583                                                   llvm::Type *Ty,
2584                                            ForDefinition_t IsForDefinition) {
2585   assert(D->hasGlobalStorage() && "Not a global variable");
2586   QualType ASTTy = D->getType();
2587   if (!Ty)
2588     Ty = getTypes().ConvertTypeForMem(ASTTy);
2589 
2590   llvm::PointerType *PTy =
2591     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2592 
2593   StringRef MangledName = getMangledName(D);
2594   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2595 }
2596 
2597 /// CreateRuntimeVariable - Create a new runtime global variable with the
2598 /// specified type and name.
2599 llvm::Constant *
2600 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2601                                      StringRef Name) {
2602   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2603 }
2604 
2605 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2606   assert(!D->getInit() && "Cannot emit definite definitions here!");
2607 
2608   StringRef MangledName = getMangledName(D);
2609   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2610 
2611   // We already have a definition, not declaration, with the same mangled name.
2612   // Emitting of declaration is not required (and actually overwrites emitted
2613   // definition).
2614   if (GV && !GV->isDeclaration())
2615     return;
2616 
2617   // If we have not seen a reference to this variable yet, place it into the
2618   // deferred declarations table to be emitted if needed later.
2619   if (!MustBeEmitted(D) && !GV) {
2620       DeferredDecls[MangledName] = D;
2621       return;
2622   }
2623 
2624   // The tentative definition is the only definition.
2625   EmitGlobalVarDefinition(D);
2626 }
2627 
2628 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2629   return Context.toCharUnitsFromBits(
2630       getDataLayout().getTypeStoreSizeInBits(Ty));
2631 }
2632 
2633 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2634   unsigned AddrSpace;
2635   if (LangOpts.OpenCL) {
2636     AddrSpace = D ? D->getType().getAddressSpace()
2637                   : static_cast<unsigned>(LangAS::opencl_global);
2638     assert(AddrSpace == LangAS::opencl_global ||
2639            AddrSpace == LangAS::opencl_constant ||
2640            AddrSpace == LangAS::opencl_local ||
2641            AddrSpace >= LangAS::FirstTargetAddressSpace);
2642     return AddrSpace;
2643   }
2644 
2645   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2646     if (D && D->hasAttr<CUDAConstantAttr>())
2647       return LangAS::cuda_constant;
2648     else if (D && D->hasAttr<CUDASharedAttr>())
2649       return LangAS::cuda_shared;
2650     else
2651       return LangAS::cuda_device;
2652   }
2653 
2654   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2655 }
2656 
2657 template<typename SomeDecl>
2658 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2659                                                llvm::GlobalValue *GV) {
2660   if (!getLangOpts().CPlusPlus)
2661     return;
2662 
2663   // Must have 'used' attribute, or else inline assembly can't rely on
2664   // the name existing.
2665   if (!D->template hasAttr<UsedAttr>())
2666     return;
2667 
2668   // Must have internal linkage and an ordinary name.
2669   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2670     return;
2671 
2672   // Must be in an extern "C" context. Entities declared directly within
2673   // a record are not extern "C" even if the record is in such a context.
2674   const SomeDecl *First = D->getFirstDecl();
2675   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2676     return;
2677 
2678   // OK, this is an internal linkage entity inside an extern "C" linkage
2679   // specification. Make a note of that so we can give it the "expected"
2680   // mangled name if nothing else is using that name.
2681   std::pair<StaticExternCMap::iterator, bool> R =
2682       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2683 
2684   // If we have multiple internal linkage entities with the same name
2685   // in extern "C" regions, none of them gets that name.
2686   if (!R.second)
2687     R.first->second = nullptr;
2688 }
2689 
2690 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2691   if (!CGM.supportsCOMDAT())
2692     return false;
2693 
2694   if (D.hasAttr<SelectAnyAttr>())
2695     return true;
2696 
2697   GVALinkage Linkage;
2698   if (auto *VD = dyn_cast<VarDecl>(&D))
2699     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2700   else
2701     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2702 
2703   switch (Linkage) {
2704   case GVA_Internal:
2705   case GVA_AvailableExternally:
2706   case GVA_StrongExternal:
2707     return false;
2708   case GVA_DiscardableODR:
2709   case GVA_StrongODR:
2710     return true;
2711   }
2712   llvm_unreachable("No such linkage");
2713 }
2714 
2715 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2716                                           llvm::GlobalObject &GO) {
2717   if (!shouldBeInCOMDAT(*this, D))
2718     return;
2719   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2720 }
2721 
2722 /// Pass IsTentative as true if you want to create a tentative definition.
2723 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2724                                             bool IsTentative) {
2725   // OpenCL global variables of sampler type are translated to function calls,
2726   // therefore no need to be translated.
2727   QualType ASTTy = D->getType();
2728   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2729     return;
2730 
2731   llvm::Constant *Init = nullptr;
2732   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2733   bool NeedsGlobalCtor = false;
2734   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2735 
2736   const VarDecl *InitDecl;
2737   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2738 
2739   Optional<ConstantEmitter> emitter;
2740 
2741   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2742   // as part of their declaration."  Sema has already checked for
2743   // error cases, so we just need to set Init to UndefValue.
2744   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2745       D->hasAttr<CUDASharedAttr>())
2746     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2747   else if (!InitExpr) {
2748     // This is a tentative definition; tentative definitions are
2749     // implicitly initialized with { 0 }.
2750     //
2751     // Note that tentative definitions are only emitted at the end of
2752     // a translation unit, so they should never have incomplete
2753     // type. In addition, EmitTentativeDefinition makes sure that we
2754     // never attempt to emit a tentative definition if a real one
2755     // exists. A use may still exists, however, so we still may need
2756     // to do a RAUW.
2757     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2758     Init = EmitNullConstant(D->getType());
2759   } else {
2760     initializedGlobalDecl = GlobalDecl(D);
2761     emitter.emplace(*this);
2762     Init = emitter->tryEmitForInitializer(*InitDecl);
2763 
2764     if (!Init) {
2765       QualType T = InitExpr->getType();
2766       if (D->getType()->isReferenceType())
2767         T = D->getType();
2768 
2769       if (getLangOpts().CPlusPlus) {
2770         Init = EmitNullConstant(T);
2771         NeedsGlobalCtor = true;
2772       } else {
2773         ErrorUnsupported(D, "static initializer");
2774         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2775       }
2776     } else {
2777       // We don't need an initializer, so remove the entry for the delayed
2778       // initializer position (just in case this entry was delayed) if we
2779       // also don't need to register a destructor.
2780       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2781         DelayedCXXInitPosition.erase(D);
2782     }
2783   }
2784 
2785   llvm::Type* InitType = Init->getType();
2786   llvm::Constant *Entry =
2787       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2788 
2789   // Strip off a bitcast if we got one back.
2790   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2791     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2792            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2793            // All zero index gep.
2794            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2795     Entry = CE->getOperand(0);
2796   }
2797 
2798   // Entry is now either a Function or GlobalVariable.
2799   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2800 
2801   // We have a definition after a declaration with the wrong type.
2802   // We must make a new GlobalVariable* and update everything that used OldGV
2803   // (a declaration or tentative definition) with the new GlobalVariable*
2804   // (which will be a definition).
2805   //
2806   // This happens if there is a prototype for a global (e.g.
2807   // "extern int x[];") and then a definition of a different type (e.g.
2808   // "int x[10];"). This also happens when an initializer has a different type
2809   // from the type of the global (this happens with unions).
2810   if (!GV || GV->getType()->getElementType() != InitType ||
2811       GV->getType()->getAddressSpace() !=
2812           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2813 
2814     // Move the old entry aside so that we'll create a new one.
2815     Entry->setName(StringRef());
2816 
2817     // Make a new global with the correct type, this is now guaranteed to work.
2818     GV = cast<llvm::GlobalVariable>(
2819         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2820 
2821     // Replace all uses of the old global with the new global
2822     llvm::Constant *NewPtrForOldDecl =
2823         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2824     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2825 
2826     // Erase the old global, since it is no longer used.
2827     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2828   }
2829 
2830   MaybeHandleStaticInExternC(D, GV);
2831 
2832   if (D->hasAttr<AnnotateAttr>())
2833     AddGlobalAnnotations(D, GV);
2834 
2835   // Set the llvm linkage type as appropriate.
2836   llvm::GlobalValue::LinkageTypes Linkage =
2837       getLLVMLinkageVarDefinition(D, GV->isConstant());
2838 
2839   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2840   // the device. [...]"
2841   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2842   // __device__, declares a variable that: [...]
2843   // Is accessible from all the threads within the grid and from the host
2844   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2845   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2846   if (GV && LangOpts.CUDA) {
2847     if (LangOpts.CUDAIsDevice) {
2848       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2849         GV->setExternallyInitialized(true);
2850     } else {
2851       // Host-side shadows of external declarations of device-side
2852       // global variables become internal definitions. These have to
2853       // be internal in order to prevent name conflicts with global
2854       // host variables with the same name in a different TUs.
2855       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2856         Linkage = llvm::GlobalValue::InternalLinkage;
2857 
2858         // Shadow variables and their properties must be registered
2859         // with CUDA runtime.
2860         unsigned Flags = 0;
2861         if (!D->hasDefinition())
2862           Flags |= CGCUDARuntime::ExternDeviceVar;
2863         if (D->hasAttr<CUDAConstantAttr>())
2864           Flags |= CGCUDARuntime::ConstantDeviceVar;
2865         getCUDARuntime().registerDeviceVar(*GV, Flags);
2866       } else if (D->hasAttr<CUDASharedAttr>())
2867         // __shared__ variables are odd. Shadows do get created, but
2868         // they are not registered with the CUDA runtime, so they
2869         // can't really be used to access their device-side
2870         // counterparts. It's not clear yet whether it's nvcc's bug or
2871         // a feature, but we've got to do the same for compatibility.
2872         Linkage = llvm::GlobalValue::InternalLinkage;
2873     }
2874   }
2875 
2876   GV->setInitializer(Init);
2877   if (emitter) emitter->finalize(GV);
2878 
2879   // If it is safe to mark the global 'constant', do so now.
2880   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2881                   isTypeConstant(D->getType(), true));
2882 
2883   // If it is in a read-only section, mark it 'constant'.
2884   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2885     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2886     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2887       GV->setConstant(true);
2888   }
2889 
2890   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2891 
2892 
2893   // On Darwin, if the normal linkage of a C++ thread_local variable is
2894   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2895   // copies within a linkage unit; otherwise, the backing variable has
2896   // internal linkage and all accesses should just be calls to the
2897   // Itanium-specified entry point, which has the normal linkage of the
2898   // variable. This is to preserve the ability to change the implementation
2899   // behind the scenes.
2900   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2901       Context.getTargetInfo().getTriple().isOSDarwin() &&
2902       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2903       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2904     Linkage = llvm::GlobalValue::InternalLinkage;
2905 
2906   GV->setLinkage(Linkage);
2907   if (D->hasAttr<DLLImportAttr>())
2908     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2909   else if (D->hasAttr<DLLExportAttr>())
2910     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2911   else
2912     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2913 
2914   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2915     // common vars aren't constant even if declared const.
2916     GV->setConstant(false);
2917     // Tentative definition of global variables may be initialized with
2918     // non-zero null pointers. In this case they should have weak linkage
2919     // since common linkage must have zero initializer and must not have
2920     // explicit section therefore cannot have non-zero initial value.
2921     if (!GV->getInitializer()->isNullValue())
2922       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2923   }
2924 
2925   setNonAliasAttributes(D, GV);
2926 
2927   if (D->getTLSKind() && !GV->isThreadLocal()) {
2928     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2929       CXXThreadLocals.push_back(D);
2930     setTLSMode(GV, *D);
2931   }
2932 
2933   maybeSetTrivialComdat(*D, *GV);
2934 
2935   // Emit the initializer function if necessary.
2936   if (NeedsGlobalCtor || NeedsGlobalDtor)
2937     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2938 
2939   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2940 
2941   // Emit global variable debug information.
2942   if (CGDebugInfo *DI = getModuleDebugInfo())
2943     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2944       DI->EmitGlobalVariable(GV, D);
2945 }
2946 
2947 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2948                                       CodeGenModule &CGM, const VarDecl *D,
2949                                       bool NoCommon) {
2950   // Don't give variables common linkage if -fno-common was specified unless it
2951   // was overridden by a NoCommon attribute.
2952   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2953     return true;
2954 
2955   // C11 6.9.2/2:
2956   //   A declaration of an identifier for an object that has file scope without
2957   //   an initializer, and without a storage-class specifier or with the
2958   //   storage-class specifier static, constitutes a tentative definition.
2959   if (D->getInit() || D->hasExternalStorage())
2960     return true;
2961 
2962   // A variable cannot be both common and exist in a section.
2963   if (D->hasAttr<SectionAttr>())
2964     return true;
2965 
2966   // A variable cannot be both common and exist in a section.
2967   // We dont try to determine which is the right section in the front-end.
2968   // If no specialized section name is applicable, it will resort to default.
2969   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
2970       D->hasAttr<PragmaClangDataSectionAttr>() ||
2971       D->hasAttr<PragmaClangRodataSectionAttr>())
2972     return true;
2973 
2974   // Thread local vars aren't considered common linkage.
2975   if (D->getTLSKind())
2976     return true;
2977 
2978   // Tentative definitions marked with WeakImportAttr are true definitions.
2979   if (D->hasAttr<WeakImportAttr>())
2980     return true;
2981 
2982   // A variable cannot be both common and exist in a comdat.
2983   if (shouldBeInCOMDAT(CGM, *D))
2984     return true;
2985 
2986   // Declarations with a required alignment do not have common linkage in MSVC
2987   // mode.
2988   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2989     if (D->hasAttr<AlignedAttr>())
2990       return true;
2991     QualType VarType = D->getType();
2992     if (Context.isAlignmentRequired(VarType))
2993       return true;
2994 
2995     if (const auto *RT = VarType->getAs<RecordType>()) {
2996       const RecordDecl *RD = RT->getDecl();
2997       for (const FieldDecl *FD : RD->fields()) {
2998         if (FD->isBitField())
2999           continue;
3000         if (FD->hasAttr<AlignedAttr>())
3001           return true;
3002         if (Context.isAlignmentRequired(FD->getType()))
3003           return true;
3004       }
3005     }
3006   }
3007 
3008   return false;
3009 }
3010 
3011 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3012     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3013   if (Linkage == GVA_Internal)
3014     return llvm::Function::InternalLinkage;
3015 
3016   if (D->hasAttr<WeakAttr>()) {
3017     if (IsConstantVariable)
3018       return llvm::GlobalVariable::WeakODRLinkage;
3019     else
3020       return llvm::GlobalVariable::WeakAnyLinkage;
3021   }
3022 
3023   // We are guaranteed to have a strong definition somewhere else,
3024   // so we can use available_externally linkage.
3025   if (Linkage == GVA_AvailableExternally)
3026     return llvm::GlobalValue::AvailableExternallyLinkage;
3027 
3028   // Note that Apple's kernel linker doesn't support symbol
3029   // coalescing, so we need to avoid linkonce and weak linkages there.
3030   // Normally, this means we just map to internal, but for explicit
3031   // instantiations we'll map to external.
3032 
3033   // In C++, the compiler has to emit a definition in every translation unit
3034   // that references the function.  We should use linkonce_odr because
3035   // a) if all references in this translation unit are optimized away, we
3036   // don't need to codegen it.  b) if the function persists, it needs to be
3037   // merged with other definitions. c) C++ has the ODR, so we know the
3038   // definition is dependable.
3039   if (Linkage == GVA_DiscardableODR)
3040     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3041                                             : llvm::Function::InternalLinkage;
3042 
3043   // An explicit instantiation of a template has weak linkage, since
3044   // explicit instantiations can occur in multiple translation units
3045   // and must all be equivalent. However, we are not allowed to
3046   // throw away these explicit instantiations.
3047   //
3048   // We don't currently support CUDA device code spread out across multiple TUs,
3049   // so say that CUDA templates are either external (for kernels) or internal.
3050   // This lets llvm perform aggressive inter-procedural optimizations.
3051   if (Linkage == GVA_StrongODR) {
3052     if (Context.getLangOpts().AppleKext)
3053       return llvm::Function::ExternalLinkage;
3054     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3055       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3056                                           : llvm::Function::InternalLinkage;
3057     return llvm::Function::WeakODRLinkage;
3058   }
3059 
3060   // C++ doesn't have tentative definitions and thus cannot have common
3061   // linkage.
3062   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3063       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3064                                  CodeGenOpts.NoCommon))
3065     return llvm::GlobalVariable::CommonLinkage;
3066 
3067   // selectany symbols are externally visible, so use weak instead of
3068   // linkonce.  MSVC optimizes away references to const selectany globals, so
3069   // all definitions should be the same and ODR linkage should be used.
3070   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3071   if (D->hasAttr<SelectAnyAttr>())
3072     return llvm::GlobalVariable::WeakODRLinkage;
3073 
3074   // Otherwise, we have strong external linkage.
3075   assert(Linkage == GVA_StrongExternal);
3076   return llvm::GlobalVariable::ExternalLinkage;
3077 }
3078 
3079 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3080     const VarDecl *VD, bool IsConstant) {
3081   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3082   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3083 }
3084 
3085 /// Replace the uses of a function that was declared with a non-proto type.
3086 /// We want to silently drop extra arguments from call sites
3087 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3088                                           llvm::Function *newFn) {
3089   // Fast path.
3090   if (old->use_empty()) return;
3091 
3092   llvm::Type *newRetTy = newFn->getReturnType();
3093   SmallVector<llvm::Value*, 4> newArgs;
3094   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3095 
3096   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3097          ui != ue; ) {
3098     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3099     llvm::User *user = use->getUser();
3100 
3101     // Recognize and replace uses of bitcasts.  Most calls to
3102     // unprototyped functions will use bitcasts.
3103     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3104       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3105         replaceUsesOfNonProtoConstant(bitcast, newFn);
3106       continue;
3107     }
3108 
3109     // Recognize calls to the function.
3110     llvm::CallSite callSite(user);
3111     if (!callSite) continue;
3112     if (!callSite.isCallee(&*use)) continue;
3113 
3114     // If the return types don't match exactly, then we can't
3115     // transform this call unless it's dead.
3116     if (callSite->getType() != newRetTy && !callSite->use_empty())
3117       continue;
3118 
3119     // Get the call site's attribute list.
3120     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3121     llvm::AttributeList oldAttrs = callSite.getAttributes();
3122 
3123     // If the function was passed too few arguments, don't transform.
3124     unsigned newNumArgs = newFn->arg_size();
3125     if (callSite.arg_size() < newNumArgs) continue;
3126 
3127     // If extra arguments were passed, we silently drop them.
3128     // If any of the types mismatch, we don't transform.
3129     unsigned argNo = 0;
3130     bool dontTransform = false;
3131     for (llvm::Argument &A : newFn->args()) {
3132       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3133         dontTransform = true;
3134         break;
3135       }
3136 
3137       // Add any parameter attributes.
3138       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3139       argNo++;
3140     }
3141     if (dontTransform)
3142       continue;
3143 
3144     // Okay, we can transform this.  Create the new call instruction and copy
3145     // over the required information.
3146     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3147 
3148     // Copy over any operand bundles.
3149     callSite.getOperandBundlesAsDefs(newBundles);
3150 
3151     llvm::CallSite newCall;
3152     if (callSite.isCall()) {
3153       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3154                                        callSite.getInstruction());
3155     } else {
3156       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3157       newCall = llvm::InvokeInst::Create(newFn,
3158                                          oldInvoke->getNormalDest(),
3159                                          oldInvoke->getUnwindDest(),
3160                                          newArgs, newBundles, "",
3161                                          callSite.getInstruction());
3162     }
3163     newArgs.clear(); // for the next iteration
3164 
3165     if (!newCall->getType()->isVoidTy())
3166       newCall->takeName(callSite.getInstruction());
3167     newCall.setAttributes(llvm::AttributeList::get(
3168         newFn->getContext(), oldAttrs.getFnAttributes(),
3169         oldAttrs.getRetAttributes(), newArgAttrs));
3170     newCall.setCallingConv(callSite.getCallingConv());
3171 
3172     // Finally, remove the old call, replacing any uses with the new one.
3173     if (!callSite->use_empty())
3174       callSite->replaceAllUsesWith(newCall.getInstruction());
3175 
3176     // Copy debug location attached to CI.
3177     if (callSite->getDebugLoc())
3178       newCall->setDebugLoc(callSite->getDebugLoc());
3179 
3180     callSite->eraseFromParent();
3181   }
3182 }
3183 
3184 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3185 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3186 /// existing call uses of the old function in the module, this adjusts them to
3187 /// call the new function directly.
3188 ///
3189 /// This is not just a cleanup: the always_inline pass requires direct calls to
3190 /// functions to be able to inline them.  If there is a bitcast in the way, it
3191 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3192 /// run at -O0.
3193 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3194                                                       llvm::Function *NewFn) {
3195   // If we're redefining a global as a function, don't transform it.
3196   if (!isa<llvm::Function>(Old)) return;
3197 
3198   replaceUsesOfNonProtoConstant(Old, NewFn);
3199 }
3200 
3201 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3202   auto DK = VD->isThisDeclarationADefinition();
3203   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3204     return;
3205 
3206   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3207   // If we have a definition, this might be a deferred decl. If the
3208   // instantiation is explicit, make sure we emit it at the end.
3209   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3210     GetAddrOfGlobalVar(VD);
3211 
3212   EmitTopLevelDecl(VD);
3213 }
3214 
3215 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3216                                                  llvm::GlobalValue *GV) {
3217   const auto *D = cast<FunctionDecl>(GD.getDecl());
3218 
3219   // Compute the function info and LLVM type.
3220   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3221   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3222 
3223   // Get or create the prototype for the function.
3224   if (!GV || (GV->getType()->getElementType() != Ty))
3225     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3226                                                    /*DontDefer=*/true,
3227                                                    ForDefinition));
3228 
3229   // Already emitted.
3230   if (!GV->isDeclaration())
3231     return;
3232 
3233   // We need to set linkage and visibility on the function before
3234   // generating code for it because various parts of IR generation
3235   // want to propagate this information down (e.g. to local static
3236   // declarations).
3237   auto *Fn = cast<llvm::Function>(GV);
3238   setFunctionLinkage(GD, Fn);
3239   setFunctionDLLStorageClass(GD, Fn);
3240 
3241   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3242   setGlobalVisibility(Fn, D);
3243 
3244   MaybeHandleStaticInExternC(D, Fn);
3245 
3246   maybeSetTrivialComdat(*D, *Fn);
3247 
3248   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3249 
3250   setFunctionDefinitionAttributes(D, Fn);
3251   SetLLVMFunctionAttributesForDefinition(D, Fn);
3252 
3253   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3254     AddGlobalCtor(Fn, CA->getPriority());
3255   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3256     AddGlobalDtor(Fn, DA->getPriority());
3257   if (D->hasAttr<AnnotateAttr>())
3258     AddGlobalAnnotations(D, Fn);
3259 }
3260 
3261 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3262   const auto *D = cast<ValueDecl>(GD.getDecl());
3263   const AliasAttr *AA = D->getAttr<AliasAttr>();
3264   assert(AA && "Not an alias?");
3265 
3266   StringRef MangledName = getMangledName(GD);
3267 
3268   if (AA->getAliasee() == MangledName) {
3269     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3270     return;
3271   }
3272 
3273   // If there is a definition in the module, then it wins over the alias.
3274   // This is dubious, but allow it to be safe.  Just ignore the alias.
3275   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3276   if (Entry && !Entry->isDeclaration())
3277     return;
3278 
3279   Aliases.push_back(GD);
3280 
3281   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3282 
3283   // Create a reference to the named value.  This ensures that it is emitted
3284   // if a deferred decl.
3285   llvm::Constant *Aliasee;
3286   if (isa<llvm::FunctionType>(DeclTy))
3287     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3288                                       /*ForVTable=*/false);
3289   else
3290     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3291                                     llvm::PointerType::getUnqual(DeclTy),
3292                                     /*D=*/nullptr);
3293 
3294   // Create the new alias itself, but don't set a name yet.
3295   auto *GA = llvm::GlobalAlias::create(
3296       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3297 
3298   if (Entry) {
3299     if (GA->getAliasee() == Entry) {
3300       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3301       return;
3302     }
3303 
3304     assert(Entry->isDeclaration());
3305 
3306     // If there is a declaration in the module, then we had an extern followed
3307     // by the alias, as in:
3308     //   extern int test6();
3309     //   ...
3310     //   int test6() __attribute__((alias("test7")));
3311     //
3312     // Remove it and replace uses of it with the alias.
3313     GA->takeName(Entry);
3314 
3315     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3316                                                           Entry->getType()));
3317     Entry->eraseFromParent();
3318   } else {
3319     GA->setName(MangledName);
3320   }
3321 
3322   // Set attributes which are particular to an alias; this is a
3323   // specialization of the attributes which may be set on a global
3324   // variable/function.
3325   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3326       D->isWeakImported()) {
3327     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3328   }
3329 
3330   if (const auto *VD = dyn_cast<VarDecl>(D))
3331     if (VD->getTLSKind())
3332       setTLSMode(GA, *VD);
3333 
3334   setAliasAttributes(D, GA);
3335 }
3336 
3337 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3338   const auto *D = cast<ValueDecl>(GD.getDecl());
3339   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3340   assert(IFA && "Not an ifunc?");
3341 
3342   StringRef MangledName = getMangledName(GD);
3343 
3344   if (IFA->getResolver() == MangledName) {
3345     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3346     return;
3347   }
3348 
3349   // Report an error if some definition overrides ifunc.
3350   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3351   if (Entry && !Entry->isDeclaration()) {
3352     GlobalDecl OtherGD;
3353     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3354         DiagnosedConflictingDefinitions.insert(GD).second) {
3355       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3356       Diags.Report(OtherGD.getDecl()->getLocation(),
3357                    diag::note_previous_definition);
3358     }
3359     return;
3360   }
3361 
3362   Aliases.push_back(GD);
3363 
3364   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3365   llvm::Constant *Resolver =
3366       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3367                               /*ForVTable=*/false);
3368   llvm::GlobalIFunc *GIF =
3369       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3370                                 "", Resolver, &getModule());
3371   if (Entry) {
3372     if (GIF->getResolver() == Entry) {
3373       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3374       return;
3375     }
3376     assert(Entry->isDeclaration());
3377 
3378     // If there is a declaration in the module, then we had an extern followed
3379     // by the ifunc, as in:
3380     //   extern int test();
3381     //   ...
3382     //   int test() __attribute__((ifunc("resolver")));
3383     //
3384     // Remove it and replace uses of it with the ifunc.
3385     GIF->takeName(Entry);
3386 
3387     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3388                                                           Entry->getType()));
3389     Entry->eraseFromParent();
3390   } else
3391     GIF->setName(MangledName);
3392 
3393   SetCommonAttributes(D, GIF);
3394 }
3395 
3396 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3397                                             ArrayRef<llvm::Type*> Tys) {
3398   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3399                                          Tys);
3400 }
3401 
3402 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3403 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3404                          const StringLiteral *Literal, bool TargetIsLSB,
3405                          bool &IsUTF16, unsigned &StringLength) {
3406   StringRef String = Literal->getString();
3407   unsigned NumBytes = String.size();
3408 
3409   // Check for simple case.
3410   if (!Literal->containsNonAsciiOrNull()) {
3411     StringLength = NumBytes;
3412     return *Map.insert(std::make_pair(String, nullptr)).first;
3413   }
3414 
3415   // Otherwise, convert the UTF8 literals into a string of shorts.
3416   IsUTF16 = true;
3417 
3418   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3419   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3420   llvm::UTF16 *ToPtr = &ToBuf[0];
3421 
3422   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3423                                  ToPtr + NumBytes, llvm::strictConversion);
3424 
3425   // ConvertUTF8toUTF16 returns the length in ToPtr.
3426   StringLength = ToPtr - &ToBuf[0];
3427 
3428   // Add an explicit null.
3429   *ToPtr = 0;
3430   return *Map.insert(std::make_pair(
3431                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3432                                    (StringLength + 1) * 2),
3433                          nullptr)).first;
3434 }
3435 
3436 ConstantAddress
3437 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3438   unsigned StringLength = 0;
3439   bool isUTF16 = false;
3440   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3441       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3442                                getDataLayout().isLittleEndian(), isUTF16,
3443                                StringLength);
3444 
3445   if (auto *C = Entry.second)
3446     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3447 
3448   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3449   llvm::Constant *Zeros[] = { Zero, Zero };
3450 
3451   // If we don't already have it, get __CFConstantStringClassReference.
3452   if (!CFConstantStringClassRef) {
3453     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3454     Ty = llvm::ArrayType::get(Ty, 0);
3455     llvm::Constant *GV =
3456         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3457 
3458     if (getTriple().isOSBinFormatCOFF()) {
3459       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3460       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3461       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3462       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3463 
3464       const VarDecl *VD = nullptr;
3465       for (const auto &Result : DC->lookup(&II))
3466         if ((VD = dyn_cast<VarDecl>(Result)))
3467           break;
3468 
3469       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3470         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3471         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3472       } else {
3473         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3474         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3475       }
3476     }
3477 
3478     // Decay array -> ptr
3479     CFConstantStringClassRef =
3480         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3481   }
3482 
3483   QualType CFTy = getContext().getCFConstantStringType();
3484 
3485   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3486 
3487   ConstantInitBuilder Builder(*this);
3488   auto Fields = Builder.beginStruct(STy);
3489 
3490   // Class pointer.
3491   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3492 
3493   // Flags.
3494   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3495 
3496   // String pointer.
3497   llvm::Constant *C = nullptr;
3498   if (isUTF16) {
3499     auto Arr = llvm::makeArrayRef(
3500         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3501         Entry.first().size() / 2);
3502     C = llvm::ConstantDataArray::get(VMContext, Arr);
3503   } else {
3504     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3505   }
3506 
3507   // Note: -fwritable-strings doesn't make the backing store strings of
3508   // CFStrings writable. (See <rdar://problem/10657500>)
3509   auto *GV =
3510       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3511                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3512   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3513   // Don't enforce the target's minimum global alignment, since the only use
3514   // of the string is via this class initializer.
3515   CharUnits Align = isUTF16
3516                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3517                         : getContext().getTypeAlignInChars(getContext().CharTy);
3518   GV->setAlignment(Align.getQuantity());
3519 
3520   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3521   // Without it LLVM can merge the string with a non unnamed_addr one during
3522   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3523   if (getTriple().isOSBinFormatMachO())
3524     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3525                            : "__TEXT,__cstring,cstring_literals");
3526 
3527   // String.
3528   llvm::Constant *Str =
3529       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3530 
3531   if (isUTF16)
3532     // Cast the UTF16 string to the correct type.
3533     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3534   Fields.add(Str);
3535 
3536   // String length.
3537   auto Ty = getTypes().ConvertType(getContext().LongTy);
3538   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3539 
3540   CharUnits Alignment = getPointerAlign();
3541 
3542   // The struct.
3543   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3544                                     /*isConstant=*/false,
3545                                     llvm::GlobalVariable::PrivateLinkage);
3546   switch (getTriple().getObjectFormat()) {
3547   case llvm::Triple::UnknownObjectFormat:
3548     llvm_unreachable("unknown file format");
3549   case llvm::Triple::COFF:
3550   case llvm::Triple::ELF:
3551   case llvm::Triple::Wasm:
3552     GV->setSection("cfstring");
3553     break;
3554   case llvm::Triple::MachO:
3555     GV->setSection("__DATA,__cfstring");
3556     break;
3557   }
3558   Entry.second = GV;
3559 
3560   return ConstantAddress(GV, Alignment);
3561 }
3562 
3563 bool CodeGenModule::getExpressionLocationsEnabled() const {
3564   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3565 }
3566 
3567 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3568   if (ObjCFastEnumerationStateType.isNull()) {
3569     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3570     D->startDefinition();
3571 
3572     QualType FieldTypes[] = {
3573       Context.UnsignedLongTy,
3574       Context.getPointerType(Context.getObjCIdType()),
3575       Context.getPointerType(Context.UnsignedLongTy),
3576       Context.getConstantArrayType(Context.UnsignedLongTy,
3577                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3578     };
3579 
3580     for (size_t i = 0; i < 4; ++i) {
3581       FieldDecl *Field = FieldDecl::Create(Context,
3582                                            D,
3583                                            SourceLocation(),
3584                                            SourceLocation(), nullptr,
3585                                            FieldTypes[i], /*TInfo=*/nullptr,
3586                                            /*BitWidth=*/nullptr,
3587                                            /*Mutable=*/false,
3588                                            ICIS_NoInit);
3589       Field->setAccess(AS_public);
3590       D->addDecl(Field);
3591     }
3592 
3593     D->completeDefinition();
3594     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3595   }
3596 
3597   return ObjCFastEnumerationStateType;
3598 }
3599 
3600 llvm::Constant *
3601 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3602   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3603 
3604   // Don't emit it as the address of the string, emit the string data itself
3605   // as an inline array.
3606   if (E->getCharByteWidth() == 1) {
3607     SmallString<64> Str(E->getString());
3608 
3609     // Resize the string to the right size, which is indicated by its type.
3610     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3611     Str.resize(CAT->getSize().getZExtValue());
3612     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3613   }
3614 
3615   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3616   llvm::Type *ElemTy = AType->getElementType();
3617   unsigned NumElements = AType->getNumElements();
3618 
3619   // Wide strings have either 2-byte or 4-byte elements.
3620   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3621     SmallVector<uint16_t, 32> Elements;
3622     Elements.reserve(NumElements);
3623 
3624     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3625       Elements.push_back(E->getCodeUnit(i));
3626     Elements.resize(NumElements);
3627     return llvm::ConstantDataArray::get(VMContext, Elements);
3628   }
3629 
3630   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3631   SmallVector<uint32_t, 32> Elements;
3632   Elements.reserve(NumElements);
3633 
3634   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3635     Elements.push_back(E->getCodeUnit(i));
3636   Elements.resize(NumElements);
3637   return llvm::ConstantDataArray::get(VMContext, Elements);
3638 }
3639 
3640 static llvm::GlobalVariable *
3641 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3642                       CodeGenModule &CGM, StringRef GlobalName,
3643                       CharUnits Alignment) {
3644   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3645   unsigned AddrSpace = 0;
3646   if (CGM.getLangOpts().OpenCL)
3647     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3648 
3649   llvm::Module &M = CGM.getModule();
3650   // Create a global variable for this string
3651   auto *GV = new llvm::GlobalVariable(
3652       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3653       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3654   GV->setAlignment(Alignment.getQuantity());
3655   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3656   if (GV->isWeakForLinker()) {
3657     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3658     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3659   }
3660 
3661   return GV;
3662 }
3663 
3664 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3665 /// constant array for the given string literal.
3666 ConstantAddress
3667 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3668                                                   StringRef Name) {
3669   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3670 
3671   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3672   llvm::GlobalVariable **Entry = nullptr;
3673   if (!LangOpts.WritableStrings) {
3674     Entry = &ConstantStringMap[C];
3675     if (auto GV = *Entry) {
3676       if (Alignment.getQuantity() > GV->getAlignment())
3677         GV->setAlignment(Alignment.getQuantity());
3678       return ConstantAddress(GV, Alignment);
3679     }
3680   }
3681 
3682   SmallString<256> MangledNameBuffer;
3683   StringRef GlobalVariableName;
3684   llvm::GlobalValue::LinkageTypes LT;
3685 
3686   // Mangle the string literal if the ABI allows for it.  However, we cannot
3687   // do this if  we are compiling with ASan or -fwritable-strings because they
3688   // rely on strings having normal linkage.
3689   if (!LangOpts.WritableStrings &&
3690       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3691       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3692     llvm::raw_svector_ostream Out(MangledNameBuffer);
3693     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3694 
3695     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3696     GlobalVariableName = MangledNameBuffer;
3697   } else {
3698     LT = llvm::GlobalValue::PrivateLinkage;
3699     GlobalVariableName = Name;
3700   }
3701 
3702   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3703   if (Entry)
3704     *Entry = GV;
3705 
3706   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3707                                   QualType());
3708   return ConstantAddress(GV, Alignment);
3709 }
3710 
3711 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3712 /// array for the given ObjCEncodeExpr node.
3713 ConstantAddress
3714 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3715   std::string Str;
3716   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3717 
3718   return GetAddrOfConstantCString(Str);
3719 }
3720 
3721 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3722 /// the literal and a terminating '\0' character.
3723 /// The result has pointer to array type.
3724 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3725     const std::string &Str, const char *GlobalName) {
3726   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3727   CharUnits Alignment =
3728     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3729 
3730   llvm::Constant *C =
3731       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3732 
3733   // Don't share any string literals if strings aren't constant.
3734   llvm::GlobalVariable **Entry = nullptr;
3735   if (!LangOpts.WritableStrings) {
3736     Entry = &ConstantStringMap[C];
3737     if (auto GV = *Entry) {
3738       if (Alignment.getQuantity() > GV->getAlignment())
3739         GV->setAlignment(Alignment.getQuantity());
3740       return ConstantAddress(GV, Alignment);
3741     }
3742   }
3743 
3744   // Get the default prefix if a name wasn't specified.
3745   if (!GlobalName)
3746     GlobalName = ".str";
3747   // Create a global variable for this.
3748   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3749                                   GlobalName, Alignment);
3750   if (Entry)
3751     *Entry = GV;
3752   return ConstantAddress(GV, Alignment);
3753 }
3754 
3755 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3756     const MaterializeTemporaryExpr *E, const Expr *Init) {
3757   assert((E->getStorageDuration() == SD_Static ||
3758           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3759   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3760 
3761   // If we're not materializing a subobject of the temporary, keep the
3762   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3763   QualType MaterializedType = Init->getType();
3764   if (Init == E->GetTemporaryExpr())
3765     MaterializedType = E->getType();
3766 
3767   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3768 
3769   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3770     return ConstantAddress(Slot, Align);
3771 
3772   // FIXME: If an externally-visible declaration extends multiple temporaries,
3773   // we need to give each temporary the same name in every translation unit (and
3774   // we also need to make the temporaries externally-visible).
3775   SmallString<256> Name;
3776   llvm::raw_svector_ostream Out(Name);
3777   getCXXABI().getMangleContext().mangleReferenceTemporary(
3778       VD, E->getManglingNumber(), Out);
3779 
3780   APValue *Value = nullptr;
3781   if (E->getStorageDuration() == SD_Static) {
3782     // We might have a cached constant initializer for this temporary. Note
3783     // that this might have a different value from the value computed by
3784     // evaluating the initializer if the surrounding constant expression
3785     // modifies the temporary.
3786     Value = getContext().getMaterializedTemporaryValue(E, false);
3787     if (Value && Value->isUninit())
3788       Value = nullptr;
3789   }
3790 
3791   // Try evaluating it now, it might have a constant initializer.
3792   Expr::EvalResult EvalResult;
3793   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3794       !EvalResult.hasSideEffects())
3795     Value = &EvalResult.Val;
3796 
3797   unsigned AddrSpace =
3798       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3799 
3800   Optional<ConstantEmitter> emitter;
3801   llvm::Constant *InitialValue = nullptr;
3802   bool Constant = false;
3803   llvm::Type *Type;
3804   if (Value) {
3805     // The temporary has a constant initializer, use it.
3806     emitter.emplace(*this);
3807     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
3808                                                MaterializedType);
3809     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3810     Type = InitialValue->getType();
3811   } else {
3812     // No initializer, the initialization will be provided when we
3813     // initialize the declaration which performed lifetime extension.
3814     Type = getTypes().ConvertTypeForMem(MaterializedType);
3815   }
3816 
3817   // Create a global variable for this lifetime-extended temporary.
3818   llvm::GlobalValue::LinkageTypes Linkage =
3819       getLLVMLinkageVarDefinition(VD, Constant);
3820   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3821     const VarDecl *InitVD;
3822     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3823         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3824       // Temporaries defined inside a class get linkonce_odr linkage because the
3825       // class can be defined in multipe translation units.
3826       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3827     } else {
3828       // There is no need for this temporary to have external linkage if the
3829       // VarDecl has external linkage.
3830       Linkage = llvm::GlobalVariable::InternalLinkage;
3831     }
3832   }
3833   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3834   auto *GV = new llvm::GlobalVariable(
3835       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3836       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
3837   if (emitter) emitter->finalize(GV);
3838   setGlobalVisibility(GV, VD);
3839   GV->setAlignment(Align.getQuantity());
3840   if (supportsCOMDAT() && GV->isWeakForLinker())
3841     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3842   if (VD->getTLSKind())
3843     setTLSMode(GV, *VD);
3844   llvm::Constant *CV = GV;
3845   if (AddrSpace != LangAS::Default)
3846     CV = getTargetCodeGenInfo().performAddrSpaceCast(
3847         *this, GV, AddrSpace, LangAS::Default,
3848         Type->getPointerTo(
3849             getContext().getTargetAddressSpace(LangAS::Default)));
3850   MaterializedGlobalTemporaryMap[E] = CV;
3851   return ConstantAddress(CV, Align);
3852 }
3853 
3854 /// EmitObjCPropertyImplementations - Emit information for synthesized
3855 /// properties for an implementation.
3856 void CodeGenModule::EmitObjCPropertyImplementations(const
3857                                                     ObjCImplementationDecl *D) {
3858   for (const auto *PID : D->property_impls()) {
3859     // Dynamic is just for type-checking.
3860     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3861       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3862 
3863       // Determine which methods need to be implemented, some may have
3864       // been overridden. Note that ::isPropertyAccessor is not the method
3865       // we want, that just indicates if the decl came from a
3866       // property. What we want to know is if the method is defined in
3867       // this implementation.
3868       if (!D->getInstanceMethod(PD->getGetterName()))
3869         CodeGenFunction(*this).GenerateObjCGetter(
3870                                  const_cast<ObjCImplementationDecl *>(D), PID);
3871       if (!PD->isReadOnly() &&
3872           !D->getInstanceMethod(PD->getSetterName()))
3873         CodeGenFunction(*this).GenerateObjCSetter(
3874                                  const_cast<ObjCImplementationDecl *>(D), PID);
3875     }
3876   }
3877 }
3878 
3879 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3880   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3881   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3882        ivar; ivar = ivar->getNextIvar())
3883     if (ivar->getType().isDestructedType())
3884       return true;
3885 
3886   return false;
3887 }
3888 
3889 static bool AllTrivialInitializers(CodeGenModule &CGM,
3890                                    ObjCImplementationDecl *D) {
3891   CodeGenFunction CGF(CGM);
3892   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3893        E = D->init_end(); B != E; ++B) {
3894     CXXCtorInitializer *CtorInitExp = *B;
3895     Expr *Init = CtorInitExp->getInit();
3896     if (!CGF.isTrivialInitializer(Init))
3897       return false;
3898   }
3899   return true;
3900 }
3901 
3902 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3903 /// for an implementation.
3904 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3905   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3906   if (needsDestructMethod(D)) {
3907     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3908     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3909     ObjCMethodDecl *DTORMethod =
3910       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3911                              cxxSelector, getContext().VoidTy, nullptr, D,
3912                              /*isInstance=*/true, /*isVariadic=*/false,
3913                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3914                              /*isDefined=*/false, ObjCMethodDecl::Required);
3915     D->addInstanceMethod(DTORMethod);
3916     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3917     D->setHasDestructors(true);
3918   }
3919 
3920   // If the implementation doesn't have any ivar initializers, we don't need
3921   // a .cxx_construct.
3922   if (D->getNumIvarInitializers() == 0 ||
3923       AllTrivialInitializers(*this, D))
3924     return;
3925 
3926   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3927   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3928   // The constructor returns 'self'.
3929   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3930                                                 D->getLocation(),
3931                                                 D->getLocation(),
3932                                                 cxxSelector,
3933                                                 getContext().getObjCIdType(),
3934                                                 nullptr, D, /*isInstance=*/true,
3935                                                 /*isVariadic=*/false,
3936                                                 /*isPropertyAccessor=*/true,
3937                                                 /*isImplicitlyDeclared=*/true,
3938                                                 /*isDefined=*/false,
3939                                                 ObjCMethodDecl::Required);
3940   D->addInstanceMethod(CTORMethod);
3941   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3942   D->setHasNonZeroConstructors(true);
3943 }
3944 
3945 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3946 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3947   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3948       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3949     ErrorUnsupported(LSD, "linkage spec");
3950     return;
3951   }
3952 
3953   EmitDeclContext(LSD);
3954 }
3955 
3956 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3957   for (auto *I : DC->decls()) {
3958     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3959     // are themselves considered "top-level", so EmitTopLevelDecl on an
3960     // ObjCImplDecl does not recursively visit them. We need to do that in
3961     // case they're nested inside another construct (LinkageSpecDecl /
3962     // ExportDecl) that does stop them from being considered "top-level".
3963     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3964       for (auto *M : OID->methods())
3965         EmitTopLevelDecl(M);
3966     }
3967 
3968     EmitTopLevelDecl(I);
3969   }
3970 }
3971 
3972 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3973 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3974   // Ignore dependent declarations.
3975   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3976     return;
3977 
3978   switch (D->getKind()) {
3979   case Decl::CXXConversion:
3980   case Decl::CXXMethod:
3981   case Decl::Function:
3982     // Skip function templates
3983     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3984         cast<FunctionDecl>(D)->isLateTemplateParsed())
3985       return;
3986 
3987     EmitGlobal(cast<FunctionDecl>(D));
3988     // Always provide some coverage mapping
3989     // even for the functions that aren't emitted.
3990     AddDeferredUnusedCoverageMapping(D);
3991     break;
3992 
3993   case Decl::CXXDeductionGuide:
3994     // Function-like, but does not result in code emission.
3995     break;
3996 
3997   case Decl::Var:
3998   case Decl::Decomposition:
3999     // Skip variable templates
4000     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4001       return;
4002     LLVM_FALLTHROUGH;
4003   case Decl::VarTemplateSpecialization:
4004     EmitGlobal(cast<VarDecl>(D));
4005     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4006       for (auto *B : DD->bindings())
4007         if (auto *HD = B->getHoldingVar())
4008           EmitGlobal(HD);
4009     break;
4010 
4011   // Indirect fields from global anonymous structs and unions can be
4012   // ignored; only the actual variable requires IR gen support.
4013   case Decl::IndirectField:
4014     break;
4015 
4016   // C++ Decls
4017   case Decl::Namespace:
4018     EmitDeclContext(cast<NamespaceDecl>(D));
4019     break;
4020   case Decl::CXXRecord:
4021     if (DebugInfo) {
4022       if (auto *ES = D->getASTContext().getExternalSource())
4023         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4024           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4025     }
4026     // Emit any static data members, they may be definitions.
4027     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4028       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4029         EmitTopLevelDecl(I);
4030     break;
4031     // No code generation needed.
4032   case Decl::UsingShadow:
4033   case Decl::ClassTemplate:
4034   case Decl::VarTemplate:
4035   case Decl::VarTemplatePartialSpecialization:
4036   case Decl::FunctionTemplate:
4037   case Decl::TypeAliasTemplate:
4038   case Decl::Block:
4039   case Decl::Empty:
4040     break;
4041   case Decl::Using:          // using X; [C++]
4042     if (CGDebugInfo *DI = getModuleDebugInfo())
4043         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4044     return;
4045   case Decl::NamespaceAlias:
4046     if (CGDebugInfo *DI = getModuleDebugInfo())
4047         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4048     return;
4049   case Decl::UsingDirective: // using namespace X; [C++]
4050     if (CGDebugInfo *DI = getModuleDebugInfo())
4051       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4052     return;
4053   case Decl::CXXConstructor:
4054     // Skip function templates
4055     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4056         cast<FunctionDecl>(D)->isLateTemplateParsed())
4057       return;
4058 
4059     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4060     break;
4061   case Decl::CXXDestructor:
4062     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4063       return;
4064     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4065     break;
4066 
4067   case Decl::StaticAssert:
4068     // Nothing to do.
4069     break;
4070 
4071   // Objective-C Decls
4072 
4073   // Forward declarations, no (immediate) code generation.
4074   case Decl::ObjCInterface:
4075   case Decl::ObjCCategory:
4076     break;
4077 
4078   case Decl::ObjCProtocol: {
4079     auto *Proto = cast<ObjCProtocolDecl>(D);
4080     if (Proto->isThisDeclarationADefinition())
4081       ObjCRuntime->GenerateProtocol(Proto);
4082     break;
4083   }
4084 
4085   case Decl::ObjCCategoryImpl:
4086     // Categories have properties but don't support synthesize so we
4087     // can ignore them here.
4088     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4089     break;
4090 
4091   case Decl::ObjCImplementation: {
4092     auto *OMD = cast<ObjCImplementationDecl>(D);
4093     EmitObjCPropertyImplementations(OMD);
4094     EmitObjCIvarInitializations(OMD);
4095     ObjCRuntime->GenerateClass(OMD);
4096     // Emit global variable debug information.
4097     if (CGDebugInfo *DI = getModuleDebugInfo())
4098       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4099         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4100             OMD->getClassInterface()), OMD->getLocation());
4101     break;
4102   }
4103   case Decl::ObjCMethod: {
4104     auto *OMD = cast<ObjCMethodDecl>(D);
4105     // If this is not a prototype, emit the body.
4106     if (OMD->getBody())
4107       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4108     break;
4109   }
4110   case Decl::ObjCCompatibleAlias:
4111     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4112     break;
4113 
4114   case Decl::PragmaComment: {
4115     const auto *PCD = cast<PragmaCommentDecl>(D);
4116     switch (PCD->getCommentKind()) {
4117     case PCK_Unknown:
4118       llvm_unreachable("unexpected pragma comment kind");
4119     case PCK_Linker:
4120       AppendLinkerOptions(PCD->getArg());
4121       break;
4122     case PCK_Lib:
4123       AddDependentLib(PCD->getArg());
4124       break;
4125     case PCK_Compiler:
4126     case PCK_ExeStr:
4127     case PCK_User:
4128       break; // We ignore all of these.
4129     }
4130     break;
4131   }
4132 
4133   case Decl::PragmaDetectMismatch: {
4134     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4135     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4136     break;
4137   }
4138 
4139   case Decl::LinkageSpec:
4140     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4141     break;
4142 
4143   case Decl::FileScopeAsm: {
4144     // File-scope asm is ignored during device-side CUDA compilation.
4145     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4146       break;
4147     // File-scope asm is ignored during device-side OpenMP compilation.
4148     if (LangOpts.OpenMPIsDevice)
4149       break;
4150     auto *AD = cast<FileScopeAsmDecl>(D);
4151     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4152     break;
4153   }
4154 
4155   case Decl::Import: {
4156     auto *Import = cast<ImportDecl>(D);
4157 
4158     // If we've already imported this module, we're done.
4159     if (!ImportedModules.insert(Import->getImportedModule()))
4160       break;
4161 
4162     // Emit debug information for direct imports.
4163     if (!Import->getImportedOwningModule()) {
4164       if (CGDebugInfo *DI = getModuleDebugInfo())
4165         DI->EmitImportDecl(*Import);
4166     }
4167 
4168     // Find all of the submodules and emit the module initializers.
4169     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4170     SmallVector<clang::Module *, 16> Stack;
4171     Visited.insert(Import->getImportedModule());
4172     Stack.push_back(Import->getImportedModule());
4173 
4174     while (!Stack.empty()) {
4175       clang::Module *Mod = Stack.pop_back_val();
4176       if (!EmittedModuleInitializers.insert(Mod).second)
4177         continue;
4178 
4179       for (auto *D : Context.getModuleInitializers(Mod))
4180         EmitTopLevelDecl(D);
4181 
4182       // Visit the submodules of this module.
4183       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4184                                              SubEnd = Mod->submodule_end();
4185            Sub != SubEnd; ++Sub) {
4186         // Skip explicit children; they need to be explicitly imported to emit
4187         // the initializers.
4188         if ((*Sub)->IsExplicit)
4189           continue;
4190 
4191         if (Visited.insert(*Sub).second)
4192           Stack.push_back(*Sub);
4193       }
4194     }
4195     break;
4196   }
4197 
4198   case Decl::Export:
4199     EmitDeclContext(cast<ExportDecl>(D));
4200     break;
4201 
4202   case Decl::OMPThreadPrivate:
4203     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4204     break;
4205 
4206   case Decl::ClassTemplateSpecialization: {
4207     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4208     if (DebugInfo &&
4209         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4210         Spec->hasDefinition())
4211       DebugInfo->completeTemplateDefinition(*Spec);
4212     break;
4213   }
4214 
4215   case Decl::OMPDeclareReduction:
4216     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4217     break;
4218 
4219   default:
4220     // Make sure we handled everything we should, every other kind is a
4221     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4222     // function. Need to recode Decl::Kind to do that easily.
4223     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4224     break;
4225   }
4226 }
4227 
4228 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4229   // Do we need to generate coverage mapping?
4230   if (!CodeGenOpts.CoverageMapping)
4231     return;
4232   switch (D->getKind()) {
4233   case Decl::CXXConversion:
4234   case Decl::CXXMethod:
4235   case Decl::Function:
4236   case Decl::ObjCMethod:
4237   case Decl::CXXConstructor:
4238   case Decl::CXXDestructor: {
4239     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4240       return;
4241     SourceManager &SM = getContext().getSourceManager();
4242     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4243       return;
4244     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4245     if (I == DeferredEmptyCoverageMappingDecls.end())
4246       DeferredEmptyCoverageMappingDecls[D] = true;
4247     break;
4248   }
4249   default:
4250     break;
4251   };
4252 }
4253 
4254 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4255   // Do we need to generate coverage mapping?
4256   if (!CodeGenOpts.CoverageMapping)
4257     return;
4258   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4259     if (Fn->isTemplateInstantiation())
4260       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4261   }
4262   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4263   if (I == DeferredEmptyCoverageMappingDecls.end())
4264     DeferredEmptyCoverageMappingDecls[D] = false;
4265   else
4266     I->second = false;
4267 }
4268 
4269 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4270   std::vector<const Decl *> DeferredDecls;
4271   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4272     if (!I.second)
4273       continue;
4274     DeferredDecls.push_back(I.first);
4275   }
4276   // Sort the declarations by their location to make sure that the tests get a
4277   // predictable order for the coverage mapping for the unused declarations.
4278   if (CodeGenOpts.DumpCoverageMapping)
4279     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4280               [] (const Decl *LHS, const Decl *RHS) {
4281       return LHS->getLocStart() < RHS->getLocStart();
4282     });
4283   for (const auto *D : DeferredDecls) {
4284     switch (D->getKind()) {
4285     case Decl::CXXConversion:
4286     case Decl::CXXMethod:
4287     case Decl::Function:
4288     case Decl::ObjCMethod: {
4289       CodeGenPGO PGO(*this);
4290       GlobalDecl GD(cast<FunctionDecl>(D));
4291       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4292                                   getFunctionLinkage(GD));
4293       break;
4294     }
4295     case Decl::CXXConstructor: {
4296       CodeGenPGO PGO(*this);
4297       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4298       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4299                                   getFunctionLinkage(GD));
4300       break;
4301     }
4302     case Decl::CXXDestructor: {
4303       CodeGenPGO PGO(*this);
4304       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4305       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4306                                   getFunctionLinkage(GD));
4307       break;
4308     }
4309     default:
4310       break;
4311     };
4312   }
4313 }
4314 
4315 /// Turns the given pointer into a constant.
4316 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4317                                           const void *Ptr) {
4318   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4319   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4320   return llvm::ConstantInt::get(i64, PtrInt);
4321 }
4322 
4323 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4324                                    llvm::NamedMDNode *&GlobalMetadata,
4325                                    GlobalDecl D,
4326                                    llvm::GlobalValue *Addr) {
4327   if (!GlobalMetadata)
4328     GlobalMetadata =
4329       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4330 
4331   // TODO: should we report variant information for ctors/dtors?
4332   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4333                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4334                                CGM.getLLVMContext(), D.getDecl()))};
4335   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4336 }
4337 
4338 /// For each function which is declared within an extern "C" region and marked
4339 /// as 'used', but has internal linkage, create an alias from the unmangled
4340 /// name to the mangled name if possible. People expect to be able to refer
4341 /// to such functions with an unmangled name from inline assembly within the
4342 /// same translation unit.
4343 void CodeGenModule::EmitStaticExternCAliases() {
4344   // Don't do anything if we're generating CUDA device code -- the NVPTX
4345   // assembly target doesn't support aliases.
4346   if (Context.getTargetInfo().getTriple().isNVPTX())
4347     return;
4348   for (auto &I : StaticExternCValues) {
4349     IdentifierInfo *Name = I.first;
4350     llvm::GlobalValue *Val = I.second;
4351     if (Val && !getModule().getNamedValue(Name->getName()))
4352       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4353   }
4354 }
4355 
4356 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4357                                              GlobalDecl &Result) const {
4358   auto Res = Manglings.find(MangledName);
4359   if (Res == Manglings.end())
4360     return false;
4361   Result = Res->getValue();
4362   return true;
4363 }
4364 
4365 /// Emits metadata nodes associating all the global values in the
4366 /// current module with the Decls they came from.  This is useful for
4367 /// projects using IR gen as a subroutine.
4368 ///
4369 /// Since there's currently no way to associate an MDNode directly
4370 /// with an llvm::GlobalValue, we create a global named metadata
4371 /// with the name 'clang.global.decl.ptrs'.
4372 void CodeGenModule::EmitDeclMetadata() {
4373   llvm::NamedMDNode *GlobalMetadata = nullptr;
4374 
4375   for (auto &I : MangledDeclNames) {
4376     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4377     // Some mangled names don't necessarily have an associated GlobalValue
4378     // in this module, e.g. if we mangled it for DebugInfo.
4379     if (Addr)
4380       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4381   }
4382 }
4383 
4384 /// Emits metadata nodes for all the local variables in the current
4385 /// function.
4386 void CodeGenFunction::EmitDeclMetadata() {
4387   if (LocalDeclMap.empty()) return;
4388 
4389   llvm::LLVMContext &Context = getLLVMContext();
4390 
4391   // Find the unique metadata ID for this name.
4392   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4393 
4394   llvm::NamedMDNode *GlobalMetadata = nullptr;
4395 
4396   for (auto &I : LocalDeclMap) {
4397     const Decl *D = I.first;
4398     llvm::Value *Addr = I.second.getPointer();
4399     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4400       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4401       Alloca->setMetadata(
4402           DeclPtrKind, llvm::MDNode::get(
4403                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4404     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4405       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4406       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4407     }
4408   }
4409 }
4410 
4411 void CodeGenModule::EmitVersionIdentMetadata() {
4412   llvm::NamedMDNode *IdentMetadata =
4413     TheModule.getOrInsertNamedMetadata("llvm.ident");
4414   std::string Version = getClangFullVersion();
4415   llvm::LLVMContext &Ctx = TheModule.getContext();
4416 
4417   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4418   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4419 }
4420 
4421 void CodeGenModule::EmitTargetMetadata() {
4422   // Warning, new MangledDeclNames may be appended within this loop.
4423   // We rely on MapVector insertions adding new elements to the end
4424   // of the container.
4425   // FIXME: Move this loop into the one target that needs it, and only
4426   // loop over those declarations for which we couldn't emit the target
4427   // metadata when we emitted the declaration.
4428   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4429     auto Val = *(MangledDeclNames.begin() + I);
4430     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4431     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4432     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4433   }
4434 }
4435 
4436 void CodeGenModule::EmitCoverageFile() {
4437   if (getCodeGenOpts().CoverageDataFile.empty() &&
4438       getCodeGenOpts().CoverageNotesFile.empty())
4439     return;
4440 
4441   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4442   if (!CUNode)
4443     return;
4444 
4445   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4446   llvm::LLVMContext &Ctx = TheModule.getContext();
4447   auto *CoverageDataFile =
4448       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4449   auto *CoverageNotesFile =
4450       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4451   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4452     llvm::MDNode *CU = CUNode->getOperand(i);
4453     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4454     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4455   }
4456 }
4457 
4458 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4459   // Sema has checked that all uuid strings are of the form
4460   // "12345678-1234-1234-1234-1234567890ab".
4461   assert(Uuid.size() == 36);
4462   for (unsigned i = 0; i < 36; ++i) {
4463     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4464     else                                         assert(isHexDigit(Uuid[i]));
4465   }
4466 
4467   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4468   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4469 
4470   llvm::Constant *Field3[8];
4471   for (unsigned Idx = 0; Idx < 8; ++Idx)
4472     Field3[Idx] = llvm::ConstantInt::get(
4473         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4474 
4475   llvm::Constant *Fields[4] = {
4476     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4477     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4478     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4479     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4480   };
4481 
4482   return llvm::ConstantStruct::getAnon(Fields);
4483 }
4484 
4485 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4486                                                        bool ForEH) {
4487   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4488   // FIXME: should we even be calling this method if RTTI is disabled
4489   // and it's not for EH?
4490   if (!ForEH && !getLangOpts().RTTI)
4491     return llvm::Constant::getNullValue(Int8PtrTy);
4492 
4493   if (ForEH && Ty->isObjCObjectPointerType() &&
4494       LangOpts.ObjCRuntime.isGNUFamily())
4495     return ObjCRuntime->GetEHType(Ty);
4496 
4497   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4498 }
4499 
4500 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4501   for (auto RefExpr : D->varlists()) {
4502     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4503     bool PerformInit =
4504         VD->getAnyInitializer() &&
4505         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4506                                                         /*ForRef=*/false);
4507 
4508     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4509     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4510             VD, Addr, RefExpr->getLocStart(), PerformInit))
4511       CXXGlobalInits.push_back(InitFunction);
4512   }
4513 }
4514 
4515 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4516   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4517   if (InternalId)
4518     return InternalId;
4519 
4520   if (isExternallyVisible(T->getLinkage())) {
4521     std::string OutName;
4522     llvm::raw_string_ostream Out(OutName);
4523     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4524 
4525     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4526   } else {
4527     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4528                                            llvm::ArrayRef<llvm::Metadata *>());
4529   }
4530 
4531   return InternalId;
4532 }
4533 
4534 /// Returns whether this module needs the "all-vtables" type identifier.
4535 bool CodeGenModule::NeedAllVtablesTypeId() const {
4536   // Returns true if at least one of vtable-based CFI checkers is enabled and
4537   // is not in the trapping mode.
4538   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4539            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4540           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4541            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4542           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4543            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4544           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4545            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4546 }
4547 
4548 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4549                                           CharUnits Offset,
4550                                           const CXXRecordDecl *RD) {
4551   llvm::Metadata *MD =
4552       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4553   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4554 
4555   if (CodeGenOpts.SanitizeCfiCrossDso)
4556     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4557       VTable->addTypeMetadata(Offset.getQuantity(),
4558                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4559 
4560   if (NeedAllVtablesTypeId()) {
4561     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4562     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4563   }
4564 }
4565 
4566 // Fills in the supplied string map with the set of target features for the
4567 // passed in function.
4568 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4569                                           const FunctionDecl *FD) {
4570   StringRef TargetCPU = Target.getTargetOpts().CPU;
4571   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4572     // If we have a TargetAttr build up the feature map based on that.
4573     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4574 
4575     // Make a copy of the features as passed on the command line into the
4576     // beginning of the additional features from the function to override.
4577     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4578                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4579                             Target.getTargetOpts().FeaturesAsWritten.end());
4580 
4581     if (ParsedAttr.Architecture != "")
4582       TargetCPU = ParsedAttr.Architecture ;
4583 
4584     // Now populate the feature map, first with the TargetCPU which is either
4585     // the default or a new one from the target attribute string. Then we'll use
4586     // the passed in features (FeaturesAsWritten) along with the new ones from
4587     // the attribute.
4588     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4589                           ParsedAttr.Features);
4590   } else {
4591     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4592                           Target.getTargetOpts().Features);
4593   }
4594 }
4595 
4596 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4597   if (!SanStats)
4598     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4599 
4600   return *SanStats;
4601 }
4602 llvm::Value *
4603 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4604                                                   CodeGenFunction &CGF) {
4605   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4606   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4607   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4608   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4609                                 "__translate_sampler_initializer"),
4610                                 {C});
4611 }
4612