1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 57 #include "llvm/IR/AttributeMask.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/ProfileSummary.h" 64 #include "llvm/ProfileData/InstrProfReader.h" 65 #include "llvm/ProfileData/SampleProf.h" 66 #include "llvm/Support/CRC.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/ConvertUTF.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/TimeProfiler.h" 72 #include "llvm/Support/xxhash.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include "llvm/TargetParser/X86TargetParser.h" 75 #include <optional> 76 77 using namespace clang; 78 using namespace CodeGen; 79 80 static llvm::cl::opt<bool> LimitedCoverage( 81 "limited-coverage-experimental", llvm::cl::Hidden, 82 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 83 84 static const char AnnotationSection[] = "llvm.metadata"; 85 86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 87 switch (CGM.getContext().getCXXABIKind()) { 88 case TargetCXXABI::AppleARM64: 89 case TargetCXXABI::Fuchsia: 90 case TargetCXXABI::GenericAArch64: 91 case TargetCXXABI::GenericARM: 92 case TargetCXXABI::iOS: 93 case TargetCXXABI::WatchOS: 94 case TargetCXXABI::GenericMIPS: 95 case TargetCXXABI::GenericItanium: 96 case TargetCXXABI::WebAssembly: 97 case TargetCXXABI::XL: 98 return CreateItaniumCXXABI(CGM); 99 case TargetCXXABI::Microsoft: 100 return CreateMicrosoftCXXABI(CGM); 101 } 102 103 llvm_unreachable("invalid C++ ABI kind"); 104 } 105 106 static std::unique_ptr<TargetCodeGenInfo> 107 createTargetCodeGenInfo(CodeGenModule &CGM) { 108 const TargetInfo &Target = CGM.getTarget(); 109 const llvm::Triple &Triple = Target.getTriple(); 110 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 111 112 switch (Triple.getArch()) { 113 default: 114 return createDefaultTargetCodeGenInfo(CGM); 115 116 case llvm::Triple::le32: 117 return createPNaClTargetCodeGenInfo(CGM); 118 case llvm::Triple::m68k: 119 return createM68kTargetCodeGenInfo(CGM); 120 case llvm::Triple::mips: 121 case llvm::Triple::mipsel: 122 if (Triple.getOS() == llvm::Triple::NaCl) 123 return createPNaClTargetCodeGenInfo(CGM); 124 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 125 126 case llvm::Triple::mips64: 127 case llvm::Triple::mips64el: 128 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 129 130 case llvm::Triple::avr: { 131 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 132 // on avrtiny. For passing return value, R18~R25 are used on avr, and 133 // R22~R25 are used on avrtiny. 134 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 135 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 136 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 137 } 138 139 case llvm::Triple::aarch64: 140 case llvm::Triple::aarch64_32: 141 case llvm::Triple::aarch64_be: { 142 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 143 if (Target.getABI() == "darwinpcs") 144 Kind = AArch64ABIKind::DarwinPCS; 145 else if (Triple.isOSWindows()) 146 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 147 148 return createAArch64TargetCodeGenInfo(CGM, Kind); 149 } 150 151 case llvm::Triple::wasm32: 152 case llvm::Triple::wasm64: { 153 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 154 if (Target.getABI() == "experimental-mv") 155 Kind = WebAssemblyABIKind::ExperimentalMV; 156 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 157 } 158 159 case llvm::Triple::arm: 160 case llvm::Triple::armeb: 161 case llvm::Triple::thumb: 162 case llvm::Triple::thumbeb: { 163 if (Triple.getOS() == llvm::Triple::Win32) 164 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 165 166 ARMABIKind Kind = ARMABIKind::AAPCS; 167 StringRef ABIStr = Target.getABI(); 168 if (ABIStr == "apcs-gnu") 169 Kind = ARMABIKind::APCS; 170 else if (ABIStr == "aapcs16") 171 Kind = ARMABIKind::AAPCS16_VFP; 172 else if (CodeGenOpts.FloatABI == "hard" || 173 (CodeGenOpts.FloatABI != "soft" && 174 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 175 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 176 Triple.getEnvironment() == llvm::Triple::EABIHF))) 177 Kind = ARMABIKind::AAPCS_VFP; 178 179 return createARMTargetCodeGenInfo(CGM, Kind); 180 } 181 182 case llvm::Triple::ppc: { 183 if (Triple.isOSAIX()) 184 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 185 186 bool IsSoftFloat = 187 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 188 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 189 } 190 case llvm::Triple::ppcle: { 191 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 192 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 193 } 194 case llvm::Triple::ppc64: 195 if (Triple.isOSAIX()) 196 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 197 198 if (Triple.isOSBinFormatELF()) { 199 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 200 if (Target.getABI() == "elfv2") 201 Kind = PPC64_SVR4_ABIKind::ELFv2; 202 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 203 204 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 205 } 206 return createPPC64TargetCodeGenInfo(CGM); 207 case llvm::Triple::ppc64le: { 208 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 209 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 210 if (Target.getABI() == "elfv1") 211 Kind = PPC64_SVR4_ABIKind::ELFv1; 212 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 213 214 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 215 } 216 217 case llvm::Triple::nvptx: 218 case llvm::Triple::nvptx64: 219 return createNVPTXTargetCodeGenInfo(CGM); 220 221 case llvm::Triple::msp430: 222 return createMSP430TargetCodeGenInfo(CGM); 223 224 case llvm::Triple::riscv32: 225 case llvm::Triple::riscv64: { 226 StringRef ABIStr = Target.getABI(); 227 unsigned XLen = Target.getPointerWidth(LangAS::Default); 228 unsigned ABIFLen = 0; 229 if (ABIStr.ends_with("f")) 230 ABIFLen = 32; 231 else if (ABIStr.ends_with("d")) 232 ABIFLen = 64; 233 bool EABI = ABIStr.ends_with("e"); 234 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 235 } 236 237 case llvm::Triple::systemz: { 238 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 239 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 240 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 241 } 242 243 case llvm::Triple::tce: 244 case llvm::Triple::tcele: 245 return createTCETargetCodeGenInfo(CGM); 246 247 case llvm::Triple::x86: { 248 bool IsDarwinVectorABI = Triple.isOSDarwin(); 249 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 250 251 if (Triple.getOS() == llvm::Triple::Win32) { 252 return createWinX86_32TargetCodeGenInfo( 253 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 254 CodeGenOpts.NumRegisterParameters); 255 } 256 return createX86_32TargetCodeGenInfo( 257 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 258 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 259 } 260 261 case llvm::Triple::x86_64: { 262 StringRef ABI = Target.getABI(); 263 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 264 : ABI == "avx" ? X86AVXABILevel::AVX 265 : X86AVXABILevel::None); 266 267 switch (Triple.getOS()) { 268 case llvm::Triple::Win32: 269 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 270 default: 271 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 272 } 273 } 274 case llvm::Triple::hexagon: 275 return createHexagonTargetCodeGenInfo(CGM); 276 case llvm::Triple::lanai: 277 return createLanaiTargetCodeGenInfo(CGM); 278 case llvm::Triple::r600: 279 return createAMDGPUTargetCodeGenInfo(CGM); 280 case llvm::Triple::amdgcn: 281 return createAMDGPUTargetCodeGenInfo(CGM); 282 case llvm::Triple::sparc: 283 return createSparcV8TargetCodeGenInfo(CGM); 284 case llvm::Triple::sparcv9: 285 return createSparcV9TargetCodeGenInfo(CGM); 286 case llvm::Triple::xcore: 287 return createXCoreTargetCodeGenInfo(CGM); 288 case llvm::Triple::arc: 289 return createARCTargetCodeGenInfo(CGM); 290 case llvm::Triple::spir: 291 case llvm::Triple::spir64: 292 return createCommonSPIRTargetCodeGenInfo(CGM); 293 case llvm::Triple::spirv32: 294 case llvm::Triple::spirv64: 295 return createSPIRVTargetCodeGenInfo(CGM); 296 case llvm::Triple::ve: 297 return createVETargetCodeGenInfo(CGM); 298 case llvm::Triple::csky: { 299 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 300 bool hasFP64 = 301 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 302 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 303 : hasFP64 ? 64 304 : 32); 305 } 306 case llvm::Triple::bpfeb: 307 case llvm::Triple::bpfel: 308 return createBPFTargetCodeGenInfo(CGM); 309 case llvm::Triple::loongarch32: 310 case llvm::Triple::loongarch64: { 311 StringRef ABIStr = Target.getABI(); 312 unsigned ABIFRLen = 0; 313 if (ABIStr.ends_with("f")) 314 ABIFRLen = 32; 315 else if (ABIStr.ends_with("d")) 316 ABIFRLen = 64; 317 return createLoongArchTargetCodeGenInfo( 318 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 319 } 320 } 321 } 322 323 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 324 if (!TheTargetCodeGenInfo) 325 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 326 return *TheTargetCodeGenInfo; 327 } 328 329 CodeGenModule::CodeGenModule(ASTContext &C, 330 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 331 const HeaderSearchOptions &HSO, 332 const PreprocessorOptions &PPO, 333 const CodeGenOptions &CGO, llvm::Module &M, 334 DiagnosticsEngine &diags, 335 CoverageSourceInfo *CoverageInfo) 336 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 337 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 338 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 339 VMContext(M.getContext()), Types(*this), VTables(*this), 340 SanitizerMD(new SanitizerMetadata(*this)) { 341 342 // Initialize the type cache. 343 llvm::LLVMContext &LLVMContext = M.getContext(); 344 VoidTy = llvm::Type::getVoidTy(LLVMContext); 345 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 346 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 347 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 348 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 349 HalfTy = llvm::Type::getHalfTy(LLVMContext); 350 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 351 FloatTy = llvm::Type::getFloatTy(LLVMContext); 352 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 353 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 354 PointerAlignInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 356 .getQuantity(); 357 SizeSizeInBytes = 358 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 359 IntAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 361 CharTy = 362 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 363 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 364 IntPtrTy = llvm::IntegerType::get(LLVMContext, 365 C.getTargetInfo().getMaxPointerWidth()); 366 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 367 const llvm::DataLayout &DL = M.getDataLayout(); 368 AllocaInt8PtrTy = 369 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 370 GlobalsInt8PtrTy = 371 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 372 ConstGlobalsPtrTy = llvm::PointerType::get( 373 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 374 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 375 376 // Build C++20 Module initializers. 377 // TODO: Add Microsoft here once we know the mangling required for the 378 // initializers. 379 CXX20ModuleInits = 380 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 381 ItaniumMangleContext::MK_Itanium; 382 383 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 384 385 if (LangOpts.ObjC) 386 createObjCRuntime(); 387 if (LangOpts.OpenCL) 388 createOpenCLRuntime(); 389 if (LangOpts.OpenMP) 390 createOpenMPRuntime(); 391 if (LangOpts.CUDA) 392 createCUDARuntime(); 393 if (LangOpts.HLSL) 394 createHLSLRuntime(); 395 396 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 397 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 398 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 399 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 400 getCXXABI().getMangleContext())); 401 402 // If debug info or coverage generation is enabled, create the CGDebugInfo 403 // object. 404 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 405 CodeGenOpts.CoverageNotesFile.size() || 406 CodeGenOpts.CoverageDataFile.size()) 407 DebugInfo.reset(new CGDebugInfo(*this)); 408 409 Block.GlobalUniqueCount = 0; 410 411 if (C.getLangOpts().ObjC) 412 ObjCData.reset(new ObjCEntrypoints()); 413 414 if (CodeGenOpts.hasProfileClangUse()) { 415 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 416 CodeGenOpts.ProfileInstrumentUsePath, *FS, 417 CodeGenOpts.ProfileRemappingFile); 418 // We're checking for profile read errors in CompilerInvocation, so if 419 // there was an error it should've already been caught. If it hasn't been 420 // somehow, trip an assertion. 421 assert(ReaderOrErr); 422 PGOReader = std::move(ReaderOrErr.get()); 423 } 424 425 // If coverage mapping generation is enabled, create the 426 // CoverageMappingModuleGen object. 427 if (CodeGenOpts.CoverageMapping) 428 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 429 430 // Generate the module name hash here if needed. 431 if (CodeGenOpts.UniqueInternalLinkageNames && 432 !getModule().getSourceFileName().empty()) { 433 std::string Path = getModule().getSourceFileName(); 434 // Check if a path substitution is needed from the MacroPrefixMap. 435 for (const auto &Entry : LangOpts.MacroPrefixMap) 436 if (Path.rfind(Entry.first, 0) != std::string::npos) { 437 Path = Entry.second + Path.substr(Entry.first.size()); 438 break; 439 } 440 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 441 } 442 } 443 444 CodeGenModule::~CodeGenModule() {} 445 446 void CodeGenModule::createObjCRuntime() { 447 // This is just isGNUFamily(), but we want to force implementors of 448 // new ABIs to decide how best to do this. 449 switch (LangOpts.ObjCRuntime.getKind()) { 450 case ObjCRuntime::GNUstep: 451 case ObjCRuntime::GCC: 452 case ObjCRuntime::ObjFW: 453 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 454 return; 455 456 case ObjCRuntime::FragileMacOSX: 457 case ObjCRuntime::MacOSX: 458 case ObjCRuntime::iOS: 459 case ObjCRuntime::WatchOS: 460 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 461 return; 462 } 463 llvm_unreachable("bad runtime kind"); 464 } 465 466 void CodeGenModule::createOpenCLRuntime() { 467 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 468 } 469 470 void CodeGenModule::createOpenMPRuntime() { 471 // Select a specialized code generation class based on the target, if any. 472 // If it does not exist use the default implementation. 473 switch (getTriple().getArch()) { 474 case llvm::Triple::nvptx: 475 case llvm::Triple::nvptx64: 476 case llvm::Triple::amdgcn: 477 assert(getLangOpts().OpenMPIsTargetDevice && 478 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 479 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 480 break; 481 default: 482 if (LangOpts.OpenMPSimd) 483 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 484 else 485 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 486 break; 487 } 488 } 489 490 void CodeGenModule::createCUDARuntime() { 491 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 492 } 493 494 void CodeGenModule::createHLSLRuntime() { 495 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 496 } 497 498 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 499 Replacements[Name] = C; 500 } 501 502 void CodeGenModule::applyReplacements() { 503 for (auto &I : Replacements) { 504 StringRef MangledName = I.first; 505 llvm::Constant *Replacement = I.second; 506 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 507 if (!Entry) 508 continue; 509 auto *OldF = cast<llvm::Function>(Entry); 510 auto *NewF = dyn_cast<llvm::Function>(Replacement); 511 if (!NewF) { 512 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 513 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 514 } else { 515 auto *CE = cast<llvm::ConstantExpr>(Replacement); 516 assert(CE->getOpcode() == llvm::Instruction::BitCast || 517 CE->getOpcode() == llvm::Instruction::GetElementPtr); 518 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 519 } 520 } 521 522 // Replace old with new, but keep the old order. 523 OldF->replaceAllUsesWith(Replacement); 524 if (NewF) { 525 NewF->removeFromParent(); 526 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 527 NewF); 528 } 529 OldF->eraseFromParent(); 530 } 531 } 532 533 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 534 GlobalValReplacements.push_back(std::make_pair(GV, C)); 535 } 536 537 void CodeGenModule::applyGlobalValReplacements() { 538 for (auto &I : GlobalValReplacements) { 539 llvm::GlobalValue *GV = I.first; 540 llvm::Constant *C = I.second; 541 542 GV->replaceAllUsesWith(C); 543 GV->eraseFromParent(); 544 } 545 } 546 547 // This is only used in aliases that we created and we know they have a 548 // linear structure. 549 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 550 const llvm::Constant *C; 551 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 552 C = GA->getAliasee(); 553 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 554 C = GI->getResolver(); 555 else 556 return GV; 557 558 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 559 if (!AliaseeGV) 560 return nullptr; 561 562 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 563 if (FinalGV == GV) 564 return nullptr; 565 566 return FinalGV; 567 } 568 569 static bool checkAliasedGlobal( 570 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 571 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 572 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 573 SourceRange AliasRange) { 574 GV = getAliasedGlobal(Alias); 575 if (!GV) { 576 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 577 return false; 578 } 579 580 if (GV->hasCommonLinkage()) { 581 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 582 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 583 Diags.Report(Location, diag::err_alias_to_common); 584 return false; 585 } 586 } 587 588 if (GV->isDeclaration()) { 589 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 590 Diags.Report(Location, diag::note_alias_requires_mangled_name) 591 << IsIFunc << IsIFunc; 592 // Provide a note if the given function is not found and exists as a 593 // mangled name. 594 for (const auto &[Decl, Name] : MangledDeclNames) { 595 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 596 if (ND->getName() == GV->getName()) { 597 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 598 << Name 599 << FixItHint::CreateReplacement( 600 AliasRange, 601 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 602 .str()); 603 } 604 } 605 } 606 return false; 607 } 608 609 if (IsIFunc) { 610 // Check resolver function type. 611 const auto *F = dyn_cast<llvm::Function>(GV); 612 if (!F) { 613 Diags.Report(Location, diag::err_alias_to_undefined) 614 << IsIFunc << IsIFunc; 615 return false; 616 } 617 618 llvm::FunctionType *FTy = F->getFunctionType(); 619 if (!FTy->getReturnType()->isPointerTy()) { 620 Diags.Report(Location, diag::err_ifunc_resolver_return); 621 return false; 622 } 623 } 624 625 return true; 626 } 627 628 void CodeGenModule::checkAliases() { 629 // Check if the constructed aliases are well formed. It is really unfortunate 630 // that we have to do this in CodeGen, but we only construct mangled names 631 // and aliases during codegen. 632 bool Error = false; 633 DiagnosticsEngine &Diags = getDiags(); 634 for (const GlobalDecl &GD : Aliases) { 635 const auto *D = cast<ValueDecl>(GD.getDecl()); 636 SourceLocation Location; 637 SourceRange Range; 638 bool IsIFunc = D->hasAttr<IFuncAttr>(); 639 if (const Attr *A = D->getDefiningAttr()) { 640 Location = A->getLocation(); 641 Range = A->getRange(); 642 } else 643 llvm_unreachable("Not an alias or ifunc?"); 644 645 StringRef MangledName = getMangledName(GD); 646 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 647 const llvm::GlobalValue *GV = nullptr; 648 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 649 MangledDeclNames, Range)) { 650 Error = true; 651 continue; 652 } 653 654 llvm::Constant *Aliasee = 655 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 656 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 657 658 llvm::GlobalValue *AliaseeGV; 659 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 660 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 661 else 662 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 663 664 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 665 StringRef AliasSection = SA->getName(); 666 if (AliasSection != AliaseeGV->getSection()) 667 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 668 << AliasSection << IsIFunc << IsIFunc; 669 } 670 671 // We have to handle alias to weak aliases in here. LLVM itself disallows 672 // this since the object semantics would not match the IL one. For 673 // compatibility with gcc we implement it by just pointing the alias 674 // to its aliasee's aliasee. We also warn, since the user is probably 675 // expecting the link to be weak. 676 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 677 if (GA->isInterposable()) { 678 Diags.Report(Location, diag::warn_alias_to_weak_alias) 679 << GV->getName() << GA->getName() << IsIFunc; 680 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 681 GA->getAliasee(), Alias->getType()); 682 683 if (IsIFunc) 684 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 685 else 686 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 687 } 688 } 689 } 690 if (!Error) 691 return; 692 693 for (const GlobalDecl &GD : Aliases) { 694 StringRef MangledName = getMangledName(GD); 695 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 696 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 697 Alias->eraseFromParent(); 698 } 699 } 700 701 void CodeGenModule::clear() { 702 DeferredDeclsToEmit.clear(); 703 EmittedDeferredDecls.clear(); 704 DeferredAnnotations.clear(); 705 if (OpenMPRuntime) 706 OpenMPRuntime->clear(); 707 } 708 709 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 710 StringRef MainFile) { 711 if (!hasDiagnostics()) 712 return; 713 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 714 if (MainFile.empty()) 715 MainFile = "<stdin>"; 716 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 717 } else { 718 if (Mismatched > 0) 719 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 720 721 if (Missing > 0) 722 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 723 } 724 } 725 726 static std::optional<llvm::GlobalValue::VisibilityTypes> 727 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 728 // Map to LLVM visibility. 729 switch (K) { 730 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 731 return std::nullopt; 732 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 733 return llvm::GlobalValue::DefaultVisibility; 734 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 735 return llvm::GlobalValue::HiddenVisibility; 736 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 737 return llvm::GlobalValue::ProtectedVisibility; 738 } 739 llvm_unreachable("unknown option value!"); 740 } 741 742 void setLLVMVisibility(llvm::GlobalValue &GV, 743 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 744 if (!V) 745 return; 746 747 // Reset DSO locality before setting the visibility. This removes 748 // any effects that visibility options and annotations may have 749 // had on the DSO locality. Setting the visibility will implicitly set 750 // appropriate globals to DSO Local; however, this will be pessimistic 751 // w.r.t. to the normal compiler IRGen. 752 GV.setDSOLocal(false); 753 GV.setVisibility(*V); 754 } 755 756 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 757 llvm::Module &M) { 758 if (!LO.VisibilityFromDLLStorageClass) 759 return; 760 761 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 762 getLLVMVisibility(LO.getDLLExportVisibility()); 763 764 std::optional<llvm::GlobalValue::VisibilityTypes> 765 NoDLLStorageClassVisibility = 766 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 767 768 std::optional<llvm::GlobalValue::VisibilityTypes> 769 ExternDeclDLLImportVisibility = 770 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 771 772 std::optional<llvm::GlobalValue::VisibilityTypes> 773 ExternDeclNoDLLStorageClassVisibility = 774 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 775 776 for (llvm::GlobalValue &GV : M.global_values()) { 777 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 778 continue; 779 780 if (GV.isDeclarationForLinker()) 781 setLLVMVisibility(GV, GV.getDLLStorageClass() == 782 llvm::GlobalValue::DLLImportStorageClass 783 ? ExternDeclDLLImportVisibility 784 : ExternDeclNoDLLStorageClassVisibility); 785 else 786 setLLVMVisibility(GV, GV.getDLLStorageClass() == 787 llvm::GlobalValue::DLLExportStorageClass 788 ? DLLExportVisibility 789 : NoDLLStorageClassVisibility); 790 791 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 792 } 793 } 794 795 static bool isStackProtectorOn(const LangOptions &LangOpts, 796 const llvm::Triple &Triple, 797 clang::LangOptions::StackProtectorMode Mode) { 798 if (Triple.isAMDGPU() || Triple.isNVPTX()) 799 return false; 800 return LangOpts.getStackProtector() == Mode; 801 } 802 803 void CodeGenModule::Release() { 804 Module *Primary = getContext().getCurrentNamedModule(); 805 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 806 EmitModuleInitializers(Primary); 807 EmitDeferred(); 808 DeferredDecls.insert(EmittedDeferredDecls.begin(), 809 EmittedDeferredDecls.end()); 810 EmittedDeferredDecls.clear(); 811 EmitVTablesOpportunistically(); 812 applyGlobalValReplacements(); 813 applyReplacements(); 814 emitMultiVersionFunctions(); 815 816 if (Context.getLangOpts().IncrementalExtensions && 817 GlobalTopLevelStmtBlockInFlight.first) { 818 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 819 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 820 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 821 } 822 823 // Module implementations are initialized the same way as a regular TU that 824 // imports one or more modules. 825 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 826 EmitCXXModuleInitFunc(Primary); 827 else 828 EmitCXXGlobalInitFunc(); 829 EmitCXXGlobalCleanUpFunc(); 830 registerGlobalDtorsWithAtExit(); 831 EmitCXXThreadLocalInitFunc(); 832 if (ObjCRuntime) 833 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 834 AddGlobalCtor(ObjCInitFunction); 835 if (Context.getLangOpts().CUDA && CUDARuntime) { 836 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 837 AddGlobalCtor(CudaCtorFunction); 838 } 839 if (OpenMPRuntime) { 840 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 841 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 842 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 843 } 844 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 845 OpenMPRuntime->clear(); 846 } 847 if (PGOReader) { 848 getModule().setProfileSummary( 849 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 850 llvm::ProfileSummary::PSK_Instr); 851 if (PGOStats.hasDiagnostics()) 852 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 853 } 854 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 855 return L.LexOrder < R.LexOrder; 856 }); 857 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 858 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 859 EmitGlobalAnnotations(); 860 EmitStaticExternCAliases(); 861 checkAliases(); 862 EmitDeferredUnusedCoverageMappings(); 863 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 864 if (CoverageMapping) 865 CoverageMapping->emit(); 866 if (CodeGenOpts.SanitizeCfiCrossDso) { 867 CodeGenFunction(*this).EmitCfiCheckFail(); 868 CodeGenFunction(*this).EmitCfiCheckStub(); 869 } 870 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 871 finalizeKCFITypes(); 872 emitAtAvailableLinkGuard(); 873 if (Context.getTargetInfo().getTriple().isWasm()) 874 EmitMainVoidAlias(); 875 876 if (getTriple().isAMDGPU()) { 877 // Emit amdgpu_code_object_version module flag, which is code object version 878 // times 100. 879 if (getTarget().getTargetOpts().CodeObjectVersion != 880 llvm::CodeObjectVersionKind::COV_None) { 881 getModule().addModuleFlag(llvm::Module::Error, 882 "amdgpu_code_object_version", 883 getTarget().getTargetOpts().CodeObjectVersion); 884 } 885 886 // Currently, "-mprintf-kind" option is only supported for HIP 887 if (LangOpts.HIP) { 888 auto *MDStr = llvm::MDString::get( 889 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 890 TargetOptions::AMDGPUPrintfKind::Hostcall) 891 ? "hostcall" 892 : "buffered"); 893 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 894 MDStr); 895 } 896 } 897 898 // Emit a global array containing all external kernels or device variables 899 // used by host functions and mark it as used for CUDA/HIP. This is necessary 900 // to get kernels or device variables in archives linked in even if these 901 // kernels or device variables are only used in host functions. 902 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 903 SmallVector<llvm::Constant *, 8> UsedArray; 904 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 905 GlobalDecl GD; 906 if (auto *FD = dyn_cast<FunctionDecl>(D)) 907 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 908 else 909 GD = GlobalDecl(D); 910 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 911 GetAddrOfGlobal(GD), Int8PtrTy)); 912 } 913 914 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 915 916 auto *GV = new llvm::GlobalVariable( 917 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 918 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 919 addCompilerUsedGlobal(GV); 920 } 921 922 emitLLVMUsed(); 923 if (SanStats) 924 SanStats->finish(); 925 926 if (CodeGenOpts.Autolink && 927 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 928 EmitModuleLinkOptions(); 929 } 930 931 // On ELF we pass the dependent library specifiers directly to the linker 932 // without manipulating them. This is in contrast to other platforms where 933 // they are mapped to a specific linker option by the compiler. This 934 // difference is a result of the greater variety of ELF linkers and the fact 935 // that ELF linkers tend to handle libraries in a more complicated fashion 936 // than on other platforms. This forces us to defer handling the dependent 937 // libs to the linker. 938 // 939 // CUDA/HIP device and host libraries are different. Currently there is no 940 // way to differentiate dependent libraries for host or device. Existing 941 // usage of #pragma comment(lib, *) is intended for host libraries on 942 // Windows. Therefore emit llvm.dependent-libraries only for host. 943 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 944 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 945 for (auto *MD : ELFDependentLibraries) 946 NMD->addOperand(MD); 947 } 948 949 // Record mregparm value now so it is visible through rest of codegen. 950 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 951 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 952 CodeGenOpts.NumRegisterParameters); 953 954 if (CodeGenOpts.DwarfVersion) { 955 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 956 CodeGenOpts.DwarfVersion); 957 } 958 959 if (CodeGenOpts.Dwarf64) 960 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 961 962 if (Context.getLangOpts().SemanticInterposition) 963 // Require various optimization to respect semantic interposition. 964 getModule().setSemanticInterposition(true); 965 966 if (CodeGenOpts.EmitCodeView) { 967 // Indicate that we want CodeView in the metadata. 968 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 969 } 970 if (CodeGenOpts.CodeViewGHash) { 971 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 972 } 973 if (CodeGenOpts.ControlFlowGuard) { 974 // Function ID tables and checks for Control Flow Guard (cfguard=2). 975 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 976 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 977 // Function ID tables for Control Flow Guard (cfguard=1). 978 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 979 } 980 if (CodeGenOpts.EHContGuard) { 981 // Function ID tables for EH Continuation Guard. 982 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 983 } 984 if (Context.getLangOpts().Kernel) { 985 // Note if we are compiling with /kernel. 986 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 987 } 988 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 989 // We don't support LTO with 2 with different StrictVTablePointers 990 // FIXME: we could support it by stripping all the information introduced 991 // by StrictVTablePointers. 992 993 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 994 995 llvm::Metadata *Ops[2] = { 996 llvm::MDString::get(VMContext, "StrictVTablePointers"), 997 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 998 llvm::Type::getInt32Ty(VMContext), 1))}; 999 1000 getModule().addModuleFlag(llvm::Module::Require, 1001 "StrictVTablePointersRequirement", 1002 llvm::MDNode::get(VMContext, Ops)); 1003 } 1004 if (getModuleDebugInfo()) 1005 // We support a single version in the linked module. The LLVM 1006 // parser will drop debug info with a different version number 1007 // (and warn about it, too). 1008 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1009 llvm::DEBUG_METADATA_VERSION); 1010 1011 // We need to record the widths of enums and wchar_t, so that we can generate 1012 // the correct build attributes in the ARM backend. wchar_size is also used by 1013 // TargetLibraryInfo. 1014 uint64_t WCharWidth = 1015 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1016 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1017 1018 if (getTriple().isOSzOS()) { 1019 getModule().addModuleFlag(llvm::Module::Warning, 1020 "zos_product_major_version", 1021 uint32_t(CLANG_VERSION_MAJOR)); 1022 getModule().addModuleFlag(llvm::Module::Warning, 1023 "zos_product_minor_version", 1024 uint32_t(CLANG_VERSION_MINOR)); 1025 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1026 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1027 std::string ProductId = getClangVendor() + "clang"; 1028 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1029 llvm::MDString::get(VMContext, ProductId)); 1030 1031 // Record the language because we need it for the PPA2. 1032 StringRef lang_str = languageToString( 1033 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1034 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1035 llvm::MDString::get(VMContext, lang_str)); 1036 1037 time_t TT = PreprocessorOpts.SourceDateEpoch 1038 ? *PreprocessorOpts.SourceDateEpoch 1039 : std::time(nullptr); 1040 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1041 static_cast<uint64_t>(TT)); 1042 1043 // Multiple modes will be supported here. 1044 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1045 llvm::MDString::get(VMContext, "ascii")); 1046 } 1047 1048 llvm::Triple T = Context.getTargetInfo().getTriple(); 1049 if (T.isARM() || T.isThumb()) { 1050 // The minimum width of an enum in bytes 1051 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1052 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1053 } 1054 1055 if (T.isRISCV()) { 1056 StringRef ABIStr = Target.getABI(); 1057 llvm::LLVMContext &Ctx = TheModule.getContext(); 1058 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1059 llvm::MDString::get(Ctx, ABIStr)); 1060 } 1061 1062 if (CodeGenOpts.SanitizeCfiCrossDso) { 1063 // Indicate that we want cross-DSO control flow integrity checks. 1064 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1065 } 1066 1067 if (CodeGenOpts.WholeProgramVTables) { 1068 // Indicate whether VFE was enabled for this module, so that the 1069 // vcall_visibility metadata added under whole program vtables is handled 1070 // appropriately in the optimizer. 1071 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1072 CodeGenOpts.VirtualFunctionElimination); 1073 } 1074 1075 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1076 getModule().addModuleFlag(llvm::Module::Override, 1077 "CFI Canonical Jump Tables", 1078 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1079 } 1080 1081 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1082 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1083 // KCFI assumes patchable-function-prefix is the same for all indirectly 1084 // called functions. Store the expected offset for code generation. 1085 if (CodeGenOpts.PatchableFunctionEntryOffset) 1086 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1087 CodeGenOpts.PatchableFunctionEntryOffset); 1088 } 1089 1090 if (CodeGenOpts.CFProtectionReturn && 1091 Target.checkCFProtectionReturnSupported(getDiags())) { 1092 // Indicate that we want to instrument return control flow protection. 1093 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1094 1); 1095 } 1096 1097 if (CodeGenOpts.CFProtectionBranch && 1098 Target.checkCFProtectionBranchSupported(getDiags())) { 1099 // Indicate that we want to instrument branch control flow protection. 1100 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1101 1); 1102 } 1103 1104 if (CodeGenOpts.FunctionReturnThunks) 1105 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1106 1107 if (CodeGenOpts.IndirectBranchCSPrefix) 1108 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1109 1110 // Add module metadata for return address signing (ignoring 1111 // non-leaf/all) and stack tagging. These are actually turned on by function 1112 // attributes, but we use module metadata to emit build attributes. This is 1113 // needed for LTO, where the function attributes are inside bitcode 1114 // serialised into a global variable by the time build attributes are 1115 // emitted, so we can't access them. LTO objects could be compiled with 1116 // different flags therefore module flags are set to "Min" behavior to achieve 1117 // the same end result of the normal build where e.g BTI is off if any object 1118 // doesn't support it. 1119 if (Context.getTargetInfo().hasFeature("ptrauth") && 1120 LangOpts.getSignReturnAddressScope() != 1121 LangOptions::SignReturnAddressScopeKind::None) 1122 getModule().addModuleFlag(llvm::Module::Override, 1123 "sign-return-address-buildattr", 1); 1124 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1125 getModule().addModuleFlag(llvm::Module::Override, 1126 "tag-stack-memory-buildattr", 1); 1127 1128 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1129 if (LangOpts.BranchTargetEnforcement) 1130 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1131 1); 1132 if (LangOpts.BranchProtectionPAuthLR) 1133 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1134 1); 1135 if (LangOpts.GuardedControlStack) 1136 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1137 if (LangOpts.hasSignReturnAddress()) 1138 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1139 if (LangOpts.isSignReturnAddressScopeAll()) 1140 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1141 1); 1142 if (!LangOpts.isSignReturnAddressWithAKey()) 1143 getModule().addModuleFlag(llvm::Module::Min, 1144 "sign-return-address-with-bkey", 1); 1145 } 1146 1147 if (CodeGenOpts.StackClashProtector) 1148 getModule().addModuleFlag( 1149 llvm::Module::Override, "probe-stack", 1150 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1151 1152 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1153 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1154 CodeGenOpts.StackProbeSize); 1155 1156 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1157 llvm::LLVMContext &Ctx = TheModule.getContext(); 1158 getModule().addModuleFlag( 1159 llvm::Module::Error, "MemProfProfileFilename", 1160 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1161 } 1162 1163 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1164 // Indicate whether __nvvm_reflect should be configured to flush denormal 1165 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1166 // property.) 1167 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1168 CodeGenOpts.FP32DenormalMode.Output != 1169 llvm::DenormalMode::IEEE); 1170 } 1171 1172 if (LangOpts.EHAsynch) 1173 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1174 1175 // Indicate whether this Module was compiled with -fopenmp 1176 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1177 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1178 if (getLangOpts().OpenMPIsTargetDevice) 1179 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1180 LangOpts.OpenMP); 1181 1182 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1183 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1184 EmitOpenCLMetadata(); 1185 // Emit SPIR version. 1186 if (getTriple().isSPIR()) { 1187 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1188 // opencl.spir.version named metadata. 1189 // C++ for OpenCL has a distinct mapping for version compatibility with 1190 // OpenCL. 1191 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1192 llvm::Metadata *SPIRVerElts[] = { 1193 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1194 Int32Ty, Version / 100)), 1195 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1196 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1197 llvm::NamedMDNode *SPIRVerMD = 1198 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1199 llvm::LLVMContext &Ctx = TheModule.getContext(); 1200 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1201 } 1202 } 1203 1204 // HLSL related end of code gen work items. 1205 if (LangOpts.HLSL) 1206 getHLSLRuntime().finishCodeGen(); 1207 1208 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1209 assert(PLevel < 3 && "Invalid PIC Level"); 1210 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1211 if (Context.getLangOpts().PIE) 1212 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1213 } 1214 1215 if (getCodeGenOpts().CodeModel.size() > 0) { 1216 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1217 .Case("tiny", llvm::CodeModel::Tiny) 1218 .Case("small", llvm::CodeModel::Small) 1219 .Case("kernel", llvm::CodeModel::Kernel) 1220 .Case("medium", llvm::CodeModel::Medium) 1221 .Case("large", llvm::CodeModel::Large) 1222 .Default(~0u); 1223 if (CM != ~0u) { 1224 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1225 getModule().setCodeModel(codeModel); 1226 1227 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1228 Context.getTargetInfo().getTriple().getArch() == 1229 llvm::Triple::x86_64) { 1230 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1231 } 1232 } 1233 } 1234 1235 if (CodeGenOpts.NoPLT) 1236 getModule().setRtLibUseGOT(); 1237 if (getTriple().isOSBinFormatELF() && 1238 CodeGenOpts.DirectAccessExternalData != 1239 getModule().getDirectAccessExternalData()) { 1240 getModule().setDirectAccessExternalData( 1241 CodeGenOpts.DirectAccessExternalData); 1242 } 1243 if (CodeGenOpts.UnwindTables) 1244 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1245 1246 switch (CodeGenOpts.getFramePointer()) { 1247 case CodeGenOptions::FramePointerKind::None: 1248 // 0 ("none") is the default. 1249 break; 1250 case CodeGenOptions::FramePointerKind::NonLeaf: 1251 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1252 break; 1253 case CodeGenOptions::FramePointerKind::All: 1254 getModule().setFramePointer(llvm::FramePointerKind::All); 1255 break; 1256 } 1257 1258 SimplifyPersonality(); 1259 1260 if (getCodeGenOpts().EmitDeclMetadata) 1261 EmitDeclMetadata(); 1262 1263 if (getCodeGenOpts().CoverageNotesFile.size() || 1264 getCodeGenOpts().CoverageDataFile.size()) 1265 EmitCoverageFile(); 1266 1267 if (CGDebugInfo *DI = getModuleDebugInfo()) 1268 DI->finalize(); 1269 1270 if (getCodeGenOpts().EmitVersionIdentMetadata) 1271 EmitVersionIdentMetadata(); 1272 1273 if (!getCodeGenOpts().RecordCommandLine.empty()) 1274 EmitCommandLineMetadata(); 1275 1276 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1277 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1278 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1279 getModule().setStackProtectorGuardReg( 1280 getCodeGenOpts().StackProtectorGuardReg); 1281 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1282 getModule().setStackProtectorGuardSymbol( 1283 getCodeGenOpts().StackProtectorGuardSymbol); 1284 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1285 getModule().setStackProtectorGuardOffset( 1286 getCodeGenOpts().StackProtectorGuardOffset); 1287 if (getCodeGenOpts().StackAlignment) 1288 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1289 if (getCodeGenOpts().SkipRaxSetup) 1290 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1291 if (getLangOpts().RegCall4) 1292 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1293 1294 if (getContext().getTargetInfo().getMaxTLSAlign()) 1295 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1296 getContext().getTargetInfo().getMaxTLSAlign()); 1297 1298 getTargetCodeGenInfo().emitTargetGlobals(*this); 1299 1300 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1301 1302 EmitBackendOptionsMetadata(getCodeGenOpts()); 1303 1304 // If there is device offloading code embed it in the host now. 1305 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1306 1307 // Set visibility from DLL storage class 1308 // We do this at the end of LLVM IR generation; after any operation 1309 // that might affect the DLL storage class or the visibility, and 1310 // before anything that might act on these. 1311 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1312 } 1313 1314 void CodeGenModule::EmitOpenCLMetadata() { 1315 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1316 // opencl.ocl.version named metadata node. 1317 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1318 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1319 llvm::Metadata *OCLVerElts[] = { 1320 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1321 Int32Ty, Version / 100)), 1322 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1323 Int32Ty, (Version % 100) / 10))}; 1324 llvm::NamedMDNode *OCLVerMD = 1325 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1326 llvm::LLVMContext &Ctx = TheModule.getContext(); 1327 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1328 } 1329 1330 void CodeGenModule::EmitBackendOptionsMetadata( 1331 const CodeGenOptions &CodeGenOpts) { 1332 if (getTriple().isRISCV()) { 1333 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1334 CodeGenOpts.SmallDataLimit); 1335 } 1336 } 1337 1338 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1339 // Make sure that this type is translated. 1340 Types.UpdateCompletedType(TD); 1341 } 1342 1343 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1344 // Make sure that this type is translated. 1345 Types.RefreshTypeCacheForClass(RD); 1346 } 1347 1348 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1349 if (!TBAA) 1350 return nullptr; 1351 return TBAA->getTypeInfo(QTy); 1352 } 1353 1354 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1355 if (!TBAA) 1356 return TBAAAccessInfo(); 1357 if (getLangOpts().CUDAIsDevice) { 1358 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1359 // access info. 1360 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1361 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1362 nullptr) 1363 return TBAAAccessInfo(); 1364 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1365 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1366 nullptr) 1367 return TBAAAccessInfo(); 1368 } 1369 } 1370 return TBAA->getAccessInfo(AccessType); 1371 } 1372 1373 TBAAAccessInfo 1374 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1375 if (!TBAA) 1376 return TBAAAccessInfo(); 1377 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1378 } 1379 1380 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1381 if (!TBAA) 1382 return nullptr; 1383 return TBAA->getTBAAStructInfo(QTy); 1384 } 1385 1386 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1387 if (!TBAA) 1388 return nullptr; 1389 return TBAA->getBaseTypeInfo(QTy); 1390 } 1391 1392 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1393 if (!TBAA) 1394 return nullptr; 1395 return TBAA->getAccessTagInfo(Info); 1396 } 1397 1398 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1399 TBAAAccessInfo TargetInfo) { 1400 if (!TBAA) 1401 return TBAAAccessInfo(); 1402 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1403 } 1404 1405 TBAAAccessInfo 1406 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1407 TBAAAccessInfo InfoB) { 1408 if (!TBAA) 1409 return TBAAAccessInfo(); 1410 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1411 } 1412 1413 TBAAAccessInfo 1414 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1415 TBAAAccessInfo SrcInfo) { 1416 if (!TBAA) 1417 return TBAAAccessInfo(); 1418 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1419 } 1420 1421 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1422 TBAAAccessInfo TBAAInfo) { 1423 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1424 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1425 } 1426 1427 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1428 llvm::Instruction *I, const CXXRecordDecl *RD) { 1429 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1430 llvm::MDNode::get(getLLVMContext(), {})); 1431 } 1432 1433 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1434 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1435 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1436 } 1437 1438 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1439 /// specified stmt yet. 1440 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1441 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1442 "cannot compile this %0 yet"); 1443 std::string Msg = Type; 1444 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1445 << Msg << S->getSourceRange(); 1446 } 1447 1448 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1449 /// specified decl yet. 1450 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1451 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1452 "cannot compile this %0 yet"); 1453 std::string Msg = Type; 1454 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1455 } 1456 1457 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1458 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1459 } 1460 1461 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1462 const NamedDecl *D) const { 1463 // Internal definitions always have default visibility. 1464 if (GV->hasLocalLinkage()) { 1465 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1466 return; 1467 } 1468 if (!D) 1469 return; 1470 1471 // Set visibility for definitions, and for declarations if requested globally 1472 // or set explicitly. 1473 LinkageInfo LV = D->getLinkageAndVisibility(); 1474 1475 // OpenMP declare target variables must be visible to the host so they can 1476 // be registered. We require protected visibility unless the variable has 1477 // the DT_nohost modifier and does not need to be registered. 1478 if (Context.getLangOpts().OpenMP && 1479 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1480 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1481 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1482 OMPDeclareTargetDeclAttr::DT_NoHost && 1483 LV.getVisibility() == HiddenVisibility) { 1484 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1485 return; 1486 } 1487 1488 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1489 // Reject incompatible dlllstorage and visibility annotations. 1490 if (!LV.isVisibilityExplicit()) 1491 return; 1492 if (GV->hasDLLExportStorageClass()) { 1493 if (LV.getVisibility() == HiddenVisibility) 1494 getDiags().Report(D->getLocation(), 1495 diag::err_hidden_visibility_dllexport); 1496 } else if (LV.getVisibility() != DefaultVisibility) { 1497 getDiags().Report(D->getLocation(), 1498 diag::err_non_default_visibility_dllimport); 1499 } 1500 return; 1501 } 1502 1503 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1504 !GV->isDeclarationForLinker()) 1505 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1506 } 1507 1508 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1509 llvm::GlobalValue *GV) { 1510 if (GV->hasLocalLinkage()) 1511 return true; 1512 1513 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1514 return true; 1515 1516 // DLLImport explicitly marks the GV as external. 1517 if (GV->hasDLLImportStorageClass()) 1518 return false; 1519 1520 const llvm::Triple &TT = CGM.getTriple(); 1521 const auto &CGOpts = CGM.getCodeGenOpts(); 1522 if (TT.isWindowsGNUEnvironment()) { 1523 // In MinGW, variables without DLLImport can still be automatically 1524 // imported from a DLL by the linker; don't mark variables that 1525 // potentially could come from another DLL as DSO local. 1526 1527 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1528 // (and this actually happens in the public interface of libstdc++), so 1529 // such variables can't be marked as DSO local. (Native TLS variables 1530 // can't be dllimported at all, though.) 1531 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1532 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1533 CGOpts.AutoImport) 1534 return false; 1535 } 1536 1537 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1538 // remain unresolved in the link, they can be resolved to zero, which is 1539 // outside the current DSO. 1540 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1541 return false; 1542 1543 // Every other GV is local on COFF. 1544 // Make an exception for windows OS in the triple: Some firmware builds use 1545 // *-win32-macho triples. This (accidentally?) produced windows relocations 1546 // without GOT tables in older clang versions; Keep this behaviour. 1547 // FIXME: even thread local variables? 1548 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1549 return true; 1550 1551 // Only handle COFF and ELF for now. 1552 if (!TT.isOSBinFormatELF()) 1553 return false; 1554 1555 // If this is not an executable, don't assume anything is local. 1556 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1557 const auto &LOpts = CGM.getLangOpts(); 1558 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1559 // On ELF, if -fno-semantic-interposition is specified and the target 1560 // supports local aliases, there will be neither CC1 1561 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1562 // dso_local on the function if using a local alias is preferable (can avoid 1563 // PLT indirection). 1564 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1565 return false; 1566 return !(CGM.getLangOpts().SemanticInterposition || 1567 CGM.getLangOpts().HalfNoSemanticInterposition); 1568 } 1569 1570 // A definition cannot be preempted from an executable. 1571 if (!GV->isDeclarationForLinker()) 1572 return true; 1573 1574 // Most PIC code sequences that assume that a symbol is local cannot produce a 1575 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1576 // depended, it seems worth it to handle it here. 1577 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1578 return false; 1579 1580 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1581 if (TT.isPPC64()) 1582 return false; 1583 1584 if (CGOpts.DirectAccessExternalData) { 1585 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1586 // for non-thread-local variables. If the symbol is not defined in the 1587 // executable, a copy relocation will be needed at link time. dso_local is 1588 // excluded for thread-local variables because they generally don't support 1589 // copy relocations. 1590 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1591 if (!Var->isThreadLocal()) 1592 return true; 1593 1594 // -fno-pic sets dso_local on a function declaration to allow direct 1595 // accesses when taking its address (similar to a data symbol). If the 1596 // function is not defined in the executable, a canonical PLT entry will be 1597 // needed at link time. -fno-direct-access-external-data can avoid the 1598 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1599 // it could just cause trouble without providing perceptible benefits. 1600 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1601 return true; 1602 } 1603 1604 // If we can use copy relocations we can assume it is local. 1605 1606 // Otherwise don't assume it is local. 1607 return false; 1608 } 1609 1610 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1611 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1612 } 1613 1614 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1615 GlobalDecl GD) const { 1616 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1617 // C++ destructors have a few C++ ABI specific special cases. 1618 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1619 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1620 return; 1621 } 1622 setDLLImportDLLExport(GV, D); 1623 } 1624 1625 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1626 const NamedDecl *D) const { 1627 if (D && D->isExternallyVisible()) { 1628 if (D->hasAttr<DLLImportAttr>()) 1629 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1630 else if ((D->hasAttr<DLLExportAttr>() || 1631 shouldMapVisibilityToDLLExport(D)) && 1632 !GV->isDeclarationForLinker()) 1633 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1634 } 1635 } 1636 1637 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1638 GlobalDecl GD) const { 1639 setDLLImportDLLExport(GV, GD); 1640 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1641 } 1642 1643 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1644 const NamedDecl *D) const { 1645 setDLLImportDLLExport(GV, D); 1646 setGVPropertiesAux(GV, D); 1647 } 1648 1649 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1650 const NamedDecl *D) const { 1651 setGlobalVisibility(GV, D); 1652 setDSOLocal(GV); 1653 GV->setPartition(CodeGenOpts.SymbolPartition); 1654 } 1655 1656 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1657 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1658 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1659 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1660 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1661 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1662 } 1663 1664 llvm::GlobalVariable::ThreadLocalMode 1665 CodeGenModule::GetDefaultLLVMTLSModel() const { 1666 switch (CodeGenOpts.getDefaultTLSModel()) { 1667 case CodeGenOptions::GeneralDynamicTLSModel: 1668 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1669 case CodeGenOptions::LocalDynamicTLSModel: 1670 return llvm::GlobalVariable::LocalDynamicTLSModel; 1671 case CodeGenOptions::InitialExecTLSModel: 1672 return llvm::GlobalVariable::InitialExecTLSModel; 1673 case CodeGenOptions::LocalExecTLSModel: 1674 return llvm::GlobalVariable::LocalExecTLSModel; 1675 } 1676 llvm_unreachable("Invalid TLS model!"); 1677 } 1678 1679 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1680 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1681 1682 llvm::GlobalValue::ThreadLocalMode TLM; 1683 TLM = GetDefaultLLVMTLSModel(); 1684 1685 // Override the TLS model if it is explicitly specified. 1686 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1687 TLM = GetLLVMTLSModel(Attr->getModel()); 1688 } 1689 1690 GV->setThreadLocalMode(TLM); 1691 } 1692 1693 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1694 StringRef Name) { 1695 const TargetInfo &Target = CGM.getTarget(); 1696 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1697 } 1698 1699 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1700 const CPUSpecificAttr *Attr, 1701 unsigned CPUIndex, 1702 raw_ostream &Out) { 1703 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1704 // supported. 1705 if (Attr) 1706 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1707 else if (CGM.getTarget().supportsIFunc()) 1708 Out << ".resolver"; 1709 } 1710 1711 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1712 const TargetVersionAttr *Attr, 1713 raw_ostream &Out) { 1714 if (Attr->isDefaultVersion()) { 1715 Out << ".default"; 1716 return; 1717 } 1718 Out << "._"; 1719 const TargetInfo &TI = CGM.getTarget(); 1720 llvm::SmallVector<StringRef, 8> Feats; 1721 Attr->getFeatures(Feats); 1722 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1723 return TI.multiVersionSortPriority(FeatL) < 1724 TI.multiVersionSortPriority(FeatR); 1725 }); 1726 for (const auto &Feat : Feats) { 1727 Out << 'M'; 1728 Out << Feat; 1729 } 1730 } 1731 1732 static void AppendTargetMangling(const CodeGenModule &CGM, 1733 const TargetAttr *Attr, raw_ostream &Out) { 1734 if (Attr->isDefaultVersion()) 1735 return; 1736 1737 Out << '.'; 1738 const TargetInfo &Target = CGM.getTarget(); 1739 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1740 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1741 // Multiversioning doesn't allow "no-${feature}", so we can 1742 // only have "+" prefixes here. 1743 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1744 "Features should always have a prefix."); 1745 return Target.multiVersionSortPriority(LHS.substr(1)) > 1746 Target.multiVersionSortPriority(RHS.substr(1)); 1747 }); 1748 1749 bool IsFirst = true; 1750 1751 if (!Info.CPU.empty()) { 1752 IsFirst = false; 1753 Out << "arch_" << Info.CPU; 1754 } 1755 1756 for (StringRef Feat : Info.Features) { 1757 if (!IsFirst) 1758 Out << '_'; 1759 IsFirst = false; 1760 Out << Feat.substr(1); 1761 } 1762 } 1763 1764 // Returns true if GD is a function decl with internal linkage and 1765 // needs a unique suffix after the mangled name. 1766 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1767 CodeGenModule &CGM) { 1768 const Decl *D = GD.getDecl(); 1769 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1770 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1771 } 1772 1773 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1774 const TargetClonesAttr *Attr, 1775 unsigned VersionIndex, 1776 raw_ostream &Out) { 1777 const TargetInfo &TI = CGM.getTarget(); 1778 if (TI.getTriple().isAArch64()) { 1779 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1780 if (FeatureStr == "default") { 1781 Out << ".default"; 1782 return; 1783 } 1784 Out << "._"; 1785 SmallVector<StringRef, 8> Features; 1786 FeatureStr.split(Features, "+"); 1787 llvm::stable_sort(Features, 1788 [&TI](const StringRef FeatL, const StringRef FeatR) { 1789 return TI.multiVersionSortPriority(FeatL) < 1790 TI.multiVersionSortPriority(FeatR); 1791 }); 1792 for (auto &Feat : Features) { 1793 Out << 'M'; 1794 Out << Feat; 1795 } 1796 } else { 1797 Out << '.'; 1798 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1799 if (FeatureStr.starts_with("arch=")) 1800 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1801 else 1802 Out << FeatureStr; 1803 1804 Out << '.' << Attr->getMangledIndex(VersionIndex); 1805 } 1806 } 1807 1808 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1809 const NamedDecl *ND, 1810 bool OmitMultiVersionMangling = false) { 1811 SmallString<256> Buffer; 1812 llvm::raw_svector_ostream Out(Buffer); 1813 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1814 if (!CGM.getModuleNameHash().empty()) 1815 MC.needsUniqueInternalLinkageNames(); 1816 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1817 if (ShouldMangle) 1818 MC.mangleName(GD.getWithDecl(ND), Out); 1819 else { 1820 IdentifierInfo *II = ND->getIdentifier(); 1821 assert(II && "Attempt to mangle unnamed decl."); 1822 const auto *FD = dyn_cast<FunctionDecl>(ND); 1823 1824 if (FD && 1825 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1826 if (CGM.getLangOpts().RegCall4) 1827 Out << "__regcall4__" << II->getName(); 1828 else 1829 Out << "__regcall3__" << II->getName(); 1830 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1831 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1832 Out << "__device_stub__" << II->getName(); 1833 } else { 1834 Out << II->getName(); 1835 } 1836 } 1837 1838 // Check if the module name hash should be appended for internal linkage 1839 // symbols. This should come before multi-version target suffixes are 1840 // appended. This is to keep the name and module hash suffix of the 1841 // internal linkage function together. The unique suffix should only be 1842 // added when name mangling is done to make sure that the final name can 1843 // be properly demangled. For example, for C functions without prototypes, 1844 // name mangling is not done and the unique suffix should not be appeneded 1845 // then. 1846 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1847 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1848 "Hash computed when not explicitly requested"); 1849 Out << CGM.getModuleNameHash(); 1850 } 1851 1852 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1853 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1854 switch (FD->getMultiVersionKind()) { 1855 case MultiVersionKind::CPUDispatch: 1856 case MultiVersionKind::CPUSpecific: 1857 AppendCPUSpecificCPUDispatchMangling(CGM, 1858 FD->getAttr<CPUSpecificAttr>(), 1859 GD.getMultiVersionIndex(), Out); 1860 break; 1861 case MultiVersionKind::Target: 1862 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1863 break; 1864 case MultiVersionKind::TargetVersion: 1865 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1866 break; 1867 case MultiVersionKind::TargetClones: 1868 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1869 GD.getMultiVersionIndex(), Out); 1870 break; 1871 case MultiVersionKind::None: 1872 llvm_unreachable("None multiversion type isn't valid here"); 1873 } 1874 } 1875 1876 // Make unique name for device side static file-scope variable for HIP. 1877 if (CGM.getContext().shouldExternalize(ND) && 1878 CGM.getLangOpts().GPURelocatableDeviceCode && 1879 CGM.getLangOpts().CUDAIsDevice) 1880 CGM.printPostfixForExternalizedDecl(Out, ND); 1881 1882 return std::string(Out.str()); 1883 } 1884 1885 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1886 const FunctionDecl *FD, 1887 StringRef &CurName) { 1888 if (!FD->isMultiVersion()) 1889 return; 1890 1891 // Get the name of what this would be without the 'target' attribute. This 1892 // allows us to lookup the version that was emitted when this wasn't a 1893 // multiversion function. 1894 std::string NonTargetName = 1895 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1896 GlobalDecl OtherGD; 1897 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1898 assert(OtherGD.getCanonicalDecl() 1899 .getDecl() 1900 ->getAsFunction() 1901 ->isMultiVersion() && 1902 "Other GD should now be a multiversioned function"); 1903 // OtherFD is the version of this function that was mangled BEFORE 1904 // becoming a MultiVersion function. It potentially needs to be updated. 1905 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1906 .getDecl() 1907 ->getAsFunction() 1908 ->getMostRecentDecl(); 1909 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1910 // This is so that if the initial version was already the 'default' 1911 // version, we don't try to update it. 1912 if (OtherName != NonTargetName) { 1913 // Remove instead of erase, since others may have stored the StringRef 1914 // to this. 1915 const auto ExistingRecord = Manglings.find(NonTargetName); 1916 if (ExistingRecord != std::end(Manglings)) 1917 Manglings.remove(&(*ExistingRecord)); 1918 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1919 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1920 Result.first->first(); 1921 // If this is the current decl is being created, make sure we update the name. 1922 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1923 CurName = OtherNameRef; 1924 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1925 Entry->setName(OtherName); 1926 } 1927 } 1928 } 1929 1930 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1931 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1932 1933 // Some ABIs don't have constructor variants. Make sure that base and 1934 // complete constructors get mangled the same. 1935 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1936 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1937 CXXCtorType OrigCtorType = GD.getCtorType(); 1938 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1939 if (OrigCtorType == Ctor_Base) 1940 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1941 } 1942 } 1943 1944 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1945 // static device variable depends on whether the variable is referenced by 1946 // a host or device host function. Therefore the mangled name cannot be 1947 // cached. 1948 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1949 auto FoundName = MangledDeclNames.find(CanonicalGD); 1950 if (FoundName != MangledDeclNames.end()) 1951 return FoundName->second; 1952 } 1953 1954 // Keep the first result in the case of a mangling collision. 1955 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1956 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1957 1958 // Ensure either we have different ABIs between host and device compilations, 1959 // says host compilation following MSVC ABI but device compilation follows 1960 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1961 // mangling should be the same after name stubbing. The later checking is 1962 // very important as the device kernel name being mangled in host-compilation 1963 // is used to resolve the device binaries to be executed. Inconsistent naming 1964 // result in undefined behavior. Even though we cannot check that naming 1965 // directly between host- and device-compilations, the host- and 1966 // device-mangling in host compilation could help catching certain ones. 1967 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1968 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1969 (getContext().getAuxTargetInfo() && 1970 (getContext().getAuxTargetInfo()->getCXXABI() != 1971 getContext().getTargetInfo().getCXXABI())) || 1972 getCUDARuntime().getDeviceSideName(ND) == 1973 getMangledNameImpl( 1974 *this, 1975 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1976 ND)); 1977 1978 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1979 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1980 } 1981 1982 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1983 const BlockDecl *BD) { 1984 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1985 const Decl *D = GD.getDecl(); 1986 1987 SmallString<256> Buffer; 1988 llvm::raw_svector_ostream Out(Buffer); 1989 if (!D) 1990 MangleCtx.mangleGlobalBlock(BD, 1991 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1992 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1993 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1994 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1995 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1996 else 1997 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1998 1999 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2000 return Result.first->first(); 2001 } 2002 2003 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2004 auto it = MangledDeclNames.begin(); 2005 while (it != MangledDeclNames.end()) { 2006 if (it->second == Name) 2007 return it->first; 2008 it++; 2009 } 2010 return GlobalDecl(); 2011 } 2012 2013 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2014 return getModule().getNamedValue(Name); 2015 } 2016 2017 /// AddGlobalCtor - Add a function to the list that will be called before 2018 /// main() runs. 2019 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2020 unsigned LexOrder, 2021 llvm::Constant *AssociatedData) { 2022 // FIXME: Type coercion of void()* types. 2023 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2024 } 2025 2026 /// AddGlobalDtor - Add a function to the list that will be called 2027 /// when the module is unloaded. 2028 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2029 bool IsDtorAttrFunc) { 2030 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2031 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2032 DtorsUsingAtExit[Priority].push_back(Dtor); 2033 return; 2034 } 2035 2036 // FIXME: Type coercion of void()* types. 2037 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2038 } 2039 2040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2041 if (Fns.empty()) return; 2042 2043 // Ctor function type is void()*. 2044 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2045 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2046 TheModule.getDataLayout().getProgramAddressSpace()); 2047 2048 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2049 llvm::StructType *CtorStructTy = llvm::StructType::get( 2050 Int32Ty, CtorPFTy, VoidPtrTy); 2051 2052 // Construct the constructor and destructor arrays. 2053 ConstantInitBuilder builder(*this); 2054 auto ctors = builder.beginArray(CtorStructTy); 2055 for (const auto &I : Fns) { 2056 auto ctor = ctors.beginStruct(CtorStructTy); 2057 ctor.addInt(Int32Ty, I.Priority); 2058 ctor.add(I.Initializer); 2059 if (I.AssociatedData) 2060 ctor.add(I.AssociatedData); 2061 else 2062 ctor.addNullPointer(VoidPtrTy); 2063 ctor.finishAndAddTo(ctors); 2064 } 2065 2066 auto list = 2067 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2068 /*constant*/ false, 2069 llvm::GlobalValue::AppendingLinkage); 2070 2071 // The LTO linker doesn't seem to like it when we set an alignment 2072 // on appending variables. Take it off as a workaround. 2073 list->setAlignment(std::nullopt); 2074 2075 Fns.clear(); 2076 } 2077 2078 llvm::GlobalValue::LinkageTypes 2079 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2080 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2081 2082 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2083 2084 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2085 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2086 2087 return getLLVMLinkageForDeclarator(D, Linkage); 2088 } 2089 2090 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2091 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2092 if (!MDS) return nullptr; 2093 2094 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2095 } 2096 2097 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2098 if (auto *FnType = T->getAs<FunctionProtoType>()) 2099 T = getContext().getFunctionType( 2100 FnType->getReturnType(), FnType->getParamTypes(), 2101 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2102 2103 std::string OutName; 2104 llvm::raw_string_ostream Out(OutName); 2105 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2106 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2107 2108 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2109 Out << ".normalized"; 2110 2111 return llvm::ConstantInt::get(Int32Ty, 2112 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2113 } 2114 2115 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2116 const CGFunctionInfo &Info, 2117 llvm::Function *F, bool IsThunk) { 2118 unsigned CallingConv; 2119 llvm::AttributeList PAL; 2120 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2121 /*AttrOnCallSite=*/false, IsThunk); 2122 F->setAttributes(PAL); 2123 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2124 } 2125 2126 static void removeImageAccessQualifier(std::string& TyName) { 2127 std::string ReadOnlyQual("__read_only"); 2128 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2129 if (ReadOnlyPos != std::string::npos) 2130 // "+ 1" for the space after access qualifier. 2131 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2132 else { 2133 std::string WriteOnlyQual("__write_only"); 2134 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2135 if (WriteOnlyPos != std::string::npos) 2136 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2137 else { 2138 std::string ReadWriteQual("__read_write"); 2139 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2140 if (ReadWritePos != std::string::npos) 2141 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2142 } 2143 } 2144 } 2145 2146 // Returns the address space id that should be produced to the 2147 // kernel_arg_addr_space metadata. This is always fixed to the ids 2148 // as specified in the SPIR 2.0 specification in order to differentiate 2149 // for example in clGetKernelArgInfo() implementation between the address 2150 // spaces with targets without unique mapping to the OpenCL address spaces 2151 // (basically all single AS CPUs). 2152 static unsigned ArgInfoAddressSpace(LangAS AS) { 2153 switch (AS) { 2154 case LangAS::opencl_global: 2155 return 1; 2156 case LangAS::opencl_constant: 2157 return 2; 2158 case LangAS::opencl_local: 2159 return 3; 2160 case LangAS::opencl_generic: 2161 return 4; // Not in SPIR 2.0 specs. 2162 case LangAS::opencl_global_device: 2163 return 5; 2164 case LangAS::opencl_global_host: 2165 return 6; 2166 default: 2167 return 0; // Assume private. 2168 } 2169 } 2170 2171 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2172 const FunctionDecl *FD, 2173 CodeGenFunction *CGF) { 2174 assert(((FD && CGF) || (!FD && !CGF)) && 2175 "Incorrect use - FD and CGF should either be both null or not!"); 2176 // Create MDNodes that represent the kernel arg metadata. 2177 // Each MDNode is a list in the form of "key", N number of values which is 2178 // the same number of values as their are kernel arguments. 2179 2180 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2181 2182 // MDNode for the kernel argument address space qualifiers. 2183 SmallVector<llvm::Metadata *, 8> addressQuals; 2184 2185 // MDNode for the kernel argument access qualifiers (images only). 2186 SmallVector<llvm::Metadata *, 8> accessQuals; 2187 2188 // MDNode for the kernel argument type names. 2189 SmallVector<llvm::Metadata *, 8> argTypeNames; 2190 2191 // MDNode for the kernel argument base type names. 2192 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2193 2194 // MDNode for the kernel argument type qualifiers. 2195 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2196 2197 // MDNode for the kernel argument names. 2198 SmallVector<llvm::Metadata *, 8> argNames; 2199 2200 if (FD && CGF) 2201 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2202 const ParmVarDecl *parm = FD->getParamDecl(i); 2203 // Get argument name. 2204 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2205 2206 if (!getLangOpts().OpenCL) 2207 continue; 2208 QualType ty = parm->getType(); 2209 std::string typeQuals; 2210 2211 // Get image and pipe access qualifier: 2212 if (ty->isImageType() || ty->isPipeType()) { 2213 const Decl *PDecl = parm; 2214 if (const auto *TD = ty->getAs<TypedefType>()) 2215 PDecl = TD->getDecl(); 2216 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2217 if (A && A->isWriteOnly()) 2218 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2219 else if (A && A->isReadWrite()) 2220 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2221 else 2222 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2223 } else 2224 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2225 2226 auto getTypeSpelling = [&](QualType Ty) { 2227 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2228 2229 if (Ty.isCanonical()) { 2230 StringRef typeNameRef = typeName; 2231 // Turn "unsigned type" to "utype" 2232 if (typeNameRef.consume_front("unsigned ")) 2233 return std::string("u") + typeNameRef.str(); 2234 if (typeNameRef.consume_front("signed ")) 2235 return typeNameRef.str(); 2236 } 2237 2238 return typeName; 2239 }; 2240 2241 if (ty->isPointerType()) { 2242 QualType pointeeTy = ty->getPointeeType(); 2243 2244 // Get address qualifier. 2245 addressQuals.push_back( 2246 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2247 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2248 2249 // Get argument type name. 2250 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2251 std::string baseTypeName = 2252 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2253 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2254 argBaseTypeNames.push_back( 2255 llvm::MDString::get(VMContext, baseTypeName)); 2256 2257 // Get argument type qualifiers: 2258 if (ty.isRestrictQualified()) 2259 typeQuals = "restrict"; 2260 if (pointeeTy.isConstQualified() || 2261 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2262 typeQuals += typeQuals.empty() ? "const" : " const"; 2263 if (pointeeTy.isVolatileQualified()) 2264 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2265 } else { 2266 uint32_t AddrSpc = 0; 2267 bool isPipe = ty->isPipeType(); 2268 if (ty->isImageType() || isPipe) 2269 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2270 2271 addressQuals.push_back( 2272 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2273 2274 // Get argument type name. 2275 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2276 std::string typeName = getTypeSpelling(ty); 2277 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2278 2279 // Remove access qualifiers on images 2280 // (as they are inseparable from type in clang implementation, 2281 // but OpenCL spec provides a special query to get access qualifier 2282 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2283 if (ty->isImageType()) { 2284 removeImageAccessQualifier(typeName); 2285 removeImageAccessQualifier(baseTypeName); 2286 } 2287 2288 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2289 argBaseTypeNames.push_back( 2290 llvm::MDString::get(VMContext, baseTypeName)); 2291 2292 if (isPipe) 2293 typeQuals = "pipe"; 2294 } 2295 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2296 } 2297 2298 if (getLangOpts().OpenCL) { 2299 Fn->setMetadata("kernel_arg_addr_space", 2300 llvm::MDNode::get(VMContext, addressQuals)); 2301 Fn->setMetadata("kernel_arg_access_qual", 2302 llvm::MDNode::get(VMContext, accessQuals)); 2303 Fn->setMetadata("kernel_arg_type", 2304 llvm::MDNode::get(VMContext, argTypeNames)); 2305 Fn->setMetadata("kernel_arg_base_type", 2306 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2307 Fn->setMetadata("kernel_arg_type_qual", 2308 llvm::MDNode::get(VMContext, argTypeQuals)); 2309 } 2310 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2311 getCodeGenOpts().HIPSaveKernelArgName) 2312 Fn->setMetadata("kernel_arg_name", 2313 llvm::MDNode::get(VMContext, argNames)); 2314 } 2315 2316 /// Determines whether the language options require us to model 2317 /// unwind exceptions. We treat -fexceptions as mandating this 2318 /// except under the fragile ObjC ABI with only ObjC exceptions 2319 /// enabled. This means, for example, that C with -fexceptions 2320 /// enables this. 2321 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2322 // If exceptions are completely disabled, obviously this is false. 2323 if (!LangOpts.Exceptions) return false; 2324 2325 // If C++ exceptions are enabled, this is true. 2326 if (LangOpts.CXXExceptions) return true; 2327 2328 // If ObjC exceptions are enabled, this depends on the ABI. 2329 if (LangOpts.ObjCExceptions) { 2330 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2331 } 2332 2333 return true; 2334 } 2335 2336 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2337 const CXXMethodDecl *MD) { 2338 // Check that the type metadata can ever actually be used by a call. 2339 if (!CGM.getCodeGenOpts().LTOUnit || 2340 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2341 return false; 2342 2343 // Only functions whose address can be taken with a member function pointer 2344 // need this sort of type metadata. 2345 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2346 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2347 } 2348 2349 SmallVector<const CXXRecordDecl *, 0> 2350 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2351 llvm::SetVector<const CXXRecordDecl *> MostBases; 2352 2353 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2354 CollectMostBases = [&](const CXXRecordDecl *RD) { 2355 if (RD->getNumBases() == 0) 2356 MostBases.insert(RD); 2357 for (const CXXBaseSpecifier &B : RD->bases()) 2358 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2359 }; 2360 CollectMostBases(RD); 2361 return MostBases.takeVector(); 2362 } 2363 2364 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2365 llvm::Function *F) { 2366 llvm::AttrBuilder B(F->getContext()); 2367 2368 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2369 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2370 2371 if (CodeGenOpts.StackClashProtector) 2372 B.addAttribute("probe-stack", "inline-asm"); 2373 2374 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2375 B.addAttribute("stack-probe-size", 2376 std::to_string(CodeGenOpts.StackProbeSize)); 2377 2378 if (!hasUnwindExceptions(LangOpts)) 2379 B.addAttribute(llvm::Attribute::NoUnwind); 2380 2381 if (D && D->hasAttr<NoStackProtectorAttr>()) 2382 ; // Do nothing. 2383 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2384 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2385 B.addAttribute(llvm::Attribute::StackProtectStrong); 2386 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2387 B.addAttribute(llvm::Attribute::StackProtect); 2388 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2389 B.addAttribute(llvm::Attribute::StackProtectStrong); 2390 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2391 B.addAttribute(llvm::Attribute::StackProtectReq); 2392 2393 if (!D) { 2394 // If we don't have a declaration to control inlining, the function isn't 2395 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2396 // disabled, mark the function as noinline. 2397 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2398 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2399 B.addAttribute(llvm::Attribute::NoInline); 2400 2401 F->addFnAttrs(B); 2402 return; 2403 } 2404 2405 // Handle SME attributes that apply to function definitions, 2406 // rather than to function prototypes. 2407 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2408 B.addAttribute("aarch64_pstate_sm_body"); 2409 2410 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2411 if (Attr->isNewZA()) 2412 B.addAttribute("aarch64_new_za"); 2413 if (Attr->isNewZT0()) 2414 B.addAttribute("aarch64_new_zt0"); 2415 } 2416 2417 // Track whether we need to add the optnone LLVM attribute, 2418 // starting with the default for this optimization level. 2419 bool ShouldAddOptNone = 2420 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2421 // We can't add optnone in the following cases, it won't pass the verifier. 2422 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2423 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2424 2425 // Add optnone, but do so only if the function isn't always_inline. 2426 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2427 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2428 B.addAttribute(llvm::Attribute::OptimizeNone); 2429 2430 // OptimizeNone implies noinline; we should not be inlining such functions. 2431 B.addAttribute(llvm::Attribute::NoInline); 2432 2433 // We still need to handle naked functions even though optnone subsumes 2434 // much of their semantics. 2435 if (D->hasAttr<NakedAttr>()) 2436 B.addAttribute(llvm::Attribute::Naked); 2437 2438 // OptimizeNone wins over OptimizeForSize and MinSize. 2439 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2440 F->removeFnAttr(llvm::Attribute::MinSize); 2441 } else if (D->hasAttr<NakedAttr>()) { 2442 // Naked implies noinline: we should not be inlining such functions. 2443 B.addAttribute(llvm::Attribute::Naked); 2444 B.addAttribute(llvm::Attribute::NoInline); 2445 } else if (D->hasAttr<NoDuplicateAttr>()) { 2446 B.addAttribute(llvm::Attribute::NoDuplicate); 2447 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2448 // Add noinline if the function isn't always_inline. 2449 B.addAttribute(llvm::Attribute::NoInline); 2450 } else if (D->hasAttr<AlwaysInlineAttr>() && 2451 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2452 // (noinline wins over always_inline, and we can't specify both in IR) 2453 B.addAttribute(llvm::Attribute::AlwaysInline); 2454 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2455 // If we're not inlining, then force everything that isn't always_inline to 2456 // carry an explicit noinline attribute. 2457 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2458 B.addAttribute(llvm::Attribute::NoInline); 2459 } else { 2460 // Otherwise, propagate the inline hint attribute and potentially use its 2461 // absence to mark things as noinline. 2462 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2463 // Search function and template pattern redeclarations for inline. 2464 auto CheckForInline = [](const FunctionDecl *FD) { 2465 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2466 return Redecl->isInlineSpecified(); 2467 }; 2468 if (any_of(FD->redecls(), CheckRedeclForInline)) 2469 return true; 2470 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2471 if (!Pattern) 2472 return false; 2473 return any_of(Pattern->redecls(), CheckRedeclForInline); 2474 }; 2475 if (CheckForInline(FD)) { 2476 B.addAttribute(llvm::Attribute::InlineHint); 2477 } else if (CodeGenOpts.getInlining() == 2478 CodeGenOptions::OnlyHintInlining && 2479 !FD->isInlined() && 2480 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2481 B.addAttribute(llvm::Attribute::NoInline); 2482 } 2483 } 2484 } 2485 2486 // Add other optimization related attributes if we are optimizing this 2487 // function. 2488 if (!D->hasAttr<OptimizeNoneAttr>()) { 2489 if (D->hasAttr<ColdAttr>()) { 2490 if (!ShouldAddOptNone) 2491 B.addAttribute(llvm::Attribute::OptimizeForSize); 2492 B.addAttribute(llvm::Attribute::Cold); 2493 } 2494 if (D->hasAttr<HotAttr>()) 2495 B.addAttribute(llvm::Attribute::Hot); 2496 if (D->hasAttr<MinSizeAttr>()) 2497 B.addAttribute(llvm::Attribute::MinSize); 2498 } 2499 2500 F->addFnAttrs(B); 2501 2502 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2503 if (alignment) 2504 F->setAlignment(llvm::Align(alignment)); 2505 2506 if (!D->hasAttr<AlignedAttr>()) 2507 if (LangOpts.FunctionAlignment) 2508 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2509 2510 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2511 // reserve a bit for differentiating between virtual and non-virtual member 2512 // functions. If the current target's C++ ABI requires this and this is a 2513 // member function, set its alignment accordingly. 2514 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2515 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2516 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2517 } 2518 2519 // In the cross-dso CFI mode with canonical jump tables, we want !type 2520 // attributes on definitions only. 2521 if (CodeGenOpts.SanitizeCfiCrossDso && 2522 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2523 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2524 // Skip available_externally functions. They won't be codegen'ed in the 2525 // current module anyway. 2526 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2527 CreateFunctionTypeMetadataForIcall(FD, F); 2528 } 2529 } 2530 2531 // Emit type metadata on member functions for member function pointer checks. 2532 // These are only ever necessary on definitions; we're guaranteed that the 2533 // definition will be present in the LTO unit as a result of LTO visibility. 2534 auto *MD = dyn_cast<CXXMethodDecl>(D); 2535 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2536 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2537 llvm::Metadata *Id = 2538 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2539 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2540 F->addTypeMetadata(0, Id); 2541 } 2542 } 2543 } 2544 2545 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2546 const Decl *D = GD.getDecl(); 2547 if (isa_and_nonnull<NamedDecl>(D)) 2548 setGVProperties(GV, GD); 2549 else 2550 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2551 2552 if (D && D->hasAttr<UsedAttr>()) 2553 addUsedOrCompilerUsedGlobal(GV); 2554 2555 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2556 VD && 2557 ((CodeGenOpts.KeepPersistentStorageVariables && 2558 (VD->getStorageDuration() == SD_Static || 2559 VD->getStorageDuration() == SD_Thread)) || 2560 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2561 VD->getType().isConstQualified()))) 2562 addUsedOrCompilerUsedGlobal(GV); 2563 } 2564 2565 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2566 llvm::AttrBuilder &Attrs, 2567 bool SetTargetFeatures) { 2568 // Add target-cpu and target-features attributes to functions. If 2569 // we have a decl for the function and it has a target attribute then 2570 // parse that and add it to the feature set. 2571 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2572 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2573 std::vector<std::string> Features; 2574 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2575 FD = FD ? FD->getMostRecentDecl() : FD; 2576 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2577 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2578 assert((!TD || !TV) && "both target_version and target specified"); 2579 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2580 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2581 bool AddedAttr = false; 2582 if (TD || TV || SD || TC) { 2583 llvm::StringMap<bool> FeatureMap; 2584 getContext().getFunctionFeatureMap(FeatureMap, GD); 2585 2586 // Produce the canonical string for this set of features. 2587 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2588 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2589 2590 // Now add the target-cpu and target-features to the function. 2591 // While we populated the feature map above, we still need to 2592 // get and parse the target attribute so we can get the cpu for 2593 // the function. 2594 if (TD) { 2595 ParsedTargetAttr ParsedAttr = 2596 Target.parseTargetAttr(TD->getFeaturesStr()); 2597 if (!ParsedAttr.CPU.empty() && 2598 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2599 TargetCPU = ParsedAttr.CPU; 2600 TuneCPU = ""; // Clear the tune CPU. 2601 } 2602 if (!ParsedAttr.Tune.empty() && 2603 getTarget().isValidCPUName(ParsedAttr.Tune)) 2604 TuneCPU = ParsedAttr.Tune; 2605 } 2606 2607 if (SD) { 2608 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2609 // favor this processor. 2610 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2611 } 2612 } else { 2613 // Otherwise just add the existing target cpu and target features to the 2614 // function. 2615 Features = getTarget().getTargetOpts().Features; 2616 } 2617 2618 if (!TargetCPU.empty()) { 2619 Attrs.addAttribute("target-cpu", TargetCPU); 2620 AddedAttr = true; 2621 } 2622 if (!TuneCPU.empty()) { 2623 Attrs.addAttribute("tune-cpu", TuneCPU); 2624 AddedAttr = true; 2625 } 2626 if (!Features.empty() && SetTargetFeatures) { 2627 llvm::erase_if(Features, [&](const std::string& F) { 2628 return getTarget().isReadOnlyFeature(F.substr(1)); 2629 }); 2630 llvm::sort(Features); 2631 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2632 AddedAttr = true; 2633 } 2634 2635 return AddedAttr; 2636 } 2637 2638 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2639 llvm::GlobalObject *GO) { 2640 const Decl *D = GD.getDecl(); 2641 SetCommonAttributes(GD, GO); 2642 2643 if (D) { 2644 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2645 if (D->hasAttr<RetainAttr>()) 2646 addUsedGlobal(GV); 2647 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2648 GV->addAttribute("bss-section", SA->getName()); 2649 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2650 GV->addAttribute("data-section", SA->getName()); 2651 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2652 GV->addAttribute("rodata-section", SA->getName()); 2653 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2654 GV->addAttribute("relro-section", SA->getName()); 2655 } 2656 2657 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2658 if (D->hasAttr<RetainAttr>()) 2659 addUsedGlobal(F); 2660 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2661 if (!D->getAttr<SectionAttr>()) 2662 F->addFnAttr("implicit-section-name", SA->getName()); 2663 2664 llvm::AttrBuilder Attrs(F->getContext()); 2665 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2666 // We know that GetCPUAndFeaturesAttributes will always have the 2667 // newest set, since it has the newest possible FunctionDecl, so the 2668 // new ones should replace the old. 2669 llvm::AttributeMask RemoveAttrs; 2670 RemoveAttrs.addAttribute("target-cpu"); 2671 RemoveAttrs.addAttribute("target-features"); 2672 RemoveAttrs.addAttribute("tune-cpu"); 2673 F->removeFnAttrs(RemoveAttrs); 2674 F->addFnAttrs(Attrs); 2675 } 2676 } 2677 2678 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2679 GO->setSection(CSA->getName()); 2680 else if (const auto *SA = D->getAttr<SectionAttr>()) 2681 GO->setSection(SA->getName()); 2682 } 2683 2684 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2685 } 2686 2687 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2688 llvm::Function *F, 2689 const CGFunctionInfo &FI) { 2690 const Decl *D = GD.getDecl(); 2691 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2692 SetLLVMFunctionAttributesForDefinition(D, F); 2693 2694 F->setLinkage(llvm::Function::InternalLinkage); 2695 2696 setNonAliasAttributes(GD, F); 2697 } 2698 2699 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2700 // Set linkage and visibility in case we never see a definition. 2701 LinkageInfo LV = ND->getLinkageAndVisibility(); 2702 // Don't set internal linkage on declarations. 2703 // "extern_weak" is overloaded in LLVM; we probably should have 2704 // separate linkage types for this. 2705 if (isExternallyVisible(LV.getLinkage()) && 2706 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2707 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2708 } 2709 2710 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2711 llvm::Function *F) { 2712 // Only if we are checking indirect calls. 2713 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2714 return; 2715 2716 // Non-static class methods are handled via vtable or member function pointer 2717 // checks elsewhere. 2718 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2719 return; 2720 2721 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2722 F->addTypeMetadata(0, MD); 2723 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2724 2725 // Emit a hash-based bit set entry for cross-DSO calls. 2726 if (CodeGenOpts.SanitizeCfiCrossDso) 2727 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2728 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2729 } 2730 2731 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2732 llvm::LLVMContext &Ctx = F->getContext(); 2733 llvm::MDBuilder MDB(Ctx); 2734 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2735 llvm::MDNode::get( 2736 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2737 } 2738 2739 static bool allowKCFIIdentifier(StringRef Name) { 2740 // KCFI type identifier constants are only necessary for external assembly 2741 // functions, which means it's safe to skip unusual names. Subset of 2742 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2743 return llvm::all_of(Name, [](const char &C) { 2744 return llvm::isAlnum(C) || C == '_' || C == '.'; 2745 }); 2746 } 2747 2748 void CodeGenModule::finalizeKCFITypes() { 2749 llvm::Module &M = getModule(); 2750 for (auto &F : M.functions()) { 2751 // Remove KCFI type metadata from non-address-taken local functions. 2752 bool AddressTaken = F.hasAddressTaken(); 2753 if (!AddressTaken && F.hasLocalLinkage()) 2754 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2755 2756 // Generate a constant with the expected KCFI type identifier for all 2757 // address-taken function declarations to support annotating indirectly 2758 // called assembly functions. 2759 if (!AddressTaken || !F.isDeclaration()) 2760 continue; 2761 2762 const llvm::ConstantInt *Type; 2763 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2764 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2765 else 2766 continue; 2767 2768 StringRef Name = F.getName(); 2769 if (!allowKCFIIdentifier(Name)) 2770 continue; 2771 2772 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2773 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2774 .str(); 2775 M.appendModuleInlineAsm(Asm); 2776 } 2777 } 2778 2779 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2780 bool IsIncompleteFunction, 2781 bool IsThunk) { 2782 2783 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2784 // If this is an intrinsic function, set the function's attributes 2785 // to the intrinsic's attributes. 2786 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2787 return; 2788 } 2789 2790 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2791 2792 if (!IsIncompleteFunction) 2793 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2794 IsThunk); 2795 2796 // Add the Returned attribute for "this", except for iOS 5 and earlier 2797 // where substantial code, including the libstdc++ dylib, was compiled with 2798 // GCC and does not actually return "this". 2799 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2800 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2801 assert(!F->arg_empty() && 2802 F->arg_begin()->getType() 2803 ->canLosslesslyBitCastTo(F->getReturnType()) && 2804 "unexpected this return"); 2805 F->addParamAttr(0, llvm::Attribute::Returned); 2806 } 2807 2808 // Only a few attributes are set on declarations; these may later be 2809 // overridden by a definition. 2810 2811 setLinkageForGV(F, FD); 2812 setGVProperties(F, FD); 2813 2814 // Setup target-specific attributes. 2815 if (!IsIncompleteFunction && F->isDeclaration()) 2816 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2817 2818 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2819 F->setSection(CSA->getName()); 2820 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2821 F->setSection(SA->getName()); 2822 2823 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2824 if (EA->isError()) 2825 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2826 else if (EA->isWarning()) 2827 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2828 } 2829 2830 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2831 if (FD->isInlineBuiltinDeclaration()) { 2832 const FunctionDecl *FDBody; 2833 bool HasBody = FD->hasBody(FDBody); 2834 (void)HasBody; 2835 assert(HasBody && "Inline builtin declarations should always have an " 2836 "available body!"); 2837 if (shouldEmitFunction(FDBody)) 2838 F->addFnAttr(llvm::Attribute::NoBuiltin); 2839 } 2840 2841 if (FD->isReplaceableGlobalAllocationFunction()) { 2842 // A replaceable global allocation function does not act like a builtin by 2843 // default, only if it is invoked by a new-expression or delete-expression. 2844 F->addFnAttr(llvm::Attribute::NoBuiltin); 2845 } 2846 2847 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2848 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2849 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2850 if (MD->isVirtual()) 2851 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2852 2853 // Don't emit entries for function declarations in the cross-DSO mode. This 2854 // is handled with better precision by the receiving DSO. But if jump tables 2855 // are non-canonical then we need type metadata in order to produce the local 2856 // jump table. 2857 if (!CodeGenOpts.SanitizeCfiCrossDso || 2858 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2859 CreateFunctionTypeMetadataForIcall(FD, F); 2860 2861 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2862 setKCFIType(FD, F); 2863 2864 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2865 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2866 2867 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2868 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2869 2870 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2871 // Annotate the callback behavior as metadata: 2872 // - The callback callee (as argument number). 2873 // - The callback payloads (as argument numbers). 2874 llvm::LLVMContext &Ctx = F->getContext(); 2875 llvm::MDBuilder MDB(Ctx); 2876 2877 // The payload indices are all but the first one in the encoding. The first 2878 // identifies the callback callee. 2879 int CalleeIdx = *CB->encoding_begin(); 2880 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2881 F->addMetadata(llvm::LLVMContext::MD_callback, 2882 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2883 CalleeIdx, PayloadIndices, 2884 /* VarArgsArePassed */ false)})); 2885 } 2886 } 2887 2888 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2889 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2890 "Only globals with definition can force usage."); 2891 LLVMUsed.emplace_back(GV); 2892 } 2893 2894 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2895 assert(!GV->isDeclaration() && 2896 "Only globals with definition can force usage."); 2897 LLVMCompilerUsed.emplace_back(GV); 2898 } 2899 2900 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2901 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2902 "Only globals with definition can force usage."); 2903 if (getTriple().isOSBinFormatELF()) 2904 LLVMCompilerUsed.emplace_back(GV); 2905 else 2906 LLVMUsed.emplace_back(GV); 2907 } 2908 2909 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2910 std::vector<llvm::WeakTrackingVH> &List) { 2911 // Don't create llvm.used if there is no need. 2912 if (List.empty()) 2913 return; 2914 2915 // Convert List to what ConstantArray needs. 2916 SmallVector<llvm::Constant*, 8> UsedArray; 2917 UsedArray.resize(List.size()); 2918 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2919 UsedArray[i] = 2920 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2921 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2922 } 2923 2924 if (UsedArray.empty()) 2925 return; 2926 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2927 2928 auto *GV = new llvm::GlobalVariable( 2929 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2930 llvm::ConstantArray::get(ATy, UsedArray), Name); 2931 2932 GV->setSection("llvm.metadata"); 2933 } 2934 2935 void CodeGenModule::emitLLVMUsed() { 2936 emitUsed(*this, "llvm.used", LLVMUsed); 2937 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2938 } 2939 2940 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2941 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2942 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2943 } 2944 2945 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2946 llvm::SmallString<32> Opt; 2947 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2948 if (Opt.empty()) 2949 return; 2950 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2951 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2952 } 2953 2954 void CodeGenModule::AddDependentLib(StringRef Lib) { 2955 auto &C = getLLVMContext(); 2956 if (getTarget().getTriple().isOSBinFormatELF()) { 2957 ELFDependentLibraries.push_back( 2958 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2959 return; 2960 } 2961 2962 llvm::SmallString<24> Opt; 2963 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2964 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2965 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2966 } 2967 2968 /// Add link options implied by the given module, including modules 2969 /// it depends on, using a postorder walk. 2970 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2971 SmallVectorImpl<llvm::MDNode *> &Metadata, 2972 llvm::SmallPtrSet<Module *, 16> &Visited) { 2973 // Import this module's parent. 2974 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2975 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2976 } 2977 2978 // Import this module's dependencies. 2979 for (Module *Import : llvm::reverse(Mod->Imports)) { 2980 if (Visited.insert(Import).second) 2981 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2982 } 2983 2984 // Add linker options to link against the libraries/frameworks 2985 // described by this module. 2986 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2987 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2988 2989 // For modules that use export_as for linking, use that module 2990 // name instead. 2991 if (Mod->UseExportAsModuleLinkName) 2992 return; 2993 2994 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2995 // Link against a framework. Frameworks are currently Darwin only, so we 2996 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2997 if (LL.IsFramework) { 2998 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2999 llvm::MDString::get(Context, LL.Library)}; 3000 3001 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3002 continue; 3003 } 3004 3005 // Link against a library. 3006 if (IsELF) { 3007 llvm::Metadata *Args[2] = { 3008 llvm::MDString::get(Context, "lib"), 3009 llvm::MDString::get(Context, LL.Library), 3010 }; 3011 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3012 } else { 3013 llvm::SmallString<24> Opt; 3014 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3015 auto *OptString = llvm::MDString::get(Context, Opt); 3016 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3017 } 3018 } 3019 } 3020 3021 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3022 assert(Primary->isNamedModuleUnit() && 3023 "We should only emit module initializers for named modules."); 3024 3025 // Emit the initializers in the order that sub-modules appear in the 3026 // source, first Global Module Fragments, if present. 3027 if (auto GMF = Primary->getGlobalModuleFragment()) { 3028 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3029 if (isa<ImportDecl>(D)) 3030 continue; 3031 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3032 EmitTopLevelDecl(D); 3033 } 3034 } 3035 // Second any associated with the module, itself. 3036 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3037 // Skip import decls, the inits for those are called explicitly. 3038 if (isa<ImportDecl>(D)) 3039 continue; 3040 EmitTopLevelDecl(D); 3041 } 3042 // Third any associated with the Privat eMOdule Fragment, if present. 3043 if (auto PMF = Primary->getPrivateModuleFragment()) { 3044 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3045 // Skip import decls, the inits for those are called explicitly. 3046 if (isa<ImportDecl>(D)) 3047 continue; 3048 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3049 EmitTopLevelDecl(D); 3050 } 3051 } 3052 } 3053 3054 void CodeGenModule::EmitModuleLinkOptions() { 3055 // Collect the set of all of the modules we want to visit to emit link 3056 // options, which is essentially the imported modules and all of their 3057 // non-explicit child modules. 3058 llvm::SetVector<clang::Module *> LinkModules; 3059 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3060 SmallVector<clang::Module *, 16> Stack; 3061 3062 // Seed the stack with imported modules. 3063 for (Module *M : ImportedModules) { 3064 // Do not add any link flags when an implementation TU of a module imports 3065 // a header of that same module. 3066 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3067 !getLangOpts().isCompilingModule()) 3068 continue; 3069 if (Visited.insert(M).second) 3070 Stack.push_back(M); 3071 } 3072 3073 // Find all of the modules to import, making a little effort to prune 3074 // non-leaf modules. 3075 while (!Stack.empty()) { 3076 clang::Module *Mod = Stack.pop_back_val(); 3077 3078 bool AnyChildren = false; 3079 3080 // Visit the submodules of this module. 3081 for (const auto &SM : Mod->submodules()) { 3082 // Skip explicit children; they need to be explicitly imported to be 3083 // linked against. 3084 if (SM->IsExplicit) 3085 continue; 3086 3087 if (Visited.insert(SM).second) { 3088 Stack.push_back(SM); 3089 AnyChildren = true; 3090 } 3091 } 3092 3093 // We didn't find any children, so add this module to the list of 3094 // modules to link against. 3095 if (!AnyChildren) { 3096 LinkModules.insert(Mod); 3097 } 3098 } 3099 3100 // Add link options for all of the imported modules in reverse topological 3101 // order. We don't do anything to try to order import link flags with respect 3102 // to linker options inserted by things like #pragma comment(). 3103 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3104 Visited.clear(); 3105 for (Module *M : LinkModules) 3106 if (Visited.insert(M).second) 3107 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3108 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3109 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3110 3111 // Add the linker options metadata flag. 3112 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3113 for (auto *MD : LinkerOptionsMetadata) 3114 NMD->addOperand(MD); 3115 } 3116 3117 void CodeGenModule::EmitDeferred() { 3118 // Emit deferred declare target declarations. 3119 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3120 getOpenMPRuntime().emitDeferredTargetDecls(); 3121 3122 // Emit code for any potentially referenced deferred decls. Since a 3123 // previously unused static decl may become used during the generation of code 3124 // for a static function, iterate until no changes are made. 3125 3126 if (!DeferredVTables.empty()) { 3127 EmitDeferredVTables(); 3128 3129 // Emitting a vtable doesn't directly cause more vtables to 3130 // become deferred, although it can cause functions to be 3131 // emitted that then need those vtables. 3132 assert(DeferredVTables.empty()); 3133 } 3134 3135 // Emit CUDA/HIP static device variables referenced by host code only. 3136 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3137 // needed for further handling. 3138 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3139 llvm::append_range(DeferredDeclsToEmit, 3140 getContext().CUDADeviceVarODRUsedByHost); 3141 3142 // Stop if we're out of both deferred vtables and deferred declarations. 3143 if (DeferredDeclsToEmit.empty()) 3144 return; 3145 3146 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3147 // work, it will not interfere with this. 3148 std::vector<GlobalDecl> CurDeclsToEmit; 3149 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3150 3151 for (GlobalDecl &D : CurDeclsToEmit) { 3152 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3153 // to get GlobalValue with exactly the type we need, not something that 3154 // might had been created for another decl with the same mangled name but 3155 // different type. 3156 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3157 GetAddrOfGlobal(D, ForDefinition)); 3158 3159 // In case of different address spaces, we may still get a cast, even with 3160 // IsForDefinition equal to true. Query mangled names table to get 3161 // GlobalValue. 3162 if (!GV) 3163 GV = GetGlobalValue(getMangledName(D)); 3164 3165 // Make sure GetGlobalValue returned non-null. 3166 assert(GV); 3167 3168 // Check to see if we've already emitted this. This is necessary 3169 // for a couple of reasons: first, decls can end up in the 3170 // deferred-decls queue multiple times, and second, decls can end 3171 // up with definitions in unusual ways (e.g. by an extern inline 3172 // function acquiring a strong function redefinition). Just 3173 // ignore these cases. 3174 if (!GV->isDeclaration()) 3175 continue; 3176 3177 // If this is OpenMP, check if it is legal to emit this global normally. 3178 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3179 continue; 3180 3181 // Otherwise, emit the definition and move on to the next one. 3182 EmitGlobalDefinition(D, GV); 3183 3184 // If we found out that we need to emit more decls, do that recursively. 3185 // This has the advantage that the decls are emitted in a DFS and related 3186 // ones are close together, which is convenient for testing. 3187 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3188 EmitDeferred(); 3189 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3190 } 3191 } 3192 } 3193 3194 void CodeGenModule::EmitVTablesOpportunistically() { 3195 // Try to emit external vtables as available_externally if they have emitted 3196 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3197 // is not allowed to create new references to things that need to be emitted 3198 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3199 3200 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3201 && "Only emit opportunistic vtables with optimizations"); 3202 3203 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3204 assert(getVTables().isVTableExternal(RD) && 3205 "This queue should only contain external vtables"); 3206 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3207 VTables.GenerateClassData(RD); 3208 } 3209 OpportunisticVTables.clear(); 3210 } 3211 3212 void CodeGenModule::EmitGlobalAnnotations() { 3213 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3214 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3215 if (GV) 3216 AddGlobalAnnotations(VD, GV); 3217 } 3218 DeferredAnnotations.clear(); 3219 3220 if (Annotations.empty()) 3221 return; 3222 3223 // Create a new global variable for the ConstantStruct in the Module. 3224 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3225 Annotations[0]->getType(), Annotations.size()), Annotations); 3226 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3227 llvm::GlobalValue::AppendingLinkage, 3228 Array, "llvm.global.annotations"); 3229 gv->setSection(AnnotationSection); 3230 } 3231 3232 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3233 llvm::Constant *&AStr = AnnotationStrings[Str]; 3234 if (AStr) 3235 return AStr; 3236 3237 // Not found yet, create a new global. 3238 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3239 auto *gv = new llvm::GlobalVariable( 3240 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3241 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3242 ConstGlobalsPtrTy->getAddressSpace()); 3243 gv->setSection(AnnotationSection); 3244 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3245 AStr = gv; 3246 return gv; 3247 } 3248 3249 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3250 SourceManager &SM = getContext().getSourceManager(); 3251 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3252 if (PLoc.isValid()) 3253 return EmitAnnotationString(PLoc.getFilename()); 3254 return EmitAnnotationString(SM.getBufferName(Loc)); 3255 } 3256 3257 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3258 SourceManager &SM = getContext().getSourceManager(); 3259 PresumedLoc PLoc = SM.getPresumedLoc(L); 3260 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3261 SM.getExpansionLineNumber(L); 3262 return llvm::ConstantInt::get(Int32Ty, LineNo); 3263 } 3264 3265 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3266 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3267 if (Exprs.empty()) 3268 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3269 3270 llvm::FoldingSetNodeID ID; 3271 for (Expr *E : Exprs) { 3272 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3273 } 3274 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3275 if (Lookup) 3276 return Lookup; 3277 3278 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3279 LLVMArgs.reserve(Exprs.size()); 3280 ConstantEmitter ConstEmiter(*this); 3281 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3282 const auto *CE = cast<clang::ConstantExpr>(E); 3283 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3284 CE->getType()); 3285 }); 3286 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3287 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3288 llvm::GlobalValue::PrivateLinkage, Struct, 3289 ".args"); 3290 GV->setSection(AnnotationSection); 3291 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3292 3293 Lookup = GV; 3294 return GV; 3295 } 3296 3297 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3298 const AnnotateAttr *AA, 3299 SourceLocation L) { 3300 // Get the globals for file name, annotation, and the line number. 3301 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3302 *UnitGV = EmitAnnotationUnit(L), 3303 *LineNoCst = EmitAnnotationLineNo(L), 3304 *Args = EmitAnnotationArgs(AA); 3305 3306 llvm::Constant *GVInGlobalsAS = GV; 3307 if (GV->getAddressSpace() != 3308 getDataLayout().getDefaultGlobalsAddressSpace()) { 3309 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3310 GV, 3311 llvm::PointerType::get( 3312 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3313 } 3314 3315 // Create the ConstantStruct for the global annotation. 3316 llvm::Constant *Fields[] = { 3317 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3318 }; 3319 return llvm::ConstantStruct::getAnon(Fields); 3320 } 3321 3322 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3323 llvm::GlobalValue *GV) { 3324 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3325 // Get the struct elements for these annotations. 3326 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3327 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3328 } 3329 3330 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3331 SourceLocation Loc) const { 3332 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3333 // NoSanitize by function name. 3334 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3335 return true; 3336 // NoSanitize by location. Check "mainfile" prefix. 3337 auto &SM = Context.getSourceManager(); 3338 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3339 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3340 return true; 3341 3342 // Check "src" prefix. 3343 if (Loc.isValid()) 3344 return NoSanitizeL.containsLocation(Kind, Loc); 3345 // If location is unknown, this may be a compiler-generated function. Assume 3346 // it's located in the main file. 3347 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3348 } 3349 3350 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3351 llvm::GlobalVariable *GV, 3352 SourceLocation Loc, QualType Ty, 3353 StringRef Category) const { 3354 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3355 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3356 return true; 3357 auto &SM = Context.getSourceManager(); 3358 if (NoSanitizeL.containsMainFile( 3359 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3360 Category)) 3361 return true; 3362 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3363 return true; 3364 3365 // Check global type. 3366 if (!Ty.isNull()) { 3367 // Drill down the array types: if global variable of a fixed type is 3368 // not sanitized, we also don't instrument arrays of them. 3369 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3370 Ty = AT->getElementType(); 3371 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3372 // Only record types (classes, structs etc.) are ignored. 3373 if (Ty->isRecordType()) { 3374 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3375 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3376 return true; 3377 } 3378 } 3379 return false; 3380 } 3381 3382 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3383 StringRef Category) const { 3384 const auto &XRayFilter = getContext().getXRayFilter(); 3385 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3386 auto Attr = ImbueAttr::NONE; 3387 if (Loc.isValid()) 3388 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3389 if (Attr == ImbueAttr::NONE) 3390 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3391 switch (Attr) { 3392 case ImbueAttr::NONE: 3393 return false; 3394 case ImbueAttr::ALWAYS: 3395 Fn->addFnAttr("function-instrument", "xray-always"); 3396 break; 3397 case ImbueAttr::ALWAYS_ARG1: 3398 Fn->addFnAttr("function-instrument", "xray-always"); 3399 Fn->addFnAttr("xray-log-args", "1"); 3400 break; 3401 case ImbueAttr::NEVER: 3402 Fn->addFnAttr("function-instrument", "xray-never"); 3403 break; 3404 } 3405 return true; 3406 } 3407 3408 ProfileList::ExclusionType 3409 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3410 SourceLocation Loc) const { 3411 const auto &ProfileList = getContext().getProfileList(); 3412 // If the profile list is empty, then instrument everything. 3413 if (ProfileList.isEmpty()) 3414 return ProfileList::Allow; 3415 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3416 // First, check the function name. 3417 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3418 return *V; 3419 // Next, check the source location. 3420 if (Loc.isValid()) 3421 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3422 return *V; 3423 // If location is unknown, this may be a compiler-generated function. Assume 3424 // it's located in the main file. 3425 auto &SM = Context.getSourceManager(); 3426 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3427 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3428 return *V; 3429 return ProfileList.getDefault(Kind); 3430 } 3431 3432 ProfileList::ExclusionType 3433 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3434 SourceLocation Loc) const { 3435 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3436 if (V != ProfileList::Allow) 3437 return V; 3438 3439 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3440 if (NumGroups > 1) { 3441 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3442 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3443 return ProfileList::Skip; 3444 } 3445 return ProfileList::Allow; 3446 } 3447 3448 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3449 // Never defer when EmitAllDecls is specified. 3450 if (LangOpts.EmitAllDecls) 3451 return true; 3452 3453 const auto *VD = dyn_cast<VarDecl>(Global); 3454 if (VD && 3455 ((CodeGenOpts.KeepPersistentStorageVariables && 3456 (VD->getStorageDuration() == SD_Static || 3457 VD->getStorageDuration() == SD_Thread)) || 3458 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3459 VD->getType().isConstQualified()))) 3460 return true; 3461 3462 return getContext().DeclMustBeEmitted(Global); 3463 } 3464 3465 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3466 // In OpenMP 5.0 variables and function may be marked as 3467 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3468 // that they must be emitted on the host/device. To be sure we need to have 3469 // seen a declare target with an explicit mentioning of the function, we know 3470 // we have if the level of the declare target attribute is -1. Note that we 3471 // check somewhere else if we should emit this at all. 3472 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3473 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3474 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3475 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3476 return false; 3477 } 3478 3479 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3480 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3481 // Implicit template instantiations may change linkage if they are later 3482 // explicitly instantiated, so they should not be emitted eagerly. 3483 return false; 3484 } 3485 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3486 if (Context.getInlineVariableDefinitionKind(VD) == 3487 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3488 // A definition of an inline constexpr static data member may change 3489 // linkage later if it's redeclared outside the class. 3490 return false; 3491 if (CXX20ModuleInits && VD->getOwningModule() && 3492 !VD->getOwningModule()->isModuleMapModule()) { 3493 // For CXX20, module-owned initializers need to be deferred, since it is 3494 // not known at this point if they will be run for the current module or 3495 // as part of the initializer for an imported one. 3496 return false; 3497 } 3498 } 3499 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3500 // codegen for global variables, because they may be marked as threadprivate. 3501 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3502 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3503 !Global->getType().isConstantStorage(getContext(), false, false) && 3504 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3505 return false; 3506 3507 return true; 3508 } 3509 3510 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3511 StringRef Name = getMangledName(GD); 3512 3513 // The UUID descriptor should be pointer aligned. 3514 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3515 3516 // Look for an existing global. 3517 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3518 return ConstantAddress(GV, GV->getValueType(), Alignment); 3519 3520 ConstantEmitter Emitter(*this); 3521 llvm::Constant *Init; 3522 3523 APValue &V = GD->getAsAPValue(); 3524 if (!V.isAbsent()) { 3525 // If possible, emit the APValue version of the initializer. In particular, 3526 // this gets the type of the constant right. 3527 Init = Emitter.emitForInitializer( 3528 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3529 } else { 3530 // As a fallback, directly construct the constant. 3531 // FIXME: This may get padding wrong under esoteric struct layout rules. 3532 // MSVC appears to create a complete type 'struct __s_GUID' that it 3533 // presumably uses to represent these constants. 3534 MSGuidDecl::Parts Parts = GD->getParts(); 3535 llvm::Constant *Fields[4] = { 3536 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3537 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3538 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3539 llvm::ConstantDataArray::getRaw( 3540 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3541 Int8Ty)}; 3542 Init = llvm::ConstantStruct::getAnon(Fields); 3543 } 3544 3545 auto *GV = new llvm::GlobalVariable( 3546 getModule(), Init->getType(), 3547 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3548 if (supportsCOMDAT()) 3549 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3550 setDSOLocal(GV); 3551 3552 if (!V.isAbsent()) { 3553 Emitter.finalize(GV); 3554 return ConstantAddress(GV, GV->getValueType(), Alignment); 3555 } 3556 3557 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3558 return ConstantAddress(GV, Ty, Alignment); 3559 } 3560 3561 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3562 const UnnamedGlobalConstantDecl *GCD) { 3563 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3564 3565 llvm::GlobalVariable **Entry = nullptr; 3566 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3567 if (*Entry) 3568 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3569 3570 ConstantEmitter Emitter(*this); 3571 llvm::Constant *Init; 3572 3573 const APValue &V = GCD->getValue(); 3574 3575 assert(!V.isAbsent()); 3576 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3577 GCD->getType()); 3578 3579 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3580 /*isConstant=*/true, 3581 llvm::GlobalValue::PrivateLinkage, Init, 3582 ".constant"); 3583 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3584 GV->setAlignment(Alignment.getAsAlign()); 3585 3586 Emitter.finalize(GV); 3587 3588 *Entry = GV; 3589 return ConstantAddress(GV, GV->getValueType(), Alignment); 3590 } 3591 3592 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3593 const TemplateParamObjectDecl *TPO) { 3594 StringRef Name = getMangledName(TPO); 3595 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3596 3597 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3598 return ConstantAddress(GV, GV->getValueType(), Alignment); 3599 3600 ConstantEmitter Emitter(*this); 3601 llvm::Constant *Init = Emitter.emitForInitializer( 3602 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3603 3604 if (!Init) { 3605 ErrorUnsupported(TPO, "template parameter object"); 3606 return ConstantAddress::invalid(); 3607 } 3608 3609 llvm::GlobalValue::LinkageTypes Linkage = 3610 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3611 ? llvm::GlobalValue::LinkOnceODRLinkage 3612 : llvm::GlobalValue::InternalLinkage; 3613 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3614 /*isConstant=*/true, Linkage, Init, Name); 3615 setGVProperties(GV, TPO); 3616 if (supportsCOMDAT()) 3617 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3618 Emitter.finalize(GV); 3619 3620 return ConstantAddress(GV, GV->getValueType(), Alignment); 3621 } 3622 3623 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3624 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3625 assert(AA && "No alias?"); 3626 3627 CharUnits Alignment = getContext().getDeclAlign(VD); 3628 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3629 3630 // See if there is already something with the target's name in the module. 3631 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3632 if (Entry) 3633 return ConstantAddress(Entry, DeclTy, Alignment); 3634 3635 llvm::Constant *Aliasee; 3636 if (isa<llvm::FunctionType>(DeclTy)) 3637 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3638 GlobalDecl(cast<FunctionDecl>(VD)), 3639 /*ForVTable=*/false); 3640 else 3641 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3642 nullptr); 3643 3644 auto *F = cast<llvm::GlobalValue>(Aliasee); 3645 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3646 WeakRefReferences.insert(F); 3647 3648 return ConstantAddress(Aliasee, DeclTy, Alignment); 3649 } 3650 3651 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3652 if (!D) 3653 return false; 3654 if (auto *A = D->getAttr<AttrT>()) 3655 return A->isImplicit(); 3656 return D->isImplicit(); 3657 } 3658 3659 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3660 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3661 3662 // Weak references don't produce any output by themselves. 3663 if (Global->hasAttr<WeakRefAttr>()) 3664 return; 3665 3666 // If this is an alias definition (which otherwise looks like a declaration) 3667 // emit it now. 3668 if (Global->hasAttr<AliasAttr>()) 3669 return EmitAliasDefinition(GD); 3670 3671 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3672 if (Global->hasAttr<IFuncAttr>()) 3673 return emitIFuncDefinition(GD); 3674 3675 // If this is a cpu_dispatch multiversion function, emit the resolver. 3676 if (Global->hasAttr<CPUDispatchAttr>()) 3677 return emitCPUDispatchDefinition(GD); 3678 3679 // If this is CUDA, be selective about which declarations we emit. 3680 // Non-constexpr non-lambda implicit host device functions are not emitted 3681 // unless they are used on device side. 3682 if (LangOpts.CUDA) { 3683 if (LangOpts.CUDAIsDevice) { 3684 const auto *FD = dyn_cast<FunctionDecl>(Global); 3685 if ((!Global->hasAttr<CUDADeviceAttr>() || 3686 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3687 hasImplicitAttr<CUDAHostAttr>(FD) && 3688 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3689 !isLambdaCallOperator(FD) && 3690 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3691 !Global->hasAttr<CUDAGlobalAttr>() && 3692 !Global->hasAttr<CUDAConstantAttr>() && 3693 !Global->hasAttr<CUDASharedAttr>() && 3694 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3695 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3696 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3697 !Global->hasAttr<CUDAHostAttr>())) 3698 return; 3699 } else { 3700 // We need to emit host-side 'shadows' for all global 3701 // device-side variables because the CUDA runtime needs their 3702 // size and host-side address in order to provide access to 3703 // their device-side incarnations. 3704 3705 // So device-only functions are the only things we skip. 3706 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3707 Global->hasAttr<CUDADeviceAttr>()) 3708 return; 3709 3710 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3711 "Expected Variable or Function"); 3712 } 3713 } 3714 3715 if (LangOpts.OpenMP) { 3716 // If this is OpenMP, check if it is legal to emit this global normally. 3717 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3718 return; 3719 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3720 if (MustBeEmitted(Global)) 3721 EmitOMPDeclareReduction(DRD); 3722 return; 3723 } 3724 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3725 if (MustBeEmitted(Global)) 3726 EmitOMPDeclareMapper(DMD); 3727 return; 3728 } 3729 } 3730 3731 // Ignore declarations, they will be emitted on their first use. 3732 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3733 // Update deferred annotations with the latest declaration if the function 3734 // function was already used or defined. 3735 if (FD->hasAttr<AnnotateAttr>()) { 3736 StringRef MangledName = getMangledName(GD); 3737 if (GetGlobalValue(MangledName)) 3738 DeferredAnnotations[MangledName] = FD; 3739 } 3740 3741 // Forward declarations are emitted lazily on first use. 3742 if (!FD->doesThisDeclarationHaveABody()) { 3743 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3744 return; 3745 3746 StringRef MangledName = getMangledName(GD); 3747 3748 // Compute the function info and LLVM type. 3749 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3750 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3751 3752 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3753 /*DontDefer=*/false); 3754 return; 3755 } 3756 } else { 3757 const auto *VD = cast<VarDecl>(Global); 3758 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3759 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3760 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3761 if (LangOpts.OpenMP) { 3762 // Emit declaration of the must-be-emitted declare target variable. 3763 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3764 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3765 3766 // If this variable has external storage and doesn't require special 3767 // link handling we defer to its canonical definition. 3768 if (VD->hasExternalStorage() && 3769 Res != OMPDeclareTargetDeclAttr::MT_Link) 3770 return; 3771 3772 bool UnifiedMemoryEnabled = 3773 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3774 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3775 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3776 !UnifiedMemoryEnabled) { 3777 (void)GetAddrOfGlobalVar(VD); 3778 } else { 3779 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3780 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3781 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3782 UnifiedMemoryEnabled)) && 3783 "Link clause or to clause with unified memory expected."); 3784 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3785 } 3786 3787 return; 3788 } 3789 } 3790 // If this declaration may have caused an inline variable definition to 3791 // change linkage, make sure that it's emitted. 3792 if (Context.getInlineVariableDefinitionKind(VD) == 3793 ASTContext::InlineVariableDefinitionKind::Strong) 3794 GetAddrOfGlobalVar(VD); 3795 return; 3796 } 3797 } 3798 3799 // Defer code generation to first use when possible, e.g. if this is an inline 3800 // function. If the global must always be emitted, do it eagerly if possible 3801 // to benefit from cache locality. 3802 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3803 // Emit the definition if it can't be deferred. 3804 EmitGlobalDefinition(GD); 3805 addEmittedDeferredDecl(GD); 3806 return; 3807 } 3808 3809 // If we're deferring emission of a C++ variable with an 3810 // initializer, remember the order in which it appeared in the file. 3811 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3812 cast<VarDecl>(Global)->hasInit()) { 3813 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3814 CXXGlobalInits.push_back(nullptr); 3815 } 3816 3817 StringRef MangledName = getMangledName(GD); 3818 if (GetGlobalValue(MangledName) != nullptr) { 3819 // The value has already been used and should therefore be emitted. 3820 addDeferredDeclToEmit(GD); 3821 } else if (MustBeEmitted(Global)) { 3822 // The value must be emitted, but cannot be emitted eagerly. 3823 assert(!MayBeEmittedEagerly(Global)); 3824 addDeferredDeclToEmit(GD); 3825 } else { 3826 // Otherwise, remember that we saw a deferred decl with this name. The 3827 // first use of the mangled name will cause it to move into 3828 // DeferredDeclsToEmit. 3829 DeferredDecls[MangledName] = GD; 3830 } 3831 } 3832 3833 // Check if T is a class type with a destructor that's not dllimport. 3834 static bool HasNonDllImportDtor(QualType T) { 3835 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3836 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3837 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3838 return true; 3839 3840 return false; 3841 } 3842 3843 namespace { 3844 struct FunctionIsDirectlyRecursive 3845 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3846 const StringRef Name; 3847 const Builtin::Context &BI; 3848 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3849 : Name(N), BI(C) {} 3850 3851 bool VisitCallExpr(const CallExpr *E) { 3852 const FunctionDecl *FD = E->getDirectCallee(); 3853 if (!FD) 3854 return false; 3855 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3856 if (Attr && Name == Attr->getLabel()) 3857 return true; 3858 unsigned BuiltinID = FD->getBuiltinID(); 3859 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3860 return false; 3861 StringRef BuiltinName = BI.getName(BuiltinID); 3862 if (BuiltinName.starts_with("__builtin_") && 3863 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3864 return true; 3865 } 3866 return false; 3867 } 3868 3869 bool VisitStmt(const Stmt *S) { 3870 for (const Stmt *Child : S->children()) 3871 if (Child && this->Visit(Child)) 3872 return true; 3873 return false; 3874 } 3875 }; 3876 3877 // Make sure we're not referencing non-imported vars or functions. 3878 struct DLLImportFunctionVisitor 3879 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3880 bool SafeToInline = true; 3881 3882 bool shouldVisitImplicitCode() const { return true; } 3883 3884 bool VisitVarDecl(VarDecl *VD) { 3885 if (VD->getTLSKind()) { 3886 // A thread-local variable cannot be imported. 3887 SafeToInline = false; 3888 return SafeToInline; 3889 } 3890 3891 // A variable definition might imply a destructor call. 3892 if (VD->isThisDeclarationADefinition()) 3893 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3894 3895 return SafeToInline; 3896 } 3897 3898 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3899 if (const auto *D = E->getTemporary()->getDestructor()) 3900 SafeToInline = D->hasAttr<DLLImportAttr>(); 3901 return SafeToInline; 3902 } 3903 3904 bool VisitDeclRefExpr(DeclRefExpr *E) { 3905 ValueDecl *VD = E->getDecl(); 3906 if (isa<FunctionDecl>(VD)) 3907 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3908 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3909 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3910 return SafeToInline; 3911 } 3912 3913 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3914 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3915 return SafeToInline; 3916 } 3917 3918 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3919 CXXMethodDecl *M = E->getMethodDecl(); 3920 if (!M) { 3921 // Call through a pointer to member function. This is safe to inline. 3922 SafeToInline = true; 3923 } else { 3924 SafeToInline = M->hasAttr<DLLImportAttr>(); 3925 } 3926 return SafeToInline; 3927 } 3928 3929 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3930 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3931 return SafeToInline; 3932 } 3933 3934 bool VisitCXXNewExpr(CXXNewExpr *E) { 3935 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3936 return SafeToInline; 3937 } 3938 }; 3939 } 3940 3941 // isTriviallyRecursive - Check if this function calls another 3942 // decl that, because of the asm attribute or the other decl being a builtin, 3943 // ends up pointing to itself. 3944 bool 3945 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3946 StringRef Name; 3947 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3948 // asm labels are a special kind of mangling we have to support. 3949 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3950 if (!Attr) 3951 return false; 3952 Name = Attr->getLabel(); 3953 } else { 3954 Name = FD->getName(); 3955 } 3956 3957 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3958 const Stmt *Body = FD->getBody(); 3959 return Body ? Walker.Visit(Body) : false; 3960 } 3961 3962 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3963 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3964 return true; 3965 3966 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3967 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3968 return false; 3969 3970 // We don't import function bodies from other named module units since that 3971 // behavior may break ABI compatibility of the current unit. 3972 if (const Module *M = F->getOwningModule(); 3973 M && M->getTopLevelModule()->isNamedModule() && 3974 getContext().getCurrentNamedModule() != M->getTopLevelModule() && 3975 !F->hasAttr<AlwaysInlineAttr>()) 3976 return false; 3977 3978 if (F->hasAttr<NoInlineAttr>()) 3979 return false; 3980 3981 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3982 // Check whether it would be safe to inline this dllimport function. 3983 DLLImportFunctionVisitor Visitor; 3984 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3985 if (!Visitor.SafeToInline) 3986 return false; 3987 3988 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3989 // Implicit destructor invocations aren't captured in the AST, so the 3990 // check above can't see them. Check for them manually here. 3991 for (const Decl *Member : Dtor->getParent()->decls()) 3992 if (isa<FieldDecl>(Member)) 3993 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3994 return false; 3995 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3996 if (HasNonDllImportDtor(B.getType())) 3997 return false; 3998 } 3999 } 4000 4001 // Inline builtins declaration must be emitted. They often are fortified 4002 // functions. 4003 if (F->isInlineBuiltinDeclaration()) 4004 return true; 4005 4006 // PR9614. Avoid cases where the source code is lying to us. An available 4007 // externally function should have an equivalent function somewhere else, 4008 // but a function that calls itself through asm label/`__builtin_` trickery is 4009 // clearly not equivalent to the real implementation. 4010 // This happens in glibc's btowc and in some configure checks. 4011 return !isTriviallyRecursive(F); 4012 } 4013 4014 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4015 return CodeGenOpts.OptimizationLevel > 0; 4016 } 4017 4018 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4019 llvm::GlobalValue *GV) { 4020 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4021 4022 if (FD->isCPUSpecificMultiVersion()) { 4023 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4024 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4025 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4026 } else if (FD->isTargetClonesMultiVersion()) { 4027 auto *Clone = FD->getAttr<TargetClonesAttr>(); 4028 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 4029 if (Clone->isFirstOfVersion(I)) 4030 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4031 // Ensure that the resolver function is also emitted. 4032 GetOrCreateMultiVersionResolver(GD); 4033 } else if (FD->hasAttr<TargetVersionAttr>()) { 4034 GetOrCreateMultiVersionResolver(GD); 4035 } else 4036 EmitGlobalFunctionDefinition(GD, GV); 4037 } 4038 4039 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4040 const auto *D = cast<ValueDecl>(GD.getDecl()); 4041 4042 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4043 Context.getSourceManager(), 4044 "Generating code for declaration"); 4045 4046 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4047 // At -O0, don't generate IR for functions with available_externally 4048 // linkage. 4049 if (!shouldEmitFunction(GD)) 4050 return; 4051 4052 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4053 std::string Name; 4054 llvm::raw_string_ostream OS(Name); 4055 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4056 /*Qualified=*/true); 4057 return Name; 4058 }); 4059 4060 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4061 // Make sure to emit the definition(s) before we emit the thunks. 4062 // This is necessary for the generation of certain thunks. 4063 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4064 ABI->emitCXXStructor(GD); 4065 else if (FD->isMultiVersion()) 4066 EmitMultiVersionFunctionDefinition(GD, GV); 4067 else 4068 EmitGlobalFunctionDefinition(GD, GV); 4069 4070 if (Method->isVirtual()) 4071 getVTables().EmitThunks(GD); 4072 4073 return; 4074 } 4075 4076 if (FD->isMultiVersion()) 4077 return EmitMultiVersionFunctionDefinition(GD, GV); 4078 return EmitGlobalFunctionDefinition(GD, GV); 4079 } 4080 4081 if (const auto *VD = dyn_cast<VarDecl>(D)) 4082 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4083 4084 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4085 } 4086 4087 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4088 llvm::Function *NewFn); 4089 4090 static unsigned 4091 TargetMVPriority(const TargetInfo &TI, 4092 const CodeGenFunction::MultiVersionResolverOption &RO) { 4093 unsigned Priority = 0; 4094 unsigned NumFeatures = 0; 4095 for (StringRef Feat : RO.Conditions.Features) { 4096 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4097 NumFeatures++; 4098 } 4099 4100 if (!RO.Conditions.Architecture.empty()) 4101 Priority = std::max( 4102 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4103 4104 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4105 4106 return Priority; 4107 } 4108 4109 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4110 // TU can forward declare the function without causing problems. Particularly 4111 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4112 // work with internal linkage functions, so that the same function name can be 4113 // used with internal linkage in multiple TUs. 4114 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4115 GlobalDecl GD) { 4116 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4117 if (FD->getFormalLinkage() == Linkage::Internal) 4118 return llvm::GlobalValue::InternalLinkage; 4119 return llvm::GlobalValue::WeakODRLinkage; 4120 } 4121 4122 void CodeGenModule::emitMultiVersionFunctions() { 4123 std::vector<GlobalDecl> MVFuncsToEmit; 4124 MultiVersionFuncs.swap(MVFuncsToEmit); 4125 for (GlobalDecl GD : MVFuncsToEmit) { 4126 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4127 assert(FD && "Expected a FunctionDecl"); 4128 4129 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4130 if (FD->isTargetMultiVersion()) { 4131 getContext().forEachMultiversionedFunctionVersion( 4132 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4133 GlobalDecl CurGD{ 4134 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4135 StringRef MangledName = getMangledName(CurGD); 4136 llvm::Constant *Func = GetGlobalValue(MangledName); 4137 if (!Func) { 4138 if (CurFD->isDefined()) { 4139 EmitGlobalFunctionDefinition(CurGD, nullptr); 4140 Func = GetGlobalValue(MangledName); 4141 } else { 4142 const CGFunctionInfo &FI = 4143 getTypes().arrangeGlobalDeclaration(GD); 4144 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4145 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4146 /*DontDefer=*/false, ForDefinition); 4147 } 4148 assert(Func && "This should have just been created"); 4149 } 4150 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4151 const auto *TA = CurFD->getAttr<TargetAttr>(); 4152 llvm::SmallVector<StringRef, 8> Feats; 4153 TA->getAddedFeatures(Feats); 4154 Options.emplace_back(cast<llvm::Function>(Func), 4155 TA->getArchitecture(), Feats); 4156 } else { 4157 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4158 llvm::SmallVector<StringRef, 8> Feats; 4159 TVA->getFeatures(Feats); 4160 Options.emplace_back(cast<llvm::Function>(Func), 4161 /*Architecture*/ "", Feats); 4162 } 4163 }); 4164 } else if (FD->isTargetClonesMultiVersion()) { 4165 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4166 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4167 ++VersionIndex) { 4168 if (!TC->isFirstOfVersion(VersionIndex)) 4169 continue; 4170 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4171 VersionIndex}; 4172 StringRef Version = TC->getFeatureStr(VersionIndex); 4173 StringRef MangledName = getMangledName(CurGD); 4174 llvm::Constant *Func = GetGlobalValue(MangledName); 4175 if (!Func) { 4176 if (FD->isDefined()) { 4177 EmitGlobalFunctionDefinition(CurGD, nullptr); 4178 Func = GetGlobalValue(MangledName); 4179 } else { 4180 const CGFunctionInfo &FI = 4181 getTypes().arrangeGlobalDeclaration(CurGD); 4182 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4183 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4184 /*DontDefer=*/false, ForDefinition); 4185 } 4186 assert(Func && "This should have just been created"); 4187 } 4188 4189 StringRef Architecture; 4190 llvm::SmallVector<StringRef, 1> Feature; 4191 4192 if (getTarget().getTriple().isAArch64()) { 4193 if (Version != "default") { 4194 llvm::SmallVector<StringRef, 8> VerFeats; 4195 Version.split(VerFeats, "+"); 4196 for (auto &CurFeat : VerFeats) 4197 Feature.push_back(CurFeat.trim()); 4198 } 4199 } else { 4200 if (Version.starts_with("arch=")) 4201 Architecture = Version.drop_front(sizeof("arch=") - 1); 4202 else if (Version != "default") 4203 Feature.push_back(Version); 4204 } 4205 4206 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4207 } 4208 } else { 4209 assert(0 && "Expected a target or target_clones multiversion function"); 4210 continue; 4211 } 4212 4213 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4214 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4215 ResolverConstant = IFunc->getResolver(); 4216 if (FD->isTargetClonesMultiVersion() || 4217 FD->isTargetVersionMultiVersion()) { 4218 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4219 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4220 std::string MangledName = getMangledNameImpl( 4221 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4222 // In prior versions of Clang, the mangling for ifuncs incorrectly 4223 // included an .ifunc suffix. This alias is generated for backward 4224 // compatibility. It is deprecated, and may be removed in the future. 4225 auto *Alias = llvm::GlobalAlias::create( 4226 DeclTy, 0, getMultiversionLinkage(*this, GD), 4227 MangledName + ".ifunc", IFunc, &getModule()); 4228 SetCommonAttributes(FD, Alias); 4229 } 4230 } 4231 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4232 4233 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4234 4235 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4236 ResolverFunc->setComdat( 4237 getModule().getOrInsertComdat(ResolverFunc->getName())); 4238 4239 const TargetInfo &TI = getTarget(); 4240 llvm::stable_sort( 4241 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4242 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4243 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4244 }); 4245 CodeGenFunction CGF(*this); 4246 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4247 } 4248 4249 // Ensure that any additions to the deferred decls list caused by emitting a 4250 // variant are emitted. This can happen when the variant itself is inline and 4251 // calls a function without linkage. 4252 if (!MVFuncsToEmit.empty()) 4253 EmitDeferred(); 4254 4255 // Ensure that any additions to the multiversion funcs list from either the 4256 // deferred decls or the multiversion functions themselves are emitted. 4257 if (!MultiVersionFuncs.empty()) 4258 emitMultiVersionFunctions(); 4259 } 4260 4261 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4262 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4263 assert(FD && "Not a FunctionDecl?"); 4264 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4265 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4266 assert(DD && "Not a cpu_dispatch Function?"); 4267 4268 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4269 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4270 4271 StringRef ResolverName = getMangledName(GD); 4272 UpdateMultiVersionNames(GD, FD, ResolverName); 4273 4274 llvm::Type *ResolverType; 4275 GlobalDecl ResolverGD; 4276 if (getTarget().supportsIFunc()) { 4277 ResolverType = llvm::FunctionType::get( 4278 llvm::PointerType::get(DeclTy, 4279 getTypes().getTargetAddressSpace(FD->getType())), 4280 false); 4281 } 4282 else { 4283 ResolverType = DeclTy; 4284 ResolverGD = GD; 4285 } 4286 4287 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4288 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4289 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4290 if (supportsCOMDAT()) 4291 ResolverFunc->setComdat( 4292 getModule().getOrInsertComdat(ResolverFunc->getName())); 4293 4294 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4295 const TargetInfo &Target = getTarget(); 4296 unsigned Index = 0; 4297 for (const IdentifierInfo *II : DD->cpus()) { 4298 // Get the name of the target function so we can look it up/create it. 4299 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4300 getCPUSpecificMangling(*this, II->getName()); 4301 4302 llvm::Constant *Func = GetGlobalValue(MangledName); 4303 4304 if (!Func) { 4305 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4306 if (ExistingDecl.getDecl() && 4307 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4308 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4309 Func = GetGlobalValue(MangledName); 4310 } else { 4311 if (!ExistingDecl.getDecl()) 4312 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4313 4314 Func = GetOrCreateLLVMFunction( 4315 MangledName, DeclTy, ExistingDecl, 4316 /*ForVTable=*/false, /*DontDefer=*/true, 4317 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4318 } 4319 } 4320 4321 llvm::SmallVector<StringRef, 32> Features; 4322 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4323 llvm::transform(Features, Features.begin(), 4324 [](StringRef Str) { return Str.substr(1); }); 4325 llvm::erase_if(Features, [&Target](StringRef Feat) { 4326 return !Target.validateCpuSupports(Feat); 4327 }); 4328 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4329 ++Index; 4330 } 4331 4332 llvm::stable_sort( 4333 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4334 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4335 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4336 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4337 }); 4338 4339 // If the list contains multiple 'default' versions, such as when it contains 4340 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4341 // always run on at least a 'pentium'). We do this by deleting the 'least 4342 // advanced' (read, lowest mangling letter). 4343 while (Options.size() > 1 && 4344 llvm::all_of(llvm::X86::getCpuSupportsMask( 4345 (Options.end() - 2)->Conditions.Features), 4346 [](auto X) { return X == 0; })) { 4347 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4348 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4349 if (LHSName.compare(RHSName) < 0) 4350 Options.erase(Options.end() - 2); 4351 else 4352 Options.erase(Options.end() - 1); 4353 } 4354 4355 CodeGenFunction CGF(*this); 4356 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4357 4358 if (getTarget().supportsIFunc()) { 4359 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4360 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4361 4362 // Fix up function declarations that were created for cpu_specific before 4363 // cpu_dispatch was known 4364 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4365 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4366 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4367 &getModule()); 4368 GI->takeName(IFunc); 4369 IFunc->replaceAllUsesWith(GI); 4370 IFunc->eraseFromParent(); 4371 IFunc = GI; 4372 } 4373 4374 std::string AliasName = getMangledNameImpl( 4375 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4376 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4377 if (!AliasFunc) { 4378 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4379 &getModule()); 4380 SetCommonAttributes(GD, GA); 4381 } 4382 } 4383 } 4384 4385 /// If a dispatcher for the specified mangled name is not in the module, create 4386 /// and return an llvm Function with the specified type. 4387 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4388 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4389 assert(FD && "Not a FunctionDecl?"); 4390 4391 std::string MangledName = 4392 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4393 4394 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4395 // a separate resolver). 4396 std::string ResolverName = MangledName; 4397 if (getTarget().supportsIFunc()) { 4398 switch (FD->getMultiVersionKind()) { 4399 case MultiVersionKind::None: 4400 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4401 case MultiVersionKind::Target: 4402 case MultiVersionKind::CPUSpecific: 4403 case MultiVersionKind::CPUDispatch: 4404 ResolverName += ".ifunc"; 4405 break; 4406 case MultiVersionKind::TargetClones: 4407 case MultiVersionKind::TargetVersion: 4408 break; 4409 } 4410 } else if (FD->isTargetMultiVersion()) { 4411 ResolverName += ".resolver"; 4412 } 4413 4414 // If the resolver has already been created, just return it. 4415 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4416 return ResolverGV; 4417 4418 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4419 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4420 4421 // The resolver needs to be created. For target and target_clones, defer 4422 // creation until the end of the TU. 4423 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4424 MultiVersionFuncs.push_back(GD); 4425 4426 // For cpu_specific, don't create an ifunc yet because we don't know if the 4427 // cpu_dispatch will be emitted in this translation unit. 4428 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4429 llvm::Type *ResolverType = llvm::FunctionType::get( 4430 llvm::PointerType::get(DeclTy, 4431 getTypes().getTargetAddressSpace(FD->getType())), 4432 false); 4433 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4434 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4435 /*ForVTable=*/false); 4436 llvm::GlobalIFunc *GIF = 4437 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4438 "", Resolver, &getModule()); 4439 GIF->setName(ResolverName); 4440 SetCommonAttributes(FD, GIF); 4441 4442 return GIF; 4443 } 4444 4445 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4446 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4447 assert(isa<llvm::GlobalValue>(Resolver) && 4448 "Resolver should be created for the first time"); 4449 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4450 return Resolver; 4451 } 4452 4453 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4454 /// module, create and return an llvm Function with the specified type. If there 4455 /// is something in the module with the specified name, return it potentially 4456 /// bitcasted to the right type. 4457 /// 4458 /// If D is non-null, it specifies a decl that correspond to this. This is used 4459 /// to set the attributes on the function when it is first created. 4460 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4461 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4462 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4463 ForDefinition_t IsForDefinition) { 4464 const Decl *D = GD.getDecl(); 4465 4466 // Any attempts to use a MultiVersion function should result in retrieving 4467 // the iFunc instead. Name Mangling will handle the rest of the changes. 4468 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4469 // For the device mark the function as one that should be emitted. 4470 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4471 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4472 !DontDefer && !IsForDefinition) { 4473 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4474 GlobalDecl GDDef; 4475 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4476 GDDef = GlobalDecl(CD, GD.getCtorType()); 4477 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4478 GDDef = GlobalDecl(DD, GD.getDtorType()); 4479 else 4480 GDDef = GlobalDecl(FDDef); 4481 EmitGlobal(GDDef); 4482 } 4483 } 4484 4485 if (FD->isMultiVersion()) { 4486 UpdateMultiVersionNames(GD, FD, MangledName); 4487 if (!IsForDefinition) 4488 return GetOrCreateMultiVersionResolver(GD); 4489 } 4490 } 4491 4492 // Lookup the entry, lazily creating it if necessary. 4493 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4494 if (Entry) { 4495 if (WeakRefReferences.erase(Entry)) { 4496 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4497 if (FD && !FD->hasAttr<WeakAttr>()) 4498 Entry->setLinkage(llvm::Function::ExternalLinkage); 4499 } 4500 4501 // Handle dropped DLL attributes. 4502 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4503 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4504 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4505 setDSOLocal(Entry); 4506 } 4507 4508 // If there are two attempts to define the same mangled name, issue an 4509 // error. 4510 if (IsForDefinition && !Entry->isDeclaration()) { 4511 GlobalDecl OtherGD; 4512 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4513 // to make sure that we issue an error only once. 4514 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4515 (GD.getCanonicalDecl().getDecl() != 4516 OtherGD.getCanonicalDecl().getDecl()) && 4517 DiagnosedConflictingDefinitions.insert(GD).second) { 4518 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4519 << MangledName; 4520 getDiags().Report(OtherGD.getDecl()->getLocation(), 4521 diag::note_previous_definition); 4522 } 4523 } 4524 4525 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4526 (Entry->getValueType() == Ty)) { 4527 return Entry; 4528 } 4529 4530 // Make sure the result is of the correct type. 4531 // (If function is requested for a definition, we always need to create a new 4532 // function, not just return a bitcast.) 4533 if (!IsForDefinition) 4534 return Entry; 4535 } 4536 4537 // This function doesn't have a complete type (for example, the return 4538 // type is an incomplete struct). Use a fake type instead, and make 4539 // sure not to try to set attributes. 4540 bool IsIncompleteFunction = false; 4541 4542 llvm::FunctionType *FTy; 4543 if (isa<llvm::FunctionType>(Ty)) { 4544 FTy = cast<llvm::FunctionType>(Ty); 4545 } else { 4546 FTy = llvm::FunctionType::get(VoidTy, false); 4547 IsIncompleteFunction = true; 4548 } 4549 4550 llvm::Function *F = 4551 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4552 Entry ? StringRef() : MangledName, &getModule()); 4553 4554 // Store the declaration associated with this function so it is potentially 4555 // updated by further declarations or definitions and emitted at the end. 4556 if (D && D->hasAttr<AnnotateAttr>()) 4557 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4558 4559 // If we already created a function with the same mangled name (but different 4560 // type) before, take its name and add it to the list of functions to be 4561 // replaced with F at the end of CodeGen. 4562 // 4563 // This happens if there is a prototype for a function (e.g. "int f()") and 4564 // then a definition of a different type (e.g. "int f(int x)"). 4565 if (Entry) { 4566 F->takeName(Entry); 4567 4568 // This might be an implementation of a function without a prototype, in 4569 // which case, try to do special replacement of calls which match the new 4570 // prototype. The really key thing here is that we also potentially drop 4571 // arguments from the call site so as to make a direct call, which makes the 4572 // inliner happier and suppresses a number of optimizer warnings (!) about 4573 // dropping arguments. 4574 if (!Entry->use_empty()) { 4575 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4576 Entry->removeDeadConstantUsers(); 4577 } 4578 4579 addGlobalValReplacement(Entry, F); 4580 } 4581 4582 assert(F->getName() == MangledName && "name was uniqued!"); 4583 if (D) 4584 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4585 if (ExtraAttrs.hasFnAttrs()) { 4586 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4587 F->addFnAttrs(B); 4588 } 4589 4590 if (!DontDefer) { 4591 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4592 // each other bottoming out with the base dtor. Therefore we emit non-base 4593 // dtors on usage, even if there is no dtor definition in the TU. 4594 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4595 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4596 GD.getDtorType())) 4597 addDeferredDeclToEmit(GD); 4598 4599 // This is the first use or definition of a mangled name. If there is a 4600 // deferred decl with this name, remember that we need to emit it at the end 4601 // of the file. 4602 auto DDI = DeferredDecls.find(MangledName); 4603 if (DDI != DeferredDecls.end()) { 4604 // Move the potentially referenced deferred decl to the 4605 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4606 // don't need it anymore). 4607 addDeferredDeclToEmit(DDI->second); 4608 DeferredDecls.erase(DDI); 4609 4610 // Otherwise, there are cases we have to worry about where we're 4611 // using a declaration for which we must emit a definition but where 4612 // we might not find a top-level definition: 4613 // - member functions defined inline in their classes 4614 // - friend functions defined inline in some class 4615 // - special member functions with implicit definitions 4616 // If we ever change our AST traversal to walk into class methods, 4617 // this will be unnecessary. 4618 // 4619 // We also don't emit a definition for a function if it's going to be an 4620 // entry in a vtable, unless it's already marked as used. 4621 } else if (getLangOpts().CPlusPlus && D) { 4622 // Look for a declaration that's lexically in a record. 4623 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4624 FD = FD->getPreviousDecl()) { 4625 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4626 if (FD->doesThisDeclarationHaveABody()) { 4627 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4628 break; 4629 } 4630 } 4631 } 4632 } 4633 } 4634 4635 // Make sure the result is of the requested type. 4636 if (!IsIncompleteFunction) { 4637 assert(F->getFunctionType() == Ty); 4638 return F; 4639 } 4640 4641 return F; 4642 } 4643 4644 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4645 /// non-null, then this function will use the specified type if it has to 4646 /// create it (this occurs when we see a definition of the function). 4647 llvm::Constant * 4648 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4649 bool DontDefer, 4650 ForDefinition_t IsForDefinition) { 4651 // If there was no specific requested type, just convert it now. 4652 if (!Ty) { 4653 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4654 Ty = getTypes().ConvertType(FD->getType()); 4655 } 4656 4657 // Devirtualized destructor calls may come through here instead of via 4658 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4659 // of the complete destructor when necessary. 4660 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4661 if (getTarget().getCXXABI().isMicrosoft() && 4662 GD.getDtorType() == Dtor_Complete && 4663 DD->getParent()->getNumVBases() == 0) 4664 GD = GlobalDecl(DD, Dtor_Base); 4665 } 4666 4667 StringRef MangledName = getMangledName(GD); 4668 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4669 /*IsThunk=*/false, llvm::AttributeList(), 4670 IsForDefinition); 4671 // Returns kernel handle for HIP kernel stub function. 4672 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4673 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4674 auto *Handle = getCUDARuntime().getKernelHandle( 4675 cast<llvm::Function>(F->stripPointerCasts()), GD); 4676 if (IsForDefinition) 4677 return F; 4678 return Handle; 4679 } 4680 return F; 4681 } 4682 4683 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4684 llvm::GlobalValue *F = 4685 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4686 4687 return llvm::NoCFIValue::get(F); 4688 } 4689 4690 static const FunctionDecl * 4691 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4692 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4693 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4694 4695 IdentifierInfo &CII = C.Idents.get(Name); 4696 for (const auto *Result : DC->lookup(&CII)) 4697 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4698 return FD; 4699 4700 if (!C.getLangOpts().CPlusPlus) 4701 return nullptr; 4702 4703 // Demangle the premangled name from getTerminateFn() 4704 IdentifierInfo &CXXII = 4705 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4706 ? C.Idents.get("terminate") 4707 : C.Idents.get(Name); 4708 4709 for (const auto &N : {"__cxxabiv1", "std"}) { 4710 IdentifierInfo &NS = C.Idents.get(N); 4711 for (const auto *Result : DC->lookup(&NS)) { 4712 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4713 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4714 for (const auto *Result : LSD->lookup(&NS)) 4715 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4716 break; 4717 4718 if (ND) 4719 for (const auto *Result : ND->lookup(&CXXII)) 4720 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4721 return FD; 4722 } 4723 } 4724 4725 return nullptr; 4726 } 4727 4728 /// CreateRuntimeFunction - Create a new runtime function with the specified 4729 /// type and name. 4730 llvm::FunctionCallee 4731 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4732 llvm::AttributeList ExtraAttrs, bool Local, 4733 bool AssumeConvergent) { 4734 if (AssumeConvergent) { 4735 ExtraAttrs = 4736 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4737 } 4738 4739 llvm::Constant *C = 4740 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4741 /*DontDefer=*/false, /*IsThunk=*/false, 4742 ExtraAttrs); 4743 4744 if (auto *F = dyn_cast<llvm::Function>(C)) { 4745 if (F->empty()) { 4746 F->setCallingConv(getRuntimeCC()); 4747 4748 // In Windows Itanium environments, try to mark runtime functions 4749 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4750 // will link their standard library statically or dynamically. Marking 4751 // functions imported when they are not imported can cause linker errors 4752 // and warnings. 4753 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4754 !getCodeGenOpts().LTOVisibilityPublicStd) { 4755 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4756 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4757 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4758 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4759 } 4760 } 4761 setDSOLocal(F); 4762 } 4763 } 4764 4765 return {FTy, C}; 4766 } 4767 4768 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4769 /// create and return an llvm GlobalVariable with the specified type and address 4770 /// space. If there is something in the module with the specified name, return 4771 /// it potentially bitcasted to the right type. 4772 /// 4773 /// If D is non-null, it specifies a decl that correspond to this. This is used 4774 /// to set the attributes on the global when it is first created. 4775 /// 4776 /// If IsForDefinition is true, it is guaranteed that an actual global with 4777 /// type Ty will be returned, not conversion of a variable with the same 4778 /// mangled name but some other type. 4779 llvm::Constant * 4780 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4781 LangAS AddrSpace, const VarDecl *D, 4782 ForDefinition_t IsForDefinition) { 4783 // Lookup the entry, lazily creating it if necessary. 4784 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4785 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4786 if (Entry) { 4787 if (WeakRefReferences.erase(Entry)) { 4788 if (D && !D->hasAttr<WeakAttr>()) 4789 Entry->setLinkage(llvm::Function::ExternalLinkage); 4790 } 4791 4792 // Handle dropped DLL attributes. 4793 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4794 !shouldMapVisibilityToDLLExport(D)) 4795 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4796 4797 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4798 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4799 4800 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4801 return Entry; 4802 4803 // If there are two attempts to define the same mangled name, issue an 4804 // error. 4805 if (IsForDefinition && !Entry->isDeclaration()) { 4806 GlobalDecl OtherGD; 4807 const VarDecl *OtherD; 4808 4809 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4810 // to make sure that we issue an error only once. 4811 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4812 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4813 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4814 OtherD->hasInit() && 4815 DiagnosedConflictingDefinitions.insert(D).second) { 4816 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4817 << MangledName; 4818 getDiags().Report(OtherGD.getDecl()->getLocation(), 4819 diag::note_previous_definition); 4820 } 4821 } 4822 4823 // Make sure the result is of the correct type. 4824 if (Entry->getType()->getAddressSpace() != TargetAS) 4825 return llvm::ConstantExpr::getAddrSpaceCast( 4826 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4827 4828 // (If global is requested for a definition, we always need to create a new 4829 // global, not just return a bitcast.) 4830 if (!IsForDefinition) 4831 return Entry; 4832 } 4833 4834 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4835 4836 auto *GV = new llvm::GlobalVariable( 4837 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4838 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4839 getContext().getTargetAddressSpace(DAddrSpace)); 4840 4841 // If we already created a global with the same mangled name (but different 4842 // type) before, take its name and remove it from its parent. 4843 if (Entry) { 4844 GV->takeName(Entry); 4845 4846 if (!Entry->use_empty()) { 4847 Entry->replaceAllUsesWith(GV); 4848 } 4849 4850 Entry->eraseFromParent(); 4851 } 4852 4853 // This is the first use or definition of a mangled name. If there is a 4854 // deferred decl with this name, remember that we need to emit it at the end 4855 // of the file. 4856 auto DDI = DeferredDecls.find(MangledName); 4857 if (DDI != DeferredDecls.end()) { 4858 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4859 // list, and remove it from DeferredDecls (since we don't need it anymore). 4860 addDeferredDeclToEmit(DDI->second); 4861 DeferredDecls.erase(DDI); 4862 } 4863 4864 // Handle things which are present even on external declarations. 4865 if (D) { 4866 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4867 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4868 4869 // FIXME: This code is overly simple and should be merged with other global 4870 // handling. 4871 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4872 4873 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4874 4875 setLinkageForGV(GV, D); 4876 4877 if (D->getTLSKind()) { 4878 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4879 CXXThreadLocals.push_back(D); 4880 setTLSMode(GV, *D); 4881 } 4882 4883 setGVProperties(GV, D); 4884 4885 // If required by the ABI, treat declarations of static data members with 4886 // inline initializers as definitions. 4887 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4888 EmitGlobalVarDefinition(D); 4889 } 4890 4891 // Emit section information for extern variables. 4892 if (D->hasExternalStorage()) { 4893 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4894 GV->setSection(SA->getName()); 4895 } 4896 4897 // Handle XCore specific ABI requirements. 4898 if (getTriple().getArch() == llvm::Triple::xcore && 4899 D->getLanguageLinkage() == CLanguageLinkage && 4900 D->getType().isConstant(Context) && 4901 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4902 GV->setSection(".cp.rodata"); 4903 4904 // Handle code model attribute 4905 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4906 GV->setCodeModel(CMA->getModel()); 4907 4908 // Check if we a have a const declaration with an initializer, we may be 4909 // able to emit it as available_externally to expose it's value to the 4910 // optimizer. 4911 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4912 D->getType().isConstQualified() && !GV->hasInitializer() && 4913 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4914 const auto *Record = 4915 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4916 bool HasMutableFields = Record && Record->hasMutableFields(); 4917 if (!HasMutableFields) { 4918 const VarDecl *InitDecl; 4919 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4920 if (InitExpr) { 4921 ConstantEmitter emitter(*this); 4922 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4923 if (Init) { 4924 auto *InitType = Init->getType(); 4925 if (GV->getValueType() != InitType) { 4926 // The type of the initializer does not match the definition. 4927 // This happens when an initializer has a different type from 4928 // the type of the global (because of padding at the end of a 4929 // structure for instance). 4930 GV->setName(StringRef()); 4931 // Make a new global with the correct type, this is now guaranteed 4932 // to work. 4933 auto *NewGV = cast<llvm::GlobalVariable>( 4934 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4935 ->stripPointerCasts()); 4936 4937 // Erase the old global, since it is no longer used. 4938 GV->eraseFromParent(); 4939 GV = NewGV; 4940 } else { 4941 GV->setInitializer(Init); 4942 GV->setConstant(true); 4943 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4944 } 4945 emitter.finalize(GV); 4946 } 4947 } 4948 } 4949 } 4950 } 4951 4952 if (D && 4953 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4954 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4955 // External HIP managed variables needed to be recorded for transformation 4956 // in both device and host compilations. 4957 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4958 D->hasExternalStorage()) 4959 getCUDARuntime().handleVarRegistration(D, *GV); 4960 } 4961 4962 if (D) 4963 SanitizerMD->reportGlobal(GV, *D); 4964 4965 LangAS ExpectedAS = 4966 D ? D->getType().getAddressSpace() 4967 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4968 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4969 if (DAddrSpace != ExpectedAS) { 4970 return getTargetCodeGenInfo().performAddrSpaceCast( 4971 *this, GV, DAddrSpace, ExpectedAS, 4972 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4973 } 4974 4975 return GV; 4976 } 4977 4978 llvm::Constant * 4979 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4980 const Decl *D = GD.getDecl(); 4981 4982 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4983 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4984 /*DontDefer=*/false, IsForDefinition); 4985 4986 if (isa<CXXMethodDecl>(D)) { 4987 auto FInfo = 4988 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4989 auto Ty = getTypes().GetFunctionType(*FInfo); 4990 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4991 IsForDefinition); 4992 } 4993 4994 if (isa<FunctionDecl>(D)) { 4995 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4996 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4997 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4998 IsForDefinition); 4999 } 5000 5001 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5002 } 5003 5004 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5005 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5006 llvm::Align Alignment) { 5007 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5008 llvm::GlobalVariable *OldGV = nullptr; 5009 5010 if (GV) { 5011 // Check if the variable has the right type. 5012 if (GV->getValueType() == Ty) 5013 return GV; 5014 5015 // Because C++ name mangling, the only way we can end up with an already 5016 // existing global with the same name is if it has been declared extern "C". 5017 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5018 OldGV = GV; 5019 } 5020 5021 // Create a new variable. 5022 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5023 Linkage, nullptr, Name); 5024 5025 if (OldGV) { 5026 // Replace occurrences of the old variable if needed. 5027 GV->takeName(OldGV); 5028 5029 if (!OldGV->use_empty()) { 5030 OldGV->replaceAllUsesWith(GV); 5031 } 5032 5033 OldGV->eraseFromParent(); 5034 } 5035 5036 if (supportsCOMDAT() && GV->isWeakForLinker() && 5037 !GV->hasAvailableExternallyLinkage()) 5038 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5039 5040 GV->setAlignment(Alignment); 5041 5042 return GV; 5043 } 5044 5045 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5046 /// given global variable. If Ty is non-null and if the global doesn't exist, 5047 /// then it will be created with the specified type instead of whatever the 5048 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5049 /// that an actual global with type Ty will be returned, not conversion of a 5050 /// variable with the same mangled name but some other type. 5051 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5052 llvm::Type *Ty, 5053 ForDefinition_t IsForDefinition) { 5054 assert(D->hasGlobalStorage() && "Not a global variable"); 5055 QualType ASTTy = D->getType(); 5056 if (!Ty) 5057 Ty = getTypes().ConvertTypeForMem(ASTTy); 5058 5059 StringRef MangledName = getMangledName(D); 5060 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5061 IsForDefinition); 5062 } 5063 5064 /// CreateRuntimeVariable - Create a new runtime global variable with the 5065 /// specified type and name. 5066 llvm::Constant * 5067 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5068 StringRef Name) { 5069 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5070 : LangAS::Default; 5071 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5072 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5073 return Ret; 5074 } 5075 5076 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5077 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5078 5079 StringRef MangledName = getMangledName(D); 5080 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5081 5082 // We already have a definition, not declaration, with the same mangled name. 5083 // Emitting of declaration is not required (and actually overwrites emitted 5084 // definition). 5085 if (GV && !GV->isDeclaration()) 5086 return; 5087 5088 // If we have not seen a reference to this variable yet, place it into the 5089 // deferred declarations table to be emitted if needed later. 5090 if (!MustBeEmitted(D) && !GV) { 5091 DeferredDecls[MangledName] = D; 5092 return; 5093 } 5094 5095 // The tentative definition is the only definition. 5096 EmitGlobalVarDefinition(D); 5097 } 5098 5099 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5100 EmitExternalVarDeclaration(D); 5101 } 5102 5103 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5104 return Context.toCharUnitsFromBits( 5105 getDataLayout().getTypeStoreSizeInBits(Ty)); 5106 } 5107 5108 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5109 if (LangOpts.OpenCL) { 5110 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5111 assert(AS == LangAS::opencl_global || 5112 AS == LangAS::opencl_global_device || 5113 AS == LangAS::opencl_global_host || 5114 AS == LangAS::opencl_constant || 5115 AS == LangAS::opencl_local || 5116 AS >= LangAS::FirstTargetAddressSpace); 5117 return AS; 5118 } 5119 5120 if (LangOpts.SYCLIsDevice && 5121 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5122 return LangAS::sycl_global; 5123 5124 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5125 if (D) { 5126 if (D->hasAttr<CUDAConstantAttr>()) 5127 return LangAS::cuda_constant; 5128 if (D->hasAttr<CUDASharedAttr>()) 5129 return LangAS::cuda_shared; 5130 if (D->hasAttr<CUDADeviceAttr>()) 5131 return LangAS::cuda_device; 5132 if (D->getType().isConstQualified()) 5133 return LangAS::cuda_constant; 5134 } 5135 return LangAS::cuda_device; 5136 } 5137 5138 if (LangOpts.OpenMP) { 5139 LangAS AS; 5140 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5141 return AS; 5142 } 5143 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5144 } 5145 5146 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5147 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5148 if (LangOpts.OpenCL) 5149 return LangAS::opencl_constant; 5150 if (LangOpts.SYCLIsDevice) 5151 return LangAS::sycl_global; 5152 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5153 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5154 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5155 // with OpVariable instructions with Generic storage class which is not 5156 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5157 // UniformConstant storage class is not viable as pointers to it may not be 5158 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5159 return LangAS::cuda_device; 5160 if (auto AS = getTarget().getConstantAddressSpace()) 5161 return *AS; 5162 return LangAS::Default; 5163 } 5164 5165 // In address space agnostic languages, string literals are in default address 5166 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5167 // emitted in constant address space in LLVM IR. To be consistent with other 5168 // parts of AST, string literal global variables in constant address space 5169 // need to be casted to default address space before being put into address 5170 // map and referenced by other part of CodeGen. 5171 // In OpenCL, string literals are in constant address space in AST, therefore 5172 // they should not be casted to default address space. 5173 static llvm::Constant * 5174 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5175 llvm::GlobalVariable *GV) { 5176 llvm::Constant *Cast = GV; 5177 if (!CGM.getLangOpts().OpenCL) { 5178 auto AS = CGM.GetGlobalConstantAddressSpace(); 5179 if (AS != LangAS::Default) 5180 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5181 CGM, GV, AS, LangAS::Default, 5182 llvm::PointerType::get( 5183 CGM.getLLVMContext(), 5184 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5185 } 5186 return Cast; 5187 } 5188 5189 template<typename SomeDecl> 5190 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5191 llvm::GlobalValue *GV) { 5192 if (!getLangOpts().CPlusPlus) 5193 return; 5194 5195 // Must have 'used' attribute, or else inline assembly can't rely on 5196 // the name existing. 5197 if (!D->template hasAttr<UsedAttr>()) 5198 return; 5199 5200 // Must have internal linkage and an ordinary name. 5201 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5202 return; 5203 5204 // Must be in an extern "C" context. Entities declared directly within 5205 // a record are not extern "C" even if the record is in such a context. 5206 const SomeDecl *First = D->getFirstDecl(); 5207 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5208 return; 5209 5210 // OK, this is an internal linkage entity inside an extern "C" linkage 5211 // specification. Make a note of that so we can give it the "expected" 5212 // mangled name if nothing else is using that name. 5213 std::pair<StaticExternCMap::iterator, bool> R = 5214 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5215 5216 // If we have multiple internal linkage entities with the same name 5217 // in extern "C" regions, none of them gets that name. 5218 if (!R.second) 5219 R.first->second = nullptr; 5220 } 5221 5222 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5223 if (!CGM.supportsCOMDAT()) 5224 return false; 5225 5226 if (D.hasAttr<SelectAnyAttr>()) 5227 return true; 5228 5229 GVALinkage Linkage; 5230 if (auto *VD = dyn_cast<VarDecl>(&D)) 5231 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5232 else 5233 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5234 5235 switch (Linkage) { 5236 case GVA_Internal: 5237 case GVA_AvailableExternally: 5238 case GVA_StrongExternal: 5239 return false; 5240 case GVA_DiscardableODR: 5241 case GVA_StrongODR: 5242 return true; 5243 } 5244 llvm_unreachable("No such linkage"); 5245 } 5246 5247 bool CodeGenModule::supportsCOMDAT() const { 5248 return getTriple().supportsCOMDAT(); 5249 } 5250 5251 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5252 llvm::GlobalObject &GO) { 5253 if (!shouldBeInCOMDAT(*this, D)) 5254 return; 5255 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5256 } 5257 5258 /// Pass IsTentative as true if you want to create a tentative definition. 5259 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5260 bool IsTentative) { 5261 // OpenCL global variables of sampler type are translated to function calls, 5262 // therefore no need to be translated. 5263 QualType ASTTy = D->getType(); 5264 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5265 return; 5266 5267 // If this is OpenMP device, check if it is legal to emit this global 5268 // normally. 5269 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5270 OpenMPRuntime->emitTargetGlobalVariable(D)) 5271 return; 5272 5273 llvm::TrackingVH<llvm::Constant> Init; 5274 bool NeedsGlobalCtor = false; 5275 // Whether the definition of the variable is available externally. 5276 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5277 // since this is the job for its original source. 5278 bool IsDefinitionAvailableExternally = 5279 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5280 bool NeedsGlobalDtor = 5281 !IsDefinitionAvailableExternally && 5282 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5283 5284 const VarDecl *InitDecl; 5285 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5286 5287 std::optional<ConstantEmitter> emitter; 5288 5289 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5290 // as part of their declaration." Sema has already checked for 5291 // error cases, so we just need to set Init to UndefValue. 5292 bool IsCUDASharedVar = 5293 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5294 // Shadows of initialized device-side global variables are also left 5295 // undefined. 5296 // Managed Variables should be initialized on both host side and device side. 5297 bool IsCUDAShadowVar = 5298 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5299 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5300 D->hasAttr<CUDASharedAttr>()); 5301 bool IsCUDADeviceShadowVar = 5302 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5303 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5304 D->getType()->isCUDADeviceBuiltinTextureType()); 5305 if (getLangOpts().CUDA && 5306 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5307 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5308 else if (D->hasAttr<LoaderUninitializedAttr>()) 5309 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5310 else if (!InitExpr) { 5311 // This is a tentative definition; tentative definitions are 5312 // implicitly initialized with { 0 }. 5313 // 5314 // Note that tentative definitions are only emitted at the end of 5315 // a translation unit, so they should never have incomplete 5316 // type. In addition, EmitTentativeDefinition makes sure that we 5317 // never attempt to emit a tentative definition if a real one 5318 // exists. A use may still exists, however, so we still may need 5319 // to do a RAUW. 5320 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5321 Init = EmitNullConstant(D->getType()); 5322 } else { 5323 initializedGlobalDecl = GlobalDecl(D); 5324 emitter.emplace(*this); 5325 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5326 if (!Initializer) { 5327 QualType T = InitExpr->getType(); 5328 if (D->getType()->isReferenceType()) 5329 T = D->getType(); 5330 5331 if (getLangOpts().CPlusPlus) { 5332 if (InitDecl->hasFlexibleArrayInit(getContext())) 5333 ErrorUnsupported(D, "flexible array initializer"); 5334 Init = EmitNullConstant(T); 5335 5336 if (!IsDefinitionAvailableExternally) 5337 NeedsGlobalCtor = true; 5338 } else { 5339 ErrorUnsupported(D, "static initializer"); 5340 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5341 } 5342 } else { 5343 Init = Initializer; 5344 // We don't need an initializer, so remove the entry for the delayed 5345 // initializer position (just in case this entry was delayed) if we 5346 // also don't need to register a destructor. 5347 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5348 DelayedCXXInitPosition.erase(D); 5349 5350 #ifndef NDEBUG 5351 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5352 InitDecl->getFlexibleArrayInitChars(getContext()); 5353 CharUnits CstSize = CharUnits::fromQuantity( 5354 getDataLayout().getTypeAllocSize(Init->getType())); 5355 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5356 #endif 5357 } 5358 } 5359 5360 llvm::Type* InitType = Init->getType(); 5361 llvm::Constant *Entry = 5362 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5363 5364 // Strip off pointer casts if we got them. 5365 Entry = Entry->stripPointerCasts(); 5366 5367 // Entry is now either a Function or GlobalVariable. 5368 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5369 5370 // We have a definition after a declaration with the wrong type. 5371 // We must make a new GlobalVariable* and update everything that used OldGV 5372 // (a declaration or tentative definition) with the new GlobalVariable* 5373 // (which will be a definition). 5374 // 5375 // This happens if there is a prototype for a global (e.g. 5376 // "extern int x[];") and then a definition of a different type (e.g. 5377 // "int x[10];"). This also happens when an initializer has a different type 5378 // from the type of the global (this happens with unions). 5379 if (!GV || GV->getValueType() != InitType || 5380 GV->getType()->getAddressSpace() != 5381 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5382 5383 // Move the old entry aside so that we'll create a new one. 5384 Entry->setName(StringRef()); 5385 5386 // Make a new global with the correct type, this is now guaranteed to work. 5387 GV = cast<llvm::GlobalVariable>( 5388 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5389 ->stripPointerCasts()); 5390 5391 // Replace all uses of the old global with the new global 5392 llvm::Constant *NewPtrForOldDecl = 5393 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5394 Entry->getType()); 5395 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5396 5397 // Erase the old global, since it is no longer used. 5398 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5399 } 5400 5401 MaybeHandleStaticInExternC(D, GV); 5402 5403 if (D->hasAttr<AnnotateAttr>()) 5404 AddGlobalAnnotations(D, GV); 5405 5406 // Set the llvm linkage type as appropriate. 5407 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5408 5409 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5410 // the device. [...]" 5411 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5412 // __device__, declares a variable that: [...] 5413 // Is accessible from all the threads within the grid and from the host 5414 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5415 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5416 if (LangOpts.CUDA) { 5417 if (LangOpts.CUDAIsDevice) { 5418 if (Linkage != llvm::GlobalValue::InternalLinkage && 5419 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5420 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5421 D->getType()->isCUDADeviceBuiltinTextureType())) 5422 GV->setExternallyInitialized(true); 5423 } else { 5424 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5425 } 5426 getCUDARuntime().handleVarRegistration(D, *GV); 5427 } 5428 5429 GV->setInitializer(Init); 5430 if (emitter) 5431 emitter->finalize(GV); 5432 5433 // If it is safe to mark the global 'constant', do so now. 5434 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5435 D->getType().isConstantStorage(getContext(), true, true)); 5436 5437 // If it is in a read-only section, mark it 'constant'. 5438 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5439 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5440 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5441 GV->setConstant(true); 5442 } 5443 5444 CharUnits AlignVal = getContext().getDeclAlign(D); 5445 // Check for alignment specifed in an 'omp allocate' directive. 5446 if (std::optional<CharUnits> AlignValFromAllocate = 5447 getOMPAllocateAlignment(D)) 5448 AlignVal = *AlignValFromAllocate; 5449 GV->setAlignment(AlignVal.getAsAlign()); 5450 5451 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5452 // function is only defined alongside the variable, not also alongside 5453 // callers. Normally, all accesses to a thread_local go through the 5454 // thread-wrapper in order to ensure initialization has occurred, underlying 5455 // variable will never be used other than the thread-wrapper, so it can be 5456 // converted to internal linkage. 5457 // 5458 // However, if the variable has the 'constinit' attribute, it _can_ be 5459 // referenced directly, without calling the thread-wrapper, so the linkage 5460 // must not be changed. 5461 // 5462 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5463 // weak or linkonce, the de-duplication semantics are important to preserve, 5464 // so we don't change the linkage. 5465 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5466 Linkage == llvm::GlobalValue::ExternalLinkage && 5467 Context.getTargetInfo().getTriple().isOSDarwin() && 5468 !D->hasAttr<ConstInitAttr>()) 5469 Linkage = llvm::GlobalValue::InternalLinkage; 5470 5471 GV->setLinkage(Linkage); 5472 if (D->hasAttr<DLLImportAttr>()) 5473 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5474 else if (D->hasAttr<DLLExportAttr>()) 5475 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5476 else 5477 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5478 5479 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5480 // common vars aren't constant even if declared const. 5481 GV->setConstant(false); 5482 // Tentative definition of global variables may be initialized with 5483 // non-zero null pointers. In this case they should have weak linkage 5484 // since common linkage must have zero initializer and must not have 5485 // explicit section therefore cannot have non-zero initial value. 5486 if (!GV->getInitializer()->isNullValue()) 5487 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5488 } 5489 5490 setNonAliasAttributes(D, GV); 5491 5492 if (D->getTLSKind() && !GV->isThreadLocal()) { 5493 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5494 CXXThreadLocals.push_back(D); 5495 setTLSMode(GV, *D); 5496 } 5497 5498 maybeSetTrivialComdat(*D, *GV); 5499 5500 // Emit the initializer function if necessary. 5501 if (NeedsGlobalCtor || NeedsGlobalDtor) 5502 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5503 5504 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5505 5506 // Emit global variable debug information. 5507 if (CGDebugInfo *DI = getModuleDebugInfo()) 5508 if (getCodeGenOpts().hasReducedDebugInfo()) 5509 DI->EmitGlobalVariable(GV, D); 5510 } 5511 5512 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5513 if (CGDebugInfo *DI = getModuleDebugInfo()) 5514 if (getCodeGenOpts().hasReducedDebugInfo()) { 5515 QualType ASTTy = D->getType(); 5516 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5517 llvm::Constant *GV = 5518 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5519 DI->EmitExternalVariable( 5520 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5521 } 5522 } 5523 5524 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5525 CodeGenModule &CGM, const VarDecl *D, 5526 bool NoCommon) { 5527 // Don't give variables common linkage if -fno-common was specified unless it 5528 // was overridden by a NoCommon attribute. 5529 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5530 return true; 5531 5532 // C11 6.9.2/2: 5533 // A declaration of an identifier for an object that has file scope without 5534 // an initializer, and without a storage-class specifier or with the 5535 // storage-class specifier static, constitutes a tentative definition. 5536 if (D->getInit() || D->hasExternalStorage()) 5537 return true; 5538 5539 // A variable cannot be both common and exist in a section. 5540 if (D->hasAttr<SectionAttr>()) 5541 return true; 5542 5543 // A variable cannot be both common and exist in a section. 5544 // We don't try to determine which is the right section in the front-end. 5545 // If no specialized section name is applicable, it will resort to default. 5546 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5547 D->hasAttr<PragmaClangDataSectionAttr>() || 5548 D->hasAttr<PragmaClangRelroSectionAttr>() || 5549 D->hasAttr<PragmaClangRodataSectionAttr>()) 5550 return true; 5551 5552 // Thread local vars aren't considered common linkage. 5553 if (D->getTLSKind()) 5554 return true; 5555 5556 // Tentative definitions marked with WeakImportAttr are true definitions. 5557 if (D->hasAttr<WeakImportAttr>()) 5558 return true; 5559 5560 // A variable cannot be both common and exist in a comdat. 5561 if (shouldBeInCOMDAT(CGM, *D)) 5562 return true; 5563 5564 // Declarations with a required alignment do not have common linkage in MSVC 5565 // mode. 5566 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5567 if (D->hasAttr<AlignedAttr>()) 5568 return true; 5569 QualType VarType = D->getType(); 5570 if (Context.isAlignmentRequired(VarType)) 5571 return true; 5572 5573 if (const auto *RT = VarType->getAs<RecordType>()) { 5574 const RecordDecl *RD = RT->getDecl(); 5575 for (const FieldDecl *FD : RD->fields()) { 5576 if (FD->isBitField()) 5577 continue; 5578 if (FD->hasAttr<AlignedAttr>()) 5579 return true; 5580 if (Context.isAlignmentRequired(FD->getType())) 5581 return true; 5582 } 5583 } 5584 } 5585 5586 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5587 // common symbols, so symbols with greater alignment requirements cannot be 5588 // common. 5589 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5590 // alignments for common symbols via the aligncomm directive, so this 5591 // restriction only applies to MSVC environments. 5592 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5593 Context.getTypeAlignIfKnown(D->getType()) > 5594 Context.toBits(CharUnits::fromQuantity(32))) 5595 return true; 5596 5597 return false; 5598 } 5599 5600 llvm::GlobalValue::LinkageTypes 5601 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5602 GVALinkage Linkage) { 5603 if (Linkage == GVA_Internal) 5604 return llvm::Function::InternalLinkage; 5605 5606 if (D->hasAttr<WeakAttr>()) 5607 return llvm::GlobalVariable::WeakAnyLinkage; 5608 5609 if (const auto *FD = D->getAsFunction()) 5610 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5611 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5612 5613 // We are guaranteed to have a strong definition somewhere else, 5614 // so we can use available_externally linkage. 5615 if (Linkage == GVA_AvailableExternally) 5616 return llvm::GlobalValue::AvailableExternallyLinkage; 5617 5618 // Note that Apple's kernel linker doesn't support symbol 5619 // coalescing, so we need to avoid linkonce and weak linkages there. 5620 // Normally, this means we just map to internal, but for explicit 5621 // instantiations we'll map to external. 5622 5623 // In C++, the compiler has to emit a definition in every translation unit 5624 // that references the function. We should use linkonce_odr because 5625 // a) if all references in this translation unit are optimized away, we 5626 // don't need to codegen it. b) if the function persists, it needs to be 5627 // merged with other definitions. c) C++ has the ODR, so we know the 5628 // definition is dependable. 5629 if (Linkage == GVA_DiscardableODR) 5630 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5631 : llvm::Function::InternalLinkage; 5632 5633 // An explicit instantiation of a template has weak linkage, since 5634 // explicit instantiations can occur in multiple translation units 5635 // and must all be equivalent. However, we are not allowed to 5636 // throw away these explicit instantiations. 5637 // 5638 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5639 // so say that CUDA templates are either external (for kernels) or internal. 5640 // This lets llvm perform aggressive inter-procedural optimizations. For 5641 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5642 // therefore we need to follow the normal linkage paradigm. 5643 if (Linkage == GVA_StrongODR) { 5644 if (getLangOpts().AppleKext) 5645 return llvm::Function::ExternalLinkage; 5646 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5647 !getLangOpts().GPURelocatableDeviceCode) 5648 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5649 : llvm::Function::InternalLinkage; 5650 return llvm::Function::WeakODRLinkage; 5651 } 5652 5653 // C++ doesn't have tentative definitions and thus cannot have common 5654 // linkage. 5655 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5656 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5657 CodeGenOpts.NoCommon)) 5658 return llvm::GlobalVariable::CommonLinkage; 5659 5660 // selectany symbols are externally visible, so use weak instead of 5661 // linkonce. MSVC optimizes away references to const selectany globals, so 5662 // all definitions should be the same and ODR linkage should be used. 5663 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5664 if (D->hasAttr<SelectAnyAttr>()) 5665 return llvm::GlobalVariable::WeakODRLinkage; 5666 5667 // Otherwise, we have strong external linkage. 5668 assert(Linkage == GVA_StrongExternal); 5669 return llvm::GlobalVariable::ExternalLinkage; 5670 } 5671 5672 llvm::GlobalValue::LinkageTypes 5673 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5674 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5675 return getLLVMLinkageForDeclarator(VD, Linkage); 5676 } 5677 5678 /// Replace the uses of a function that was declared with a non-proto type. 5679 /// We want to silently drop extra arguments from call sites 5680 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5681 llvm::Function *newFn) { 5682 // Fast path. 5683 if (old->use_empty()) return; 5684 5685 llvm::Type *newRetTy = newFn->getReturnType(); 5686 SmallVector<llvm::Value*, 4> newArgs; 5687 5688 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5689 ui != ue; ) { 5690 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5691 llvm::User *user = use->getUser(); 5692 5693 // Recognize and replace uses of bitcasts. Most calls to 5694 // unprototyped functions will use bitcasts. 5695 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5696 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5697 replaceUsesOfNonProtoConstant(bitcast, newFn); 5698 continue; 5699 } 5700 5701 // Recognize calls to the function. 5702 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5703 if (!callSite) continue; 5704 if (!callSite->isCallee(&*use)) 5705 continue; 5706 5707 // If the return types don't match exactly, then we can't 5708 // transform this call unless it's dead. 5709 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5710 continue; 5711 5712 // Get the call site's attribute list. 5713 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5714 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5715 5716 // If the function was passed too few arguments, don't transform. 5717 unsigned newNumArgs = newFn->arg_size(); 5718 if (callSite->arg_size() < newNumArgs) 5719 continue; 5720 5721 // If extra arguments were passed, we silently drop them. 5722 // If any of the types mismatch, we don't transform. 5723 unsigned argNo = 0; 5724 bool dontTransform = false; 5725 for (llvm::Argument &A : newFn->args()) { 5726 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5727 dontTransform = true; 5728 break; 5729 } 5730 5731 // Add any parameter attributes. 5732 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5733 argNo++; 5734 } 5735 if (dontTransform) 5736 continue; 5737 5738 // Okay, we can transform this. Create the new call instruction and copy 5739 // over the required information. 5740 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5741 5742 // Copy over any operand bundles. 5743 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5744 callSite->getOperandBundlesAsDefs(newBundles); 5745 5746 llvm::CallBase *newCall; 5747 if (isa<llvm::CallInst>(callSite)) { 5748 newCall = 5749 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5750 } else { 5751 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5752 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5753 oldInvoke->getUnwindDest(), newArgs, 5754 newBundles, "", callSite); 5755 } 5756 newArgs.clear(); // for the next iteration 5757 5758 if (!newCall->getType()->isVoidTy()) 5759 newCall->takeName(callSite); 5760 newCall->setAttributes( 5761 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5762 oldAttrs.getRetAttrs(), newArgAttrs)); 5763 newCall->setCallingConv(callSite->getCallingConv()); 5764 5765 // Finally, remove the old call, replacing any uses with the new one. 5766 if (!callSite->use_empty()) 5767 callSite->replaceAllUsesWith(newCall); 5768 5769 // Copy debug location attached to CI. 5770 if (callSite->getDebugLoc()) 5771 newCall->setDebugLoc(callSite->getDebugLoc()); 5772 5773 callSite->eraseFromParent(); 5774 } 5775 } 5776 5777 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5778 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5779 /// existing call uses of the old function in the module, this adjusts them to 5780 /// call the new function directly. 5781 /// 5782 /// This is not just a cleanup: the always_inline pass requires direct calls to 5783 /// functions to be able to inline them. If there is a bitcast in the way, it 5784 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5785 /// run at -O0. 5786 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5787 llvm::Function *NewFn) { 5788 // If we're redefining a global as a function, don't transform it. 5789 if (!isa<llvm::Function>(Old)) return; 5790 5791 replaceUsesOfNonProtoConstant(Old, NewFn); 5792 } 5793 5794 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5795 auto DK = VD->isThisDeclarationADefinition(); 5796 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5797 return; 5798 5799 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5800 // If we have a definition, this might be a deferred decl. If the 5801 // instantiation is explicit, make sure we emit it at the end. 5802 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5803 GetAddrOfGlobalVar(VD); 5804 5805 EmitTopLevelDecl(VD); 5806 } 5807 5808 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5809 llvm::GlobalValue *GV) { 5810 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5811 5812 // Compute the function info and LLVM type. 5813 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5814 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5815 5816 // Get or create the prototype for the function. 5817 if (!GV || (GV->getValueType() != Ty)) 5818 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5819 /*DontDefer=*/true, 5820 ForDefinition)); 5821 5822 // Already emitted. 5823 if (!GV->isDeclaration()) 5824 return; 5825 5826 // We need to set linkage and visibility on the function before 5827 // generating code for it because various parts of IR generation 5828 // want to propagate this information down (e.g. to local static 5829 // declarations). 5830 auto *Fn = cast<llvm::Function>(GV); 5831 setFunctionLinkage(GD, Fn); 5832 5833 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5834 setGVProperties(Fn, GD); 5835 5836 MaybeHandleStaticInExternC(D, Fn); 5837 5838 maybeSetTrivialComdat(*D, *Fn); 5839 5840 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5841 5842 setNonAliasAttributes(GD, Fn); 5843 SetLLVMFunctionAttributesForDefinition(D, Fn); 5844 5845 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5846 AddGlobalCtor(Fn, CA->getPriority()); 5847 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5848 AddGlobalDtor(Fn, DA->getPriority(), true); 5849 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5850 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5851 } 5852 5853 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5854 const auto *D = cast<ValueDecl>(GD.getDecl()); 5855 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5856 assert(AA && "Not an alias?"); 5857 5858 StringRef MangledName = getMangledName(GD); 5859 5860 if (AA->getAliasee() == MangledName) { 5861 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5862 return; 5863 } 5864 5865 // If there is a definition in the module, then it wins over the alias. 5866 // This is dubious, but allow it to be safe. Just ignore the alias. 5867 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5868 if (Entry && !Entry->isDeclaration()) 5869 return; 5870 5871 Aliases.push_back(GD); 5872 5873 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5874 5875 // Create a reference to the named value. This ensures that it is emitted 5876 // if a deferred decl. 5877 llvm::Constant *Aliasee; 5878 llvm::GlobalValue::LinkageTypes LT; 5879 if (isa<llvm::FunctionType>(DeclTy)) { 5880 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5881 /*ForVTable=*/false); 5882 LT = getFunctionLinkage(GD); 5883 } else { 5884 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5885 /*D=*/nullptr); 5886 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5887 LT = getLLVMLinkageVarDefinition(VD); 5888 else 5889 LT = getFunctionLinkage(GD); 5890 } 5891 5892 // Create the new alias itself, but don't set a name yet. 5893 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5894 auto *GA = 5895 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5896 5897 if (Entry) { 5898 if (GA->getAliasee() == Entry) { 5899 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5900 return; 5901 } 5902 5903 assert(Entry->isDeclaration()); 5904 5905 // If there is a declaration in the module, then we had an extern followed 5906 // by the alias, as in: 5907 // extern int test6(); 5908 // ... 5909 // int test6() __attribute__((alias("test7"))); 5910 // 5911 // Remove it and replace uses of it with the alias. 5912 GA->takeName(Entry); 5913 5914 Entry->replaceAllUsesWith(GA); 5915 Entry->eraseFromParent(); 5916 } else { 5917 GA->setName(MangledName); 5918 } 5919 5920 // Set attributes which are particular to an alias; this is a 5921 // specialization of the attributes which may be set on a global 5922 // variable/function. 5923 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5924 D->isWeakImported()) { 5925 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5926 } 5927 5928 if (const auto *VD = dyn_cast<VarDecl>(D)) 5929 if (VD->getTLSKind()) 5930 setTLSMode(GA, *VD); 5931 5932 SetCommonAttributes(GD, GA); 5933 5934 // Emit global alias debug information. 5935 if (isa<VarDecl>(D)) 5936 if (CGDebugInfo *DI = getModuleDebugInfo()) 5937 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5938 } 5939 5940 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5941 const auto *D = cast<ValueDecl>(GD.getDecl()); 5942 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5943 assert(IFA && "Not an ifunc?"); 5944 5945 StringRef MangledName = getMangledName(GD); 5946 5947 if (IFA->getResolver() == MangledName) { 5948 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5949 return; 5950 } 5951 5952 // Report an error if some definition overrides ifunc. 5953 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5954 if (Entry && !Entry->isDeclaration()) { 5955 GlobalDecl OtherGD; 5956 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5957 DiagnosedConflictingDefinitions.insert(GD).second) { 5958 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5959 << MangledName; 5960 Diags.Report(OtherGD.getDecl()->getLocation(), 5961 diag::note_previous_definition); 5962 } 5963 return; 5964 } 5965 5966 Aliases.push_back(GD); 5967 5968 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5969 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5970 llvm::Constant *Resolver = 5971 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5972 /*ForVTable=*/false); 5973 llvm::GlobalIFunc *GIF = 5974 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5975 "", Resolver, &getModule()); 5976 if (Entry) { 5977 if (GIF->getResolver() == Entry) { 5978 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5979 return; 5980 } 5981 assert(Entry->isDeclaration()); 5982 5983 // If there is a declaration in the module, then we had an extern followed 5984 // by the ifunc, as in: 5985 // extern int test(); 5986 // ... 5987 // int test() __attribute__((ifunc("resolver"))); 5988 // 5989 // Remove it and replace uses of it with the ifunc. 5990 GIF->takeName(Entry); 5991 5992 Entry->replaceAllUsesWith(GIF); 5993 Entry->eraseFromParent(); 5994 } else 5995 GIF->setName(MangledName); 5996 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5997 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5998 } 5999 SetCommonAttributes(GD, GIF); 6000 } 6001 6002 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6003 ArrayRef<llvm::Type*> Tys) { 6004 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6005 Tys); 6006 } 6007 6008 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6009 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6010 const StringLiteral *Literal, bool TargetIsLSB, 6011 bool &IsUTF16, unsigned &StringLength) { 6012 StringRef String = Literal->getString(); 6013 unsigned NumBytes = String.size(); 6014 6015 // Check for simple case. 6016 if (!Literal->containsNonAsciiOrNull()) { 6017 StringLength = NumBytes; 6018 return *Map.insert(std::make_pair(String, nullptr)).first; 6019 } 6020 6021 // Otherwise, convert the UTF8 literals into a string of shorts. 6022 IsUTF16 = true; 6023 6024 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6025 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6026 llvm::UTF16 *ToPtr = &ToBuf[0]; 6027 6028 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6029 ToPtr + NumBytes, llvm::strictConversion); 6030 6031 // ConvertUTF8toUTF16 returns the length in ToPtr. 6032 StringLength = ToPtr - &ToBuf[0]; 6033 6034 // Add an explicit null. 6035 *ToPtr = 0; 6036 return *Map.insert(std::make_pair( 6037 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6038 (StringLength + 1) * 2), 6039 nullptr)).first; 6040 } 6041 6042 ConstantAddress 6043 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6044 unsigned StringLength = 0; 6045 bool isUTF16 = false; 6046 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6047 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6048 getDataLayout().isLittleEndian(), isUTF16, 6049 StringLength); 6050 6051 if (auto *C = Entry.second) 6052 return ConstantAddress( 6053 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6054 6055 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6056 llvm::Constant *Zeros[] = { Zero, Zero }; 6057 6058 const ASTContext &Context = getContext(); 6059 const llvm::Triple &Triple = getTriple(); 6060 6061 const auto CFRuntime = getLangOpts().CFRuntime; 6062 const bool IsSwiftABI = 6063 static_cast<unsigned>(CFRuntime) >= 6064 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6065 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6066 6067 // If we don't already have it, get __CFConstantStringClassReference. 6068 if (!CFConstantStringClassRef) { 6069 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6070 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6071 Ty = llvm::ArrayType::get(Ty, 0); 6072 6073 switch (CFRuntime) { 6074 default: break; 6075 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6076 case LangOptions::CoreFoundationABI::Swift5_0: 6077 CFConstantStringClassName = 6078 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6079 : "$s10Foundation19_NSCFConstantStringCN"; 6080 Ty = IntPtrTy; 6081 break; 6082 case LangOptions::CoreFoundationABI::Swift4_2: 6083 CFConstantStringClassName = 6084 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6085 : "$S10Foundation19_NSCFConstantStringCN"; 6086 Ty = IntPtrTy; 6087 break; 6088 case LangOptions::CoreFoundationABI::Swift4_1: 6089 CFConstantStringClassName = 6090 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6091 : "__T010Foundation19_NSCFConstantStringCN"; 6092 Ty = IntPtrTy; 6093 break; 6094 } 6095 6096 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6097 6098 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6099 llvm::GlobalValue *GV = nullptr; 6100 6101 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6102 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6103 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6104 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6105 6106 const VarDecl *VD = nullptr; 6107 for (const auto *Result : DC->lookup(&II)) 6108 if ((VD = dyn_cast<VarDecl>(Result))) 6109 break; 6110 6111 if (Triple.isOSBinFormatELF()) { 6112 if (!VD) 6113 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6114 } else { 6115 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6116 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6117 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6118 else 6119 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6120 } 6121 6122 setDSOLocal(GV); 6123 } 6124 } 6125 6126 // Decay array -> ptr 6127 CFConstantStringClassRef = 6128 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6129 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6130 } 6131 6132 QualType CFTy = Context.getCFConstantStringType(); 6133 6134 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6135 6136 ConstantInitBuilder Builder(*this); 6137 auto Fields = Builder.beginStruct(STy); 6138 6139 // Class pointer. 6140 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6141 6142 // Flags. 6143 if (IsSwiftABI) { 6144 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6145 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6146 } else { 6147 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6148 } 6149 6150 // String pointer. 6151 llvm::Constant *C = nullptr; 6152 if (isUTF16) { 6153 auto Arr = llvm::ArrayRef( 6154 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6155 Entry.first().size() / 2); 6156 C = llvm::ConstantDataArray::get(VMContext, Arr); 6157 } else { 6158 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6159 } 6160 6161 // Note: -fwritable-strings doesn't make the backing store strings of 6162 // CFStrings writable. 6163 auto *GV = 6164 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6165 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6166 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6167 // Don't enforce the target's minimum global alignment, since the only use 6168 // of the string is via this class initializer. 6169 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6170 : Context.getTypeAlignInChars(Context.CharTy); 6171 GV->setAlignment(Align.getAsAlign()); 6172 6173 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6174 // Without it LLVM can merge the string with a non unnamed_addr one during 6175 // LTO. Doing that changes the section it ends in, which surprises ld64. 6176 if (Triple.isOSBinFormatMachO()) 6177 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6178 : "__TEXT,__cstring,cstring_literals"); 6179 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6180 // the static linker to adjust permissions to read-only later on. 6181 else if (Triple.isOSBinFormatELF()) 6182 GV->setSection(".rodata"); 6183 6184 // String. 6185 llvm::Constant *Str = 6186 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6187 6188 Fields.add(Str); 6189 6190 // String length. 6191 llvm::IntegerType *LengthTy = 6192 llvm::IntegerType::get(getModule().getContext(), 6193 Context.getTargetInfo().getLongWidth()); 6194 if (IsSwiftABI) { 6195 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6196 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6197 LengthTy = Int32Ty; 6198 else 6199 LengthTy = IntPtrTy; 6200 } 6201 Fields.addInt(LengthTy, StringLength); 6202 6203 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6204 // properly aligned on 32-bit platforms. 6205 CharUnits Alignment = 6206 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6207 6208 // The struct. 6209 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6210 /*isConstant=*/false, 6211 llvm::GlobalVariable::PrivateLinkage); 6212 GV->addAttribute("objc_arc_inert"); 6213 switch (Triple.getObjectFormat()) { 6214 case llvm::Triple::UnknownObjectFormat: 6215 llvm_unreachable("unknown file format"); 6216 case llvm::Triple::DXContainer: 6217 case llvm::Triple::GOFF: 6218 case llvm::Triple::SPIRV: 6219 case llvm::Triple::XCOFF: 6220 llvm_unreachable("unimplemented"); 6221 case llvm::Triple::COFF: 6222 case llvm::Triple::ELF: 6223 case llvm::Triple::Wasm: 6224 GV->setSection("cfstring"); 6225 break; 6226 case llvm::Triple::MachO: 6227 GV->setSection("__DATA,__cfstring"); 6228 break; 6229 } 6230 Entry.second = GV; 6231 6232 return ConstantAddress(GV, GV->getValueType(), Alignment); 6233 } 6234 6235 bool CodeGenModule::getExpressionLocationsEnabled() const { 6236 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6237 } 6238 6239 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6240 if (ObjCFastEnumerationStateType.isNull()) { 6241 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6242 D->startDefinition(); 6243 6244 QualType FieldTypes[] = { 6245 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6246 Context.getPointerType(Context.UnsignedLongTy), 6247 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6248 nullptr, ArraySizeModifier::Normal, 0)}; 6249 6250 for (size_t i = 0; i < 4; ++i) { 6251 FieldDecl *Field = FieldDecl::Create(Context, 6252 D, 6253 SourceLocation(), 6254 SourceLocation(), nullptr, 6255 FieldTypes[i], /*TInfo=*/nullptr, 6256 /*BitWidth=*/nullptr, 6257 /*Mutable=*/false, 6258 ICIS_NoInit); 6259 Field->setAccess(AS_public); 6260 D->addDecl(Field); 6261 } 6262 6263 D->completeDefinition(); 6264 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6265 } 6266 6267 return ObjCFastEnumerationStateType; 6268 } 6269 6270 llvm::Constant * 6271 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6272 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6273 6274 // Don't emit it as the address of the string, emit the string data itself 6275 // as an inline array. 6276 if (E->getCharByteWidth() == 1) { 6277 SmallString<64> Str(E->getString()); 6278 6279 // Resize the string to the right size, which is indicated by its type. 6280 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6281 assert(CAT && "String literal not of constant array type!"); 6282 Str.resize(CAT->getSize().getZExtValue()); 6283 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6284 } 6285 6286 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6287 llvm::Type *ElemTy = AType->getElementType(); 6288 unsigned NumElements = AType->getNumElements(); 6289 6290 // Wide strings have either 2-byte or 4-byte elements. 6291 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6292 SmallVector<uint16_t, 32> Elements; 6293 Elements.reserve(NumElements); 6294 6295 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6296 Elements.push_back(E->getCodeUnit(i)); 6297 Elements.resize(NumElements); 6298 return llvm::ConstantDataArray::get(VMContext, Elements); 6299 } 6300 6301 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6302 SmallVector<uint32_t, 32> Elements; 6303 Elements.reserve(NumElements); 6304 6305 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6306 Elements.push_back(E->getCodeUnit(i)); 6307 Elements.resize(NumElements); 6308 return llvm::ConstantDataArray::get(VMContext, Elements); 6309 } 6310 6311 static llvm::GlobalVariable * 6312 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6313 CodeGenModule &CGM, StringRef GlobalName, 6314 CharUnits Alignment) { 6315 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6316 CGM.GetGlobalConstantAddressSpace()); 6317 6318 llvm::Module &M = CGM.getModule(); 6319 // Create a global variable for this string 6320 auto *GV = new llvm::GlobalVariable( 6321 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6322 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6323 GV->setAlignment(Alignment.getAsAlign()); 6324 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6325 if (GV->isWeakForLinker()) { 6326 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6327 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6328 } 6329 CGM.setDSOLocal(GV); 6330 6331 return GV; 6332 } 6333 6334 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6335 /// constant array for the given string literal. 6336 ConstantAddress 6337 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6338 StringRef Name) { 6339 CharUnits Alignment = 6340 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6341 6342 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6343 llvm::GlobalVariable **Entry = nullptr; 6344 if (!LangOpts.WritableStrings) { 6345 Entry = &ConstantStringMap[C]; 6346 if (auto GV = *Entry) { 6347 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6348 GV->setAlignment(Alignment.getAsAlign()); 6349 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6350 GV->getValueType(), Alignment); 6351 } 6352 } 6353 6354 SmallString<256> MangledNameBuffer; 6355 StringRef GlobalVariableName; 6356 llvm::GlobalValue::LinkageTypes LT; 6357 6358 // Mangle the string literal if that's how the ABI merges duplicate strings. 6359 // Don't do it if they are writable, since we don't want writes in one TU to 6360 // affect strings in another. 6361 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6362 !LangOpts.WritableStrings) { 6363 llvm::raw_svector_ostream Out(MangledNameBuffer); 6364 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6365 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6366 GlobalVariableName = MangledNameBuffer; 6367 } else { 6368 LT = llvm::GlobalValue::PrivateLinkage; 6369 GlobalVariableName = Name; 6370 } 6371 6372 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6373 6374 CGDebugInfo *DI = getModuleDebugInfo(); 6375 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6376 DI->AddStringLiteralDebugInfo(GV, S); 6377 6378 if (Entry) 6379 *Entry = GV; 6380 6381 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6382 6383 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6384 GV->getValueType(), Alignment); 6385 } 6386 6387 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6388 /// array for the given ObjCEncodeExpr node. 6389 ConstantAddress 6390 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6391 std::string Str; 6392 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6393 6394 return GetAddrOfConstantCString(Str); 6395 } 6396 6397 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6398 /// the literal and a terminating '\0' character. 6399 /// The result has pointer to array type. 6400 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6401 const std::string &Str, const char *GlobalName) { 6402 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6403 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6404 getContext().CharTy, /*VD=*/nullptr); 6405 6406 llvm::Constant *C = 6407 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6408 6409 // Don't share any string literals if strings aren't constant. 6410 llvm::GlobalVariable **Entry = nullptr; 6411 if (!LangOpts.WritableStrings) { 6412 Entry = &ConstantStringMap[C]; 6413 if (auto GV = *Entry) { 6414 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6415 GV->setAlignment(Alignment.getAsAlign()); 6416 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6417 GV->getValueType(), Alignment); 6418 } 6419 } 6420 6421 // Get the default prefix if a name wasn't specified. 6422 if (!GlobalName) 6423 GlobalName = ".str"; 6424 // Create a global variable for this. 6425 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6426 GlobalName, Alignment); 6427 if (Entry) 6428 *Entry = GV; 6429 6430 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6431 GV->getValueType(), Alignment); 6432 } 6433 6434 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6435 const MaterializeTemporaryExpr *E, const Expr *Init) { 6436 assert((E->getStorageDuration() == SD_Static || 6437 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6438 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6439 6440 // If we're not materializing a subobject of the temporary, keep the 6441 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6442 QualType MaterializedType = Init->getType(); 6443 if (Init == E->getSubExpr()) 6444 MaterializedType = E->getType(); 6445 6446 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6447 6448 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6449 if (!InsertResult.second) { 6450 // We've seen this before: either we already created it or we're in the 6451 // process of doing so. 6452 if (!InsertResult.first->second) { 6453 // We recursively re-entered this function, probably during emission of 6454 // the initializer. Create a placeholder. We'll clean this up in the 6455 // outer call, at the end of this function. 6456 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6457 InsertResult.first->second = new llvm::GlobalVariable( 6458 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6459 nullptr); 6460 } 6461 return ConstantAddress(InsertResult.first->second, 6462 llvm::cast<llvm::GlobalVariable>( 6463 InsertResult.first->second->stripPointerCasts()) 6464 ->getValueType(), 6465 Align); 6466 } 6467 6468 // FIXME: If an externally-visible declaration extends multiple temporaries, 6469 // we need to give each temporary the same name in every translation unit (and 6470 // we also need to make the temporaries externally-visible). 6471 SmallString<256> Name; 6472 llvm::raw_svector_ostream Out(Name); 6473 getCXXABI().getMangleContext().mangleReferenceTemporary( 6474 VD, E->getManglingNumber(), Out); 6475 6476 APValue *Value = nullptr; 6477 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6478 // If the initializer of the extending declaration is a constant 6479 // initializer, we should have a cached constant initializer for this 6480 // temporary. Note that this might have a different value from the value 6481 // computed by evaluating the initializer if the surrounding constant 6482 // expression modifies the temporary. 6483 Value = E->getOrCreateValue(false); 6484 } 6485 6486 // Try evaluating it now, it might have a constant initializer. 6487 Expr::EvalResult EvalResult; 6488 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6489 !EvalResult.hasSideEffects()) 6490 Value = &EvalResult.Val; 6491 6492 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6493 6494 std::optional<ConstantEmitter> emitter; 6495 llvm::Constant *InitialValue = nullptr; 6496 bool Constant = false; 6497 llvm::Type *Type; 6498 if (Value) { 6499 // The temporary has a constant initializer, use it. 6500 emitter.emplace(*this); 6501 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6502 MaterializedType); 6503 Constant = 6504 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6505 /*ExcludeDtor*/ false); 6506 Type = InitialValue->getType(); 6507 } else { 6508 // No initializer, the initialization will be provided when we 6509 // initialize the declaration which performed lifetime extension. 6510 Type = getTypes().ConvertTypeForMem(MaterializedType); 6511 } 6512 6513 // Create a global variable for this lifetime-extended temporary. 6514 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6515 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6516 const VarDecl *InitVD; 6517 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6518 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6519 // Temporaries defined inside a class get linkonce_odr linkage because the 6520 // class can be defined in multiple translation units. 6521 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6522 } else { 6523 // There is no need for this temporary to have external linkage if the 6524 // VarDecl has external linkage. 6525 Linkage = llvm::GlobalVariable::InternalLinkage; 6526 } 6527 } 6528 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6529 auto *GV = new llvm::GlobalVariable( 6530 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6531 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6532 if (emitter) emitter->finalize(GV); 6533 // Don't assign dllimport or dllexport to local linkage globals. 6534 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6535 setGVProperties(GV, VD); 6536 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6537 // The reference temporary should never be dllexport. 6538 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6539 } 6540 GV->setAlignment(Align.getAsAlign()); 6541 if (supportsCOMDAT() && GV->isWeakForLinker()) 6542 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6543 if (VD->getTLSKind()) 6544 setTLSMode(GV, *VD); 6545 llvm::Constant *CV = GV; 6546 if (AddrSpace != LangAS::Default) 6547 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6548 *this, GV, AddrSpace, LangAS::Default, 6549 llvm::PointerType::get( 6550 getLLVMContext(), 6551 getContext().getTargetAddressSpace(LangAS::Default))); 6552 6553 // Update the map with the new temporary. If we created a placeholder above, 6554 // replace it with the new global now. 6555 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6556 if (Entry) { 6557 Entry->replaceAllUsesWith(CV); 6558 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6559 } 6560 Entry = CV; 6561 6562 return ConstantAddress(CV, Type, Align); 6563 } 6564 6565 /// EmitObjCPropertyImplementations - Emit information for synthesized 6566 /// properties for an implementation. 6567 void CodeGenModule::EmitObjCPropertyImplementations(const 6568 ObjCImplementationDecl *D) { 6569 for (const auto *PID : D->property_impls()) { 6570 // Dynamic is just for type-checking. 6571 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6572 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6573 6574 // Determine which methods need to be implemented, some may have 6575 // been overridden. Note that ::isPropertyAccessor is not the method 6576 // we want, that just indicates if the decl came from a 6577 // property. What we want to know is if the method is defined in 6578 // this implementation. 6579 auto *Getter = PID->getGetterMethodDecl(); 6580 if (!Getter || Getter->isSynthesizedAccessorStub()) 6581 CodeGenFunction(*this).GenerateObjCGetter( 6582 const_cast<ObjCImplementationDecl *>(D), PID); 6583 auto *Setter = PID->getSetterMethodDecl(); 6584 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6585 CodeGenFunction(*this).GenerateObjCSetter( 6586 const_cast<ObjCImplementationDecl *>(D), PID); 6587 } 6588 } 6589 } 6590 6591 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6592 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6593 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6594 ivar; ivar = ivar->getNextIvar()) 6595 if (ivar->getType().isDestructedType()) 6596 return true; 6597 6598 return false; 6599 } 6600 6601 static bool AllTrivialInitializers(CodeGenModule &CGM, 6602 ObjCImplementationDecl *D) { 6603 CodeGenFunction CGF(CGM); 6604 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6605 E = D->init_end(); B != E; ++B) { 6606 CXXCtorInitializer *CtorInitExp = *B; 6607 Expr *Init = CtorInitExp->getInit(); 6608 if (!CGF.isTrivialInitializer(Init)) 6609 return false; 6610 } 6611 return true; 6612 } 6613 6614 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6615 /// for an implementation. 6616 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6617 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6618 if (needsDestructMethod(D)) { 6619 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6620 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6621 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6622 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6623 getContext().VoidTy, nullptr, D, 6624 /*isInstance=*/true, /*isVariadic=*/false, 6625 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6626 /*isImplicitlyDeclared=*/true, 6627 /*isDefined=*/false, ObjCImplementationControl::Required); 6628 D->addInstanceMethod(DTORMethod); 6629 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6630 D->setHasDestructors(true); 6631 } 6632 6633 // If the implementation doesn't have any ivar initializers, we don't need 6634 // a .cxx_construct. 6635 if (D->getNumIvarInitializers() == 0 || 6636 AllTrivialInitializers(*this, D)) 6637 return; 6638 6639 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6640 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6641 // The constructor returns 'self'. 6642 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6643 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6644 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6645 /*isVariadic=*/false, 6646 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6647 /*isImplicitlyDeclared=*/true, 6648 /*isDefined=*/false, ObjCImplementationControl::Required); 6649 D->addInstanceMethod(CTORMethod); 6650 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6651 D->setHasNonZeroConstructors(true); 6652 } 6653 6654 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6655 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6656 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6657 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6658 ErrorUnsupported(LSD, "linkage spec"); 6659 return; 6660 } 6661 6662 EmitDeclContext(LSD); 6663 } 6664 6665 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6666 // Device code should not be at top level. 6667 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6668 return; 6669 6670 std::unique_ptr<CodeGenFunction> &CurCGF = 6671 GlobalTopLevelStmtBlockInFlight.first; 6672 6673 // We emitted a top-level stmt but after it there is initialization. 6674 // Stop squashing the top-level stmts into a single function. 6675 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6676 CurCGF->FinishFunction(D->getEndLoc()); 6677 CurCGF = nullptr; 6678 } 6679 6680 if (!CurCGF) { 6681 // void __stmts__N(void) 6682 // FIXME: Ask the ABI name mangler to pick a name. 6683 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6684 FunctionArgList Args; 6685 QualType RetTy = getContext().VoidTy; 6686 const CGFunctionInfo &FnInfo = 6687 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6688 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6689 llvm::Function *Fn = llvm::Function::Create( 6690 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6691 6692 CurCGF.reset(new CodeGenFunction(*this)); 6693 GlobalTopLevelStmtBlockInFlight.second = D; 6694 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6695 D->getBeginLoc(), D->getBeginLoc()); 6696 CXXGlobalInits.push_back(Fn); 6697 } 6698 6699 CurCGF->EmitStmt(D->getStmt()); 6700 } 6701 6702 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6703 for (auto *I : DC->decls()) { 6704 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6705 // are themselves considered "top-level", so EmitTopLevelDecl on an 6706 // ObjCImplDecl does not recursively visit them. We need to do that in 6707 // case they're nested inside another construct (LinkageSpecDecl / 6708 // ExportDecl) that does stop them from being considered "top-level". 6709 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6710 for (auto *M : OID->methods()) 6711 EmitTopLevelDecl(M); 6712 } 6713 6714 EmitTopLevelDecl(I); 6715 } 6716 } 6717 6718 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6719 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6720 // Ignore dependent declarations. 6721 if (D->isTemplated()) 6722 return; 6723 6724 // Consteval function shouldn't be emitted. 6725 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6726 return; 6727 6728 switch (D->getKind()) { 6729 case Decl::CXXConversion: 6730 case Decl::CXXMethod: 6731 case Decl::Function: 6732 EmitGlobal(cast<FunctionDecl>(D)); 6733 // Always provide some coverage mapping 6734 // even for the functions that aren't emitted. 6735 AddDeferredUnusedCoverageMapping(D); 6736 break; 6737 6738 case Decl::CXXDeductionGuide: 6739 // Function-like, but does not result in code emission. 6740 break; 6741 6742 case Decl::Var: 6743 case Decl::Decomposition: 6744 case Decl::VarTemplateSpecialization: 6745 EmitGlobal(cast<VarDecl>(D)); 6746 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6747 for (auto *B : DD->bindings()) 6748 if (auto *HD = B->getHoldingVar()) 6749 EmitGlobal(HD); 6750 break; 6751 6752 // Indirect fields from global anonymous structs and unions can be 6753 // ignored; only the actual variable requires IR gen support. 6754 case Decl::IndirectField: 6755 break; 6756 6757 // C++ Decls 6758 case Decl::Namespace: 6759 EmitDeclContext(cast<NamespaceDecl>(D)); 6760 break; 6761 case Decl::ClassTemplateSpecialization: { 6762 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6763 if (CGDebugInfo *DI = getModuleDebugInfo()) 6764 if (Spec->getSpecializationKind() == 6765 TSK_ExplicitInstantiationDefinition && 6766 Spec->hasDefinition()) 6767 DI->completeTemplateDefinition(*Spec); 6768 } [[fallthrough]]; 6769 case Decl::CXXRecord: { 6770 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6771 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6772 if (CRD->hasDefinition()) 6773 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6774 if (auto *ES = D->getASTContext().getExternalSource()) 6775 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6776 DI->completeUnusedClass(*CRD); 6777 } 6778 // Emit any static data members, they may be definitions. 6779 for (auto *I : CRD->decls()) 6780 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6781 EmitTopLevelDecl(I); 6782 break; 6783 } 6784 // No code generation needed. 6785 case Decl::UsingShadow: 6786 case Decl::ClassTemplate: 6787 case Decl::VarTemplate: 6788 case Decl::Concept: 6789 case Decl::VarTemplatePartialSpecialization: 6790 case Decl::FunctionTemplate: 6791 case Decl::TypeAliasTemplate: 6792 case Decl::Block: 6793 case Decl::Empty: 6794 case Decl::Binding: 6795 break; 6796 case Decl::Using: // using X; [C++] 6797 if (CGDebugInfo *DI = getModuleDebugInfo()) 6798 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6799 break; 6800 case Decl::UsingEnum: // using enum X; [C++] 6801 if (CGDebugInfo *DI = getModuleDebugInfo()) 6802 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6803 break; 6804 case Decl::NamespaceAlias: 6805 if (CGDebugInfo *DI = getModuleDebugInfo()) 6806 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6807 break; 6808 case Decl::UsingDirective: // using namespace X; [C++] 6809 if (CGDebugInfo *DI = getModuleDebugInfo()) 6810 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6811 break; 6812 case Decl::CXXConstructor: 6813 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6814 break; 6815 case Decl::CXXDestructor: 6816 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6817 break; 6818 6819 case Decl::StaticAssert: 6820 // Nothing to do. 6821 break; 6822 6823 // Objective-C Decls 6824 6825 // Forward declarations, no (immediate) code generation. 6826 case Decl::ObjCInterface: 6827 case Decl::ObjCCategory: 6828 break; 6829 6830 case Decl::ObjCProtocol: { 6831 auto *Proto = cast<ObjCProtocolDecl>(D); 6832 if (Proto->isThisDeclarationADefinition()) 6833 ObjCRuntime->GenerateProtocol(Proto); 6834 break; 6835 } 6836 6837 case Decl::ObjCCategoryImpl: 6838 // Categories have properties but don't support synthesize so we 6839 // can ignore them here. 6840 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6841 break; 6842 6843 case Decl::ObjCImplementation: { 6844 auto *OMD = cast<ObjCImplementationDecl>(D); 6845 EmitObjCPropertyImplementations(OMD); 6846 EmitObjCIvarInitializations(OMD); 6847 ObjCRuntime->GenerateClass(OMD); 6848 // Emit global variable debug information. 6849 if (CGDebugInfo *DI = getModuleDebugInfo()) 6850 if (getCodeGenOpts().hasReducedDebugInfo()) 6851 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6852 OMD->getClassInterface()), OMD->getLocation()); 6853 break; 6854 } 6855 case Decl::ObjCMethod: { 6856 auto *OMD = cast<ObjCMethodDecl>(D); 6857 // If this is not a prototype, emit the body. 6858 if (OMD->getBody()) 6859 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6860 break; 6861 } 6862 case Decl::ObjCCompatibleAlias: 6863 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6864 break; 6865 6866 case Decl::PragmaComment: { 6867 const auto *PCD = cast<PragmaCommentDecl>(D); 6868 switch (PCD->getCommentKind()) { 6869 case PCK_Unknown: 6870 llvm_unreachable("unexpected pragma comment kind"); 6871 case PCK_Linker: 6872 AppendLinkerOptions(PCD->getArg()); 6873 break; 6874 case PCK_Lib: 6875 AddDependentLib(PCD->getArg()); 6876 break; 6877 case PCK_Compiler: 6878 case PCK_ExeStr: 6879 case PCK_User: 6880 break; // We ignore all of these. 6881 } 6882 break; 6883 } 6884 6885 case Decl::PragmaDetectMismatch: { 6886 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6887 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6888 break; 6889 } 6890 6891 case Decl::LinkageSpec: 6892 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6893 break; 6894 6895 case Decl::FileScopeAsm: { 6896 // File-scope asm is ignored during device-side CUDA compilation. 6897 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6898 break; 6899 // File-scope asm is ignored during device-side OpenMP compilation. 6900 if (LangOpts.OpenMPIsTargetDevice) 6901 break; 6902 // File-scope asm is ignored during device-side SYCL compilation. 6903 if (LangOpts.SYCLIsDevice) 6904 break; 6905 auto *AD = cast<FileScopeAsmDecl>(D); 6906 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6907 break; 6908 } 6909 6910 case Decl::TopLevelStmt: 6911 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6912 break; 6913 6914 case Decl::Import: { 6915 auto *Import = cast<ImportDecl>(D); 6916 6917 // If we've already imported this module, we're done. 6918 if (!ImportedModules.insert(Import->getImportedModule())) 6919 break; 6920 6921 // Emit debug information for direct imports. 6922 if (!Import->getImportedOwningModule()) { 6923 if (CGDebugInfo *DI = getModuleDebugInfo()) 6924 DI->EmitImportDecl(*Import); 6925 } 6926 6927 // For C++ standard modules we are done - we will call the module 6928 // initializer for imported modules, and that will likewise call those for 6929 // any imports it has. 6930 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6931 !Import->getImportedOwningModule()->isModuleMapModule()) 6932 break; 6933 6934 // For clang C++ module map modules the initializers for sub-modules are 6935 // emitted here. 6936 6937 // Find all of the submodules and emit the module initializers. 6938 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6939 SmallVector<clang::Module *, 16> Stack; 6940 Visited.insert(Import->getImportedModule()); 6941 Stack.push_back(Import->getImportedModule()); 6942 6943 while (!Stack.empty()) { 6944 clang::Module *Mod = Stack.pop_back_val(); 6945 if (!EmittedModuleInitializers.insert(Mod).second) 6946 continue; 6947 6948 for (auto *D : Context.getModuleInitializers(Mod)) 6949 EmitTopLevelDecl(D); 6950 6951 // Visit the submodules of this module. 6952 for (auto *Submodule : Mod->submodules()) { 6953 // Skip explicit children; they need to be explicitly imported to emit 6954 // the initializers. 6955 if (Submodule->IsExplicit) 6956 continue; 6957 6958 if (Visited.insert(Submodule).second) 6959 Stack.push_back(Submodule); 6960 } 6961 } 6962 break; 6963 } 6964 6965 case Decl::Export: 6966 EmitDeclContext(cast<ExportDecl>(D)); 6967 break; 6968 6969 case Decl::OMPThreadPrivate: 6970 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6971 break; 6972 6973 case Decl::OMPAllocate: 6974 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6975 break; 6976 6977 case Decl::OMPDeclareReduction: 6978 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6979 break; 6980 6981 case Decl::OMPDeclareMapper: 6982 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6983 break; 6984 6985 case Decl::OMPRequires: 6986 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6987 break; 6988 6989 case Decl::Typedef: 6990 case Decl::TypeAlias: // using foo = bar; [C++11] 6991 if (CGDebugInfo *DI = getModuleDebugInfo()) 6992 DI->EmitAndRetainType( 6993 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6994 break; 6995 6996 case Decl::Record: 6997 if (CGDebugInfo *DI = getModuleDebugInfo()) 6998 if (cast<RecordDecl>(D)->getDefinition()) 6999 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7000 break; 7001 7002 case Decl::Enum: 7003 if (CGDebugInfo *DI = getModuleDebugInfo()) 7004 if (cast<EnumDecl>(D)->getDefinition()) 7005 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7006 break; 7007 7008 case Decl::HLSLBuffer: 7009 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7010 break; 7011 7012 default: 7013 // Make sure we handled everything we should, every other kind is a 7014 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7015 // function. Need to recode Decl::Kind to do that easily. 7016 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7017 break; 7018 } 7019 } 7020 7021 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7022 // Do we need to generate coverage mapping? 7023 if (!CodeGenOpts.CoverageMapping) 7024 return; 7025 switch (D->getKind()) { 7026 case Decl::CXXConversion: 7027 case Decl::CXXMethod: 7028 case Decl::Function: 7029 case Decl::ObjCMethod: 7030 case Decl::CXXConstructor: 7031 case Decl::CXXDestructor: { 7032 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7033 break; 7034 SourceManager &SM = getContext().getSourceManager(); 7035 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7036 break; 7037 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7038 break; 7039 } 7040 default: 7041 break; 7042 }; 7043 } 7044 7045 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7046 // Do we need to generate coverage mapping? 7047 if (!CodeGenOpts.CoverageMapping) 7048 return; 7049 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7050 if (Fn->isTemplateInstantiation()) 7051 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7052 } 7053 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7054 } 7055 7056 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7057 // We call takeVector() here to avoid use-after-free. 7058 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7059 // we deserialize function bodies to emit coverage info for them, and that 7060 // deserializes more declarations. How should we handle that case? 7061 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7062 if (!Entry.second) 7063 continue; 7064 const Decl *D = Entry.first; 7065 switch (D->getKind()) { 7066 case Decl::CXXConversion: 7067 case Decl::CXXMethod: 7068 case Decl::Function: 7069 case Decl::ObjCMethod: { 7070 CodeGenPGO PGO(*this); 7071 GlobalDecl GD(cast<FunctionDecl>(D)); 7072 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7073 getFunctionLinkage(GD)); 7074 break; 7075 } 7076 case Decl::CXXConstructor: { 7077 CodeGenPGO PGO(*this); 7078 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7079 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7080 getFunctionLinkage(GD)); 7081 break; 7082 } 7083 case Decl::CXXDestructor: { 7084 CodeGenPGO PGO(*this); 7085 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7086 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7087 getFunctionLinkage(GD)); 7088 break; 7089 } 7090 default: 7091 break; 7092 }; 7093 } 7094 } 7095 7096 void CodeGenModule::EmitMainVoidAlias() { 7097 // In order to transition away from "__original_main" gracefully, emit an 7098 // alias for "main" in the no-argument case so that libc can detect when 7099 // new-style no-argument main is in used. 7100 if (llvm::Function *F = getModule().getFunction("main")) { 7101 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7102 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7103 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7104 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7105 } 7106 } 7107 } 7108 7109 /// Turns the given pointer into a constant. 7110 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7111 const void *Ptr) { 7112 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7113 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7114 return llvm::ConstantInt::get(i64, PtrInt); 7115 } 7116 7117 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7118 llvm::NamedMDNode *&GlobalMetadata, 7119 GlobalDecl D, 7120 llvm::GlobalValue *Addr) { 7121 if (!GlobalMetadata) 7122 GlobalMetadata = 7123 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7124 7125 // TODO: should we report variant information for ctors/dtors? 7126 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7127 llvm::ConstantAsMetadata::get(GetPointerConstant( 7128 CGM.getLLVMContext(), D.getDecl()))}; 7129 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7130 } 7131 7132 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7133 llvm::GlobalValue *CppFunc) { 7134 // Store the list of ifuncs we need to replace uses in. 7135 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7136 // List of ConstantExprs that we should be able to delete when we're done 7137 // here. 7138 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7139 7140 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7141 if (Elem == CppFunc) 7142 return false; 7143 7144 // First make sure that all users of this are ifuncs (or ifuncs via a 7145 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7146 // later. 7147 for (llvm::User *User : Elem->users()) { 7148 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7149 // ifunc directly. In any other case, just give up, as we don't know what we 7150 // could break by changing those. 7151 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7152 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7153 return false; 7154 7155 for (llvm::User *CEUser : ConstExpr->users()) { 7156 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7157 IFuncs.push_back(IFunc); 7158 } else { 7159 return false; 7160 } 7161 } 7162 CEs.push_back(ConstExpr); 7163 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7164 IFuncs.push_back(IFunc); 7165 } else { 7166 // This user is one we don't know how to handle, so fail redirection. This 7167 // will result in an ifunc retaining a resolver name that will ultimately 7168 // fail to be resolved to a defined function. 7169 return false; 7170 } 7171 } 7172 7173 // Now we know this is a valid case where we can do this alias replacement, we 7174 // need to remove all of the references to Elem (and the bitcasts!) so we can 7175 // delete it. 7176 for (llvm::GlobalIFunc *IFunc : IFuncs) 7177 IFunc->setResolver(nullptr); 7178 for (llvm::ConstantExpr *ConstExpr : CEs) 7179 ConstExpr->destroyConstant(); 7180 7181 // We should now be out of uses for the 'old' version of this function, so we 7182 // can erase it as well. 7183 Elem->eraseFromParent(); 7184 7185 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7186 // The type of the resolver is always just a function-type that returns the 7187 // type of the IFunc, so create that here. If the type of the actual 7188 // resolver doesn't match, it just gets bitcast to the right thing. 7189 auto *ResolverTy = 7190 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7191 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7192 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7193 IFunc->setResolver(Resolver); 7194 } 7195 return true; 7196 } 7197 7198 /// For each function which is declared within an extern "C" region and marked 7199 /// as 'used', but has internal linkage, create an alias from the unmangled 7200 /// name to the mangled name if possible. People expect to be able to refer 7201 /// to such functions with an unmangled name from inline assembly within the 7202 /// same translation unit. 7203 void CodeGenModule::EmitStaticExternCAliases() { 7204 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7205 return; 7206 for (auto &I : StaticExternCValues) { 7207 IdentifierInfo *Name = I.first; 7208 llvm::GlobalValue *Val = I.second; 7209 7210 // If Val is null, that implies there were multiple declarations that each 7211 // had a claim to the unmangled name. In this case, generation of the alias 7212 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7213 if (!Val) 7214 break; 7215 7216 llvm::GlobalValue *ExistingElem = 7217 getModule().getNamedValue(Name->getName()); 7218 7219 // If there is either not something already by this name, or we were able to 7220 // replace all uses from IFuncs, create the alias. 7221 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7222 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7223 } 7224 } 7225 7226 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7227 GlobalDecl &Result) const { 7228 auto Res = Manglings.find(MangledName); 7229 if (Res == Manglings.end()) 7230 return false; 7231 Result = Res->getValue(); 7232 return true; 7233 } 7234 7235 /// Emits metadata nodes associating all the global values in the 7236 /// current module with the Decls they came from. This is useful for 7237 /// projects using IR gen as a subroutine. 7238 /// 7239 /// Since there's currently no way to associate an MDNode directly 7240 /// with an llvm::GlobalValue, we create a global named metadata 7241 /// with the name 'clang.global.decl.ptrs'. 7242 void CodeGenModule::EmitDeclMetadata() { 7243 llvm::NamedMDNode *GlobalMetadata = nullptr; 7244 7245 for (auto &I : MangledDeclNames) { 7246 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7247 // Some mangled names don't necessarily have an associated GlobalValue 7248 // in this module, e.g. if we mangled it for DebugInfo. 7249 if (Addr) 7250 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7251 } 7252 } 7253 7254 /// Emits metadata nodes for all the local variables in the current 7255 /// function. 7256 void CodeGenFunction::EmitDeclMetadata() { 7257 if (LocalDeclMap.empty()) return; 7258 7259 llvm::LLVMContext &Context = getLLVMContext(); 7260 7261 // Find the unique metadata ID for this name. 7262 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7263 7264 llvm::NamedMDNode *GlobalMetadata = nullptr; 7265 7266 for (auto &I : LocalDeclMap) { 7267 const Decl *D = I.first; 7268 llvm::Value *Addr = I.second.getPointer(); 7269 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7270 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7271 Alloca->setMetadata( 7272 DeclPtrKind, llvm::MDNode::get( 7273 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7274 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7275 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7276 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7277 } 7278 } 7279 } 7280 7281 void CodeGenModule::EmitVersionIdentMetadata() { 7282 llvm::NamedMDNode *IdentMetadata = 7283 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7284 std::string Version = getClangFullVersion(); 7285 llvm::LLVMContext &Ctx = TheModule.getContext(); 7286 7287 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7288 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7289 } 7290 7291 void CodeGenModule::EmitCommandLineMetadata() { 7292 llvm::NamedMDNode *CommandLineMetadata = 7293 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7294 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7295 llvm::LLVMContext &Ctx = TheModule.getContext(); 7296 7297 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7298 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7299 } 7300 7301 void CodeGenModule::EmitCoverageFile() { 7302 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7303 if (!CUNode) 7304 return; 7305 7306 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7307 llvm::LLVMContext &Ctx = TheModule.getContext(); 7308 auto *CoverageDataFile = 7309 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7310 auto *CoverageNotesFile = 7311 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7312 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7313 llvm::MDNode *CU = CUNode->getOperand(i); 7314 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7315 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7316 } 7317 } 7318 7319 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7320 bool ForEH) { 7321 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7322 // FIXME: should we even be calling this method if RTTI is disabled 7323 // and it's not for EH? 7324 if (!shouldEmitRTTI(ForEH)) 7325 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7326 7327 if (ForEH && Ty->isObjCObjectPointerType() && 7328 LangOpts.ObjCRuntime.isGNUFamily()) 7329 return ObjCRuntime->GetEHType(Ty); 7330 7331 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7332 } 7333 7334 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7335 // Do not emit threadprivates in simd-only mode. 7336 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7337 return; 7338 for (auto RefExpr : D->varlists()) { 7339 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7340 bool PerformInit = 7341 VD->getAnyInitializer() && 7342 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7343 /*ForRef=*/false); 7344 7345 Address Addr(GetAddrOfGlobalVar(VD), 7346 getTypes().ConvertTypeForMem(VD->getType()), 7347 getContext().getDeclAlign(VD)); 7348 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7349 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7350 CXXGlobalInits.push_back(InitFunction); 7351 } 7352 } 7353 7354 llvm::Metadata * 7355 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7356 StringRef Suffix) { 7357 if (auto *FnType = T->getAs<FunctionProtoType>()) 7358 T = getContext().getFunctionType( 7359 FnType->getReturnType(), FnType->getParamTypes(), 7360 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7361 7362 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7363 if (InternalId) 7364 return InternalId; 7365 7366 if (isExternallyVisible(T->getLinkage())) { 7367 std::string OutName; 7368 llvm::raw_string_ostream Out(OutName); 7369 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7370 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7371 7372 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7373 Out << ".normalized"; 7374 7375 Out << Suffix; 7376 7377 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7378 } else { 7379 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7380 llvm::ArrayRef<llvm::Metadata *>()); 7381 } 7382 7383 return InternalId; 7384 } 7385 7386 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7387 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7388 } 7389 7390 llvm::Metadata * 7391 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7392 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7393 } 7394 7395 // Generalize pointer types to a void pointer with the qualifiers of the 7396 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7397 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7398 // 'void *'. 7399 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7400 if (!Ty->isPointerType()) 7401 return Ty; 7402 7403 return Ctx.getPointerType( 7404 QualType(Ctx.VoidTy).withCVRQualifiers( 7405 Ty->getPointeeType().getCVRQualifiers())); 7406 } 7407 7408 // Apply type generalization to a FunctionType's return and argument types 7409 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7410 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7411 SmallVector<QualType, 8> GeneralizedParams; 7412 for (auto &Param : FnType->param_types()) 7413 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7414 7415 return Ctx.getFunctionType( 7416 GeneralizeType(Ctx, FnType->getReturnType()), 7417 GeneralizedParams, FnType->getExtProtoInfo()); 7418 } 7419 7420 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7421 return Ctx.getFunctionNoProtoType( 7422 GeneralizeType(Ctx, FnType->getReturnType())); 7423 7424 llvm_unreachable("Encountered unknown FunctionType"); 7425 } 7426 7427 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7428 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7429 GeneralizedMetadataIdMap, ".generalized"); 7430 } 7431 7432 /// Returns whether this module needs the "all-vtables" type identifier. 7433 bool CodeGenModule::NeedAllVtablesTypeId() const { 7434 // Returns true if at least one of vtable-based CFI checkers is enabled and 7435 // is not in the trapping mode. 7436 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7437 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7438 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7439 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7440 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7441 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7442 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7443 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7444 } 7445 7446 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7447 CharUnits Offset, 7448 const CXXRecordDecl *RD) { 7449 llvm::Metadata *MD = 7450 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7451 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7452 7453 if (CodeGenOpts.SanitizeCfiCrossDso) 7454 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7455 VTable->addTypeMetadata(Offset.getQuantity(), 7456 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7457 7458 if (NeedAllVtablesTypeId()) { 7459 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7460 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7461 } 7462 } 7463 7464 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7465 if (!SanStats) 7466 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7467 7468 return *SanStats; 7469 } 7470 7471 llvm::Value * 7472 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7473 CodeGenFunction &CGF) { 7474 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7475 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7476 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7477 auto *Call = CGF.EmitRuntimeCall( 7478 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7479 return Call; 7480 } 7481 7482 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7483 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7484 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7485 /* forPointeeType= */ true); 7486 } 7487 7488 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7489 LValueBaseInfo *BaseInfo, 7490 TBAAAccessInfo *TBAAInfo, 7491 bool forPointeeType) { 7492 if (TBAAInfo) 7493 *TBAAInfo = getTBAAAccessInfo(T); 7494 7495 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7496 // that doesn't return the information we need to compute BaseInfo. 7497 7498 // Honor alignment typedef attributes even on incomplete types. 7499 // We also honor them straight for C++ class types, even as pointees; 7500 // there's an expressivity gap here. 7501 if (auto TT = T->getAs<TypedefType>()) { 7502 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7503 if (BaseInfo) 7504 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7505 return getContext().toCharUnitsFromBits(Align); 7506 } 7507 } 7508 7509 bool AlignForArray = T->isArrayType(); 7510 7511 // Analyze the base element type, so we don't get confused by incomplete 7512 // array types. 7513 T = getContext().getBaseElementType(T); 7514 7515 if (T->isIncompleteType()) { 7516 // We could try to replicate the logic from 7517 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7518 // type is incomplete, so it's impossible to test. We could try to reuse 7519 // getTypeAlignIfKnown, but that doesn't return the information we need 7520 // to set BaseInfo. So just ignore the possibility that the alignment is 7521 // greater than one. 7522 if (BaseInfo) 7523 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7524 return CharUnits::One(); 7525 } 7526 7527 if (BaseInfo) 7528 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7529 7530 CharUnits Alignment; 7531 const CXXRecordDecl *RD; 7532 if (T.getQualifiers().hasUnaligned()) { 7533 Alignment = CharUnits::One(); 7534 } else if (forPointeeType && !AlignForArray && 7535 (RD = T->getAsCXXRecordDecl())) { 7536 // For C++ class pointees, we don't know whether we're pointing at a 7537 // base or a complete object, so we generally need to use the 7538 // non-virtual alignment. 7539 Alignment = getClassPointerAlignment(RD); 7540 } else { 7541 Alignment = getContext().getTypeAlignInChars(T); 7542 } 7543 7544 // Cap to the global maximum type alignment unless the alignment 7545 // was somehow explicit on the type. 7546 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7547 if (Alignment.getQuantity() > MaxAlign && 7548 !getContext().isAlignmentRequired(T)) 7549 Alignment = CharUnits::fromQuantity(MaxAlign); 7550 } 7551 return Alignment; 7552 } 7553 7554 bool CodeGenModule::stopAutoInit() { 7555 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7556 if (StopAfter) { 7557 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7558 // used 7559 if (NumAutoVarInit >= StopAfter) { 7560 return true; 7561 } 7562 if (!NumAutoVarInit) { 7563 unsigned DiagID = getDiags().getCustomDiagID( 7564 DiagnosticsEngine::Warning, 7565 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7566 "number of times ftrivial-auto-var-init=%1 gets applied."); 7567 getDiags().Report(DiagID) 7568 << StopAfter 7569 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7570 LangOptions::TrivialAutoVarInitKind::Zero 7571 ? "zero" 7572 : "pattern"); 7573 } 7574 ++NumAutoVarInit; 7575 } 7576 return false; 7577 } 7578 7579 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7580 const Decl *D) const { 7581 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7582 // postfix beginning with '.' since the symbol name can be demangled. 7583 if (LangOpts.HIP) 7584 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7585 else 7586 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7587 7588 // If the CUID is not specified we try to generate a unique postfix. 7589 if (getLangOpts().CUID.empty()) { 7590 SourceManager &SM = getContext().getSourceManager(); 7591 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7592 assert(PLoc.isValid() && "Source location is expected to be valid."); 7593 7594 // Get the hash of the user defined macros. 7595 llvm::MD5 Hash; 7596 llvm::MD5::MD5Result Result; 7597 for (const auto &Arg : PreprocessorOpts.Macros) 7598 Hash.update(Arg.first); 7599 Hash.final(Result); 7600 7601 // Get the UniqueID for the file containing the decl. 7602 llvm::sys::fs::UniqueID ID; 7603 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7604 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7605 assert(PLoc.isValid() && "Source location is expected to be valid."); 7606 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7607 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7608 << PLoc.getFilename() << EC.message(); 7609 } 7610 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7611 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7612 } else { 7613 OS << getContext().getCUIDHash(); 7614 } 7615 } 7616 7617 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7618 assert(DeferredDeclsToEmit.empty() && 7619 "Should have emitted all decls deferred to emit."); 7620 assert(NewBuilder->DeferredDecls.empty() && 7621 "Newly created module should not have deferred decls"); 7622 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7623 assert(EmittedDeferredDecls.empty() && 7624 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7625 7626 assert(NewBuilder->DeferredVTables.empty() && 7627 "Newly created module should not have deferred vtables"); 7628 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7629 7630 assert(NewBuilder->MangledDeclNames.empty() && 7631 "Newly created module should not have mangled decl names"); 7632 assert(NewBuilder->Manglings.empty() && 7633 "Newly created module should not have manglings"); 7634 NewBuilder->Manglings = std::move(Manglings); 7635 7636 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7637 7638 NewBuilder->TBAA = std::move(TBAA); 7639 7640 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7641 } 7642