1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/CallingConv.h" 28 #include "llvm/Module.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/Target/TargetData.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 35 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 36 llvm::Module &M, const llvm::TargetData &TD, 37 Diagnostic &diags) 38 : BlockModule(C, M, TD, Types, *this), Context(C), 39 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 40 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 41 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 42 43 if (!Features.ObjC1) 44 Runtime = 0; 45 else if (!Features.NeXTRuntime) 46 Runtime = CreateGNUObjCRuntime(*this); 47 else if (Features.ObjCNonFragileABI) 48 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 49 else 50 Runtime = CreateMacObjCRuntime(*this); 51 52 // If debug info generation is enabled, create the CGDebugInfo object. 53 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 54 } 55 56 CodeGenModule::~CodeGenModule() { 57 delete Runtime; 58 delete DebugInfo; 59 } 60 61 void CodeGenModule::Release() { 62 EmitDeferred(); 63 if (Runtime) 64 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 65 AddGlobalCtor(ObjCInitFunction); 66 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 67 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 68 EmitAnnotations(); 69 EmitLLVMUsed(); 70 } 71 72 /// ErrorUnsupported - Print out an error that codegen doesn't support the 73 /// specified stmt yet. 74 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 75 bool OmitOnError) { 76 if (OmitOnError && getDiags().hasErrorOccurred()) 77 return; 78 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 79 "cannot compile this %0 yet"); 80 std::string Msg = Type; 81 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 82 << Msg << S->getSourceRange(); 83 } 84 85 /// ErrorUnsupported - Print out an error that codegen doesn't support the 86 /// specified decl yet. 87 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 88 bool OmitOnError) { 89 if (OmitOnError && getDiags().hasErrorOccurred()) 90 return; 91 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 92 "cannot compile this %0 yet"); 93 std::string Msg = Type; 94 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 95 } 96 97 /// setGlobalVisibility - Set the visibility for the given LLVM 98 /// GlobalValue according to the given clang AST visibility value. 99 static void setGlobalVisibility(llvm::GlobalValue *GV, 100 VisibilityAttr::VisibilityTypes Vis) { 101 switch (Vis) { 102 default: assert(0 && "Unknown visibility!"); 103 case VisibilityAttr::DefaultVisibility: 104 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 105 break; 106 case VisibilityAttr::HiddenVisibility: 107 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 108 break; 109 case VisibilityAttr::ProtectedVisibility: 110 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 111 break; 112 } 113 } 114 115 /// \brief Retrieves the mangled name for the given declaration. 116 /// 117 /// If the given declaration requires a mangled name, returns an 118 /// const char* containing the mangled name. Otherwise, returns 119 /// the unmangled name. 120 /// 121 /// FIXME: Returning an IdentifierInfo* here is a total hack. We 122 /// really need some kind of string abstraction that either stores a 123 /// mangled name or stores an IdentifierInfo*. This will require 124 /// changes to the GlobalDeclMap, too. (I disagree, I think what we 125 /// actually need is for Sema to provide some notion of which Decls 126 /// refer to the same semantic decl. We shouldn't need to mangle the 127 /// names and see what comes out the same to figure this out. - DWD) 128 /// 129 /// FIXME: Performance here is going to be terribly until we start 130 /// caching mangled names. However, we should fix the problem above 131 /// first. 132 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 133 // In C, functions with no attributes never need to be mangled. Fastpath them. 134 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 135 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 136 return ND->getNameAsCString(); 137 } 138 139 llvm::SmallString<256> Name; 140 llvm::raw_svector_ostream Out(Name); 141 if (!mangleName(ND, Context, Out)) { 142 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 143 return ND->getNameAsCString(); 144 } 145 146 Name += '\0'; 147 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 148 } 149 150 /// AddGlobalCtor - Add a function to the list that will be called before 151 /// main() runs. 152 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 153 // FIXME: Type coercion of void()* types. 154 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 155 } 156 157 /// AddGlobalDtor - Add a function to the list that will be called 158 /// when the module is unloaded. 159 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 160 // FIXME: Type coercion of void()* types. 161 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 162 } 163 164 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 165 // Ctor function type is void()*. 166 llvm::FunctionType* CtorFTy = 167 llvm::FunctionType::get(llvm::Type::VoidTy, 168 std::vector<const llvm::Type*>(), 169 false); 170 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 171 172 // Get the type of a ctor entry, { i32, void ()* }. 173 llvm::StructType* CtorStructTy = 174 llvm::StructType::get(llvm::Type::Int32Ty, 175 llvm::PointerType::getUnqual(CtorFTy), NULL); 176 177 // Construct the constructor and destructor arrays. 178 std::vector<llvm::Constant*> Ctors; 179 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 180 std::vector<llvm::Constant*> S; 181 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 182 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 183 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 184 } 185 186 if (!Ctors.empty()) { 187 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 188 new llvm::GlobalVariable(AT, false, 189 llvm::GlobalValue::AppendingLinkage, 190 llvm::ConstantArray::get(AT, Ctors), 191 GlobalName, 192 &TheModule); 193 } 194 } 195 196 void CodeGenModule::EmitAnnotations() { 197 if (Annotations.empty()) 198 return; 199 200 // Create a new global variable for the ConstantStruct in the Module. 201 llvm::Constant *Array = 202 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 203 Annotations.size()), 204 Annotations); 205 llvm::GlobalValue *gv = 206 new llvm::GlobalVariable(Array->getType(), false, 207 llvm::GlobalValue::AppendingLinkage, Array, 208 "llvm.global.annotations", &TheModule); 209 gv->setSection("llvm.metadata"); 210 } 211 212 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 213 bool IsInternal, 214 bool IsInline, 215 llvm::GlobalValue *GV, 216 bool ForDefinition) { 217 // FIXME: Set up linkage and many other things. Note, this is a simple 218 // approximation of what we really want. 219 if (!ForDefinition) { 220 // Only a few attributes are set on declarations. 221 if (D->getAttr<DLLImportAttr>()) { 222 // The dllimport attribute is overridden by a subsequent declaration as 223 // dllexport. 224 if (!D->getAttr<DLLExportAttr>()) { 225 // dllimport attribute can be applied only to function decls, not to 226 // definitions. 227 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 228 if (!FD->getBody()) 229 GV->setLinkage(llvm::Function::DLLImportLinkage); 230 } else 231 GV->setLinkage(llvm::Function::DLLImportLinkage); 232 } 233 } else if (D->getAttr<WeakAttr>() || 234 D->getAttr<WeakImportAttr>()) { 235 // "extern_weak" is overloaded in LLVM; we probably should have 236 // separate linkage types for this. 237 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 238 } 239 } else { 240 if (IsInternal) { 241 GV->setLinkage(llvm::Function::InternalLinkage); 242 } else { 243 if (D->getAttr<DLLExportAttr>()) { 244 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 245 // The dllexport attribute is ignored for undefined symbols. 246 if (FD->getBody()) 247 GV->setLinkage(llvm::Function::DLLExportLinkage); 248 } else 249 GV->setLinkage(llvm::Function::DLLExportLinkage); 250 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 251 IsInline) 252 GV->setLinkage(llvm::Function::WeakAnyLinkage); 253 } 254 } 255 256 // FIXME: Figure out the relative priority of the attribute, 257 // -fvisibility, and private_extern. 258 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 259 setGlobalVisibility(GV, attr->getVisibility()); 260 // FIXME: else handle -fvisibility 261 262 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 263 GV->setSection(SA->getName()); 264 265 // Only add to llvm.used when we see a definition, otherwise we 266 // might add multiple times or risk the value being replaced by a 267 // subsequent RAUW. 268 if (ForDefinition) { 269 if (D->getAttr<UsedAttr>()) 270 AddUsedGlobal(GV); 271 } 272 } 273 274 void CodeGenModule::SetFunctionAttributes(const Decl *D, 275 const CGFunctionInfo &Info, 276 llvm::Function *F) { 277 AttributeListType AttributeList; 278 ConstructAttributeList(Info, D, AttributeList); 279 280 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 281 AttributeList.size())); 282 283 // Set the appropriate calling convention for the Function. 284 if (D->getAttr<FastCallAttr>()) 285 F->setCallingConv(llvm::CallingConv::X86_FastCall); 286 287 if (D->getAttr<StdCallAttr>()) 288 F->setCallingConv(llvm::CallingConv::X86_StdCall); 289 } 290 291 /// SetFunctionAttributesForDefinition - Set function attributes 292 /// specific to a function definition. 293 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 294 llvm::Function *F) { 295 if (isa<ObjCMethodDecl>(D)) { 296 SetGlobalValueAttributes(D, true, false, F, true); 297 } else { 298 const FunctionDecl *FD = cast<FunctionDecl>(D); 299 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 300 FD->isInline(), F, true); 301 } 302 303 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 304 F->addFnAttr(llvm::Attribute::NoUnwind); 305 306 if (D->getAttr<AlwaysInlineAttr>()) 307 F->addFnAttr(llvm::Attribute::AlwaysInline); 308 309 if (D->getAttr<NoinlineAttr>()) 310 F->addFnAttr(llvm::Attribute::NoInline); 311 } 312 313 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 314 llvm::Function *F) { 315 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 316 317 SetFunctionAttributesForDefinition(MD, F); 318 } 319 320 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 321 llvm::Function *F) { 322 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 323 324 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 325 FD->isInline(), F, false); 326 } 327 328 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 329 assert(!GV->isDeclaration() && 330 "Only globals with definition can force usage."); 331 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 332 LLVMUsed.push_back(llvm::ConstantExpr::getBitCast(GV, i8PTy)); 333 } 334 335 void CodeGenModule::EmitLLVMUsed() { 336 // Don't create llvm.used if there is no need. 337 if (LLVMUsed.empty()) 338 return; 339 340 llvm::ArrayType *ATy = llvm::ArrayType::get(LLVMUsed[0]->getType(), 341 LLVMUsed.size()); 342 llvm::GlobalVariable *GV = 343 new llvm::GlobalVariable(ATy, false, 344 llvm::GlobalValue::AppendingLinkage, 345 llvm::ConstantArray::get(ATy, LLVMUsed), 346 "llvm.used", &getModule()); 347 348 GV->setSection("llvm.metadata"); 349 } 350 351 void CodeGenModule::EmitDeferred() { 352 // Emit code for any potentially referenced deferred decls. Since a 353 // previously unused static decl may become used during the generation of code 354 // for a static function, iterate until no changes are made. 355 while (!DeferredDeclsToEmit.empty()) { 356 const ValueDecl *D = DeferredDeclsToEmit.back(); 357 DeferredDeclsToEmit.pop_back(); 358 359 // The mangled name for the decl must have been emitted in GlobalDeclMap. 360 // Look it up to see if it was defined with a stronger definition (e.g. an 361 // extern inline function with a strong function redefinition). If so, 362 // just ignore the deferred decl. 363 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 364 assert(CGRef && "Deferred decl wasn't referenced?"); 365 366 if (!CGRef->isDeclaration()) 367 continue; 368 369 // Otherwise, emit the definition and move on to the next one. 370 EmitGlobalDefinition(D); 371 } 372 } 373 374 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 375 /// annotation information for a given GlobalValue. The annotation struct is 376 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 377 /// GlobalValue being annotated. The second field is the constant string 378 /// created from the AnnotateAttr's annotation. The third field is a constant 379 /// string containing the name of the translation unit. The fourth field is 380 /// the line number in the file of the annotated value declaration. 381 /// 382 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 383 /// appears to. 384 /// 385 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 386 const AnnotateAttr *AA, 387 unsigned LineNo) { 388 llvm::Module *M = &getModule(); 389 390 // get [N x i8] constants for the annotation string, and the filename string 391 // which are the 2nd and 3rd elements of the global annotation structure. 392 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 393 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 394 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 395 true); 396 397 // Get the two global values corresponding to the ConstantArrays we just 398 // created to hold the bytes of the strings. 399 llvm::GlobalValue *annoGV = 400 new llvm::GlobalVariable(anno->getType(), false, 401 llvm::GlobalValue::InternalLinkage, anno, 402 GV->getName() + ".str", M); 403 // translation unit name string, emitted into the llvm.metadata section. 404 llvm::GlobalValue *unitGV = 405 new llvm::GlobalVariable(unit->getType(), false, 406 llvm::GlobalValue::InternalLinkage, unit, ".str", M); 407 408 // Create the ConstantStruct that is the global annotion. 409 llvm::Constant *Fields[4] = { 410 llvm::ConstantExpr::getBitCast(GV, SBP), 411 llvm::ConstantExpr::getBitCast(annoGV, SBP), 412 llvm::ConstantExpr::getBitCast(unitGV, SBP), 413 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 414 }; 415 return llvm::ConstantStruct::get(Fields, 4, false); 416 } 417 418 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 419 // Never defer when EmitAllDecls is specified or the decl has 420 // attribute used. 421 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 422 return false; 423 424 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 425 // Constructors and destructors should never be deferred. 426 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 427 return false; 428 429 // FIXME: What about inline, and/or extern inline? 430 if (FD->getStorageClass() != FunctionDecl::Static) 431 return false; 432 } else { 433 const VarDecl *VD = cast<VarDecl>(Global); 434 assert(VD->isFileVarDecl() && "Invalid decl"); 435 436 if (VD->getStorageClass() != VarDecl::Static) 437 return false; 438 } 439 440 return true; 441 } 442 443 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 444 // If this is an alias definition (which otherwise looks like a declaration) 445 // emit it now. 446 if (Global->getAttr<AliasAttr>()) 447 return EmitAliasDefinition(Global); 448 449 // Ignore declarations, they will be emitted on their first use. 450 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 451 // Forward declarations are emitted lazily on first use. 452 if (!FD->isThisDeclarationADefinition()) 453 return; 454 } else { 455 const VarDecl *VD = cast<VarDecl>(Global); 456 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 457 458 // Forward declarations are emitted lazily on first use. 459 if (!VD->getInit() && VD->hasExternalStorage()) 460 return; 461 } 462 463 // Defer code generation when possible if this is a static definition, inline 464 // function etc. These we only want to emit if they are used. 465 if (MayDeferGeneration(Global)) { 466 // If the value has already been used, add it directly to the 467 // DeferredDeclsToEmit list. 468 const char *MangledName = getMangledName(Global); 469 if (GlobalDeclMap.count(MangledName)) 470 DeferredDeclsToEmit.push_back(Global); 471 else { 472 // Otherwise, remember that we saw a deferred decl with this name. The 473 // first use of the mangled name will cause it to move into 474 // DeferredDeclsToEmit. 475 DeferredDecls[MangledName] = Global; 476 } 477 return; 478 } 479 480 // Otherwise emit the definition. 481 EmitGlobalDefinition(Global); 482 } 483 484 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 485 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 486 EmitGlobalFunctionDefinition(FD); 487 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 488 EmitGlobalVarDefinition(VD); 489 } else { 490 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 491 } 492 } 493 494 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 495 /// module, create and return an llvm Function with the specified type. If there 496 /// is something in the module with the specified name, return it potentially 497 /// bitcasted to the right type. 498 /// 499 /// If D is non-null, it specifies a decl that correspond to this. This is used 500 /// to set the attributes on the function when it is first created. 501 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 502 const llvm::Type *Ty, 503 const FunctionDecl *D) { 504 // Lookup the entry, lazily creating it if necessary. 505 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 506 if (Entry) { 507 if (Entry->getType()->getElementType() == Ty) 508 return Entry; 509 510 // Make sure the result is of the correct type. 511 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 512 return llvm::ConstantExpr::getBitCast(Entry, PTy); 513 } 514 515 // This is the first use or definition of a mangled name. If there is a 516 // deferred decl with this name, remember that we need to emit it at the end 517 // of the file. 518 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 519 DeferredDecls.find(MangledName); 520 if (DDI != DeferredDecls.end()) { 521 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 522 // list, and remove it from DeferredDecls (since we don't need it anymore). 523 DeferredDeclsToEmit.push_back(DDI->second); 524 DeferredDecls.erase(DDI); 525 } 526 527 // This function doesn't have a complete type (for example, the return 528 // type is an incomplete struct). Use a fake type instead, and make 529 // sure not to try to set attributes. 530 bool ShouldSetAttributes = true; 531 if (!isa<llvm::FunctionType>(Ty)) { 532 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 533 std::vector<const llvm::Type*>(), false); 534 ShouldSetAttributes = false; 535 } 536 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 537 llvm::Function::ExternalLinkage, 538 "", &getModule()); 539 F->setName(MangledName); 540 if (D && ShouldSetAttributes) 541 SetFunctionAttributes(D, F); 542 Entry = F; 543 return F; 544 } 545 546 /// GetAddrOfFunction - Return the address of the given function. If Ty is 547 /// non-null, then this function will use the specified type if it has to 548 /// create it (this occurs when we see a definition of the function). 549 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 550 const llvm::Type *Ty) { 551 // If there was no specific requested type, just convert it now. 552 if (!Ty) 553 Ty = getTypes().ConvertType(D->getType()); 554 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 555 } 556 557 /// CreateRuntimeFunction - Create a new runtime function with the specified 558 /// type and name. 559 llvm::Constant * 560 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 561 const char *Name) { 562 // Convert Name to be a uniqued string from the IdentifierInfo table. 563 Name = getContext().Idents.get(Name).getName(); 564 return GetOrCreateLLVMFunction(Name, FTy, 0); 565 } 566 567 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 568 /// create and return an llvm GlobalVariable with the specified type. If there 569 /// is something in the module with the specified name, return it potentially 570 /// bitcasted to the right type. 571 /// 572 /// If D is non-null, it specifies a decl that correspond to this. This is used 573 /// to set the attributes on the global when it is first created. 574 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 575 const llvm::PointerType*Ty, 576 const VarDecl *D) { 577 // Lookup the entry, lazily creating it if necessary. 578 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 579 if (Entry) { 580 if (Entry->getType() == Ty) 581 return Entry; 582 583 // Make sure the result is of the correct type. 584 return llvm::ConstantExpr::getBitCast(Entry, Ty); 585 } 586 587 // This is the first use or definition of a mangled name. If there is a 588 // deferred decl with this name, remember that we need to emit it at the end 589 // of the file. 590 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 591 DeferredDecls.find(MangledName); 592 if (DDI != DeferredDecls.end()) { 593 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 594 // list, and remove it from DeferredDecls (since we don't need it anymore). 595 DeferredDeclsToEmit.push_back(DDI->second); 596 DeferredDecls.erase(DDI); 597 } 598 599 llvm::GlobalVariable *GV = 600 new llvm::GlobalVariable(Ty->getElementType(), false, 601 llvm::GlobalValue::ExternalLinkage, 602 0, "", &getModule(), 603 0, Ty->getAddressSpace()); 604 GV->setName(MangledName); 605 606 // Handle things which are present even on external declarations. 607 if (D) { 608 // FIXME: This code is overly simple and should be merged with 609 // other global handling. 610 GV->setConstant(D->getType().isConstant(Context)); 611 612 // FIXME: Merge with other attribute handling code. 613 if (D->getStorageClass() == VarDecl::PrivateExtern) 614 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 615 616 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 617 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 618 } 619 620 return Entry = GV; 621 } 622 623 624 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 625 /// given global variable. If Ty is non-null and if the global doesn't exist, 626 /// then it will be greated with the specified type instead of whatever the 627 /// normal requested type would be. 628 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 629 const llvm::Type *Ty) { 630 assert(D->hasGlobalStorage() && "Not a global variable"); 631 QualType ASTTy = D->getType(); 632 if (Ty == 0) 633 Ty = getTypes().ConvertTypeForMem(ASTTy); 634 635 const llvm::PointerType *PTy = 636 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 637 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 638 } 639 640 /// CreateRuntimeVariable - Create a new runtime global variable with the 641 /// specified type and name. 642 llvm::Constant * 643 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 644 const char *Name) { 645 // Convert Name to be a uniqued string from the IdentifierInfo table. 646 Name = getContext().Idents.get(Name).getName(); 647 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 648 } 649 650 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 651 llvm::Constant *Init = 0; 652 QualType ASTTy = D->getType(); 653 654 if (D->getInit() == 0) { 655 // This is a tentative definition; tentative definitions are 656 // implicitly initialized with { 0 } 657 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 658 if (ASTTy->isIncompleteArrayType()) { 659 // An incomplete array is normally [ TYPE x 0 ], but we need 660 // to fix it to [ TYPE x 1 ]. 661 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 662 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 663 } 664 Init = llvm::Constant::getNullValue(InitTy); 665 } else { 666 Init = EmitConstantExpr(D->getInit()); 667 if (!Init) { 668 ErrorUnsupported(D, "static initializer"); 669 QualType T = D->getInit()->getType(); 670 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 671 } 672 } 673 674 const llvm::Type* InitType = Init->getType(); 675 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 676 677 // Strip off a bitcast if we got one back. 678 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 679 assert(CE->getOpcode() == llvm::Instruction::BitCast); 680 Entry = CE->getOperand(0); 681 } 682 683 // Entry is now either a Function or GlobalVariable. 684 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 685 686 // If we already have this global and it has an initializer, then 687 // we are in the rare situation where we emitted the defining 688 // declaration of the global and are now being asked to emit a 689 // definition which would be common. This occurs, for example, in 690 // the following situation because statics can be emitted out of 691 // order: 692 // 693 // static int x; 694 // static int *y = &x; 695 // static int x = 10; 696 // int **z = &y; 697 // 698 // Bail here so we don't blow away the definition. Note that if we 699 // can't distinguish here if we emitted a definition with a null 700 // initializer, but this case is safe. 701 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 702 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 703 return; 704 } 705 706 // We have a definition after a declaration with the wrong type. 707 // We must make a new GlobalVariable* and update everything that used OldGV 708 // (a declaration or tentative definition) with the new GlobalVariable* 709 // (which will be a definition). 710 // 711 // This happens if there is a prototype for a global (e.g. 712 // "extern int x[];") and then a definition of a different type (e.g. 713 // "int x[10];"). This also happens when an initializer has a different type 714 // from the type of the global (this happens with unions). 715 // 716 // FIXME: This also ends up happening if there's a definition followed by 717 // a tentative definition! (Although Sema rejects that construct 718 // at the moment.) 719 if (GV == 0 || 720 GV->getType()->getElementType() != InitType || 721 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 722 723 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 724 GlobalDeclMap.erase(getMangledName(D)); 725 726 // Make a new global with the correct type, this is now guaranteed to work. 727 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 728 GV->takeName(cast<llvm::GlobalValue>(Entry)); 729 730 // Replace all uses of the old global with the new global 731 llvm::Constant *NewPtrForOldDecl = 732 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 733 Entry->replaceAllUsesWith(NewPtrForOldDecl); 734 735 // Erase the old global, since it is no longer used. 736 // FIXME: What if it was attribute used? Dangling pointer from LLVMUsed. 737 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 738 } 739 740 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 741 SourceManager &SM = Context.getSourceManager(); 742 AddAnnotation(EmitAnnotateAttr(GV, AA, 743 SM.getInstantiationLineNumber(D->getLocation()))); 744 } 745 746 GV->setInitializer(Init); 747 GV->setConstant(D->getType().isConstant(Context)); 748 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 749 750 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 751 setGlobalVisibility(GV, attr->getVisibility()); 752 // FIXME: else handle -fvisibility 753 754 // Set the llvm linkage type as appropriate. 755 if (D->getStorageClass() == VarDecl::Static) 756 GV->setLinkage(llvm::Function::InternalLinkage); 757 else if (D->getAttr<DLLImportAttr>()) 758 GV->setLinkage(llvm::Function::DLLImportLinkage); 759 else if (D->getAttr<DLLExportAttr>()) 760 GV->setLinkage(llvm::Function::DLLExportLinkage); 761 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 762 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 763 else { 764 // FIXME: This isn't right. This should handle common linkage and other 765 // stuff. 766 switch (D->getStorageClass()) { 767 case VarDecl::Static: assert(0 && "This case handled above"); 768 case VarDecl::Auto: 769 case VarDecl::Register: 770 assert(0 && "Can't have auto or register globals"); 771 case VarDecl::None: 772 if (!D->getInit() && !CompileOpts.NoCommon) 773 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 774 else 775 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 776 break; 777 case VarDecl::Extern: 778 // FIXME: common 779 break; 780 781 case VarDecl::PrivateExtern: 782 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 783 // FIXME: common 784 break; 785 } 786 } 787 788 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 789 GV->setSection(SA->getName()); 790 791 if (D->getAttr<UsedAttr>()) 792 AddUsedGlobal(GV); 793 794 // Emit global variable debug information. 795 if (CGDebugInfo *DI = getDebugInfo()) { 796 DI->setLocation(D->getLocation()); 797 DI->EmitGlobalVariable(GV, D); 798 } 799 } 800 801 802 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 803 const llvm::FunctionType *Ty = 804 cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 805 806 // As a special case, make sure that definitions of K&R function 807 // "type foo()" aren't declared as varargs (which forces the backend 808 // to do unnecessary work). 809 if (D->getType()->isFunctionNoProtoType()) { 810 assert(Ty->isVarArg() && "Didn't lower type as expected"); 811 // Due to stret, the lowered function could have arguments. Just create the 812 // same type as was lowered by ConvertType but strip off the varargs bit. 813 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 814 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 815 } 816 817 // Get or create the prototype for teh function. 818 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 819 820 // Strip off a bitcast if we got one back. 821 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 822 assert(CE->getOpcode() == llvm::Instruction::BitCast); 823 Entry = CE->getOperand(0); 824 } 825 826 827 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 828 // If the types mismatch then we have to rewrite the definition. 829 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 830 "Shouldn't replace non-declaration"); 831 832 // F is the Function* for the one with the wrong type, we must make a new 833 // Function* and update everything that used F (a declaration) with the new 834 // Function* (which will be a definition). 835 // 836 // This happens if there is a prototype for a function 837 // (e.g. "int f()") and then a definition of a different type 838 // (e.g. "int f(int x)"). Start by making a new function of the 839 // correct type, RAUW, then steal the name. 840 GlobalDeclMap.erase(getMangledName(D)); 841 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 842 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 843 844 // Replace uses of F with the Function we will endow with a body. 845 llvm::Constant *NewPtrForOldDecl = 846 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 847 Entry->replaceAllUsesWith(NewPtrForOldDecl); 848 849 // Ok, delete the old function now, which is dead. 850 // FIXME: If it was attribute(used) the pointer will dangle from the 851 // LLVMUsed array! 852 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 853 854 Entry = NewFn; 855 } 856 857 llvm::Function *Fn = cast<llvm::Function>(Entry); 858 859 CodeGenFunction(*this).GenerateCode(D, Fn); 860 861 SetFunctionAttributesForDefinition(D, Fn); 862 863 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 864 AddGlobalCtor(Fn, CA->getPriority()); 865 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 866 AddGlobalDtor(Fn, DA->getPriority()); 867 } 868 869 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 870 const AliasAttr *AA = D->getAttr<AliasAttr>(); 871 assert(AA && "Not an alias?"); 872 873 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 874 875 // Unique the name through the identifier table. 876 const char *AliaseeName = AA->getAliasee().c_str(); 877 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 878 879 // Create a reference to the named value. This ensures that it is emitted 880 // if a deferred decl. 881 llvm::Constant *Aliasee; 882 if (isa<llvm::FunctionType>(DeclTy)) 883 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 884 else 885 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 886 llvm::PointerType::getUnqual(DeclTy), 0); 887 888 // Create the new alias itself, but don't set a name yet. 889 llvm::GlobalValue *GA = 890 new llvm::GlobalAlias(Aliasee->getType(), 891 llvm::Function::ExternalLinkage, 892 "", Aliasee, &getModule()); 893 894 // See if there is already something with the alias' name in the module. 895 const char *MangledName = getMangledName(D); 896 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 897 898 if (Entry && !Entry->isDeclaration()) { 899 // If there is a definition in the module, then it wins over the alias. 900 // This is dubious, but allow it to be safe. Just ignore the alias. 901 GA->eraseFromParent(); 902 return; 903 } 904 905 if (Entry) { 906 // If there is a declaration in the module, then we had an extern followed 907 // by the alias, as in: 908 // extern int test6(); 909 // ... 910 // int test6() __attribute__((alias("test7"))); 911 // 912 // Remove it and replace uses of it with the alias. 913 914 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 915 Entry->getType())); 916 // FIXME: What if it was attribute used? Dangling pointer from LLVMUsed. 917 Entry->eraseFromParent(); 918 } 919 920 // Now we know that there is no conflict, set the name. 921 Entry = GA; 922 GA->setName(MangledName); 923 924 // Alias should never be internal or inline. 925 SetGlobalValueAttributes(D, false, false, GA, true); 926 } 927 928 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 929 // Make sure that this type is translated. 930 Types.UpdateCompletedType(TD); 931 } 932 933 934 /// getBuiltinLibFunction - Given a builtin id for a function like 935 /// "__builtin_fabsf", return a Function* for "fabsf". 936 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 937 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 938 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 939 "isn't a lib fn"); 940 941 // Get the name, skip over the __builtin_ prefix (if necessary). 942 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 943 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 944 Name += 10; 945 946 // Get the type for the builtin. 947 Builtin::Context::GetBuiltinTypeError Error; 948 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 949 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 950 951 const llvm::FunctionType *Ty = 952 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 953 954 // Unique the name through the identifier table. 955 Name = getContext().Idents.get(Name).getName(); 956 // FIXME: param attributes for sext/zext etc. 957 return GetOrCreateLLVMFunction(Name, Ty, 0); 958 } 959 960 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 961 unsigned NumTys) { 962 return llvm::Intrinsic::getDeclaration(&getModule(), 963 (llvm::Intrinsic::ID)IID, Tys, NumTys); 964 } 965 966 llvm::Function *CodeGenModule::getMemCpyFn() { 967 if (MemCpyFn) return MemCpyFn; 968 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 969 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 970 } 971 972 llvm::Function *CodeGenModule::getMemMoveFn() { 973 if (MemMoveFn) return MemMoveFn; 974 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 975 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 976 } 977 978 llvm::Function *CodeGenModule::getMemSetFn() { 979 if (MemSetFn) return MemSetFn; 980 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 981 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 982 } 983 984 static void appendFieldAndPadding(CodeGenModule &CGM, 985 std::vector<llvm::Constant*>& Fields, 986 FieldDecl *FieldD, FieldDecl *NextFieldD, 987 llvm::Constant* Field, 988 RecordDecl* RD, const llvm::StructType *STy) { 989 // Append the field. 990 Fields.push_back(Field); 991 992 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 993 994 int NextStructFieldNo; 995 if (!NextFieldD) { 996 NextStructFieldNo = STy->getNumElements(); 997 } else { 998 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 999 } 1000 1001 // Append padding 1002 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1003 llvm::Constant *C = 1004 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1005 1006 Fields.push_back(C); 1007 } 1008 } 1009 1010 // We still need to work out the details of handling UTF-16. 1011 // See: <rdr://2996215> 1012 llvm::Constant *CodeGenModule:: 1013 GetAddrOfConstantCFString(const std::string &str) { 1014 llvm::StringMapEntry<llvm::Constant *> &Entry = 1015 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1016 1017 if (Entry.getValue()) 1018 return Entry.getValue(); 1019 1020 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1021 llvm::Constant *Zeros[] = { Zero, Zero }; 1022 1023 if (!CFConstantStringClassRef) { 1024 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1025 Ty = llvm::ArrayType::get(Ty, 0); 1026 1027 // FIXME: This is fairly broken if 1028 // __CFConstantStringClassReference is already defined, in that it 1029 // will get renamed and the user will most likely see an opaque 1030 // error message. This is a general issue with relying on 1031 // particular names. 1032 llvm::GlobalVariable *GV = 1033 new llvm::GlobalVariable(Ty, false, 1034 llvm::GlobalVariable::ExternalLinkage, 0, 1035 "__CFConstantStringClassReference", 1036 &getModule()); 1037 1038 // Decay array -> ptr 1039 CFConstantStringClassRef = 1040 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1041 } 1042 1043 QualType CFTy = getContext().getCFConstantStringType(); 1044 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1045 1046 const llvm::StructType *STy = 1047 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1048 1049 std::vector<llvm::Constant*> Fields; 1050 RecordDecl::field_iterator Field = CFRD->field_begin(); 1051 1052 // Class pointer. 1053 FieldDecl *CurField = *Field++; 1054 FieldDecl *NextField = *Field++; 1055 appendFieldAndPadding(*this, Fields, CurField, NextField, 1056 CFConstantStringClassRef, CFRD, STy); 1057 1058 // Flags. 1059 CurField = NextField; 1060 NextField = *Field++; 1061 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1062 appendFieldAndPadding(*this, Fields, CurField, NextField, 1063 llvm::ConstantInt::get(Ty, 0x07C8), CFRD, STy); 1064 1065 // String pointer. 1066 CurField = NextField; 1067 NextField = *Field++; 1068 llvm::Constant *C = llvm::ConstantArray::get(str); 1069 C = new llvm::GlobalVariable(C->getType(), true, 1070 llvm::GlobalValue::InternalLinkage, 1071 C, ".str", &getModule()); 1072 appendFieldAndPadding(*this, Fields, CurField, NextField, 1073 llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2), 1074 CFRD, STy); 1075 1076 // String length. 1077 CurField = NextField; 1078 NextField = 0; 1079 Ty = getTypes().ConvertType(getContext().LongTy); 1080 appendFieldAndPadding(*this, Fields, CurField, NextField, 1081 llvm::ConstantInt::get(Ty, str.length()), CFRD, STy); 1082 1083 // The struct. 1084 C = llvm::ConstantStruct::get(STy, Fields); 1085 llvm::GlobalVariable *GV = 1086 new llvm::GlobalVariable(C->getType(), true, 1087 llvm::GlobalVariable::InternalLinkage, 1088 C, "", &getModule()); 1089 1090 GV->setSection("__DATA,__cfstring"); 1091 Entry.setValue(GV); 1092 1093 return GV; 1094 } 1095 1096 /// GetStringForStringLiteral - Return the appropriate bytes for a 1097 /// string literal, properly padded to match the literal type. 1098 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1099 const char *StrData = E->getStrData(); 1100 unsigned Len = E->getByteLength(); 1101 1102 const ConstantArrayType *CAT = 1103 getContext().getAsConstantArrayType(E->getType()); 1104 assert(CAT && "String isn't pointer or array!"); 1105 1106 // Resize the string to the right size. 1107 std::string Str(StrData, StrData+Len); 1108 uint64_t RealLen = CAT->getSize().getZExtValue(); 1109 1110 if (E->isWide()) 1111 RealLen *= getContext().Target.getWCharWidth()/8; 1112 1113 Str.resize(RealLen, '\0'); 1114 1115 return Str; 1116 } 1117 1118 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1119 /// constant array for the given string literal. 1120 llvm::Constant * 1121 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1122 // FIXME: This can be more efficient. 1123 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1124 } 1125 1126 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1127 /// array for the given ObjCEncodeExpr node. 1128 llvm::Constant * 1129 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1130 std::string Str; 1131 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1132 1133 return GetAddrOfConstantCString(Str); 1134 } 1135 1136 1137 /// GenerateWritableString -- Creates storage for a string literal. 1138 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1139 bool constant, 1140 CodeGenModule &CGM, 1141 const char *GlobalName) { 1142 // Create Constant for this string literal. Don't add a '\0'. 1143 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1144 1145 // Create a global variable for this string 1146 return new llvm::GlobalVariable(C->getType(), constant, 1147 llvm::GlobalValue::InternalLinkage, 1148 C, GlobalName ? GlobalName : ".str", 1149 &CGM.getModule()); 1150 } 1151 1152 /// GetAddrOfConstantString - Returns a pointer to a character array 1153 /// containing the literal. This contents are exactly that of the 1154 /// given string, i.e. it will not be null terminated automatically; 1155 /// see GetAddrOfConstantCString. Note that whether the result is 1156 /// actually a pointer to an LLVM constant depends on 1157 /// Feature.WriteableStrings. 1158 /// 1159 /// The result has pointer to array type. 1160 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1161 const char *GlobalName) { 1162 // Don't share any string literals if writable-strings is turned on. 1163 if (Features.WritableStrings) 1164 return GenerateStringLiteral(str, false, *this, GlobalName); 1165 1166 llvm::StringMapEntry<llvm::Constant *> &Entry = 1167 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1168 1169 if (Entry.getValue()) 1170 return Entry.getValue(); 1171 1172 // Create a global variable for this. 1173 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1174 Entry.setValue(C); 1175 return C; 1176 } 1177 1178 /// GetAddrOfConstantCString - Returns a pointer to a character 1179 /// array containing the literal and a terminating '\-' 1180 /// character. The result has pointer to array type. 1181 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1182 const char *GlobalName){ 1183 return GetAddrOfConstantString(str + '\0', GlobalName); 1184 } 1185 1186 /// EmitObjCPropertyImplementations - Emit information for synthesized 1187 /// properties for an implementation. 1188 void CodeGenModule::EmitObjCPropertyImplementations(const 1189 ObjCImplementationDecl *D) { 1190 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1191 e = D->propimpl_end(); i != e; ++i) { 1192 ObjCPropertyImplDecl *PID = *i; 1193 1194 // Dynamic is just for type-checking. 1195 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1196 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1197 1198 // Determine which methods need to be implemented, some may have 1199 // been overridden. Note that ::isSynthesized is not the method 1200 // we want, that just indicates if the decl came from a 1201 // property. What we want to know is if the method is defined in 1202 // this implementation. 1203 if (!D->getInstanceMethod(PD->getGetterName())) 1204 CodeGenFunction(*this).GenerateObjCGetter( 1205 const_cast<ObjCImplementationDecl *>(D), PID); 1206 if (!PD->isReadOnly() && 1207 !D->getInstanceMethod(PD->getSetterName())) 1208 CodeGenFunction(*this).GenerateObjCSetter( 1209 const_cast<ObjCImplementationDecl *>(D), PID); 1210 } 1211 } 1212 } 1213 1214 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1215 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1216 // If an error has occurred, stop code generation, but continue 1217 // parsing and semantic analysis (to ensure all warnings and errors 1218 // are emitted). 1219 if (Diags.hasErrorOccurred()) 1220 return; 1221 1222 switch (D->getKind()) { 1223 case Decl::Function: 1224 case Decl::Var: 1225 EmitGlobal(cast<ValueDecl>(D)); 1226 break; 1227 1228 case Decl::Namespace: 1229 ErrorUnsupported(D, "namespace"); 1230 break; 1231 1232 // Objective-C Decls 1233 1234 // Forward declarations, no (immediate) code generation. 1235 case Decl::ObjCClass: 1236 case Decl::ObjCForwardProtocol: 1237 case Decl::ObjCCategory: 1238 case Decl::ObjCInterface: 1239 break; 1240 1241 case Decl::ObjCProtocol: 1242 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1243 break; 1244 1245 case Decl::ObjCCategoryImpl: 1246 // Categories have properties but don't support synthesize so we 1247 // can ignore them here. 1248 1249 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1250 break; 1251 1252 case Decl::ObjCImplementation: { 1253 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1254 EmitObjCPropertyImplementations(OMD); 1255 Runtime->GenerateClass(OMD); 1256 break; 1257 } 1258 case Decl::ObjCMethod: { 1259 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1260 // If this is not a prototype, emit the body. 1261 if (OMD->getBody()) 1262 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1263 break; 1264 } 1265 case Decl::ObjCCompatibleAlias: 1266 // compatibility-alias is a directive and has no code gen. 1267 break; 1268 1269 case Decl::LinkageSpec: { 1270 LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D); 1271 if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx) 1272 ErrorUnsupported(LSD, "linkage spec"); 1273 // FIXME: implement C++ linkage, C linkage works mostly by C 1274 // language reuse already. 1275 break; 1276 } 1277 1278 case Decl::FileScopeAsm: { 1279 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1280 std::string AsmString(AD->getAsmString()->getStrData(), 1281 AD->getAsmString()->getByteLength()); 1282 1283 const std::string &S = getModule().getModuleInlineAsm(); 1284 if (S.empty()) 1285 getModule().setModuleInlineAsm(AsmString); 1286 else 1287 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1288 break; 1289 } 1290 1291 default: 1292 // Make sure we handled everything we should, every other kind is 1293 // a non-top-level decl. FIXME: Would be nice to have an 1294 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1295 // that easily. 1296 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1297 } 1298 } 1299