xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9832a3d1e0d7e013fe1adceea2a0d99b6ec6186b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/CallingConv.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::iOS64:
64   case TargetCXXABI::GenericItanium:
65     return CreateItaniumCXXABI(CGM);
66   case TargetCXXABI::Microsoft:
67     return CreateMicrosoftCXXABI(CGM);
68   }
69 
70   llvm_unreachable("invalid C++ ABI kind");
71 }
72 
73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
74                              llvm::Module &M, const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
77       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
78       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
79       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
80       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
81       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
82       CFConstantStringClassRef(0),
83       ConstantStringClassRef(0), NSConstantStringType(0),
84       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
85       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
86       LifetimeStartFn(0), LifetimeEndFn(0),
87       SanitizerBlacklist(
88           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
89       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
90                                           : LangOpts.Sanitize) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 
109   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
110 
111   if (LangOpts.ObjC1)
112     createObjCRuntime();
113   if (LangOpts.OpenCL)
114     createOpenCLRuntime();
115   if (LangOpts.CUDA)
116     createCUDARuntime();
117 
118   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
119   if (SanOpts.Thread ||
120       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
121     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
122                            getCXXABI().getMangleContext());
123 
124   // If debug info or coverage generation is enabled, create the CGDebugInfo
125   // object.
126   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
127       CodeGenOpts.EmitGcovArcs ||
128       CodeGenOpts.EmitGcovNotes)
129     DebugInfo = new CGDebugInfo(*this);
130 
131   Block.GlobalUniqueCount = 0;
132 
133   if (C.getLangOpts().ObjCAutoRefCount)
134     ARCData = new ARCEntrypoints();
135   RRData = new RREntrypoints();
136 
137   if (!CodeGenOpts.InstrProfileInput.empty())
138     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
139 }
140 
141 CodeGenModule::~CodeGenModule() {
142   delete ObjCRuntime;
143   delete OpenCLRuntime;
144   delete CUDARuntime;
145   delete TheTargetCodeGenInfo;
146   delete TBAA;
147   delete DebugInfo;
148   delete ARCData;
149   delete RRData;
150 }
151 
152 void CodeGenModule::createObjCRuntime() {
153   // This is just isGNUFamily(), but we want to force implementors of
154   // new ABIs to decide how best to do this.
155   switch (LangOpts.ObjCRuntime.getKind()) {
156   case ObjCRuntime::GNUstep:
157   case ObjCRuntime::GCC:
158   case ObjCRuntime::ObjFW:
159     ObjCRuntime = CreateGNUObjCRuntime(*this);
160     return;
161 
162   case ObjCRuntime::FragileMacOSX:
163   case ObjCRuntime::MacOSX:
164   case ObjCRuntime::iOS:
165     ObjCRuntime = CreateMacObjCRuntime(*this);
166     return;
167   }
168   llvm_unreachable("bad runtime kind");
169 }
170 
171 void CodeGenModule::createOpenCLRuntime() {
172   OpenCLRuntime = new CGOpenCLRuntime(*this);
173 }
174 
175 void CodeGenModule::createCUDARuntime() {
176   CUDARuntime = CreateNVCUDARuntime(*this);
177 }
178 
179 void CodeGenModule::applyReplacements() {
180   for (ReplacementsTy::iterator I = Replacements.begin(),
181                                 E = Replacements.end();
182        I != E; ++I) {
183     StringRef MangledName = I->first();
184     llvm::Constant *Replacement = I->second;
185     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
186     if (!Entry)
187       continue;
188     llvm::Function *OldF = cast<llvm::Function>(Entry);
189     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
190     if (!NewF) {
191       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
192         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
193       } else {
194         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
195         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
196                CE->getOpcode() == llvm::Instruction::GetElementPtr);
197         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
198       }
199     }
200 
201     // Replace old with new, but keep the old order.
202     OldF->replaceAllUsesWith(Replacement);
203     if (NewF) {
204       NewF->removeFromParent();
205       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
206     }
207     OldF->eraseFromParent();
208   }
209 }
210 
211 void CodeGenModule::checkAliases() {
212   // Check if the constructed aliases are well formed. It is really unfortunate
213   // that we have to do this in CodeGen, but we only construct mangled names
214   // and aliases during codegen.
215   bool Error = false;
216   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
217          E = Aliases.end(); I != E; ++I) {
218     const GlobalDecl &GD = *I;
219     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
220     const AliasAttr *AA = D->getAttr<AliasAttr>();
221     StringRef MangledName = getMangledName(GD);
222     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
223     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
224     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
225     if (!GV) {
226       Error = true;
227       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
228     } else if (GV->isDeclaration()) {
229       Error = true;
230       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
231     }
232 
233     // We have to handle alias to weak aliases in here. LLVM itself disallows
234     // this since the object semantics would not match the IL one. For
235     // compatibility with gcc we implement it by just pointing the alias
236     // to its aliasee's aliasee. We also warn, since the user is probably
237     // expecting the link to be weak.
238     llvm::Constant *Aliasee = Alias->getAliasee();
239     llvm::GlobalValue *AliaseeGV;
240     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) {
241       assert((CE->getOpcode() == llvm::Instruction::BitCast ||
242               CE->getOpcode() == llvm::Instruction::AddrSpaceCast) &&
243              "Unsupported aliasee");
244       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
245     } else {
246       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
247     }
248     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
249       if (GA->mayBeOverridden()) {
250         getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
251           << GA->getAliasedGlobal()->getName() << GA->getName();
252         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
253             GA->getAliasee(), Alias->getType());
254         Alias->setAliasee(Aliasee);
255       }
256     }
257   }
258   if (!Error)
259     return;
260 
261   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
262          E = Aliases.end(); I != E; ++I) {
263     const GlobalDecl &GD = *I;
264     StringRef MangledName = getMangledName(GD);
265     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
266     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
267     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
268     Alias->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::clear() {
273   DeferredDeclsToEmit.clear();
274 }
275 
276 void CodeGenModule::Release() {
277   EmitDeferred();
278   applyReplacements();
279   checkAliases();
280   EmitCXXGlobalInitFunc();
281   EmitCXXGlobalDtorFunc();
282   EmitCXXThreadLocalInitFunc();
283   if (ObjCRuntime)
284     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
285       AddGlobalCtor(ObjCInitFunction);
286   EmitCtorList(GlobalCtors, "llvm.global_ctors");
287   EmitCtorList(GlobalDtors, "llvm.global_dtors");
288   EmitGlobalAnnotations();
289   EmitStaticExternCAliases();
290   emitLLVMUsed();
291 
292   if (CodeGenOpts.Autolink &&
293       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
294     EmitModuleLinkOptions();
295   }
296   if (CodeGenOpts.DwarfVersion)
297     // We actually want the latest version when there are conflicts.
298     // We can change from Warning to Latest if such mode is supported.
299     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
300                               CodeGenOpts.DwarfVersion);
301   if (DebugInfo)
302     // We support a single version in the linked module: error out when
303     // modules do not have the same version. We are going to implement dropping
304     // debug info when the version number is not up-to-date. Once that is
305     // done, the bitcode linker is not going to see modules with different
306     // version numbers.
307     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
308                               llvm::DEBUG_METADATA_VERSION);
309 
310   SimplifyPersonality();
311 
312   if (getCodeGenOpts().EmitDeclMetadata)
313     EmitDeclMetadata();
314 
315   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
316     EmitCoverageFile();
317 
318   if (DebugInfo)
319     DebugInfo->finalize();
320 
321   EmitVersionIdentMetadata();
322 }
323 
324 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
325   // Make sure that this type is translated.
326   Types.UpdateCompletedType(TD);
327 }
328 
329 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
330   if (!TBAA)
331     return 0;
332   return TBAA->getTBAAInfo(QTy);
333 }
334 
335 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
336   if (!TBAA)
337     return 0;
338   return TBAA->getTBAAInfoForVTablePtr();
339 }
340 
341 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
342   if (!TBAA)
343     return 0;
344   return TBAA->getTBAAStructInfo(QTy);
345 }
346 
347 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
348   if (!TBAA)
349     return 0;
350   return TBAA->getTBAAStructTypeInfo(QTy);
351 }
352 
353 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
354                                                   llvm::MDNode *AccessN,
355                                                   uint64_t O) {
356   if (!TBAA)
357     return 0;
358   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
359 }
360 
361 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
362 /// and struct-path aware TBAA, the tag has the same format:
363 /// base type, access type and offset.
364 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
365 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
366                                         llvm::MDNode *TBAAInfo,
367                                         bool ConvertTypeToTag) {
368   if (ConvertTypeToTag && TBAA)
369     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
370                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
371   else
372     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
373 }
374 
375 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
376   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
377   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
378 }
379 
380 /// ErrorUnsupported - Print out an error that codegen doesn't support the
381 /// specified stmt yet.
382 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
383   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
384                                                "cannot compile this %0 yet");
385   std::string Msg = Type;
386   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
387     << Msg << S->getSourceRange();
388 }
389 
390 /// ErrorUnsupported - Print out an error that codegen doesn't support the
391 /// specified decl yet.
392 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
393   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
394                                                "cannot compile this %0 yet");
395   std::string Msg = Type;
396   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
397 }
398 
399 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
400   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
401 }
402 
403 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
404                                         const NamedDecl *D) const {
405   // Internal definitions always have default visibility.
406   if (GV->hasLocalLinkage()) {
407     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
408     return;
409   }
410 
411   // Set visibility for definitions.
412   LinkageInfo LV = D->getLinkageAndVisibility();
413   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
414     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
415 }
416 
417 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
418   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
419       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
420       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
421       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
422       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
423 }
424 
425 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
426     CodeGenOptions::TLSModel M) {
427   switch (M) {
428   case CodeGenOptions::GeneralDynamicTLSModel:
429     return llvm::GlobalVariable::GeneralDynamicTLSModel;
430   case CodeGenOptions::LocalDynamicTLSModel:
431     return llvm::GlobalVariable::LocalDynamicTLSModel;
432   case CodeGenOptions::InitialExecTLSModel:
433     return llvm::GlobalVariable::InitialExecTLSModel;
434   case CodeGenOptions::LocalExecTLSModel:
435     return llvm::GlobalVariable::LocalExecTLSModel;
436   }
437   llvm_unreachable("Invalid TLS model!");
438 }
439 
440 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
441                                const VarDecl &D) const {
442   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
443 
444   llvm::GlobalVariable::ThreadLocalMode TLM;
445   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
446 
447   // Override the TLS model if it is explicitly specified.
448   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
449     TLM = GetLLVMTLSModel(Attr->getModel());
450   }
451 
452   GV->setThreadLocalMode(TLM);
453 }
454 
455 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
456   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
457 
458   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
459   if (!Str.empty())
460     return Str;
461 
462   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
463     IdentifierInfo *II = ND->getIdentifier();
464     assert(II && "Attempt to mangle unnamed decl.");
465 
466     Str = II->getName();
467     return Str;
468   }
469 
470   SmallString<256> Buffer;
471   llvm::raw_svector_ostream Out(Buffer);
472   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
473     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
474   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
475     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
476   else
477     getCXXABI().getMangleContext().mangleName(ND, Out);
478 
479   // Allocate space for the mangled name.
480   Out.flush();
481   size_t Length = Buffer.size();
482   char *Name = MangledNamesAllocator.Allocate<char>(Length);
483   std::copy(Buffer.begin(), Buffer.end(), Name);
484 
485   Str = StringRef(Name, Length);
486 
487   return Str;
488 }
489 
490 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
491                                         const BlockDecl *BD) {
492   MangleContext &MangleCtx = getCXXABI().getMangleContext();
493   const Decl *D = GD.getDecl();
494   llvm::raw_svector_ostream Out(Buffer.getBuffer());
495   if (D == 0)
496     MangleCtx.mangleGlobalBlock(BD,
497       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
498   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
499     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
500   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
501     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
502   else
503     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
504 }
505 
506 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
507   return getModule().getNamedValue(Name);
508 }
509 
510 /// AddGlobalCtor - Add a function to the list that will be called before
511 /// main() runs.
512 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
513   // FIXME: Type coercion of void()* types.
514   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
515 }
516 
517 /// AddGlobalDtor - Add a function to the list that will be called
518 /// when the module is unloaded.
519 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
520   // FIXME: Type coercion of void()* types.
521   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
522 }
523 
524 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
525   // Ctor function type is void()*.
526   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
527   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
528 
529   // Get the type of a ctor entry, { i32, void ()* }.
530   llvm::StructType *CtorStructTy =
531     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
532 
533   // Construct the constructor and destructor arrays.
534   SmallVector<llvm::Constant*, 8> Ctors;
535   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
536     llvm::Constant *S[] = {
537       llvm::ConstantInt::get(Int32Ty, I->second, false),
538       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
539     };
540     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
541   }
542 
543   if (!Ctors.empty()) {
544     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
545     new llvm::GlobalVariable(TheModule, AT, false,
546                              llvm::GlobalValue::AppendingLinkage,
547                              llvm::ConstantArray::get(AT, Ctors),
548                              GlobalName);
549   }
550 }
551 
552 llvm::GlobalValue::LinkageTypes
553 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
554   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
555 
556   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
557 
558   if (Linkage == GVA_Internal)
559     return llvm::Function::InternalLinkage;
560 
561   if (D->hasAttr<DLLExportAttr>())
562     return llvm::Function::ExternalLinkage;
563 
564   if (D->hasAttr<WeakAttr>())
565     return llvm::Function::WeakAnyLinkage;
566 
567   // In C99 mode, 'inline' functions are guaranteed to have a strong
568   // definition somewhere else, so we can use available_externally linkage.
569   if (Linkage == GVA_C99Inline)
570     return llvm::Function::AvailableExternallyLinkage;
571 
572   // Note that Apple's kernel linker doesn't support symbol
573   // coalescing, so we need to avoid linkonce and weak linkages there.
574   // Normally, this means we just map to internal, but for explicit
575   // instantiations we'll map to external.
576 
577   // In C++, the compiler has to emit a definition in every translation unit
578   // that references the function.  We should use linkonce_odr because
579   // a) if all references in this translation unit are optimized away, we
580   // don't need to codegen it.  b) if the function persists, it needs to be
581   // merged with other definitions. c) C++ has the ODR, so we know the
582   // definition is dependable.
583   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
584     return !Context.getLangOpts().AppleKext
585              ? llvm::Function::LinkOnceODRLinkage
586              : llvm::Function::InternalLinkage;
587 
588   // An explicit instantiation of a template has weak linkage, since
589   // explicit instantiations can occur in multiple translation units
590   // and must all be equivalent. However, we are not allowed to
591   // throw away these explicit instantiations.
592   if (Linkage == GVA_StrongODR)
593     return !Context.getLangOpts().AppleKext
594              ? llvm::Function::WeakODRLinkage
595              : llvm::Function::ExternalLinkage;
596 
597   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
598   // emitted on an as-needed basis.
599   if (isa<CXXDestructorDecl>(D) &&
600       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
601                                          GD.getDtorType()))
602     return llvm::Function::LinkOnceODRLinkage;
603 
604   // Otherwise, we have strong external linkage.
605   assert(Linkage == GVA_StrongExternal);
606   return llvm::Function::ExternalLinkage;
607 }
608 
609 
610 /// SetFunctionDefinitionAttributes - Set attributes for a global.
611 ///
612 /// FIXME: This is currently only done for aliases and functions, but not for
613 /// variables (these details are set in EmitGlobalVarDefinition for variables).
614 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
615                                                     llvm::GlobalValue *GV) {
616   SetCommonAttributes(D, GV);
617 }
618 
619 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
620                                               const CGFunctionInfo &Info,
621                                               llvm::Function *F) {
622   unsigned CallingConv;
623   AttributeListType AttributeList;
624   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
625   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
626   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
627 }
628 
629 /// Determines whether the language options require us to model
630 /// unwind exceptions.  We treat -fexceptions as mandating this
631 /// except under the fragile ObjC ABI with only ObjC exceptions
632 /// enabled.  This means, for example, that C with -fexceptions
633 /// enables this.
634 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
635   // If exceptions are completely disabled, obviously this is false.
636   if (!LangOpts.Exceptions) return false;
637 
638   // If C++ exceptions are enabled, this is true.
639   if (LangOpts.CXXExceptions) return true;
640 
641   // If ObjC exceptions are enabled, this depends on the ABI.
642   if (LangOpts.ObjCExceptions) {
643     return LangOpts.ObjCRuntime.hasUnwindExceptions();
644   }
645 
646   return true;
647 }
648 
649 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
650                                                            llvm::Function *F) {
651   llvm::AttrBuilder B;
652 
653   if (CodeGenOpts.UnwindTables)
654     B.addAttribute(llvm::Attribute::UWTable);
655 
656   if (!hasUnwindExceptions(LangOpts))
657     B.addAttribute(llvm::Attribute::NoUnwind);
658 
659   if (D->hasAttr<NakedAttr>()) {
660     // Naked implies noinline: we should not be inlining such functions.
661     B.addAttribute(llvm::Attribute::Naked);
662     B.addAttribute(llvm::Attribute::NoInline);
663   } else if (D->hasAttr<OptimizeNoneAttr>()) {
664     // OptimizeNone implies noinline; we should not be inlining such functions.
665     B.addAttribute(llvm::Attribute::OptimizeNone);
666     B.addAttribute(llvm::Attribute::NoInline);
667   } else if (D->hasAttr<NoDuplicateAttr>()) {
668     B.addAttribute(llvm::Attribute::NoDuplicate);
669   } else if (D->hasAttr<NoInlineAttr>()) {
670     B.addAttribute(llvm::Attribute::NoInline);
671   } else if (D->hasAttr<AlwaysInlineAttr>() &&
672              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
673                                               llvm::Attribute::NoInline)) {
674     // (noinline wins over always_inline, and we can't specify both in IR)
675     B.addAttribute(llvm::Attribute::AlwaysInline);
676   }
677 
678   if (D->hasAttr<ColdAttr>()) {
679     B.addAttribute(llvm::Attribute::OptimizeForSize);
680     B.addAttribute(llvm::Attribute::Cold);
681   }
682 
683   if (D->hasAttr<MinSizeAttr>())
684     B.addAttribute(llvm::Attribute::MinSize);
685 
686   if (D->hasAttr<OptimizeNoneAttr>()) {
687     // OptimizeNone wins over OptimizeForSize and MinSize.
688     B.removeAttribute(llvm::Attribute::OptimizeForSize);
689     B.removeAttribute(llvm::Attribute::MinSize);
690   }
691 
692   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
693     B.addAttribute(llvm::Attribute::StackProtect);
694   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
695     B.addAttribute(llvm::Attribute::StackProtectStrong);
696   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
697     B.addAttribute(llvm::Attribute::StackProtectReq);
698 
699   // Add sanitizer attributes if function is not blacklisted.
700   if (!SanitizerBlacklist->isIn(*F)) {
701     // When AddressSanitizer is enabled, set SanitizeAddress attribute
702     // unless __attribute__((no_sanitize_address)) is used.
703     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
704       B.addAttribute(llvm::Attribute::SanitizeAddress);
705     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
706     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
707       B.addAttribute(llvm::Attribute::SanitizeThread);
708     }
709     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
710     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
711       B.addAttribute(llvm::Attribute::SanitizeMemory);
712   }
713 
714   F->addAttributes(llvm::AttributeSet::FunctionIndex,
715                    llvm::AttributeSet::get(
716                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
717 
718   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
719     F->setUnnamedAddr(true);
720   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
721     if (MD->isVirtual())
722       F->setUnnamedAddr(true);
723 
724   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
725   if (alignment)
726     F->setAlignment(alignment);
727 
728   // C++ ABI requires 2-byte alignment for member functions.
729   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
730     F->setAlignment(2);
731 }
732 
733 void CodeGenModule::SetCommonAttributes(const Decl *D,
734                                         llvm::GlobalValue *GV) {
735   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
736     setGlobalVisibility(GV, ND);
737   else
738     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
739 
740   if (D->hasAttr<UsedAttr>())
741     addUsedGlobal(GV);
742 
743   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
744     GV->setSection(SA->getName());
745 
746   // Alias cannot have attributes. Filter them here.
747   if (!isa<llvm::GlobalAlias>(GV))
748     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
749 }
750 
751 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
752                                                   llvm::Function *F,
753                                                   const CGFunctionInfo &FI) {
754   SetLLVMFunctionAttributes(D, FI, F);
755   SetLLVMFunctionAttributesForDefinition(D, F);
756 
757   F->setLinkage(llvm::Function::InternalLinkage);
758 
759   SetCommonAttributes(D, F);
760 }
761 
762 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
763                                           llvm::Function *F,
764                                           bool IsIncompleteFunction) {
765   if (unsigned IID = F->getIntrinsicID()) {
766     // If this is an intrinsic function, set the function's attributes
767     // to the intrinsic's attributes.
768     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
769                                                     (llvm::Intrinsic::ID)IID));
770     return;
771   }
772 
773   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
774 
775   if (!IsIncompleteFunction)
776     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
777 
778   // Add the Returned attribute for "this", except for iOS 5 and earlier
779   // where substantial code, including the libstdc++ dylib, was compiled with
780   // GCC and does not actually return "this".
781   if (getCXXABI().HasThisReturn(GD) &&
782       !(getTarget().getTriple().isiOS() &&
783         getTarget().getTriple().isOSVersionLT(6))) {
784     assert(!F->arg_empty() &&
785            F->arg_begin()->getType()
786              ->canLosslesslyBitCastTo(F->getReturnType()) &&
787            "unexpected this return");
788     F->addAttribute(1, llvm::Attribute::Returned);
789   }
790 
791   // Only a few attributes are set on declarations; these may later be
792   // overridden by a definition.
793 
794   if (FD->hasAttr<DLLImportAttr>()) {
795     F->setLinkage(llvm::Function::ExternalLinkage);
796     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
797   } else if (FD->hasAttr<WeakAttr>() ||
798              FD->isWeakImported()) {
799     // "extern_weak" is overloaded in LLVM; we probably should have
800     // separate linkage types for this.
801     F->setLinkage(llvm::Function::ExternalWeakLinkage);
802   } else {
803     F->setLinkage(llvm::Function::ExternalLinkage);
804     if (FD->hasAttr<DLLExportAttr>())
805       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
806 
807     LinkageInfo LV = FD->getLinkageAndVisibility();
808     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
809       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
810     }
811   }
812 
813   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
814     F->setSection(SA->getName());
815 
816   // A replaceable global allocation function does not act like a builtin by
817   // default, only if it is invoked by a new-expression or delete-expression.
818   if (FD->isReplaceableGlobalAllocationFunction())
819     F->addAttribute(llvm::AttributeSet::FunctionIndex,
820                     llvm::Attribute::NoBuiltin);
821 }
822 
823 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
824   assert(!GV->isDeclaration() &&
825          "Only globals with definition can force usage.");
826   LLVMUsed.push_back(GV);
827 }
828 
829 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
830   assert(!GV->isDeclaration() &&
831          "Only globals with definition can force usage.");
832   LLVMCompilerUsed.push_back(GV);
833 }
834 
835 static void emitUsed(CodeGenModule &CGM, StringRef Name,
836                      std::vector<llvm::WeakVH> &List) {
837   // Don't create llvm.used if there is no need.
838   if (List.empty())
839     return;
840 
841   // Convert List to what ConstantArray needs.
842   SmallVector<llvm::Constant*, 8> UsedArray;
843   UsedArray.resize(List.size());
844   for (unsigned i = 0, e = List.size(); i != e; ++i) {
845     UsedArray[i] =
846      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
847                                     CGM.Int8PtrTy);
848   }
849 
850   if (UsedArray.empty())
851     return;
852   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
853 
854   llvm::GlobalVariable *GV =
855     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
856                              llvm::GlobalValue::AppendingLinkage,
857                              llvm::ConstantArray::get(ATy, UsedArray),
858                              Name);
859 
860   GV->setSection("llvm.metadata");
861 }
862 
863 void CodeGenModule::emitLLVMUsed() {
864   emitUsed(*this, "llvm.used", LLVMUsed);
865   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
866 }
867 
868 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
869   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
870   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
871 }
872 
873 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
874   llvm::SmallString<32> Opt;
875   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
876   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
877   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
878 }
879 
880 void CodeGenModule::AddDependentLib(StringRef Lib) {
881   llvm::SmallString<24> Opt;
882   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
883   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
884   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
885 }
886 
887 /// \brief Add link options implied by the given module, including modules
888 /// it depends on, using a postorder walk.
889 static void addLinkOptionsPostorder(CodeGenModule &CGM,
890                                     Module *Mod,
891                                     SmallVectorImpl<llvm::Value *> &Metadata,
892                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
893   // Import this module's parent.
894   if (Mod->Parent && Visited.insert(Mod->Parent)) {
895     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
896   }
897 
898   // Import this module's dependencies.
899   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
900     if (Visited.insert(Mod->Imports[I-1]))
901       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
902   }
903 
904   // Add linker options to link against the libraries/frameworks
905   // described by this module.
906   llvm::LLVMContext &Context = CGM.getLLVMContext();
907   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
908     // Link against a framework.  Frameworks are currently Darwin only, so we
909     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
910     if (Mod->LinkLibraries[I-1].IsFramework) {
911       llvm::Value *Args[2] = {
912         llvm::MDString::get(Context, "-framework"),
913         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
914       };
915 
916       Metadata.push_back(llvm::MDNode::get(Context, Args));
917       continue;
918     }
919 
920     // Link against a library.
921     llvm::SmallString<24> Opt;
922     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
923       Mod->LinkLibraries[I-1].Library, Opt);
924     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
925     Metadata.push_back(llvm::MDNode::get(Context, OptString));
926   }
927 }
928 
929 void CodeGenModule::EmitModuleLinkOptions() {
930   // Collect the set of all of the modules we want to visit to emit link
931   // options, which is essentially the imported modules and all of their
932   // non-explicit child modules.
933   llvm::SetVector<clang::Module *> LinkModules;
934   llvm::SmallPtrSet<clang::Module *, 16> Visited;
935   SmallVector<clang::Module *, 16> Stack;
936 
937   // Seed the stack with imported modules.
938   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
939                                                MEnd = ImportedModules.end();
940        M != MEnd; ++M) {
941     if (Visited.insert(*M))
942       Stack.push_back(*M);
943   }
944 
945   // Find all of the modules to import, making a little effort to prune
946   // non-leaf modules.
947   while (!Stack.empty()) {
948     clang::Module *Mod = Stack.pop_back_val();
949 
950     bool AnyChildren = false;
951 
952     // Visit the submodules of this module.
953     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
954                                         SubEnd = Mod->submodule_end();
955          Sub != SubEnd; ++Sub) {
956       // Skip explicit children; they need to be explicitly imported to be
957       // linked against.
958       if ((*Sub)->IsExplicit)
959         continue;
960 
961       if (Visited.insert(*Sub)) {
962         Stack.push_back(*Sub);
963         AnyChildren = true;
964       }
965     }
966 
967     // We didn't find any children, so add this module to the list of
968     // modules to link against.
969     if (!AnyChildren) {
970       LinkModules.insert(Mod);
971     }
972   }
973 
974   // Add link options for all of the imported modules in reverse topological
975   // order.  We don't do anything to try to order import link flags with respect
976   // to linker options inserted by things like #pragma comment().
977   SmallVector<llvm::Value *, 16> MetadataArgs;
978   Visited.clear();
979   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
980                                                MEnd = LinkModules.end();
981        M != MEnd; ++M) {
982     if (Visited.insert(*M))
983       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
984   }
985   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
986   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
987 
988   // Add the linker options metadata flag.
989   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
990                             llvm::MDNode::get(getLLVMContext(),
991                                               LinkerOptionsMetadata));
992 }
993 
994 void CodeGenModule::EmitDeferred() {
995   // Emit code for any potentially referenced deferred decls.  Since a
996   // previously unused static decl may become used during the generation of code
997   // for a static function, iterate until no changes are made.
998 
999   while (true) {
1000     if (!DeferredVTables.empty()) {
1001       EmitDeferredVTables();
1002 
1003       // Emitting a v-table doesn't directly cause more v-tables to
1004       // become deferred, although it can cause functions to be
1005       // emitted that then need those v-tables.
1006       assert(DeferredVTables.empty());
1007     }
1008 
1009     // Stop if we're out of both deferred v-tables and deferred declarations.
1010     if (DeferredDeclsToEmit.empty()) break;
1011 
1012     DeferredGlobal &G = DeferredDeclsToEmit.back();
1013     GlobalDecl D = G.GD;
1014     llvm::GlobalValue *GV = G.GV;
1015     DeferredDeclsToEmit.pop_back();
1016 
1017     assert(GV == GetGlobalValue(getMangledName(D)));
1018     // Check to see if we've already emitted this.  This is necessary
1019     // for a couple of reasons: first, decls can end up in the
1020     // deferred-decls queue multiple times, and second, decls can end
1021     // up with definitions in unusual ways (e.g. by an extern inline
1022     // function acquiring a strong function redefinition).  Just
1023     // ignore these cases.
1024     if(!GV->isDeclaration())
1025       continue;
1026 
1027     // Otherwise, emit the definition and move on to the next one.
1028     EmitGlobalDefinition(D, GV);
1029   }
1030 }
1031 
1032 void CodeGenModule::EmitGlobalAnnotations() {
1033   if (Annotations.empty())
1034     return;
1035 
1036   // Create a new global variable for the ConstantStruct in the Module.
1037   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1038     Annotations[0]->getType(), Annotations.size()), Annotations);
1039   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1040     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1041     "llvm.global.annotations");
1042   gv->setSection(AnnotationSection);
1043 }
1044 
1045 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1046   llvm::Constant *&AStr = AnnotationStrings[Str];
1047   if (AStr)
1048     return AStr;
1049 
1050   // Not found yet, create a new global.
1051   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1052   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1053     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1054   gv->setSection(AnnotationSection);
1055   gv->setUnnamedAddr(true);
1056   AStr = gv;
1057   return gv;
1058 }
1059 
1060 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1061   SourceManager &SM = getContext().getSourceManager();
1062   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1063   if (PLoc.isValid())
1064     return EmitAnnotationString(PLoc.getFilename());
1065   return EmitAnnotationString(SM.getBufferName(Loc));
1066 }
1067 
1068 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1069   SourceManager &SM = getContext().getSourceManager();
1070   PresumedLoc PLoc = SM.getPresumedLoc(L);
1071   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1072     SM.getExpansionLineNumber(L);
1073   return llvm::ConstantInt::get(Int32Ty, LineNo);
1074 }
1075 
1076 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1077                                                 const AnnotateAttr *AA,
1078                                                 SourceLocation L) {
1079   // Get the globals for file name, annotation, and the line number.
1080   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1081                  *UnitGV = EmitAnnotationUnit(L),
1082                  *LineNoCst = EmitAnnotationLineNo(L);
1083 
1084   // Create the ConstantStruct for the global annotation.
1085   llvm::Constant *Fields[4] = {
1086     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1087     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1088     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1089     LineNoCst
1090   };
1091   return llvm::ConstantStruct::getAnon(Fields);
1092 }
1093 
1094 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1095                                          llvm::GlobalValue *GV) {
1096   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1097   // Get the struct elements for these annotations.
1098   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1099     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1100 }
1101 
1102 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1103   // Never defer when EmitAllDecls is specified.
1104   if (LangOpts.EmitAllDecls)
1105     return false;
1106 
1107   return !getContext().DeclMustBeEmitted(Global);
1108 }
1109 
1110 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1111     const CXXUuidofExpr* E) {
1112   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1113   // well-formed.
1114   StringRef Uuid = E->getUuidAsStringRef(Context);
1115   std::string Name = "_GUID_" + Uuid.lower();
1116   std::replace(Name.begin(), Name.end(), '-', '_');
1117 
1118   // Look for an existing global.
1119   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1120     return GV;
1121 
1122   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1123   assert(Init && "failed to initialize as constant");
1124 
1125   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1126       getModule(), Init->getType(),
1127       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1128   return GV;
1129 }
1130 
1131 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1132   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1133   assert(AA && "No alias?");
1134 
1135   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1136 
1137   // See if there is already something with the target's name in the module.
1138   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1139   if (Entry) {
1140     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1141     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1142   }
1143 
1144   llvm::Constant *Aliasee;
1145   if (isa<llvm::FunctionType>(DeclTy))
1146     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1147                                       GlobalDecl(cast<FunctionDecl>(VD)),
1148                                       /*ForVTable=*/false);
1149   else
1150     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1151                                     llvm::PointerType::getUnqual(DeclTy), 0);
1152 
1153   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1154   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1155   WeakRefReferences.insert(F);
1156 
1157   return Aliasee;
1158 }
1159 
1160 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1161   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1162 
1163   // Weak references don't produce any output by themselves.
1164   if (Global->hasAttr<WeakRefAttr>())
1165     return;
1166 
1167   // If this is an alias definition (which otherwise looks like a declaration)
1168   // emit it now.
1169   if (Global->hasAttr<AliasAttr>())
1170     return EmitAliasDefinition(GD);
1171 
1172   // If this is CUDA, be selective about which declarations we emit.
1173   if (LangOpts.CUDA) {
1174     if (CodeGenOpts.CUDAIsDevice) {
1175       if (!Global->hasAttr<CUDADeviceAttr>() &&
1176           !Global->hasAttr<CUDAGlobalAttr>() &&
1177           !Global->hasAttr<CUDAConstantAttr>() &&
1178           !Global->hasAttr<CUDASharedAttr>())
1179         return;
1180     } else {
1181       if (!Global->hasAttr<CUDAHostAttr>() && (
1182             Global->hasAttr<CUDADeviceAttr>() ||
1183             Global->hasAttr<CUDAConstantAttr>() ||
1184             Global->hasAttr<CUDASharedAttr>()))
1185         return;
1186     }
1187   }
1188 
1189   // Ignore declarations, they will be emitted on their first use.
1190   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1191     // Forward declarations are emitted lazily on first use.
1192     if (!FD->doesThisDeclarationHaveABody()) {
1193       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1194         return;
1195 
1196       StringRef MangledName = getMangledName(GD);
1197 
1198       // Compute the function info and LLVM type.
1199       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1200       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1201 
1202       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1203                               /*DontDefer=*/false);
1204       return;
1205     }
1206   } else {
1207     const VarDecl *VD = cast<VarDecl>(Global);
1208     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1209 
1210     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1211       return;
1212   }
1213 
1214   // Defer code generation when possible if this is a static definition, inline
1215   // function etc.  These we only want to emit if they are used.
1216   if (!MayDeferGeneration(Global)) {
1217     // Emit the definition if it can't be deferred.
1218     EmitGlobalDefinition(GD);
1219     return;
1220   }
1221 
1222   // If we're deferring emission of a C++ variable with an
1223   // initializer, remember the order in which it appeared in the file.
1224   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1225       cast<VarDecl>(Global)->hasInit()) {
1226     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1227     CXXGlobalInits.push_back(0);
1228   }
1229 
1230   // If the value has already been used, add it directly to the
1231   // DeferredDeclsToEmit list.
1232   StringRef MangledName = getMangledName(GD);
1233   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1234     addDeferredDeclToEmit(GV, GD);
1235   else {
1236     // Otherwise, remember that we saw a deferred decl with this name.  The
1237     // first use of the mangled name will cause it to move into
1238     // DeferredDeclsToEmit.
1239     DeferredDecls[MangledName] = GD;
1240   }
1241 }
1242 
1243 namespace {
1244   struct FunctionIsDirectlyRecursive :
1245     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1246     const StringRef Name;
1247     const Builtin::Context &BI;
1248     bool Result;
1249     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1250       Name(N), BI(C), Result(false) {
1251     }
1252     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1253 
1254     bool TraverseCallExpr(CallExpr *E) {
1255       const FunctionDecl *FD = E->getDirectCallee();
1256       if (!FD)
1257         return true;
1258       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1259       if (Attr && Name == Attr->getLabel()) {
1260         Result = true;
1261         return false;
1262       }
1263       unsigned BuiltinID = FD->getBuiltinID();
1264       if (!BuiltinID)
1265         return true;
1266       StringRef BuiltinName = BI.GetName(BuiltinID);
1267       if (BuiltinName.startswith("__builtin_") &&
1268           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1269         Result = true;
1270         return false;
1271       }
1272       return true;
1273     }
1274   };
1275 }
1276 
1277 // isTriviallyRecursive - Check if this function calls another
1278 // decl that, because of the asm attribute or the other decl being a builtin,
1279 // ends up pointing to itself.
1280 bool
1281 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1282   StringRef Name;
1283   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1284     // asm labels are a special kind of mangling we have to support.
1285     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1286     if (!Attr)
1287       return false;
1288     Name = Attr->getLabel();
1289   } else {
1290     Name = FD->getName();
1291   }
1292 
1293   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1294   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1295   return Walker.Result;
1296 }
1297 
1298 bool
1299 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1300   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1301     return true;
1302   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1303   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1304     return false;
1305   // PR9614. Avoid cases where the source code is lying to us. An available
1306   // externally function should have an equivalent function somewhere else,
1307   // but a function that calls itself is clearly not equivalent to the real
1308   // implementation.
1309   // This happens in glibc's btowc and in some configure checks.
1310   return !isTriviallyRecursive(F);
1311 }
1312 
1313 /// If the type for the method's class was generated by
1314 /// CGDebugInfo::createContextChain(), the cache contains only a
1315 /// limited DIType without any declarations. Since EmitFunctionStart()
1316 /// needs to find the canonical declaration for each method, we need
1317 /// to construct the complete type prior to emitting the method.
1318 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1319   if (!D->isInstance())
1320     return;
1321 
1322   if (CGDebugInfo *DI = getModuleDebugInfo())
1323     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1324       const PointerType *ThisPtr =
1325         cast<PointerType>(D->getThisType(getContext()));
1326       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1327     }
1328 }
1329 
1330 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1331   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1332 
1333   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1334                                  Context.getSourceManager(),
1335                                  "Generating code for declaration");
1336 
1337   if (isa<FunctionDecl>(D)) {
1338     // At -O0, don't generate IR for functions with available_externally
1339     // linkage.
1340     if (!shouldEmitFunction(GD))
1341       return;
1342 
1343     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1344       CompleteDIClassType(Method);
1345       // Make sure to emit the definition(s) before we emit the thunks.
1346       // This is necessary for the generation of certain thunks.
1347       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1348         EmitCXXConstructor(CD, GD.getCtorType());
1349       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1350         EmitCXXDestructor(DD, GD.getDtorType());
1351       else
1352         EmitGlobalFunctionDefinition(GD, GV);
1353 
1354       if (Method->isVirtual())
1355         getVTables().EmitThunks(GD);
1356 
1357       return;
1358     }
1359 
1360     return EmitGlobalFunctionDefinition(GD, GV);
1361   }
1362 
1363   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1364     return EmitGlobalVarDefinition(VD);
1365 
1366   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1367 }
1368 
1369 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1370 /// module, create and return an llvm Function with the specified type. If there
1371 /// is something in the module with the specified name, return it potentially
1372 /// bitcasted to the right type.
1373 ///
1374 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1375 /// to set the attributes on the function when it is first created.
1376 llvm::Constant *
1377 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1378                                        llvm::Type *Ty,
1379                                        GlobalDecl GD, bool ForVTable,
1380                                        bool DontDefer,
1381                                        llvm::AttributeSet ExtraAttrs) {
1382   const Decl *D = GD.getDecl();
1383 
1384   // Lookup the entry, lazily creating it if necessary.
1385   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1386   if (Entry) {
1387     if (WeakRefReferences.erase(Entry)) {
1388       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1389       if (FD && !FD->hasAttr<WeakAttr>())
1390         Entry->setLinkage(llvm::Function::ExternalLinkage);
1391     }
1392 
1393     if (Entry->getType()->getElementType() == Ty)
1394       return Entry;
1395 
1396     // Make sure the result is of the correct type.
1397     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1398   }
1399 
1400   // This function doesn't have a complete type (for example, the return
1401   // type is an incomplete struct). Use a fake type instead, and make
1402   // sure not to try to set attributes.
1403   bool IsIncompleteFunction = false;
1404 
1405   llvm::FunctionType *FTy;
1406   if (isa<llvm::FunctionType>(Ty)) {
1407     FTy = cast<llvm::FunctionType>(Ty);
1408   } else {
1409     FTy = llvm::FunctionType::get(VoidTy, false);
1410     IsIncompleteFunction = true;
1411   }
1412 
1413   llvm::Function *F = llvm::Function::Create(FTy,
1414                                              llvm::Function::ExternalLinkage,
1415                                              MangledName, &getModule());
1416   assert(F->getName() == MangledName && "name was uniqued!");
1417   if (D)
1418     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1419   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1420     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1421     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1422                      llvm::AttributeSet::get(VMContext,
1423                                              llvm::AttributeSet::FunctionIndex,
1424                                              B));
1425   }
1426 
1427   if (!DontDefer) {
1428     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1429     // each other bottoming out with the base dtor.  Therefore we emit non-base
1430     // dtors on usage, even if there is no dtor definition in the TU.
1431     if (D && isa<CXXDestructorDecl>(D) &&
1432         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1433                                            GD.getDtorType()))
1434       addDeferredDeclToEmit(F, GD);
1435 
1436     // This is the first use or definition of a mangled name.  If there is a
1437     // deferred decl with this name, remember that we need to emit it at the end
1438     // of the file.
1439     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1440     if (DDI != DeferredDecls.end()) {
1441       // Move the potentially referenced deferred decl to the
1442       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1443       // don't need it anymore).
1444       addDeferredDeclToEmit(F, DDI->second);
1445       DeferredDecls.erase(DDI);
1446 
1447       // Otherwise, if this is a sized deallocation function, emit a weak
1448       // definition
1449       // for it at the end of the translation unit.
1450     } else if (D && cast<FunctionDecl>(D)
1451                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1452       addDeferredDeclToEmit(F, GD);
1453 
1454       // Otherwise, there are cases we have to worry about where we're
1455       // using a declaration for which we must emit a definition but where
1456       // we might not find a top-level definition:
1457       //   - member functions defined inline in their classes
1458       //   - friend functions defined inline in some class
1459       //   - special member functions with implicit definitions
1460       // If we ever change our AST traversal to walk into class methods,
1461       // this will be unnecessary.
1462       //
1463       // We also don't emit a definition for a function if it's going to be an
1464       // entry
1465       // in a vtable, unless it's already marked as used.
1466     } else if (getLangOpts().CPlusPlus && D) {
1467       // Look for a declaration that's lexically in a record.
1468       const FunctionDecl *FD = cast<FunctionDecl>(D);
1469       FD = FD->getMostRecentDecl();
1470       do {
1471         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1472           if (FD->isImplicit() && !ForVTable) {
1473             assert(FD->isUsed() &&
1474                    "Sema didn't mark implicit function as used!");
1475             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1476             break;
1477           } else if (FD->doesThisDeclarationHaveABody()) {
1478             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1479             break;
1480           }
1481         }
1482         FD = FD->getPreviousDecl();
1483       } while (FD);
1484     }
1485   }
1486 
1487   // Make sure the result is of the requested type.
1488   if (!IsIncompleteFunction) {
1489     assert(F->getType()->getElementType() == Ty);
1490     return F;
1491   }
1492 
1493   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1494   return llvm::ConstantExpr::getBitCast(F, PTy);
1495 }
1496 
1497 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1498 /// non-null, then this function will use the specified type if it has to
1499 /// create it (this occurs when we see a definition of the function).
1500 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1501                                                  llvm::Type *Ty,
1502                                                  bool ForVTable,
1503                                                  bool DontDefer) {
1504   // If there was no specific requested type, just convert it now.
1505   if (!Ty)
1506     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1507 
1508   StringRef MangledName = getMangledName(GD);
1509   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1510 }
1511 
1512 /// CreateRuntimeFunction - Create a new runtime function with the specified
1513 /// type and name.
1514 llvm::Constant *
1515 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1516                                      StringRef Name,
1517                                      llvm::AttributeSet ExtraAttrs) {
1518   llvm::Constant *C =
1519       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1520                               /*DontDefer=*/false, ExtraAttrs);
1521   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1522     if (F->empty())
1523       F->setCallingConv(getRuntimeCC());
1524   return C;
1525 }
1526 
1527 /// isTypeConstant - Determine whether an object of this type can be emitted
1528 /// as a constant.
1529 ///
1530 /// If ExcludeCtor is true, the duration when the object's constructor runs
1531 /// will not be considered. The caller will need to verify that the object is
1532 /// not written to during its construction.
1533 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1534   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1535     return false;
1536 
1537   if (Context.getLangOpts().CPlusPlus) {
1538     if (const CXXRecordDecl *Record
1539           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1540       return ExcludeCtor && !Record->hasMutableFields() &&
1541              Record->hasTrivialDestructor();
1542   }
1543 
1544   return true;
1545 }
1546 
1547 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1548 /// create and return an llvm GlobalVariable with the specified type.  If there
1549 /// is something in the module with the specified name, return it potentially
1550 /// bitcasted to the right type.
1551 ///
1552 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1553 /// to set the attributes on the global when it is first created.
1554 llvm::Constant *
1555 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1556                                      llvm::PointerType *Ty,
1557                                      const VarDecl *D,
1558                                      bool UnnamedAddr) {
1559   // Lookup the entry, lazily creating it if necessary.
1560   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1561   if (Entry) {
1562     if (WeakRefReferences.erase(Entry)) {
1563       if (D && !D->hasAttr<WeakAttr>())
1564         Entry->setLinkage(llvm::Function::ExternalLinkage);
1565     }
1566 
1567     if (UnnamedAddr)
1568       Entry->setUnnamedAddr(true);
1569 
1570     if (Entry->getType() == Ty)
1571       return Entry;
1572 
1573     // Make sure the result is of the correct type.
1574     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1575       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1576 
1577     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1578   }
1579 
1580   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1581   llvm::GlobalVariable *GV =
1582     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1583                              llvm::GlobalValue::ExternalLinkage,
1584                              0, MangledName, 0,
1585                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1586 
1587   // This is the first use or definition of a mangled name.  If there is a
1588   // deferred decl with this name, remember that we need to emit it at the end
1589   // of the file.
1590   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1591   if (DDI != DeferredDecls.end()) {
1592     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1593     // list, and remove it from DeferredDecls (since we don't need it anymore).
1594     addDeferredDeclToEmit(GV, DDI->second);
1595     DeferredDecls.erase(DDI);
1596   }
1597 
1598   // Handle things which are present even on external declarations.
1599   if (D) {
1600     // FIXME: This code is overly simple and should be merged with other global
1601     // handling.
1602     GV->setConstant(isTypeConstant(D->getType(), false));
1603 
1604     // Set linkage and visibility in case we never see a definition.
1605     LinkageInfo LV = D->getLinkageAndVisibility();
1606     if (LV.getLinkage() != ExternalLinkage) {
1607       // Don't set internal linkage on declarations.
1608     } else {
1609       if (D->hasAttr<DLLImportAttr>()) {
1610         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1611         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1612       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1613         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1614 
1615       // Set visibility on a declaration only if it's explicit.
1616       if (LV.isVisibilityExplicit())
1617         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1618     }
1619 
1620     if (D->getTLSKind()) {
1621       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1622         CXXThreadLocals.push_back(std::make_pair(D, GV));
1623       setTLSMode(GV, *D);
1624     }
1625 
1626     // If required by the ABI, treat declarations of static data members with
1627     // inline initializers as definitions.
1628     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1629         D->isStaticDataMember() && D->hasInit() &&
1630         !D->isThisDeclarationADefinition())
1631       EmitGlobalVarDefinition(D);
1632   }
1633 
1634   if (AddrSpace != Ty->getAddressSpace())
1635     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1636 
1637   if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1638       D->getLanguageLinkage() == CLanguageLinkage &&
1639       D->getType().isConstant(Context) &&
1640       isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1641     GV->setSection(".cp.rodata");
1642 
1643   return GV;
1644 }
1645 
1646 
1647 llvm::GlobalVariable *
1648 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1649                                       llvm::Type *Ty,
1650                                       llvm::GlobalValue::LinkageTypes Linkage) {
1651   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1652   llvm::GlobalVariable *OldGV = 0;
1653 
1654 
1655   if (GV) {
1656     // Check if the variable has the right type.
1657     if (GV->getType()->getElementType() == Ty)
1658       return GV;
1659 
1660     // Because C++ name mangling, the only way we can end up with an already
1661     // existing global with the same name is if it has been declared extern "C".
1662     assert(GV->isDeclaration() && "Declaration has wrong type!");
1663     OldGV = GV;
1664   }
1665 
1666   // Create a new variable.
1667   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1668                                 Linkage, 0, Name);
1669 
1670   if (OldGV) {
1671     // Replace occurrences of the old variable if needed.
1672     GV->takeName(OldGV);
1673 
1674     if (!OldGV->use_empty()) {
1675       llvm::Constant *NewPtrForOldDecl =
1676       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1677       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1678     }
1679 
1680     OldGV->eraseFromParent();
1681   }
1682 
1683   return GV;
1684 }
1685 
1686 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1687 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1688 /// then it will be created with the specified type instead of whatever the
1689 /// normal requested type would be.
1690 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1691                                                   llvm::Type *Ty) {
1692   assert(D->hasGlobalStorage() && "Not a global variable");
1693   QualType ASTTy = D->getType();
1694   if (Ty == 0)
1695     Ty = getTypes().ConvertTypeForMem(ASTTy);
1696 
1697   llvm::PointerType *PTy =
1698     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1699 
1700   StringRef MangledName = getMangledName(D);
1701   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1702 }
1703 
1704 /// CreateRuntimeVariable - Create a new runtime global variable with the
1705 /// specified type and name.
1706 llvm::Constant *
1707 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1708                                      StringRef Name) {
1709   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1710                                true);
1711 }
1712 
1713 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1714   assert(!D->getInit() && "Cannot emit definite definitions here!");
1715 
1716   if (MayDeferGeneration(D)) {
1717     // If we have not seen a reference to this variable yet, place it
1718     // into the deferred declarations table to be emitted if needed
1719     // later.
1720     StringRef MangledName = getMangledName(D);
1721     if (!GetGlobalValue(MangledName)) {
1722       DeferredDecls[MangledName] = D;
1723       return;
1724     }
1725   }
1726 
1727   // The tentative definition is the only definition.
1728   EmitGlobalVarDefinition(D);
1729 }
1730 
1731 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1732     return Context.toCharUnitsFromBits(
1733       TheDataLayout.getTypeStoreSizeInBits(Ty));
1734 }
1735 
1736 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1737                                                  unsigned AddrSpace) {
1738   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1739     if (D->hasAttr<CUDAConstantAttr>())
1740       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1741     else if (D->hasAttr<CUDASharedAttr>())
1742       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1743     else
1744       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1745   }
1746 
1747   return AddrSpace;
1748 }
1749 
1750 template<typename SomeDecl>
1751 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1752                                                llvm::GlobalValue *GV) {
1753   if (!getLangOpts().CPlusPlus)
1754     return;
1755 
1756   // Must have 'used' attribute, or else inline assembly can't rely on
1757   // the name existing.
1758   if (!D->template hasAttr<UsedAttr>())
1759     return;
1760 
1761   // Must have internal linkage and an ordinary name.
1762   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1763     return;
1764 
1765   // Must be in an extern "C" context. Entities declared directly within
1766   // a record are not extern "C" even if the record is in such a context.
1767   const SomeDecl *First = D->getFirstDecl();
1768   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1769     return;
1770 
1771   // OK, this is an internal linkage entity inside an extern "C" linkage
1772   // specification. Make a note of that so we can give it the "expected"
1773   // mangled name if nothing else is using that name.
1774   std::pair<StaticExternCMap::iterator, bool> R =
1775       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1776 
1777   // If we have multiple internal linkage entities with the same name
1778   // in extern "C" regions, none of them gets that name.
1779   if (!R.second)
1780     R.first->second = 0;
1781 }
1782 
1783 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1784   llvm::Constant *Init = 0;
1785   QualType ASTTy = D->getType();
1786   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1787   bool NeedsGlobalCtor = false;
1788   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1789 
1790   const VarDecl *InitDecl;
1791   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1792 
1793   if (!InitExpr) {
1794     // This is a tentative definition; tentative definitions are
1795     // implicitly initialized with { 0 }.
1796     //
1797     // Note that tentative definitions are only emitted at the end of
1798     // a translation unit, so they should never have incomplete
1799     // type. In addition, EmitTentativeDefinition makes sure that we
1800     // never attempt to emit a tentative definition if a real one
1801     // exists. A use may still exists, however, so we still may need
1802     // to do a RAUW.
1803     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1804     Init = EmitNullConstant(D->getType());
1805   } else {
1806     initializedGlobalDecl = GlobalDecl(D);
1807     Init = EmitConstantInit(*InitDecl);
1808 
1809     if (!Init) {
1810       QualType T = InitExpr->getType();
1811       if (D->getType()->isReferenceType())
1812         T = D->getType();
1813 
1814       if (getLangOpts().CPlusPlus) {
1815         Init = EmitNullConstant(T);
1816         NeedsGlobalCtor = true;
1817       } else {
1818         ErrorUnsupported(D, "static initializer");
1819         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1820       }
1821     } else {
1822       // We don't need an initializer, so remove the entry for the delayed
1823       // initializer position (just in case this entry was delayed) if we
1824       // also don't need to register a destructor.
1825       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1826         DelayedCXXInitPosition.erase(D);
1827     }
1828   }
1829 
1830   llvm::Type* InitType = Init->getType();
1831   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1832 
1833   // Strip off a bitcast if we got one back.
1834   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1835     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1836            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1837            // All zero index gep.
1838            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1839     Entry = CE->getOperand(0);
1840   }
1841 
1842   // Entry is now either a Function or GlobalVariable.
1843   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1844 
1845   // We have a definition after a declaration with the wrong type.
1846   // We must make a new GlobalVariable* and update everything that used OldGV
1847   // (a declaration or tentative definition) with the new GlobalVariable*
1848   // (which will be a definition).
1849   //
1850   // This happens if there is a prototype for a global (e.g.
1851   // "extern int x[];") and then a definition of a different type (e.g.
1852   // "int x[10];"). This also happens when an initializer has a different type
1853   // from the type of the global (this happens with unions).
1854   if (GV == 0 ||
1855       GV->getType()->getElementType() != InitType ||
1856       GV->getType()->getAddressSpace() !=
1857        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1858 
1859     // Move the old entry aside so that we'll create a new one.
1860     Entry->setName(StringRef());
1861 
1862     // Make a new global with the correct type, this is now guaranteed to work.
1863     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1864 
1865     // Replace all uses of the old global with the new global
1866     llvm::Constant *NewPtrForOldDecl =
1867         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1868     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1869 
1870     // Erase the old global, since it is no longer used.
1871     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1872   }
1873 
1874   MaybeHandleStaticInExternC(D, GV);
1875 
1876   if (D->hasAttr<AnnotateAttr>())
1877     AddGlobalAnnotations(D, GV);
1878 
1879   GV->setInitializer(Init);
1880 
1881   // If it is safe to mark the global 'constant', do so now.
1882   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1883                   isTypeConstant(D->getType(), true));
1884 
1885   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1886 
1887   // Set the llvm linkage type as appropriate.
1888   llvm::GlobalValue::LinkageTypes Linkage =
1889     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1890   GV->setLinkage(Linkage);
1891   if (D->hasAttr<DLLImportAttr>())
1892     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1893   else if (D->hasAttr<DLLExportAttr>())
1894     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1895 
1896   // If required by the ABI, give definitions of static data members with inline
1897   // initializers linkonce_odr linkage.
1898   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1899       D->isStaticDataMember() && InitExpr &&
1900       !InitDecl->isThisDeclarationADefinition())
1901     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1902 
1903   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1904     // common vars aren't constant even if declared const.
1905     GV->setConstant(false);
1906 
1907   SetCommonAttributes(D, GV);
1908 
1909   // Emit the initializer function if necessary.
1910   if (NeedsGlobalCtor || NeedsGlobalDtor)
1911     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1912 
1913   // If we are compiling with ASan, add metadata indicating dynamically
1914   // initialized globals.
1915   if (SanOpts.Address && NeedsGlobalCtor) {
1916     llvm::Module &M = getModule();
1917 
1918     llvm::NamedMDNode *DynamicInitializers =
1919         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1920     llvm::Value *GlobalToAdd[] = { GV };
1921     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1922     DynamicInitializers->addOperand(ThisGlobal);
1923   }
1924 
1925   // Emit global variable debug information.
1926   if (CGDebugInfo *DI = getModuleDebugInfo())
1927     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1928       DI->EmitGlobalVariable(GV, D);
1929 }
1930 
1931 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1932   // Don't give variables common linkage if -fno-common was specified unless it
1933   // was overridden by a NoCommon attribute.
1934   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1935     return true;
1936 
1937   // C11 6.9.2/2:
1938   //   A declaration of an identifier for an object that has file scope without
1939   //   an initializer, and without a storage-class specifier or with the
1940   //   storage-class specifier static, constitutes a tentative definition.
1941   if (D->getInit() || D->hasExternalStorage())
1942     return true;
1943 
1944   // A variable cannot be both common and exist in a section.
1945   if (D->hasAttr<SectionAttr>())
1946     return true;
1947 
1948   // Thread local vars aren't considered common linkage.
1949   if (D->getTLSKind())
1950     return true;
1951 
1952   // Tentative definitions marked with WeakImportAttr are true definitions.
1953   if (D->hasAttr<WeakImportAttr>())
1954     return true;
1955 
1956   return false;
1957 }
1958 
1959 llvm::GlobalValue::LinkageTypes
1960 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1961   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1962   if (Linkage == GVA_Internal)
1963     return llvm::Function::InternalLinkage;
1964   else if (D->hasAttr<DLLImportAttr>())
1965     return llvm::Function::ExternalLinkage;
1966   else if (D->hasAttr<DLLExportAttr>())
1967     return llvm::Function::ExternalLinkage;
1968   else if (D->hasAttr<SelectAnyAttr>()) {
1969     // selectany symbols are externally visible, so use weak instead of
1970     // linkonce.  MSVC optimizes away references to const selectany globals, so
1971     // all definitions should be the same and ODR linkage should be used.
1972     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1973     return llvm::GlobalVariable::WeakODRLinkage;
1974   } else if (D->hasAttr<WeakAttr>()) {
1975     if (isConstant)
1976       return llvm::GlobalVariable::WeakODRLinkage;
1977     else
1978       return llvm::GlobalVariable::WeakAnyLinkage;
1979   } else if (Linkage == GVA_TemplateInstantiation || Linkage == GVA_StrongODR)
1980     return llvm::GlobalVariable::WeakODRLinkage;
1981   else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1982            getTarget().getTriple().isMacOSX())
1983     // On Darwin, the backing variable for a C++11 thread_local variable always
1984     // has internal linkage; all accesses should just be calls to the
1985     // Itanium-specified entry point, which has the normal linkage of the
1986     // variable.
1987     return llvm::GlobalValue::InternalLinkage;
1988   // C++ doesn't have tentative definitions and thus cannot have common linkage.
1989   else if (!getLangOpts().CPlusPlus &&
1990            !isVarDeclStrongDefinition(D, CodeGenOpts.NoCommon))
1991     return llvm::GlobalVariable::CommonLinkage;
1992 
1993   return llvm::GlobalVariable::ExternalLinkage;
1994 }
1995 
1996 /// Replace the uses of a function that was declared with a non-proto type.
1997 /// We want to silently drop extra arguments from call sites
1998 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1999                                           llvm::Function *newFn) {
2000   // Fast path.
2001   if (old->use_empty()) return;
2002 
2003   llvm::Type *newRetTy = newFn->getReturnType();
2004   SmallVector<llvm::Value*, 4> newArgs;
2005 
2006   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2007          ui != ue; ) {
2008     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2009     llvm::User *user = use->getUser();
2010 
2011     // Recognize and replace uses of bitcasts.  Most calls to
2012     // unprototyped functions will use bitcasts.
2013     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2014       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2015         replaceUsesOfNonProtoConstant(bitcast, newFn);
2016       continue;
2017     }
2018 
2019     // Recognize calls to the function.
2020     llvm::CallSite callSite(user);
2021     if (!callSite) continue;
2022     if (!callSite.isCallee(&*use)) continue;
2023 
2024     // If the return types don't match exactly, then we can't
2025     // transform this call unless it's dead.
2026     if (callSite->getType() != newRetTy && !callSite->use_empty())
2027       continue;
2028 
2029     // Get the call site's attribute list.
2030     SmallVector<llvm::AttributeSet, 8> newAttrs;
2031     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2032 
2033     // Collect any return attributes from the call.
2034     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2035       newAttrs.push_back(
2036         llvm::AttributeSet::get(newFn->getContext(),
2037                                 oldAttrs.getRetAttributes()));
2038 
2039     // If the function was passed too few arguments, don't transform.
2040     unsigned newNumArgs = newFn->arg_size();
2041     if (callSite.arg_size() < newNumArgs) continue;
2042 
2043     // If extra arguments were passed, we silently drop them.
2044     // If any of the types mismatch, we don't transform.
2045     unsigned argNo = 0;
2046     bool dontTransform = false;
2047     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2048            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2049       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2050         dontTransform = true;
2051         break;
2052       }
2053 
2054       // Add any parameter attributes.
2055       if (oldAttrs.hasAttributes(argNo + 1))
2056         newAttrs.
2057           push_back(llvm::
2058                     AttributeSet::get(newFn->getContext(),
2059                                       oldAttrs.getParamAttributes(argNo + 1)));
2060     }
2061     if (dontTransform)
2062       continue;
2063 
2064     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2065       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2066                                                  oldAttrs.getFnAttributes()));
2067 
2068     // Okay, we can transform this.  Create the new call instruction and copy
2069     // over the required information.
2070     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2071 
2072     llvm::CallSite newCall;
2073     if (callSite.isCall()) {
2074       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2075                                        callSite.getInstruction());
2076     } else {
2077       llvm::InvokeInst *oldInvoke =
2078         cast<llvm::InvokeInst>(callSite.getInstruction());
2079       newCall = llvm::InvokeInst::Create(newFn,
2080                                          oldInvoke->getNormalDest(),
2081                                          oldInvoke->getUnwindDest(),
2082                                          newArgs, "",
2083                                          callSite.getInstruction());
2084     }
2085     newArgs.clear(); // for the next iteration
2086 
2087     if (!newCall->getType()->isVoidTy())
2088       newCall->takeName(callSite.getInstruction());
2089     newCall.setAttributes(
2090                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2091     newCall.setCallingConv(callSite.getCallingConv());
2092 
2093     // Finally, remove the old call, replacing any uses with the new one.
2094     if (!callSite->use_empty())
2095       callSite->replaceAllUsesWith(newCall.getInstruction());
2096 
2097     // Copy debug location attached to CI.
2098     if (!callSite->getDebugLoc().isUnknown())
2099       newCall->setDebugLoc(callSite->getDebugLoc());
2100     callSite->eraseFromParent();
2101   }
2102 }
2103 
2104 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2105 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2106 /// existing call uses of the old function in the module, this adjusts them to
2107 /// call the new function directly.
2108 ///
2109 /// This is not just a cleanup: the always_inline pass requires direct calls to
2110 /// functions to be able to inline them.  If there is a bitcast in the way, it
2111 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2112 /// run at -O0.
2113 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2114                                                       llvm::Function *NewFn) {
2115   // If we're redefining a global as a function, don't transform it.
2116   if (!isa<llvm::Function>(Old)) return;
2117 
2118   replaceUsesOfNonProtoConstant(Old, NewFn);
2119 }
2120 
2121 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2122   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2123   // If we have a definition, this might be a deferred decl. If the
2124   // instantiation is explicit, make sure we emit it at the end.
2125   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2126     GetAddrOfGlobalVar(VD);
2127 
2128   EmitTopLevelDecl(VD);
2129 }
2130 
2131 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2132                                                  llvm::GlobalValue *GV) {
2133   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2134 
2135   // Compute the function info and LLVM type.
2136   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2137   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2138 
2139   // Get or create the prototype for the function.
2140   llvm::Constant *Entry =
2141       GV ? GV
2142          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2143 
2144   // Strip off a bitcast if we got one back.
2145   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2146     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2147     Entry = CE->getOperand(0);
2148   }
2149 
2150   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2151     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2152     return;
2153   }
2154 
2155   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2156     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2157 
2158     // If the types mismatch then we have to rewrite the definition.
2159     assert(OldFn->isDeclaration() &&
2160            "Shouldn't replace non-declaration");
2161 
2162     // F is the Function* for the one with the wrong type, we must make a new
2163     // Function* and update everything that used F (a declaration) with the new
2164     // Function* (which will be a definition).
2165     //
2166     // This happens if there is a prototype for a function
2167     // (e.g. "int f()") and then a definition of a different type
2168     // (e.g. "int f(int x)").  Move the old function aside so that it
2169     // doesn't interfere with GetAddrOfFunction.
2170     OldFn->setName(StringRef());
2171     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2172 
2173     // This might be an implementation of a function without a
2174     // prototype, in which case, try to do special replacement of
2175     // calls which match the new prototype.  The really key thing here
2176     // is that we also potentially drop arguments from the call site
2177     // so as to make a direct call, which makes the inliner happier
2178     // and suppresses a number of optimizer warnings (!) about
2179     // dropping arguments.
2180     if (!OldFn->use_empty()) {
2181       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2182       OldFn->removeDeadConstantUsers();
2183     }
2184 
2185     // Replace uses of F with the Function we will endow with a body.
2186     if (!Entry->use_empty()) {
2187       llvm::Constant *NewPtrForOldDecl =
2188         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2189       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2190     }
2191 
2192     // Ok, delete the old function now, which is dead.
2193     OldFn->eraseFromParent();
2194 
2195     Entry = NewFn;
2196   }
2197 
2198   // We need to set linkage and visibility on the function before
2199   // generating code for it because various parts of IR generation
2200   // want to propagate this information down (e.g. to local static
2201   // declarations).
2202   llvm::Function *Fn = cast<llvm::Function>(Entry);
2203   setFunctionLinkage(GD, Fn);
2204 
2205   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2206   setGlobalVisibility(Fn, D);
2207 
2208   MaybeHandleStaticInExternC(D, Fn);
2209 
2210   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2211 
2212   SetFunctionDefinitionAttributes(D, Fn);
2213   SetLLVMFunctionAttributesForDefinition(D, Fn);
2214 
2215   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2216     AddGlobalCtor(Fn, CA->getPriority());
2217   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2218     AddGlobalDtor(Fn, DA->getPriority());
2219   if (D->hasAttr<AnnotateAttr>())
2220     AddGlobalAnnotations(D, Fn);
2221 
2222   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2223   if (PGOInit)
2224     AddGlobalCtor(PGOInit, 0);
2225 }
2226 
2227 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2228   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2229   const AliasAttr *AA = D->getAttr<AliasAttr>();
2230   assert(AA && "Not an alias?");
2231 
2232   StringRef MangledName = getMangledName(GD);
2233 
2234   // If there is a definition in the module, then it wins over the alias.
2235   // This is dubious, but allow it to be safe.  Just ignore the alias.
2236   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2237   if (Entry && !Entry->isDeclaration())
2238     return;
2239 
2240   Aliases.push_back(GD);
2241 
2242   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2243 
2244   // Create a reference to the named value.  This ensures that it is emitted
2245   // if a deferred decl.
2246   llvm::Constant *Aliasee;
2247   if (isa<llvm::FunctionType>(DeclTy))
2248     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2249                                       /*ForVTable=*/false);
2250   else
2251     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2252                                     llvm::PointerType::getUnqual(DeclTy), 0);
2253 
2254   // Create the new alias itself, but don't set a name yet.
2255   llvm::GlobalValue *GA =
2256     new llvm::GlobalAlias(Aliasee->getType(),
2257                           llvm::Function::ExternalLinkage,
2258                           "", Aliasee, &getModule());
2259 
2260   if (Entry) {
2261     assert(Entry->isDeclaration());
2262 
2263     // If there is a declaration in the module, then we had an extern followed
2264     // by the alias, as in:
2265     //   extern int test6();
2266     //   ...
2267     //   int test6() __attribute__((alias("test7")));
2268     //
2269     // Remove it and replace uses of it with the alias.
2270     GA->takeName(Entry);
2271 
2272     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2273                                                           Entry->getType()));
2274     Entry->eraseFromParent();
2275   } else {
2276     GA->setName(MangledName);
2277   }
2278 
2279   // Set attributes which are particular to an alias; this is a
2280   // specialization of the attributes which may be set on a global
2281   // variable/function.
2282   if (D->hasAttr<DLLExportAttr>()) {
2283     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2284       // The dllexport attribute is ignored for undefined symbols.
2285       if (FD->hasBody())
2286         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2287     } else {
2288       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2289     }
2290   } else if (D->hasAttr<WeakAttr>() ||
2291              D->hasAttr<WeakRefAttr>() ||
2292              D->isWeakImported()) {
2293     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2294   }
2295 
2296   SetCommonAttributes(D, GA);
2297 }
2298 
2299 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2300                                             ArrayRef<llvm::Type*> Tys) {
2301   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2302                                          Tys);
2303 }
2304 
2305 static llvm::StringMapEntry<llvm::Constant*> &
2306 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2307                          const StringLiteral *Literal,
2308                          bool TargetIsLSB,
2309                          bool &IsUTF16,
2310                          unsigned &StringLength) {
2311   StringRef String = Literal->getString();
2312   unsigned NumBytes = String.size();
2313 
2314   // Check for simple case.
2315   if (!Literal->containsNonAsciiOrNull()) {
2316     StringLength = NumBytes;
2317     return Map.GetOrCreateValue(String);
2318   }
2319 
2320   // Otherwise, convert the UTF8 literals into a string of shorts.
2321   IsUTF16 = true;
2322 
2323   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2324   const UTF8 *FromPtr = (const UTF8 *)String.data();
2325   UTF16 *ToPtr = &ToBuf[0];
2326 
2327   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2328                            &ToPtr, ToPtr + NumBytes,
2329                            strictConversion);
2330 
2331   // ConvertUTF8toUTF16 returns the length in ToPtr.
2332   StringLength = ToPtr - &ToBuf[0];
2333 
2334   // Add an explicit null.
2335   *ToPtr = 0;
2336   return Map.
2337     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2338                                (StringLength + 1) * 2));
2339 }
2340 
2341 static llvm::StringMapEntry<llvm::Constant*> &
2342 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2343                        const StringLiteral *Literal,
2344                        unsigned &StringLength) {
2345   StringRef String = Literal->getString();
2346   StringLength = String.size();
2347   return Map.GetOrCreateValue(String);
2348 }
2349 
2350 llvm::Constant *
2351 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2352   unsigned StringLength = 0;
2353   bool isUTF16 = false;
2354   llvm::StringMapEntry<llvm::Constant*> &Entry =
2355     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2356                              getDataLayout().isLittleEndian(),
2357                              isUTF16, StringLength);
2358 
2359   if (llvm::Constant *C = Entry.getValue())
2360     return C;
2361 
2362   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2363   llvm::Constant *Zeros[] = { Zero, Zero };
2364   llvm::Value *V;
2365 
2366   // If we don't already have it, get __CFConstantStringClassReference.
2367   if (!CFConstantStringClassRef) {
2368     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2369     Ty = llvm::ArrayType::get(Ty, 0);
2370     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2371                                            "__CFConstantStringClassReference");
2372     // Decay array -> ptr
2373     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2374     CFConstantStringClassRef = V;
2375   }
2376   else
2377     V = CFConstantStringClassRef;
2378 
2379   QualType CFTy = getContext().getCFConstantStringType();
2380 
2381   llvm::StructType *STy =
2382     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2383 
2384   llvm::Constant *Fields[4];
2385 
2386   // Class pointer.
2387   Fields[0] = cast<llvm::ConstantExpr>(V);
2388 
2389   // Flags.
2390   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2391   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2392     llvm::ConstantInt::get(Ty, 0x07C8);
2393 
2394   // String pointer.
2395   llvm::Constant *C = 0;
2396   if (isUTF16) {
2397     ArrayRef<uint16_t> Arr =
2398       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2399                                      const_cast<char *>(Entry.getKey().data())),
2400                                    Entry.getKey().size() / 2);
2401     C = llvm::ConstantDataArray::get(VMContext, Arr);
2402   } else {
2403     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2404   }
2405 
2406   // Note: -fwritable-strings doesn't make the backing store strings of
2407   // CFStrings writable. (See <rdar://problem/10657500>)
2408   llvm::GlobalVariable *GV =
2409       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2410                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2411   GV->setUnnamedAddr(true);
2412   // Don't enforce the target's minimum global alignment, since the only use
2413   // of the string is via this class initializer.
2414   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2415   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2416   // that changes the section it ends in, which surprises ld64.
2417   if (isUTF16) {
2418     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2419     GV->setAlignment(Align.getQuantity());
2420     GV->setSection("__TEXT,__ustring");
2421   } else {
2422     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2423     GV->setAlignment(Align.getQuantity());
2424     GV->setSection("__TEXT,__cstring,cstring_literals");
2425   }
2426 
2427   // String.
2428   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2429 
2430   if (isUTF16)
2431     // Cast the UTF16 string to the correct type.
2432     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2433 
2434   // String length.
2435   Ty = getTypes().ConvertType(getContext().LongTy);
2436   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2437 
2438   // The struct.
2439   C = llvm::ConstantStruct::get(STy, Fields);
2440   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2441                                 llvm::GlobalVariable::PrivateLinkage, C,
2442                                 "_unnamed_cfstring_");
2443   GV->setSection("__DATA,__cfstring");
2444   Entry.setValue(GV);
2445 
2446   return GV;
2447 }
2448 
2449 llvm::Constant *
2450 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2451   unsigned StringLength = 0;
2452   llvm::StringMapEntry<llvm::Constant*> &Entry =
2453     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2454 
2455   if (llvm::Constant *C = Entry.getValue())
2456     return C;
2457 
2458   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2459   llvm::Constant *Zeros[] = { Zero, Zero };
2460   llvm::Value *V;
2461   // If we don't already have it, get _NSConstantStringClassReference.
2462   if (!ConstantStringClassRef) {
2463     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2464     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2465     llvm::Constant *GV;
2466     if (LangOpts.ObjCRuntime.isNonFragile()) {
2467       std::string str =
2468         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2469                             : "OBJC_CLASS_$_" + StringClass;
2470       GV = getObjCRuntime().GetClassGlobal(str);
2471       // Make sure the result is of the correct type.
2472       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2473       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2474       ConstantStringClassRef = V;
2475     } else {
2476       std::string str =
2477         StringClass.empty() ? "_NSConstantStringClassReference"
2478                             : "_" + StringClass + "ClassReference";
2479       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2480       GV = CreateRuntimeVariable(PTy, str);
2481       // Decay array -> ptr
2482       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2483       ConstantStringClassRef = V;
2484     }
2485   }
2486   else
2487     V = ConstantStringClassRef;
2488 
2489   if (!NSConstantStringType) {
2490     // Construct the type for a constant NSString.
2491     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2492     D->startDefinition();
2493 
2494     QualType FieldTypes[3];
2495 
2496     // const int *isa;
2497     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2498     // const char *str;
2499     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2500     // unsigned int length;
2501     FieldTypes[2] = Context.UnsignedIntTy;
2502 
2503     // Create fields
2504     for (unsigned i = 0; i < 3; ++i) {
2505       FieldDecl *Field = FieldDecl::Create(Context, D,
2506                                            SourceLocation(),
2507                                            SourceLocation(), 0,
2508                                            FieldTypes[i], /*TInfo=*/0,
2509                                            /*BitWidth=*/0,
2510                                            /*Mutable=*/false,
2511                                            ICIS_NoInit);
2512       Field->setAccess(AS_public);
2513       D->addDecl(Field);
2514     }
2515 
2516     D->completeDefinition();
2517     QualType NSTy = Context.getTagDeclType(D);
2518     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2519   }
2520 
2521   llvm::Constant *Fields[3];
2522 
2523   // Class pointer.
2524   Fields[0] = cast<llvm::ConstantExpr>(V);
2525 
2526   // String pointer.
2527   llvm::Constant *C =
2528     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2529 
2530   llvm::GlobalValue::LinkageTypes Linkage;
2531   bool isConstant;
2532   Linkage = llvm::GlobalValue::PrivateLinkage;
2533   isConstant = !LangOpts.WritableStrings;
2534 
2535   llvm::GlobalVariable *GV =
2536   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2537                            ".str");
2538   GV->setUnnamedAddr(true);
2539   // Don't enforce the target's minimum global alignment, since the only use
2540   // of the string is via this class initializer.
2541   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2542   GV->setAlignment(Align.getQuantity());
2543   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2544 
2545   // String length.
2546   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2547   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2548 
2549   // The struct.
2550   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2551   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2552                                 llvm::GlobalVariable::PrivateLinkage, C,
2553                                 "_unnamed_nsstring_");
2554   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2555   const char *NSStringNonFragileABISection =
2556       "__DATA,__objc_stringobj,regular,no_dead_strip";
2557   // FIXME. Fix section.
2558   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2559                      ? NSStringNonFragileABISection
2560                      : NSStringSection);
2561   Entry.setValue(GV);
2562 
2563   return GV;
2564 }
2565 
2566 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2567   if (ObjCFastEnumerationStateType.isNull()) {
2568     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2569     D->startDefinition();
2570 
2571     QualType FieldTypes[] = {
2572       Context.UnsignedLongTy,
2573       Context.getPointerType(Context.getObjCIdType()),
2574       Context.getPointerType(Context.UnsignedLongTy),
2575       Context.getConstantArrayType(Context.UnsignedLongTy,
2576                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2577     };
2578 
2579     for (size_t i = 0; i < 4; ++i) {
2580       FieldDecl *Field = FieldDecl::Create(Context,
2581                                            D,
2582                                            SourceLocation(),
2583                                            SourceLocation(), 0,
2584                                            FieldTypes[i], /*TInfo=*/0,
2585                                            /*BitWidth=*/0,
2586                                            /*Mutable=*/false,
2587                                            ICIS_NoInit);
2588       Field->setAccess(AS_public);
2589       D->addDecl(Field);
2590     }
2591 
2592     D->completeDefinition();
2593     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2594   }
2595 
2596   return ObjCFastEnumerationStateType;
2597 }
2598 
2599 llvm::Constant *
2600 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2601   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2602 
2603   // Don't emit it as the address of the string, emit the string data itself
2604   // as an inline array.
2605   if (E->getCharByteWidth() == 1) {
2606     SmallString<64> Str(E->getString());
2607 
2608     // Resize the string to the right size, which is indicated by its type.
2609     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2610     Str.resize(CAT->getSize().getZExtValue());
2611     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2612   }
2613 
2614   llvm::ArrayType *AType =
2615     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2616   llvm::Type *ElemTy = AType->getElementType();
2617   unsigned NumElements = AType->getNumElements();
2618 
2619   // Wide strings have either 2-byte or 4-byte elements.
2620   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2621     SmallVector<uint16_t, 32> Elements;
2622     Elements.reserve(NumElements);
2623 
2624     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2625       Elements.push_back(E->getCodeUnit(i));
2626     Elements.resize(NumElements);
2627     return llvm::ConstantDataArray::get(VMContext, Elements);
2628   }
2629 
2630   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2631   SmallVector<uint32_t, 32> Elements;
2632   Elements.reserve(NumElements);
2633 
2634   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2635     Elements.push_back(E->getCodeUnit(i));
2636   Elements.resize(NumElements);
2637   return llvm::ConstantDataArray::get(VMContext, Elements);
2638 }
2639 
2640 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2641 /// constant array for the given string literal.
2642 llvm::Constant *
2643 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2644   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2645 
2646   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2647   llvm::GlobalVariable *GV = nullptr;
2648   if (!LangOpts.WritableStrings) {
2649     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2650     switch (S->getCharByteWidth()) {
2651     case 1:
2652       ConstantStringMap = &Constant1ByteStringMap;
2653       break;
2654     case 2:
2655       ConstantStringMap = &Constant2ByteStringMap;
2656       break;
2657     case 4:
2658       ConstantStringMap = &Constant4ByteStringMap;
2659       break;
2660     default:
2661       llvm_unreachable("unhandled byte width!");
2662     }
2663     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2664     GV = Entry->getValue();
2665   }
2666 
2667   if (!GV) {
2668     SmallString<256> MangledNameBuffer;
2669     StringRef GlobalVariableName;
2670     llvm::GlobalValue::LinkageTypes LT;
2671 
2672     // Mangle the string literal if the ABI allows for it.  However, we cannot
2673     // do this if  we are compiling with ASan or -fwritable-strings because they
2674     // rely on strings having normal linkage.
2675     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2676         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2677       llvm::raw_svector_ostream Out(MangledNameBuffer);
2678       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2679       Out.flush();
2680 
2681       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2682       GlobalVariableName = MangledNameBuffer;
2683     } else {
2684       LT = llvm::GlobalValue::PrivateLinkage;;
2685       GlobalVariableName = ".str";
2686     }
2687 
2688     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2689     unsigned AddrSpace = 0;
2690     if (getLangOpts().OpenCL)
2691       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2692 
2693     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2694     GV = new llvm::GlobalVariable(
2695         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2696         GlobalVariableName, /*InsertBefore=*/nullptr,
2697         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2698     GV->setUnnamedAddr(true);
2699     if (Entry)
2700       Entry->setValue(GV);
2701   }
2702 
2703   if (Align.getQuantity() > GV->getAlignment())
2704     GV->setAlignment(Align.getQuantity());
2705 
2706   return GV;
2707 }
2708 
2709 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2710 /// array for the given ObjCEncodeExpr node.
2711 llvm::Constant *
2712 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2713   std::string Str;
2714   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2715 
2716   return GetAddrOfConstantCString(Str);
2717 }
2718 
2719 
2720 /// GenerateWritableString -- Creates storage for a string literal.
2721 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2722                                              bool constant,
2723                                              CodeGenModule &CGM,
2724                                              const char *GlobalName,
2725                                              unsigned Alignment) {
2726   // Create Constant for this string literal. Don't add a '\0'.
2727   llvm::Constant *C =
2728       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2729 
2730   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2731   unsigned AddrSpace = 0;
2732   if (CGM.getLangOpts().OpenCL)
2733     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2734 
2735   // Create a global variable for this string
2736   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2737       CGM.getModule(), C->getType(), constant,
2738       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2739       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2740   GV->setAlignment(Alignment);
2741   GV->setUnnamedAddr(true);
2742   return GV;
2743 }
2744 
2745 /// GetAddrOfConstantString - Returns a pointer to a character array
2746 /// containing the literal. This contents are exactly that of the
2747 /// given string, i.e. it will not be null terminated automatically;
2748 /// see GetAddrOfConstantCString. Note that whether the result is
2749 /// actually a pointer to an LLVM constant depends on
2750 /// Feature.WriteableStrings.
2751 ///
2752 /// The result has pointer to array type.
2753 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2754                                                        const char *GlobalName,
2755                                                        unsigned Alignment) {
2756   // Get the default prefix if a name wasn't specified.
2757   if (!GlobalName)
2758     GlobalName = ".str";
2759 
2760   if (Alignment == 0)
2761     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2762       .getQuantity();
2763 
2764   // Don't share any string literals if strings aren't constant.
2765   if (LangOpts.WritableStrings)
2766     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2767 
2768   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2769     Constant1ByteStringMap.GetOrCreateValue(Str);
2770 
2771   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2772     if (Alignment > GV->getAlignment()) {
2773       GV->setAlignment(Alignment);
2774     }
2775     return GV;
2776   }
2777 
2778   // Create a global variable for this.
2779   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2780                                                    Alignment);
2781   Entry.setValue(GV);
2782   return GV;
2783 }
2784 
2785 /// GetAddrOfConstantCString - Returns a pointer to a character
2786 /// array containing the literal and a terminating '\0'
2787 /// character. The result has pointer to array type.
2788 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2789                                                         const char *GlobalName,
2790                                                         unsigned Alignment) {
2791   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2792   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2793 }
2794 
2795 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2796     const MaterializeTemporaryExpr *E, const Expr *Init) {
2797   assert((E->getStorageDuration() == SD_Static ||
2798           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2799   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2800 
2801   // If we're not materializing a subobject of the temporary, keep the
2802   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2803   QualType MaterializedType = Init->getType();
2804   if (Init == E->GetTemporaryExpr())
2805     MaterializedType = E->getType();
2806 
2807   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2808   if (Slot)
2809     return Slot;
2810 
2811   // FIXME: If an externally-visible declaration extends multiple temporaries,
2812   // we need to give each temporary the same name in every translation unit (and
2813   // we also need to make the temporaries externally-visible).
2814   SmallString<256> Name;
2815   llvm::raw_svector_ostream Out(Name);
2816   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2817   Out.flush();
2818 
2819   APValue *Value = 0;
2820   if (E->getStorageDuration() == SD_Static) {
2821     // We might have a cached constant initializer for this temporary. Note
2822     // that this might have a different value from the value computed by
2823     // evaluating the initializer if the surrounding constant expression
2824     // modifies the temporary.
2825     Value = getContext().getMaterializedTemporaryValue(E, false);
2826     if (Value && Value->isUninit())
2827       Value = 0;
2828   }
2829 
2830   // Try evaluating it now, it might have a constant initializer.
2831   Expr::EvalResult EvalResult;
2832   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2833       !EvalResult.hasSideEffects())
2834     Value = &EvalResult.Val;
2835 
2836   llvm::Constant *InitialValue = 0;
2837   bool Constant = false;
2838   llvm::Type *Type;
2839   if (Value) {
2840     // The temporary has a constant initializer, use it.
2841     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2842     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2843     Type = InitialValue->getType();
2844   } else {
2845     // No initializer, the initialization will be provided when we
2846     // initialize the declaration which performed lifetime extension.
2847     Type = getTypes().ConvertTypeForMem(MaterializedType);
2848   }
2849 
2850   // Create a global variable for this lifetime-extended temporary.
2851   llvm::GlobalVariable *GV =
2852     new llvm::GlobalVariable(getModule(), Type, Constant,
2853                              llvm::GlobalValue::PrivateLinkage,
2854                              InitialValue, Name.c_str());
2855   GV->setAlignment(
2856       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2857   if (VD->getTLSKind())
2858     setTLSMode(GV, *VD);
2859   Slot = GV;
2860   return GV;
2861 }
2862 
2863 /// EmitObjCPropertyImplementations - Emit information for synthesized
2864 /// properties for an implementation.
2865 void CodeGenModule::EmitObjCPropertyImplementations(const
2866                                                     ObjCImplementationDecl *D) {
2867   for (const auto *PID : D->property_impls()) {
2868     // Dynamic is just for type-checking.
2869     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2870       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2871 
2872       // Determine which methods need to be implemented, some may have
2873       // been overridden. Note that ::isPropertyAccessor is not the method
2874       // we want, that just indicates if the decl came from a
2875       // property. What we want to know is if the method is defined in
2876       // this implementation.
2877       if (!D->getInstanceMethod(PD->getGetterName()))
2878         CodeGenFunction(*this).GenerateObjCGetter(
2879                                  const_cast<ObjCImplementationDecl *>(D), PID);
2880       if (!PD->isReadOnly() &&
2881           !D->getInstanceMethod(PD->getSetterName()))
2882         CodeGenFunction(*this).GenerateObjCSetter(
2883                                  const_cast<ObjCImplementationDecl *>(D), PID);
2884     }
2885   }
2886 }
2887 
2888 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2889   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2890   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2891        ivar; ivar = ivar->getNextIvar())
2892     if (ivar->getType().isDestructedType())
2893       return true;
2894 
2895   return false;
2896 }
2897 
2898 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2899 /// for an implementation.
2900 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2901   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2902   if (needsDestructMethod(D)) {
2903     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2904     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2905     ObjCMethodDecl *DTORMethod =
2906       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2907                              cxxSelector, getContext().VoidTy, 0, D,
2908                              /*isInstance=*/true, /*isVariadic=*/false,
2909                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2910                              /*isDefined=*/false, ObjCMethodDecl::Required);
2911     D->addInstanceMethod(DTORMethod);
2912     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2913     D->setHasDestructors(true);
2914   }
2915 
2916   // If the implementation doesn't have any ivar initializers, we don't need
2917   // a .cxx_construct.
2918   if (D->getNumIvarInitializers() == 0)
2919     return;
2920 
2921   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2922   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2923   // The constructor returns 'self'.
2924   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2925                                                 D->getLocation(),
2926                                                 D->getLocation(),
2927                                                 cxxSelector,
2928                                                 getContext().getObjCIdType(), 0,
2929                                                 D, /*isInstance=*/true,
2930                                                 /*isVariadic=*/false,
2931                                                 /*isPropertyAccessor=*/true,
2932                                                 /*isImplicitlyDeclared=*/true,
2933                                                 /*isDefined=*/false,
2934                                                 ObjCMethodDecl::Required);
2935   D->addInstanceMethod(CTORMethod);
2936   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2937   D->setHasNonZeroConstructors(true);
2938 }
2939 
2940 /// EmitNamespace - Emit all declarations in a namespace.
2941 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2942   for (auto *I : ND->decls()) {
2943     if (const auto *VD = dyn_cast<VarDecl>(I))
2944       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2945           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2946         continue;
2947     EmitTopLevelDecl(I);
2948   }
2949 }
2950 
2951 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2952 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2953   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2954       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2955     ErrorUnsupported(LSD, "linkage spec");
2956     return;
2957   }
2958 
2959   for (auto *I : LSD->decls()) {
2960     // Meta-data for ObjC class includes references to implemented methods.
2961     // Generate class's method definitions first.
2962     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2963       for (auto *M : OID->methods())
2964         EmitTopLevelDecl(M);
2965     }
2966     EmitTopLevelDecl(I);
2967   }
2968 }
2969 
2970 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2971 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2972   // Ignore dependent declarations.
2973   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2974     return;
2975 
2976   switch (D->getKind()) {
2977   case Decl::CXXConversion:
2978   case Decl::CXXMethod:
2979   case Decl::Function:
2980     // Skip function templates
2981     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2982         cast<FunctionDecl>(D)->isLateTemplateParsed())
2983       return;
2984 
2985     EmitGlobal(cast<FunctionDecl>(D));
2986     break;
2987 
2988   case Decl::Var:
2989     // Skip variable templates
2990     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2991       return;
2992   case Decl::VarTemplateSpecialization:
2993     EmitGlobal(cast<VarDecl>(D));
2994     break;
2995 
2996   // Indirect fields from global anonymous structs and unions can be
2997   // ignored; only the actual variable requires IR gen support.
2998   case Decl::IndirectField:
2999     break;
3000 
3001   // C++ Decls
3002   case Decl::Namespace:
3003     EmitNamespace(cast<NamespaceDecl>(D));
3004     break;
3005     // No code generation needed.
3006   case Decl::UsingShadow:
3007   case Decl::ClassTemplate:
3008   case Decl::VarTemplate:
3009   case Decl::VarTemplatePartialSpecialization:
3010   case Decl::FunctionTemplate:
3011   case Decl::TypeAliasTemplate:
3012   case Decl::Block:
3013   case Decl::Empty:
3014     break;
3015   case Decl::Using:          // using X; [C++]
3016     if (CGDebugInfo *DI = getModuleDebugInfo())
3017         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3018     return;
3019   case Decl::NamespaceAlias:
3020     if (CGDebugInfo *DI = getModuleDebugInfo())
3021         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3022     return;
3023   case Decl::UsingDirective: // using namespace X; [C++]
3024     if (CGDebugInfo *DI = getModuleDebugInfo())
3025       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3026     return;
3027   case Decl::CXXConstructor:
3028     // Skip function templates
3029     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3030         cast<FunctionDecl>(D)->isLateTemplateParsed())
3031       return;
3032 
3033     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3034     break;
3035   case Decl::CXXDestructor:
3036     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3037       return;
3038     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3039     break;
3040 
3041   case Decl::StaticAssert:
3042     // Nothing to do.
3043     break;
3044 
3045   // Objective-C Decls
3046 
3047   // Forward declarations, no (immediate) code generation.
3048   case Decl::ObjCInterface:
3049   case Decl::ObjCCategory:
3050     break;
3051 
3052   case Decl::ObjCProtocol: {
3053     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
3054     if (Proto->isThisDeclarationADefinition())
3055       ObjCRuntime->GenerateProtocol(Proto);
3056     break;
3057   }
3058 
3059   case Decl::ObjCCategoryImpl:
3060     // Categories have properties but don't support synthesize so we
3061     // can ignore them here.
3062     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3063     break;
3064 
3065   case Decl::ObjCImplementation: {
3066     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3067     EmitObjCPropertyImplementations(OMD);
3068     EmitObjCIvarInitializations(OMD);
3069     ObjCRuntime->GenerateClass(OMD);
3070     // Emit global variable debug information.
3071     if (CGDebugInfo *DI = getModuleDebugInfo())
3072       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3073         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3074             OMD->getClassInterface()), OMD->getLocation());
3075     break;
3076   }
3077   case Decl::ObjCMethod: {
3078     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3079     // If this is not a prototype, emit the body.
3080     if (OMD->getBody())
3081       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3082     break;
3083   }
3084   case Decl::ObjCCompatibleAlias:
3085     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3086     break;
3087 
3088   case Decl::LinkageSpec:
3089     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3090     break;
3091 
3092   case Decl::FileScopeAsm: {
3093     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3094     StringRef AsmString = AD->getAsmString()->getString();
3095 
3096     const std::string &S = getModule().getModuleInlineAsm();
3097     if (S.empty())
3098       getModule().setModuleInlineAsm(AsmString);
3099     else if (S.end()[-1] == '\n')
3100       getModule().setModuleInlineAsm(S + AsmString.str());
3101     else
3102       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3103     break;
3104   }
3105 
3106   case Decl::Import: {
3107     ImportDecl *Import = cast<ImportDecl>(D);
3108 
3109     // Ignore import declarations that come from imported modules.
3110     if (clang::Module *Owner = Import->getOwningModule()) {
3111       if (getLangOpts().CurrentModule.empty() ||
3112           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3113         break;
3114     }
3115 
3116     ImportedModules.insert(Import->getImportedModule());
3117     break;
3118   }
3119 
3120   case Decl::ClassTemplateSpecialization: {
3121     const ClassTemplateSpecializationDecl *Spec =
3122         cast<ClassTemplateSpecializationDecl>(D);
3123     if (DebugInfo &&
3124         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3125       DebugInfo->completeTemplateDefinition(*Spec);
3126   }
3127 
3128   default:
3129     // Make sure we handled everything we should, every other kind is a
3130     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3131     // function. Need to recode Decl::Kind to do that easily.
3132     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3133   }
3134 }
3135 
3136 /// Turns the given pointer into a constant.
3137 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3138                                           const void *Ptr) {
3139   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3140   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3141   return llvm::ConstantInt::get(i64, PtrInt);
3142 }
3143 
3144 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3145                                    llvm::NamedMDNode *&GlobalMetadata,
3146                                    GlobalDecl D,
3147                                    llvm::GlobalValue *Addr) {
3148   if (!GlobalMetadata)
3149     GlobalMetadata =
3150       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3151 
3152   // TODO: should we report variant information for ctors/dtors?
3153   llvm::Value *Ops[] = {
3154     Addr,
3155     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3156   };
3157   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3158 }
3159 
3160 /// For each function which is declared within an extern "C" region and marked
3161 /// as 'used', but has internal linkage, create an alias from the unmangled
3162 /// name to the mangled name if possible. People expect to be able to refer
3163 /// to such functions with an unmangled name from inline assembly within the
3164 /// same translation unit.
3165 void CodeGenModule::EmitStaticExternCAliases() {
3166   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3167                                   E = StaticExternCValues.end();
3168        I != E; ++I) {
3169     IdentifierInfo *Name = I->first;
3170     llvm::GlobalValue *Val = I->second;
3171     if (Val && !getModule().getNamedValue(Name->getName()))
3172       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3173                                           Name->getName(), Val, &getModule()));
3174   }
3175 }
3176 
3177 /// Emits metadata nodes associating all the global values in the
3178 /// current module with the Decls they came from.  This is useful for
3179 /// projects using IR gen as a subroutine.
3180 ///
3181 /// Since there's currently no way to associate an MDNode directly
3182 /// with an llvm::GlobalValue, we create a global named metadata
3183 /// with the name 'clang.global.decl.ptrs'.
3184 void CodeGenModule::EmitDeclMetadata() {
3185   llvm::NamedMDNode *GlobalMetadata = 0;
3186 
3187   // StaticLocalDeclMap
3188   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3189          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3190        I != E; ++I) {
3191     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3192     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3193   }
3194 }
3195 
3196 /// Emits metadata nodes for all the local variables in the current
3197 /// function.
3198 void CodeGenFunction::EmitDeclMetadata() {
3199   if (LocalDeclMap.empty()) return;
3200 
3201   llvm::LLVMContext &Context = getLLVMContext();
3202 
3203   // Find the unique metadata ID for this name.
3204   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3205 
3206   llvm::NamedMDNode *GlobalMetadata = 0;
3207 
3208   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3209          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3210     const Decl *D = I->first;
3211     llvm::Value *Addr = I->second;
3212 
3213     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3214       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3215       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3216     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3217       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3218       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3219     }
3220   }
3221 }
3222 
3223 void CodeGenModule::EmitVersionIdentMetadata() {
3224   llvm::NamedMDNode *IdentMetadata =
3225     TheModule.getOrInsertNamedMetadata("llvm.ident");
3226   std::string Version = getClangFullVersion();
3227   llvm::LLVMContext &Ctx = TheModule.getContext();
3228 
3229   llvm::Value *IdentNode[] = {
3230     llvm::MDString::get(Ctx, Version)
3231   };
3232   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3233 }
3234 
3235 void CodeGenModule::EmitCoverageFile() {
3236   if (!getCodeGenOpts().CoverageFile.empty()) {
3237     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3238       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3239       llvm::LLVMContext &Ctx = TheModule.getContext();
3240       llvm::MDString *CoverageFile =
3241           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3242       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3243         llvm::MDNode *CU = CUNode->getOperand(i);
3244         llvm::Value *node[] = { CoverageFile, CU };
3245         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3246         GCov->addOperand(N);
3247       }
3248     }
3249   }
3250 }
3251 
3252 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3253                                                      QualType GuidType) {
3254   // Sema has checked that all uuid strings are of the form
3255   // "12345678-1234-1234-1234-1234567890ab".
3256   assert(Uuid.size() == 36);
3257   for (unsigned i = 0; i < 36; ++i) {
3258     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3259     else                                         assert(isHexDigit(Uuid[i]));
3260   }
3261 
3262   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3263 
3264   llvm::Constant *Field3[8];
3265   for (unsigned Idx = 0; Idx < 8; ++Idx)
3266     Field3[Idx] = llvm::ConstantInt::get(
3267         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3268 
3269   llvm::Constant *Fields[4] = {
3270     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3271     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3272     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3273     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3274   };
3275 
3276   return llvm::ConstantStruct::getAnon(Fields);
3277 }
3278