1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 113 114 if (LangOpts.ObjC1) 115 createObjCRuntime(); 116 if (LangOpts.OpenCL) 117 createOpenCLRuntime(); 118 if (LangOpts.OpenMP) 119 createOpenMPRuntime(); 120 if (LangOpts.CUDA) 121 createCUDARuntime(); 122 123 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 124 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 125 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 126 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 127 getCXXABI().getMangleContext()); 128 129 // If debug info or coverage generation is enabled, create the CGDebugInfo 130 // object. 131 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 132 CodeGenOpts.EmitGcovArcs || 133 CodeGenOpts.EmitGcovNotes) 134 DebugInfo = new CGDebugInfo(*this); 135 136 Block.GlobalUniqueCount = 0; 137 138 if (C.getLangOpts().ObjCAutoRefCount) 139 ARCData = new ARCEntrypoints(); 140 RRData = new RREntrypoints(); 141 142 if (!CodeGenOpts.InstrProfileInput.empty()) { 143 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 144 CodeGenOpts.InstrProfileInput, PGOReader)) { 145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 146 "Could not read profile: %0"); 147 getDiags().Report(DiagID) << EC.message(); 148 } 149 } 150 151 // If coverage mapping generation is enabled, create the 152 // CoverageMappingModuleGen object. 153 if (CodeGenOpts.CoverageMapping) 154 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 155 } 156 157 CodeGenModule::~CodeGenModule() { 158 delete ObjCRuntime; 159 delete OpenCLRuntime; 160 delete OpenMPRuntime; 161 delete CUDARuntime; 162 delete TheTargetCodeGenInfo; 163 delete TBAA; 164 delete DebugInfo; 165 delete ARCData; 166 delete RRData; 167 } 168 169 void CodeGenModule::createObjCRuntime() { 170 // This is just isGNUFamily(), but we want to force implementors of 171 // new ABIs to decide how best to do this. 172 switch (LangOpts.ObjCRuntime.getKind()) { 173 case ObjCRuntime::GNUstep: 174 case ObjCRuntime::GCC: 175 case ObjCRuntime::ObjFW: 176 ObjCRuntime = CreateGNUObjCRuntime(*this); 177 return; 178 179 case ObjCRuntime::FragileMacOSX: 180 case ObjCRuntime::MacOSX: 181 case ObjCRuntime::iOS: 182 ObjCRuntime = CreateMacObjCRuntime(*this); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime = new CGOpenCLRuntime(*this); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 OpenMPRuntime = new CGOpenMPRuntime(*this); 194 } 195 196 void CodeGenModule::createCUDARuntime() { 197 CUDARuntime = CreateNVCUDARuntime(*this); 198 } 199 200 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 201 Replacements[Name] = C; 202 } 203 204 void CodeGenModule::applyReplacements() { 205 for (ReplacementsTy::iterator I = Replacements.begin(), 206 E = Replacements.end(); 207 I != E; ++I) { 208 StringRef MangledName = I->first(); 209 llvm::Constant *Replacement = I->second; 210 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 211 if (!Entry) 212 continue; 213 auto *OldF = cast<llvm::Function>(Entry); 214 auto *NewF = dyn_cast<llvm::Function>(Replacement); 215 if (!NewF) { 216 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 217 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 218 } else { 219 auto *CE = cast<llvm::ConstantExpr>(Replacement); 220 assert(CE->getOpcode() == llvm::Instruction::BitCast || 221 CE->getOpcode() == llvm::Instruction::GetElementPtr); 222 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 223 } 224 } 225 226 // Replace old with new, but keep the old order. 227 OldF->replaceAllUsesWith(Replacement); 228 if (NewF) { 229 NewF->removeFromParent(); 230 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 231 } 232 OldF->eraseFromParent(); 233 } 234 } 235 236 // This is only used in aliases that we created and we know they have a 237 // linear structure. 238 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 239 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 240 const llvm::Constant *C = &GA; 241 for (;;) { 242 C = C->stripPointerCasts(); 243 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 244 return GO; 245 // stripPointerCasts will not walk over weak aliases. 246 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 247 if (!GA2) 248 return nullptr; 249 if (!Visited.insert(GA2).second) 250 return nullptr; 251 C = GA2->getAliasee(); 252 } 253 } 254 255 void CodeGenModule::checkAliases() { 256 // Check if the constructed aliases are well formed. It is really unfortunate 257 // that we have to do this in CodeGen, but we only construct mangled names 258 // and aliases during codegen. 259 bool Error = false; 260 DiagnosticsEngine &Diags = getDiags(); 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 const auto *D = cast<ValueDecl>(GD.getDecl()); 265 const AliasAttr *AA = D->getAttr<AliasAttr>(); 266 StringRef MangledName = getMangledName(GD); 267 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 268 auto *Alias = cast<llvm::GlobalAlias>(Entry); 269 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 270 if (!GV) { 271 Error = true; 272 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 273 } else if (GV->isDeclaration()) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 276 } 277 278 llvm::Constant *Aliasee = Alias->getAliasee(); 279 llvm::GlobalValue *AliaseeGV; 280 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 281 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 282 else 283 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 284 285 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 286 StringRef AliasSection = SA->getName(); 287 if (AliasSection != AliaseeGV->getSection()) 288 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 289 << AliasSection; 290 } 291 292 // We have to handle alias to weak aliases in here. LLVM itself disallows 293 // this since the object semantics would not match the IL one. For 294 // compatibility with gcc we implement it by just pointing the alias 295 // to its aliasee's aliasee. We also warn, since the user is probably 296 // expecting the link to be weak. 297 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 298 if (GA->mayBeOverridden()) { 299 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 300 << GV->getName() << GA->getName(); 301 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 302 GA->getAliasee(), Alias->getType()); 303 Alias->setAliasee(Aliasee); 304 } 305 } 306 } 307 if (!Error) 308 return; 309 310 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 311 E = Aliases.end(); I != E; ++I) { 312 const GlobalDecl &GD = *I; 313 StringRef MangledName = getMangledName(GD); 314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 315 auto *Alias = cast<llvm::GlobalAlias>(Entry); 316 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 317 Alias->eraseFromParent(); 318 } 319 } 320 321 void CodeGenModule::clear() { 322 DeferredDeclsToEmit.clear(); 323 } 324 325 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 326 StringRef MainFile) { 327 if (!hasDiagnostics()) 328 return; 329 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 330 if (MainFile.empty()) 331 MainFile = "<stdin>"; 332 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 333 } else 334 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 335 << Mismatched; 336 } 337 338 void CodeGenModule::Release() { 339 EmitDeferred(); 340 applyReplacements(); 341 checkAliases(); 342 EmitCXXGlobalInitFunc(); 343 EmitCXXGlobalDtorFunc(); 344 EmitCXXThreadLocalInitFunc(); 345 if (ObjCRuntime) 346 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 347 AddGlobalCtor(ObjCInitFunction); 348 if (PGOReader && PGOStats.hasDiagnostics()) 349 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 350 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 351 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 352 EmitGlobalAnnotations(); 353 EmitStaticExternCAliases(); 354 EmitDeferredUnusedCoverageMappings(); 355 if (CoverageMapping) 356 CoverageMapping->emit(); 357 emitLLVMUsed(); 358 359 if (CodeGenOpts.Autolink && 360 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 361 EmitModuleLinkOptions(); 362 } 363 if (CodeGenOpts.DwarfVersion) 364 // We actually want the latest version when there are conflicts. 365 // We can change from Warning to Latest if such mode is supported. 366 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 367 CodeGenOpts.DwarfVersion); 368 if (DebugInfo) 369 // We support a single version in the linked module. The LLVM 370 // parser will drop debug info with a different version number 371 // (and warn about it, too). 372 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 373 llvm::DEBUG_METADATA_VERSION); 374 375 // We need to record the widths of enums and wchar_t, so that we can generate 376 // the correct build attributes in the ARM backend. 377 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 378 if ( Arch == llvm::Triple::arm 379 || Arch == llvm::Triple::armeb 380 || Arch == llvm::Triple::thumb 381 || Arch == llvm::Triple::thumbeb) { 382 // Width of wchar_t in bytes 383 uint64_t WCharWidth = 384 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 385 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 386 387 // The minimum width of an enum in bytes 388 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 389 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 390 } 391 392 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 393 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 394 switch (PLevel) { 395 case 0: break; 396 case 1: PL = llvm::PICLevel::Small; break; 397 case 2: PL = llvm::PICLevel::Large; break; 398 default: llvm_unreachable("Invalid PIC Level"); 399 } 400 401 getModule().setPICLevel(PL); 402 } 403 404 SimplifyPersonality(); 405 406 if (getCodeGenOpts().EmitDeclMetadata) 407 EmitDeclMetadata(); 408 409 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 410 EmitCoverageFile(); 411 412 if (DebugInfo) 413 DebugInfo->finalize(); 414 415 EmitVersionIdentMetadata(); 416 417 EmitTargetMetadata(); 418 } 419 420 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 421 // Make sure that this type is translated. 422 Types.UpdateCompletedType(TD); 423 } 424 425 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 426 if (!TBAA) 427 return nullptr; 428 return TBAA->getTBAAInfo(QTy); 429 } 430 431 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 432 if (!TBAA) 433 return nullptr; 434 return TBAA->getTBAAInfoForVTablePtr(); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAStructInfo(QTy); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAStructTypeInfo(QTy); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 450 llvm::MDNode *AccessN, 451 uint64_t O) { 452 if (!TBAA) 453 return nullptr; 454 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 455 } 456 457 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 458 /// and struct-path aware TBAA, the tag has the same format: 459 /// base type, access type and offset. 460 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 461 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 462 llvm::MDNode *TBAAInfo, 463 bool ConvertTypeToTag) { 464 if (ConvertTypeToTag && TBAA) 465 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 466 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 467 else 468 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 469 } 470 471 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 472 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 473 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 474 } 475 476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 477 /// specified stmt yet. 478 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 479 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 480 "cannot compile this %0 yet"); 481 std::string Msg = Type; 482 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 483 << Msg << S->getSourceRange(); 484 } 485 486 /// ErrorUnsupported - Print out an error that codegen doesn't support the 487 /// specified decl yet. 488 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 489 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 490 "cannot compile this %0 yet"); 491 std::string Msg = Type; 492 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 493 } 494 495 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 496 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 497 } 498 499 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 500 const NamedDecl *D) const { 501 // Internal definitions always have default visibility. 502 if (GV->hasLocalLinkage()) { 503 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 504 return; 505 } 506 507 // Set visibility for definitions. 508 LinkageInfo LV = D->getLinkageAndVisibility(); 509 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 510 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 511 } 512 513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 514 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 515 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 516 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 517 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 518 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 519 } 520 521 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 522 CodeGenOptions::TLSModel M) { 523 switch (M) { 524 case CodeGenOptions::GeneralDynamicTLSModel: 525 return llvm::GlobalVariable::GeneralDynamicTLSModel; 526 case CodeGenOptions::LocalDynamicTLSModel: 527 return llvm::GlobalVariable::LocalDynamicTLSModel; 528 case CodeGenOptions::InitialExecTLSModel: 529 return llvm::GlobalVariable::InitialExecTLSModel; 530 case CodeGenOptions::LocalExecTLSModel: 531 return llvm::GlobalVariable::LocalExecTLSModel; 532 } 533 llvm_unreachable("Invalid TLS model!"); 534 } 535 536 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 537 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 538 539 llvm::GlobalValue::ThreadLocalMode TLM; 540 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 541 542 // Override the TLS model if it is explicitly specified. 543 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 544 TLM = GetLLVMTLSModel(Attr->getModel()); 545 } 546 547 GV->setThreadLocalMode(TLM); 548 } 549 550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 551 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 552 if (!FoundStr.empty()) 553 return FoundStr; 554 555 const auto *ND = cast<NamedDecl>(GD.getDecl()); 556 SmallString<256> Buffer; 557 StringRef Str; 558 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 559 llvm::raw_svector_ostream Out(Buffer); 560 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 561 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 562 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 563 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 564 else 565 getCXXABI().getMangleContext().mangleName(ND, Out); 566 Str = Out.str(); 567 } else { 568 IdentifierInfo *II = ND->getIdentifier(); 569 assert(II && "Attempt to mangle unnamed decl."); 570 Str = II->getName(); 571 } 572 573 // Keep the first result in the case of a mangling collision. 574 auto Result = Manglings.insert(std::make_pair(Str, GD)); 575 return FoundStr = Result.first->first(); 576 } 577 578 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 579 const BlockDecl *BD) { 580 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 581 const Decl *D = GD.getDecl(); 582 583 SmallString<256> Buffer; 584 llvm::raw_svector_ostream Out(Buffer); 585 if (!D) 586 MangleCtx.mangleGlobalBlock(BD, 587 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 588 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 589 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 590 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 591 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 592 else 593 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 594 595 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 596 return Result.first->first(); 597 } 598 599 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 600 return getModule().getNamedValue(Name); 601 } 602 603 /// AddGlobalCtor - Add a function to the list that will be called before 604 /// main() runs. 605 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 606 llvm::Constant *AssociatedData) { 607 // FIXME: Type coercion of void()* types. 608 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 609 } 610 611 /// AddGlobalDtor - Add a function to the list that will be called 612 /// when the module is unloaded. 613 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 614 // FIXME: Type coercion of void()* types. 615 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 616 } 617 618 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 619 // Ctor function type is void()*. 620 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 621 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 622 623 // Get the type of a ctor entry, { i32, void ()*, i8* }. 624 llvm::StructType *CtorStructTy = llvm::StructType::get( 625 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 626 627 // Construct the constructor and destructor arrays. 628 SmallVector<llvm::Constant*, 8> Ctors; 629 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 630 llvm::Constant *S[] = { 631 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 632 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 633 (I->AssociatedData 634 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 635 : llvm::Constant::getNullValue(VoidPtrTy)) 636 }; 637 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 638 } 639 640 if (!Ctors.empty()) { 641 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 642 new llvm::GlobalVariable(TheModule, AT, false, 643 llvm::GlobalValue::AppendingLinkage, 644 llvm::ConstantArray::get(AT, Ctors), 645 GlobalName); 646 } 647 } 648 649 llvm::GlobalValue::LinkageTypes 650 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 651 const auto *D = cast<FunctionDecl>(GD.getDecl()); 652 653 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 654 655 if (isa<CXXDestructorDecl>(D) && 656 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 657 GD.getDtorType())) { 658 // Destructor variants in the Microsoft C++ ABI are always internal or 659 // linkonce_odr thunks emitted on an as-needed basis. 660 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 661 : llvm::GlobalValue::LinkOnceODRLinkage; 662 } 663 664 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 665 } 666 667 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 668 llvm::Function *F) { 669 setNonAliasAttributes(D, F); 670 } 671 672 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 673 const CGFunctionInfo &Info, 674 llvm::Function *F) { 675 unsigned CallingConv; 676 AttributeListType AttributeList; 677 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 678 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 679 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 680 } 681 682 /// Determines whether the language options require us to model 683 /// unwind exceptions. We treat -fexceptions as mandating this 684 /// except under the fragile ObjC ABI with only ObjC exceptions 685 /// enabled. This means, for example, that C with -fexceptions 686 /// enables this. 687 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 688 // If exceptions are completely disabled, obviously this is false. 689 if (!LangOpts.Exceptions) return false; 690 691 // If C++ exceptions are enabled, this is true. 692 if (LangOpts.CXXExceptions) return true; 693 694 // If ObjC exceptions are enabled, this depends on the ABI. 695 if (LangOpts.ObjCExceptions) { 696 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 697 } 698 699 return true; 700 } 701 702 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 703 llvm::Function *F) { 704 llvm::AttrBuilder B; 705 706 if (CodeGenOpts.UnwindTables) 707 B.addAttribute(llvm::Attribute::UWTable); 708 709 if (!hasUnwindExceptions(LangOpts)) 710 B.addAttribute(llvm::Attribute::NoUnwind); 711 712 if (D->hasAttr<NakedAttr>()) { 713 // Naked implies noinline: we should not be inlining such functions. 714 B.addAttribute(llvm::Attribute::Naked); 715 B.addAttribute(llvm::Attribute::NoInline); 716 } else if (D->hasAttr<NoDuplicateAttr>()) { 717 B.addAttribute(llvm::Attribute::NoDuplicate); 718 } else if (D->hasAttr<NoInlineAttr>()) { 719 B.addAttribute(llvm::Attribute::NoInline); 720 } else if (D->hasAttr<AlwaysInlineAttr>() && 721 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 722 llvm::Attribute::NoInline)) { 723 // (noinline wins over always_inline, and we can't specify both in IR) 724 B.addAttribute(llvm::Attribute::AlwaysInline); 725 } 726 727 if (D->hasAttr<ColdAttr>()) { 728 B.addAttribute(llvm::Attribute::OptimizeForSize); 729 B.addAttribute(llvm::Attribute::Cold); 730 } 731 732 if (D->hasAttr<MinSizeAttr>()) 733 B.addAttribute(llvm::Attribute::MinSize); 734 735 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 736 B.addAttribute(llvm::Attribute::StackProtect); 737 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 738 B.addAttribute(llvm::Attribute::StackProtectStrong); 739 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 740 B.addAttribute(llvm::Attribute::StackProtectReq); 741 742 // Add sanitizer attributes if function is not blacklisted. 743 if (!isInSanitizerBlacklist(F, D->getLocation())) { 744 // When AddressSanitizer is enabled, set SanitizeAddress attribute 745 // unless __attribute__((no_sanitize_address)) is used. 746 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 747 !D->hasAttr<NoSanitizeAddressAttr>()) 748 B.addAttribute(llvm::Attribute::SanitizeAddress); 749 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 750 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 751 !D->hasAttr<NoSanitizeThreadAttr>()) 752 B.addAttribute(llvm::Attribute::SanitizeThread); 753 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 754 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 755 !D->hasAttr<NoSanitizeMemoryAttr>()) 756 B.addAttribute(llvm::Attribute::SanitizeMemory); 757 } 758 759 F->addAttributes(llvm::AttributeSet::FunctionIndex, 760 llvm::AttributeSet::get( 761 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 762 763 if (D->hasAttr<OptimizeNoneAttr>()) { 764 // OptimizeNone implies noinline; we should not be inlining such functions. 765 F->addFnAttr(llvm::Attribute::OptimizeNone); 766 F->addFnAttr(llvm::Attribute::NoInline); 767 768 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 769 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 770 F->removeFnAttr(llvm::Attribute::MinSize); 771 F->removeFnAttr(llvm::Attribute::AlwaysInline); 772 773 // Attribute 'inlinehint' has no effect on 'optnone' functions. 774 // Explicitly remove it from the set of function attributes. 775 F->removeFnAttr(llvm::Attribute::InlineHint); 776 } 777 778 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 779 F->setUnnamedAddr(true); 780 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 781 if (MD->isVirtual()) 782 F->setUnnamedAddr(true); 783 784 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 785 if (alignment) 786 F->setAlignment(alignment); 787 788 // C++ ABI requires 2-byte alignment for member functions. 789 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 790 F->setAlignment(2); 791 } 792 793 void CodeGenModule::SetCommonAttributes(const Decl *D, 794 llvm::GlobalValue *GV) { 795 if (const auto *ND = dyn_cast<NamedDecl>(D)) 796 setGlobalVisibility(GV, ND); 797 else 798 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 799 800 if (D->hasAttr<UsedAttr>()) 801 addUsedGlobal(GV); 802 } 803 804 void CodeGenModule::setAliasAttributes(const Decl *D, 805 llvm::GlobalValue *GV) { 806 SetCommonAttributes(D, GV); 807 808 // Process the dllexport attribute based on whether the original definition 809 // (not necessarily the aliasee) was exported. 810 if (D->hasAttr<DLLExportAttr>()) 811 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 812 } 813 814 void CodeGenModule::setNonAliasAttributes(const Decl *D, 815 llvm::GlobalObject *GO) { 816 SetCommonAttributes(D, GO); 817 818 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 819 GO->setSection(SA->getName()); 820 821 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 822 } 823 824 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 825 llvm::Function *F, 826 const CGFunctionInfo &FI) { 827 SetLLVMFunctionAttributes(D, FI, F); 828 SetLLVMFunctionAttributesForDefinition(D, F); 829 830 F->setLinkage(llvm::Function::InternalLinkage); 831 832 setNonAliasAttributes(D, F); 833 } 834 835 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 836 const NamedDecl *ND) { 837 // Set linkage and visibility in case we never see a definition. 838 LinkageInfo LV = ND->getLinkageAndVisibility(); 839 if (LV.getLinkage() != ExternalLinkage) { 840 // Don't set internal linkage on declarations. 841 } else { 842 if (ND->hasAttr<DLLImportAttr>()) { 843 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 844 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 845 } else if (ND->hasAttr<DLLExportAttr>()) { 846 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 847 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 848 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 849 // "extern_weak" is overloaded in LLVM; we probably should have 850 // separate linkage types for this. 851 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 852 } 853 854 // Set visibility on a declaration only if it's explicit. 855 if (LV.isVisibilityExplicit()) 856 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 857 } 858 } 859 860 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 861 bool IsIncompleteFunction, 862 bool IsThunk) { 863 if (unsigned IID = F->getIntrinsicID()) { 864 // If this is an intrinsic function, set the function's attributes 865 // to the intrinsic's attributes. 866 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 867 (llvm::Intrinsic::ID)IID)); 868 return; 869 } 870 871 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 872 873 if (!IsIncompleteFunction) 874 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 875 876 // Add the Returned attribute for "this", except for iOS 5 and earlier 877 // where substantial code, including the libstdc++ dylib, was compiled with 878 // GCC and does not actually return "this". 879 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 880 !(getTarget().getTriple().isiOS() && 881 getTarget().getTriple().isOSVersionLT(6))) { 882 assert(!F->arg_empty() && 883 F->arg_begin()->getType() 884 ->canLosslesslyBitCastTo(F->getReturnType()) && 885 "unexpected this return"); 886 F->addAttribute(1, llvm::Attribute::Returned); 887 } 888 889 // Only a few attributes are set on declarations; these may later be 890 // overridden by a definition. 891 892 setLinkageAndVisibilityForGV(F, FD); 893 894 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 895 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 896 // Don't dllexport/import destructor thunks. 897 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 898 } 899 } 900 901 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 902 F->setSection(SA->getName()); 903 904 // A replaceable global allocation function does not act like a builtin by 905 // default, only if it is invoked by a new-expression or delete-expression. 906 if (FD->isReplaceableGlobalAllocationFunction()) 907 F->addAttribute(llvm::AttributeSet::FunctionIndex, 908 llvm::Attribute::NoBuiltin); 909 } 910 911 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 912 assert(!GV->isDeclaration() && 913 "Only globals with definition can force usage."); 914 LLVMUsed.push_back(GV); 915 } 916 917 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 918 assert(!GV->isDeclaration() && 919 "Only globals with definition can force usage."); 920 LLVMCompilerUsed.push_back(GV); 921 } 922 923 static void emitUsed(CodeGenModule &CGM, StringRef Name, 924 std::vector<llvm::WeakVH> &List) { 925 // Don't create llvm.used if there is no need. 926 if (List.empty()) 927 return; 928 929 // Convert List to what ConstantArray needs. 930 SmallVector<llvm::Constant*, 8> UsedArray; 931 UsedArray.resize(List.size()); 932 for (unsigned i = 0, e = List.size(); i != e; ++i) { 933 UsedArray[i] = 934 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 935 CGM.Int8PtrTy); 936 } 937 938 if (UsedArray.empty()) 939 return; 940 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 941 942 auto *GV = new llvm::GlobalVariable( 943 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 944 llvm::ConstantArray::get(ATy, UsedArray), Name); 945 946 GV->setSection("llvm.metadata"); 947 } 948 949 void CodeGenModule::emitLLVMUsed() { 950 emitUsed(*this, "llvm.used", LLVMUsed); 951 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 952 } 953 954 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 955 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 956 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 957 } 958 959 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 960 llvm::SmallString<32> Opt; 961 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 962 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 963 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 964 } 965 966 void CodeGenModule::AddDependentLib(StringRef Lib) { 967 llvm::SmallString<24> Opt; 968 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 969 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 970 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 971 } 972 973 /// \brief Add link options implied by the given module, including modules 974 /// it depends on, using a postorder walk. 975 static void addLinkOptionsPostorder(CodeGenModule &CGM, 976 Module *Mod, 977 SmallVectorImpl<llvm::Value *> &Metadata, 978 llvm::SmallPtrSet<Module *, 16> &Visited) { 979 // Import this module's parent. 980 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 981 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 982 } 983 984 // Import this module's dependencies. 985 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 986 if (Visited.insert(Mod->Imports[I - 1]).second) 987 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 988 } 989 990 // Add linker options to link against the libraries/frameworks 991 // described by this module. 992 llvm::LLVMContext &Context = CGM.getLLVMContext(); 993 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 994 // Link against a framework. Frameworks are currently Darwin only, so we 995 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 996 if (Mod->LinkLibraries[I-1].IsFramework) { 997 llvm::Value *Args[2] = { 998 llvm::MDString::get(Context, "-framework"), 999 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 1000 }; 1001 1002 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1003 continue; 1004 } 1005 1006 // Link against a library. 1007 llvm::SmallString<24> Opt; 1008 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1009 Mod->LinkLibraries[I-1].Library, Opt); 1010 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 1011 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1012 } 1013 } 1014 1015 void CodeGenModule::EmitModuleLinkOptions() { 1016 // Collect the set of all of the modules we want to visit to emit link 1017 // options, which is essentially the imported modules and all of their 1018 // non-explicit child modules. 1019 llvm::SetVector<clang::Module *> LinkModules; 1020 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1021 SmallVector<clang::Module *, 16> Stack; 1022 1023 // Seed the stack with imported modules. 1024 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1025 MEnd = ImportedModules.end(); 1026 M != MEnd; ++M) { 1027 if (Visited.insert(*M).second) 1028 Stack.push_back(*M); 1029 } 1030 1031 // Find all of the modules to import, making a little effort to prune 1032 // non-leaf modules. 1033 while (!Stack.empty()) { 1034 clang::Module *Mod = Stack.pop_back_val(); 1035 1036 bool AnyChildren = false; 1037 1038 // Visit the submodules of this module. 1039 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1040 SubEnd = Mod->submodule_end(); 1041 Sub != SubEnd; ++Sub) { 1042 // Skip explicit children; they need to be explicitly imported to be 1043 // linked against. 1044 if ((*Sub)->IsExplicit) 1045 continue; 1046 1047 if (Visited.insert(*Sub).second) { 1048 Stack.push_back(*Sub); 1049 AnyChildren = true; 1050 } 1051 } 1052 1053 // We didn't find any children, so add this module to the list of 1054 // modules to link against. 1055 if (!AnyChildren) { 1056 LinkModules.insert(Mod); 1057 } 1058 } 1059 1060 // Add link options for all of the imported modules in reverse topological 1061 // order. We don't do anything to try to order import link flags with respect 1062 // to linker options inserted by things like #pragma comment(). 1063 SmallVector<llvm::Value *, 16> MetadataArgs; 1064 Visited.clear(); 1065 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1066 MEnd = LinkModules.end(); 1067 M != MEnd; ++M) { 1068 if (Visited.insert(*M).second) 1069 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1070 } 1071 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1072 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1073 1074 // Add the linker options metadata flag. 1075 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1076 llvm::MDNode::get(getLLVMContext(), 1077 LinkerOptionsMetadata)); 1078 } 1079 1080 void CodeGenModule::EmitDeferred() { 1081 // Emit code for any potentially referenced deferred decls. Since a 1082 // previously unused static decl may become used during the generation of code 1083 // for a static function, iterate until no changes are made. 1084 1085 while (true) { 1086 if (!DeferredVTables.empty()) { 1087 EmitDeferredVTables(); 1088 1089 // Emitting a v-table doesn't directly cause more v-tables to 1090 // become deferred, although it can cause functions to be 1091 // emitted that then need those v-tables. 1092 assert(DeferredVTables.empty()); 1093 } 1094 1095 // Stop if we're out of both deferred v-tables and deferred declarations. 1096 if (DeferredDeclsToEmit.empty()) break; 1097 1098 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1099 GlobalDecl D = G.GD; 1100 llvm::GlobalValue *GV = G.GV; 1101 DeferredDeclsToEmit.pop_back(); 1102 1103 assert(GV == GetGlobalValue(getMangledName(D))); 1104 // Check to see if we've already emitted this. This is necessary 1105 // for a couple of reasons: first, decls can end up in the 1106 // deferred-decls queue multiple times, and second, decls can end 1107 // up with definitions in unusual ways (e.g. by an extern inline 1108 // function acquiring a strong function redefinition). Just 1109 // ignore these cases. 1110 if(!GV->isDeclaration()) 1111 continue; 1112 1113 // Otherwise, emit the definition and move on to the next one. 1114 EmitGlobalDefinition(D, GV); 1115 } 1116 } 1117 1118 void CodeGenModule::EmitGlobalAnnotations() { 1119 if (Annotations.empty()) 1120 return; 1121 1122 // Create a new global variable for the ConstantStruct in the Module. 1123 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1124 Annotations[0]->getType(), Annotations.size()), Annotations); 1125 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1126 llvm::GlobalValue::AppendingLinkage, 1127 Array, "llvm.global.annotations"); 1128 gv->setSection(AnnotationSection); 1129 } 1130 1131 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1132 llvm::Constant *&AStr = AnnotationStrings[Str]; 1133 if (AStr) 1134 return AStr; 1135 1136 // Not found yet, create a new global. 1137 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1138 auto *gv = 1139 new llvm::GlobalVariable(getModule(), s->getType(), true, 1140 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1141 gv->setSection(AnnotationSection); 1142 gv->setUnnamedAddr(true); 1143 AStr = gv; 1144 return gv; 1145 } 1146 1147 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1148 SourceManager &SM = getContext().getSourceManager(); 1149 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1150 if (PLoc.isValid()) 1151 return EmitAnnotationString(PLoc.getFilename()); 1152 return EmitAnnotationString(SM.getBufferName(Loc)); 1153 } 1154 1155 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1156 SourceManager &SM = getContext().getSourceManager(); 1157 PresumedLoc PLoc = SM.getPresumedLoc(L); 1158 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1159 SM.getExpansionLineNumber(L); 1160 return llvm::ConstantInt::get(Int32Ty, LineNo); 1161 } 1162 1163 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1164 const AnnotateAttr *AA, 1165 SourceLocation L) { 1166 // Get the globals for file name, annotation, and the line number. 1167 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1168 *UnitGV = EmitAnnotationUnit(L), 1169 *LineNoCst = EmitAnnotationLineNo(L); 1170 1171 // Create the ConstantStruct for the global annotation. 1172 llvm::Constant *Fields[4] = { 1173 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1174 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1175 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1176 LineNoCst 1177 }; 1178 return llvm::ConstantStruct::getAnon(Fields); 1179 } 1180 1181 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1182 llvm::GlobalValue *GV) { 1183 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1184 // Get the struct elements for these annotations. 1185 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1186 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1187 } 1188 1189 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1190 SourceLocation Loc) const { 1191 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1192 // Blacklist by function name. 1193 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1194 return true; 1195 // Blacklist by location. 1196 if (!Loc.isInvalid()) 1197 return SanitizerBL.isBlacklistedLocation(Loc); 1198 // If location is unknown, this may be a compiler-generated function. Assume 1199 // it's located in the main file. 1200 auto &SM = Context.getSourceManager(); 1201 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1202 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1203 } 1204 return false; 1205 } 1206 1207 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1208 SourceLocation Loc, QualType Ty, 1209 StringRef Category) const { 1210 // For now globals can be blacklisted only in ASan. 1211 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1212 return false; 1213 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1214 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1215 return true; 1216 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1217 return true; 1218 // Check global type. 1219 if (!Ty.isNull()) { 1220 // Drill down the array types: if global variable of a fixed type is 1221 // blacklisted, we also don't instrument arrays of them. 1222 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1223 Ty = AT->getElementType(); 1224 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1225 // We allow to blacklist only record types (classes, structs etc.) 1226 if (Ty->isRecordType()) { 1227 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1228 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1229 return true; 1230 } 1231 } 1232 return false; 1233 } 1234 1235 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1236 // Never defer when EmitAllDecls is specified. 1237 if (LangOpts.EmitAllDecls) 1238 return false; 1239 1240 return !getContext().DeclMustBeEmitted(Global); 1241 } 1242 1243 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1244 const CXXUuidofExpr* E) { 1245 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1246 // well-formed. 1247 StringRef Uuid = E->getUuidAsStringRef(Context); 1248 std::string Name = "_GUID_" + Uuid.lower(); 1249 std::replace(Name.begin(), Name.end(), '-', '_'); 1250 1251 // Look for an existing global. 1252 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1253 return GV; 1254 1255 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1256 assert(Init && "failed to initialize as constant"); 1257 1258 auto *GV = new llvm::GlobalVariable( 1259 getModule(), Init->getType(), 1260 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1261 return GV; 1262 } 1263 1264 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1265 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1266 assert(AA && "No alias?"); 1267 1268 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1269 1270 // See if there is already something with the target's name in the module. 1271 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1272 if (Entry) { 1273 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1274 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1275 } 1276 1277 llvm::Constant *Aliasee; 1278 if (isa<llvm::FunctionType>(DeclTy)) 1279 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1280 GlobalDecl(cast<FunctionDecl>(VD)), 1281 /*ForVTable=*/false); 1282 else 1283 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1284 llvm::PointerType::getUnqual(DeclTy), 1285 nullptr); 1286 1287 auto *F = cast<llvm::GlobalValue>(Aliasee); 1288 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1289 WeakRefReferences.insert(F); 1290 1291 return Aliasee; 1292 } 1293 1294 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1295 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1296 1297 // Weak references don't produce any output by themselves. 1298 if (Global->hasAttr<WeakRefAttr>()) 1299 return; 1300 1301 // If this is an alias definition (which otherwise looks like a declaration) 1302 // emit it now. 1303 if (Global->hasAttr<AliasAttr>()) 1304 return EmitAliasDefinition(GD); 1305 1306 // If this is CUDA, be selective about which declarations we emit. 1307 if (LangOpts.CUDA) { 1308 if (CodeGenOpts.CUDAIsDevice) { 1309 if (!Global->hasAttr<CUDADeviceAttr>() && 1310 !Global->hasAttr<CUDAGlobalAttr>() && 1311 !Global->hasAttr<CUDAConstantAttr>() && 1312 !Global->hasAttr<CUDASharedAttr>()) 1313 return; 1314 } else { 1315 if (!Global->hasAttr<CUDAHostAttr>() && ( 1316 Global->hasAttr<CUDADeviceAttr>() || 1317 Global->hasAttr<CUDAConstantAttr>() || 1318 Global->hasAttr<CUDASharedAttr>())) 1319 return; 1320 } 1321 } 1322 1323 // Ignore declarations, they will be emitted on their first use. 1324 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1325 // Forward declarations are emitted lazily on first use. 1326 if (!FD->doesThisDeclarationHaveABody()) { 1327 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1328 return; 1329 1330 StringRef MangledName = getMangledName(GD); 1331 1332 // Compute the function info and LLVM type. 1333 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1334 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1335 1336 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1337 /*DontDefer=*/false); 1338 return; 1339 } 1340 } else { 1341 const auto *VD = cast<VarDecl>(Global); 1342 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1343 1344 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1345 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1346 return; 1347 } 1348 1349 // Defer code generation when possible if this is a static definition, inline 1350 // function etc. These we only want to emit if they are used. 1351 if (!MayDeferGeneration(Global)) { 1352 // Emit the definition if it can't be deferred. 1353 EmitGlobalDefinition(GD); 1354 return; 1355 } 1356 1357 // If we're deferring emission of a C++ variable with an 1358 // initializer, remember the order in which it appeared in the file. 1359 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1360 cast<VarDecl>(Global)->hasInit()) { 1361 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1362 CXXGlobalInits.push_back(nullptr); 1363 } 1364 1365 // If the value has already been used, add it directly to the 1366 // DeferredDeclsToEmit list. 1367 StringRef MangledName = getMangledName(GD); 1368 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1369 addDeferredDeclToEmit(GV, GD); 1370 else { 1371 // Otherwise, remember that we saw a deferred decl with this name. The 1372 // first use of the mangled name will cause it to move into 1373 // DeferredDeclsToEmit. 1374 DeferredDecls[MangledName] = GD; 1375 } 1376 } 1377 1378 namespace { 1379 struct FunctionIsDirectlyRecursive : 1380 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1381 const StringRef Name; 1382 const Builtin::Context &BI; 1383 bool Result; 1384 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1385 Name(N), BI(C), Result(false) { 1386 } 1387 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1388 1389 bool TraverseCallExpr(CallExpr *E) { 1390 const FunctionDecl *FD = E->getDirectCallee(); 1391 if (!FD) 1392 return true; 1393 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1394 if (Attr && Name == Attr->getLabel()) { 1395 Result = true; 1396 return false; 1397 } 1398 unsigned BuiltinID = FD->getBuiltinID(); 1399 if (!BuiltinID) 1400 return true; 1401 StringRef BuiltinName = BI.GetName(BuiltinID); 1402 if (BuiltinName.startswith("__builtin_") && 1403 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1404 Result = true; 1405 return false; 1406 } 1407 return true; 1408 } 1409 }; 1410 } 1411 1412 // isTriviallyRecursive - Check if this function calls another 1413 // decl that, because of the asm attribute or the other decl being a builtin, 1414 // ends up pointing to itself. 1415 bool 1416 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1417 StringRef Name; 1418 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1419 // asm labels are a special kind of mangling we have to support. 1420 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1421 if (!Attr) 1422 return false; 1423 Name = Attr->getLabel(); 1424 } else { 1425 Name = FD->getName(); 1426 } 1427 1428 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1429 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1430 return Walker.Result; 1431 } 1432 1433 bool 1434 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1435 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1436 return true; 1437 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1438 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1439 return false; 1440 // PR9614. Avoid cases where the source code is lying to us. An available 1441 // externally function should have an equivalent function somewhere else, 1442 // but a function that calls itself is clearly not equivalent to the real 1443 // implementation. 1444 // This happens in glibc's btowc and in some configure checks. 1445 return !isTriviallyRecursive(F); 1446 } 1447 1448 /// If the type for the method's class was generated by 1449 /// CGDebugInfo::createContextChain(), the cache contains only a 1450 /// limited DIType without any declarations. Since EmitFunctionStart() 1451 /// needs to find the canonical declaration for each method, we need 1452 /// to construct the complete type prior to emitting the method. 1453 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1454 if (!D->isInstance()) 1455 return; 1456 1457 if (CGDebugInfo *DI = getModuleDebugInfo()) 1458 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1459 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1460 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1461 } 1462 } 1463 1464 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1465 const auto *D = cast<ValueDecl>(GD.getDecl()); 1466 1467 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1468 Context.getSourceManager(), 1469 "Generating code for declaration"); 1470 1471 if (isa<FunctionDecl>(D)) { 1472 // At -O0, don't generate IR for functions with available_externally 1473 // linkage. 1474 if (!shouldEmitFunction(GD)) 1475 return; 1476 1477 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1478 CompleteDIClassType(Method); 1479 // Make sure to emit the definition(s) before we emit the thunks. 1480 // This is necessary for the generation of certain thunks. 1481 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1482 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1483 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1484 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1485 else 1486 EmitGlobalFunctionDefinition(GD, GV); 1487 1488 if (Method->isVirtual()) 1489 getVTables().EmitThunks(GD); 1490 1491 return; 1492 } 1493 1494 return EmitGlobalFunctionDefinition(GD, GV); 1495 } 1496 1497 if (const auto *VD = dyn_cast<VarDecl>(D)) 1498 return EmitGlobalVarDefinition(VD); 1499 1500 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1501 } 1502 1503 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1504 /// module, create and return an llvm Function with the specified type. If there 1505 /// is something in the module with the specified name, return it potentially 1506 /// bitcasted to the right type. 1507 /// 1508 /// If D is non-null, it specifies a decl that correspond to this. This is used 1509 /// to set the attributes on the function when it is first created. 1510 llvm::Constant * 1511 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1512 llvm::Type *Ty, 1513 GlobalDecl GD, bool ForVTable, 1514 bool DontDefer, bool IsThunk, 1515 llvm::AttributeSet ExtraAttrs) { 1516 const Decl *D = GD.getDecl(); 1517 1518 // Lookup the entry, lazily creating it if necessary. 1519 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1520 if (Entry) { 1521 if (WeakRefReferences.erase(Entry)) { 1522 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1523 if (FD && !FD->hasAttr<WeakAttr>()) 1524 Entry->setLinkage(llvm::Function::ExternalLinkage); 1525 } 1526 1527 // Handle dropped DLL attributes. 1528 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1529 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1530 1531 if (Entry->getType()->getElementType() == Ty) 1532 return Entry; 1533 1534 // Make sure the result is of the correct type. 1535 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1536 } 1537 1538 // This function doesn't have a complete type (for example, the return 1539 // type is an incomplete struct). Use a fake type instead, and make 1540 // sure not to try to set attributes. 1541 bool IsIncompleteFunction = false; 1542 1543 llvm::FunctionType *FTy; 1544 if (isa<llvm::FunctionType>(Ty)) { 1545 FTy = cast<llvm::FunctionType>(Ty); 1546 } else { 1547 FTy = llvm::FunctionType::get(VoidTy, false); 1548 IsIncompleteFunction = true; 1549 } 1550 1551 llvm::Function *F = llvm::Function::Create(FTy, 1552 llvm::Function::ExternalLinkage, 1553 MangledName, &getModule()); 1554 assert(F->getName() == MangledName && "name was uniqued!"); 1555 if (D) 1556 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1557 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1558 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1559 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1560 llvm::AttributeSet::get(VMContext, 1561 llvm::AttributeSet::FunctionIndex, 1562 B)); 1563 } 1564 1565 if (!DontDefer) { 1566 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1567 // each other bottoming out with the base dtor. Therefore we emit non-base 1568 // dtors on usage, even if there is no dtor definition in the TU. 1569 if (D && isa<CXXDestructorDecl>(D) && 1570 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1571 GD.getDtorType())) 1572 addDeferredDeclToEmit(F, GD); 1573 1574 // This is the first use or definition of a mangled name. If there is a 1575 // deferred decl with this name, remember that we need to emit it at the end 1576 // of the file. 1577 auto DDI = DeferredDecls.find(MangledName); 1578 if (DDI != DeferredDecls.end()) { 1579 // Move the potentially referenced deferred decl to the 1580 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1581 // don't need it anymore). 1582 addDeferredDeclToEmit(F, DDI->second); 1583 DeferredDecls.erase(DDI); 1584 1585 // Otherwise, if this is a sized deallocation function, emit a weak 1586 // definition 1587 // for it at the end of the translation unit. 1588 } else if (D && cast<FunctionDecl>(D) 1589 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1590 addDeferredDeclToEmit(F, GD); 1591 1592 // Otherwise, there are cases we have to worry about where we're 1593 // using a declaration for which we must emit a definition but where 1594 // we might not find a top-level definition: 1595 // - member functions defined inline in their classes 1596 // - friend functions defined inline in some class 1597 // - special member functions with implicit definitions 1598 // If we ever change our AST traversal to walk into class methods, 1599 // this will be unnecessary. 1600 // 1601 // We also don't emit a definition for a function if it's going to be an 1602 // entry in a vtable, unless it's already marked as used. 1603 } else if (getLangOpts().CPlusPlus && D) { 1604 // Look for a declaration that's lexically in a record. 1605 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1606 FD = FD->getPreviousDecl()) { 1607 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1608 if (FD->doesThisDeclarationHaveABody()) { 1609 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1610 break; 1611 } 1612 } 1613 } 1614 } 1615 } 1616 1617 // Make sure the result is of the requested type. 1618 if (!IsIncompleteFunction) { 1619 assert(F->getType()->getElementType() == Ty); 1620 return F; 1621 } 1622 1623 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1624 return llvm::ConstantExpr::getBitCast(F, PTy); 1625 } 1626 1627 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1628 /// non-null, then this function will use the specified type if it has to 1629 /// create it (this occurs when we see a definition of the function). 1630 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1631 llvm::Type *Ty, 1632 bool ForVTable, 1633 bool DontDefer) { 1634 // If there was no specific requested type, just convert it now. 1635 if (!Ty) 1636 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1637 1638 StringRef MangledName = getMangledName(GD); 1639 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1640 } 1641 1642 /// CreateRuntimeFunction - Create a new runtime function with the specified 1643 /// type and name. 1644 llvm::Constant * 1645 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1646 StringRef Name, 1647 llvm::AttributeSet ExtraAttrs) { 1648 llvm::Constant *C = 1649 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1650 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1651 if (auto *F = dyn_cast<llvm::Function>(C)) 1652 if (F->empty()) 1653 F->setCallingConv(getRuntimeCC()); 1654 return C; 1655 } 1656 1657 /// CreateBuiltinFunction - Create a new builtin function with the specified 1658 /// type and name. 1659 llvm::Constant * 1660 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1661 StringRef Name, 1662 llvm::AttributeSet ExtraAttrs) { 1663 llvm::Constant *C = 1664 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1665 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1666 if (auto *F = dyn_cast<llvm::Function>(C)) 1667 if (F->empty()) 1668 F->setCallingConv(getBuiltinCC()); 1669 return C; 1670 } 1671 1672 /// isTypeConstant - Determine whether an object of this type can be emitted 1673 /// as a constant. 1674 /// 1675 /// If ExcludeCtor is true, the duration when the object's constructor runs 1676 /// will not be considered. The caller will need to verify that the object is 1677 /// not written to during its construction. 1678 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1679 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1680 return false; 1681 1682 if (Context.getLangOpts().CPlusPlus) { 1683 if (const CXXRecordDecl *Record 1684 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1685 return ExcludeCtor && !Record->hasMutableFields() && 1686 Record->hasTrivialDestructor(); 1687 } 1688 1689 return true; 1690 } 1691 1692 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1693 /// create and return an llvm GlobalVariable with the specified type. If there 1694 /// is something in the module with the specified name, return it potentially 1695 /// bitcasted to the right type. 1696 /// 1697 /// If D is non-null, it specifies a decl that correspond to this. This is used 1698 /// to set the attributes on the global when it is first created. 1699 llvm::Constant * 1700 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1701 llvm::PointerType *Ty, 1702 const VarDecl *D) { 1703 // Lookup the entry, lazily creating it if necessary. 1704 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1705 if (Entry) { 1706 if (WeakRefReferences.erase(Entry)) { 1707 if (D && !D->hasAttr<WeakAttr>()) 1708 Entry->setLinkage(llvm::Function::ExternalLinkage); 1709 } 1710 1711 // Handle dropped DLL attributes. 1712 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1713 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1714 1715 if (Entry->getType() == Ty) 1716 return Entry; 1717 1718 // Make sure the result is of the correct type. 1719 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1720 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1721 1722 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1723 } 1724 1725 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1726 auto *GV = new llvm::GlobalVariable( 1727 getModule(), Ty->getElementType(), false, 1728 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1729 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1730 1731 // This is the first use or definition of a mangled name. If there is a 1732 // deferred decl with this name, remember that we need to emit it at the end 1733 // of the file. 1734 auto DDI = DeferredDecls.find(MangledName); 1735 if (DDI != DeferredDecls.end()) { 1736 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1737 // list, and remove it from DeferredDecls (since we don't need it anymore). 1738 addDeferredDeclToEmit(GV, DDI->second); 1739 DeferredDecls.erase(DDI); 1740 } 1741 1742 // Handle things which are present even on external declarations. 1743 if (D) { 1744 // FIXME: This code is overly simple and should be merged with other global 1745 // handling. 1746 GV->setConstant(isTypeConstant(D->getType(), false)); 1747 1748 setLinkageAndVisibilityForGV(GV, D); 1749 1750 if (D->getTLSKind()) { 1751 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1752 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1753 setTLSMode(GV, *D); 1754 } 1755 1756 // If required by the ABI, treat declarations of static data members with 1757 // inline initializers as definitions. 1758 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1759 EmitGlobalVarDefinition(D); 1760 } 1761 1762 // Handle XCore specific ABI requirements. 1763 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1764 D->getLanguageLinkage() == CLanguageLinkage && 1765 D->getType().isConstant(Context) && 1766 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1767 GV->setSection(".cp.rodata"); 1768 } 1769 1770 if (AddrSpace != Ty->getAddressSpace()) 1771 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1772 1773 return GV; 1774 } 1775 1776 1777 llvm::GlobalVariable * 1778 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1779 llvm::Type *Ty, 1780 llvm::GlobalValue::LinkageTypes Linkage) { 1781 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1782 llvm::GlobalVariable *OldGV = nullptr; 1783 1784 if (GV) { 1785 // Check if the variable has the right type. 1786 if (GV->getType()->getElementType() == Ty) 1787 return GV; 1788 1789 // Because C++ name mangling, the only way we can end up with an already 1790 // existing global with the same name is if it has been declared extern "C". 1791 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1792 OldGV = GV; 1793 } 1794 1795 // Create a new variable. 1796 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1797 Linkage, nullptr, Name); 1798 1799 if (OldGV) { 1800 // Replace occurrences of the old variable if needed. 1801 GV->takeName(OldGV); 1802 1803 if (!OldGV->use_empty()) { 1804 llvm::Constant *NewPtrForOldDecl = 1805 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1806 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1807 } 1808 1809 OldGV->eraseFromParent(); 1810 } 1811 1812 return GV; 1813 } 1814 1815 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1816 /// given global variable. If Ty is non-null and if the global doesn't exist, 1817 /// then it will be created with the specified type instead of whatever the 1818 /// normal requested type would be. 1819 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1820 llvm::Type *Ty) { 1821 assert(D->hasGlobalStorage() && "Not a global variable"); 1822 QualType ASTTy = D->getType(); 1823 if (!Ty) 1824 Ty = getTypes().ConvertTypeForMem(ASTTy); 1825 1826 llvm::PointerType *PTy = 1827 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1828 1829 StringRef MangledName = getMangledName(D); 1830 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1831 } 1832 1833 /// CreateRuntimeVariable - Create a new runtime global variable with the 1834 /// specified type and name. 1835 llvm::Constant * 1836 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1837 StringRef Name) { 1838 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1839 } 1840 1841 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1842 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1843 1844 if (MayDeferGeneration(D)) { 1845 // If we have not seen a reference to this variable yet, place it 1846 // into the deferred declarations table to be emitted if needed 1847 // later. 1848 StringRef MangledName = getMangledName(D); 1849 if (!GetGlobalValue(MangledName)) { 1850 DeferredDecls[MangledName] = D; 1851 return; 1852 } 1853 } 1854 1855 // The tentative definition is the only definition. 1856 EmitGlobalVarDefinition(D); 1857 } 1858 1859 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1860 return Context.toCharUnitsFromBits( 1861 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1862 } 1863 1864 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1865 unsigned AddrSpace) { 1866 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1867 if (D->hasAttr<CUDAConstantAttr>()) 1868 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1869 else if (D->hasAttr<CUDASharedAttr>()) 1870 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1871 else 1872 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1873 } 1874 1875 return AddrSpace; 1876 } 1877 1878 template<typename SomeDecl> 1879 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1880 llvm::GlobalValue *GV) { 1881 if (!getLangOpts().CPlusPlus) 1882 return; 1883 1884 // Must have 'used' attribute, or else inline assembly can't rely on 1885 // the name existing. 1886 if (!D->template hasAttr<UsedAttr>()) 1887 return; 1888 1889 // Must have internal linkage and an ordinary name. 1890 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1891 return; 1892 1893 // Must be in an extern "C" context. Entities declared directly within 1894 // a record are not extern "C" even if the record is in such a context. 1895 const SomeDecl *First = D->getFirstDecl(); 1896 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1897 return; 1898 1899 // OK, this is an internal linkage entity inside an extern "C" linkage 1900 // specification. Make a note of that so we can give it the "expected" 1901 // mangled name if nothing else is using that name. 1902 std::pair<StaticExternCMap::iterator, bool> R = 1903 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1904 1905 // If we have multiple internal linkage entities with the same name 1906 // in extern "C" regions, none of them gets that name. 1907 if (!R.second) 1908 R.first->second = nullptr; 1909 } 1910 1911 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1912 llvm::Constant *Init = nullptr; 1913 QualType ASTTy = D->getType(); 1914 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1915 bool NeedsGlobalCtor = false; 1916 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1917 1918 const VarDecl *InitDecl; 1919 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1920 1921 if (!InitExpr) { 1922 // This is a tentative definition; tentative definitions are 1923 // implicitly initialized with { 0 }. 1924 // 1925 // Note that tentative definitions are only emitted at the end of 1926 // a translation unit, so they should never have incomplete 1927 // type. In addition, EmitTentativeDefinition makes sure that we 1928 // never attempt to emit a tentative definition if a real one 1929 // exists. A use may still exists, however, so we still may need 1930 // to do a RAUW. 1931 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1932 Init = EmitNullConstant(D->getType()); 1933 } else { 1934 initializedGlobalDecl = GlobalDecl(D); 1935 Init = EmitConstantInit(*InitDecl); 1936 1937 if (!Init) { 1938 QualType T = InitExpr->getType(); 1939 if (D->getType()->isReferenceType()) 1940 T = D->getType(); 1941 1942 if (getLangOpts().CPlusPlus) { 1943 Init = EmitNullConstant(T); 1944 NeedsGlobalCtor = true; 1945 } else { 1946 ErrorUnsupported(D, "static initializer"); 1947 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1948 } 1949 } else { 1950 // We don't need an initializer, so remove the entry for the delayed 1951 // initializer position (just in case this entry was delayed) if we 1952 // also don't need to register a destructor. 1953 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1954 DelayedCXXInitPosition.erase(D); 1955 } 1956 } 1957 1958 llvm::Type* InitType = Init->getType(); 1959 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1960 1961 // Strip off a bitcast if we got one back. 1962 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1963 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1964 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1965 // All zero index gep. 1966 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1967 Entry = CE->getOperand(0); 1968 } 1969 1970 // Entry is now either a Function or GlobalVariable. 1971 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1972 1973 // We have a definition after a declaration with the wrong type. 1974 // We must make a new GlobalVariable* and update everything that used OldGV 1975 // (a declaration or tentative definition) with the new GlobalVariable* 1976 // (which will be a definition). 1977 // 1978 // This happens if there is a prototype for a global (e.g. 1979 // "extern int x[];") and then a definition of a different type (e.g. 1980 // "int x[10];"). This also happens when an initializer has a different type 1981 // from the type of the global (this happens with unions). 1982 if (!GV || 1983 GV->getType()->getElementType() != InitType || 1984 GV->getType()->getAddressSpace() != 1985 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1986 1987 // Move the old entry aside so that we'll create a new one. 1988 Entry->setName(StringRef()); 1989 1990 // Make a new global with the correct type, this is now guaranteed to work. 1991 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1992 1993 // Replace all uses of the old global with the new global 1994 llvm::Constant *NewPtrForOldDecl = 1995 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1996 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1997 1998 // Erase the old global, since it is no longer used. 1999 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2000 } 2001 2002 MaybeHandleStaticInExternC(D, GV); 2003 2004 if (D->hasAttr<AnnotateAttr>()) 2005 AddGlobalAnnotations(D, GV); 2006 2007 GV->setInitializer(Init); 2008 2009 // If it is safe to mark the global 'constant', do so now. 2010 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2011 isTypeConstant(D->getType(), true)); 2012 2013 // If it is in a read-only section, mark it 'constant'. 2014 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2015 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2016 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2017 GV->setConstant(true); 2018 } 2019 2020 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2021 2022 // Set the llvm linkage type as appropriate. 2023 llvm::GlobalValue::LinkageTypes Linkage = 2024 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2025 2026 // On Darwin, the backing variable for a C++11 thread_local variable always 2027 // has internal linkage; all accesses should just be calls to the 2028 // Itanium-specified entry point, which has the normal linkage of the 2029 // variable. 2030 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2031 Context.getTargetInfo().getTriple().isMacOSX()) 2032 Linkage = llvm::GlobalValue::InternalLinkage; 2033 2034 GV->setLinkage(Linkage); 2035 if (D->hasAttr<DLLImportAttr>()) 2036 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2037 else if (D->hasAttr<DLLExportAttr>()) 2038 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2039 else 2040 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2041 2042 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2043 // common vars aren't constant even if declared const. 2044 GV->setConstant(false); 2045 2046 setNonAliasAttributes(D, GV); 2047 2048 if (D->getTLSKind() && !GV->isThreadLocal()) { 2049 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2050 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2051 setTLSMode(GV, *D); 2052 } 2053 2054 // Emit the initializer function if necessary. 2055 if (NeedsGlobalCtor || NeedsGlobalDtor) 2056 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2057 2058 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2059 2060 // Emit global variable debug information. 2061 if (CGDebugInfo *DI = getModuleDebugInfo()) 2062 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2063 DI->EmitGlobalVariable(GV, D); 2064 } 2065 2066 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2067 const VarDecl *D, bool NoCommon) { 2068 // Don't give variables common linkage if -fno-common was specified unless it 2069 // was overridden by a NoCommon attribute. 2070 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2071 return true; 2072 2073 // C11 6.9.2/2: 2074 // A declaration of an identifier for an object that has file scope without 2075 // an initializer, and without a storage-class specifier or with the 2076 // storage-class specifier static, constitutes a tentative definition. 2077 if (D->getInit() || D->hasExternalStorage()) 2078 return true; 2079 2080 // A variable cannot be both common and exist in a section. 2081 if (D->hasAttr<SectionAttr>()) 2082 return true; 2083 2084 // Thread local vars aren't considered common linkage. 2085 if (D->getTLSKind()) 2086 return true; 2087 2088 // Tentative definitions marked with WeakImportAttr are true definitions. 2089 if (D->hasAttr<WeakImportAttr>()) 2090 return true; 2091 2092 // Declarations with a required alignment do not have common linakge in MSVC 2093 // mode. 2094 if (Context.getLangOpts().MSVCCompat && 2095 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2096 return true; 2097 2098 return false; 2099 } 2100 2101 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2102 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2103 if (Linkage == GVA_Internal) 2104 return llvm::Function::InternalLinkage; 2105 2106 if (D->hasAttr<WeakAttr>()) { 2107 if (IsConstantVariable) 2108 return llvm::GlobalVariable::WeakODRLinkage; 2109 else 2110 return llvm::GlobalVariable::WeakAnyLinkage; 2111 } 2112 2113 // We are guaranteed to have a strong definition somewhere else, 2114 // so we can use available_externally linkage. 2115 if (Linkage == GVA_AvailableExternally) 2116 return llvm::Function::AvailableExternallyLinkage; 2117 2118 // Note that Apple's kernel linker doesn't support symbol 2119 // coalescing, so we need to avoid linkonce and weak linkages there. 2120 // Normally, this means we just map to internal, but for explicit 2121 // instantiations we'll map to external. 2122 2123 // In C++, the compiler has to emit a definition in every translation unit 2124 // that references the function. We should use linkonce_odr because 2125 // a) if all references in this translation unit are optimized away, we 2126 // don't need to codegen it. b) if the function persists, it needs to be 2127 // merged with other definitions. c) C++ has the ODR, so we know the 2128 // definition is dependable. 2129 if (Linkage == GVA_DiscardableODR) 2130 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2131 : llvm::Function::InternalLinkage; 2132 2133 // An explicit instantiation of a template has weak linkage, since 2134 // explicit instantiations can occur in multiple translation units 2135 // and must all be equivalent. However, we are not allowed to 2136 // throw away these explicit instantiations. 2137 if (Linkage == GVA_StrongODR) 2138 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2139 : llvm::Function::ExternalLinkage; 2140 2141 // C++ doesn't have tentative definitions and thus cannot have common 2142 // linkage. 2143 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2144 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2145 CodeGenOpts.NoCommon)) 2146 return llvm::GlobalVariable::CommonLinkage; 2147 2148 // selectany symbols are externally visible, so use weak instead of 2149 // linkonce. MSVC optimizes away references to const selectany globals, so 2150 // all definitions should be the same and ODR linkage should be used. 2151 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2152 if (D->hasAttr<SelectAnyAttr>()) 2153 return llvm::GlobalVariable::WeakODRLinkage; 2154 2155 // Otherwise, we have strong external linkage. 2156 assert(Linkage == GVA_StrongExternal); 2157 return llvm::GlobalVariable::ExternalLinkage; 2158 } 2159 2160 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2161 const VarDecl *VD, bool IsConstant) { 2162 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2163 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2164 } 2165 2166 /// Replace the uses of a function that was declared with a non-proto type. 2167 /// We want to silently drop extra arguments from call sites 2168 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2169 llvm::Function *newFn) { 2170 // Fast path. 2171 if (old->use_empty()) return; 2172 2173 llvm::Type *newRetTy = newFn->getReturnType(); 2174 SmallVector<llvm::Value*, 4> newArgs; 2175 2176 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2177 ui != ue; ) { 2178 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2179 llvm::User *user = use->getUser(); 2180 2181 // Recognize and replace uses of bitcasts. Most calls to 2182 // unprototyped functions will use bitcasts. 2183 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2184 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2185 replaceUsesOfNonProtoConstant(bitcast, newFn); 2186 continue; 2187 } 2188 2189 // Recognize calls to the function. 2190 llvm::CallSite callSite(user); 2191 if (!callSite) continue; 2192 if (!callSite.isCallee(&*use)) continue; 2193 2194 // If the return types don't match exactly, then we can't 2195 // transform this call unless it's dead. 2196 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2197 continue; 2198 2199 // Get the call site's attribute list. 2200 SmallVector<llvm::AttributeSet, 8> newAttrs; 2201 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2202 2203 // Collect any return attributes from the call. 2204 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2205 newAttrs.push_back( 2206 llvm::AttributeSet::get(newFn->getContext(), 2207 oldAttrs.getRetAttributes())); 2208 2209 // If the function was passed too few arguments, don't transform. 2210 unsigned newNumArgs = newFn->arg_size(); 2211 if (callSite.arg_size() < newNumArgs) continue; 2212 2213 // If extra arguments were passed, we silently drop them. 2214 // If any of the types mismatch, we don't transform. 2215 unsigned argNo = 0; 2216 bool dontTransform = false; 2217 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2218 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2219 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2220 dontTransform = true; 2221 break; 2222 } 2223 2224 // Add any parameter attributes. 2225 if (oldAttrs.hasAttributes(argNo + 1)) 2226 newAttrs. 2227 push_back(llvm:: 2228 AttributeSet::get(newFn->getContext(), 2229 oldAttrs.getParamAttributes(argNo + 1))); 2230 } 2231 if (dontTransform) 2232 continue; 2233 2234 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2235 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2236 oldAttrs.getFnAttributes())); 2237 2238 // Okay, we can transform this. Create the new call instruction and copy 2239 // over the required information. 2240 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2241 2242 llvm::CallSite newCall; 2243 if (callSite.isCall()) { 2244 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2245 callSite.getInstruction()); 2246 } else { 2247 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2248 newCall = llvm::InvokeInst::Create(newFn, 2249 oldInvoke->getNormalDest(), 2250 oldInvoke->getUnwindDest(), 2251 newArgs, "", 2252 callSite.getInstruction()); 2253 } 2254 newArgs.clear(); // for the next iteration 2255 2256 if (!newCall->getType()->isVoidTy()) 2257 newCall->takeName(callSite.getInstruction()); 2258 newCall.setAttributes( 2259 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2260 newCall.setCallingConv(callSite.getCallingConv()); 2261 2262 // Finally, remove the old call, replacing any uses with the new one. 2263 if (!callSite->use_empty()) 2264 callSite->replaceAllUsesWith(newCall.getInstruction()); 2265 2266 // Copy debug location attached to CI. 2267 if (!callSite->getDebugLoc().isUnknown()) 2268 newCall->setDebugLoc(callSite->getDebugLoc()); 2269 callSite->eraseFromParent(); 2270 } 2271 } 2272 2273 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2274 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2275 /// existing call uses of the old function in the module, this adjusts them to 2276 /// call the new function directly. 2277 /// 2278 /// This is not just a cleanup: the always_inline pass requires direct calls to 2279 /// functions to be able to inline them. If there is a bitcast in the way, it 2280 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2281 /// run at -O0. 2282 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2283 llvm::Function *NewFn) { 2284 // If we're redefining a global as a function, don't transform it. 2285 if (!isa<llvm::Function>(Old)) return; 2286 2287 replaceUsesOfNonProtoConstant(Old, NewFn); 2288 } 2289 2290 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2291 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2292 // If we have a definition, this might be a deferred decl. If the 2293 // instantiation is explicit, make sure we emit it at the end. 2294 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2295 GetAddrOfGlobalVar(VD); 2296 2297 EmitTopLevelDecl(VD); 2298 } 2299 2300 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2301 llvm::GlobalValue *GV) { 2302 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2303 2304 // Compute the function info and LLVM type. 2305 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2306 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2307 2308 // Get or create the prototype for the function. 2309 if (!GV) { 2310 llvm::Constant *C = 2311 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2312 2313 // Strip off a bitcast if we got one back. 2314 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2315 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2316 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2317 } else { 2318 GV = cast<llvm::GlobalValue>(C); 2319 } 2320 } 2321 2322 if (!GV->isDeclaration()) { 2323 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2324 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2325 if (auto *Prev = OldGD.getDecl()) 2326 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2327 return; 2328 } 2329 2330 if (GV->getType()->getElementType() != Ty) { 2331 // If the types mismatch then we have to rewrite the definition. 2332 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2333 2334 // F is the Function* for the one with the wrong type, we must make a new 2335 // Function* and update everything that used F (a declaration) with the new 2336 // Function* (which will be a definition). 2337 // 2338 // This happens if there is a prototype for a function 2339 // (e.g. "int f()") and then a definition of a different type 2340 // (e.g. "int f(int x)"). Move the old function aside so that it 2341 // doesn't interfere with GetAddrOfFunction. 2342 GV->setName(StringRef()); 2343 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2344 2345 // This might be an implementation of a function without a 2346 // prototype, in which case, try to do special replacement of 2347 // calls which match the new prototype. The really key thing here 2348 // is that we also potentially drop arguments from the call site 2349 // so as to make a direct call, which makes the inliner happier 2350 // and suppresses a number of optimizer warnings (!) about 2351 // dropping arguments. 2352 if (!GV->use_empty()) { 2353 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2354 GV->removeDeadConstantUsers(); 2355 } 2356 2357 // Replace uses of F with the Function we will endow with a body. 2358 if (!GV->use_empty()) { 2359 llvm::Constant *NewPtrForOldDecl = 2360 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2361 GV->replaceAllUsesWith(NewPtrForOldDecl); 2362 } 2363 2364 // Ok, delete the old function now, which is dead. 2365 GV->eraseFromParent(); 2366 2367 GV = NewFn; 2368 } 2369 2370 // We need to set linkage and visibility on the function before 2371 // generating code for it because various parts of IR generation 2372 // want to propagate this information down (e.g. to local static 2373 // declarations). 2374 auto *Fn = cast<llvm::Function>(GV); 2375 setFunctionLinkage(GD, Fn); 2376 if (D->hasAttr<DLLImportAttr>()) 2377 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2378 else if (D->hasAttr<DLLExportAttr>()) 2379 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2380 else 2381 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2382 2383 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2384 setGlobalVisibility(Fn, D); 2385 2386 MaybeHandleStaticInExternC(D, Fn); 2387 2388 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2389 2390 setFunctionDefinitionAttributes(D, Fn); 2391 SetLLVMFunctionAttributesForDefinition(D, Fn); 2392 2393 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2394 AddGlobalCtor(Fn, CA->getPriority()); 2395 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2396 AddGlobalDtor(Fn, DA->getPriority()); 2397 if (D->hasAttr<AnnotateAttr>()) 2398 AddGlobalAnnotations(D, Fn); 2399 } 2400 2401 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2402 const auto *D = cast<ValueDecl>(GD.getDecl()); 2403 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2404 assert(AA && "Not an alias?"); 2405 2406 StringRef MangledName = getMangledName(GD); 2407 2408 // If there is a definition in the module, then it wins over the alias. 2409 // This is dubious, but allow it to be safe. Just ignore the alias. 2410 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2411 if (Entry && !Entry->isDeclaration()) 2412 return; 2413 2414 Aliases.push_back(GD); 2415 2416 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2417 2418 // Create a reference to the named value. This ensures that it is emitted 2419 // if a deferred decl. 2420 llvm::Constant *Aliasee; 2421 if (isa<llvm::FunctionType>(DeclTy)) 2422 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2423 /*ForVTable=*/false); 2424 else 2425 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2426 llvm::PointerType::getUnqual(DeclTy), 2427 /*D=*/nullptr); 2428 2429 // Create the new alias itself, but don't set a name yet. 2430 auto *GA = llvm::GlobalAlias::create( 2431 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2432 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2433 2434 if (Entry) { 2435 if (GA->getAliasee() == Entry) { 2436 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2437 return; 2438 } 2439 2440 assert(Entry->isDeclaration()); 2441 2442 // If there is a declaration in the module, then we had an extern followed 2443 // by the alias, as in: 2444 // extern int test6(); 2445 // ... 2446 // int test6() __attribute__((alias("test7"))); 2447 // 2448 // Remove it and replace uses of it with the alias. 2449 GA->takeName(Entry); 2450 2451 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2452 Entry->getType())); 2453 Entry->eraseFromParent(); 2454 } else { 2455 GA->setName(MangledName); 2456 } 2457 2458 // Set attributes which are particular to an alias; this is a 2459 // specialization of the attributes which may be set on a global 2460 // variable/function. 2461 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2462 D->isWeakImported()) { 2463 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2464 } 2465 2466 if (const auto *VD = dyn_cast<VarDecl>(D)) 2467 if (VD->getTLSKind()) 2468 setTLSMode(GA, *VD); 2469 2470 setAliasAttributes(D, GA); 2471 } 2472 2473 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2474 ArrayRef<llvm::Type*> Tys) { 2475 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2476 Tys); 2477 } 2478 2479 static llvm::StringMapEntry<llvm::Constant*> & 2480 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2481 const StringLiteral *Literal, 2482 bool TargetIsLSB, 2483 bool &IsUTF16, 2484 unsigned &StringLength) { 2485 StringRef String = Literal->getString(); 2486 unsigned NumBytes = String.size(); 2487 2488 // Check for simple case. 2489 if (!Literal->containsNonAsciiOrNull()) { 2490 StringLength = NumBytes; 2491 return *Map.insert(std::make_pair(String, nullptr)).first; 2492 } 2493 2494 // Otherwise, convert the UTF8 literals into a string of shorts. 2495 IsUTF16 = true; 2496 2497 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2498 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2499 UTF16 *ToPtr = &ToBuf[0]; 2500 2501 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2502 &ToPtr, ToPtr + NumBytes, 2503 strictConversion); 2504 2505 // ConvertUTF8toUTF16 returns the length in ToPtr. 2506 StringLength = ToPtr - &ToBuf[0]; 2507 2508 // Add an explicit null. 2509 *ToPtr = 0; 2510 return *Map.insert(std::make_pair( 2511 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2512 (StringLength + 1) * 2), 2513 nullptr)).first; 2514 } 2515 2516 static llvm::StringMapEntry<llvm::Constant*> & 2517 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2518 const StringLiteral *Literal, 2519 unsigned &StringLength) { 2520 StringRef String = Literal->getString(); 2521 StringLength = String.size(); 2522 return *Map.insert(std::make_pair(String, nullptr)).first; 2523 } 2524 2525 llvm::Constant * 2526 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2527 unsigned StringLength = 0; 2528 bool isUTF16 = false; 2529 llvm::StringMapEntry<llvm::Constant*> &Entry = 2530 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2531 getDataLayout().isLittleEndian(), 2532 isUTF16, StringLength); 2533 2534 if (auto *C = Entry.second) 2535 return C; 2536 2537 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2538 llvm::Constant *Zeros[] = { Zero, Zero }; 2539 llvm::Value *V; 2540 2541 // If we don't already have it, get __CFConstantStringClassReference. 2542 if (!CFConstantStringClassRef) { 2543 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2544 Ty = llvm::ArrayType::get(Ty, 0); 2545 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2546 "__CFConstantStringClassReference"); 2547 // Decay array -> ptr 2548 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2549 CFConstantStringClassRef = V; 2550 } 2551 else 2552 V = CFConstantStringClassRef; 2553 2554 QualType CFTy = getContext().getCFConstantStringType(); 2555 2556 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2557 2558 llvm::Constant *Fields[4]; 2559 2560 // Class pointer. 2561 Fields[0] = cast<llvm::ConstantExpr>(V); 2562 2563 // Flags. 2564 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2565 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2566 llvm::ConstantInt::get(Ty, 0x07C8); 2567 2568 // String pointer. 2569 llvm::Constant *C = nullptr; 2570 if (isUTF16) { 2571 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2572 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2573 Entry.first().size() / 2); 2574 C = llvm::ConstantDataArray::get(VMContext, Arr); 2575 } else { 2576 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2577 } 2578 2579 // Note: -fwritable-strings doesn't make the backing store strings of 2580 // CFStrings writable. (See <rdar://problem/10657500>) 2581 auto *GV = 2582 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2583 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2584 GV->setUnnamedAddr(true); 2585 // Don't enforce the target's minimum global alignment, since the only use 2586 // of the string is via this class initializer. 2587 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2588 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2589 // that changes the section it ends in, which surprises ld64. 2590 if (isUTF16) { 2591 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2592 GV->setAlignment(Align.getQuantity()); 2593 GV->setSection("__TEXT,__ustring"); 2594 } else { 2595 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2596 GV->setAlignment(Align.getQuantity()); 2597 GV->setSection("__TEXT,__cstring,cstring_literals"); 2598 } 2599 2600 // String. 2601 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2602 2603 if (isUTF16) 2604 // Cast the UTF16 string to the correct type. 2605 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2606 2607 // String length. 2608 Ty = getTypes().ConvertType(getContext().LongTy); 2609 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2610 2611 // The struct. 2612 C = llvm::ConstantStruct::get(STy, Fields); 2613 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2614 llvm::GlobalVariable::PrivateLinkage, C, 2615 "_unnamed_cfstring_"); 2616 GV->setSection("__DATA,__cfstring"); 2617 Entry.second = GV; 2618 2619 return GV; 2620 } 2621 2622 llvm::Constant * 2623 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2624 unsigned StringLength = 0; 2625 llvm::StringMapEntry<llvm::Constant*> &Entry = 2626 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2627 2628 if (auto *C = Entry.second) 2629 return C; 2630 2631 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2632 llvm::Constant *Zeros[] = { Zero, Zero }; 2633 llvm::Value *V; 2634 // If we don't already have it, get _NSConstantStringClassReference. 2635 if (!ConstantStringClassRef) { 2636 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2637 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2638 llvm::Constant *GV; 2639 if (LangOpts.ObjCRuntime.isNonFragile()) { 2640 std::string str = 2641 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2642 : "OBJC_CLASS_$_" + StringClass; 2643 GV = getObjCRuntime().GetClassGlobal(str); 2644 // Make sure the result is of the correct type. 2645 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2646 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2647 ConstantStringClassRef = V; 2648 } else { 2649 std::string str = 2650 StringClass.empty() ? "_NSConstantStringClassReference" 2651 : "_" + StringClass + "ClassReference"; 2652 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2653 GV = CreateRuntimeVariable(PTy, str); 2654 // Decay array -> ptr 2655 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2656 ConstantStringClassRef = V; 2657 } 2658 } 2659 else 2660 V = ConstantStringClassRef; 2661 2662 if (!NSConstantStringType) { 2663 // Construct the type for a constant NSString. 2664 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2665 D->startDefinition(); 2666 2667 QualType FieldTypes[3]; 2668 2669 // const int *isa; 2670 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2671 // const char *str; 2672 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2673 // unsigned int length; 2674 FieldTypes[2] = Context.UnsignedIntTy; 2675 2676 // Create fields 2677 for (unsigned i = 0; i < 3; ++i) { 2678 FieldDecl *Field = FieldDecl::Create(Context, D, 2679 SourceLocation(), 2680 SourceLocation(), nullptr, 2681 FieldTypes[i], /*TInfo=*/nullptr, 2682 /*BitWidth=*/nullptr, 2683 /*Mutable=*/false, 2684 ICIS_NoInit); 2685 Field->setAccess(AS_public); 2686 D->addDecl(Field); 2687 } 2688 2689 D->completeDefinition(); 2690 QualType NSTy = Context.getTagDeclType(D); 2691 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2692 } 2693 2694 llvm::Constant *Fields[3]; 2695 2696 // Class pointer. 2697 Fields[0] = cast<llvm::ConstantExpr>(V); 2698 2699 // String pointer. 2700 llvm::Constant *C = 2701 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2702 2703 llvm::GlobalValue::LinkageTypes Linkage; 2704 bool isConstant; 2705 Linkage = llvm::GlobalValue::PrivateLinkage; 2706 isConstant = !LangOpts.WritableStrings; 2707 2708 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2709 Linkage, C, ".str"); 2710 GV->setUnnamedAddr(true); 2711 // Don't enforce the target's minimum global alignment, since the only use 2712 // of the string is via this class initializer. 2713 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2714 GV->setAlignment(Align.getQuantity()); 2715 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2716 2717 // String length. 2718 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2719 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2720 2721 // The struct. 2722 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2723 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2724 llvm::GlobalVariable::PrivateLinkage, C, 2725 "_unnamed_nsstring_"); 2726 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2727 const char *NSStringNonFragileABISection = 2728 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2729 // FIXME. Fix section. 2730 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2731 ? NSStringNonFragileABISection 2732 : NSStringSection); 2733 Entry.second = GV; 2734 2735 return GV; 2736 } 2737 2738 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2739 if (ObjCFastEnumerationStateType.isNull()) { 2740 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2741 D->startDefinition(); 2742 2743 QualType FieldTypes[] = { 2744 Context.UnsignedLongTy, 2745 Context.getPointerType(Context.getObjCIdType()), 2746 Context.getPointerType(Context.UnsignedLongTy), 2747 Context.getConstantArrayType(Context.UnsignedLongTy, 2748 llvm::APInt(32, 5), ArrayType::Normal, 0) 2749 }; 2750 2751 for (size_t i = 0; i < 4; ++i) { 2752 FieldDecl *Field = FieldDecl::Create(Context, 2753 D, 2754 SourceLocation(), 2755 SourceLocation(), nullptr, 2756 FieldTypes[i], /*TInfo=*/nullptr, 2757 /*BitWidth=*/nullptr, 2758 /*Mutable=*/false, 2759 ICIS_NoInit); 2760 Field->setAccess(AS_public); 2761 D->addDecl(Field); 2762 } 2763 2764 D->completeDefinition(); 2765 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2766 } 2767 2768 return ObjCFastEnumerationStateType; 2769 } 2770 2771 llvm::Constant * 2772 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2773 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2774 2775 // Don't emit it as the address of the string, emit the string data itself 2776 // as an inline array. 2777 if (E->getCharByteWidth() == 1) { 2778 SmallString<64> Str(E->getString()); 2779 2780 // Resize the string to the right size, which is indicated by its type. 2781 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2782 Str.resize(CAT->getSize().getZExtValue()); 2783 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2784 } 2785 2786 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2787 llvm::Type *ElemTy = AType->getElementType(); 2788 unsigned NumElements = AType->getNumElements(); 2789 2790 // Wide strings have either 2-byte or 4-byte elements. 2791 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2792 SmallVector<uint16_t, 32> Elements; 2793 Elements.reserve(NumElements); 2794 2795 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2796 Elements.push_back(E->getCodeUnit(i)); 2797 Elements.resize(NumElements); 2798 return llvm::ConstantDataArray::get(VMContext, Elements); 2799 } 2800 2801 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2802 SmallVector<uint32_t, 32> Elements; 2803 Elements.reserve(NumElements); 2804 2805 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2806 Elements.push_back(E->getCodeUnit(i)); 2807 Elements.resize(NumElements); 2808 return llvm::ConstantDataArray::get(VMContext, Elements); 2809 } 2810 2811 static llvm::GlobalVariable * 2812 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2813 CodeGenModule &CGM, StringRef GlobalName, 2814 unsigned Alignment) { 2815 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2816 unsigned AddrSpace = 0; 2817 if (CGM.getLangOpts().OpenCL) 2818 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2819 2820 // Create a global variable for this string 2821 auto *GV = new llvm::GlobalVariable( 2822 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2823 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2824 GV->setAlignment(Alignment); 2825 GV->setUnnamedAddr(true); 2826 return GV; 2827 } 2828 2829 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2830 /// constant array for the given string literal. 2831 llvm::GlobalVariable * 2832 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2833 StringRef Name) { 2834 auto Alignment = 2835 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2836 2837 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2838 llvm::GlobalVariable **Entry = nullptr; 2839 if (!LangOpts.WritableStrings) { 2840 Entry = &ConstantStringMap[C]; 2841 if (auto GV = *Entry) { 2842 if (Alignment > GV->getAlignment()) 2843 GV->setAlignment(Alignment); 2844 return GV; 2845 } 2846 } 2847 2848 SmallString<256> MangledNameBuffer; 2849 StringRef GlobalVariableName; 2850 llvm::GlobalValue::LinkageTypes LT; 2851 2852 // Mangle the string literal if the ABI allows for it. However, we cannot 2853 // do this if we are compiling with ASan or -fwritable-strings because they 2854 // rely on strings having normal linkage. 2855 if (!LangOpts.WritableStrings && 2856 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2857 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2858 llvm::raw_svector_ostream Out(MangledNameBuffer); 2859 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2860 Out.flush(); 2861 2862 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2863 GlobalVariableName = MangledNameBuffer; 2864 } else { 2865 LT = llvm::GlobalValue::PrivateLinkage; 2866 GlobalVariableName = Name; 2867 } 2868 2869 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2870 if (Entry) 2871 *Entry = GV; 2872 2873 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2874 QualType()); 2875 return GV; 2876 } 2877 2878 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2879 /// array for the given ObjCEncodeExpr node. 2880 llvm::GlobalVariable * 2881 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2882 std::string Str; 2883 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2884 2885 return GetAddrOfConstantCString(Str); 2886 } 2887 2888 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2889 /// the literal and a terminating '\0' character. 2890 /// The result has pointer to array type. 2891 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2892 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2893 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2894 if (Alignment == 0) { 2895 Alignment = getContext() 2896 .getAlignOfGlobalVarInChars(getContext().CharTy) 2897 .getQuantity(); 2898 } 2899 2900 llvm::Constant *C = 2901 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2902 2903 // Don't share any string literals if strings aren't constant. 2904 llvm::GlobalVariable **Entry = nullptr; 2905 if (!LangOpts.WritableStrings) { 2906 Entry = &ConstantStringMap[C]; 2907 if (auto GV = *Entry) { 2908 if (Alignment > GV->getAlignment()) 2909 GV->setAlignment(Alignment); 2910 return GV; 2911 } 2912 } 2913 2914 // Get the default prefix if a name wasn't specified. 2915 if (!GlobalName) 2916 GlobalName = ".str"; 2917 // Create a global variable for this. 2918 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2919 GlobalName, Alignment); 2920 if (Entry) 2921 *Entry = GV; 2922 return GV; 2923 } 2924 2925 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2926 const MaterializeTemporaryExpr *E, const Expr *Init) { 2927 assert((E->getStorageDuration() == SD_Static || 2928 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2929 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2930 2931 // If we're not materializing a subobject of the temporary, keep the 2932 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2933 QualType MaterializedType = Init->getType(); 2934 if (Init == E->GetTemporaryExpr()) 2935 MaterializedType = E->getType(); 2936 2937 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2938 if (Slot) 2939 return Slot; 2940 2941 // FIXME: If an externally-visible declaration extends multiple temporaries, 2942 // we need to give each temporary the same name in every translation unit (and 2943 // we also need to make the temporaries externally-visible). 2944 SmallString<256> Name; 2945 llvm::raw_svector_ostream Out(Name); 2946 getCXXABI().getMangleContext().mangleReferenceTemporary( 2947 VD, E->getManglingNumber(), Out); 2948 Out.flush(); 2949 2950 APValue *Value = nullptr; 2951 if (E->getStorageDuration() == SD_Static) { 2952 // We might have a cached constant initializer for this temporary. Note 2953 // that this might have a different value from the value computed by 2954 // evaluating the initializer if the surrounding constant expression 2955 // modifies the temporary. 2956 Value = getContext().getMaterializedTemporaryValue(E, false); 2957 if (Value && Value->isUninit()) 2958 Value = nullptr; 2959 } 2960 2961 // Try evaluating it now, it might have a constant initializer. 2962 Expr::EvalResult EvalResult; 2963 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2964 !EvalResult.hasSideEffects()) 2965 Value = &EvalResult.Val; 2966 2967 llvm::Constant *InitialValue = nullptr; 2968 bool Constant = false; 2969 llvm::Type *Type; 2970 if (Value) { 2971 // The temporary has a constant initializer, use it. 2972 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2973 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2974 Type = InitialValue->getType(); 2975 } else { 2976 // No initializer, the initialization will be provided when we 2977 // initialize the declaration which performed lifetime extension. 2978 Type = getTypes().ConvertTypeForMem(MaterializedType); 2979 } 2980 2981 // Create a global variable for this lifetime-extended temporary. 2982 llvm::GlobalValue::LinkageTypes Linkage = 2983 getLLVMLinkageVarDefinition(VD, Constant); 2984 // There is no need for this temporary to have global linkage if the global 2985 // variable has external linkage. 2986 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2987 Linkage = llvm::GlobalVariable::PrivateLinkage; 2988 unsigned AddrSpace = GetGlobalVarAddressSpace( 2989 VD, getContext().getTargetAddressSpace(MaterializedType)); 2990 auto *GV = new llvm::GlobalVariable( 2991 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2992 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2993 AddrSpace); 2994 setGlobalVisibility(GV, VD); 2995 GV->setAlignment( 2996 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2997 if (VD->getTLSKind()) 2998 setTLSMode(GV, *VD); 2999 Slot = GV; 3000 return GV; 3001 } 3002 3003 /// EmitObjCPropertyImplementations - Emit information for synthesized 3004 /// properties for an implementation. 3005 void CodeGenModule::EmitObjCPropertyImplementations(const 3006 ObjCImplementationDecl *D) { 3007 for (const auto *PID : D->property_impls()) { 3008 // Dynamic is just for type-checking. 3009 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3010 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3011 3012 // Determine which methods need to be implemented, some may have 3013 // been overridden. Note that ::isPropertyAccessor is not the method 3014 // we want, that just indicates if the decl came from a 3015 // property. What we want to know is if the method is defined in 3016 // this implementation. 3017 if (!D->getInstanceMethod(PD->getGetterName())) 3018 CodeGenFunction(*this).GenerateObjCGetter( 3019 const_cast<ObjCImplementationDecl *>(D), PID); 3020 if (!PD->isReadOnly() && 3021 !D->getInstanceMethod(PD->getSetterName())) 3022 CodeGenFunction(*this).GenerateObjCSetter( 3023 const_cast<ObjCImplementationDecl *>(D), PID); 3024 } 3025 } 3026 } 3027 3028 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3029 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3030 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3031 ivar; ivar = ivar->getNextIvar()) 3032 if (ivar->getType().isDestructedType()) 3033 return true; 3034 3035 return false; 3036 } 3037 3038 static bool AllTrivialInitializers(CodeGenModule &CGM, 3039 ObjCImplementationDecl *D) { 3040 CodeGenFunction CGF(CGM); 3041 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3042 E = D->init_end(); B != E; ++B) { 3043 CXXCtorInitializer *CtorInitExp = *B; 3044 Expr *Init = CtorInitExp->getInit(); 3045 if (!CGF.isTrivialInitializer(Init)) 3046 return false; 3047 } 3048 return true; 3049 } 3050 3051 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3052 /// for an implementation. 3053 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3054 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3055 if (needsDestructMethod(D)) { 3056 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3057 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3058 ObjCMethodDecl *DTORMethod = 3059 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3060 cxxSelector, getContext().VoidTy, nullptr, D, 3061 /*isInstance=*/true, /*isVariadic=*/false, 3062 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3063 /*isDefined=*/false, ObjCMethodDecl::Required); 3064 D->addInstanceMethod(DTORMethod); 3065 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3066 D->setHasDestructors(true); 3067 } 3068 3069 // If the implementation doesn't have any ivar initializers, we don't need 3070 // a .cxx_construct. 3071 if (D->getNumIvarInitializers() == 0 || 3072 AllTrivialInitializers(*this, D)) 3073 return; 3074 3075 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3076 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3077 // The constructor returns 'self'. 3078 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3079 D->getLocation(), 3080 D->getLocation(), 3081 cxxSelector, 3082 getContext().getObjCIdType(), 3083 nullptr, D, /*isInstance=*/true, 3084 /*isVariadic=*/false, 3085 /*isPropertyAccessor=*/true, 3086 /*isImplicitlyDeclared=*/true, 3087 /*isDefined=*/false, 3088 ObjCMethodDecl::Required); 3089 D->addInstanceMethod(CTORMethod); 3090 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3091 D->setHasNonZeroConstructors(true); 3092 } 3093 3094 /// EmitNamespace - Emit all declarations in a namespace. 3095 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3096 for (auto *I : ND->decls()) { 3097 if (const auto *VD = dyn_cast<VarDecl>(I)) 3098 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3099 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3100 continue; 3101 EmitTopLevelDecl(I); 3102 } 3103 } 3104 3105 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3106 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3107 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3108 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3109 ErrorUnsupported(LSD, "linkage spec"); 3110 return; 3111 } 3112 3113 for (auto *I : LSD->decls()) { 3114 // Meta-data for ObjC class includes references to implemented methods. 3115 // Generate class's method definitions first. 3116 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3117 for (auto *M : OID->methods()) 3118 EmitTopLevelDecl(M); 3119 } 3120 EmitTopLevelDecl(I); 3121 } 3122 } 3123 3124 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3125 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3126 // Ignore dependent declarations. 3127 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3128 return; 3129 3130 switch (D->getKind()) { 3131 case Decl::CXXConversion: 3132 case Decl::CXXMethod: 3133 case Decl::Function: 3134 // Skip function templates 3135 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3136 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3137 return; 3138 3139 EmitGlobal(cast<FunctionDecl>(D)); 3140 // Always provide some coverage mapping 3141 // even for the functions that aren't emitted. 3142 AddDeferredUnusedCoverageMapping(D); 3143 break; 3144 3145 case Decl::Var: 3146 // Skip variable templates 3147 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3148 return; 3149 case Decl::VarTemplateSpecialization: 3150 EmitGlobal(cast<VarDecl>(D)); 3151 break; 3152 3153 // Indirect fields from global anonymous structs and unions can be 3154 // ignored; only the actual variable requires IR gen support. 3155 case Decl::IndirectField: 3156 break; 3157 3158 // C++ Decls 3159 case Decl::Namespace: 3160 EmitNamespace(cast<NamespaceDecl>(D)); 3161 break; 3162 // No code generation needed. 3163 case Decl::UsingShadow: 3164 case Decl::ClassTemplate: 3165 case Decl::VarTemplate: 3166 case Decl::VarTemplatePartialSpecialization: 3167 case Decl::FunctionTemplate: 3168 case Decl::TypeAliasTemplate: 3169 case Decl::Block: 3170 case Decl::Empty: 3171 break; 3172 case Decl::Using: // using X; [C++] 3173 if (CGDebugInfo *DI = getModuleDebugInfo()) 3174 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3175 return; 3176 case Decl::NamespaceAlias: 3177 if (CGDebugInfo *DI = getModuleDebugInfo()) 3178 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3179 return; 3180 case Decl::UsingDirective: // using namespace X; [C++] 3181 if (CGDebugInfo *DI = getModuleDebugInfo()) 3182 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3183 return; 3184 case Decl::CXXConstructor: 3185 // Skip function templates 3186 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3187 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3188 return; 3189 3190 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3191 break; 3192 case Decl::CXXDestructor: 3193 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3194 return; 3195 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3196 break; 3197 3198 case Decl::StaticAssert: 3199 // Nothing to do. 3200 break; 3201 3202 // Objective-C Decls 3203 3204 // Forward declarations, no (immediate) code generation. 3205 case Decl::ObjCInterface: 3206 case Decl::ObjCCategory: 3207 break; 3208 3209 case Decl::ObjCProtocol: { 3210 auto *Proto = cast<ObjCProtocolDecl>(D); 3211 if (Proto->isThisDeclarationADefinition()) 3212 ObjCRuntime->GenerateProtocol(Proto); 3213 break; 3214 } 3215 3216 case Decl::ObjCCategoryImpl: 3217 // Categories have properties but don't support synthesize so we 3218 // can ignore them here. 3219 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3220 break; 3221 3222 case Decl::ObjCImplementation: { 3223 auto *OMD = cast<ObjCImplementationDecl>(D); 3224 EmitObjCPropertyImplementations(OMD); 3225 EmitObjCIvarInitializations(OMD); 3226 ObjCRuntime->GenerateClass(OMD); 3227 // Emit global variable debug information. 3228 if (CGDebugInfo *DI = getModuleDebugInfo()) 3229 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3230 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3231 OMD->getClassInterface()), OMD->getLocation()); 3232 break; 3233 } 3234 case Decl::ObjCMethod: { 3235 auto *OMD = cast<ObjCMethodDecl>(D); 3236 // If this is not a prototype, emit the body. 3237 if (OMD->getBody()) 3238 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3239 break; 3240 } 3241 case Decl::ObjCCompatibleAlias: 3242 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3243 break; 3244 3245 case Decl::LinkageSpec: 3246 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3247 break; 3248 3249 case Decl::FileScopeAsm: { 3250 auto *AD = cast<FileScopeAsmDecl>(D); 3251 StringRef AsmString = AD->getAsmString()->getString(); 3252 3253 const std::string &S = getModule().getModuleInlineAsm(); 3254 if (S.empty()) 3255 getModule().setModuleInlineAsm(AsmString); 3256 else if (S.end()[-1] == '\n') 3257 getModule().setModuleInlineAsm(S + AsmString.str()); 3258 else 3259 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3260 break; 3261 } 3262 3263 case Decl::Import: { 3264 auto *Import = cast<ImportDecl>(D); 3265 3266 // Ignore import declarations that come from imported modules. 3267 if (clang::Module *Owner = Import->getOwningModule()) { 3268 if (getLangOpts().CurrentModule.empty() || 3269 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3270 break; 3271 } 3272 3273 ImportedModules.insert(Import->getImportedModule()); 3274 break; 3275 } 3276 3277 case Decl::OMPThreadPrivate: 3278 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3279 break; 3280 3281 case Decl::ClassTemplateSpecialization: { 3282 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3283 if (DebugInfo && 3284 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3285 DebugInfo->completeTemplateDefinition(*Spec); 3286 break; 3287 } 3288 3289 default: 3290 // Make sure we handled everything we should, every other kind is a 3291 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3292 // function. Need to recode Decl::Kind to do that easily. 3293 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3294 break; 3295 } 3296 } 3297 3298 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3299 // Do we need to generate coverage mapping? 3300 if (!CodeGenOpts.CoverageMapping) 3301 return; 3302 switch (D->getKind()) { 3303 case Decl::CXXConversion: 3304 case Decl::CXXMethod: 3305 case Decl::Function: 3306 case Decl::ObjCMethod: 3307 case Decl::CXXConstructor: 3308 case Decl::CXXDestructor: { 3309 if (!cast<FunctionDecl>(D)->hasBody()) 3310 return; 3311 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3312 if (I == DeferredEmptyCoverageMappingDecls.end()) 3313 DeferredEmptyCoverageMappingDecls[D] = true; 3314 break; 3315 } 3316 default: 3317 break; 3318 }; 3319 } 3320 3321 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3322 // Do we need to generate coverage mapping? 3323 if (!CodeGenOpts.CoverageMapping) 3324 return; 3325 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3326 if (Fn->isTemplateInstantiation()) 3327 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3328 } 3329 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3330 if (I == DeferredEmptyCoverageMappingDecls.end()) 3331 DeferredEmptyCoverageMappingDecls[D] = false; 3332 else 3333 I->second = false; 3334 } 3335 3336 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3337 std::vector<const Decl *> DeferredDecls; 3338 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3339 if (!I.second) 3340 continue; 3341 DeferredDecls.push_back(I.first); 3342 } 3343 // Sort the declarations by their location to make sure that the tests get a 3344 // predictable order for the coverage mapping for the unused declarations. 3345 if (CodeGenOpts.DumpCoverageMapping) 3346 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3347 [] (const Decl *LHS, const Decl *RHS) { 3348 return LHS->getLocStart() < RHS->getLocStart(); 3349 }); 3350 for (const auto *D : DeferredDecls) { 3351 switch (D->getKind()) { 3352 case Decl::CXXConversion: 3353 case Decl::CXXMethod: 3354 case Decl::Function: 3355 case Decl::ObjCMethod: { 3356 CodeGenPGO PGO(*this); 3357 GlobalDecl GD(cast<FunctionDecl>(D)); 3358 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3359 getFunctionLinkage(GD)); 3360 break; 3361 } 3362 case Decl::CXXConstructor: { 3363 CodeGenPGO PGO(*this); 3364 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3365 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3366 getFunctionLinkage(GD)); 3367 break; 3368 } 3369 case Decl::CXXDestructor: { 3370 CodeGenPGO PGO(*this); 3371 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3372 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3373 getFunctionLinkage(GD)); 3374 break; 3375 } 3376 default: 3377 break; 3378 }; 3379 } 3380 } 3381 3382 /// Turns the given pointer into a constant. 3383 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3384 const void *Ptr) { 3385 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3386 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3387 return llvm::ConstantInt::get(i64, PtrInt); 3388 } 3389 3390 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3391 llvm::NamedMDNode *&GlobalMetadata, 3392 GlobalDecl D, 3393 llvm::GlobalValue *Addr) { 3394 if (!GlobalMetadata) 3395 GlobalMetadata = 3396 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3397 3398 // TODO: should we report variant information for ctors/dtors? 3399 llvm::Value *Ops[] = { 3400 Addr, 3401 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3402 }; 3403 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3404 } 3405 3406 /// For each function which is declared within an extern "C" region and marked 3407 /// as 'used', but has internal linkage, create an alias from the unmangled 3408 /// name to the mangled name if possible. People expect to be able to refer 3409 /// to such functions with an unmangled name from inline assembly within the 3410 /// same translation unit. 3411 void CodeGenModule::EmitStaticExternCAliases() { 3412 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3413 E = StaticExternCValues.end(); 3414 I != E; ++I) { 3415 IdentifierInfo *Name = I->first; 3416 llvm::GlobalValue *Val = I->second; 3417 if (Val && !getModule().getNamedValue(Name->getName())) 3418 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3419 } 3420 } 3421 3422 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3423 GlobalDecl &Result) const { 3424 auto Res = Manglings.find(MangledName); 3425 if (Res == Manglings.end()) 3426 return false; 3427 Result = Res->getValue(); 3428 return true; 3429 } 3430 3431 /// Emits metadata nodes associating all the global values in the 3432 /// current module with the Decls they came from. This is useful for 3433 /// projects using IR gen as a subroutine. 3434 /// 3435 /// Since there's currently no way to associate an MDNode directly 3436 /// with an llvm::GlobalValue, we create a global named metadata 3437 /// with the name 'clang.global.decl.ptrs'. 3438 void CodeGenModule::EmitDeclMetadata() { 3439 llvm::NamedMDNode *GlobalMetadata = nullptr; 3440 3441 // StaticLocalDeclMap 3442 for (auto &I : MangledDeclNames) { 3443 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3444 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3445 } 3446 } 3447 3448 /// Emits metadata nodes for all the local variables in the current 3449 /// function. 3450 void CodeGenFunction::EmitDeclMetadata() { 3451 if (LocalDeclMap.empty()) return; 3452 3453 llvm::LLVMContext &Context = getLLVMContext(); 3454 3455 // Find the unique metadata ID for this name. 3456 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3457 3458 llvm::NamedMDNode *GlobalMetadata = nullptr; 3459 3460 for (auto &I : LocalDeclMap) { 3461 const Decl *D = I.first; 3462 llvm::Value *Addr = I.second; 3463 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3464 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3465 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3466 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3467 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3468 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3469 } 3470 } 3471 } 3472 3473 void CodeGenModule::EmitVersionIdentMetadata() { 3474 llvm::NamedMDNode *IdentMetadata = 3475 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3476 std::string Version = getClangFullVersion(); 3477 llvm::LLVMContext &Ctx = TheModule.getContext(); 3478 3479 llvm::Value *IdentNode[] = { 3480 llvm::MDString::get(Ctx, Version) 3481 }; 3482 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3483 } 3484 3485 void CodeGenModule::EmitTargetMetadata() { 3486 // Warning, new MangledDeclNames may be appended within this loop. 3487 // We rely on MapVector insertions adding new elements to the end 3488 // of the container. 3489 // FIXME: Move this loop into the one target that needs it, and only 3490 // loop over those declarations for which we couldn't emit the target 3491 // metadata when we emitted the declaration. 3492 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3493 auto Val = *(MangledDeclNames.begin() + I); 3494 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3495 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3496 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3497 } 3498 } 3499 3500 void CodeGenModule::EmitCoverageFile() { 3501 if (!getCodeGenOpts().CoverageFile.empty()) { 3502 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3503 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3504 llvm::LLVMContext &Ctx = TheModule.getContext(); 3505 llvm::MDString *CoverageFile = 3506 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3507 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3508 llvm::MDNode *CU = CUNode->getOperand(i); 3509 llvm::Value *node[] = { CoverageFile, CU }; 3510 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3511 GCov->addOperand(N); 3512 } 3513 } 3514 } 3515 } 3516 3517 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3518 // Sema has checked that all uuid strings are of the form 3519 // "12345678-1234-1234-1234-1234567890ab". 3520 assert(Uuid.size() == 36); 3521 for (unsigned i = 0; i < 36; ++i) { 3522 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3523 else assert(isHexDigit(Uuid[i])); 3524 } 3525 3526 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3527 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3528 3529 llvm::Constant *Field3[8]; 3530 for (unsigned Idx = 0; Idx < 8; ++Idx) 3531 Field3[Idx] = llvm::ConstantInt::get( 3532 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3533 3534 llvm::Constant *Fields[4] = { 3535 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3536 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3537 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3538 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3539 }; 3540 3541 return llvm::ConstantStruct::getAnon(Fields); 3542 } 3543 3544 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3545 bool ForEH) { 3546 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3547 // FIXME: should we even be calling this method if RTTI is disabled 3548 // and it's not for EH? 3549 if (!ForEH && !getLangOpts().RTTI) 3550 return llvm::Constant::getNullValue(Int8PtrTy); 3551 3552 if (ForEH && Ty->isObjCObjectPointerType() && 3553 LangOpts.ObjCRuntime.isGNUFamily()) 3554 return ObjCRuntime->GetEHType(Ty); 3555 3556 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3557 } 3558 3559 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3560 for (auto RefExpr : D->varlists()) { 3561 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3562 bool PerformInit = 3563 VD->getAnyInitializer() && 3564 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3565 /*ForRef=*/false); 3566 if (auto InitFunction = 3567 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3568 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3569 PerformInit)) 3570 CXXGlobalInits.push_back(InitFunction); 3571 } 3572 } 3573 3574